FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Song, J Doggett, N Wren, M Burr, T Fenimore, PW Hatcher, EL Bruno, WJ Li, PE Stubben, C Wolinsky, M AF Song, Jian Doggett, Norman Wren, Melinda Burr, Tom Fenimore, P. W. Hatcher, Eneida L. Bruno, William J. Li, Po-E Stubben, Chris Wolinsky, Murray TI Development of Forensic Assay Signatures for Ebolaviruses SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; DNA typing; hemorrhagic fever; Ebolavirus; Ebola; filovirus; filoviridae; canonical SNPs; SNP genotyping; TaqMan-MGB allelic discrimination assay ID SUBTYPE RESTON VIRUS; EBOLA-VIRUS; HEMORRHAGIC-FEVER; NONHUMAN-PRIMATES; UNITED-STATES; ZAIRE; PCR; EPIDEMIOLOGY; PHILIPPINES; PHYLOGENY AB Ebolaviruses are a diverse group of RNA viruses comprising five different species, four of which cause fatal hemorrhagic fever in humans. Because of their high infectivity and lethality, ebolaviruses are considered major biothreat agents. Although detection assays exist, no forensic assays are currently available. Here, we report the development of forensic assays that differentiate ebolaviruses. We performed phylogenetic analyses and identified canonical SNPs for all species, major clades and isolates. TaqMan-MGB allelic discrimination assays based on these SNPs were designed, screened against synthetic RNA templates, and validated against ebolavirus genomic RNAs. A total of 45 assays were validated to provide 100% coverage of the species and variants with additional resolution at the isolate level. These assays enabled accurate forensic analysis on 4 unknown ebolaviruses. Unknowns were correctly classified to species and variant. A goal of providing resolution below the isolate level was not successful. These high-resolution forensic assays allow rapid and accurate genotyping of ebolaviruses for forensic investigations. C1 [Song, Jian; Li, Po-E; Stubben, Chris; Wolinsky, Murray] Los Alamos Natl Lab, Biosci Div, Bioenergy & Biome Sci B11, Los Alamos, NM 87545 USA. [Doggett, Norman; Wren, Melinda] Los Alamos Natl Lab, Biosci Div, Biosecur & Publ Hlth B10, Los Alamos, NM 87545 USA. [Burr, Tom] Los Alamos Natl Lab, Stat Sci Comp Computat & Stat Sci Div CCS 6, Los Alamos, NM 87545 USA. [Fenimore, P. W.; Bruno, William J.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys T6, Los Alamos, NM 87545 USA. [Hatcher, Eneida L.] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35233 USA. RP Wolinsky, M (reprint author), Los Alamos Natl Lab, Biosci Div, Bioenergy & Biome Sci B11, POB 1663, Los Alamos, NM 87545 USA. EM murray@lanl.gov FU Department of Homeland Security [HSHQDC-08-X-00567]; US Department of Energy [DE-AC52-06NA25396] FX Funded in part by the Department of Homeland Security (HSHQDC-08-X-00567). This work has been authored by an employee of Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the US Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this work, or allow others to do so for United States Government purposes. NR 56 TC 0 Z9 0 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD MAR PY 2015 VL 60 IS 2 BP 315 EP 325 DI 10.1111/1556-4029.12655 PG 11 WC Medicine, Legal SC Legal Medicine GA CD0LM UT WOS:000350764300006 PM 25677086 ER PT J AU Wang, XJ Zhou, ZY Behugn, S Liu, M Lin, H Yang, X Gao, Y Nan, TX Xing, X Hu, ZQ Sun, NX AF Wang, Xinjun Zhou, Ziyao Behugn, Shawn Liu, Ming Lin, Hwaider Yang, Xi Gao, Yuan Nan, Tianxiang Xing, Xing Hu, Zhongqiang Sun, Nianxiang TI Growth behavior and RF/microwave properties of low temperature spin-sprayed NiZn ferrite SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article ID MINIATURIZED ANTENNAS; THIN-FILM; PERMEABILITY AB In our experiment, the influence of growth parameters of the spin-spray technique upon the microstructure andmagnetic/microwave properties of NiZn spinel ferrite thin film was studied. By varying the pH value of precursor and oxidizer, the microstructure of NiZn ferrite thin film can be manipulated, further, bringing varying magnetic/microwave properties. High permeability mu(r)' > 200 at 0.5 GHz with low loss tan delta(m) similar to 0.027 at 3-5 GHz range was achieved at precursor pH value of 4.6 and oxidizer pH value of 9.6. These magnetic/microwave properties are ideal for GHz range microwave application, for example, inductors, antennas, and electromagnetic interference suppression. C1 [Wang, Xinjun; Zhou, Ziyao; Behugn, Shawn; Lin, Hwaider; Yang, Xi; Gao, Yuan; Nan, Tianxiang; Xing, Xing; Hu, Zhongqiang; Sun, Nianxiang] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Zhou, Ziyao] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Liu, Ming] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China. [Liu, Ming] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. RP Wang, XJ (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. EM wang.xinj@husky.neu.edu RI Zhou, Ziyao/N-8398-2015; Nan, Tianxiang/O-3820-2015; Nan, Tianxiang/A-8020-2016; Gao, Yuan/E-4277-2016; Yang, Xi/E-6042-2016; Hu, Zhongqiang/I-2528-2012; Sun, Nian Xiang/F-9590-2010; Liu, Ming/B-4143-2009 OI Zhou, Ziyao/0000-0002-2389-1673; Gao, Yuan/0000-0002-2444-1180; Hu, Zhongqiang/0000-0002-7534-0427; Sun, Nian Xiang/0000-0002-3120-0094; Liu, Ming/0000-0002-6310-948X NR 14 TC 5 Z9 5 U1 4 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 EI 1573-482X J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD MAR PY 2015 VL 26 IS 3 BP 1890 EP 1894 DI 10.1007/s10854-014-2625-4 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA CC3CZ UT WOS:000350223700086 ER PT J AU Patel, SM Cobb, P Saydah, S Zhang, XP de Jesus, JM Cogswell, ME AF Patel, Sheena M. Cobb, Paul Saydah, Sharon Zhang, Xuanping de Jesus, Janet M. Cogswell, Mary E. TI Dietary Sodium Reduction Does Not Affect Circulating Glucose Concentrations in Fasting Children or Adults: Findings from a Systematic Review and Meta-Analysis SO JOURNAL OF NUTRITION LA English DT Article DE fasting glucose; insulin resistance; meta-analysis; sodium reduction; systematic review ID INSULIN SENSITIVITY; BLOOD-PRESSURE; SALT RESTRICTION; HYPERTENSIVE PATIENTS; METABOLIC SYNDROME; CARDIOVASCULAR-DISEASE; DIABETES-MELLITUS; NACL RESTRICTION; PLASMA-GLUCOSE; SERUM-LIPIDS AB Background: Although evidence shows that reduced sodium intake lowers blood pressure, some studies suggest that sodium reduction may adversely affect insulin resistance and glucose tolerance. Objectives: The objectives were to assess the effects of sodium reduction on glucose tolerance, evaluate strengths and weaknesses of the relevant scientific literature, and provide direction for future research. Methods: We searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, and Web of Science through August 2014. Both randomized and nonrandomized intervention trialswere included in ourmeta-analyses. The effects of sodium reduction on glucose tolerance were evaluated in 37 articles, but because of a lack of comparable data, 8 trials were excluded from the meta-analyses. Results: Participants were 10-79 y old, either primarily healthy or with hypertension. In meta-analyses of 20 randomized, crossover trials (n = 504 participants) and 9 nonrandomized crossover trials (n = 337), circulating glucose concentrations of fasting participants were not affected by reduction in sodium intake. In contrast, in meta-analyses of 19 of the 20 randomized, crossover trials (n = 494), fasting insulin concentrations were 9.53 pmol/L higher (95% CI: 5.04, 14.02 pmol/L higher) with sodium reduction. In 9 nonrandomized trials (n = 337), fasting insulin did not differ with reduced sodium intake. Results differed little when the analyses were restricted to studies with a low risk of bias and duration of >= 7 d. Conclusions: This meta-analysis revealed no evidence that, in trials with a short intervention and large reductions in sodium, circulating glucose concentrations differed between groups. Recommendations for future studies include extending intervention durations, ensuring comparability of groups at baseline through randomization, and assessing sodium intakes relevant to population sodium reduction. In addition, analyses on other metabolic variables were limited because of the number of trials reporting these outcomes and lack of consistency across measures, suggesting a need for comparable measures of glucose tolerance across studies. C1 [Patel, Sheena M.; Cobb, Paul; Cogswell, Mary E.] CDC, Div Heart Dis & Stroke Prevent, Atlanta, GA 30333 USA. [Saydah, Sharon; Zhang, Xuanping] CDC, Div Diabet Translat, Atlanta, GA 30333 USA. [Patel, Sheena M.] Oak Ridge Inst Sci & Educ, Atlanta, GA USA. [de Jesus, Janet M.] NHLBI, NIH, Bethesda, MD 20892 USA. RP Patel, SM (reprint author), CDC, Div Heart Dis & Stroke Prevent, Atlanta, GA 30333 USA. EM lsp7@cdc.gov FU Department of Energy; CDC FX Supported by appointment to the Research Participation Program (to SMP) for the CDC administered by the Oak Ridge Institute for Science and Education through an agreement between the Department of Energy and CDC. NR 59 TC 3 Z9 3 U1 5 U2 9 PU AMER SOC NUTRITION-ASN PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-3166 EI 1541-6100 J9 J NUTR JI J. Nutr. PD MAR PY 2015 VL 145 IS 3 BP 505 EP 513 DI 10.3945/jn.114.195982 PG 9 WC Nutrition & Dietetics SC Nutrition & Dietetics GA CC5RM UT WOS:000350420400019 PM 25733466 ER PT J AU Pasiakos, SM Lieberman, HR Fulgoni, VL AF Pasiakos, Stefan M. Lieberman, Harris R. Fulgoni, Victor L., III TI Higher-Protein Diets Are Associated with Higher HDL Cholesterol and Lower BMI and Waist Circumference in US Adults SO JOURNAL OF NUTRITION LA English DT Article DE recommended dietary allowance; body mass index; waist circumference; high-density lipoprotein; NHANES ID RANDOMIZED CONTROLLED-TRIALS; LOW-CARBOHYDRATE DIETS; LOW-FAT DIETS; WEIGHT-LOSS; BODY-COMPOSITION; RISK-FACTORS; AMINO-ACIDS; BLOOD-LIPIDS; OBESE ADULTS; WOMEN AB Background: Protein intake above the RDA attenuates cardiometabolic risk in overweight and obese adults during weight loss. However, the cardiometabolic consequences of consuming higher-protein diets in free-living adults have not been determined. Objective: This study examined usual protein intake [g/kg body weight (BW)] patterns stratified by weight status and their associations with cardiometabolic risk using data from the NHANES, 2001-2010 (n = 23,876 adults >= 19 y of age). Methods: Linear and decile trends for association of usual protein intake with cardiometabolic risk factors including blood pressure, glucose, insulin, cholesterol, and triglycerides were determined with use of models that controlled for age, sex, ethnicity, physical activity, poverty-income ratio, energy intake (kcal/d), carbohydrate (g/kg BW) and total fat (g/kg BW) intake, body mass index (BMI), and waist circumference. Results: Usual protein intake varied across deciles from 0.69 +/- 0.004 to 1.51 +/- 0.009 g/kg BW (means +/- SEs). Usual protein intake was inversely associated with BMI (-0.47 kg/m(2) per decile and -4.54 kg/m(2) per g/kg BW) and waist circumference (-0.53 cm per decile and -2.45 cm per g/kg BW), whereas a positive association was observed between protein intake and HDL cholesterol (0.01 mmol/L per decile and 0.14 mmol/L per g/kg BW, P < 0.00125). Conclusions: Americans of all body weights typically consume protein in excess of the RDA. Higher-protein diets are associated with lower BMI and waist circumference and higher HDL cholesterol compared to protein intakes at RDA levels. Our data suggest that Americans who consume dietary protein between 1.0 and 1.5 g/kg BW potentially have a lower risk of developing cardiometabolic disease. C1 [Pasiakos, Stefan M.; Lieberman, Harris R.] US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. [Fulgoni, Victor L., III] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Fulgoni, Victor L., III] Nutr Impact LLC, Battle Creek, MI USA. RP Pasiakos, SM (reprint author), US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. EM stefan.pasiakos@us.army.mil RI Pasiakos, Stefan/E-6295-2014 OI Pasiakos, Stefan/0000-0002-5378-5820 FU US Army Military Research and Materiel Command; Department of Defense Center Alliance for Dietary Supplements Research FX Supported by the US Army Military Research and Materiel Command and the Department of Defense Center Alliance for Dietary Supplements Research. NR 50 TC 6 Z9 6 U1 1 U2 15 PU AMER SOC NUTRITION-ASN PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-3166 EI 1541-6100 J9 J NUTR JI J. Nutr. PD MAR PY 2015 VL 145 IS 3 BP 605 EP 614 DI 10.3945/jn.114.205203 PG 10 WC Nutrition & Dietetics SC Nutrition & Dietetics GA CC5RM UT WOS:000350420400031 PM 25733478 ER PT J AU Merkley, ED Wrighton, KC Castelle, CJ Anderson, BJ Wilkins, MJ Shah, V Arbour, T Brown, JN Singer, SW Smith, RD Lipton, MS AF Merkley, Eric D. Wrighton, Kelly C. Castelle, Cindy J. Anderson, Brian J. Wilkins, Michael J. Shah, Vega Arbour, Tyler Brown, Joseph N. Singer, Steven W. Smith, Richard D. Lipton, Mary S. TI Changes in Protein Expression Across Laboratory and Field Experiments in Geobacter bemidjiensis SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Geobacter bemidjiensis; c-type cytochromes; proteomics; electron acceptors ID C-TYPE CYTOCHROME; FE(III)-REDUCING SUBSURFACE ENVIRONMENTS; TANDEM MASS-SPECTRA; ACCURATE MASS; DISSIMILATORY REDUCTION; FE(III) REDUCTION; OXIDE REDUCTION; OUTER-SURFACE; SULFURREDUCENS; IRON AB Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of G. bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration. C1 [Merkley, Eric D.] Pacific NW Natl Lab, Signature Sci & Technol Div, Richland, WA 99352 USA. [Anderson, Brian J.; Brown, Joseph N.; Smith, Richard D.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Wrighton, Kelly C.; Wilkins, Michael J.] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Castelle, Cindy J.; Arbour, Tyler] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Castelle, Cindy J.; Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Shah, Vega] Univ Washington, Biol Oceanog, Seattle, WA 98105 USA. RP Lipton, MS (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM mary.lipton@pnnl.gov RI Smith, Richard/J-3664-2012; Wilkins, Michael/A-9358-2013 OI Smith, Richard/0000-0002-2381-2349; FU DOE/BER; DOE/SBR [DE-SC-0004733] FX This work was funded by a grant from the DOE/BER for Pan-Omics Technologies Development, Implementation and Applications, and by DOE/SBR Grant DE-SC-0004733. Portions of this research were conducted at the Environmental and Molecular Sciences Laboratory, a DOE/BER National Scientific User Facility located at Pacific Northwest National Laboratory in Richland, Washington. The authors would like to thank Ashoka Polpitiya for a helpful discussion, Karl Weitz and Justin Chambers for LC-MS analyses, and Sam Purvine and Matt Monroe for assistance with data management and analysis. NR 58 TC 3 Z9 3 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2015 VL 14 IS 3 BP 1361 EP 1375 DI 10.1021/pr500983v PG 15 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CD1NF UT WOS:000350840900003 PM 25496566 ER PT J AU Su, YB Peng, B Han, Y Li, H Peng, XX AF Su, Yu-bin Peng, Bo Han, Yi Li, Hui Peng, Xuan-xian TI Fructose Restores Susceptibility of Multidrug-Resistant Edwardsiella tarda to Kanamycin SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE multidrug resistance; E. tarda; kanamycin; fructose; TCA cycle ID ESCHERICHIA-COLI; ANTIBIOTIC-RESISTANCE; FISH; INFECTION; VIRULENCE; BACTERIA; AMINOGLYCOSIDE; METABOLISM AB Edwardsiella tarda, the causative agent of Edwardsiellosis, imposes medical challenges in both the clinic and aquaculture. The emergence of multidrug resistant strains makes antibiotic treatment impractical. The identification of molecules that facilitate or promote antibiotic efficacy is in high demand. In the present study, we aimed to identify small molecules whose abundance is correlated with kanamycin resistance in E. tarda by gas chromatography-mass spectrometry. We found that the abundance of fructose was greatly suppressed in kanamycin-resistant strains. The incubation of kanamycin-resistant bacteria with exogenous fructose sensitized the bacteria to kanamycin. Moreover, the fructose also functioned in bacteria persisters and biofilm. The synergistic effects of fructose and kanamycin were validated in a mouse model. Furthermore, the mechanism relies on fructose in activating TCA cycle to produce NADH, which generates proton motive force to increase the uptake of the antibiotics. Therefore, we present a novel approach in fighting against multidrug resistant bacteria through exploration of antibiotic-suppressed molecules. C1 [Su, Yu-bin; Li, Hui; Peng, Xuan-xian] Sun Yat Sen Univ, Sch Life Sci, Ctr Prote & Metabol, State Key Lab Biocontrol,Sch Life Sci,MOE Key Lab, Guangzhou 510275, Guangdong, Peoples R China. [Peng, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Peng, XX (reprint author), Sun Yat Sen Univ, State Key Lab Biocontrol, Sch Life Sci, Guangzhou 510006, Guangdong, Peoples R China. EM pxuanx@sysu.edu.cn FU National 12th Five-Year Technology Based Plan Topic [2012BAD17B02]; Comra Fund Grant [D.Y.125-15-T-07]; "973" Project [2012CB114406]; National Nature Science Foundation of China [41276145, 31272702]; Guangdong Provincial Science and Technology Projects [2012A031100004] FX This work was supported by grants from the National 12th Five-Year Technology Based Plan Topic (2012BAD17B02), Comra Fund Grant (D.Y.125-15-T-07), "973" Project (2012CB114406), National Nature Science Foundation of China Projects (41276145, 31272702), and Guangdong Provincial Science and Technology Projects (2012A031100004). NR 46 TC 12 Z9 12 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2015 VL 14 IS 3 BP 1612 EP 1620 DI 10.1021/pr501285f PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CD1NF UT WOS:000350840900026 PM 25675328 ER PT J AU Shagina, NB Tolstykh, EI Degteva, MO Anspaugh, LR Napier, BA AF Shagina, N. B. Tolstykh, E. I. Degteva, M. O. Anspaugh, L. R. Napier, B. A. TI Age and gender specific biokinetic model for strontium in humans SO JOURNAL OF RADIOLOGICAL PROTECTION LA English DT Article DE strontium; biokinetics; model; age dependence; gender dependence ID TECHA RIVERSIDE RESIDENTS; WHOLE-BODY BONE; INTESTINAL CALCIUM-ABSORPTION; MAYAK-PRODUCTION-ASSOCIATION; HEALTHY-CHILDREN; RESORPTION RATE; NORMAL MEN; METABOLISM; SR-90; GIRLS AB A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitations for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on Sr-90 in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age-and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has a similar structure to the ICRP model for the alkaline earth elements. The following parameters were mainly re-evaluated: gastrointestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0-80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general populations exposed to ingested strontium radioisotopes. C1 [Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.] Urals Res Ctr Radiat Med, Chelyabinsk 454076, Russia. [Anspaugh, L. R.] Univ Utah, Dept Radiol, Div Radiobiol, Salt Lake City, UT 84112 USA. [Napier, B. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shagina, NB (reprint author), Urals Res Ctr Radiat Med, Chelyabinsk 454076, Russia. EM nata@urcrm.ru FU US Department of Energy's Office of Health Programs; Federal Department of the Ministry of Health of the Russian Federation FX This work has been funded by the US Department of Energy's Office of Health Programs and the Federal Department of the Ministry of Health of the Russian Federation. NR 101 TC 5 Z9 5 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0952-4746 EI 1361-6498 J9 J RADIOL PROT JI J. Radiol. Prot. PD MAR PY 2015 VL 35 IS 1 BP 87 EP 127 DI 10.1088/0952-4746/35/1/87 PG 41 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CC8SQ UT WOS:000350638900009 PM 25574605 ER PT J AU Kim, Y Gunasekaran, R AF Kim, Youngjae Gunasekaran, Raghul TI Understanding I/O workload characteristics of a Peta-scale storage system SO JOURNAL OF SUPERCOMPUTING LA English DT Article AB Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world's fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system. C1 [Kim, Youngjae; Gunasekaran, Raghul] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM kimy1@ornl.gov; gunasekaranr@ornl.gov FU Office of Advanced Scientific Computing Research, U.S. Department of Energy; Office of Science of the Department of Energy [DE-AC05-00OR22725] FX This research is sponsored by the Office of Advanced Scientific Computing Research, U.S. Department of Energy and used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. NR 17 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD MAR PY 2015 VL 71 IS 3 BP 761 EP 780 DI 10.1007/s11227-014-1321-8 PG 20 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CD1XR UT WOS:000350868400001 ER PT J AU Kim, SJ Zhang, YR Son, SW Kandemir, M Liao, WK Thakur, R Choudhary, A AF Kim, Seong Jo Zhang, Yuanrui Son, Seung Woo Kandemir, Mahmut Liao, Wei-keng Thakur, Rajeev Choudhary, Alok TI IOPro: a parallel I/O profiling and visualization framework for high-performance storage systems SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE MPI-IO; Parallel file systems; Parallel NetCDF; HDF5; I/O software stack; Code instrumentation; Performance visualization ID PROGRAM ANALYSIS TOOLS; INSTRUMENTATION; CODE AB Efficient execution of large-scale scientific applications requires high-performance computing systems designed to meet the I/O requirements. To achieve high-performance, such data-intensive parallel applications use a multi-layer layer I/O software stack, which consists of high-level I/O libraries such as PnetCDF and HDF5, the MPI library, and parallel file systems. To design efficient parallel scientific applications, understanding the complicated flow of I/O operations and the involved interactions among the libraries is quintessential. Such comprehension helps identify I/O bottlenecks and thus exploits the potential performance in different layers of the storage hierarchy. To profile the performance of individual components in the I/O stack and to understand complex interactions among them, we have implemented a GUI-based integrated profiling and analysis framework, IOPro. IOPro automatically generates an instrumented I/O stack, runs applications on it, and visualizes detailed statistics based on the user-specified metrics of interest. We present experimental results from two different real-life applications and show how our framework can be used in practice. By generating an end-to-end trace of the whole I/O stack and pinpointing I/O interference, IOPro aids in understanding I/O behavior and improving the I/O performance significantly. C1 [Kim, Seong Jo; Kandemir, Mahmut] Penn State Univ, University Pk, PA 16802 USA. [Zhang, Yuanrui] Intel Corp, Santa Clara, CA 95054 USA. [Son, Seung Woo] Univ Massachusetts, Lowell, MA 01854 USA. [Liao, Wei-keng; Choudhary, Alok] Northwestern Univ, Evanston, IL 60208 USA. [Thakur, Rajeev] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, SJ (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM seokim@cse.psu.edu; yuanrui.zhang@intel.com; seungwoo_son@uml.edu; kandemir@cse.psu.edu; wkliao@eecs.northwestern.edu; thakur@mcs.anl.gov; choudhar@eecs.northwestern.edu RI Choudhary, Alok/C-5486-2009 NR 46 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD MAR PY 2015 VL 71 IS 3 BP 840 EP 870 DI 10.1007/s11227-014-1329-0 PG 31 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CD1XR UT WOS:000350868400005 ER PT J AU Iavarone, M Moore, SA Fedor, J Novosad, V Pearson, JA Karapetrov, G AF Iavarone, M. Moore, S. A. Fedor, J. Novosad, V. Pearson, J. A. Karapetrov, G. TI Influence of Domain Width on Vortex Nucleation in Superconductor/Ferromagnet Hybrid Structures SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE Superconductor-ferromagnet hybrids; Vortices and nanostructured superconductors; Low-temperature superconductors ID MULTILAYERS AB We have investigated the effect of spatially inhomogenous magnetic fields on vortex nucleation in magnetically coupled superconductor/ferromagnet hybrid structures. Using low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) we have studied Pb/[Co-Pd] systems with slightly inhomogeneous magnetic domain width throughout the sample. Visualization of the underlying magnetic template structure is achieved through field dependent conductance maps. In the case of zero applied fields, these maps reveal the absence of vortices below a threshold domain width. At those locations with insufficient domain width to support generation of vortices in zero applied fields, nucleation can be restored through the application of an external magnetic field, with vortices nucleating above the domain parallel to the external field. For the magnetic domain width studied in this work, local tunneling spectroscopy reveals uniform superconducting critical temperature as a function of location, despite of local differences in the stray field experienced by the superconductor. C1 [Iavarone, M.; Moore, S. A.; Fedor, J.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Novosad, V.; Pearson, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Karapetrov, G.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Fedor, J.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. RP Iavarone, M (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. EM iavarone@temple.edu RI Moore, Steven/D-1562-2016; Karapetrov, Goran/C-2840-2008; Novosad, V /J-4843-2015 OI Moore, Steven/0000-0002-3956-815X; Karapetrov, Goran/0000-0003-1113-0137; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0004556]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-AC02-06CH11357] FX Work at Temple University was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0004556. Work at Argonne was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-AC02-06CH11357. NR 10 TC 4 Z9 4 U1 2 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD MAR PY 2015 VL 28 IS 3 SI SI BP 1107 EP 1110 DI 10.1007/s10948-014-2650-9 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CC4XZ UT WOS:000350360800066 ER PT J AU Nass, K Foucar, L Barends, TRM Hartmann, E Botha, S Shoeman, RL Doak, RB Alonso-Mori, R Aquila, A Bajt, S Barty, A Bean, R Beyerlein, KR Bublitz, M Drachmann, N Gregersen, J Jonsson, HO Kabsch, W Kassemeyer, S Koglin, JE Krumrey, M Mattle, D Messerschmidt, M Nissen, P Reinhard, L Sitsel, O Sokaras, D Williams, GJ Hau-Riege, S Timneanu, N Caleman, C Chapman, HN Boutet, S Schlichting, I AF Nass, Karol Foucar, Lutz Barends, Thomas R. M. Hartmann, Elisabeth Botha, Sabine Shoeman, Robert L. Doak, R. Bruce Alonso-Mori, Roberto Aquila, Andrew Bajt, Sasa Barty, Anton Bean, Richard Beyerlein, Kenneth R. Bublitz, Maike Drachmann, Nikolaj Gregersen, Jonas Joensson, H. Olof Kabsch, Wolfgang Kassemeyer, Stephan Koglin, Jason E. Krumrey, Michael Mattle, Daniel Messerschmidt, Marc Nissen, Poul Reinhard, Linda Sitsel, Oleg Sokaras, Dimosthenis Williams, Garth J. Hau-Riege, Stefan Timneanu, Nicusor Caleman, Carl Chapman, Henry N. Boutet, Sebastien Schlichting, Ilme TI Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE free-electron laser; SFX; serial femtosecond crystallography; radiation damage; protein crystallography; metalloprotein ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; MACROMOLECULAR CRYSTAL-STRUCTURES; ROOM-TEMPERATURE; PROTEIN NANOCRYSTALLOGRAPHY; CLOSTRIDIUM-ACIDURICI; ATOMIC-RESOLUTION; DIFFRACTION DATA; PHOTOSYSTEM-II; SOFTWARE; RADICALS AB Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations. C1 [Nass, Karol; Foucar, Lutz; Barends, Thomas R. M.; Hartmann, Elisabeth; Botha, Sabine; Shoeman, Robert L.; Doak, R. Bruce; Kabsch, Wolfgang; Kassemeyer, Stephan; Schlichting, Ilme] Max Planck Inst Med Res, Dept Biomol Mech, D-69120 Heidelberg, Germany. [Alonso-Mori, Roberto; Koglin, Jason E.; Messerschmidt, Marc; Sokaras, Dimosthenis; Williams, Garth J.; Boutet, Sebastien] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Aquila, Andrew] European XFEL GmbH, D-22761 Hamburg, Germany. [Bajt, Sasa] DESY, Photon Sci, D-22607 Hamburg, Germany. [Barty, Anton; Bean, Richard; Beyerlein, Kenneth R.; Caleman, Carl; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Bublitz, Maike; Drachmann, Nikolaj; Gregersen, Jonas; Mattle, Daniel; Nissen, Poul; Reinhard, Linda; Sitsel, Oleg] Aarhus Univ, Dept Mol Biol & Genet, DK-8000 Aarhus, Denmark. [Joensson, H. Olof; Timneanu, Nicusor; Caleman, Carl] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Krumrey, Michael] PTB, D-10587 Berlin, Germany. [Hau-Riege, Stefan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chapman, Henry N.] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. RP Schlichting, I (reprint author), Max Planck Inst Med Res, Dept Biomol Mech, Jahnstr 29, D-69120 Heidelberg, Germany. EM ilme.schlichting@mpimf-heidelberg.mpg.de RI Bajt, Sasa/G-2228-2010; Messerschmidt, Marc/F-3796-2010; Barty, Anton/K-5137-2014; Krumrey, Michael/G-6295-2011; Timneanu, Nicusor/C-7691-2012; Gregersen, Jonas/G-7975-2016; Chapman, Henry/G-2153-2010; OI Messerschmidt, Marc/0000-0002-8641-3302; Barty, Anton/0000-0003-4751-2727; Timneanu, Nicusor/0000-0001-7328-0400; Chapman, Henry/0000-0002-4655-1743; Nissen, Poul/0000-0003-0948-6628 FU LCLS Ultrafast Science Instruments (LUSI) - US Department of Energy, Office of Basic Energy Sciences; Max Planck Society; Human Frontier Science Program (HFSP); Swedish Research Foundation for Strategic Research; Swedish Research Foundation; Swedish Research Council via the Rontgen-Angstrom Cluster; Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) [p2012227, p2013175] FX Portions of this research were carried out at the Linac Coherent Light Source, a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences, and at the Swiss Light Source, PXIII beamline, Paul Scherrer Institute, Villigen, Switzerland. We would like to thank Sabrina Bolmer and Andrej Berg (DESY) for technical help preparing filters. We would like to thank Thomas A. White (CFEL) for helpful discussions and Stefanie Langner (PTB) for assistance in filter transmittance measurements. The CXI instrument was funded by the LCLS Ultrafast Science Instruments (LUSI) project funded by the US Department of Energy, Office of Basic Energy Sciences. We acknowledge support from the Max Planck Society, the Human Frontier Science Program (HFSP), the Swedish Research Foundation for Strategic Research, The Swedish Research Foundation and the Swedish Research Council via the Rontgen-Angstrom Cluster. The computations were performed on resources provided by Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under projects p2012227 and p2013175. NR 66 TC 25 Z9 25 U1 5 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 225 EP 238 DI 10.1107/S1600577515002349 PN 2 PG 14 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100004 PM 25723924 ER PT J AU Sauter, NK AF Sauter, Nicholas K. TI XFEL diffraction: developing processing methods to optimize data quality SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE serial femtosecond crystallography; X-ray free-electron laser; partiality; postrefinement; mosaicity ID FREE-ELECTRON LASER; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; X-RAY-DIFFRACTION; PROTEIN CRYSTALS; PHOTOSYSTEM-II; MACROMOLECULAR CRYSTALLOGRAPHY; STRUCTURE REFINEMENT; ROOM-TEMPERATURE; SPECTROSCOPY; RESOLUTION AB Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shots with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Sauter, NK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM nksauter@lbl.gov RI Sauter, Nicholas/K-3430-2012 FU NIH [GM095887, GM102520]; Office of Science, Department of Energy (DOE) [DEAC02-05CH11231] FX I thank James M. Holton (Lawrence Berkeley National Laboratory) for making available both the PSI simulated data and the program fastBragg (http://bl831.als.lbl.gov/similar to jamesh/fastBragg), and for suggesting the functional form of the partiality correction, Peter Zwart and Paul Adams (LBNL) for technical discussions, and Helen Ginn and David Stuart (Oxford University), as well as Monarin Uervirojnangkoorn, William Weis and Axel Brunger (Stanford University) for discussing their separate work on partiality and postrefinement. This work was supported by NIH grants GM095887 and GM102520 and Director, Office of Science, Department of Energy (DOE) under contract DEAC02-05CH11231 for data processing methods (NKS). NR 63 TC 20 Z9 22 U1 5 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 239 EP 248 DI 10.1107/S1600577514028203 PN 2 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100005 PM 25723925 ER PT J AU Jonsson, HO Timneanu, N Ostlin, C Scott, HA Caleman, C AF Jonsson, H. Olof Timneanu, Nicusor Oestlin, Christofer Scott, Howard A. Caleman, Carl TI Simulations of radiation damage as a function of the temporal pulse profile in femtosecond X-ray protein crystallography SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray free-electron laser; serial femtosecond crystallography; radiation damage; plasma simulations ID FREE-ELECTRON LASER; STRONGLY COUPLED PLASMAS; DIFFRACTION; NANOCRYSTALLOGRAPHY; SPECTROSCOPY; IONIZATION; RESOLUTION; CELLS; ATOMS AB Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 10(4) to 10(7)Jcm(-2) with photon energies from 2 to 12keV, up to 100fs long. Radiation damage in the form of sample heating that will lead to a loss of crystalline periodicity and changes in scattering factor due to electronic reconfigurations of ionized atoms are considered here. The simulations show differences in the dynamics of the radiation damage processes for different temporal pulse profiles and intensities, where ionization or atomic motion could be predominant. The different dynamics influence the recorded diffracted signal in any given resolution and will affect the subsequent structure determination. C1 [Jonsson, H. Olof; Timneanu, Nicusor; Oestlin, Christofer; Caleman, Carl] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Timneanu, Nicusor] Uppsala Univ, Dept Cell & Mol Biol, Biomed Ctr, SE-75124 Uppsala, Sweden. [Scott, Howard A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Caleman, Carl] DESY, Ctr Free Electron Laser Sci, DE-22607 Hamburg, Germany. RP Caleman, C (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. EM carl.caleman@physics.uu.se RI Timneanu, Nicusor/C-7691-2012 OI Timneanu, Nicusor/0000-0001-7328-0400 FU Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) [p2012227, p2013175] FX We kindly acknowledge very helpful discussions with Henry N. Chapman and Adrian Cavalieri. We are thankful to the editors for their input during the editorial process. We thank the Swedish Research Foundation for Strategic Research, The Swedish Research Foundation and the Swedish Research Council via the Rontgen-Angstrom Cluster. The computations were performed on resources provided by Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under projects p2012227 and p2013175, and the computer cluster provided by the Laboratory of Molecular Biophysics, Uppsala University. NR 56 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 256 EP 266 DI 10.1107/S1600577515002878 PN 2 PG 11 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100007 PM 25723927 ER PT J AU Nazaretski, E Lauer, K Yan, H Bouet, N Zhou, J Conley, R Huang, X Xu, W Lu, M Gofron, K Kalbfleisch, S Wagner, U Rau, C Chu, YS AF Nazaretski, E. Lauer, K. Yan, H. Bouet, N. Zhou, J. Conley, R. Huang, X. Xu, W. Lu, M. Gofron, K. Kalbfleisch, S. Wagner, U. Rau, C. Chu, Y. S. TI Pushing the limits: an instrument for hard X-ray imaging below 20 nm SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE scanning X-ray microscopy; multilayer Laue lenses; interferometry; nanopositioning ID MULTILAYER LAUE LENS AB Hard X-ray microscopy is a prominent tool suitable for nanoscale-resolution non-destructive imaging of various materials used in different areas of science and technology. With an ongoing effort to push the 2D/3D imaging resolution down to 10nm in the hard X-ray regime, both the fabrication of nano-focusing optics and the stability of the microscope using those optics become extremely challenging. In this work a microscopy system designed and constructed to accommodate multilayer Laue lenses as nanofocusing optics is presented. The developed apparatus has been thoroughly characterized in terms of resolution and stability followed by imaging experiments at a synchrotron facility. Drift rates of approximate to 2nmh(-1) accompanied by 13nm x 33nm imaging resolution at 11.8keV are reported. C1 [Nazaretski, E.; Lauer, K.; Yan, H.; Bouet, N.; Zhou, J.; Conley, R.; Huang, X.; Xu, W.; Lu, M.; Gofron, K.; Kalbfleisch, S.; Chu, Y. S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Conley, R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wagner, U.; Rau, C.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. RP Chu, YS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM ychu@bnl.gov RI Yan, Hanfei/F-7993-2011; Huang, Xiaojing/K-3075-2012; OI Yan, Hanfei/0000-0001-6824-0367; Huang, Xiaojing/0000-0001-6034-5893; Bouet, Nathalie/0000-0002-5816-9429 FU US Department of Energy [DE-AC02-98CH10886]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; US Department of Energy, Office of Science [DE-AC02-06CH11357] FX We thank Dr Deming Shu (ANL) for stimulating discussions. We acknowledge B. Mullany (BNL) for help with three-dimensional modelling of the microscope and D. Kuhne (BNL) for machining/assembling of mechanical parts. Work at Brookhaven was supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. Fabrication of the test pattern and MLL post-growth processing was performed in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Work at Argonne was supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. We acknowledge Diamond Light Source Ltd for providing beam time at I13L. NR 24 TC 16 Z9 16 U1 6 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 336 EP 341 DI 10.1107/S1600577514025715 PN 2 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100014 PM 25723934 ER PT J AU Heald, SM AF Heald, Steve M. TI Strategies and limitations for fluorescence detection of XAFS at high flux beamlines SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE XAFS detectors; fluorescence; detection strategies ID X-RAY-FLUORESCENCE; ABSORPTION FINE-STRUCTURE; BENT SILICON CRYSTAL; DRIFT DETECTOR; LAUE GEOMETRY; EXAFS; SPECTROSCOPY; ANALYZER; SPECTROMETER AB The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10(13)photonss(-1). Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter-slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10(7)Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved. C1 Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Heald, SM (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM heald@aps.anl.gov FU US Department of Energy, Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; US DOE [DE-AC02-06CH11357] FX PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy, Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. The author also thanks Robert Gordon for measuring the SiO2 scattering data. NR 25 TC 4 Z9 4 U1 1 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 436 EP 445 DI 10.1107/S1600577515001320 PN 2 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100025 PM 25723945 ER PT J AU Yang, YM Yang, FF Hingerl, FF Xiao, XH Liu, YJ Wu, ZY Benson, SM Toney, MF Andrews, JC Pianetta, P AF Yang, Yimeng Yang, Feifei Hingerl, Ferdinand F. Xiao, Xianghui Liu, Yijin Wu, Ziyu Benson, Sally M. Toney, Michael F. Andrews, Joy C. Pianetta, Piero TI Registration of the rotation axis in X-ray tomography SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray tomography; rotation axis ID MICROTOMOGRAPHY; FEATURES; CT AB There is high demand for efficient, robust and automated routines for tomographic data reduction, particularly for synchrotron data. Registration of the rotation axis in data processing is a critical step affecting the quality of the reconstruction and is not easily implemented with automation. Existing methods for calculating the center of rotation have been reviewed and an improved algorithm to register the rotation axis in tomographic data is presented. The performance of the proposed method is evaluated using synchrotron-based microtomography data on geological samples with and without artificial reduction of the signal-to-noise ratio. The proposed method improves the reconstruction quality by correcting both the tilting error and the translational offset of the rotation axis. The limitation of this promising method is also discussed. C1 [Yang, Yimeng] Tianjin Yaohua High Sch, Tianjin 300040, Peoples R China. [Yang, Feifei; Wu, Ziyu] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230027, Anhui, Peoples R China. [Hingerl, Ferdinand F.; Benson, Sally M.] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Xiao, Xianghui] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liu, Yijin; Toney, Michael F.; Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Wu, Ziyu] Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China. RP Xiao, XH (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xhxiao@aps.anl.gov; liuyijin@slac.stanford.edu FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Global Climate and Energy Project (GCEP) at Stanford; Science Fund for Creative Research Groups, NSFC [11321503]; National Basic Research Program of China [2012CB825801]; Knowledge Innovation Program of the Chinese Academy of Sciences [KJCX2-YW-N42] FX YL gratefully thanks Dr Junyue Wang (HPSTAR) and Dr Youli Hong (Zeiss) for valuable discussions. Portions of this research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Stanford Synchrotron Radiation Lightsource is a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. FFH and SMB acknowledge support from The Global Climate and Energy Project (GCEP) at Stanford. ZW acknowledges support from the Science Fund for Creative Research Groups, NSFC (Grant No. 11321503), the National Basic Research Program of China (Grant No. 2012CB825801) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42). NR 30 TC 3 Z9 3 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 452 EP 457 DI 10.1107/S160057751402726X PN 2 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100027 PM 25723947 ER PT J AU Liu, C Qian, J Assoufid, L AF Liu, Chian Qian, Jun Assoufid, Lahsen TI Profile etching for prefiguring X-ray mirrors SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE broad-beam ion figuring; ion etching; profile coating; nested KB mirrors AB A method to pre-shape mirror substrates through etching with a broad-beam ion source and a contoured mask is presented. A 100mm-long elliptical cylinder substrate was obtained from a super-polished flat Si substrate with a 48nm root-mean-square (r.m.s.) figure error and a 1.5 angstrom r.m.s. roughness after one profile-etching process at a beam voltage of 600V without iteration. A follow-up profile coating can be used to achieve a final mirror. Profile etching and profile coating combined provide an economic way to make X-ray optics, such as nested Kirkpatrick-Baez mirrors. C1 [Liu, Chian; Qian, Jun; Assoufid, Lahsen] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Liu, C (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cliu@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Elina Kasman, Michael Wieczorek and John Attig at Argonne National Laboratory for technical assistance. This work is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 12 TC 0 Z9 0 U1 2 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2015 VL 22 SI SI BP 458 EP 460 DI 10.1107/S1600577515000624 PN 2 PG 3 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CC8TM UT WOS:000350641100028 PM 25723948 ER PT J AU Alonso-Gutierrez, J Kim, EM Batth, TS Cho, N Hu, QJ Chan, LJG Petzold, CJ Hinson, NJ Adams, PD Keasling, JD Martin, HG Lee, TS AF Alonso-Gutierrez, Jorge Kim, Eun-Mi Batth, Tanveer S. Cho, Nathan Hu, Qijun Chan, Leanne Jade G. Petzold, Christopher J. Hinson, Nathan J. Adams, Paul D. Keasling, Jay D. Martin, Hector Garcia Lee, Taek Soon TI Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering SO METABOLIC ENGINEERING LA English DT Article DE Targeted proteomics; Principal component analysis (PCA); Metabolic engineering; Mevalonate pathway; Heterologous pathway; Escherichia coli ID ESCHERICHIA-COLI; GENE-EXPRESSION; ABSOLUTE QUANTIFICATION; ISOPRENOID PRODUCTION; MEVALONATE PATHWAY; ADVANCED BIOFUELS; FATTY-ACIDS; OPTIMIZATION; PRECURSOR; CHEMICALS AB Targeted proteomics is a convenient method determining enzyme expression levels, but a quantitative analysis of these proteomic data has not been fully explored yet. Here, we present and demonstrate a computational tool (principal component analysis of proteomics, PCAP) that uses quantitative targeted proteomics data to guide metabolic engineering and achieve higher production of target molecules from heterologous pathways. The method is based on the application of principal component analysis to a collection of proteomics and target molecule production data to pinpoint specific enzymes that need to have their expression level adjusted to maximize production. We illustrated the method on the heterologous mevalonate pathway in Escherichia coli that produces a wide range of isoprenoids and requires balanced pathway gene expression for high yields and titers. PCAP-guided engineering resulted in over a 40% improvement in the production of two valuable terpenes. PCAP could potentially be productively applied to other heterologous pathways as well. (C) 2014 international Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. C1 [Alonso-Gutierrez, Jorge; Kim, Eun-Mi; Batth, Tanveer S.; Cho, Nathan; Hu, Qijun; Chan, Leanne Jade G.; Petzold, Christopher J.; Hinson, Nathan J.; Adams, Paul D.; Keasling, Jay D.; Martin, Hector Garcia; Lee, Taek Soon] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Alonso-Gutierrez, Jorge; Kim, Eun-Mi; Batth, Tanveer S.; Cho, Nathan; Hu, Qijun; Chan, Leanne Jade G.; Petzold, Christopher J.; Hinson, Nathan J.; Adams, Paul D.; Keasling, Jay D.; Martin, Hector Garcia; Lee, Taek Soon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Cho, Nathan] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Hu, Qijun; Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Martin, HG (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM hgmartin@lbl.gov; tslee@lbl.gov RI Garcia Martin, Hector/B-5357-2009; Adams, Paul/A-1977-2013 OI Garcia Martin, Hector/0000-0002-4556-9685; Adams, Paul/0000-0001-9333-8219 FU DOE Joint BioEnergy Institute - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Fundacion Ramon Areces; Student Achievement Guided by Experience (SAGE) Program at UC Berkeley FX The authors thank Pamela Peralta-Yahya and Han Min Woo at JBEI for providing plasmids pTrc-LS and pBbE1a-HMGR-HMGS, respectively. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. J.A-G. thanks "Fundacion Ramon Areces" for his postdoctoral fellowship. Q.H. is sponsored by Student Achievement Guided by Experience (SAGE) Program at UC Berkeley. NR 49 TC 13 Z9 14 U1 4 U2 40 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD MAR PY 2015 VL 28 BP 123 EP 133 DI 10.1016/j.ymben.2014.11.011 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CD1VM UT WOS:000350862600013 PM 25554074 ER PT J AU Jakounas, T Sonde, I Herrgard, M Harrison, SJ Kristensen, M Pedersen, LE Jensen, MK Keasling, JD AF Jakounas, Tadas Sonde, Ida Herrgard, Markus Harrison, Scott J. Kristensen, Mette Pedersen, Lasse E. Jensen, Michael K. Keasling, Jay D. TI Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae SO METABOLIC ENGINEERING LA English DT Article DE CRISPR/Cas9; Multiplex genome editing; Off-target analysis; Mevalonate; Yeast ID DOUBLE-STRAND BREAKS; HUMAN-CELLS; IN-VIVO; HOMOLOGOUS RECOMBINATION; SQUALENE SYNTHASE; MARKER CASSETTES; CAS SYSTEMS; YEAST; GENOME; DNA AB CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoicl biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. C1 [Jakounas, Tadas; Sonde, Ida; Herrgard, Markus; Harrison, Scott J.; Kristensen, Mette; Pedersen, Lasse E.; Jensen, Michael K.; Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2970 Horsholm, Denmark. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Jensen, MK (reprint author), Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, Kogle Alle 6, DK-2970 Horsholm, Denmark. EM tajak@biosustain.dtu.dk; iaab@biosustain.dtu.dk; herrgard@biosustain.dtu.dk; sjha@biosustain.dtu.dk; metk@biosustain.dtu.dk; laeb@biosustain.dtu.dk; mije@biosustain.dtu.dk; jdkeasling@jbl.gov RI Jakociunas, Tadas/J-3549-2016; OI Jakociunas, Tadas/0000-0003-1264-173X; Pedersen, Lasse Ebdrup/0000-0002-6064-919X FU Novo Nordisk Foundation FX This work was funded by the Novo Nordisk Foundation. The authors would like to acknowledge Dushica Arsovska and Anna Koza for technical assistance, and Carlotta Ronda for fruitful discussions. NR 66 TC 57 Z9 63 U1 35 U2 172 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD MAR PY 2015 VL 28 BP 213 EP 222 DI 10.1016/j.ymbn.2015.01.008 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CD1VM UT WOS:000350862600022 PM 25638686 ER PT J AU Johnson, CW Beckham, GT AF Johnson, Christopher W. Beckham, Gregg T. TI Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin SO METABOLIC ENGINEERING LA English DT Article DE Lignin valorization; beta-ketoadipate pathway; Aromatic degradation; Pseudomonas putida KT2440; Sphingobium sp strain SYK-6 ID PSEUDOMONAS-PUTIDA KT2440; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; BETA-KETOADIPATE; BACTERIAL-DEGRADATION; PROTOCATECHUIC ACID; GENE KNOCKOUT; MUCONIC ACID; PLASMID PWW0; CIS-MUCONATE AB Lignin represents an untapped feedstock for the production of fuels and chemicals, but its intrinsic heterogeneity makes lignin valorization a significant challenge, In nature, many aerobic organisms degrade lignin-derived aromatic molecules through conserved central intermediates including catechol and protocatechuate. Harnessing this microbial approach offers potential for lignin upgrading in modern biorefineries, but significant technical development is needed to achieve this end. Catechol and protocatechuate are subjected to aromatic ring cleavage by dioxygenase enzymes that, depending on the position, ortho or meta relative to adjacent hydroxyl groups, result in different products that are metabolized through parallel pathways for entry into the TCA cycle. These degradation pathways differ in the combination of succinate, acetyl-CoA, and pyruvate produced, the reducing equivalents regenerated, and the amount of carbon emitted as CO2 factors that will ultimately impact the yield of the targeted product. As shown here, the ring-cleavage pathways can be interchanged with one another, and such substitutions have a predictable and substantial impact on product yield. We demonstrate that replacement of the catechol ortho degradation pathway endogenous to Pseudomonas putida KT2440 with an exogenous meta-cleavage pathway from P. putida mt-2 increases yields of pyruvate produced from aromatic molecules in engineered strains. Even more dramatically, replacing the endogenous protocatechuate ortho pathway with a meta-cleavage pathway from Sphingobium sp. SYK-6 results in a nearly five-fold increase in pyruvate production. We further demonstrate the aerobic conversion of pyruvate to L-lactate with a yield of 41.1 +/- 2.66 (wt/wt), Overall, this study illustrates how aromatic degradation pathways can be tuned to optimize the yield of a desired product in biological lignin upgrading. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved, C1 [Johnson, Christopher W.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov FU US Department of Energy BioEnergy Technologies Office FX The authors are grateful to US Department of Energy BioEnergy Technologies Office for funding this work. We thank Mary Ann Franden for her assistance with HPLC, Jeffrey Linger for critical reading of the manuscript, and Michael Guarnieri and Philip Pienkos for their valuable input and feedback. NR 64 TC 27 Z9 27 U1 6 U2 57 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD MAR PY 2015 VL 28 BP 240 EP 247 DI 10.1016/j.ymbn.2015.01.005 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CD1VM UT WOS:000350862600024 PM 25617773 ER PT J AU Tan, L Yang, Y AF Tan, L. Yang, Y. TI Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID PLASTIC-DEFORMATION; DIFFRACTION; SYSTEM AB Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This work aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by means of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 degrees C), and creep testing at 873.15 K (600.15 degrees C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. However, their low tensile ductility may limit their applications at relatively low temperatures. (C) The Minerals, Metals & Materials Society and ASM International (outside the USA) 2014 C1 [Tan, L.; Yang, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yang, Y (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd,POB 2008,MS 6151, Oak Ridge, TN 37831 USA. EM yangying@ornl.gov RI Tan, Lizhen/A-7886-2009; Yang, Ying/E-5542-2017 OI Tan, Lizhen/0000-0002-3418-2450; Yang, Ying/0000-0001-6480-2254 FU U.S. Department of Energy (DOE), Office of Nuclear Energy, Nuclear Engineering Enabling Technology (NEET) Advanced Reactor Material Program [DE-AC05-00OR22725]; UT-Battelle, LLC; ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE FX This research was supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Nuclear Engineering Enabling Technology (NEET) Advanced Reactor Material Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC, and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS) that was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. NR 14 TC 0 Z9 0 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2015 VL 46A IS 3 BP 1188 EP 1195 DI 10.1007/s11661-014-2695-1 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CC4DE UT WOS:000350300200019 ER PT J AU Sochalski-Kolbus, LM Payzant, EA Cornwell, PA Watkins, TR Babu, SS Dehoff, RR Lorenz, M Ovchinnikova, O Duty, C AF Sochalski-Kolbus, L. M. Payzant, E. A. Cornwell, P. A. Watkins, T. R. Babu, S. S. Dehoff, R. R. Lorenz, M. Ovchinnikova, O. Duty, C. TI Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID INTERGRANULAR STRAINS; MECHANICAL-PROPERTIES; DIFFRACTION; STEEL; MICROSTRUCTURE; SUPERALLOY; ALLOY AB Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting (EBM) and the other with direct laser metal sintering. Spatially indexed stress-free cubes were obtained by electrical discharge machining (EDM) equivalent prisms of similar shape. The (311) interplanar spacings from the EDM sectioned sample were compared to the interplanar spacings calculated to fulfill stress and moment balance. We have shown that applying stress and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melted parts are much smaller than that of direct laser metal sintered parts most likely due to the powder preheating step in the EBM process. (C) The Minerals, Metals & Materials Society and ASM International (outside the USA) 2015 C1 [Sochalski-Kolbus, L. M.; Payzant, E. A.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37830 USA. [Sochalski-Kolbus, L. M.; Cornwell, P. A.; Watkins, T. R.; Dehoff, R. R.; Duty, C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Babu, S. S.; Dehoff, R. R.; Duty, C.] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Oak Ridge, TN 37830 USA. [Babu, S. S.] Univ Tennessee, Dept Aerosp & Biomed Engn, Knoxville, TN USA. [Lorenz, M.; Ovchinnikova, O.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Lorenz, M.] Natl Phys Lab, Teddington TW11 0LW, Middx, England. RP Sochalski-Kolbus, LM (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, One Bethel Valley Rd,POB 2008,MS 6475, Oak Ridge, TN 37830 USA. EM kolbuslm@ornl.gov RI Payzant, Edward/B-5449-2009; Kolbus, Lindsay/N-9491-2014; Babu, Sudarsanam/D-1694-2010; Watkins, Thomas/D-8750-2016; Lorenz, Matthias/F-8273-2016; Dehoff, Ryan/I-6735-2016 OI Payzant, Edward/0000-0002-3447-2060; Kolbus, Lindsay/0000-0003-4405-461X; Babu, Sudarsanam/0000-0002-3531-2579; Watkins, Thomas/0000-0002-2646-1329; Lorenz, Matthias/0000-0003-0867-8548; Dehoff, Ryan/0000-0001-9456-9633 FU Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory (ORNL) FX Research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy. Research was also sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. Research at the Manufacturing Demonstration Facility and High Temperature Materials Laboratory at ORNL was sponsored by the Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. M. Lorentz and O. Ovichinnikova acknowledge support by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory (ORNL), managed and operated by UT-Battelle, LLC. The authors would like to thank Alex Fima at Directed Manufacturing Inc., Fredrick List III and Tom Geer at Oak Ridge National Lab and Andrew Kolbus for their contributions to this work and the samples used. NR 35 TC 16 Z9 16 U1 8 U2 72 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2015 VL 46A IS 3 BP 1419 EP 1432 DI 10.1007/s11661-014-2722-2 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CC4DE UT WOS:000350300200040 ER PT J AU Adams, BW AF Adams, Bernhard W. TI QUANTUM OPTICS Gravity meets quantum physics SO NATURE PHOTONICS LA English DT News Item ID SYNCHROTRON-RADIATION; SCATTERING; NUCLEAR C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Adams, BW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM adams@aps.anl.gov NR 8 TC 0 Z9 0 U1 2 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD MAR PY 2015 VL 9 IS 3 BP 143 EP 144 DI 10.1038/nphoton.2015.26 PG 2 WC Optics; Physics, Applied SC Optics; Physics GA CD0NQ UT WOS:000350771500001 ER PT J AU He, ZC Xiao, B Liu, F Wu, HB Yang, YL Xiao, S Wang, C Russell, TP Cao, Y AF He, Zhicai Xiao, Biao Liu, Feng Wu, Hongbin Yang, Yali Xiao, Steven Wang, Cheng Russell, Thomas P. Cao, Yong TI Single-junction polymer solar cells with high efficiency and photovoltage SO NATURE PHOTONICS LA English DT Article ID OPEN-CIRCUIT-VOLTAGE; POWER CONVERSION EFFICIENCY; HIGH-PERFORMANCE; DEPENDENCE; ORIGIN; TANDEM; LIGHT AB Polymer solar cells are an exciting class of next-generation photovoltaics, because they hold promise for the realization of mechanically flexible, lightweight, large-area devices that can be fabricated by room-temperature solution processing(1,2). High power conversion efficiencies of similar to 10% have already been reported in tandem polymer solar cells(3). Here, we report that similar efficiencies are achievable in single-junction devices by reducing the tail state density below the conduction band of the electron acceptor in a high-performance photoactive layer made from a newly developed semiconducting polymer with a deepened valence energy level. Control over band tailing is realized through changes in the composition of the active layer and the structure order of the blend, both of which are known to be important factors in cell operation(4-6). The approach yields cells with high power conversion efficiencies (similar to 9.94% certified) and enhanced photovoltage. C1 [He, Zhicai; Xiao, Biao; Wu, Hongbin; Cao, Yong] S China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. [Liu, Feng; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Yang, Yali; Xiao, Steven] 1 Mat Inc, Dorval, PQ H9P 1K2, Canada. [Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wu, HB (reprint author), S China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. EM hbwu@scut.edu.cn RI Wang, Cheng/A-9815-2014; Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU National Nature Science Foundation of China [51225301, 51403066, 91333206, 51010003]; Fundamental Research Funds for the Central Universities [2014ZM001]; Ministry of Science and Technology of China [2014CB643500]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0001087]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors thank M. Yun and X. Wang for device performance verification. H.W., Z.H. and Y.C. thank the National Nature Science Foundation of China (nos. 51225301, 51403066, 91333206 and 51010003), the Fundamental Research Funds for the Central Universities (2014ZM001) and the Ministry of Science and Technology of China (2014CB643500) for financial support. F.L. and T.P.R. thank Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences (DE-SC0001087), for support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 30 TC 579 Z9 581 U1 107 U2 356 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD MAR PY 2015 VL 9 IS 3 BP 174 EP 179 DI 10.1038/NPHOTON.2015.6 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA CD0NQ UT WOS:000350771500009 ER PT J AU Yang, Y Chen, W Dou, LT Chang, WH Duan, HS Bob, B Li, G Yang, Y AF Yang, Yang (Michael) Chen, Wei Dou, Letian Chang, Wei-Hsuan Duan, Hsin-Sheng Bob, Brion Li, Gang Yang, Yang TI High-performance multiple-donor bulk heterojunction solar cells SO NATURE PHOTONICS LA English DT Article ID OPEN-CIRCUIT VOLTAGE; LOW-BANDGAP POLYMER; POWER-CONVERSION EFFICIENCY; SMALL-ANGLE SCATTERING; CHARGE-TRANSPORT; SEMICONDUCTING POLYMERS; INTERACTING PARTICLES; TANDEM POLYMER; RECOMBINATION; ORIGIN AB Broadening the absorption bandwidth of polymer solar cells by incorporating multiple absorber donors into the bulk-heterojunction active layer is an attractive means of resolving the narrow absorption of organic semiconductors. However, this leads to a much more complicated system, and previous efforts have met with only limited success. Here, several dual-donor and multi-donor bulk-heterojunction polymer solar cells based on a pool of materials with different absorption ranges and preferred molecular structures were studied. The study shows clearly that compatible polymer donors can coexist harmoniously, but the mixing of incompatible polymers can lead to severe molecular disorder and limit device performance. These results provide guidance for the general use of multiple-donor bulk heterojunctions to overcome the absorption limitation and achieve both high performance and fabrication simplicity for organic solar cells. C1 [Yang, Yang (Michael); Dou, Letian; Chang, Wei-Hsuan; Duan, Hsin-Sheng; Bob, Brion; Li, Gang; Yang, Yang] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Chen, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chen, Wei] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Yang, Yang] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. RP Li, G (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM gangl@ucla.edu; yangy@ucla.edu RI Chen, Wei/G-6055-2011; Yang, Yang/A-2944-2011; Li, Gang/A-5667-2012 OI Chen, Wei/0000-0001-8906-4278; Li, Gang/0000-0001-8399-7771 FU Office of Naval Research [N00014-11-1-0250, N00014-14-1-0648]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [KC020301, DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge financial support from the Office of Naval Research (Program manager P. Armistead, award nos. N00014-11-1-0250 and N00014-14-1-0648). The authors thank W.L. Kwan, Z. Hong, J. You, R. Zhu, B. Street and S.A. Hawks for technical discussions. W.C. acknowledges financial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. KC020301). The authors also thank J. Strzalka and C. Wang for assistance with GISAXS and RSoXS measurements. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). The ALS at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). NR 45 TC 106 Z9 107 U1 21 U2 154 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD MAR PY 2015 VL 9 IS 3 BP 190 EP 198 DI 10.1038/NPHOTON.2015.9 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA CD0NQ UT WOS:000350771500012 ER PT J AU Hsieh, P Chung, C McMillan, JF Tsai, M Lu, M Panoiu, NC Wong, CW AF Hsieh, P. Chung, C. McMillan, J. F. Tsai, M. Lu, M. Panoiu, N. C. Wong, C. W. TI Photon transport enhanced by transverse Anderson localization in disordered superlattices SO NATURE PHYSICS LA English DT Article ID LIGHT; DIFFUSION; LATTICES AB Controlling the flow of light at subwavelength scales provides access to functionalities such as negative or zero index of refraction, transformation optics, cloaking, metamaterials and slow light, but diffraction effects severely restrict our ability to control light on such scales. Here we report the photon transport and collimation enhanced by transverse Anderson localization in chip-scale dispersion-engineered anisotropic media. We demonstrate a photonic crystal superlattice structure in which diffraction is nearly completely arrested by cascaded resonant tunnelling through transverse guided resonances. By modifying the geometry of more than 4,000 scatterers in the superlattices we add structural disorder controllably and uncover the mechanism of disorder-induced transverse localization. Arrested spatial divergence is captured in the power-law scaling, along with exponential asymmetric mode profiles and enhanced collimation bandwidths for increasing disorder. With increasing disorder, we observe the crossover from cascaded guided resonances into the transverse localization regime, beyond both the ballistic and diffusive transport of photons. C1 [Hsieh, P.; McMillan, J. F.; Wong, C. W.] Columbia Univ, Ctr Integrated Sci & Engn, Opt Nanostruct Lab, Solid State Sci & Engn Mech Engn, New York, NY 10027 USA. [Hsieh, P.; Chung, C.; Tsai, M.] Quantumstone Res Inc, Taipei 114, Taiwan. [Chung, C.] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 701, Taiwan. [Chung, C.] Natl Cheng Kung Univ, Adv Optoelect Technol Ctr, Tainan 701, Taiwan. [Tsai, M.] Ind Technol Res Inst, Ctr Measurement Stand, Hsinchu 300, Taiwan. [Lu, M.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Panoiu, N. C.] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England. [Panoiu, N. C.] UCL, London Ctr Nanotechnol, Thomas Young Ctr, London WC1H 0AH, England. [Wong, C. W.] Univ Calif Los Angeles, Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA. RP Hsieh, P (reprint author), Columbia Univ, Ctr Integrated Sci & Engn, Opt Nanostruct Lab, Solid State Sci & Engn Mech Engn, New York, NY 10027 USA. EM ph2285@columbia.edu; n.panoiu@ucl.ac.uk; cheewei.wong@ucla.edu RI Panoiu, Nicolae-Coriolan/G-1256-2014 OI Panoiu, Nicolae-Coriolan/0000-0001-5666-2116 FU Office of Naval Research [N00014-14-1-0041]; Department of Education in Taiwan; NSF Division of Materials Research [1108176]; EPSRC [EP/G030502/1]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Studying Abroad Scholarship FX We acknowledge discussions with M. Weinstein, S. Kocaman and C-T. Chen. We also thank S-N. Chiu for the data analysis. This work is supported by the Office of Naval Research under M. F. Shlesinger (N00014-14-1-0041) and the Studying Abroad Scholarship by the Department of Education in Taiwan. This work is also supported by NSF Division of Materials Research (1108176) and EPSRC EP/G030502/1. The electron-beam lithography carried out at the Brookhaven National Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL) and associated support services in the completion of this work. NR 33 TC 11 Z9 11 U1 5 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2015 VL 11 IS 3 BP 268 EP 274 DI 10.1038/NPHYS3211 PG 7 WC Physics, Multidisciplinary SC Physics GA CC9FW UT WOS:000350674700020 ER PT J AU Warren, GA Anderson, KK Kulisek, J Danon, Y Weitz, A Gavron, A Harris, J Stewart, TN AF Warren, Glen A. Anderson, Kevin K. Kulisek, Jonathan Danon, Yaron Weitz, Adam Gavron, A. Harris, Jason Stewart, Trevor N. TI Lead Slowing-Down Spectrometry Analysis of Data from Measurements on Nuclear Fuel SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID SINGULAR-VALUE DECOMPOSITION; SPECTROSCOPY AB Improved nondestructive assay of isotopic masses in used nuclear fuel would be valuable for nuclear safeguards operations associated with the transport, storage, and reprocessing of used nuclear fuel. Our collaboration is examining the feasibility of using lead slowing-down spectrometry techniques to assay the isotopic fissile masses in used nuclear fuel assemblies. We present the application of our analysis algorithms to measurements conducted with a lead spectrometer. The measurements involved a single fresh fuel pin and discrete Pu-239 and U-235 samples. We are able to describe the isotopic fissile masses with root-mean-square errors over seven different configurations to 6.3% for Pu-239 and 2.7% for U-235. Significant effort is yet needed to demonstrate the applicability of these algorithms for used-fuel assemblies, but the results reported here are encouraging in demonstrating that we are making progress toward that goal. C1 [Warren, Glen A.; Anderson, Kevin K.; Kulisek, Jonathan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Danon, Yaron; Weitz, Adam] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gavron, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Harris, Jason; Stewart, Trevor N.] Idaho State Univ, Pocatello, ID 83204 USA. RP Warren, GA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM glen.warren@pnnl.gov OI Anderson, Kevin/0000-0001-5613-5893 NR 18 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAR PY 2015 VL 179 IS 3 BP 264 EP 273 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD1LQ UT WOS:000350836800003 ER PT J AU Burr, T Trellue, H Tobin, S Favalli, A Dowell, J Henzl, V Mozin, V AF Burr, T. Trellue, H. Tobin, S. Favalli, A. Dowell, J. Henzl, V. Mozin, V. TI Integrated Nondestructive Assay Systems to Estimate Plutonium in Spent Fuel Assemblies SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID MEASUREMENT ERROR; REGRESSION; MODELS AB An integrated nondestructive assay (NDA) system combining active (neutron generator) and passive neutron detection and passive gamma (PG) detection is being analyzed in order to estimate the amount of plutonium, verify initial enrichment, burnup, and cooling time, and detect partial defects in a spent fuel assembly (SFA). Active signals are measured using the differential die-away (DDA), delayed neutron (DN), and delayed gamma (DG) techniques. Passive signals are measured using total neutron (TN) counts and both gross and spectral resolved gamma counts. To quantify how a system of several NDA techniques is expected to perform, all of the relevant NDA techniques listed above were simulated as a function of various reactor conditions such as initial enrichment, burnup, cooling time, assembly shuffling pattern, reactor operating conditions (including temperature, pressure, and the presence of burnable poisons) by simulating the NDA response for five sets of light water reactor assemblies. This paper compares the performance of several exploratory model-fitting options (including neural networks, adaptive regression with splines, iterative bias reduction smoothing, projection pursuit regression, and regression with quadratic terms and interaction terms) to relate data simulated with measurement and model error effects from various subsets of the NDA techniques to the total Pu mass. Isotope masses for SFAs and expected detector responses (DRs) for several NDA techniques are simulated using MCNP, and the DRs become inputs to the fitting process. Such responses include eight signals from DDA, one from DN, one from TN, and up to seven from PG; the DG signal will be examined separately. Results are summarized using the root-mean-squared estimation error for plutonium mass in held-out subsets of the data for a range of model and measurement error variances. Different simulation assumptions lead to different spent fuel libraries relating DRs to Pu mass. Some results for training with one library and testing with another library are also given. C1 [Burr, T.; Trellue, H.; Tobin, S.; Favalli, A.; Dowell, J.; Henzl, V.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Mozin, V.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Burr, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM tburr@lanl.gov NR 27 TC 3 Z9 3 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAR PY 2015 VL 179 IS 3 BP 321 EP 332 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD1LQ UT WOS:000350836800008 ER PT J AU Wang, F Wei, QH Htoon, H AF Wang, Feng Wei, Qi-Huo Htoon, Han TI Switchable and non-switchable zero backscattering of dielectric nano-resonators SO OPTICAL MATERIALS EXPRESS LA English DT Article ID LIGHT-SCATTERING; NANOPARTICLES; RESONANCES; PARTICLES AB Previous studies have shown that two-dimensional (2D) arrays of high-permittivity dielectric nanoparticles are capable of fully suppressing backward light scattering when the resonant frequencies of electrical and magnetic dipolar modes are coincident. In this paper, we numerically demonstrate that the zero-backscattering of 2D Si nanocuboid arrays can be engineered to be switchable or non-switchable in response to a variation in the environmental refractive index. For each cuboid width/length, there exist certain cuboid heights and orthogonal periodicity ratio for which the electrical and magnetic resonances exhibit similar spectra widths and equivalent sensitivities to the environmental index changes, so that the zero-backscattering is non-switchable upon environmental change. For some other cuboid heights and certain anisotropic periodicity ratios, the electric and magnetic modes exhibit different sensitivities to environmental index changes, making the zero-backscattering sensitive to environmental changes. We also show that by using two different types of nano-resonators in the unit cell, Fano resonances can be introduced to greatly enhance the switching sensitivity of zero-backscattering. (C) 2015 Optical Society of America C1 [Wang, Feng; Htoon, Han] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wei, Qi-Huo] Kent State Univ, Liquid Crystal Inst, Kent, OH 44242 USA. [Wei, Qi-Huo] Kent State Univ, Dept Chem Phys, Kent, OH 44242 USA. RP Wang, F (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM htoon@lanl.gov OI Htoon, Han/0000-0003-3696-2896 FU Single Investigator Small Group Research Grant [2009LANL1096]; Division of Materials Science and Engineering (MSE); Office of Basic Energy Sciences (OBES); Office of Science (OS); U.S. Department of Energy (DOE); NSF [ECCS-0824175.] FX This work was supported by a Single Investigator Small Group Research Grant (2009LANL1096), Division of Materials Science and Engineering (MSE), Office of Basic Energy Sciences (OBES), Office of Science (OS), U.S. Department of Energy (DOE) and conducted at the Center for Integrated Nanotechnologies (CINT), a U.S. DOE, OBES Nanoscale Science Research Center and User Facility. QW acknowledges the financial support by NSF through award ECCS-0824175. NR 26 TC 3 Z9 3 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD MAR 1 PY 2015 VL 5 IS 3 BP 668 EP 675 DI 10.1364/OME.5.000668 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA CC9CI UT WOS:000350664800025 ER PT J AU Rubenchik, AM Chekhovskoy, IS Fedoruk, MP Shtyrina, OV Turitsyn, SK AF Rubenchik, A. M. Chekhovskoy, I. S. Fedoruk, M. P. Shtyrina, O. V. Turitsyn, S. K. TI Nonlinear pulse combining and pulse compression in multi-core fibers SO OPTICS LETTERS LA English DT Article ID OPTICAL-FIBERS; COLLAPSE; SOLITONS; ARRAYS; POWER AB We demonstrate light pulse combining and pulse compression using a continuous-discrete nonlinear system implemented in a multi-core fiber (MCF). It is shown that the pulses initially injected into all of the cores of a ring MCF are combined by nonlinearity into a small number of cores with simultaneous pulse compression. We demonstrate the combining of 77% of the energy into one core with pulse compression over 14x in a 20-core MCF. We also demonstrate that a suggested scheme is insensitive to the phase perturbations. Nonlinear spatio-temporal pulse manipulation in multi-core fibers can be exploited for various applications, including pulse compression, switching, and combining. (C) 2015 Optical Society of America C1 [Rubenchik, A. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chekhovskoy, I. S.; Fedoruk, M. P.; Shtyrina, O. V.; Turitsyn, S. K.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Chekhovskoy, I. S.; Fedoruk, M. P.; Shtyrina, O. V.] RAS, Inst Computat Technol, Novosibirsk 630090, Russia. [Turitsyn, S. K.] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England. RP Chekhovskoy, IS (reprint author), Novosibirsk State Univ, Novosibirsk 630090, Russia. EM igor428m@gmail.com RI Chekhovskoy, Igor/Q-7739-2016; OI Chekhovskoy, Igor/0000-0001-8134-0178; shtyrina, olya/0000-0002-0433-1427 FU Russian Science Foundation [14-21-00110]; European Office of Aerospace Research and Development [FA9550-14-1-0305]; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the Russian Science Foundation (Grant No. 14-21-00110) and by the European Office of Aerospace Research and Development (Grant No. FA9550-14-1-0305) (work of S.K.T.). The work was partially performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 17 TC 7 Z9 10 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD MAR 1 PY 2015 VL 40 IS 5 BP 721 EP 724 DI 10.1364/OL.40.000721 PG 4 WC Optics SC Optics GA CD0YW UT WOS:000350801500011 PM 25723416 ER PT J AU Partner, HL Nigmatullin, R Burgermeister, T Keller, J Pyka, K Plenio, MB Retzker, A Zurek, WH del Campog, A Mehlstaubler, TE AF Partner, Heather L. Nigmatullin, Ramil Burgermeister, Tobias Keller, Jonas Pyka, Karsten Plenio, Martin B. Retzker, Alex Zurek, Wojciech H. del Campog, Adolfo Mehlstaeubler, Tanja E. TI Structural phase transitions and topological defects in ion Coulomb crystals SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5TH INTERNATIONAL WORKSHOP ON ELECTRONIC CRYSTALS ECRYS-2014 CY AUG 11-23, 2014 CL Inst Etudes Sci Cargese, Cargese, FRANCE HO Inst Etudes Sci Cargese DE Ion Coulomb crystals; Kink solitons; Topological defects; Kibble-Zurek mechanism ID TRAP; ELECTRONS; BREAKING AB We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radio-frequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation. (C) 2014 Elsevier B.V. All rights reserved. C1 [Partner, Heather L.; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Mehlstaeubler, Tanja E.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Nigmatullin, Ramil] Univ Ulm, Inst Quantum Phys, D-89069 Ulm, Germany. [Plenio, Martin B.] Univ Ulm, Ctr Integrated Quantum Sci & Technol, D-89069 Ulm, Germany. [Plenio, Martin B.] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany. [Retzker, Alex] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Givat Ram, Israel. [Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [del Campog, Adolfo] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA. RP Mehlstaubler, TE (reprint author), Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany. EM tanja.mehlstaeubler@pth.de RI Plenio, Martin/I-7895-2013; del Campo, Adolfo/B-8439-2009; OI del Campo, Adolfo/0000-0003-2219-2851; Nigmatullin, Ramil/0000-0003-2577-6561; Keller, Jonas/0000-0002-3596-995X FU DFG through QUEST; EU Integrating Project SIQS [600645]; EU STREP EQUAM [323714]; Alexander von Humboldt Professorship FX This work was supported by DFG through QUEST and by the EU Integrating Project SIQS (Grant no. 600645), the EU STREP EQUAM (Grant no. 323714), and an Alexander von Humboldt Professorship. NR 40 TC 3 Z9 3 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD MAR 1 PY 2015 VL 460 SI SI BP 114 EP 118 DI 10.1016/j.physb.2014.11.051 PG 5 WC Physics, Condensed Matter SC Physics GA CD1BI UT WOS:000350808300024 ER PT J AU Tranquada, JM AF Tranquada, John M. TI Exploring intertwined orders in cuprate superconductors SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5TH INTERNATIONAL WORKSHOP ON ELECTRONIC CRYSTALS ECRYS-2014 CY AUG 11-23, 2014 CL Inst Etudes Sci Cargese, Cargese, FRANCE HO Inst Etudes Sci Cargese DE High-temperature superconductors; Copper oxides; Stripes; Pair density wave ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTOR; CHARGE-STRIPE ORDER; DENSITY-WAVE ORDER; J MODEL; FERMI-SURFACE; PHASE-SEPARATION; HUBBARD-MODEL; VORTEX STATE; LONG-RANGE AB The concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (COW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x=0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x=0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of COW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x, and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge. (C) 2014 Elsevier B.V. All rights reserved C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Tranquada, JM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jtran@bnl.gov RI Tranquada, John/A-9832-2009 OI Tranquada, John/0000-0003-4984-8857 FU Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [NSF PHY11-25915] FX I am grateful to many experimental collaborators, to S.A. Kivelson and E. Fradkin for collaborations on interpretation of the experiments, and to A.V. Chubukov for useful discussions. Work at Brookhaven is supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy under Contract no. DE-AC02-98CH10886. this paper was written in part while the author was in residence at the Kavli Institute for Theoretical Physics, which is supported in part by the National Science Foundation under Grant no. NSF PHY11-25915. NR 100 TC 1 Z9 1 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD MAR 1 PY 2015 VL 460 SI SI BP 136 EP 140 DI 10.1016/j.physb.2014.11.056 PG 5 WC Physics, Condensed Matter SC Physics GA CD1BI UT WOS:000350808300029 ER PT J AU Culo, M Tafra, E Basletic, M Tomic, S Hamzic, A Korin-Hamzic, B Dressel, M Schlueter, JA AF Culo, M. Tafra, E. Basletic, M. Tomic, S. Hamzic, A. Korin-Hamzic, B. Dressel, M. Schlueter, J. A. TI Two-dimensional variable range hopping in the spin-liquid candidate kappa-(BEDT-TTF)(2)Cu-2(CN)(3) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5TH INTERNATIONAL WORKSHOP ON ELECTRONIC CRYSTALS ECRYS-2014 CY AUG 11-23, 2014 CL Inst Etudes Sci Cargese, Cargese, FRANCE HO Inst Etudes Sci Cargese DE Organic conductors; Strongly correlated electron systems; Magnetotransport properties; Variable range hopping ID REGIME AB We present the measurements of the magnetotransport properties of the spin liquid candidate kappa-(BEDT-TTF)(2)Cu-2(CN)(3). The temperature dependencies of dc resistivity and Hall coefficient RH as well as magnetoresistance at fixed temperatures in magnetic fields up to 5 T suggest that the charge transport takes place via 2D variable range hopping among localized states. (C) 2014 Elsevier B.V. All rights reserved. C1 [Culo, M.; Tomic, S.; Korin-Hamzic, B.] Inst Phys, HR-10001 Zagreb, Croatia. [Tafra, E.; Basletic, M.; Hamzic, A.] Univ Zagreb, Fac Sci, Dept Phys, HR-10002 Zagreb, Croatia. [Dressel, M.] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Tafra, E (reprint author), Univ Zagreb, Fac Sci, Dept Phys, POB 331, HR-10002 Zagreb, Croatia. EM ctafra@phy.hr RI Dressel, Martin/D-3244-2012; Tomic, Silvia/D-5466-2011 FU Croatian Science Foundation [IP-2013-11-1011]; Deutsche Forschungsgemeinschaft (DFG) FX This work has been supported in part by the Croatian Science Foundation under the project IP-2013-11-1011. We appreciate financial support by the Deutsche Forschungsgemeinschaft (DFG). NR 14 TC 4 Z9 4 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD MAR 1 PY 2015 VL 460 SI SI BP 208 EP 210 DI 10.1016/j.physb.2014.11.072 PG 3 WC Physics, Condensed Matter SC Physics GA CD1BI UT WOS:000350808300044 ER PT J AU Padmalekha, KG Blankenhorn, M Ivek, T Bogani, L Schlueter, JA Dressel, M AF Padmalekha, K. G. Blankenhorn, M. Ivek, T. Bogani, L. Schlueter, J. A. Dressel, M. TI ESR studies on the spin-liquid candidate kappa-(BEDT-TTF)(2)Cu-2(CN)(3): Anomalous response below T=8 K SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5TH INTERNATIONAL WORKSHOP ON ELECTRONIC CRYSTALS ECRYS-2014 CY AUG 11-23, 2014 CL Inst Etudes Sci Cargese, Cargese, FRANCE HO Inst Etudes Sci Cargese DE ESR; Spin liquid; Disorder; Organic conductor; Strong correlations; Frustration ID SUPERCONDUCTIVITY; STATE AB The organic conductor kappa-(BEDT-TTF)(2)Cu-2(CN)(3) seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of kappa-(BEDT-TTF)(2)Cu-2(CN)(3) single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound. (C) 2014 Elsevier B.V. All rights reserved. C1 [Padmalekha, K. G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Dressel, M.] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Dressel, M (reprint author), Univ Stuttgart, Inst Phys 1, Pftiffenwaldring 57, D-70550 Stuttgart, Germany. EM dressel@pi1.physik.uni-stuttgart.de RI Dressel, Martin/D-3244-2012; Ivek, Tomislav/D-5298-2011 FU Deutsche Forschungsgerneinschaft (DFG) [SPP-TRR21]; Alexander von Humboldt Stiftung (Sofja Kovalevskaja Prize); European Research Council [ERC-StG 338258 "OptoQMol"] FX K.G.P. would like to thank Eric Heintze for help with the experiments. M.D. appreciates many discussions with G. Saito, D. Schweitzer and S. Tomic. We thank Deutsche Forschungsgerneinschaft (DFG) (SPP-TRR21), the Alexander von Humboldt Stiftung (Sofja Kovalevskaja Prize) and the European Research Council (ERC-StG 338258 "OptoQMol") for financial support. NR 17 TC 2 Z9 2 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD MAR 1 PY 2015 VL 460 SI SI BP 211 EP 213 DI 10.1016/j.physb.2014.11.073 PG 3 WC Physics, Condensed Matter SC Physics GA CD1BI UT WOS:000350808300045 ER PT J AU Kim, Y Ban, KY Kuciauskas, D Dippo, PC Honsberg, CB AF Kim, Yeongho Ban, Keun-Yong Kuciauskas, Darius Dippo, Patricia C. Honsberg, Christiana B. TI Impact of delta-doping position on photoluminescence in type-II InAs/GaAsSb quantum dots SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article DE quantum dots; intermediate band solar cells; molecular beam epitaxy; InAs/GaAsSb; delta-doping ID SOLAR-CELLS; SEMICONDUCTORS; DEPENDENCE; WELLS AB We studied the optical properties of InAs/GaAs0.83Sb0.17 quantum dots (QDs), with varying silicon delta-doping position (spatial distance, d = 0.5, 1, and 2 nm), using photoluminescence (PL) measurements. Compared with the undoped QDs, the PL peak energies of the ground state (GS) emissions for the doped QDs with d = 0.5 and 2 nm were found to be greatly blueshifted by similar to 31 meV, which was much larger than that for the doped QDs with d = 1 nm. The radiative recombination rate of the GS emissions for the doped QDs with d = 1 nm was estimated to be slower than that for the other doped QDs at 10 K. The doped QDs with d = 1 nm showed the fastest redshift of the GS peak energy with temperature and lowest thermal activation energy (151 meV) of electrons among the QD samples. Further, the time-resolved PL data revealed that the average carrier lifetime (6.3 ns) in the doped QDs with d = 1 nm was longer even than that in the undoped QDs (5.5 ns) because of the weakened electron-hole wavefunction overlap by the V-shaped potential barrier in the doped QDs. C1 [Kim, Yeongho; Ban, Keun-Yong; Honsberg, Christiana B.] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. [Kuciauskas, Darius; Dippo, Patricia C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kim, Y (reprint author), Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. EM ykim172@asu.edu FU National Science Foundation (NSF); Department of Energy (DOE) under NSF CA [EEC-1041895]; National Renewable Energy Laboratory [De-AC36-08-GO28308]; U S Department of Energy FX This material is based upon work primarily supported by the National Science Foundation (NSF) and the Department of Energy (DOE) under NSF CA No. EEC-1041895. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of NSF or DOE. Additionally, this work was supported by the National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program under Contract No. De-AC36-08-GO28308 with the U S Department of Energy. NR 21 TC 1 Z9 1 U1 6 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 EI 1361-6641 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD MAR PY 2015 VL 30 IS 3 AR 035006 DI 10.1088/0268-1242/30/3/035006 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA CC8PU UT WOS:000350631400007 ER PT J AU Zhang, ZR Tang, MR Wang, ZT Ke, Z Xia, YB Park, KT Lyubinetsky, I Dohnalek, Z Ge, QF AF Zhang, Zhenrong Tang, Miru Wang, Zhi-Tao Ke, Zhu Xia, Yaobiao Park, Kenneth T. Lyubinetsky, Igor Dohnalek, Zdenek Ge, Qingfeng TI Imaging of Formaldehyde Adsorption and Diffusion on TiO2(110) SO TOPICS IN CATALYSIS LA English DT Article DE Titanium dioxide; Formaldehyde; Defects; Diffusion; Scanning tunneling microscope; Density function theory ID OXIDE SURFACES; TIO2; PHOTOOXIDATION; 1ST-PRINCIPLES; ACETALDEHYDE; ACETONE; ANATASE; SITES; STATE; MODEL AB Surface reactions of formaldehyde with reduced TiO2(110) surfaces have been studied using variable-temperature scanning tunneling microscopy (STM) and density functional theory (DFT). STM images taken from a same area at various temperatures clearly show that formaldehyde preferentially adsorbs on the bridge-bonded oxygen (O-b) vacancy (V-O) defect sites. Bias-dependent STM images show that the STM features corresponding to both the Ti-bound CH2O and the V-O-bound CH2O are positioned between the O-b row and the Ti row. While the V-O-bound formaldehyde rotates at 95 K, the Ti-bound CH2O does not. The V-O-bound CH2O starts to diffuse along the O-b row as -CH2- at similar to 170 K and starts to diffuse along the Ti row as an intact molecule at similar to 215 K. However, the stabilities and the configurations of the Ti-bound and V-O-bound formaldehyde calculated using DFT are not in line with the experimental results. The discrepancy between the experiment and theory indicates the presence of a complex charge distribution related to the surface defects. C1 [Zhang, Zhenrong; Ke, Zhu; Xia, Yaobiao; Park, Kenneth T.] Baylor Univ, Dept Phys, Waco, TX 76798 USA. [Tang, Miru; Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. [Wang, Zhi-Tao; Lyubinetsky, Igor; Dohnalek, Zdenek] Inst Interfacial Catalysis, Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Zhi-Tao; Lyubinetsky, Igor; Dohnalek, Zdenek] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, ZR (reprint author), Baylor Univ, Dept Phys, Waco, TX 76798 USA. EM zhenrong_zhang@baylor.edu; qge@chem.siu.edu RI Ge, Qingfeng/A-8498-2009 OI Ge, Qingfeng/0000-0001-6026-6693 FU Donors of the American Chemical Society Petroleum Research Fund; U.S. Department of Energy (DOE) Basic Energy Science (BES) [DE-FG-05ER46231]; U.S. DOE BES, Division of Chemical Sciences, Biosciences and Geosciences; U.S. DOE [DE-AC06-76RLO 1830] FX Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. MT and QG acknowledge support by U.S. Department of Energy (DOE) Basic Energy Science (BES) Grant DE-FG-05ER46231. ZW, IL, and ZD were supported by the U.S. DOE BES, Division of Chemical Sciences, Biosciences and Geosciences. Calculations and part of the experimental work and part of the experiments were performed using EMSL, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 32 TC 13 Z9 13 U1 6 U2 48 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2015 VL 58 IS 2-3 BP 103 EP 113 DI 10.1007/s11244-014-0349-6 PG 11 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA CC7TT UT WOS:000350572000005 ER PT J AU Posada-Perez, S Vines, F Rodriguez, JA Illas, F AF Posada-Perez, Sergio Vines, Francesc Rodriguez, Jose A. Illas, Francesc TI Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H-2 SO TOPICS IN CATALYSIS LA English DT Article DE Density functional calculations; Metal carbides; CO2 activation; H-2 dissociation; Methanol synthesis ID CARBON-DIOXIDE HYDROGENATION; DENSITY-FUNCTIONAL THEORY; GAS SHIFT KINETICS; AU-C INTERACTIONS; 001 SURFACE; ELECTRONIC-STRUCTURE; MOLYBDENUM CARBIDE; TRANSITION-METALS; ADSORPTION; ENERGY AB CO2 hydrogenation to methanol and to other alcohols constitutes an appealing route to recycle the large amount accumulated in the atmosphere through fossil-derived fuels burning. However, CO2 high chemical stability makes the overall process difficult and appropriate catalysts are needed. Transition metal carbides, either as active phase or as a support for noble metal clusters, have been shown to be able to activate CO2. Here, the mechanism involved in the decomposition of H-2 and CO2 on many early transition metal carbides (TMC) surfaces is analyzed with the help of density functional theory (DFT) based calculations complemented by key experiments. Results show that H-2 dissociation on VC and delta-MoC is unlikely, that TiC and ZrC are more reactive leading to an exothermic but activated process and that the C:Mo ratio is determinant factor since H-2 dissociation on beta-Mo2C(001) surface is even more exothermic. The DFT based calculations also show that CO2 adsorption on TMC results in an activated species with TMC -> CO2 charge transfer, C-O bond elongations and OCO bending. Supporting Cu-4 and Au-4 clusters on TMCs(001) surfaces leads to more active catalysts due to the induced charge polarization. For H-2 dissociation, TiC appears to be the best support, enhancing both H-2 thermodynamics and kinetics. CO2 is strongly adsorbed on supported Cu-4 and Au-4 clusters, and the adsorption energy strength correlates with the methanol formation rate: Cu-4/TiC(001) > Au-4/TiC(001) > Cu/ZnO(001) >> Cu(111), thus providing potential alternative catalysts for methanol synthesis, in principle dozens of times better than commercial Cu/ZnO based catalysts. C1 [Posada-Perez, Sergio; Vines, Francesc; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Posada-Perez, Sergio; Vines, Francesc; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Vines, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011 OI Illas, Francesc /0000-0003-2104-6123 FU Spanish MINECO grant [CTQ2012-30751]; Generalitat de Catalunya [2014SGR97, XRQTC]; U.S. Department of Energy, Chemical Sciences Division [DE-AC02-98CH10886]; Spanish MEC predoctoral Grant [CTQ-2012-30751]; MINECO for a postdoctoral Ramon y Cajal Grant [RYC-2012-10129]; ICREA Academia award; Red Espanola de Supercomputacion FX The research carried out at the Universitat de Barcelona was supported by the Spanish MINECO grant CTQ2012-30751 grant and, in part, by Generalitat de Catalunya (Grants 2014SGR97 and XRQTC). The research carried out at BNL was supported by the U.S. Department of Energy, Chemical Sciences Division (DE-AC02-98CH10886). S.P.P acknowledges financial support from Spanish MEC predoctoral Grant associated to CTQ-2012-30751; F.V. thanks the MINECO for a postdoctoral Ramon y Cajal Grant (RYC-2012-10129); F.I. acknowledges additional support through the ICREA Academia award for excellence in research. Computational time at the MARENOSTRUM supercomputer has been provided by the Barcelona Supercomputing Centre through a Grant from Red Espanola de Supercomputacion. NR 78 TC 12 Z9 12 U1 20 U2 162 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2015 VL 58 IS 2-3 BP 159 EP 173 DI 10.1007/s11244-014-0355-8 PG 15 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA CC7TT UT WOS:000350572000011 ER PT J AU Musselwhite, N Somorjai, GA AF Musselwhite, Nathan Somorjai, Gabor A. TI Atomic Scale Foundation of Covalent and Acid-Base Catalysis in Reaction Selectivity and Turnover Rate SO TOPICS IN CATALYSIS LA English DT Article DE Heterogeneous catalysis; Catalysis; Oxide-metal interface; SMSI; Nanoparticles; Charge catalysis; Selectivity; Charge transfer ID METAL-SUPPORT INTERACTIONS; SINGLE-CRYSTAL SURFACES; SUM-FREQUENCY GENERATION; ENERGY ELECTRON-DIFFRACTION; HETEROGENEOUS CATALYSIS; PLATINUM NANOPARTICLES; STRUCTURE SENSITIVITY; N-HEXANE; VIBRATIONAL SPECTROSCOPY; CO2 HYDROGENATION AB Modern industrial catalysts are highly engineered multi-component materials, which are optimized to be highly efficient for the given reaction. The key components of every catalyst are: (1) the active metal and (2) the support. The former is active through the formation of covalent bonds with surface species, activating the bonds in the targeted molecule. In many systems the support is a metal oxide, which can promote charged intermediates in acid-base type catalytic chemistry. When the covalent chemistry of the metal catalyst and the acid-base chemistry of the support work together, the overall catalytic productivity can be much greater than the sum of the parts. This synergic interaction also works in favor of changes in the selectivity of complex reactions. This intent of this article is to analyze covalent metal catalysis both alone and in tandem with acid-base heterogeneous catalysis. C1 [Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE [DE-AC02-05CH11231]; Chevron Energy Company FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE under contract Contract No. DE-AC02-05CH11231. N. Musselwhite would like to thank the Chevron Energy Company for funding and Dr. Gerome Melaet for useful collaborations and discussions. NR 80 TC 1 Z9 1 U1 5 U2 29 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2015 VL 58 IS 2-3 BP 184 EP 189 DI 10.1007/s11244-014-0357-6 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA CC7TT UT WOS:000350572000013 ER PT J AU Cheng, CL Perfect, E Donnelly, B Bilheux, HZ Tremsin, AS McKay, LD DiStefano, VH Cai, JC Santodonato, LJ AF Cheng, C. -L. Perfect, E. Donnelly, B. Bilheux, H. Z. Tremsin, A. S. McKay, L. D. DiStefano, V. H. Cai, J. C. Santodonato, L. J. TI Rapid imbibition of water in fractures within unsaturated sedimentary rock SO ADVANCES IN WATER RESOURCES LA English DT Article DE Neutron radiography; Fractured porous media; Unsaturated flow; Capillarity; Fluid spreading; Rough surfaces ID NEUTRON-RADIOGRAPHY; POROUS-MEDIA; CEMENTITIOUS MATERIALS; 2-PHASE FLOW; PENETRATION; SURFACE; QUANTIFICATION; SORPTIVITY; DISPERSION; EFFICIENCY AB The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. We present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative data on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s(-0.5), and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s(-0.5), and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm(2) s(-0.5) and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. Further research is needed to investigate this phenomenon in other natural and engineered porous media. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cheng, C. -L.] Univ Texas Pan Amer, Dept Phys & Geol, Edinburg, TX 78539 USA. [Cheng, C. -L.] Univ Texas Pan Amer, Dept Mech Engn, Edinburg, TX 78539 USA. [Perfect, E.; Donnelly, B.; McKay, L. D.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Bilheux, H. Z.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Tremsin, A. S.] Univ Calif Berkeley, Space Sci Lab, Expt Astrophys Grp, Berkeley, CA 94720 USA. [DiStefano, V. H.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [DiStefano, V. H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cai, J. C.] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China. [Santodonato, L. J.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. RP Cheng, CL (reprint author), Univ Texas Pan Amer, Dept Phys & Geol, Edinburg, TX 78539 USA. EM chengc@utpa.edu; eperfect@utk.edu RI Bilheux, Hassina/H-4289-2012; Cheng, Chu-Lin/G-3471-2013; Santodonato, Louis/A-9523-2015 OI Bilheux, Hassina/0000-0001-8574-2449; Cheng, Chu-Lin/0000-0002-1900-463X; Santodonato, Louis/0000-0002-4600-685X FU David E. Jackson of BDY Environmental LLC, Nashville, TN; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX E. Perfect acknowledges support from David E. Jackson of BDY Environmental LLC, Nashville, TN through a Faculty Achievement Award. Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 42 TC 2 Z9 2 U1 7 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAR PY 2015 VL 77 BP 82 EP 89 DI 10.1016/j.advwatres.2015.01.010 PG 8 WC Water Resources SC Water Resources GA CC5XW UT WOS:000350439400007 ER PT J AU Zwicker, AP Bloom, J Albertson, R Gershman, S AF Zwicker, Andrew P. Bloom, Josh Albertson, Robert Gershman, Sophia TI The suitability of 3D printed plastic parts for laboratory use SO AMERICAN JOURNAL OF PHYSICS LA English DT Article AB 3D printing has become popular for a variety of users, from home hobbyists to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory. The 3D printer is also suitable for producing equipment for advanced undergraduate laboratories. (C) 2014 American Association of Physics Teachers. C1 [Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zwicker, AP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM azwicker@pppl.gov FU DOE Science Undergraduate Laboratory Internship program; PPPL Science Education Department High School Internship program FX The authors gratefully thank the anonymous referees for their suggestions and for providing an.stl file for printing test cubes to check dimensional errors as a function of the printing axis. Arturo Dominguez, Larry Guttadora, Deedee Ortiz, and Shannon Greco were helpful for a variety of discussions around the results reported here. Andy Carpe's assistance with the electrical breakdown measurements and Stephen Jurczynski's help with the tensile strength results were crucial to the success of these measurements. R.A. gratefully acknowledges the support of the DOE Science Undergraduate Laboratory Internship program. J.B. gratefully acknowledges the support of the PPPL Science Education Department High School Internship program. NR 6 TC 2 Z9 2 U1 5 U2 39 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 EI 1943-2909 J9 AM J PHYS JI Am. J. Phys. PD MAR PY 2015 VL 83 IS 3 BP 281 EP 285 DI 10.1119/1.4900746 PG 5 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA CC3DQ UT WOS:000350225600017 ER PT J AU Mao, XW Stenuit, B Polasko, A Alvarez-Cohen, L AF Mao, Xinwei Stenuit, Benoit Polasko, Alexandra Alvarez-Cohen, Lisa TI Efficient Metabolic Exchange and Electron Transfer within a Syntrophic Trichloroethene-Degrading Coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID INTERSPECIES HYDROGEN-TRANSFER; REDUCTIVE DEHALOGENASE GENE; ETHENOGENES STRAIN 195; ANAEROBIC-BACTERIA; MIXED CULTURE; METHANOGENIC ARCHAEA; CHLORINATED ETHENES; ENERGY-REQUIREMENTS; MICROARRAY ANALYSIS; CARBON METABOLISM AB Dehalococcoides mccartyi 195 (strain 195) and Syntrophomonas wolfei were grown in a sustainable syntrophic coculture using butyrate as an electron donor and carbon source and trichloroethene (TCE) as an electron acceptor. The maximum dechlorination rate (9.9 +/- 0.1 mu mol day(-1)) and cell yield [(1.1 +/- 0.3) x 10(8) cells mu mol(-1) Cl-] of strain 195 maintained in coculture were, respectively, 2.6 and 1.6 times higher than those measured in the pure culture. The strain 195 cell concentration was about 16 times higher than that of S. wolfei in the coculture. Aqueous H-2 concentrations ranged from 24 to 180 nM during dechlorination and increased to 350 +/- 20 nM when TCE was depleted, resulting in cessation of butyrate fermentation by S. wolfei with a theoretical Gibbs free energy of -13.7 +/- 0.2 kJ mol(-1). Carbon monoxide in the coculture was around 0.06 mu mol per bottle, which was lower than that observed for strain 195 in isolation. The minimum H-2 threshold value for TCE dechlorination by strain 195 in the coculture was 0.6 +/- 0.1 nM. Cell aggregates during syntrophic growth were observed by scanning electron microscopy. The interspecies distances to achieve H-2 fluxes required to support the measured dechlorination rates were predicted using Fick's law and demonstrated the need for aggregation. Filamentous appendages and extracellular polymeric substance (EPS)-like structures were present in the intercellular spaces. The transcriptome of strain 195 during exponential growth in the coculture indicated increased ATP-binding cassette transporter activities compared to the pure culture, while the membrane-bound energy metabolism related genes were expressed at stable levels. C1 [Mao, Xinwei; Stenuit, Benoit; Polasko, Alexandra; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Coll Engn, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Coll Engn, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu FU NIEHS [P42-ES04705-14]; NSF [CBET-1336709] FX This study was funded through research grants from the NIEHS (P42-ES04705-14) and the NSF (CBET-1336709). NR 63 TC 4 Z9 4 U1 6 U2 50 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2015 VL 81 IS 6 BP 2015 EP 2024 DI 10.1128/AEM.03464-14 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA CC7NM UT WOS:000350554800016 PM 25576615 ER PT J AU Cervini-Silva, J Nieto-Camacho, A Gomez-Vidales, V Kaufhold, S Theng, BKG AF Cervini-Silva, Javiera Nieto-Camacho, Antonio Gomez-Vidales, Virginia Kaufhold, Stephan Theng, Benny K. G. TI The anti-inflammatory activity of natural allophane SO APPLIED CLAY SCIENCE LA English DT Article DE Edema inhibition; Neutrophils; Volcanic; Iron; Nickel; Aluminum ID CLAY-MINERALS; METAL-IONS; HALLOYSITE; CYTOTOXICITY; IMOGOLITE; ECUADOR; NICKEL; EPR AB This paper presents evidence of the novel anti-inflammatory properties of natural allophane collected from New Zealand, Japan, and Ecuador. Allophanes were assessed by (i) the mouse-ear edema method using 12-O-tetradecanoylphorbol-13-acetate (TPA) as inflammatory agent; and (ii) the myeloperoxidase (MPO) enzymatic-activity method. After 4 h, applying 1 mg ear(-1) allophane conveyed edema inhibition (EI; p <= 0.01) in up to 39%, while MPO content inhibition (CI) values surpassed 60%. Pearson's correlation analysis between EI and MPO data showed that edema was mediated by the migration of neutrophils at t = 4 h (p < 0.05), but not at t = 24 h. The lack of variation in cellular migration with time was explained because of a reaction of zero-order kinetics. EPR spectra for allophanes showing higher anti-inflammatory activity denoted a broad signal centered at g = 2, and an intense spin-spin interaction, typical of a low-spin, octahedral Fe3+ environment (S = 1/2); and overlapping signals typical for Ni, with octahedral coordination, explained either by oxidation states +1 (Ni1+), +3 (Ni3+), or bulk Ni2+ ions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Mexico City 01120, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Nieto-Camacho, Antonio] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Mexico City 04510, DF, Mexico. [Gomez-Vidales, Virginia] Univ Nacl Autonoma Mexico, Inst Quim, Lab Resonancia Paramagnet Elect, Mexico City 04510, DF, Mexico. [Kaufhold, Stephan] BGR, D-30655 Hannover, Germany. [Theng, Benny K. G.] Landcare Res, Private Bag 11052, Palmerston North 4442, New Zealand. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Artificios 40,6 Piso,Col Miguel Hidalgo, Mexico City 01120, DF, Mexico. EM jcervini@correo.cua.uam.mx FU UAM (UAM-C) [33678] FX The authors are most thankful to Maria del Rocio Galindo Ortega (Universidad Autonoma Metropolitana Unidad Cuajimalpa; UAM-C) for technical assistance. This project was supported in part by UAM (UAM-C 33678). NR 37 TC 3 Z9 3 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 EI 1872-9053 J9 APPL CLAY SCI JI Appl. Clay Sci. PD MAR PY 2015 VL 105 BP 48 EP 51 DI 10.1016/j.clay.2014.12.018 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA CC2PO UT WOS:000350187300006 ER PT J AU Helfand, DJ White, RL Becker, RH AF Helfand, David J. White, Richard L. Becker, Robert H. TI THE LAST OF FIRST: THE FINAL CATALOG AND SOURCE IDENTIFICATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; methods: data analysis; methods: statistical; radio continuum: general; surveys ID DIGITAL SKY SURVEY; VLA-COSMOS SURVEY; RADIO-SOURCES; OPTICAL COUNTERPARTS; DATA RELEASE; 1.4 GHZ; QUASARS; PROJECT; IMAGE; ARRAY AB The FIRST survey, begun over 20 years ago, provides the definitive high-resolution map of the radio sky. This Very Large Telescope (VLA) survey reaches a detection sensitivity of 1 mJy at 20 cm over a final footprint of 10,575 deg(2) that is largely coincident with the Sloan Digital Sky Survey (SDSS) area. Both the images and a catalog containing 946,432 sources are available through the FIRST Web site (http://sundog.stsci.edu). We record here the authoritative survey history, including hardware and software changes that affect the catalog's reliability and completeness. In particular, we use recent observations taken with the JVLA to test various aspects of the survey data (astrometry, CLEAN bias, and the flux density scale). We describe a new, sophisticated algorithm for flagging potential sidelobes in this snapshot survey, and show that fewer than 10% of the cataloged objects are likely sidelobes, and that these are heavily concentrated at low flux densities and in the vicinity of bright sources, as expected. We also report a comparison of the survey with the NRAO VLA Sky Survey (NVSS), as well as a match of the FIRST catalog to the SDSS and Two Micron Sky Survey (2MASS) sky surveys. The NVSS match shows very good consistency in flux density scale and astrometry between the two surveys. The matches with 2MASS and SDSS indicate a systematic similar to 10-20 mas astrometric error with respect to the optical reference frame in all VLA data that has disappeared with the advent of the JVLA. We demonstrate strikingly different behavior between the radiomatches to stellar objects and to galaxies in the optical and IR surveys reflecting the different radio populations present over the flux density range 1-1000 mJy. As the radio flux density declines, stellar counterparts (quasars) get redder and fainter, while galaxies get brighter and have colors that initially redden but then turn bluer near the FIRST detection limit. Implications for future radio sky surveys are also briefly discussed. In particular, we show that for radio source identification at faint optical magnitudes, high angular resolution observations are essential, and cannot be sacrificed in exchange for high signal-to-noise data. The value of a JVLA survey as a complement to Square Kilometer Array precursor surveys is briefly discussed. C1 [Helfand, David J.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Helfand, David J.] Quest Univ Canada, Squamish, BC V8B 0N8, Canada. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Becker, Robert H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Becker, Robert H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. RP Helfand, DJ (reprint author), Columbia Univ, Dept Astron, Mail Code 5233,Pupin Hall,538 West 120th St, New York, NY 10027 USA. EM djh@astro.columbia.edu FU NRAO; NSF [AST 94-19906, AST 94-21178, AST-98-02791, AST-98- 02732, AST 00-98259, AST 00-98355]; Institute of Geophysics and Planetary Physics (operated under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory) [W-7405-Eng-48]; STScI, NATO; National Geographic Society, Columbia University [5393-094]; Sun Microsystems; National Aeronautics and Space Administration; National Science Foundation; Alfred P. Sloan Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; U.S. Department of Energy Office of Science FX The success of the FIRST survey is in large measure due to the generous support of a number of organizations. In particular, we acknowledge support from the NRAO, the NSF (grants AST 94-19906, AST 94-21178, AST-98-02791, AST-98- 02732, AST 00-98259, and AST 00-98355), the Institute of Geophysics and Planetary Physics (operated under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48), the STScI, NATO, the National Geographic Society (grant NGS No. 5393-094), Columbia University, and Sun Microsystems.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. NR 38 TC 27 Z9 27 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2015 VL 801 IS 1 AR 26 DI 10.1088/0004-637X/801/1/26 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC6PR UT WOS:000350488700026 ER PT J AU Whalen, DJ Smidt, J Heger, A Hirschi, R Yusof, N Even, W Fryer, CL Stiavelli, M Chen, KJ Joggerst, CC AF Whalen, Daniel J. Smidt, Joseph Heger, Alexander Hirschi, Raphael Yusof, Norhasliza Even, Wesley Fryer, Chris L. Stiavelli, Massimo Chen, Ke-Jung Joggerst, Candace C. TI PAIR-INSTABILITY SUPERNOVAE IN THE LOCAL UNIVERSE (vol 9, 797, 2014) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Whalen, Daniel J.] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, D-69120 Heidelberg, Germany. [Smidt, Joseph] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Heger, Alexander] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Hirschi, Raphael] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hirschi, Raphael] Univ Tokyo, Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Yusof, Norhasliza] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia. [Even, Wesley; Fryer, Chris L.] Los Alamos Natl Lab, T 2, Los Alamos, NM 87545 USA. [Stiavelli, Massimo] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Chen, Ke-Jung] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Joggerst, Candace C.] Los Alamos Natl Lab, XTD 3, Los Alamos, NM 87545 USA. RP Whalen, DJ (reprint author), Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. EM dwhalen1999@gmail.com RI YUSOF, NORHASLIZA/B-9363-2010 OI YUSOF, NORHASLIZA/0000-0002-6883-0874 NR 1 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2015 VL 801 IS 1 AR 71 DI 10.1088/0004-637X/801/1/71 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC6PR UT WOS:000350488700071 ER PT J AU Beresnyak, A AF Beresnyak, Andrey TI ON THE PARALLEL SPECTRUM IN MAGNETOHYDRODYNAMIC TURBULENCE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetohydrodynamics (MHD); turbulence ID STRONG IMBALANCED TURBULENCE; SOLAR-WIND; ALFVENIC TURBULENCE; INERTIAL-RANGE; NUMERICAL SIMULATIONS; MAGNETIC-FIELD; ANISOTROPY; POWER AB Anisotropy of MHD turbulence has been studied extensively for many years, most prominently by measurements in the solar wind and high-resolution simulations. The spectrum parallel to the local magnetic field was observed to be steeper than the perpendicular spectrum, typically k(-2), consistent with the widely accepted Goldreich & Sridhar model. In this Letter, I looked deeper into the nature of the relation between parallel and perpendicular spectra and argue that this k(-2) scaling has the same origin as the omega(-2) scaling of the Lagrangian frequency spectrum in strong hydrodynamic turbulence. This follows from the fact that Alfven waves propagate along magnetic field lines. It has now became clear that the observed anisotropy can be argued without invocation of the "critical balance" argument and is more robust that was previously thought. The relation between parallel (Lagrangian) and perpendicular (Eulerian) spectra is an inevitable consequence of strong turbulence of Alfven waves, rather than a conjecture based on the uncertainty relation. I tested this using high-resolution simulations of MHD turbulence, in particular, I verified that the cutoff of the parallel spectrum scales as a Kolmogorov timescale, not lengthscale. C1 [Beresnyak, Andrey] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Beresnyak, Andrey] KTH Royal Inst Technol, NORDITA, SE-10691 Stockholm, Sweden. [Beresnyak, Andrey] Stockholm Univ, SE-10691 Stockholm, Sweden. RP Beresnyak, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Beresnyak, Andrey/0000-0002-2124-7024 FU DOE LDRD program; NSF XSEDE grant [TG-AST110057]; DOE [DE-AC02-06CH11357] FX The author was supported though the DOE LDRD program, while the computer time was provided by the DOE INCITE program and the NSF XSEDE grant TG-AST110057. This research used resources of the ALCF at Argonne National Laboratory, which is supported by the DOE under contract DE-AC02-06CH11357. The author also thanks. Nordita for support and hospitality. NR 40 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2015 VL 801 IS 1 AR L9 DI 10.1088/2041-8205/801/1/L9 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3QB UT WOS:000350262900009 ER PT J AU Loch, SD Ballance, CP Li, Y Fogle, M Fontes, CJ AF Loch, S. D. Ballance, C. P. Li, Y. Fogle, M. Fontes, C. J. TI NON-EQUILIBRIUM MODELING OF THE FE XVII 3C/3D LINE RATIO IN AN INTENSE X-RAY FREE-ELECTRON LASER EXCITED PLASMA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE atomic data; atomic processes; line: formation; plasmas; X-rays: general ID ATOMIC DATA AB Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas. C1 [Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.] Auburn Univ, Auburn, AL 36849 USA. [Fontes, C. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Loch, SD (reprint author), Auburn Univ, Auburn, AL 36849 USA. EM loch@physics.auburn.edu NR 13 TC 1 Z9 1 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2015 VL 801 IS 1 AR L13 DI 10.1088/2041-8205/801/1/L13 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3QB UT WOS:000350262900013 ER PT J AU Milovanovic, P Zimmermann, EA Riedel, C Scheidt, AV Herzog, L Krause, M Djonic, D Djuric, M Puschel, K Amling, M Ritchie, RO Busse, B AF Milovanovic, Petar Zimmermann, Elizabeth A. Riedel, Christoph Scheidt, Annika vom Herzog, Lydia Krause, Matthias Djonic, Danijela Djuric, Marija Pueschel, Klaus Amling, Michael Ritchie, Robert O. Busse, Bjoern TI Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone SO BIOMATERIALS LA English DT Article DE Mechanical properties; Fracture mechanism; Biomineralization; Microstructure; Osteoporosis; Bone ID FRACTURE INTERVENTION TRIAL; TERM ALENDRONATE TREATMENT; MINERALIZATION DENSITY DISTRIBUTION; MULTIPLE LENGTH-SCALES; IN-VIVO MEASUREMENT; TRABECULAR BONE; ILIAC CREST; BISPHOSPHONATE TREATMENT; MECHANICAL-PROPERTIES; LACUNAR DENSITY AB Characterization of bone's hierarchical structure in aging, disease and treatment conditions is imperative to understand the architectural and compositional modifications to the material and its mechanical integrity. Here, cortical bone sections from 30 female proximal femurs a frequent fracture site were rigorously assessed to characterize the osteocyte lacunar network, osteon density and patterns of bone matrix mineralization by backscatter-electron imaging and Fourier-transform infrared spectroscopy in relation to mechanical properties obtained by reference-point indentation. We show that young, healthy bone revealed the highest resistance to mechanical loading (indentation) along with higher mineralization and preserved osteocyte-lacunar characteristics. In contrast, aging and osteoporosis significantly alter bone material properties, where impairment of the osteocyte-lacunar network was evident through accumulation of hypermineralized osteocyte lacunae with aging and even more in osteoporosis, highlighting increased osteocyte apoptosis and reduced mechanical competence. But antiresorptive treatment led to fewer mineralized lacunae and fewer but larger osteons signifying rejuvenated bone. In summary, multiple structural and compositional changes to the bone material were identified leading to decay or maintenance of bone quality in disease, health and treatment conditions. Clearly, antiresorptive treatment reflected favorable effects on the multifunctional osteocytic cells that are a prerequisite for bone's structural, metabolic and mechanosensory integrity. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Milovanovic, Petar; Zimmermann, Elizabeth A.; Riedel, Christoph; Scheidt, Annika vom; Herzog, Lydia; Krause, Matthias; Amling, Michael; Busse, Bjoern] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Milovanovic, Petar; Djonic, Danijela; Djuric, Marija] Univ Belgrade, Fac Med, Inst Anat, Lab Anthropol, Belgrade 11000, Serbia. [Pueschel, Klaus] Univ Med Ctr Hamburg Eppendorf, Dept Forens Med, D-22529 Hamburg, Germany. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ritchie, Robert O.; Busse, Bjoern] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Busse, B (reprint author), Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Emmy Noether Res Grp, Lottestr 59, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Ritchie, Robert/A-8066-2008; Busse, Bjorn/O-8462-2016; OI Ritchie, Robert/0000-0002-0501-6998; Busse, Bjorn/0000-0002-3099-8073; Zimmermann, Elizabeth/0000-0001-9927-3372 FU Emmy Noether program of the 'Deutsche Forschungsgemeinschaft' (DFG, German Research Foundation) [BU 2562/2-1]; Southeast-Europe Cooperation of the University Medical Center Hamburg-Eppendorf; Deutscher Akademischer Austauschdienst (DAAD, German Academic Exchange Service) [A/11/83161]; Serbian Ministry of Education and Science grant [11145005] FX This work was supported by the Emmy Noether program BU 2562/2-1 of the 'Deutsche Forschungsgemeinschaft' (DFG, German Research Foundation), Southeast-Europe Cooperation of the University Medical Center Hamburg-Eppendorf, Deutscher Akademischer Austauschdienst grant no. A/11/83161 (DAAD, German Academic Exchange Service) and Serbian Ministry of Education and Science grant no. 11145005. NR 89 TC 18 Z9 18 U1 3 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 EI 1878-5905 J9 BIOMATERIALS JI Biomaterials PD MAR PY 2015 VL 45 BP 46 EP 55 DI 10.1016/j.biomaterials.2014.12.024 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA CC2RD UT WOS:000350191400006 PM 25662494 ER PT J AU Kusche, M Bustillo, K Agel, F Wasserscheid, P AF Kusche, Matthias Bustillo, Karen Agel, Friederike Wasserscheid, Peter TI Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts SO CHEMCATCHEM LA English DT Article DE electron microscopy; heterogeneous catalysis; ionic liquids; platinum; water-gas shift reaction ID NOBLE-METAL CATALYSTS; IONIC LIQUID LAYER; SELECTIVE HYDROGENATION; PLATINUM; ALUMINA; SPECTROSCOPY; PERFORMANCE; MECHANISM; KINETICS; DRIFTS AB Herein, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water-gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240 h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5 wt%. C1 [Kusche, Matthias; Agel, Friederike; Wasserscheid, Peter] Univ Erlangen Nurnberg, Lehrstuhl Chem Reakt Tech, D-91058 Erlangen, Germany. [Bustillo, Karen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Wasserscheid, P (reprint author), Univ Erlangen Nurnberg, Lehrstuhl Chem Reakt Tech, Egerlandstr 3, D-91058 Erlangen, Germany. EM wasserscheid@crt.cbi.uni-erlangen.de RI Wasserscheid, Peter/P-4066-2015; Foundry, Molecular/G-9968-2014 OI Wasserscheid, Peter/0000-0003-0413-9539; FU EU through its ERC Advanced Investigator Grant [267376]; National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley Lab - U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge financial support by the EU through its ERC Advanced Investigator Grant (grant no. 267376, to P.W.) We also acknowledge Deutsche Forschungsgemeinschaft (DFG) for supporting some of the analytic work through its Excellence Cluster "Engineering of Advanced Materials" in the framework of the excellence initiative. Furthermore, we thank the Center for Nanoanalysis and Electron Microscopy (CENEM), Erlangen for assistance with the TEM measurements. We acknowledge support of the National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy (contract no. DE-AC02-05CH11231). NR 38 TC 8 Z9 8 U1 6 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD MAR PY 2015 VL 7 IS 5 BP 766 EP 775 DI 10.1002/cctc.201402808 PG 10 WC Chemistry, Physical SC Chemistry GA CC6KJ UT WOS:000350473500010 ER PT J AU Li, LD Zhou, L Ould-Chikh, S Anjum, DH Kanoun, MB Scaranto, J Hedhili, MN Khalid, S Laveille, PV D'Souza, L Clo, A Basset, JM AF Li, Lidong Zhou, Lu Ould-Chikh, Samy Anjum, Dalaver H. Kanoun, Mohammed B. Scaranto, Jessica Hedhili, Mohamed N. Khalid, Syed Laveille, Paco V. D'Souza, Lawrence Clo, Alain Basset, Jean-Marie TI Controlled Surface Segregation Leads to Efficient Coke-Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane SO CHEMCATCHEM LA English DT Article DE EXAFS spectroscopy; nanoparticles; nickel; platinum; supported catalysts ID DENSITY-FUNCTIONAL THEORY; PROMOTED NI/AL2O3 CATALYSTS; SUPPORTED NICKEL-CATALYSTS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CARBON-DIOXIDE; SYNTHESIS GAS; NI CATALYSTS; NANOPARTICLE CATALYSTS; PLATINUM CATALYSTS AB Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. C1 [Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; Kanoun, Mohammed B.; Laveille, Paco V.; Basset, Jean-Marie] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC, Thuwal 239556900, Saudi Arabia. [Anjum, Dalaver H.; Hedhili, Mohamed N.] King Abdullah Univ Sci & Technol, Core Lab, Thuwal 239556900, Saudi Arabia. [Scaranto, Jessica; D'Souza, Lawrence] Saudi Basic Ind Corp, SABIC Corp Res & Innovat Ctr, Thuwal 239556900, Saudi Arabia. [Khalid, Syed] Brookhaven Natl Lab, Upton, NY 11973 USA. [Clo, Alain] King Abdullah Univ Sci & Technol, Res Comp, Thuwal 239556900, Saudi Arabia. RP Basset, JM (reprint author), King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC, Thuwal 239556900, Saudi Arabia. EM jeanmarie.basset@kaust.edu.sa RI D'Souza, Lawrence/O-7306-2014; Ould-Chikh, Samy/S-5479-2016; OI D'Souza, Lawrence/0000-0001-6708-1341; Ould-Chikh, Samy/0000-0002-3486-0944; basset, jean marie/0000-0003-3166-8882 FU Saudi Basic Industries Corporation (SABIC) FX We appreciate Saudi Basic Industries Corporation (SABIC) for financial support. We gratefully thank Dr. Elodie Guyonnet and Dr. Janet C. Mohandas for helpful discussions. KAUST Supercomputing Laboratory (KSL) is acknowledged for the allocated computing resources. NR 98 TC 15 Z9 15 U1 18 U2 75 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD MAR PY 2015 VL 7 IS 5 BP 819 EP 829 DI 10.1002/cctc.201402965 PG 11 WC Chemistry, Physical SC Chemistry GA CC6KJ UT WOS:000350473500017 ER PT J AU Balbus, JM Greenblatt, JB Chari, R Millstein, D Ebi, KL AF Balbus, John M. Greenblatt, Jeffery B. Chari, Ramya Millstein, Dev Ebi, Kristie L. TI A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States (vol 127, pg 199, 2014) SO CLIMATIC CHANGE LA English DT Correction C1 [Balbus, John M.] NIEHS, Bethesda, MD 20892 USA. [Greenblatt, Jeffery B.; Millstein, Dev] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chari, Ramya] RAND Corp, Santa Monica, CA USA. [Ebi, Kristie L.] Univ Washington, Seattle, WA 98195 USA. RP Balbus, JM (reprint author), NIEHS, 31 Ctr Dr,Room B1C02, Bethesda, MD 20892 USA. EM john.balbus@nih.gov NR 2 TC 0 Z9 0 U1 3 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAR PY 2015 VL 129 IS 1-2 BP 363 EP 364 DI 10.1007/s10584-015-1336-z PG 2 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CC4VP UT WOS:000350352800027 ER PT J AU Burkhardt, J Wiser, R Darghouth, N Dong, CG Huneycutt, J AF Burkhardt, Jesse Wiser, Ryan Darghouth, Naim Dong, C. G. Huneycutt, Joshua TI Exploring the impact of permitting and local regulatory processes on residential solar prices in the United States SO ENERGY POLICY LA English DT Article DE Solar energy; Photovoltaic; Soft cost; Permitting; PV; Regulation ID PV; ELECTRICITY; COST; TECHNOLOGY; DEPLOYMENT; ECONOMICS AB This article statistically isolates the impacts of city-level permitting and other local regulatory processes on residential PV prices in the United States. We combine data from two "scoring" mechanisms that independently capture local regulatory process efficiency with the largest dataset of installed PV prices in the United States. We find that variations in local permitting procedures can lead to differences in average residential PV prices of approximately $0.18/W between the jurisdictions with the least-favorable and most-favorable permitting procedures. Between jurisdictions with scores across the middle 90% of the range (i.e., 5th percentile to 95th percentile), the difference is $0.14/W, equivalent to a $700 (2.2%) difference in system costs for a typical 5-kW residential PV installation. When considering variations not only in permitting practices, but also in other local regulatory procedures, price differences grow to $0.64-$0.93/W between the least-favorable and most-favorable jurisdictions. Between jurisdictions with scores across the middle 90% of the range, the difference is equivalent to a price impact of at least $2500 (8%) for a typical 5-kW residential PV installation. These results highlight the magnitude of cost reduction that might be expected from streamlining local regulatory regimes. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Burkhardt, Jesse] Yale Univ, New Haven, CT 06511 USA. [Wiser, Ryan; Darghouth, Naim] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dong, C. G.] Univ Texas Austin, Austin, TX 78712 USA. [Huneycutt, Joshua] US DOE, Washington, DC 20585 USA. RP Burkhardt, J (reprint author), Yale Univ, 205 Prospect St, New Haven, CT 06511 USA. EM jesse.burkhardt@yale.edu; rhwiser@lbl.gov; ndarghouth@lbl.gov FU Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Office) of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX The work described in this article was funded by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Office) of the U.S. Department of Energy (DOE) under Contract no. DE-AC02-05CH11231. For reviewing earlier versions of this work or providing valuable input, we would particularly like to thank two anonymous reviewers, as well as Galen Barbose and Ben Hoen (LBNL), Kenneth Gillingham and Hao Deng (Yale University), Gregory Nemet (University of Wisconsin-Madison), Varun Rai (University of Texas, Austin), Hilary Pearson (Sungevity), Sean Milich and James Tong (Clean Power Finance), Kristen Ardani (National Renewable Energy Laboratory), and Adam Cohen (DOE). For their support of this work, we also thank Elaine Ulrich, Christina Nichols, Adam Cohen and Minh Le of the U.S. DOE. Of course, the authors are solely responsible for any omissions or errors contained herein. NR 27 TC 6 Z9 6 U1 5 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAR PY 2015 VL 78 BP 102 EP 112 DI 10.1016/j.enpol.2014.12.020 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CB6IX UT WOS:000349731800010 ER PT J AU Greenblatt, JB AF Greenblatt, Jeffery B. TI Modeling California policy impacts on greenhouse gas emissions SO ENERGY POLICY LA English DT Article DE Greenhouse gas; Global warming; California climate policy; AB 32; Mid-term emission target; Cumulative greenhouse gas emission AB This paper examines policy and technology scenarios in California, emphasizing greenhouse gas (GHG) emissions in 2020 and 2030. Using CALGAPS, a new, validated model simulating GHG and criteria pollutant emissions in California from 2010 to 2050, four scenarios were developed: Committed Policies (S1), Uncommitted Policies (S2), Potential Policy and Technology Futures (S3), and Counterfactual (SO), which omits all GHG policies. Forty-nine individual policies were represented. For S1-S3, GHG emissions fall below the AB 32 policy 2020 target [427 million metric tons CO2 equivalent (MtCO(2)e) yr(-1)], indicating that committed policies may be sufficient to meet mandated reductions. In 2030, emissions span 211-428 MtCO(2)e yr(-1), suggesting that policy choices made today can strongly affect outcomes over the next two decades. Long-term (2050) emissions were all well above the target set by Executive Order S-3-05 (85 MtCO2e yr(-1)); additional policies or technology development (beyond the study scope) are likely needed to achieve this objective. Cumulative emissions suggest a different outcome, however: due to early emissions reductions, S3 achieves lower cumulative emissions in 2050 than a pathway that linearly reduces emissions between 2020 and 2050 policy targets. Sensitivity analysis provided quantification of individual policy GHG emissions reduction benefits. (C) 2014 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Greenblatt, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA. EM jbgreenblatt@lbl.gov FU California Air Resources Board [12-329] FX The author thanks the many professional colleagues at CARB, CEC, High-Speed Rail Authority, the Governor's Office, Navigant Research and elsewhere for data and/or feedback. Special thanks go to Ryan McCarthy and Joshua Cunningham at CARB. This work was supported in part by the California Air Resources Board under CARB Agreement no. 12-329. NR 71 TC 10 Z9 10 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAR PY 2015 VL 78 BP 158 EP 172 DI 10.1016/j.enpol.2014.12.024 PG 15 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CB6IX UT WOS:000349731800015 ER PT J AU Ma, J Deng, Y Yuan, T Zhou, JZ Alvarez, PJJ AF Ma, Jie Deng, Ye Yuan, Tong Zhou, Jizhong Alvarez, Pedro J. J. TI Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle SO ENVIRONMENTAL POLLUTION LA English DT Article DE Fuel ethanol; Metagenomics; Biodegradation; Resilience; Groundwater; Remediation ID SULFATE-REDUCING AQUIFER; NATURAL ATTENUATION; GROUNDWATER QUALITY; O-XYLENE; BIODEGRADATION; GASOLINE; BENZENE; ECOLOGY; TOLUENE; FATE AB GeoChip, a comprehensive gene microarray, was used to examine changes in microbial functional gene structure throughout the 4-year life cycle of a pilot-scale ethanol blend plume, including 2-year continuous released followed by plume disappearance after source removal. Canonical correlation analysis (CCA) and Mantel tests showed that dissolved 02 (which was depleted within 5 days of initiating the release and rebounded 194 days after source removal) was the most influential environmental factor on community structure. Initially, the abundance of anaerobic BTEX degradation genes increased significantly while that of aerobic BTEX degradation genes decreased. Gene abundance for N fixation, nitrification, P utilization, sulfate reduction and S oxidation also increased, potentially changing associated biogeochemical cycle dynamics. After plume disappearance, most genes returned to pre-release abundance levels, but the final functional structure significantly differed from pre-release conditions. Overall, observed successions of functional structure reflected adaptive responses that were conducive to biodegradation of ethanol-blend releases. (C) 2015 Published by Elsevier Ltd. C1 [Ma, Jie] China Univ Petr, Beijing Key Lab Oil & Gas Pollut Control, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Ma, Jie; Alvarez, Pedro J. J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. [Deng, Ye] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China. [Deng, Ye; Yuan, Tong; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Deng, Ye; Yuan, Tong; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94270 USA. RP Alvarez, PJJ (reprint author), Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. EM alvarez@rice.edu RI Ma, Jie/J-8139-2014; OI Ma, Jie/0000-0003-3719-3814; ?, ?/0000-0002-7584-0632 FU American Petroleum Institute; National Natural Science Foundation of China [21407180]; Science Foundation of China University of Petroleum-Beijing [2462014YJRC016]; Office of the Vice President for Research at the University of Oklahoma; Collaborative Innovation Center for Regional Environmental Quality FX This work was funded by the American Petroleum Institute, National Natural Science Foundation of China (No. 21407180), Science Foundation of China University of Petroleum-Beijing (No. 2462014YJRC016), the Office of the Vice President for Research at the University of Oklahoma, and the Collaborative Innovation Center for Regional Environmental Quality. NR 36 TC 1 Z9 1 U1 4 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD MAR PY 2015 VL 198 BP 154 EP 160 DI 10.1016/j.envpol.2015.01.005 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA CC2RF UT WOS:000350191600020 PM 25603154 ER PT J AU Kim, K Labbe, N Warren, JM Elder, T Rials, TG AF Kim, Keonhee Labbe, Nicole Warren, Jeffrey M. Elder, Thomas Rials, Timothy G. TI Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long term exposure to elevated CO2 SO ENVIRONMENTAL POLLUTION LA English DT Article DE Free air CO2 enrichment; Sweetgum; Chemical composition; Hydraulic conductivity; PCA ID STEM WOOD PROPERTIES; CARBON-DIOXIDE CONCENTRATION; MATURE NORWAY SPRUCE; ATMOSPHERIC CO2; CO2-ENRICHED ATMOSPHERE; NITROGEN-FERTILIZATION; NUTRIENT AVAILABILITY; TROPOSPHERIC O-3; DECIDUOUS FOREST; WATER-FLOW AB The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO2 (544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO2 trees, and the cell wall thickness was thinner. Chemically, elevated CO2 exposure did not impact the structural components of the stem wood, but non-structural components were significantly affected. Principal component analysis (PCA) was employed to detect differences between the CO2 treatments by considering numerous structural and chemical variables, as well as tree size, and data from previously published sources (i.e., root biomass, production and turnover). The PCA results indicated a clear separation between trees exposed to ambient and elevated CO2 conditions. Correlation loadings plots of the PCA revealed that stem structural components, ash, Ca, Mg, total phenolics, root biomass, production and turnover were the major responses that contribute to the separation between the elevated and ambient CO2 treated trees. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kim, Keonhee; Labbe, Nicole; Rials, Timothy G.] Univ Tennessee, Ctr Renewable Carbon, Knoxville, TN 37996 USA. [Warren, Jeffrey M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Warren, Jeffrey M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Elder, Thomas] US Forest Serv, USDA, Southern Res Stn, Pineville, LA USA. RP Labbe, N (reprint author), Univ Tennessee, Ctr Renewable Carbon, 2506 Jacob Dr, Knoxville, TN 37996 USA. EM nlabbe@utk.edu RI Warren, Jeffrey/B-9375-2012 OI Warren, Jeffrey/0000-0002-0680-4697 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC05-000R22725]; U.S. Department of Agriculture [2010-34158-20930] FX This study was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract DE-AC05-000R22725, and U.S. Department of Agriculture, award number 2010-34158-20930. NR 49 TC 2 Z9 3 U1 2 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD MAR PY 2015 VL 198 BP 179 EP 185 DI 10.1016/j.envpol.2015.01.006 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA CC2RF UT WOS:000350191600023 PM 25603157 ER PT J AU Hoskins, RA Carlson, JW Wan, KH Park, S Mendez, I Galle, SE Booth, BW Pfeiffer, BD George, RA Svirskas, R Krzywinski, M Schein, J Accardo, MC Damia, E Messina, G Mendez-Lago, M de Pablos, B Demakova, OV Andreyeva, EN Boldyreva, LV Marra, M Carvalho, AB Dimitri, P Villasante, A Zhimulev, IF Rubin, GM Karpen, GH Celniker, SE AF Hoskins, Roger A. Carlson, Joseph W. Wan, Kenneth H. Park, Soo Mendez, Ivonne Galle, Samuel E. Booth, Benjamin W. Pfeiffer, Barret D. George, Reed A. Svirskas, Robert Krzywinski, Martin Schein, Jacqueline Carmela Accardo, Maria Damia, Elisabetta Messina, Giovanni Mendez-Lago, Maria de Pablos, Beatriz Demakova, Olga V. Andreyeva, Evgeniya N. Boldyreva, Lidiya V. Marra, Marco Carvalho, A. Bernardo Dimitri, Patrizio Villasante, Alfredo Zhimulev, Igor F. Rubin, Gerald M. Karpen, Gary H. Celniker, Susan E. TI The Release 6 reference sequence of the Drosophila melanogaster genome SO GENOME RESEARCH LA English DT Article ID IN-SITU HYBRIDIZATION; Y-LINKED GENES; CENTROMERIC REGION; PERICENTRIC HETEROCHROMATIN; FUNCTIONAL ELEMENTS; HET-A; CHROMOSOME; ORGANIZATION; DNA; RETROTRANSPOSONS AB Drosophila melanogaster plays all important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report all improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. C1 [Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Karpen, Gary H.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Genome Dynam, Berkeley, CA 94720 USA. [Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; Rubin, Gerald M.] Howard Hughes Med Inst, Ashburn, VA 20147 USA. [Krzywinski, Martin; Schein, Jacqueline; Marra, Marco] BC Canc Agcy, Genome Sci Ctr, Vancouver, BC V5Z 4S6, Canada. [Carmela Accardo, Maria; Damia, Elisabetta; Messina, Giovanni; Dimitri, Patrizio] Univ Roma La Sapienza, Dipartimento Biol & Biotecnol Charles Darwin, I-00185 Rome, Italy. [Carmela Accardo, Maria; Damia, Elisabetta; Messina, Giovanni; Dimitri, Patrizio] Univ Roma La Sapienza, Inst Pasteur, Fdn Cenci Bolognetti, I-00185 Rome, Italy. [Mendez-Lago, Maria; de Pablos, Beatriz; Villasante, Alfredo] Univ Autonoma Madrid, CSIC, UAM, Ctr Biol Mol Severo Ochoa, E-28049 Madrid, Spain. [Demakova, Olga V.; Andreyeva, Evgeniya N.; Boldyreva, Lidiya V.; Zhimulev, Igor F.] Russian Acad Sci, Inst Mol & Cellular Biol, Novosibirsk 630090, Russia. [Carvalho, A. Bernardo] Univ Fed Rio de Janeiro, Dept Genet, BR-21944970 Rio De Janeiro, Brazil. [Zhimulev, Igor F.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Hoskins, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Genome Dynam, Berkeley, CA 94720 USA. EM RHoskins@lbl.gov; celniker@fruitfly.org RI Carvalho, A. Bernardo/D-5402-2013; Marra, Marco/B-5987-2008; Andreyeva, Evgeniya/N-2733-2015; Boldyreva, Lidiya/N-6978-2015; Demakova, Olga/N-7478-2015; Zhimulev, Igor/N-7978-2015; OI Carvalho, A. Bernardo/0000-0001-8959-6469; Rubin, Gerald/0000-0001-8762-8703; Boldyreva, Lidiya/0000-0003-0716-4545; Messina, Giovanni/0000-0002-7597-4972 FU NIH [P50 HG00750, R01 HG00747, R01 HG002673, R01 GM064590]; U.S. Department of Energy [DE-AC0376SF00098, DE-AC02-05CH11231]; University of California; Russian Federation [13-04-40137, 12-04-00874]; Institut Pasteur-Fondazione Cenci Bolognetti; Ministerio de Economia y Competitividad [BFU2011-30295-C02-01]; Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) FX We thank S. Richards, D. Wheeler, D. Muzny, S. Scherer, and R.A. Gibbs for assistance in the production of the Release 4 sequence of chromosome arm 3L; T. Murphy at NCBI for thorough quality control of the Release 6 sequence submission; M.A. Crosby for sharing her observation that Piezo is homologous to a fragmented set of five Release 5 gene models; V. Gvozdev for 28S rDNA and SCLR plasmids; and E. Frise for computer systems support. This work was supported by NIH grants P50 HG00750 (G.M.R.), R01 HG00747 (G.H.K.), and R01 HG002673 (S.E.C.) and performed under U.S. Department of Energy Contracts DE-AC0376SF00098 and DE-AC02-05CH11231, University of California. I.F.Z. was supported by grant 13-04-40137 from the Russian Federation; E.N.A. was supported by grant 12-04-00874-a from the Russian Federation; P.D. was supported by a grant from the Institut Pasteur-Fondazione Cenci Bolognetti; A.V. was supported by Ministerio de Economia y Competitividad grant BFU2011-30295-C02-01; and A.B.C. was supported by NIH grant R01 GM064590 and grants from Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). We dedicate this work in memory of our dear colleague and friend, Alfredo Villasante, who died during the final preparation of this manuscript. NR 59 TC 32 Z9 33 U1 5 U2 40 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD MAR PY 2015 VL 25 IS 3 BP 445 EP 458 DI 10.1101/gr.185579.114 PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA CC7DA UT WOS:000350526700013 PM 25589440 ER PT J AU Fan, YJ Kamath, C AF Fan, Ya Ju Kamath, Chandrika TI Identifying and Exploiting Diurnal Motifs in Wind Generation Time Series Data SO INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE LA English DT Article DE Wind generation; time series analysis; motifs; clustering ID CLUSTERS AB Wind energy is scheduled on the power grid using 0-6 h ahead forecasts generated from computer simulations or historical data. When the forecasts are inaccurate, control room operators use their expertise, as well as the actual generation from previous days, to estimate the amount of energy to schedule. However, this is a challenge, and it would be useful for the operators to have additional information they can exploit to make better informed decisions. In this paper, we use techniques from time series analysis to determine if there are motifs, or frequently occurring diurnal patterns in wind generation data. We compare two different representations of the data and four different ways of identifying the number of motifs. Using data from wind farms in Tehachapi Pass and mid-Columbia Basin, we describe our findings and discuss how these motifs can be used to guide scheduling decisions. C1 [Fan, Ya Ju; Kamath, Chandrika] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Fan, YJ (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM fan4@llnl.gov; kamath2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX LLNL-JRNL-643259. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was part of the WindSENSE and SensorStreams projects at LLNL. We thank Jim Blatchford (CaISO), Min-Lin Cheng (SCE), Robert Farber (SCE), John Pease (BPA), Scott Winner (BPA), and John Zack (MESO) for insights into the integration of wind energy on the power grid. We also thank the anonymous reviewers for their thought-provoking comments. NR 19 TC 1 Z9 1 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-0014 EI 1793-6381 J9 INT J PATTERN RECOGN JI Int. J. Pattern Recognit. Artif. Intell. PD MAR PY 2015 VL 29 IS 2 AR 1550012 DI 10.1142/S0218001415500123 PG 25 WC Computer Science, Artificial Intelligence SC Computer Science GA CD0IW UT WOS:000350755900006 ER PT J AU Ristova, MM Mirceski, V Neskovska, R AF Ristova, M. M. Mirceski, V. Neskovska, R. TI Voltammetry of chemically deposited Cu (x) O electrochromic films, coated with ZnO or TiO2 electrocatalyst layers SO JOURNAL OF SOLID STATE ELECTROCHEMISTRY LA English DT Article DE Chemical deposition; Electrochromism; XPS; SEM; CuxO; ZnO; TiO2; Cyclic voltammetry ID CUPROUS-OXIDE FILMS; OPTICAL-PROPERTIES; SOLAR APPLICATIONS; THIN-FILMS; EVAPORATION; CELLS; TIN AB Cu (x) O is a known electrochromic material for solar light modulation applications. Cu (x) O films were synthesized by chemical bath deposition (CBD) method from two aqueous solutions. The films contained the two oxide phases of copper, CuO and Cu2O, established from the X-ray photoelectron spectroscopy (XPS) analysis. The scanning electron microscopy (SEM) scans of the Cu (x) O film surface demonstrated that the films grew in round grains with average diameters of about 260, 470, and 620 nm, for the films grown upon 100,150, and 200 successive immersions, correspondingly. Cyclic voltammetry has been employed as a tool for examination of the reversible red-ox kinetics. It appeared that the grain size is an influential factor for the voltammetric parameter's enhancement as the most distinct redox peaks were observed at the 470-nm grain size Cu (x) O film. In order to enhance the electrochromic performance of the Cu (x) O-based electrochromic device, two wide gap semiconductors (ZnO and TiO2) were coated onto Cu (x) O, assuming they reveal protection/catalyst character. Although the "morphology" of the voltammetric profile was found to be similar for the as-prepared and the coated Cu (x) O films, the voltammetric intensity response apparently grew for the coated films. Furthermore, the results showed that the examined coatings catalyzed the electrochemical redox process, thereby boosting up the efficiency of the CuO a dagger"aEuro parts per thousand Cu2O reversible electrochemical conversion. C1 [Ristova, M. M.] Univ Ss Cyril & Methodius, Inst Phys, Fac Nat Sci & Math, Skopje, Macedonia. [Mirceski, V.] Fac Nat Sci & Math, Inst Chem, Skopje, Macedonia. [Neskovska, R.] Univ St Clement Ohridski, Fac Tech Sci, Bitola, Macedonia. [Ristova, M. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ristova, MM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mima.ristova@gmail.com NR 23 TC 3 Z9 3 U1 8 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-8488 EI 1433-0768 J9 J SOLID STATE ELECTR JI J. Solid State Electrochem. PD MAR PY 2015 VL 19 IS 3 BP 749 EP 756 DI 10.1007/s10008-014-2666-x PG 8 WC Electrochemistry SC Electrochemistry GA CC6NJ UT WOS:000350481600014 ER PT J AU Langhans, W Yeo, K Romps, DM AF Langhans, Wolfgang Yeo, Kyongmin Romps, David M. TI Lagrangian Investigation of the Precipitation Efficiency of Convective Clouds SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SHALLOW CUMULUS CLOUDS; ICE-PHASE MICROPHYSICS; UNCERTAINTY QUANTIFICATION; OROGRAPHIC PRECIPITATION; ENTROPY BUDGET; MODEL; PARAMETERIZATION; CLIMATE; SIMULATIONS; ENTRAINMENT AB The precipitation efficiency of cumulus congestus clouds is investigated with a new Lagrangian particle framework for large-eddy simulations. The framework is designed to track particles representative of individual water molecules. A Monte Carlo approach facilitates the transition of particles between the different water classes (e.g., vapor, rain, or graupel). With this framework, it is possible to reconstruct the pathways of water as it moves from vapor at a particular altitude to rain at the surface. By tracking water molecules through both physical and microphysical space, the precipitation efficiency can be studied in detail as a function of height. Large-eddy simulations of individual cumulus congestus clouds show that the clouds convert entrained vapor to surface precipitation with an efficiency of around 10%. About two-thirds of all vapor that enters the cloud does so by entrainment in the free troposphere, but free-tropospheric vapor accounts for only one-third to one-half of the surface rainfall, with the remaining surface rainfall originating as vapor entrained through the cloud base. The smaller efficiency with which that laterally entrained water is converted into surface precipitation results from the smaller efficiencies with which it condenses, forms precipitating hydrometeors, and reaches the surface. C1 [Langhans, Wolfgang; Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Yeo, Kyongmin] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY USA. [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Langhans, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 74R316C, Berkeley, CA 94720 USA. EM wlanghans@lbl.gov RI Romps, David/F-8285-2011; Langhans, Wolfgang/J-6437-2014 FU U.S. Department of Energy's Atmospheric System Research-an Office of Science, Office of Biological and Environmental Research program; Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX This work was supported by the U.S. Department of Energy's Atmospheric System Research-an Office of Science, Office of Biological and Environmental Research program-and by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research, under Contract DE-AC02-05CH11231. This research used computing resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and computing resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation NR 52 TC 5 Z9 5 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAR PY 2015 VL 72 IS 3 BP 1045 EP 1062 DI 10.1175/JAS-D-14-0159.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CC4OQ UT WOS:000350333100005 ER PT J AU Bricault, CA Kovacs, JM Nkolola, JP Yusim, K Giorgi, EE Shields, JL Perry, J Lavine, CL Cheung, A Ellingson-Strouss, K Rademeyer, C Gray, GE Williamson, C Stamatatos, L Seaman, MS Korber, BT Chen, B Barouch, DH AF Bricault, Christine A. Kovacs, James M. Nkolola, Joseph P. Yusim, Karina Giorgi, Elena E. Shields, Jennifer L. Perry, James Lavine, Christy L. Cheung, Ann Ellingson-Strouss, Katharine Rademeyer, Cecelia Gray, Glenda E. Williamson, Carolyn Stamatatos, Leonidas Seaman, Michael S. Korber, Bette T. Chen, Bing Barouch, Dan H. TI A Multivalent Clade C HIV-1 Env Trimer Cocktail Elicits a Higher Magnitude of Neutralizing Antibodies than Any Individual Component SO JOURNAL OF VIROLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; CONSENSUS ENVELOPE GLYCOPROTEIN; DNA CANDIDATE VACCINE; SUBTYPE-B; MONOCLONAL-ANTIBODIES; CRYSTAL-STRUCTURE; RHESUS-MONKEYS; EFFICACY TRIAL; DOUBLE-BLIND; POTENT AB The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties. Among the single trimers tested, 459C elicited the most potent NAb responses in vaccinated guinea pigs. We evaluated the immunogenicity of various mixtures of clade C Env trimers and found that a quadrivalent cocktail of clade C trimers elicited a greater magnitude of NAbs against a panel of tier 1A and 1B viruses than any single clade C trimer alone, demonstrating that the mixture had an advantage over all individual components of the cocktail. These data suggest that vaccination with a mixture of clade C Env trimers represents a promising strategy to augment vaccine-elicited NAb responses. IMPORTANCE It is currently not known how to generate potent NAbs to the diverse circulating HIV-1 Envs by vaccination. One strategy to address this diversity is to utilize mixtures of different soluble HIV-1 envelope proteins. In this study, we generated and characterized three distinct, novel, acute clade C soluble trimers. We vaccinated guinea pigs with single trimers as well as mixtures of trimers, and we found that a mixture of four trimers elicited a greater magnitude of NAbs than any single trimer within the mixture. The results of this study suggest that further development of Env trimer cocktails is warranted. C1 [Bricault, Christine A.; Nkolola, Joseph P.; Shields, Jennifer L.; Perry, James; Lavine, Christy L.; Cheung, Ann; Seaman, Michael S.; Barouch, Dan H.] Beth Israel Deaconess Med Ctr, Ctr Virol & Vaccine Res, Boston, MA 02215 USA. [Kovacs, James M.; Chen, Bing] Harvard Univ, Childrens Hosp, Div Mol Med, Sch Med, Boston, MA 02115 USA. [Kovacs, James M.; Chen, Bing] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA. [Yusim, Karina; Giorgi, Elena E.; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Yusim, Karina; Giorgi, Elena E.; Korber, Bette T.] New Mexico Consortium, Los Alamos, NM USA. [Ellingson-Strouss, Katharine] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Ellingson-Strouss, Katharine] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Rademeyer, Cecelia; Williamson, Carolyn] Univ Cape Town, Div Med Virol, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Gray, Glenda E.] Univ Witwatersrand, Fac Hlth Sci, Perinatal HIV Res Unit, Johannesburg, South Africa. [Gray, Glenda E.] South African Med Res Council, Cape Town, South Africa. [Stamatatos, Leonidas] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Barouch, Dan H.] Ragon Inst MGH & Harvard, Boston, MA USA. RP Barouch, DH (reprint author), Beth Israel Deaconess Med Ctr, Ctr Virol & Vaccine Res, Boston, MA 02215 USA. EM dbarouch@bidmc.harvard.edu OI Korber, Bette/0000-0002-2026-5757; , Carolyn/0000-0003-0125-1226 FU National Institutes of Health [AI078526, AI084794, AI096040]; Bill and Melinda Gates Foundation [OPP1040741]; Ragon Institute of MGH, MIT, and Harvard FX We acknowledge support from the National Institutes of Health (AI078526, AI084794, AI096040), the Bill and Melinda Gates Foundation (OPP1040741), and the Ragon Institute of MGH, MIT, and Harvard. NR 60 TC 13 Z9 13 U1 0 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD MAR PY 2015 VL 89 IS 5 BP 2507 EP 2519 DI 10.1128/JVI.03331-14 PG 13 WC Virology SC Virology GA CC2XD UT WOS:000350207400007 PM 25540368 ER PT J AU Kong, R Louder, MK Wagh, K Bailer, RT deCamp, A Greene, K Gao, HM Taft, JD Gazumyan, A Liu, C Nussenzweig, MC Korber, B Montefiori, DC Mascola, JR AF Kong, Rui Louder, Mark K. Wagh, Kshitij Bailer, Robert T. deCamp, Allan Greene, Kelli Gao, Hongmei Taft, Justin D. Gazumyan, Anna Liu, Cassie Nussenzweig, Michel C. Korber, Bette Montefiori, David C. Mascola, John R. TI Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes SO JOURNAL OF VIROLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; ENVELOPE GLYCOPROTEIN GP120; HUMAN MONOCLONAL-ANTIBODIES; PROXIMAL EXTERNAL REGION; MUCOSAL SHIV CHALLENGE; N-GLYCAN RECOGNITION; INFECTION IN-VIVO; PASSIVE TRANSFER; GP41-GP120 INTERFACE; VACCINE DEVELOPMENT AB The isolation of broadly neutralizing HIV-1 monoclonal antibodies (MAbs) to distinct epitopes on the viral envelope glycoprotein (Env) provides the potential to use combinations of MAbs for prevention and treatment of HIV-1 infection. Since many of these MAbs have been isolated in the last few years, the potency and breadth of MAb combinations have not been well characterized. In two parallel experiments, we examined the in vitro neutralizing activities of double-, triple-, and quadruple-MAb combinations targeting four distinct epitopes, including the CD4-binding site, the V1V2-glycan region, the V3-glycan supersite, and the gp41 membrane-proximal external region (MPER), using a panel of 125 Env-pseudotyped viruses. All MAb combinations showed substantially improved neutralization breadth compared to the corresponding single MAbs, while the neutralization potency of individual MAbs was maintained. At a 50% inhibitory concentration (IC50) cutoff of 1 mu g/ml per antibody, double-MAb combinations neutralized 89 to 98% of viruses, and triple combinations neutralized 98 to 100%. Overall, the improvement of neutralization breadth was closely predicted by an additive-effect model and explained by complementary neutralization profiles of antibodies recognizing distinct epitopes. Subtle but consistent favorable interactions were observed in some MAb combinations, whereas less favorable interactions were observed on a small subset of viruses that are highly sensitive to V3-glycan MAbs. These data demonstrate favorable in vitro combinations of broadly neutralizing HIV-1 MAbs and suggest that such combinations could have utility for HIV-1 prevention and treatment. IMPORTANCE Over the last 5 years, numerous broadly reactive HIV-1-neutralizing MAbs have been isolated from B cells of HIV-1-infected donors. Each of these MAbs binds to one of the major vulnerable sites (epitopes) on the surface of the viral envelope glycoprotein. Since antibodies to distinct viral epitopes could theoretically act together to provide greater potency and breadth of virus neutralization, we tested physical mixtures of double, triple, and quadruple combinations of neutralizing MAbs targeting four major epitopes on HIV-1 Env. When tested together, antibody combinations showed substantially improved neutralization breadth compared to single MAbs. This improvement could be explained by the complementary neutralization profiles of individual MAbs. We further demonstrated that each antibody maintained its full neutralization potency when used in combination with other MAbs. These data provide a rationale for clinical use of antibody-based combinations for HIV-1 prevention and therapy. C1 [Kong, Rui; Louder, Mark K.; Bailer, Robert T.; Taft, Justin D.; Mascola, John R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Wagh, Kshitij; Korber, Bette] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [deCamp, Allan] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Greene, Kelli; Gao, Hongmei; Montefiori, David C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Greene, Kelli; Gao, Hongmei; Montefiori, David C.] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA. [Gazumyan, Anna; Liu, Cassie; Nussenzweig, Michel C.] Rockefeller Univ, Lab Mol Immunol, New York, NY 10021 USA. [Nussenzweig, Michel C.] Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10021 USA. RP Montefiori, DC (reprint author), Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. EM monte@duke.edu; jmascola@nih.gov OI Korber, Bette/0000-0002-2026-5757 FU intramural research program of the Vaccine Research Center, NIAID, NIH; Bill and Melinda Gates Foundation (Collaboration for AIDS Vaccine Discovery) [1032144]; Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery grant (CHAVI-ID) [UM1 AI100645] FX This work was funded by the intramural research program of the Vaccine Research Center, NIAID, NIH, and by a grant from the Bill and Melinda Gates Foundation (Collaboration for AIDS Vaccine Discovery; no. 1032144). B.K. and K.W. were also partially supported in this work through a Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery grant (CHAVI-ID; UM1 AI100645). NR 82 TC 29 Z9 29 U1 1 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD MAR PY 2015 VL 89 IS 5 BP 2659 EP 2671 DI 10.1128/JVI.03136-14 PG 13 WC Virology SC Virology GA CC2XD UT WOS:000350207400019 PM 25520506 ER PT J AU Allen, J Damodaran, K AF Allen, Jesse Damodaran, Krishnan TI High-resolution slice selection NMR for the measurement of CO2 diffusion under non-equilibrium conditions SO MAGNETIC RESONANCE IN CHEMISTRY LA English DT Article DE ionic liquids; gas diffusion; slice selection NMR; concentration gradient ID IONIC LIQUIDS; MOLECULAR-INTERACTIONS; SPIN RELAXATION; CARBON-DIOXIDE; GAS SOLUBILITY; SPECTROSCOPY; ACETATE; SAMPLES AB We present a simple and an efficient approach using spatially selective NMR to investigate solvation and diffusion of CO2 in ionic liquids. The techniques demonstrated here are shown as novel and effective means of studying solvated gas dynamics under non-equilibrium conditions without the need for conventional high power gradients. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Allen, Jesse; Damodaran, Krishnan] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Allen, Jesse] CALTECH, Biol Sci, Pasadena, CA 91125 USA. [Damodaran, Krishnan] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. RP Damodaran, K (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM damodak@pitt.edu FU National Energy Technology Laboratory's (US-Department of Energy) under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's (US-Department of Energy) ongoing research in CO2 capture under the RES contract DE-FE0004000. NR 19 TC 3 Z9 3 U1 4 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-1581 EI 1097-458X J9 MAGN RESON CHEM JI Magn. Reson. Chem. PD MAR PY 2015 VL 53 IS 3 BP 200 EP 202 DI 10.1002/mrc.4176 PG 3 WC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA CC4EV UT WOS:000350304600004 PM 25353108 ER PT J AU Carrieri, D Broadbent, C Carruth, D Paddock, T Ungerer, J Maness, PC Ghirardi, M Yu, JP AF Carrieri, Damian Broadbent, Charlie Carruth, David Paddock, Troy Ungerer, Justin Maness, Pin-Ching Ghirardi, Maria Yu, Jianping TI Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 Delta glgC, a strain incapable of glycogen storage SO MICROBIAL BIOTECHNOLOGY LA English DT Article ID NITROGEN STARVATION; PHOTOSYNTHESIS AB A key objective in microbial biofuels strain development is to maximize carbon flux to target products while minimizing cell biomass accumulation, such that ideally the algae and bacteria would operate in a photo-catalytic state. A brief period of such a physiological state has recently been demonstrated in the cyanobacterium Synechocystis sp.PCC 6803 glgC strain incapable of glycogen storage. When deprived of nitrogen, the glgC excretes the organic acids alpha-ketoglutarate and pyruvate for a number of days without increasing cell biomass. This study examines the relationship between the growth state and the photo-catalytic state, and characterizes the metabolic adaptability of the photo-catalytic state to increasing light intensity. It is found that the culture can transition naturally from the growth state into the photo-catalytic state when provided with limited nitrogen supply during the growth phase. Photosynthetic capacity and pigments are lost over time in the photo-catalytic state. Reversal to growth state is observed with re-addition of nitrogen nutrient, accompanied by restoration of photosynthetic capacity and pigment levels in the cells. While the overall productivity increased under high light conditions, the ratio of alpha-ketoglutarate/pyruvate is altered, suggesting that carbon partition between the two products is adaptable to environmental conditions. C1 [Carrieri, Damian; Broadbent, Charlie; Carruth, David; Paddock, Troy; Ungerer, Justin; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Yu, JP (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Jianping.Yu@nrel.gov FU US Department of Energy, Office of Science Basic Energy Sciences Program; Office of Science Science Undergraduate Laboratory Internship Program; Energy Efficiency and Renewable Energy, Fuel Cells Technologies Office FX This work is supported by the US Department of Energy, Office of Science Basic Energy Sciences Program (M. G., D. Carrieri, T. P., J. U. and J. Y.), Office of Science Science Undergraduate Laboratory Internship Program (C. B. and D. Carruth) and Energy Efficiency and Renewable Energy, Fuel Cells Technologies Office (P. C. M.). NR 11 TC 3 Z9 3 U1 0 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-7907 EI 1751-7915 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD MAR PY 2015 VL 8 IS 2 SI SI BP 275 EP 280 DI 10.1111/1751-7915.12243 PG 6 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA CC4TA UT WOS:000350345300008 PM 25616027 ER PT J AU Ding, H Greatbatch, RJ Lu, J Cash, B AF Ding, Hui Greatbatch, Richard J. Lu, Jian Cash, Ben TI The East Asian Summer Monsoon in pacemaker experiments driven by ENSO SO OCEAN DYNAMICS LA English DT Article DE East Asian Summer Monsoon; Pacemaker; ENSO ID WESTERN NORTH PACIFIC; EL-NINO; CLIMATE MODEL; INDIAN-OCEAN; ATMOSPHERIC VARIABILITY; IMPACT; TELECONNECTION; SIMULATIONS; REANALYSIS; ICE AB The variability of the East Asian summer monsoon (EASM) is studied using a pacemaker technique driven by ENSO in an atmospheric general circulation model (AGCM) coupled to a slab mixed layer model. In the pacemaker experiments, sea surface temperature (SST) is constrained to observations in the eastern equatorial Pacific through a q-flux that measures the contribution of ocean dynamics to SST variability, while the AGCM is coupled to the slab model. An ensemble of pacemaker experiments is analyzed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The results show that the pacemaker experiments simulate a substantial amount (around 45 %) of the variability of the first mode (the Pacific-Japan pattern) in ERA40 from 1979 to 1999. Different from previous work, the pacemaker experiments also simulate a large part (25 %) of the variability of the second mode, related to rainfall variability over northern China. Furthermore, we find that the lower (850 hPa) and the upper (200 hPa) tropospheric circulation of the first mode display the same degree of reproducibility whereas only the lower part of the second mode is reproducible. The basis for the success of the pacemaker experiments is the ability of the experiments to reproduce the observed relationship between El Nio Southern Oscillation (ENSO) and the EASM. C1 [Ding, Hui; Greatbatch, Richard J.] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany. [Lu, Jian] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cash, Ben] Ctr Ocean Land Atmosphere Studies, Inst Global Environm & Soc, Calverton, MD USA. RP Ding, H (reprint author), GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany. EM hding@geomar.de FU GEOMAR; Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling program; National Science Foundation [0830068, 0957884, 1338427]; National Oceanic and Atmospheric Administration [NA09OAR4310058]; National Aeronautics and Space Administration [NNX09AN50G] FX HD and RJG are grateful for continued support from GEOMAR. JL is supported by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling program. BC acknowledges the support from the National Science Foundation (grants 0830068, 0957884, and 1338427), National Oceanic and Atmospheric Administration (grant NA09OAR4310058), and National Aeronautics and Space Administration (grant NNX09AN50G). We are grateful to two anonymous reviewers for their helpful comments. NR 38 TC 2 Z9 2 U1 1 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 EI 1616-7228 J9 OCEAN DYNAM JI Ocean Dyn. PD MAR PY 2015 VL 65 IS 3 BP 385 EP 393 DI 10.1007/s10236-014-0795-5 PG 9 WC Oceanography SC Oceanography GA CC6NI UT WOS:000350481400006 ER PT J AU Wendelberger, JR AF Wendelberger, Joanne R. TI Variation in Controlled Experimental Variables SO QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT LA English DT Article DE Efficiency; errors; experiment design; orthogonality; uncertainty ID ERRORS; MODELS; IDENTIFICATION; UNCERTAINTY; REGRESSION; DESIGN AB When a designed experiment is conducted, the exact levels of controlled experimental variables specified by the design may not be attainable. Two different types of situations can occur in which the actual settings of the design variables deviate from the target design settings. In one case, the actual settings obtained are unknown. In the other case, the actual settings are known; however desirable design properties such as orthogonality may have been lost. This paper examines the impact of known and unknown errors in experimental variables for designed experiments in which the response is assumed to be approximately linear in the region of interest. For comparison, the well-known situation where the target values of the experimental variables can actually be obtained will also be considered. C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Wendelberger, JR (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. EM joanne@lanl.gov NR 31 TC 0 Z9 0 U1 0 U2 0 PU NCTU-NATIONAL CHIAO TUNG UNIV PRESS PI TAICHUNG PA NO 100, WENHWA RD, TAICHUNG, 40724 ROC, TAIWAN SN 1684-3703 EI 1811-4857 J9 QUAL TECHNOL QUANT M JI Qual. Technol. Quant. Manag. PD MAR PY 2015 VL 12 IS 1 BP 29 EP 40 PG 12 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA CC6ZJ UT WOS:000350517200005 ER PT J AU Zhou, Q Sussman, A Chang, JY Dong, J Zettl, A Mickelson, W AF Zhou, Qin Sussman, Allen Chang, Jiyoung Dong, Jeffrey Zettl, Alex Mickelson, William TI Fast response integrated MEMS microheaters for ultra low power gas detection SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Gas sensor; Low power; Semiconducting metal oxide; Microheaters; Transient temperature response ID MICRO-HOTPLATE; SENSOR APPLICATIONS; THIN-FILM; TECHNOLOGY; ELECTROMIGRATION; DESIGN AB Semiconducting metal oxide (SMO) gas sensors typically operate at a few hundred degrees Celsius and consume hundreds of milliwatts of power, limiting their application in battery-powered devices. An analytical model is presented for the optimization of the heater dimensions, which suggests the minimal power consumption is achieved when heat loss through air conduction and supporting beam conduction are equal. We demonstrate micromachined SMO sensors with optimized microheaters, which consume only similar to 2 mW of power when operated continuously at 300 degrees C. We also measure an ultra-fast thermal response time of 33 mu s via a transient temperature-resistivity response method. The short response time allows the heaters to be operated in ultra-short pulsing mode decreasing the average power consumption to theilW level. These micromachined SMO sensors are used in proof-of-principle experiments as ultralow power hydrogen sulfide SMO gas sensors. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhou, Qin; Sussman, Allen; Chang, Jiyoung; Dong, Jeffrey; Zettl, Alex; Mickelson, William] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhou, Qin; Sussman, Allen; Chang, Jiyoung; Dong, Jeffrey; Zettl, Alex; Mickelson, William] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Zhou, Qin; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mickelson, W (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu; willi.mickelson@gmail.com RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-083819] FX This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, which provided for sensor design and simulation; and by the National Science Foundation under grant no. EEC-083819, which provided for the microheater fabrication, sensor testing, and support for W.M. and A.Z. NR 35 TC 19 Z9 19 U1 4 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD MAR 1 PY 2015 VL 223 BP 67 EP 75 DI 10.1016/j.sna.2014.12.005 PG 9 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CC2PZ UT WOS:000350188400009 ER PT J AU Foerster, JM Beissinger, T de Leon, N Kaeppler, S AF Foerster, Jillian M. Beissinger, Timothy de Leon, Natalia Kaeppler, Shawn TI Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.) SO THEORETICAL AND APPLIED GENETICS LA English DT Article ID ASSOCIATION MAPPING POPULATION; GENOME-WIDE ASSOCIATION; EPIDERMAL-CELL IDENTITY; GENETIC ARCHITECTURE; FLOWERING-TIME; ARABIDOPSIS; PLANTS; MICRORNA; JUVENILE; GLOSSY15 AB Natural variation for the timing of vegetative phase change in maize is controlled by several large effect loci, one corresponding to Glossy15 , a gene known for regulating juvenile tissue traits. Vegetative phase change is an intrinsic component of developmental programs in plants. Juvenile and adult vegetative tissues in grasses differ dramatically in their anatomical and biochemical composition affecting the utility of specific genotypes as animal feed and biofuel feedstock. The molecular network controlling the process of developmental transition is incompletely characterized. In this study, we used scoring for juvenile and adult epicuticular wax as an entry point to discover quantitative trait loci (QTL) controlling phenotypic variation for the developmental timing of juvenile to adult transition in maize. We scored the last leaf with juvenile wax on 25 recombinant inbred line families of the B73 reference Nested Association Mapping (NAM) population and the intermated B73xMo17 (IBM) population across multiple seasons. A total of 13 unique QTL were identified through genome-wide association analysis across the NAM populations, three of which have large effects. A QTL located on chromosome nine had the most significant SNPs within Glossy15, a gene controlling expression of juvenile leaf traits. The second large effect QTL is located on chromosome two. The most significant SNP in this QTL is located adjacent to a homolog of the Arabidopsis transcription factor, enhanced downy mildew-2, which has been shown to promote the transition from juvenile to adult vegetative phase. Overall, these results show that several major QTL and potential candidate genes underlie the extensive natural variation for this developmental trait. C1 [Foerster, Jillian M.; Beissinger, Timothy; de Leon, Natalia; Kaeppler, Shawn] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Beissinger, Timothy] Univ Wisconsin, Dept Anim Sci, Madison, WI 53706 USA. [de Leon, Natalia; Kaeppler, Shawn] DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Kaeppler, S (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. EM smkaeppl@wisc.edu OI Kaeppler, Shawn/0000-0002-5964-1668 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Monsanto Graduate Fellowships FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). J.F. and T.B. were supported by Monsanto Graduate Fellowships that were a gift to the Plant Breeding and Plant Genetics program at the University of Wisconsin-Madison. We thank William Tracy for his valuable advice. NR 38 TC 4 Z9 4 U1 3 U2 32 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0040-5752 EI 1432-2242 J9 THEOR APPL GENET JI Theor. Appl. Genet. PD MAR PY 2015 VL 128 IS 3 BP 529 EP 538 DI 10.1007/s00122-014-2451-3 PG 10 WC Agronomy; Plant Sciences; Genetics & Heredity; Horticulture SC Agriculture; Plant Sciences; Genetics & Heredity GA CC0QT UT WOS:000350041500014 PM 25575839 ER PT J AU Bober, DB Kumar, M Rupert, TJ AF Bober, David B. Kumar, Mukul Rupert, Timothy J. TI Nanocrystalline grain boundary engineering: Increasing Sigma 3 boundary fraction in pure Ni with thermomechanical treatments SO ACTA MATERIALIA LA English DT Article DE Nanocrystalline metals; Grain boundary; Cyclic loading; Mechanical behavior; Transmission Kikuchi diffraction ID SCANNING-ELECTRON-MICROSCOPE; TRANSMISSION KIKUCHI DIFFRACTION; STRESS-STRAIN RESPONSE; THIN-FILMS; BULGE-TEST; FCC METALS; PLASTIC-DEFORMATION; MECHANICAL-BEHAVIOR; NICKEL FILMS; GROWTH AB Grain boundary networks should play a dominant role in determining the mechanical properties of nanocrystalline metals. However, these networks are difficult to characterize and their response to deformation is incompletely understood. In this work, we study the grain boundary network of nanocrystalline Ni and explore whether it can be modified by plastic deformation. Mechanical cycling at room temperature did not lead to structural evolution, but elevated temperature cycling did alter the grain boundary network. In addition to mechanically driven grain growth, mechanical cycling at 100 degrees C led to a 48% increase in Sigma 3 boundaries, determined with transmission Kikuchi diffraction. The extent of boundary modification was a function of the number of applied loading cycles and the testing temperature, with more cycles at higher temperatures leading to more special grain boundaries. The results presented here suggest a path to grain boundary engineering in nanocrystalline materials. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bober, David B.; Rupert, Timothy J.] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA. [Bober, David B.; Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rupert, TJ (reprint author), Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA. EM trupert@uci.edu RI Rupert, Timothy/A-2508-2009 FU National Science Foundation through a CAREER Award [DMR-1255305]; US Department of Energy [DE-AC52-07NA27344]; US Department of Energy (DoE), Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP [SCW0939]; Livermore Graduate Scholar Program (LLNL); National Science Foundation Center [CHE-082913] FX We gratefully acknowledge support from the National Science Foundation through a CAREER Award No. DMR-1255305. This work was partly performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D.B.B. and M.K. were supported by the US Department of Energy (DoE), Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP# SCW0939. D.B.B. also acknowledges the support of the Livermore Graduate Scholar Program (LLNL) during part of this work. TEM and TKD work was performed at the Laboratory for Electron and X-ray Instrumentation (LEXI) at UC Irvine, using instrumentation funded in part by the National Science Foundation Center for Chemistry at the Space-Time Limit (CHE-082913). NR 89 TC 11 Z9 11 U1 2 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAR PY 2015 VL 86 BP 43 EP 54 DI 10.1016/j.actamat.2014.11.034 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6IO UT WOS:000349730900005 ER PT J AU Bhattacharyya, JJ Agnew, SR Muralidharan, G AF Bhattacharyya, J. J. Agnew, S. R. Muralidharan, G. TI Texture enhancement during grain growth of magnesium alloy AZ31B SO ACTA MATERIALIA LA English DT Article DE Grain size distribution; Grain boundary; Orientation distribution; Abnormal grain growth; Anomalous grain growth ID COMPUTER-SIMULATION; MICROSTRUCTURAL EVOLUTION; BOUNDARY PROPERTIES; SINGLE-CRYSTAL; RECRYSTALLIZATION; TEMPERATURE; BEHAVIOR; METALS; MODEL; MG AB The microstructure and texture evolution during annealing of rolled Mg alloy AZ31B, at temperatures ranging from 260 to 450 degrees C, is characterized, and a grain growth exponent of n=5, indicating inhibition of grain growth, is observed. Broadening of the normalized grain size distributions, which indicates abnormal grain growth, was observed at all temperatures investigated. It is shown, using a Zener-type analysis for pinning of grain boundaries by particles, that impurity-based particles are responsible for grain growth inhibition and abnormal grain growth. The strong basal texture which develops during rolling of the Mg alloy, resulting in an initial peak intensity in the (0002) pole figure of nine multiples of a random distribution (MRD), increases to similar to 15 MRD during annealing at 400 and 450 degrees C. Moreover, a specific texture component {0001} < 11 (2) over bar0 > is observed in the orientation distribution, which increases from 10 to 23 MRD at 400 degrees C. It is hypothesized that the anisotropic grain boundary properties (i.e. low angle boundaries have low energy and mobility) are responsible for the texture strengthening. Additionally, electron backscattered diffraction reveals the recrystallized microstructure to contain a significant number of boundaries with similar to 30 misorientation about the < 0001 > direction, and this boundary type persists throughout most annealing treatments explored. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bhattacharyya, J. J.; Agnew, S. R.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Muralidharan, G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Agnew, SR (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM agnew@virginia.edu RI Muralidharan, Govindarajan/J-6155-2015 FU Research at Oak Ridge National Laboratory; U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies; National Science Foundation [CMMI 1235259] FX This work was financially supported by Research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, sponsored by the Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies and by the National Science Foundation, grant number CMMI 1235259. The authors are grateful for the help of N.T. Nuhfer, S. Bhattacharya and M. Jafari in providing access to the EBSD facilities at Carnegie Mellon University when our scanning electron microscope was being replaced. H. El Kadiri and C.D. Barrett at Mississippi State University and M.A. Steiner are gratefully acknowledged for fruitful discussions. NR 66 TC 23 Z9 23 U1 14 U2 74 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAR PY 2015 VL 86 BP 80 EP 94 DI 10.1016/j.actamat.2014.12.009 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6IO UT WOS:000349730900008 ER PT J AU Tong, Y Iwashita, T Dmowski, W Bei, H Yokoyama, Y Egami, T AF Tong, Y. Iwashita, T. Dmowski, W. Bei, H. Yokoyama, Y. Egami, T. TI Structural rejuvenation in bulk metallic glasses SO ACTA MATERIALIA LA English DT Article DE Bulk metallic glasses; Structure; Rejuvenation; Creep; X-ray diffraction ID TENSILE PLASTIC ELONGATION; AMORPHOUS-ALLOYS; ROOM-TEMPERATURE; EMBRITTLEMENT; RELAXATION; DEFORMATION; TRANSITION; BEHAVIOR AB Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tong, Y.; Dmowski, W.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Iwashita, T.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bei, H.; Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yokoyama, Y.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wdmowski@utk.edu RI Iwashita, Takuya/D-2724-2009; OI Bei, Hongbin/0000-0003-0283-7990 FU Department of Energy, Office of Sciences, Basic Energy Science, Materials Science and Engineering Division FX This work was supported by the Department of Energy, Office of Sciences, Basic Energy Science, Materials Science and Engineering Division. The authors are grateful to J.S. Langer for useful discussions. NR 34 TC 11 Z9 11 U1 5 U2 94 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAR PY 2015 VL 86 BP 240 EP 246 DI 10.1016/j.actamat.2014.12.020 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6IO UT WOS:000349730900022 ER PT J AU Lentz, M Klaus, M Beyerlein, IJ Zecevic, M Reimers, W Knezevic, M AF Lentz, Martin Klaus, Manuela Beyerlein, Irene J. Zecevic, Milovan Reimers, Walter Knezevic, Marko TI In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg-Li-(Al) alloys: An uncommon tension-compression asymmetry SO ACTA MATERIALIA LA English DT Article DE Magnesium alloys; Crystal plasticity; In situ diffraction; Deformation behavior; Texture ID TERTIARY TWIN DEVELOPMENT; STACKING-FAULT ENERGY; SOLID-SOLUTION ALLOYS; MG-BASED ALLOYS; GRAIN-SIZE; TEXTURE EVOLUTION; MAGNESIUM ALLOY; MECHANICAL-PROPERTIES; MICROSTRUCTURE EVOLUTION; NEUTRON-DIFFRACTION AB The effects of alloying additions and grain size on the deformation behavior of two extruded Mg-4 wt.% Li and Mg-4 wt.% Li-1 wt.% Al alloys were studied. To determine the underlying deformation mechanisms, we employed a combination of texture analysis, in situ energy dispersive X-ray synchrotron diffraction and elasto-plastic self-consistent modeling. We show that both alloys exhibit two uncommon features: (1) low tension compression asymmetry in yield strength and (2) a so-called positive asymmetry in which the compression yield strength is higher than the tension yield strength. Our analyses suggest that this unusual asymmetry arises because the addition of Li hinders the activation of {10 (1) over bar2}< 10 (1) over bar(1) over bar > tension twinning. We also show that the increases in the yield stress and hardening rate with the addition of Al is a consequence of increases in the resistances to slip but a decrease in the resistance to {10 (1) over bar2}< 10 (1) over bar(1) over bar > twinning. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lentz, Martin; Reimers, Walter] Tech Univ Berlin, Metall Werkstoffe, D-10587 Berlin, Germany. [Klaus, Manuela] Helmholtz Zentrum Berlin Mat & Energien, D-12489 Berlin, Germany. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zecevic, Milovan; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. RP Lentz, M (reprint author), Tech Univ Berlin, Metall Werkstoffe, Ernst Reuter Pl 1, D-10587 Berlin, Germany. EM martin.lentz@tu-berlin.de RI Beyerlein, Irene/A-4676-2011; OI Lentz, Martin/0000-0001-8310-0063 FU Deutsche Forschungsgemeinschaft (DFG) [RE 688/67-1]; US National Science Foundation [CMMI-1301081]; Laboratory Directed Research and Development [20140348ER] FX M.L. and W.R. are grateful for the financial support of the Deutsche Forschungsgemeinschaft (DFG) under the contract number RE 688/67-1. M.K. and M.Z. were supported by a US National Science Foundation grant CMMI-1301081. I.J.B. gratefully acknowledges support by a Laboratory Directed Research and Development project 20140348ER. The authors would like to thank Andreas Behringer (TU Berlin, Metallische Werkstoffe) for his support during the specimen preparation and mechanical testing and Michael Wagner, Alexander Treff and Christoph Seyfert (TU Berlin, Metallische Werkstoffe) for the support of the in situ experiments. NR 60 TC 28 Z9 28 U1 13 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAR PY 2015 VL 86 BP 254 EP 268 DI 10.1016/j.actamat.2014.12.003 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6IO UT WOS:000349730900024 ER PT J AU Salehinia, I Shao, S Wang, J Zbib, HM AF Salehinia, I. Shao, S. Wang, J. Zbib, H. M. TI Interface structure and the inception of plasticity in Nb/NbC nanolayered composites SO ACTA MATERIALIA LA English DT Article DE Multilayer; Interface structure; Dislocation; Atomistic simulation; Nanoindentation ID TRANSMISSION ELECTRON-MICROSCOPY; METAL-CERAMIC COMPOSITES; MECHANICAL-PROPERTIES; THIN-FILMS; DISLOCATION NUCLEATION; DEFORMATION MECHANISMS; ATOMISTIC SIMULATIONS; BICRYSTAL INTERFACES; MULTILAYER COATINGS; W/NBN SUPERLATTICES AB Molecular dynamics (MD) simulations were performed to explore the effect of interface structure on the inception of plastic deformation in Nb/NbC nanolayered composites. Using the atomistically informed Frank-Bilby method and disregistry analysis, we characterized the structure of the Nb/NbC interface, including misfit dislocations, dislocation nodes and three coherent interface structures. According to the crystallographic analysis of the interface, four possible coherent interface structures were identified. However, study of the interface energy showed that only three of these are energetically stable. After the relaxation of the interface, the unstable coherent region, which features Nb atoms in the Nb layer on the top of the Nb atoms in the NbC layer, evolves into a condensed interface dislocation node. Three stable coherent interface regions are retained in association with the formation, glide and reaction of interface misfit dislocation loops. Disregistry analysis of the Nb/NbC interface revealed that (i) all misfit dislocations are edge type, and (ii) misfit dislocations enclosing the coherent extended nodes have Burgers vectors along < 1 1 0 >(Nb). The role of the interface structure in the plastic deformation of Nb/NbC nanolayered composites was studied under two loading conditions, i.e. uniform compression and nanoindentation. Under uniform compression, lattice dislocations primarily nucleate from the condensed nodal regions where the local strains are the highest. Dislocations propagate in two {1 1 0} slip planes with the same Schmid factors. Under nanoindentation, by proper positioning of the indenter, lattice dislocations nucleate from the segments of the misfit dislocations and propagate in {1 1 2} slip planes. MD simulations also show cross-slip of lattice dislocations from {1 1 2} planes into {1 1 0} planes and the formation of vacancies as a result of climb of dislocation jogs. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Salehinia, I.; Zbib, H. M.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Shao, S.; Wang, J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Salehinia, I (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM iman.salehinia@email.wsu.edu; wangj6@lanl.gov RI Shao, Shuai/B-2037-2014; Wang, Jian/F-2669-2012 OI Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences [DE-FG02-07ER46435]; US Department of Energy, Office of Science, Office of Basic Energy Sciences, under the core program at LANL (FWP) [2014LANLE8C4]; Los Alamos National Laboratory Directed Research and Development [LDRD-ER20140450] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences under Grant No. DE-FG02-07ER46435. S.S. and J.W. acknowledge the support provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under the core program at LANL (FWP# 2014LANLE8C4), and the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450). NR 81 TC 15 Z9 15 U1 2 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAR PY 2015 VL 86 BP 331 EP 340 DI 10.1016/j.actamat.2014.12.026 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6IO UT WOS:000349730900031 ER PT J AU Saunders, F Bailey, J AF Saunders, Fenella Bailey, James TI First Person: James Bailey SO AMERICAN SCIENTIST LA English DT Editorial Material C1 [Bailey, James] Sandia Natl Labs, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 EI 1545-2786 J9 AM SCI JI Am. Scientist PD MAR-APR PY 2015 VL 103 IS 2 BP 87 EP 88 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC0GM UT WOS:000350013800009 ER PT J AU Lam, PS Lam, PY Sokhansanj, S Lim, CJ Bi, XTT Stephen, JD Pribowo, A Mabee, WE AF Lam, Pak Sui Lam, Pak Yiu Sokhansanj, Shahab Lim, C. Jim Bi, Xiaotao T. Stephen, James D. Pribowo, Amadeus Mabee, Warren E. TI Steam explosion of oil palm residues for the production of durable pellets SO APPLIED ENERGY LA English DT Article DE Empty fruit bunch; Palm kernel shell; Pellet; Density; Compression energy; Steam explosion ID PSEUDOTSUGA-MENZIESII L.; BIOMASS; FUEL; WOOD; PELLETIZATION; FIBER AB The effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) was investigated and compared to that of softwood Douglas fir (DF). It was found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm(3) after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractives during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; Lim, C. Jim; Bi, Xiaotao T.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Stephen, James D.; Mabee, Warren E.] Queens Univ, Queens Inst Energy & Environm Policy, Kingston, ON K7L 3N6, Canada. [Pribowo, Amadeus] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Stephen, James D.; Pribowo, Amadeus; Mabee, Warren E.] TorchLight Bioresources Inc, Toronto, ON M2N 7E9, Canada. RP Lam, PS (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM paksui@mail.ubc.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); TorchLight Bioresources Inc., Toronto, Ontario; Office of Biomass Program of the U.S. Department of Energy FX This research is funded in parts by Natural Sciences and Engineering Research Council of Canada (NSERC, ENGAGE Grant) and TorchLight Bioresources Inc., Toronto, Ontario. The authors thank the Palm Oil Industrial Cluster (POIC) Sabah Sdn Bhd of Lahad Datu, Malaysia, for providing material samples. The authors also acknowledge support from the Office of Biomass Program of the U.S. Department of Energy. NR 30 TC 3 Z9 3 U1 6 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD MAR 1 PY 2015 VL 141 BP 160 EP 166 DI 10.1016/j.apenergy.2014.12.029 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CB8LF UT WOS:000349880400015 ER PT J AU Casler, MD Vermerris, W Dixon, RA AF Casler, Michael D. Vermerris, Wilfred Dixon, Richard A. TI Replication Concepts for Bioenergy Research Experiments SO BIOENERGY RESEARCH LA English DT Review DE ANOVA; Experimental design; Feedstock; Generalized linear mixed models; Linear mixed models; Power; Replication; Randomization; Repeated measures ID STATISTICAL-ANALYSIS; FIELD EXPERIMENTS; MICROARRAY DATA; DESIGN; VARIABILITY; EFFICIENCY; ACCURACY; NUMBERS; YIELD; PLOTS AB While there are some large and fundamental differences among disciplines related to the conversion of biomass to bioenergy, all scientific endeavors involve the use of biological feedstocks. As such, nearly every scientific experiment conducted in this area, regardless of the specific discipline, is subject to random variation, some of which is unpredictable and unidentifiable (i.e., pure random variation such as variation among plots in an experiment, individuals within a plot, or laboratory samples within an experimental unit) while some is predictable and identifiable (repeatable variation, such as spatial or temporal patterns within an experimental field, a glasshouse or growth chamber, or among laboratory containers). Identifying the scale and sources of this variation relative to the specific hypotheses of interest is a critical component of designing good experiments that generate meaningful and believable hypothesis tests and inference statements. Many bioenergy feedstock experiments are replicated at an incorrect scale, typically by sampling feedstocks to estimate laboratory error or by completely ignoring the errors associated with growing feedstocks in an agricultural area at a field or farmland (micro- or macro-region) scale. As such, actual random errors inherent in experimental materials are frequently underestimated, with unrealistically low standard errors of statistical parameters (e.g., means), leading to improper inferences. The examples and guidelines set forth in this paper and many of the references cited are intended to form the general policy and guidelines for replication of bioenergy feedstock experiments to be published in BioEnergy Research. C1 [Casler, Michael D.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. [Vermerris, Wilfred] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32610 USA. [Vermerris, Wilfred] Univ Florida, UF Genet Inst, Gainesville, FL 32610 USA. [Dixon, Richard A.] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. [Dixon, Richard A.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, US DOE, Oak Ridge, TN 37831 USA. RP Casler, MD (reprint author), USDA ARS, US Dairy Forage Res Ctr, 1925 Linden Dr, Madison, WI 53706 USA. EM michael.casler@ars.usda.gov FU USDA-ARS; USDA-NIFA Biomass Research and Development [2011-10006-30358]; U.S. DOE EERE BTO/U.S. DOE International Affairs [DE-PI0000031]; Southeastern SunGrant Center; USDA-NIFA [2010-38502-21854]; US Department of Energy's Bioenergy Sciences Center - Office of Biological and Environmental Research in the DOE Office of Science [BER DE-AC05-00OR22725] FX We thank the following members of the BioEnergy Research editorial board for making the time to review various versions of this manuscript and provide suggestions and constructive criticism on the manuscript: Angela Karp, Rothamstead Research Harpendon, Hertfordshire, UK; Antje Hermann, Christian-Albrechts- Universitat zu Kiel, Germany; Ronald Zalesny, USDA Forest Service, Rhinelander, WI, USA; JY Zhu, USDA Forest Service, Madison, WI, USA; and Edzard van Santen, Auburn University, Auburn, AL, USA. We also thank two anonymous peer reviewers for their constructive comments that were helpful in improving the manuscript. Funding for MDC was provided by congressionally allocated funds through USDA-ARS. Funding for WV was provided by USDA-NIFA Biomass Research and Development grant No. 2011-10006-30358, U.S. DOE EERE BTO/U.S. DOE International Affairs award No. DE-PI0000031, and Southeastern SunGrant Center and USDA-NIFA award No. 2010-38502-21854. Funding for RAD was provided from the US Department of Energy's Bioenergy Sciences Center, supported by the Office of Biological and Environmental Research in the DOE Office of Science (BER DE-AC05-00OR22725). NR 36 TC 4 Z9 4 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2015 VL 8 IS 1 BP 1 EP 16 DI 10.1007/s12155-015-9580-7 PG 16 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA CC0UA UT WOS:000350051300001 ER PT J AU Serba, DD Daverdin, G Bouton, JH Devos, KM Brummer, EC Saha, MC AF Serba, Desalegn D. Daverdin, Guillaume Bouton, Joseph H. Devos, Katrien M. Brummer, E. Charles Saha, Malay C. TI Quantitative Trait Loci (QTL) Underlying Biomass Yield and Plant Height in Switchgrass SO BIOENERGY RESEARCH LA English DT Article DE Switchgrass; QTL; Biomass yield; Plant height; Epistasis ID X ENVIRONMENT INTERACTIONS; PANICUM-VIRGATUM L.; GENETIC-VARIABILITY; TETRAPLOID ALFALFA; HEADING DATE; LINKAGE MAPS; SATIVA L.; POPULATIONS; SELECTION; LOWLAND AB Switchgrass (Panicum virgatum L.) biomass yield and feedstock quality improvement are priority research areas for bioenergy feedstock development. Identification of quantitative trait loci (QTL) underlying these traits and of trait-linked markers for application in marker-assisted selection (MAS) is of paramount importance in facilitating switchgrass breeding. Detection of QTL for biomass yield and plant height was conducted on parental linkage maps constructed using a heterozygous pseudo-F-1 population derived from a cross between lowland Alamo genotype AP13 and upland Summer genotype VS16. QTL analysis was performed with composite interval mapping. Four QTL for biomass yield and five QTL for plant height were identified using best linear unbiased predictors across ten and eight environments, respectively. The phenotypic variability explained (PVE) by QTL detected in the across environments analysis ranged from 4.9 to 12.4 % for biomass yield and 5.1 to 12.0 % for plant height. A total of 34 and 38 main effect QTL were detected for biomass yield and plant height, respectively, when data from each environment were analyzed separately. The PVE by individual environment QTL ranged from 3.3 to 15.3 % for biomass yield and from 4.3 to 17.4 % for plant height. In addition, 60 and 51 epistatic QTL were detected for biomass yield and plant height, respectively. Significant QTL by environment interactions were detected for QTL mapped in eight genomic regions for each of the two traits. Seven QTL affected both traits and may represent pleiotropic loci. Overall, 11 genomic regions were identified that were important in controlling biomass yield and/or plant height in switchgrass. The markers linked to the main effect and epistatic QTL may be used in MAS to maximize selection gain in switchgrass breeding, leading to a faster development of better biofuel cultivars. C1 [Serba, Desalegn D.; Bouton, Joseph H.; Brummer, E. Charles; Saha, Malay C.] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Daverdin, Guillaume; Bouton, Joseph H.; Devos, Katrien M.] Inst Plant Breeding Genet & Genom, Athens, GA USA. [Daverdin, Guillaume; Bouton, Joseph H.; Devos, Katrien M.; Brummer, E. Charles] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA. [Daverdin, Guillaume; Devos, Katrien M.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Serba, Desalegn D.; Daverdin, Guillaume; Devos, Katrien M.; Brummer, E. Charles; Saha, Malay C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Saha, MC (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. EM mcsaha@noble.org RI Devos, Katrien/B-1380-2014 FU BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science FX This research work was funded by the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The authors thank Brian Motes and his group at the Noble Foundation for field plot management at Ardmore and Burneyville, Oklahoma. We thank Donald Wood, Jonathan Markham, and Wesley Dean at the University of Georgia for their assistance managing the field experiment at Watkinsville, Georgia. NR 55 TC 10 Z9 10 U1 5 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2015 VL 8 IS 1 BP 307 EP 324 DI 10.1007/s12155-014-9523-8 PG 18 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA CC0UA UT WOS:000350051300026 ER PT J AU Tumuluru, JS Tabil, LG Song, Y Iroba, KL Meda, V AF Tumuluru, J. S. Tabil, L. G. Song, Y. Iroba, K. L. Meda, V. TI Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes SO BIOENERGY RESEARCH LA English DT Article DE Agricultural straws; Briquettes; Unit density; Durability rating; Response surface models; Optimization; Genetic algorithm ID PHYSICAL-PROPERTIES; CORN STOVER; BIOMASS; MOISTURE; DENSIFICATION; PERFORMANCE; SWITCHGRASS; PRESSURE; RESIDUES; PELLETS AB The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities > 700 kg/m(3) for wheat, oat, canola, and barley straws. Lower feedstock moisture content of < 10 % (w.b.) and higher die temperatures > 110 A degrees C and compression pressure > 10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120-130 A degrees C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to < 8 % (w.b.) and maximized density to > 700 kg/m(3). Durability rating > 90 % is achievable at higher die temperatures of > 123 A degrees C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values. C1 [Tumuluru, J. S.] Idaho Natl Lab, Energy Syst & Technol Div, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA. [Tabil, L. G.; Iroba, K. L.; Meda, V.] Univ Saskatchewan, Dept Chem & Biol Engn, Saskatoon, SK S7N 5A9, Canada. [Song, Y.] Shenyang Agr Univ, Coll Engn, Shenyang 110161, Peoples R China. RP Tumuluru, JS (reprint author), Idaho Natl Lab, Energy Syst & Technol Div, Biofuels & Renewable Energy Technol Dept, POB 1625, Idaho Falls, ID 83415 USA. EM jayashankar.tumuluru@inl.gov FU Cellulosic Biofuel Network of Agriculture and Agri-Food Canada; Department of Energy, Office of Energy Efficiency and Renewable Energy under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This research was supported financially, in part, by the Cellulosic Biofuel Network of Agriculture and Agri-Food Canada and Department of Energy, Office of Energy Efficiency and Renewable Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517. The authors would like to acknowledge Louis Roth and Bill Crerar of University of Saskatchewan, and David L. Combs of Idaho National Laboratory's R&D Publications Support Team for the graphics assistance. NR 46 TC 8 Z9 10 U1 7 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2015 VL 8 IS 1 BP 388 EP 401 DI 10.1007/s12155-014-9527-4 PG 14 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA CC0UA UT WOS:000350051300032 ER PT J AU Dash, A Chakraborty, S Pillai, MRA Knapp, FF AF Dash, Ashutosh Chakraborty, Sudipta Pillai, Maroor Raghavan Ambikalmajan Knapp, Furn F. (Russ), Jr. TI Peptide Receptor Radionuclide Therapy: An Overview SO CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS LA English DT Review DE GLP; angiogenesis; In-111; RGD; CCK; therapeutic radionuclide; bombesin; NT; somatostatin; neuroendocrine tumour; cytotoxic; Y-90; VIP; PRRT; radionuclide therapy; Lu-177 ID INTEGRIN ALPHA(V)BETA(3) EXPRESSION; RADIOLABELED SOMATOSTATIN ANALOGS; CARRIER-ADDED LU-177; GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS; I-123-VASOACTIVE INTESTINAL PEPTIDE; MULTIMERIC RGD PEPTIDES; GLUCAGON-LIKE PEPTIDE-1; NUCLEAR-MEDICINE; CANCER-THERAPY; RADIOCHEMICAL SEPARATION AB Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed. C1 [Dash, Ashutosh; Chakraborty, Sudipta] Bhabha Atom Res Ctr, Isotope Prod & Applicat Div, Bombay 400085, Maharashtra, India. [Pillai, Maroor Raghavan Ambikalmajan] Mol Grp Co, Kochi, Kerala, India. [Knapp, Furn F. (Russ), Jr.] Oak Ridge Natl Lab, Med Isotopes Program, Isotope Dev Grp, Oak Ridge, TN USA. RP Dash, A (reprint author), Bhabha Atom Res Ctr, Radiol Lab, Isotope Prod & Applicat Div, Bombay 400085, Maharashtra, India. EM adash@barc.gov.in OI Dash, Ashutosh/0000-0001-7541-7298 NR 220 TC 11 Z9 12 U1 6 U2 39 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1084-9785 EI 1557-8852 J9 CANCER BIOTHER RADIO JI Cancer Biother. Radiopharm. PD MAR 1 PY 2015 VL 30 IS 2 BP 47 EP 71 DI 10.1089/cbr.2014.1741 PG 25 WC Oncology; Medicine, Research & Experimental; Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Research & Experimental Medicine; Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging GA CD0GT UT WOS:000350749400001 PM 25710506 ER PT J AU Hales, JD Tonks, MR Chockalingam, K Perez, DM Novascone, SR Spencer, BW Williamson, RL AF Hales, J. D. Tonks, M. R. Chockalingam, K. Perez, D. M. Novascone, S. R. Spencer, B. W. Williamson, R. L. TI Asymptotic expansion homogenization for multiscale nuclear fuel analysis SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Nuclear fuel performance modeling; Asymptotic expansion homogenization; Multiscale ID MULTIDIMENSIONAL MULTIPHYSICS SIMULATION; THERMAL-CONDUCTIVITY; FRAMEWORK; MEDIA AB Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON and MARMOT fuel performance codes. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale simulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the mesoscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hales, J. D.; Tonks, M. R.; Perez, D. M.; Novascone, S. R.; Spencer, B. W.; Williamson, R. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Chockalingam, K.] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44801 Bochum, Germany. RP Hales, JD (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Jason.Hales@inl.gov; Michael.Tonks@inl.gov; karthikeyan.chockalingam@rub.de; Danielle.Perez@inl.gov; Stephen.Novascone@inl.gov; Benjamin.Spencer@inl.gov; Richard.Williamson@inl.gov OI Hales, Jason/0000-0003-0836-0476 FU U.S. Government [DE-AC07-05ID14517] FX The submitted manuscript has been authored by a contractor of the U.S. Government under Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 24 TC 4 Z9 4 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2015 VL 99 BP 290 EP 297 DI 10.1016/j.commatsci.2014.12.039 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA CB5PN UT WOS:000349680100038 ER PT J AU Aidhy, DS Liu, B Zhang, YW Weber, WJ AF Aidhy, Dilpuneet S. Liu, Bin Zhang, Yanwen Weber, William J. TI Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Strain; Oxygen vacancies; Density functional theory; Chemical expansion; Interfaces ID 1ST-PRINCIPLES CALCULATIONS; IONIC INTERFACES; ENERGY-LOSS; HETEROSTRUCTURES; CONDUCTIVITY; DEFECTS AB We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2 vertical bar ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials. (C) 2014 Elsevier B.V. All rights reserved. C1 [Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Knoxville, TN 37996 USA. RP Aidhy, DS (reprint author), 1 Bethel Valley,POB 2008,MS 6138, Oak Ridge, TN 37831 USA. EM aidhyds@ornl.gov; liub2@ornl.gov; zhangy1@ornl.gov; weberwj@ornl.gov RI Weber, William/A-4177-2008; Liu, Bin/N-9955-2014 OI Weber, William/0000-0002-9017-7365; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; Office of Science, U.S. Department of Energy [DEAC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The computer simulations on fluorite structures were carried out using the resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science, U.S. Department of Energy under Contract No. DEAC02-05CH11231. The computer simulations on the other structures were carried out using the Cascade computer cluster at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific used facility sponsored by United States Department of Energy, located at Pacific Northwest National Laboratory. NR 39 TC 5 Z9 5 U1 4 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2015 VL 99 BP 298 EP 305 DI 10.1016/j.commatsci.2014.12.030 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA CB5PN UT WOS:000349680100039 ER PT J AU Schweizer, S Chaudret, R Low, J Subramanian, L AF Schweizer, Sabine Chaudret, Robin Low, John Subramanian, Lalitha TI Molecular modeling and simulation of Raney Nickel: From alloy precursor to the final porous catalyst SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Catalysis; Molecular dynamics; Mesopore; Alloy ID DYNAMICS SIMULATION; PHASE; ALGORITHMS AB Raney Nickel is a nanostructured catalyst which is used in a variety of industrial processes. It has a characteristic porous, amorphous structure. Since the structure of both the precursor alloy and the active form of Raney Nickel is determining the catalytic activity and performance, it is crucial to use realistic porous structures for simulating the catalytic reaction. The simulation protocol for the formation of porous Raney Nickel is shown in this study. The structures are then characterized in silico by means of typical characteristics such as the pore size, pore size distribution, density, free volume and free surface. In addition to this, the influence of the Aluminum content in the final form of the catalyst after pore formation is investigated. Furthermore, the cell size of the unit cell was doubled in x, y, and z directions to elucidate the influence of the impact of the cell size on the pore size. (C) 2015 Elsevier B.V. All rights reserved. C1 [Schweizer, Sabine; Chaudret, Robin; Subramanian, Lalitha] Scienomics, F-75008 Paris, France. [Low, John] Argonne Natl Lab, Argonne, IL 60439 USA. RP Schweizer, S (reprint author), Scienomics, 16 Rue Arcade, F-75008 Paris, France. EM sabine.schweizer@scienomics.com NR 23 TC 1 Z9 1 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2015 VL 99 BP 336 EP 342 DI 10.1016/j.commatsci.2014.12.022 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA CB5PN UT WOS:000349680100043 ER PT J AU Kim, J Sonnenthal, E Rutqvist, J AF Kim, Jihoon Sonnenthal, Eric Rutqvist, Jonny TI A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs SO COMPUTERS & GEOSCIENCES LA English DT Article DE Poromechanics; Fractured geothermal reservoirs; Reactive transport; Multiple interacting continua (MINC); Shear stimulation ID FLOW; CONSOLIDATION; GEOMECHANICS; DISSOLUTION; FORMULATION; TRANSPORT; QUARTZ; FLUID; MEDIA AB We describe the development of a sequential implicit formulation and algorithm for coupling fluid-heat flow, reactive transport, and geomechanics. We consider changes in pore volume from dissolution caused by chemical reactions, in addition to coupled flow and geomechanics. Moreover, we use the constitutive equations for the multiple porosity model for fractured geothermal reservoirs, employing failure-dependent permeability dynamically and updating it every time step. The proposed sequential algorithm is an extension of the fixed-stress split method to chemo-thermo-poro-mechanics, facilitating the use of existing flow-reactive transport and geomechanics simulators. We first validate a simulator that employs the proposed sequential algorithm, matching the numerical solutions with the analytical solutions such as Terzaghi's and Mandel's problems for poro-mechanics and the reference solutions of chemo-poro-mechanics and chemo-thermo-poro-mechanics in the ID elastic problems. We also perform convergence test, and the proposed algorithm shows fast convergence, when full iteration is taken, and first order accuracy in time for the staggered approach. We then investigate two test cases: 2D multiple porosity elastic and 3D single porosity elastoplastic problems, and explore the differences in coupled flow and geomechanics with and without reactive transport. We find that the change in pore-volume induced by mineral dissolution can impact on fluid pressure and failure status, followed by significant changes in permeability and flow variables, showing strong interrelations between flow-reactive transport and geomechanics. Published by Elsevier Ltd. C1 [Kim, Jihoon; Sonnenthal, Eric; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kim, Jihoon] Texas A&M Univ, Harold Vance Dept Petr Engn, College Stn, TX 77843 USA. RP Kim, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd 74R316C, Berkeley, CA 94720 USA. EM JihoonKim@lbl.gov RI Sonnenthal, Eric/A-4336-2009; Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Program, of the U.S. Department of Energy [DE-AC02-05CH11231]; TOUGH2 development grants in the Earth Sciences Division of Lawrence Berkeley National Laboratory FX This work was supported by the American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by 2011 TOUGH2 development grants in the Earth Sciences Division of Lawrence Berkeley National Laboratory. NR 33 TC 4 Z9 4 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD MAR PY 2015 VL 76 BP 59 EP 71 DI 10.1016/j.cageo.2014.11.009 PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA CB6KM UT WOS:000349735900007 ER PT J AU Vetter, JS Mittal, S AF Vetter, Jeffrey S. Mittal, Sparsh TI Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID PHASE-CHANGE MEMORY; MAIN MEMORY; ENERGY EFFICIENCY AB As the benefits of device scaling for DRAM memory diminish, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. Emerging memory technologies such as nonvolatile memory devices could provide an important alternative for extreme-scale high-performance computing systems. C1 [Vetter, Jeffrey S.; Mittal, Sparsh] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Vetter, JS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM vetter@computer.org; mittals@ornl.gov FU UT-Battelle, LLC [DE-AC05-00OR22725]; US Department of Energy; Office of Advanced Scientific Computing Research in the US Department of Energy FX This manuscript has been authored by UT-Battelle, LLC, under contract number DE-AC05-00OR22725 with the US Department of Energy. The US government retains, and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This research is sponsored by the Office of Advanced Scientific Computing Research in the US Department of Energy. NR 33 TC 9 Z9 10 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAR-APR PY 2015 VL 17 IS 2 BP 73 EP 82 PG 10 WC Computer Science, Interdisciplinary Applications SC Computer Science GA CC0GV UT WOS:000350014700010 ER PT J AU Price, KA O'Bryhim, JR Jones, KL Lance, SL AF Price, Kimberly A. O'Bryhim, Jason R. Jones, Kenneth L. Lance, Stacey L. TI Development of polymorphic microsatellite markers for the bonnethead shark, Sphyrna tiburo SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Sphyrna tiburo; Illumina; Microsatellite; PCR primers AB We isolated and characterized a total of 22 microsatellite loci from Sphyrna tiburo. Loci were screened in 24 individuals from St. Catherine's Island, Georgia. These new loci will provide tools for determining population changes in this species that could have direct economic and ecological impacts on lower trophic species. C1 [Price, Kimberly A.; O'Bryhim, Jason R.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Price, Kimberly A.] Georgia Regents Univ, Dept Biol, Augusta, GA 30904 USA. [Jones, Kenneth L.] Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Aurora, CO 80045 USA. RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM lance@srel.uga.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU DOE [DE-FC09-07SR22506] FX Manuscript preparation was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Dr. Bruce Saul and students from Georgia Regents University assisted with sample collection. NR 4 TC 1 Z9 1 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 EI 1877-7260 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD MAR PY 2015 VL 7 IS 1 BP 69 EP 71 DI 10.1007/s12686-014-0289-2 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA CB8UW UT WOS:000349908000018 ER PT J AU Pineros, VJ Gutierrez-Rodriguez, C Lance, SL AF Pineros, Victor J. Gutierrez-Rodriguez, Carla Lance, Stacey L. TI Development and characterization of 29 microsatellite markers for the sergeant major damselfish (Abudefduf saxatilis) using paired-end Illumina shotgun sequencing SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Connectivity; Coral reef fishes; Marine conservation; Next generation sequencing; Population genetics AB We isolated and characterized microsatellite loci for the coral reef fish Abudefduf saxatilis using Illumina paired-end-sequencing and tested 48 loci for amplification and polymorphism. We screened 29 polymorphic loci in individuals from Reserva de la Bisfera Banco Chinchorro (RBBC), Quintana Roo, Mexico to assess variability. Number of alleles per locus varied from 8 to 20, observed and expected heterozygosities from 0.458 to 1.00 and from 0.820 to 0.931, respectively. Some of the primers amplified individuals of four congeneric species. These markers will constitute invaluable tools for elucidating patterns of connectivity among populations of coral reef fishes, providing important information for the conservation of coral reefs. C1 [Pineros, Victor J.; Gutierrez-Rodriguez, Carla] Inst Ecol AC, Dept Biol Evolut, Xalapa 91070, Veracruz, Mexico. [Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Pineros, VJ (reprint author), Inst Ecol AC, Dept Biol Evolut, Xalapa 91070, Veracruz, Mexico. EM vjpineros@gmail.com RI Gutierrez-Rodriguez, Carla/E-1559-2015; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU CONACyT, Mexico [134804]; CONACyT [20163, 336586]; DOE [DE-FC09-07SR22506] FX Field permission was granted by the Mexican government (DGOPA/00327/250110.0195, 07510/220911/2718). This work was supported by CONACyT, Mexico (Grant #134804). Victor Pineros was supported by CONACyT Doctoral scholarships (#20163 and #336586). Manuscript preparation was partially supported by the DOE (Award DE-FC09-07SR22506) to the University of Georgia Research Foundation. Omar Dominguez donated tissue samples of three congeneric species. CONANP provided field logistic support; Oscar Rios, Felipe Pacheco and Carlos Dominguez field assistance; Denisse Maldonado Sanchez and Cara N. Love laboratory assistance. NR 3 TC 2 Z9 2 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 EI 1877-7260 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD MAR PY 2015 VL 7 IS 1 BP 103 EP 105 DI 10.1007/s12686-014-0303-8 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA CB8UW UT WOS:000349908000027 ER PT J AU Worsley-Tonks, KEL Lance, SL Beasley, RR Jones, KL Ezenwa, VO AF Worsley-Tonks, Katherine E. L. Lance, Stacey L. Beasley, Rochelle R. Jones, Kenneth L. Ezenwa, Vanessa O. TI Development and characterization of 30 novel microsatellite markers for Grant's gazelle (Nanger granti) SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Nanger granti; Grant's gazelle; Illumina; Microsatellite; PCR primers AB We isolated and characterized a set of 30 novel microsatellite loci for Grant's gazelle (Nanger granti). Loci were screened in 24 individuals from a population in Laikipia County, Kenya. The mean number of alleles per locus was 3.73 (range 1-10), and observed heterozygosity ranged from 0.00 to 0.870 (mean 0.404). The Grant's gazelle is currently listed as a species of least concern by the IUCN, but declining numbers across a large part of its range are a cause for concern. These new loci will facilitate basic behavioral, ecological, and population genetic studies of a species facing declining populations. C1 [Worsley-Tonks, Katherine E. L.; Ezenwa, Vanessa O.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Lance, Stacey L.; Beasley, Rochelle R.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.] Univ Colorado, Dept Biochem & Mol Genet, Sch Med, Aurora, CO 80045 USA. [Ezenwa, Vanessa O.] Univ Georgia, Dept Infect Dis, Coll Vet Med, Athens, GA 30602 USA. RP Ezenwa, VO (reprint author), Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. EM vezenwa@uga.edu RI Lance, Stacey/K-9203-2013; Beasley, Rochelle/M-1396-2015 OI Lance, Stacey/0000-0003-2686-1733; Beasley, Rochelle/0000-0001-7325-4085 FU National Science Foundation [IOS-1101836]; DOE [DE-FC09-07SR22506] FX The Kenya Ministry of Science, Education and Technology and the Kenya Wildlife Service gave permission to conduct this work in Kenya, and animal capture protocols were approved by the University of Georgia IACUC (#A2010 10-188). This work was supported by a National Science Foundation CAREER Award to VOE (IOS-1101836) and partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 5 TC 0 Z9 0 U1 3 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 EI 1877-7260 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD MAR PY 2015 VL 7 IS 1 BP 219 EP 221 DI 10.1007/s12686-014-0339-9 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA CB8UW UT WOS:000349908000058 ER PT J AU Bolind, AM Lillard, RS Stubbins, JF AF Bolind, Alan Michael Lillard, R. Scott Stubbins, James F. TI The electrical AC impedance response of oxide scales on 9Cr-lMo steel immersed in molten lead-bismuth eutectic alloy at 200 degrees C SO CORROSION SCIENCE LA English DT Article DE Steel; EIS; High temperature corrosion; Oxidation; Passive films; Kinetic parameters ID LIQUID PB-BI; OXIDATION MECHANISM; FE-9CR-1MO STEEL; CORROSION BEHAVIOR; LBE; LAYERS; TESTS AB Coupons of 9Cr- lMo steel were pre-oxidized in hot air and then partially immersed in molten lead-bismuth-eutectic alloy at 200 degrees C for various durations. The oxide resistance and capacitance were measured using an AC electrical method. Impedance was found not to correlate with oxide thickness. In connection with other studies on HT-9 and 316L steels, it can be tentatively suggested that oxides on ferritic-martensitic steels may be more conductive than oxides on austenitic steels. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bolind, Alan Michael] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Bolind, Alan Michael] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Bolind, Alan Michael] Ibaraki Univ, Ibaraki Quantum Beam Res Ctr, Frontier Res Ctr Appl Atom Sci, Tokai, Ibaraki 3191106, Japan. [Bolind, Alan Michael; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Lillard, R. Scott] Univ Akron, Dept Biomol & Chem Engn, Engn Res Ctr 213A, Akron, OH 44325 USA. RP Bolind, AM (reprint author), Univ Calif Berkeley, Dept Nucl Engn, 4155 Etcheverry Hall 1730, Berkeley, CA 94720 USA. EM bolind@berkeley.edu; rsl@uakron.edu; jstubbin@illinois.edu FU Material Science Division of Los Alamos National Laboratory FX The authors would like to thank Pat Dickerson, Kenji Kikuchi, Abu Khalid Rivai, and Peter Hosemann for their help with aspects of the microanalysis in this work. The authors also thank Stuart Maloy for providing the steel. The authors acknowledge the support of the Material Science Division of Los Alamos National Laboratory. NR 25 TC 2 Z9 2 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD MAR PY 2015 VL 92 BP 48 EP 57 DI 10.1016/j.corsci.2014.11.012 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6LB UT WOS:000349737400005 ER PT J AU Rouaix-Vande Put, A Unocic, KA Brady, MP Pint, BA AF Rouaix-Vande Put, Aurelie Unocic, Kinga A. Brady, Michael P. Pint, Bruce A. TI Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature SO CORROSION SCIENCE LA English DT Article DE Oxidation; Selective oxidation; High temperature corrosion; Stainless steel; Weight loss ID AUSTENITIC STAINLESS-STEELS; PRESSURE ENVIRONMENTS; CREEP-RESISTANT; GAS-COMPOSITION; CU ALLOYS; IRON; OXIDATION; CORROSION; BEHAVIOR; CR AB Fe- and Ni-base alloys including an alumina-forming austenitic alloy were exposed for 500 h under metal dusting environments with varying temperature, gas composition and total pressure. For one H-2-CO-CO2-H2O environment, the increase in temperature from 550 to 750 degrees C generally decreased metal dusting. When H2O was added to a H-2-CO-CO2 environment at 650 degrees C, the metal dusting attack was reduced. Even after 5000 h at a total pressure of 9.1 atm with 20%H2O, the higher alloyed specimens retained a thin protective oxide. For gas mixtures containing little or no H2O, the Fe-base alloys were less resistant to metal dusting than Ni-base alloys. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Rouaix-Vande Put, Aurelie] Univ Toulouse, Inst Carnot CIRIMAT, INAT ENSIACET, F-31030 Toulouse 4, France. [Unocic, Kinga A.; Brady, Michael P.; Pint, Bruce A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Rouaix-Vande Put, A (reprint author), Univ Toulouse, Inst Carnot CIRIMAT, INAT ENSIACET, 4 Allee Emile Monso,CS 44362, F-31030 Toulouse 4, France. EM aurelie.rouaix@ensiacet.fr; unocicka@ornl.gov; bradymp@ornl.gov; pintba@ornl.gov RI Brady, Michael/A-8122-2008; Pint, Bruce/A-8435-2008 OI Brady, Michael/0000-0003-1338-4747; Pint, Bruce/0000-0002-9165-3335 FU United States Dept. of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX The authors are grateful to J.R. Keiser for guidance on the experimental plan and procedures. T.M. Lowe, G.W. Garner, M. Howell, H. Longmire and T. Jordan assisted with the experimental work. The research was sponsored by the United States Dept. of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. NR 54 TC 3 Z9 3 U1 4 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD MAR PY 2015 VL 92 BP 58 EP 68 DI 10.1016/j.corsci.2014.11.022 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CB6LB UT WOS:000349737400006 ER PT J AU Papaefthymiou, GC Viescas, AJ Le Breton, JM Chiron, H Juraszek, J Park, TJ Wong, SS AF Papaefthymiou, Georgia C. Viescas, Arthur J. Le Breton, Jean-Marie Chiron, Hubert Juraszek, Jean Park, Tae-Jin Wong, Stanislaus S. TI Magnetic and Mossbauer characterization of the magnetic properties of single-crystalline sub-micron sized Bi2Fe4O9 cubes SO CURRENT APPLIED PHYSICS LA English DT Article DE Bi2Fe4O9; Mossbauer ID NANOPARTICLES; TRANSITION AB Magnetic and Mossbauer characterization of single crystalline, sub-micron sized Bi2Fe4O9 cubes has been performed using SQUID magnetometry and transmission Mossbauer spectroscopy in the temperature range of 4.2 K <= T <= 300 K. A broad magnetic phase transition from the paramagnetic to the anti-ferromagnetic state is observed below 250 K, with the Mossbauer spectra exhibiting a superposition of magnetic, collapsed and quadrupolar spectra in the transition region of 200 K < T < 245 K. Room temperature Mossbauer spectra obtained in transmission geometry are identical to those recorded in back-scattering geometry via conversion electron Mossbauer spectroscopy, indicating the absence of strain at the surface. A small hysteresis loop is observed in SQUID measurements at 5 K, attributable to the presence of weak-ferromagnetism arising from the canting of Fe3+ ion sublattices in the anti-ferromagnetic matrix. (C) 2014 Elsevier B.V. All rights reserved. C1 [Papaefthymiou, Georgia C.; Viescas, Arthur J.] Villanova Univ, Dept Phys, Villanova, PA 19085 USA. [Le Breton, Jean-Marie; Chiron, Hubert; Juraszek, Jean] Univ & INSA Rouen, CNRS, Grp Phys Mat, UMR 6634, St Etienne, France. [Park, Tae-Jin; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Papaefthymiou, GC (reprint author), Villanova Univ, Dept Phys, Villanova, PA 19085 USA. EM gcp@villanova.edu; jean-marie.lebreton@univ-rouen.fr FU National Science Foundation [DMR-0604049]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division at Brookhaven National Laboratory; U.S. Department of Energy [DE-AC02-98CH10886]; National Research Foundation of Korea (NRF) - Korean government (MISP) [2012M2A8A5025589] FX GCP thanks the National Science Foundation for support at Villanova University under Grant number DMR-0604049. The synthesis research (including support for SSW) reported herein was funded by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. We thank Crystal S. Lewis (SUNY Stony Brook) for assistance with the preparation of Figure 1. TJP thanks support by the National Research Foundation of Korea (NRF) funded by the Korean government (MISP, Grant No. 2012M2A8A5025589). NR 20 TC 0 Z9 0 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 EI 1878-1675 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD MAR PY 2015 VL 15 IS 3 BP 417 EP 422 DI 10.1016/j.cap.2014.11.008 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CB8TT UT WOS:000349904900043 ER PT J AU Arrowsmith, S Euler, G Marcillo, O Blom, P Whitaker, R Randall, G AF Arrowsmith, Stephen Euler, Garrett Marcillo, Omar Blom, Philip Whitaker, Rod Randall, George TI Development of a robust and automated infrasound event catalogue using the International Monitoring System SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time-series analysis; Probability distributions; Acoustic-gravity waves; Seismic monitoring and test-ban treaty verification; Statistical seismology ID ARRAYS; LOCATION; DETECTOR AB Methods for detecting, associating and locating infrasound events recorded on the global International Monitoring System (IMS) infrasound network are presented. By using likelihood arguments, and reducing the use of empirically determined parameters, our techniques enable us to formally quantify the false alarm rate at both station and network levels, and to calculate confidence areas for event localization. We outline a new association technique that uses graph theory for associating arrivals at multiple spatially separated stations, and perform Monte Carlo simulations to quantify the performance of the scheme under different scenarios. The detection, association and location techniques are applied to 10 large events in the Reviewed Event Bulletin of the Comprehensive Nuclear Test Ban Treaty Organization. Out of 10 events, a total of seven were automatically detected and associated. By analysing the three missed events, we identify improvements that might be made to improve the algorithms. C1 [Arrowsmith, Stephen; Euler, Garrett; Marcillo, Omar; Blom, Philip; Whitaker, Rod; Randall, George] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Arrowsmith, S (reprint author), Los Alamos Natl Lab, EES 17,POB 1663, Los Alamos, NM 87545 USA. EM sarrowsmith@gmail.com OI Euler, Garrett/0000-0002-9762-1246 NR 28 TC 2 Z9 2 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD MAR PY 2015 VL 200 IS 3 BP 1411 EP 1422 DI 10.1093/gji/ggu486 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CC0RG UT WOS:000350042800010 ER PT J AU Vorobiev, O Ezzedine, S Antoun, T Glenn, L AF Vorobiev, Oleg Ezzedine, Souheil Antoun, Tarabay Glenn, Lewis TI On the generation of tangential ground motion by underground explosions in jointed rocks SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Plasticity; diffusion; and creep; Seismic monitoring and test-ban treaty verification; Seismic anisotropy; Fractures and faults ID POLARIZED SHEAR WAVES; ANISOTROPIC MEDIA; ELASTIC-MEDIA; SEISMIC-WAVES; POINT SOURCES; RADIATION; PROPAGATION; FRACTURES; STRESS; DISCRIMINATION AB This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media. C1 [Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vorobiev, O (reprint author), Lawrence Livermore Natl Lab, L-286,POB 808, Livermore, CA 94550 USA. EM vorobievoleg@yahoo.com FU US Department of Energy by University of California, Lawrence National Laboratory; National Nuclear Security Administration [DE-AC52-07NA27344] FX The work was performed under the auspices of the US Department of Energy by University of California, Lawrence National Laboratory. The work was supported by National Nuclear Security Administration under contract DE-AC52-07NA27344. NR 41 TC 5 Z9 5 U1 2 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD MAR PY 2015 VL 200 IS 3 BP 1651 EP 1661 DI 10.1093/gji/ggu478 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CC0RG UT WOS:000350042800025 ER PT J AU Hatton, PJ Castanha, C Torn, MS Bird, JA AF Hatton, Pierre-Joseph Castanha, Cristina Torn, Margaret S. Bird, Jeffrey A. TI Litter type control on soil C and N stabilization dynamics in a temperate forest SO GLOBAL CHANGE BIOLOGY LA English DT Article DE C-13; N-15; fine root; forest; litter; litter decomposition; needle; soil organic matter; stabilization ID FINE-ROOT DECOMPOSITION; ORGANIC-MATTER; CARBON ALLOCATION; GLOBAL PATTERNS; PINE; CLIMATE; MODEL; PERSISTENCE; ECOSYSTEMS; MECHANISMS AB While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type (C-13/N-15-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5years. Litter type rather than placement-depth controlled soil C and N retention after 5years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates. C1 [Hatton, Pierre-Joseph; Bird, Jeffrey A.] CUNY Queens Coll, Sch Earth & Environm Sci, New York, NY 11367 USA. [Castanha, Cristina; Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bird, JA (reprint author), CUNY Queens Coll, Sch Earth & Environm Sci, New York, NY 11367 USA. EM jbird@qc.cuny.edu RI Bird, Jeffrey/H-8751-2012; Torn, Margaret/D-2305-2015; Castanha, Cristina/D-3247-2015; Hatton, Pierre-Joseph/C-9142-2013 OI Bird, Jeffrey/0000-0002-0939-0637; Castanha, Cristina/0000-0001-7327-5169; Hatton, Pierre-Joseph/0000-0002-0662-8734 FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the U.S. Department of Energy as part of the Terrestrial Ecosystem Science Program [DE-AC02-05CH11231] FX We are grateful to E. Bisbee; R. Porras; S. Mambelli; T. Dawson; J. Gaudinski; M. Kleber for their contributions to this research. We appreciate the efforts of the UC Davis Stable Isotope Facility for stable isotope analyses and the Center for Accelerator Mass Spectrometry (LLNL) for radiocarbon analyses. We gratefully acknowledge the staff and resources contributed to this research by the Blodgett Forest Research Station and the University of California, Berkeley. We thank Cindy Prescott and the anonymous reviewer for their constructive comments. This long-term field research was supported by the Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Terrestrial Ecosystem Science Program. NR 42 TC 11 Z9 11 U1 9 U2 122 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAR PY 2015 VL 21 IS 3 BP 1358 EP 1367 DI 10.1111/gcb.12786 PG 10 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CB8QS UT WOS:000349896400027 PM 25358112 ER PT J AU Shuster, WD Burkman, CE Grosshans, J Dadio, S Losco, R AF Shuster, W. D. Burkman, C. E. Grosshans, J. Dadio, S. Losco, R. TI Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland SO JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT LA English DT Article DE Residential demolition; Fill soil; Storm water management; Green infrastructure; Infiltration; Project planning and design AB The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolition and postdemolition (including within the excavation). Measurements were taken again in 2013 after backfill and topsoil had settled for 1 year. In their predemolition condition, the sites were found to be underlain with sandy loam soils, with three of the parcels containing close to 100% impervious area. The subgrade excavated surface was compacted by excavator activity and had overall moderate permeability. This pilot feasibility study indicates that the green specifications suggested were partially successful in producing vacant lots that were useful for storm water management. Although coarser sandy loam soils were specified, the actual placement of fine-textured fill soils with lower permeability led to higher runoff potential. In each of the five demolitions, the specification for complete debris removal was apparently effective, with less measured buried debris than for traditional demolitions. Contractors need better guidance on soil selection and placement to yield vacant land that is flexible and usable for green infrastructure and other redevelopment options. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/. C1 [Shuster, W. D.] US EPA, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA. [Burkman, C. E.] US EPA, Oak Ridge Inst Sci & Educ, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA. [Grosshans, J.] US EPA, Chicago, IL 60604 USA. [Dadio, S.] Ltd Liability Corp LLC, Cedarville Engn Grp, North Coventry, PA 19465 USA. [Dadio, S.; Losco, R.] US EPA, Cincinnati, OH 45268 USA. [Losco, R.] Lanchester Soil Consultants Inc, West Grove, PA 19390 USA. RP Shuster, WD (reprint author), US EPA, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA. EM shuster.william@epa.gov NR 13 TC 1 Z9 1 U1 5 U2 31 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9364 EI 1943-7862 J9 J CONSTR ENG M JI J. Constr. Eng. Manage. PD MAR PY 2015 VL 141 IS 3 AR 06014011 DI 10.1061/(ASCE)CO.1943-7862.0000890 PG 5 WC Construction & Building Technology; Engineering, Industrial; Engineering, Civil SC Construction & Building Technology; Engineering GA CB8NU UT WOS:000349887800001 ER PT J AU Wang, ZY Wang, JH AF Wang, Zhaoyu Wang, Jianhui TI Analysis of Performance and Efficiency of Conservation Voltage Optimization Considering Load Model Uncertainty SO JOURNAL OF ENERGY ENGINEERING LA English DT Article DE Optimization; Least squares method; Energy efficiency; Conservation voltage optimization; Recursive least squares; Kolmogorov-Smirnov test ID POWER-SYSTEMS; REDUCTION CVR; ENERGY; IDENTIFICATION; DEMAND; IMPACT AB This paper presents a novel method for evaluating the performance of conservation voltage optimization (CVO). The method investigates the load-to-voltage (LTV) sensitivity. A time-varying exponential load model is developed to represent the load's dependence on voltage and other factors. The model parameters are estimated by applying the recursive least squares (RLS) algorithm. The effects of CVO can be assessed by using the estimated model parameters. The proposed RLS-based algorithm is validated by simulation tests and the Euclidian distance-based comparison method. Field test results also show the accuracy and effectiveness of the presented algorithm. To address the uncertainty and variability of the CVO performance, the Kolmogorov-Smirnov test is used to determine the distribution that represents the CVO effect of each substation. The proposed methodology can assist utilities in selecting target substations to implement voltage optimization. C1 [Wang, Zhaoyu] Georgia Inst Technol, Atlanta, GA 30332 USA. [Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, ZY (reprint author), Georgia Inst Technol, 777 Atlantic Dr NW, Atlanta, GA 30332 USA. EM zhaoyuwang@gatech.edu; jianhui.wang@anl.gov NR 31 TC 0 Z9 0 U1 1 U2 5 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 EI 1943-7897 J9 J ENERG ENG JI J. Energy Eng.-ASCE PD MAR PY 2015 VL 141 IS 1 SI SI AR B4014006 DI 10.1061/(ASCE)EY.1943-7897.0000190 PG 10 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA CB9VC UT WOS:000349980500008 ER PT J AU Zhang, J Hodge, BM Florita, A AF Zhang, Jie Hodge, Bri-Mathias Florita, Anthony TI Joint Probability Distribution and Correlation Analysis of Wind and Solar Power Forecast Errors in the Western Interconnection SO JOURNAL OF ENERGY ENGINEERING LA English DT Article DE Wind power; Solar power; Forecasting; Uncertainty principles; Probability distribution; Wind forecasting; Solar forecasting; Smart grids; Uncertainty; Spatial and temporal correlation ID KERNEL DENSITY-ESTIMATION; DISTRIBUTION MODEL; RADIATION; MULTIVARIATE; SELECTION AB Wind and solar power generation differ from conventional power generation because of the variable and uncertain nature of their power output. This can have significant impacts on grid operations. Short-term forecasting of wind and solar power generation is uniquely helpful for planning the balance of supply and demand in the electric power system because it allows for a reduction in the uncertainty associated with their output. As a step toward assessing the simultaneous integration of large amounts of wind and solar power, this article investigates the spatial and temporal correlation between wind and solar power forecast errors. The forecast and actual data analyzed are obtained from one of the world's largest regional variable generation integration studies to date. Multiple spatial and temporal scales (day ahead, 4h ahead, and 1h ahead) of forecast errors for the Western Interconnection in the United States are analyzed. A joint probability distribution of wind and solar power forecast errors is estimated using kernel density estimation. The Pearson's correlation coefficient and mutual information between wind and solar power forecast errors are also evaluated. The results show that wind and solar power forecast errors are inversely correlated, and the correlation between wind and solar power forecast errors becomes stronger as the geographic size of the analyzed region increases. The absolute value of the correlation coefficient is generally less than 0.1 in the case of small geographic regions, while it is generally between 0.15 and 0.6 in the case of large geographic regions. The forecast errors are less correlated on the day-ahead timescale, which influences economic operations more than reliability, and more correlated on the 4-h-ahead timescale, where reliability is more impacted by the forecasts. It is also found that the correlation between wind and solar power forecast errors in summer (July) is relatively stronger than in winter (January). The inverse correlation implies that in systems with high penetrations of both wind and solar power, reserves that are held to accommodate the variability of wind or solar power can be at least partially shared. In addition, interesting results are found through time and seasonal variation analyses of wind and solar power forecast errors, and these insights may be uniquely useful to operators who maintain the reliability of the electric power system. C1 [Zhang, Jie; Hodge, Bri-Mathias; Florita, Anthony] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hodge, BM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jie.zhang@nrel.gov; bri.mathias.hodge@nrel.gov; anthony.florita@nrel.gov FU U.S. DOE [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. DOE under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 36 TC 3 Z9 3 U1 3 U2 13 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 EI 1943-7897 J9 J ENERG ENG JI J. Energy Eng.-ASCE PD MAR PY 2015 VL 141 IS 1 SI SI AR B4014008 DI 10.1061/(ASCE)EY.1943-7897.0000189 PG 13 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA CB9VC UT WOS:000349980500007 ER PT J AU Ratnesar-Shumate, S Pan, YL Hill, SC Kinahan, S Corson, E Eshbaugh, J Santarpia, JL AF Ratnesar-Shumate, Shanna Pan, Yong-Le Hill, Steven C. Kinahan, Sean Corson, Elizabeth Eshbaugh, Jonathan Santarpia, Joshua L. TI Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Bioaerosols; Spectroscopy; Bacillus; Bacteriophage; Ozone; Relative humidity ID REAL-TIME MEASUREMENT; OPEN-AIR; BIOAEROSOLS; EXCITATION; WAVELENGTH; PARTICLES; PROTEINS; MODEL; DNA AB Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer (R) Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at similar to 50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor. (c) 2014 The Authors. Published by Elsevier Ltd. C1 [Ratnesar-Shumate, Shanna; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Ratnesar-Shumate, Shanna; Santarpia, Joshua L.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Pan, Yong-Le; Hill, Steven C.] US Army Res Lab, Adelphi, MD 20783 USA. [Santarpia, Joshua L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Santarpia, JL (reprint author), Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA. EM jsantar@sandia.gov FU Defense Threat Reduction Agency FX The authors would like to thank Dr. Sari Paikoff at the Defense Threat Reduction Agency for providing the funding for this research. NR 32 TC 4 Z9 4 U1 4 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2015 VL 153 SI SI BP 13 EP 28 DI 10.1016/j.jqsrt.2014.10.003 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CB8MH UT WOS:000349883200003 ER PT J AU Giarra, MN Charonko, JJ Vlachos, PP AF Giarra, Matthew N. Charonko, John J. Vlachos, Pavlos P. TI Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier-Mellin cross-correlation SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE particle image velocimetry; cross-correlation; rotation; dilation; translation; Fourier-Mellin transform ID DISCRETE WINDOW OFFSET; PIV; REGISTRATION; DEFORMATION AB Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier-Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performing Cartesian correlations to estimate their displacements. Our algorithm, which we term Fourier-Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to +/- 180 degrees of angular misalignment, compared to 6-8 degrees for traditional correlations, and dilation/compression factors of 0.5-2.0, compared to 0.9-1.1 for a single iteration of traditional correlations. We apply our FMC algorithm to synthetic computer-generated PIV images with known velocity and vorticity fields, and to an experimentally measured flow field. Our results show that combining FMC with discrete window offset (DWO) or iterative image deformation (IID) algorithms decreases the mean and variance of displacement and vorticity errors compared to traditional correlations, and that FMC accelerates the convergence of IID. C1 [Giarra, Matthew N.] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. [Charonko, John J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Vlachos, Pavlos P.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Giarra, MN (reprint author), Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. EM matthew.giarra@gmail.com; jcharonk@lanl.gov; pvlachos@purdue.edu RI Charonko, John/D-6701-2013 OI Charonko, John/0000-0002-0396-9672 FU National Science Foundation; CBET, FDA SIR [1239265] FX The support of the National Science Foundation, CBET, FDA SIR award number 1239265 is gratefully acknowledged. NR 24 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD MAR PY 2015 VL 26 IS 3 AR 035301 DI 10.1088/0957-0233/26/3/035301 PG 11 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CB7WN UT WOS:000349839400010 ER PT J AU Williams, PT AF Williams, Paul T. TI Exercise, Antioxidants, and the Risk for Pneumonia RESPONSE SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Letter C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0195-9131 EI 1530-0315 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAR PY 2015 VL 47 IS 3 BP 669 EP 669 DI 10.1249/MSS.0000000000000545 PG 1 WC Sport Sciences SC Sport Sciences GA CB9WM UT WOS:000349984600028 PM 25692967 ER PT J AU Wanner, P Al-Sulaimani, MYN Waber, N Wanner, C AF Wanner, Philipp Al-Sulaimani, Mohammed Yasser Nasser Waber, Niklaus Wanner, Christoph TI Assessing the Environmental Hazard of Using Seawater for Ore Processing at the Lasail Mine Site in the Sultanate of Oman SO MINE WATER AND THE ENVIRONMENT LA English DT Article DE Acid mine drainage (AMD); Groundwater contamination; Salinity contamination; Remediation ID OPHIOLITE; GEOCHEMISTRY; OBDUCTION; TAILINGS; WATER AB The Lasail mining area (Sultanate of Oman) was contaminated by acid mine drainage during the exploitation and processing of local and imported copper ore and the subsequent deposition of sulphide-bearing waste material into an unsealed tailings dump. In this arid environment, the use of seawater in the initial stages of ore processing caused saline contamination of the fresh groundwater downstream of the tailings dump. After detection of the contamination in the 1980s, different source-controlled remediation activities were conducted including a seepage water collection system and, in 2005, surface sealing of the tailings dump using an HDPE-liner to prevent further infiltration of meteoric water. We have been assessing the benefits of the remediation actions undertaken so far. We present chemical and isotopic (delta O-18, delta H-2, H-3) groundwater data from a long-term survey (8-16 years) of the Wadi Suq aquifer along a 28 km profile from the tailings dump to the Gulf of Oman. Over this period, most metal concentrations in the Wadi Suq groundwater decreased below detection limits. In addition, in the first boreholes downstream of the tailings pond, the salinity contamination has decreased by 30 % since 2005. This decrease appears to be related to the surface coverage of the tailings pond, which reduces flushing of the tailings by the sporadic, but commonly heavy, precipitation events. Despite generally low metal concentrations and the decreased salinity, groundwater quality still does not meet the WHO drinking water guidelines in more than 90 % of the Wadi Suq aquifer area. The observations show that under arid conditions, use of seawater for ore processing or any other industrial activity has the potential to contaminate aquifers for decades. C1 [Wanner, Philipp; Al-Sulaimani, Mohammed Yasser Nasser; Waber, Niklaus] Univ Bern, Inst Geol Sci, RWI, CH-3012 Bern, Switzerland. [Al-Sulaimani, Mohammed Yasser Nasser] Earth Secrets, Al Athiaibah 19584, Oman. [Wanner, Christoph] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wanner, P (reprint author), Univ Bern, Inst Geol Sci, RWI, Baltzerstr 1-3, CH-3012 Bern, Switzerland. EM philipp.wanner@unine.ch FU Ministry of Water Resources; Oman Mining Company, Sultanate of Oman; Swiss Academy of Sciences (SCNAT+) FX We thank the Ministry of Water Resources, the Oman Mining Company, Sultanate of Oman, and the Swiss Academy of Sciences (SCNAT+) for financial support and for access to the Lasail mining site and the boreholes in Wadi Suq. Analytical support by Dr. Sabah (Directorate General of Minerals), R. Mader, P. Bahler, and S. Weissen (Institute of Geological Sciences, University of Bern) is highly acknowledged. The constructive comments by two anonymous reviewers greatly helped improve the manuscript. NR 39 TC 1 Z9 1 U1 4 U2 12 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1025-9112 EI 1616-1068 J9 MINE WATER ENVIRON JI Mine Water Environ. PD MAR PY 2015 VL 34 IS 1 BP 59 EP 74 DI 10.1007/s10230-014-0281-9 PG 16 WC Water Resources SC Water Resources GA CB8OL UT WOS:000349889500008 ER PT J AU Plett, JM Tisserant, E Brun, A Morin, E Grigoriev, IV Kuo, A Martin, F Kohler, A AF Plett, Jonathan M. Tisserant, Emilie Brun, Annick Morin, Emmanuel Grigoriev, Igor V. Kuo, Alan Martin, Francis Kohler, Annegret TI The Mutualist Laccaria bicolor Expresses a Core Gene Regulon During the Colonization of Diverse Host Plants and a Variable Regulon to Counteract Host-Specific Defenses SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article ID TRANSCRIPTION FACTOR; POPULUS-TRICHOCARPA; ARABIDOPSIS; SYMBIOSIS; GENOME; INFECTION; RESPONSES; EFFECTOR; PROTEIN; ROOTS AB The coordinated transcriptomic responses of both mutualistic ectomycorrhizal (ECM) fungi and their hosts during the establishment of symbiosis are not well-understood. This study characterizes the transcriptomic alterations of the ECM fungus Laccaria bicolor during different colonization stages on two hosts (Populus trichocarpa and Pseudotsuga menziesii) and compares this to the transcriptomic variations of P. trichocarpa across the same timepoints. A large number of L. bicolor genes (>= 8,000) were significantly regulated at the transcriptional level in at least one stage of colonization. From our data, we identify 1,249 genes that we hypothesize is the 'core' gene regulon necessary for the mutualistic interaction between L. bicolor and its host plants. We further identify a group of 1,210 genes that are regulated in a host-specific manner. This variable regulon encodes a number of genes coding for proteases and xenobiotic efflux transporters that we hypothesize act to counter chemical-based defenses simultaneously activated at the transcriptomic level in P. trichocarpa. The transcriptional response of the host plant P. trichocarpa consisted of differential waves of gene regulation related to signaling perception and transduction, defense response, and the induction of nutrient transfer in P. trichocarpa tissues. This study, therefore, gives fresh insight into the shifting transcriptomic landscape in both the colonizing fungus and its host and the different strategies employed by both partners in orchestrating a mutualistic interaction. C1 [Plett, Jonathan M.; Tisserant, Emilie; Brun, Annick; Morin, Emmanuel; Martin, Francis; Kohler, Annegret] Univ Lorraine, Inra Nancy, INRA, UMR 1136, F-54280 Champenoux, France. [Plett, Jonathan M.] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2753, Australia. [Grigoriev, Igor V.; Kuo, Alan] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Kohler, A (reprint author), Univ Lorraine, Inra Nancy, INRA, UMR 1136, F-54280 Champenoux, France. EM kohler@nancy.inra.fr OI Plett, Jonathan/0000-0003-0514-8146 FU European Commission within the Project ENERGYPOPLAR [FP7-211917]; ANR project FungEffector; U.S. Department of Energy Genomic Science Program (Science Focus Area 'Plant-Microbe Interfaces') [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the European Commission within the Project ENERGYPOPLAR (FP7-211917), and the ANR project FungEffector (to F. Martin). This research was also funded by the U.S. Department of Energy Genomic Science Program (Science Focus Area 'Plant-Microbe Interfaces') under contract DE-AC05-00OR22725. F. Martin's research group is part of the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01). The work conducted by the U.S. Department of Energy Joint Genome Institute by I. V. Grigoriev, and A. Kuo is supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 59 TC 10 Z9 10 U1 8 U2 32 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 EI 1943-7706 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD MAR PY 2015 VL 28 IS 3 BP 261 EP 273 DI 10.1094/MPMI-05-14-0129-FI PG 13 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA CB7BL UT WOS:000349781000006 PM 25338146 ER PT J AU Dubini, A Ghirardi, ML AF Dubini, Alexandra Ghirardi, Maria L. TI Engineering photosynthetic organisms for the production of biohydrogen SO PHOTOSYNTHESIS RESEARCH LA English DT Review DE Green algae; H-2 metabolism; Hydrogenases; Electron transfer; Genetic engineering ID ALGA CHLAMYDOMONAS-REINHARDTII; HARVESTING CHLOROPHYLL ANTENNA; CYCLIC ELECTRON FLOW; PYRUVATE FERREDOXIN OXIDOREDUCTASE; II REACTION-CENTER; D1 PROTEIN MUTANT; HYDROGEN-PRODUCTION; H-2 PRODUCTION; PHOTOSYSTEM-II; RHODOBACTER-CAPSULATUS AB Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H-2 production. Biological H-2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H-2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in green algae and how those limitations are being addressed, through metabolic and genetic engineering. We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H-2 production. Finally we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production. C1 [Dubini, Alexandra; Ghirardi, Maria L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dubini, A (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy,Mail Box 3313, Golden, CO 80401 USA. EM alexandra.dubini@nrel.gov RI dubini, alexandra /A-7252-2016 OI dubini, alexandra /0000-0001-8825-3915 FU Office of Science (BER), U. S. Department of Energy FX We thank Dr. Matt Wecker for Fig. 2 courtesy, Al Hicks for his help with Fig. 1, and Tami Baldwin for formatting the document. This work was supported by the Office of Science (BER), U. S. Department of Energy (MLG and AD). NR 73 TC 16 Z9 16 U1 5 U2 75 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD MAR PY 2015 VL 123 IS 3 SI SI BP 241 EP 253 DI 10.1007/s11120-014-9991-x PG 13 WC Plant Sciences SC Plant Sciences GA CB9RQ UT WOS:000349970400003 PM 24671643 ER PT J AU Guarnieri, MT Pienkos, PT AF Guarnieri, Michael T. Pienkos, Philip T. TI Algal omics: unlocking bioproduct diversity in algae cell factories SO PHOTOSYNTHESIS RESEARCH LA English DT Review DE Algae; Cell factory; Omics; Biofuels; Biotechnology ID OIL-RICH RACE; PYROSEQUENCING CDNA READS; CHLAMYDOMONAS-REINHARDTII; BOTRYOCOCCUS-BRAUNII; GENE-EXPRESSION; TRANSCRIPTOME ANALYSIS; NUCLEAR TRANSFORMATION; NITROGEN DEPRIVATION; HYDROGEN-PRODUCTION; LIPID-ACCUMULATION AB Rapid advances in "omic" technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems. C1 [Guarnieri, Michael T.; Pienkos, Philip T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Guarnieri, MT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy,MS 3323, Golden, CO 80401 USA. EM michael.guarnieri@nrel.gov NR 74 TC 7 Z9 7 U1 8 U2 72 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD MAR PY 2015 VL 123 IS 3 SI SI BP 255 EP 263 DI 10.1007/s11120-014-9989-4 PG 9 WC Plant Sciences SC Plant Sciences GA CB9RQ UT WOS:000349970400004 PM 24627032 ER PT J AU Moser, ML Jackson, AD Lucas, MC Mueller, RP AF Moser, Mary L. Jackson, Aaron D. Lucas, Martyn C. Mueller, Robert P. TI Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophthalmia SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Review DE Petromyzontiformes; Transformers; Passage; Metamorphosis; Macrophthalmia; Ammocoetes ID JUVENILE PACIFIC LAMPREY; SWIMMING PERFORMANCE; LAMPETRA-TRIDENTATA; RIVER; FISH; LARVAL; ECOLOGY AB Upon metamorphosis, anadromous juvenile lamprey (macrophthalmia) exhibit distinct migration behaviors that take them from larval rearing habitats in streams to the open ocean. While poorly studied, lamprey larvae (ammocoetes) also engage in downstream movement to some degree. Like migrating salmon smolts, lamprey macrophthalmia undergo behavioral changes associated with a highly synchronized metamorphosis. Unlike salmon smolts, the timing of juvenile migration in lamprey is protracted and poorly documented. Lamprey macrophthalmia and ammocoetes are not strong swimmers, attaining maximum individual speeds of less than 1 m s(-1), and sustained speeds of less than 0.5 m s(-1). They are chiefly nocturnal and distribute throughout the water column, but appear to concentrate near the bottom in the thalweg of deep rivers. At dams and irrigation diversions, macrophthalmia can become impinged on screens or entrained in irrigation canals, suffer increased predation, and experience physical injury that may result in direct or delayed mortality. The very structures designed to protect migrating juvenile salmonids can be harmful to juvenile lamprey. Yet at turbine intakes and spillways, lampreys, which have no swim bladder, can withstand changes in pressure and shear stress large enough to injure or kill most teleosts. Lamprey populations are in decline in many parts of the world, with some species designated as species of concern for conservation that merit legally mandated protections. Hence, provisions for safe passage of juvenile lamprey are being considered at dams and water diversions in North America and Europe. C1 [Moser, Mary L.] NOAA Fisheries, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Jackson, Aaron D.] Confederated Tribes Umatilla Indian Reservat, Dept Nat Resources, Pendleton, OR 97801 USA. [Lucas, Martyn C.] Univ Durham, Sch Biol & Biomed Sci, Durham DH1 3LE, England. [Mueller, Robert P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Moser, ML (reprint author), NOAA Fisheries, NW Fisheries Sci Ctr, 2725 Montlake Blvd, Seattle, WA 98112 USA. EM mary.moser@noaa.gov FU U.S. Army Corps of Engineers; Bonneville Power Administration FX This review benefitted from help and data provided by the following researchers: M. Docker, M. Gessel, M. Hayes, J. Jolley, P. Kemp, R. Lampman, R. Mensik, M. Mesa, I. Russon, J. Simonson, B. Spurgeon, S. Tackley, B. Trealoar, A. Vowles, J. Weaskus, L. Weitcamp, and J. Wolf. Anonymous reviewers provided valuable comments on an early draft that were incorporated into this version. This work was funded in part by the U.S. Army Corps of Engineers, and the Bonneville Power Administration. NR 54 TC 5 Z9 6 U1 46 U2 135 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 EI 1573-5184 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2015 VL 25 IS 1 BP 103 EP 116 DI 10.1007/s11160-014-9372-8 PG 14 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA CB6WH UT WOS:000349767000006 ER PT J AU Breiner, MM Chavez, DE Myers, TW Gilardi, RD AF Breiner, Megan M. Chavez, David E. Myers, Thomas W. Gilardi, Richard D. TI 1,2,4,5-Tetrazinyl-Substituted Amino-1,2,4,5-Tetrazines SO SYNLETT LA English DT Article DE tetrazines; heterocycle; cyclic voltammetry; UV/Vis; nucleophilic addition ID S-TETRAZINES; CELLS AB The synthesis of 1,2,4,5-tetrazinylamino-1,2,4,5-tetrazines is reported, including the preparation of compounds containing three tetrazine heterocycles in a single compound. These materials were compared to phenylamine derivatives, also synthesized in this study. The UV/Vis and cyclic voltammetry data were collected and are reported, along with the crystal structure of one of the tritetrazine compounds. C1 [Breiner, Megan M.; Chavez, David E.; Myers, Thomas W.] Los Alamos Natl Lab, Weap Expt Div, Los Alamos, NM 87545 USA. [Gilardi, Richard D.] Naval Res Lab, Struct Matter Lab, Washington, DC 20375 USA. RP Chavez, DE (reprint author), Los Alamos Natl Lab, Weap Expt Div, POB 1663, Los Alamos, NM 87545 USA. EM dechavez@lanl.gov FU Joint Munitions Program; U.S. Department of Energy [DE-AC52-06NA25396]; Office of Naval Research [N00014-11-AF-0-0002] FX The authors would like to thank the Joint Munitions Program for the funding to perform this work. We would like to thank Virginia Manner (UV-Vis) and Stephanie Hagelberg (elemental analysis) for characterization. Los Alamos National Laboratory is operated by Los Alamos National Security (LANS, LLC) under contract No. DE-AC52-06NA25396 for the U.S. Department of Energy. The authors also thank the Office of Naval Research (Award No. N00014-11-AF-0-0002). NR 16 TC 0 Z9 0 U1 3 U2 14 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0936-5214 EI 1437-2096 J9 SYNLETT JI Synlett PD MAR PY 2015 VL 26 IS 4 BP 557 EP 560 DI 10.1055/s-0034-1379615 PG 4 WC Chemistry, Organic SC Chemistry GA CC0WI UT WOS:000350059200023 ER PT J AU Dietrich, U Landersz, M Stahl-Hennig, C Geiger, C Foley, BT AF Dietrich, Ursula Landersz, Margot Stahl-Hennig, Christiane Geiger, Christina Foley, Brian T. TI Genetic Characterization of Near Full Length SIVdrl Genomes from Four Captive Drills (Mandrillus leucophaeus) SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Article ID SIMIAN IMMUNODEFICIENCY VIRUS; PUBLIC-HEALTH IMPLICATIONS; NONHUMAN-PRIMATES; AIDS; INFECTION; CAMEROON; HISTORY; SPHINX AB We sequenced near full length SIVdrl genomes from four captive drills (Mandrillus leucophaeus). All four animals were born in captivity in German zoos. Although serologically SIV negative before acquisition in zoo A in 2008 and 2009, during a routine analysis all four animals were determined to be SIV antibody positive in 2011. Comparisons of the four new SIVdrl sequences showed high identity among each other (90.7-97.7% in env) and to the only published full length sequence SIVdrl FAO (90.5-92.8% in env), which is also derived from a captive drill. SIVdrl infections seem to be highly prevalent in captive drills, probably resulting from frequent animal transfers between the zoos in an effort to maintain this highly endangered species and its genetic diversity. This should be kept in mind as SIVdrl may be transmitted to uninfected animals in open groups and potentially also to animal keepers having contact with these nonhuman primates. C1 [Dietrich, Ursula; Landersz, Margot] Georg Speyer Haus, Inst Tumor Biol & Expt Therapy, D-60596 Frankfurt, Germany. [Stahl-Hennig, Christiane] German Primate Ctr, Gottingen, Germany. [Geiger, Christina] Zoo Frankfurt, Frankfurt, Germany. [Foley, Brian T.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Dietrich, U (reprint author), Georg Speyer Haus, Inst Tumor Biol & Expt Therapy, Paul Ehrlich Str 42-44, D-60596 Frankfurt, Germany. EM ursula.dietrich@gsh.uni-frankfurt.de OI Foley, Brian/0000-0002-1086-0296 FU Federal Ministry of Health; Ministry for Higher Education, Science and the Arts from the state of Hessen FX The Georg-Speyer-Haus is supported by the Federal Ministry of Health and the Ministry for Higher Education, Science and the Arts from the state of Hessen. We thank Patrik Finkenwirth and Markus Bickel for bringing our attention to the drill samples. NR 16 TC 0 Z9 0 U1 1 U2 3 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD MAR 1 PY 2015 VL 31 IS 3 BP 353 EP 357 DI 10.1089/aid.2014.0244 PG 5 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA CC0QW UT WOS:000350041800016 PM 25523403 ER PT J AU Lv, Q Lin, HC Kim, IH Sun, X Christensen, RN Blue, TE Yoder, GL Wilson, DF Sabharwall, P AF Lv, Q. Lin, H. C. Kim, I. H. Sun, X. Christensen, R. N. Blue, T. E. Yoder, G. L. Wilson, D. F. Sabharwall, P. TI DRACS thermal performance evaluation for FHR SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE FHR; DRACS; Passive safety; Natural circulation; Numerical simulation; One-dimensional ID HIGH-TEMPERATURE REACTOR; LAMINAR-FLOW; TRANSPORT AB Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS Heat Exchanger and the Natural Draft Heat Exchanger. In addition, a fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during normal operation of the reactor, and to keep the DRACS ready for activation, if needed, during accidents. To help with the design and thermal performance evaluation of the DRACS, a computer code using MATLAB has been developed. This code is based on a one-dimensional formulation and its principle is to solve the energy balance and integral momentum equations. By discretizing the DRACS system in the axial direction, a bulk mean temperature is assumed for each mesh cell. The temperatures of all the cells, as well as the mass flow rates in the DRACS loops, are predicted by solving the governing equations that are obtained by integrating the energy conservation equation over each cell and integrating the momentum conservation equation over each of the DRACS loops. In addition, an intermediate heat transfer loop equipped with a pump has also been modeled in the code. This enables the study of flow reversal phenomenon in the DRACS primary loop, associated with the pump trip process. Experimental data from a High-Temperature DRACS Test Facility (HTDF) are not available yet to benchmark the code. A preliminary code validation is performed by using natural circulation experimental data available in the literature, which are as closely relevant as possible. The code is subsequently applied to the HTDF that is under construction at the Ohio State University. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lv, Q.; Lin, H. C.; Kim, I. H.; Sun, X.; Christensen, R. N.; Blue, T. E.] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA. [Yoder, G. L.; Wilson, D. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sabharwall, P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sun, X (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. EM lv.11@osu.edu RI Sun, Xiaodong/F-3752-2015 OI Sun, Xiaodong/0000-0002-9852-160X FU U.S. Department of Energy Nuclear Energy University Programs (NEUP) FX The authors would like to acknowledge the financial support from the U.S. Department of Energy Nuclear Energy University Programs (NEUP). Dr. David Holcomb of the Oak Ridge National Laboratory provided valuable comments and is much appreciated. NR 21 TC 3 Z9 3 U1 3 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAR PY 2015 VL 77 BP 115 EP 128 DI 10.1016/j.anucene.2014.10.032 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CB6FR UT WOS:000349723400011 ER PT J AU Takamatsu, K Hu, R AF Takamatsu, Kuniyoshi Hu, Rui TI New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE RCCS; Passive safety; HTGR; Core meltdown; LOCA; Depressurization accident AB A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (degrees C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (degrees C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). When the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Takamatsu, Kuniyoshi] Japan Atom Energy Agcy, Oarai, Ibaraki 3111393, Japan. [Hu, Rui] Argonne Natl Lab, Argonne, IL 60439 USA. RP Takamatsu, K (reprint author), Japan Atom Energy Agcy, 4002 Narita Cho, Oarai, Ibaraki 3111393, Japan. EM takamatsu.kuniyoshi@jaea.go.jp; rhu@anl.gov RI Hu, Rui/A-7624-2012 OI Hu, Rui/0000-0002-3771-2920 FU U.S. Department of Energy, Office of Nuclear Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-ACO2-06CH11357] FX Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Nuclear Energy under Contract # DE-AC02-06CH11357. The authors would like to express their gratitude to Dr. Thomas Y.C. Wei at Argonne National Laboratory for his valuable comments and advise throughout this work This paper has been co-created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract # DE-ACO2-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 7 TC 2 Z9 2 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAR PY 2015 VL 77 BP 165 EP 171 DI 10.1016/j.anucene.2014.11.011 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CB6FR UT WOS:000349723400017 ER PT J AU Alferov, VP Radaev, AI Shchurovskaya, MV Tikhomirov, GV Hanan, NA van Heerden, FA AF Alferov, V. P. Radaev, A. I. Shchurovskaya, M. V. Tikhomirov, G. V. Hanan, N. A. van Heerden, F. A. TI Comparative validation of Monte Carlo codes for the conversion of a research reactor SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Research reactor; LEU fuel; Monte Carlo codes; Validation of neutronics codes AB This paper presents the calculation results of the set of test problems for a research reactor with a tube-type low enriched uranium (LEU, 19.7 w/o, U-9%Mo) fuel and oxide high enriched uranium (HEU, 90 w/o) fuel, a light water moderator, and a beryllium reflector. The static cases and the depletion problem were examined. Calculations were performed using continuous energy Monte Carlo codes: MCNP (+MCREB for burnup calculation), MCU-PTR, and SERPENT 2. The impact of the cross-section libraries used for a particular problem on the calculated results was investigated. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Alferov, V. P.; Radaev, A. I.; Shchurovskaya, M. V.; Tikhomirov, G. V.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia. [Hanan, N. A.] Argonne Natl Lab, Nucl Engn Div, GTRI Program, Argonne, IL 60439 USA. [van Heerden, F. A.] South African Nucl Energy Corp Necsa, Res & Dev, ZA-0001 Pretoria, South Africa. RP Shchurovskaya, MV (reprint author), Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, 31 Kashirskoe Shosse, Moscow 115409, Russia. EM vpalferov@mephi.ru; radaev_aleksandr@mail.ru; mvshchurovskaya@mephi.ru; gvtikhomirov@mephi.ru; nhanan@anl.gov; francois.vanheerden@necsa.co.za RI Shchurovskaya, Maria/A-3432-2014; Tikhomirov, Georgy/B-7860-2013 OI Shchurovskaya, Maria/0000-0001-6779-5643; FU U.S. Department of Energy, the National Nuclear Security Administration, the Office of Defense Nuclear Nonproliferation [DE-AC02-06CH11357]; Ministry of Education and Science of the Russian Federation [3092] FX This work was supported by the U.S. Department of Energy, the National Nuclear Security Administration, the Office of Defense Nuclear Nonproliferation, under contract DE-AC02-06CH11357.; The work performed at NRNU MEPhI was also supported by the Ministry of Education and Science of the Russian Federation under Project 3092 in the framework of the basic part of the state task for scientific activities for educational organizations. NR 11 TC 2 Z9 2 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAR PY 2015 VL 77 BP 273 EP 280 DI 10.1016/j.anucene.2014.11.032 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CB6FR UT WOS:000349723400029 ER PT J AU Al Mamun, MA Farha, AH Ufuktepe, Y Elsayed-Ali, HE Elmustafa, AA AF Al Mamun, Md Abdullah Farha, Ashraf Hassan Ufuktepe, Yuksel Elsayed-Ali, Hani E. Elmustafa, Abdelmageed A. TI Nanoindentation study of niobium nitride thin films on niobium fabricated by reactive pulsed laser deposition SO APPLIED SURFACE SCIENCE LA English DT Article DE Niobium nitride; Surface morphology; X-ray diffraction; Pulsed laser deposition; Nano-indentation; Nanohardness ID SINGLE-PHOTON DETECTORS; SUPERCONDUCTING PROPERTIES; INSTRUMENTED INDENTATION; SUBSTRATE-TEMPERATURE; NBN FILMS; ABLATION; NITROGEN; PHASE AB Nanomechanical and structural properties of NbNx films deposited on single crystal Nb using pulsed laser deposition for different substrate temperature were previously investigated as a function of film/substrate crystal structure (Mamun et al. (2012) [30]). In this study we focus on the effect of laser fluences and background nitrogen pressure on the nanomechanical and structural properties of NbNx films. The crystal structure and surface morphology of the thin films were tested by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Using nanoindentation, the investigation of the nanomechanical properties revealed that the hardness of the NbNx films was directly influenced by the laser fluence for low background nitrogen pressure, whereas the nanomechanical hardness showed no apparent correlation with laser fluence at high background nitrogen pressure. The NbNx film hardness measured at 30% film thickness increased from 14.0 +/- 1.3 to 18.9 +/- 2.4 GPa when the laser fluence was increased from 15 to 25 J/cm(2) at 10.7 PaN2 pressure. X-ray diffraction showed NbN, films with peaks that correspond to delta-NbN cubic and beta-Nb2N hexagonal phases in addition to the delta'-NbN hexagonal phase. Increasing the laser fluence resulted in NbN, films with larger grain sizes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Al Mamun, Md Abdullah; Elmustafa, Abdelmageed A.] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. [Al Mamun, Md Abdullah; Elsayed-Ali, Hani E.; Elmustafa, Abdelmageed A.] Thomas Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. [Farha, Ashraf Hassan; Elsayed-Ali, Hani E.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Farha, Ashraf Hassan] Ain Shams Univ, Fac Sci, Dept Phys, Cairo 11566, Egypt. [Ufuktepe, Yuksel] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. RP Elmustafa, AA (reprint author), Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. EM aelmusta@odu.edu FU National Science Foundation [0821180, 1228228]; Jefferson Lab scholarships FX This work was partially supported by the National Science Foundation grant nos. 0821180 and 1228228. A.H. F. and M. A.M. were supported by Jefferson Lab scholarships. NR 33 TC 2 Z9 2 U1 4 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAR 1 PY 2015 VL 330 BP 48 EP 55 DI 10.1016/j.apsusc.2014.12.144 PG 8 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CB4SE UT WOS:000349617400006 ER PT J AU Flynn, BT Zhang, KHL Shutthanandan, V Varga, T Colby, RJ Oleksak, RP Manandhar, S Engelhard, MH Chambers, SA Henderson, MA Herman, GS Thevuthasan, S AF Flynn, Brendan T. Zhang, Kelvin H. L. Shutthanandan, Vaithiyalingam Varga, Tamas Colby, Robert J. Oleksak, Richard P. Manandhar, Sandeep Engelhard, Mark H. Chambers, Scott A. Henderson, Michael A. Herman, Gregory S. Thevuthasan, Suntharampillai TI Growth and surface modification of LaFeO3 thin films induced by reductive annealing SO APPLIED SURFACE SCIENCE LA English DT Article DE LaFeO3; Lanthanum iron oxide; Angle resolved XPS; Molecular beam epitaxy; Perovskite ID RAY PHOTOELECTRON-SPECTROSCOPY; PEROVSKITE-TYPE OXIDES; XPS; PRINCIPLES; CATALYSTS; COMPLEX; FERRITE; CATION; CO2 AB The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications. (C) 2015 Elsevier B.V. All rights reserved. C1 [Flynn, Brendan T.; Oleksak, Richard P.; Herman, Gregory S.] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Flynn, Brendan T.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Manandhar, Sandeep; Engelhard, Mark H.; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Zhang, Kelvin H. L.; Chambers, Scott A.; Henderson, Michael A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Herman, GS (reprint author), Oregon State Univ, Sch Chem Biol & Environm Engn, 102 Gleeson Hall, Corvallis, OR 97331 USA. EM greg.herman@oregonstate.edu; theva@pnnl.gov OI Engelhard, Mark/0000-0002-5543-0812 FU Semiconductor Research Corporation [2013-OJ-2438.001]; Center for Sustainable Materials Chemistry - US National Science Foundation [CHE-1102637]; BES, Division of Chemical Sciences, Geosciences, and Biosciences; Department of Energy's Office of Biological and Environmental Research FX B.T.F. and G.S.H. gratefully acknowledge support from the Semiconductor Research Corporation under contract number 2013-OJ-2438.001 and the Center for Sustainable Materials Chemistry, which is supported by the US National Science Foundation under grant number CHE-1102637. S.A.C. and M.A.H. were supported by BES, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 38 TC 2 Z9 2 U1 7 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAR 1 PY 2015 VL 330 BP 309 EP 315 DI 10.1016/j.apsusc.2015.01.028 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CB4SE UT WOS:000349617400038 ER PT J AU Yeh, TC Zhu, Q Buchholz, DB Martinson, AB Chang, RPH Mason, TO AF Yeh, T. C. Zhu, Q. Buchholz, D. B. Martinson, A. B. Chang, R. P. H. Mason, T. O. TI Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification SO APPLIED SURFACE SCIENCE LA English DT Article DE Work function; Transparent conducting oxides; Amorphous; TCO; Kelvin probe ID ROOM-TEMPERATURE; FILMS; PHOTOVOLTAICS; FABRICATION; ALIGNMENT; LEVEL AB The work functions of various amorphous and crystalline transparent conducting oxides (TCO5) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCO5, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Chang, R. P. H.; Mason, T. O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Yeh, T. C.; Martinson, A. B.] Argonne Natl Lab, Div Mat Sci, Lemont, IL USA. RP Mason, TO (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM t-mason@northwestern.edu RI Chang, R.P.H/B-7505-2009; Mason, Thomas/B-7528-2009 FU Argonne-Northwestern Solar Energy Research Center (ANSER), an energy Frontier Research Center - U.S. Department of Energy Office of Science, Basic Energy Sciences [DE-SC0001059] FX This work was supported as part of the Argonne-Northwestern Solar Energy Research Center (ANSER), an energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Basic Energy Sciences under award #DE-SC0001059. NR 24 TC 6 Z9 6 U1 7 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAR 1 PY 2015 VL 330 BP 405 EP 410 DI 10.1016/j.apsusc.2015.01.026 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CB4SE UT WOS:000349617400049 ER PT J AU Pu, C Gao, YF AF Pu, Chao Gao, Yanfei TI Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article DE dual phase steel; multilayered steel; lattice strain; crystal plasticity finite element method ID DUAL-PHASE STEELS; MICROMECHANICAL BEHAVIOR; NEUTRON-DIFFRACTION; TENSILE DEFORMATION; HIGH-STRENGTH; POLYCRYSTALS; EVOLUTION AB Two-phase advanced steels have an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures of dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. It is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed. C1 [Pu, Chao; Gao, Yanfei] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Yanfei] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Pu, C (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Gao, Yanfei/F-9034-2010; Pu, Chao/F-4256-2016 OI Gao, Yanfei/0000-0003-2082-857X; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Joint Institute for Neutron Sciences at the University of Tennessee FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (YFG), and by a graduate fellowship from the Joint Institute for Neutron Sciences at the University of Tennessee (CP). NR 19 TC 2 Z9 2 U1 1 U2 13 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD MAR PY 2015 VL 82 IS 3 AR 031003 DI 10.1115/1.4029552 PG 6 WC Mechanics SC Mechanics GA CB6BB UT WOS:000349710700003 ER PT J AU Abel, S Nehls, T Mekiffer, B Mathes, M Thieme, J Wessolek, G AF Abel, Stefan Nehls, Thomas Mekiffer, Beate Mathes, Mareike Thieme, Juergen Wessolek, Gerd TI Pools of sulfur in urban rubble soils SO JOURNAL OF SOILS AND SEDIMENTS LA English DT Article DE Urban soil; Sulfur; Sulfate; Building subble; Urbic technosol ID X-RAY-ABSORPTION; EDGE XANES SPECTROSCOPY; ORGANIC-MATTER; QUANTITATIVE-ANALYSIS; OXIDATION-STATES; PARTICLE-SIZE; FLY-ASH; SPECIATION; CONSTRUCTION; PROFILES AB Elevated concentrations of sulfate in groundwater are increasingly becoming a problem in several European cities. Building rubble from the World War II is assumed to be a major source of sulfate. This study characterizes pools of sulfur in rubble-composed technosols, and assesses their potential to release sulfate. Six urban soil profiles have been analyzed. Fractions of the main technogenic components in the skeleton fractions were determined by hand sorting approximately 100 kg of material. Total sulfur and water soluble sulfate were determined. Microplate-scale fluorometric assays were applied to measure the depth-dependent enzyme activity of arylsulfatase. The mineral composition of soil samples was analyzed using powder X-ray diffractometry. Binding forms of sulfur were determined using X-ray absorption near-edge structure spectroscopy. The maximum total content of sulfur is 4.6 g center dot kg(-1); that of readily soluble sulfur is 2.3 g center dot kg(-1). Both gypsum and traces of barite and ettringite were detected in some fine soil and component samples. Samples taken from deeper soil depths exhibited higher total sulfur and soluble sulfate contents. The depth profiles of sulfur and the activity of arylsulfatase suggest advanced leaching of inorganic sulfates from the upper horizons. Hence, sulfur is mainly organically bound in the topsoil. In the subsoil, however, sulfates make up about 90 % of total sulfur, approximately 30 % of which is readily soluble. The sulfur pool of rubble-composed soils differs completely from natural soils. This is particularly the case for subsoils, in which high contents of sulfur are readily soluble. This suggests that sulfate minerals such as gypsum predominate. Urbic technosols can therefore be assumed to be one of the main sources of sulfates in urban groundwater. C1 [Abel, Stefan; Nehls, Thomas; Mekiffer, Beate; Wessolek, Gerd] Tech Univ Berlin, Dept Ecol, D-10587 Berlin, Germany. [Mathes, Mareike] Univ Gottingen, Inst Xray Phys, D-37073 Gottingen, Germany. [Thieme, Juergen] Brookhaven Natl Lab, New York, NY USA. RP Abel, S (reprint author), Tech Univ Berlin, Dept Ecol, Ernst Reuter Pl 1, D-10587 Berlin, Germany. EM stefan.abel@tu-berlin.de FU DFG [We 1125/26-1]; Berlin Senate Department for Urban Development and the environment FX Our thanks go to the funding agency DFG, which has supported our project (We 1125/26-1) as well to the Berlin Senate Department for Urban Development and the environment, funding the current project. Furthermore, we want to thank U. Szewzyk for enzyme activity measurement and C. Lange for her assistance analyzing the x-ray diffractograms. We thank SLRI for the allocation of beamtime and HZB for the allocation of synchrotron radiation beamtime. Our thanks go to the anonymous reviewers for their helpful comments and suggestions. NR 56 TC 2 Z9 2 U1 1 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1439-0108 EI 1614-7480 J9 J SOIL SEDIMENT JI J. Soils Sediments PD MAR PY 2015 VL 15 IS 3 BP 532 EP 540 DI 10.1007/s11368-014-1014-1 PG 9 WC Environmental Sciences; Soil Science SC Environmental Sciences & Ecology; Agriculture GA CB4NR UT WOS:000349605100005 ER PT J AU Preston, BL Mustelin, J Maloney, MC AF Preston, Benjamin L. Mustelin, Johanna Maloney, Megan C. TI Climate adaptation heuristics and the science/policy divide SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE Adaptation; Climate change; Heuristics; Cognitive reasoning; Science-policy interface ID ADAPTIVE CAPACITY; VULNERABILITY ASSESSMENT; POLICY; GOVERNANCE; FRAMEWORK; ASSESSMENTS; RESILIENCE; KNOWLEDGE; RESPONSES; WORLD AB The adaptation science enterprise has expanded rapidly in recent years, presumably in response to growth in demand for knowledge that can facilitate adaptation policy and practice. However, evidence suggests such investments in adaptation science have not necessarily translated into adaptation implementation. One potential constraint on adaptation may be the underlying heuristics that are used as the foundation for both adaptation research and practice. Here, we explore the adaptation academic literature with the objective of identifying adaptation heuristics, assessing the extent to which they have become entrenched within the adaptation discourse, and discussing potential weaknesses in their framing that could undermine adaptation efforts. This investigation is supported by a multi-method analysis that includes both a quantitative content analysis of the adaptation literature that evidences the use of adaptation heuristics and a qualitative analysis of the implications of such heuristics for enhancing or hindering the implementation of adaptation. Results demonstrate that a number of heuristic devices are commonly used in both the peer-reviewed adaptation literature as well as within grey literature designed to inform adaptation practitioners. Furthermore, the apparent lack of critical reflection upon the robustness of these heuristics for diverse contexts may contribute to potential cognitive bias with respect to the framing of adaptation by both researchers and practitioners. We discuss this phenomenon by drawing upon heuristic-analytic theory, which has explanatory utility in understanding both the origins of such heuristics as well as the measures that can be pursued toward the co-generation of more robust approaches to adaptation problem-solving. C1 [Preston, Benjamin L.; Maloney, Megan C.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Preston, Benjamin L.; Maloney, Megan C.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mustelin, Johanna] Griffith Univ, Sch Environm, Griffith Climate Change Response Program, Southport, Qld 4222, Australia. RP Preston, BL (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Bldg 2040,MS 6301,One Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM prestonbl@ornl.gov; j.mustelin@griffith.edu.au; maloneymc@ornl.gov OI Preston, Benjamin/0000-0002-7966-2386; Nalau, Johanna/0000-0001-6581-3967 FU Oak Ridge National Laboratory's Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC05-00OR22725]; Griffith University FX Benjamin Preston and Megan Maloney's contributions to this research were sponsored through Oak Ridge National Laboratory's Laboratory Directed Research and Development Program. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Johanna Mustelin's contributions were supported through a Griffith University Postgraduate Research Scholarship. The authors also acknowledge the constructive comments of Richard J.T. Klein on an earlier draft of this paper. NR 207 TC 16 Z9 16 U1 4 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 EI 1573-1596 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD MAR PY 2015 VL 20 IS 3 BP 467 EP 497 DI 10.1007/s11027-013-9503-x PG 31 WC Environmental Sciences SC Environmental Sciences & Ecology GA CB4ZM UT WOS:000349637200008 ER PT J AU Hacquard, S Schadt, CW AF Hacquard, Stephane Schadt, Christopher W. TI Towards a holistic understanding of the beneficial interactions across the Populus microbiome SO NEW PHYTOLOGIST LA English DT Review DE bacteria; endophytes; fungi; microbiome; mycorrhizas; Populus; trees ID HOST-PLANT RESPONSES; LACCARIA-BICOLOR; BACTERIAL MICROBIOTA; BLACK COTTONWOOD; FIELD CONDITIONS; LIVING TREES; COMMUNITIES; PHYLLOSPHERE; RHIZOSPHERE; PSEUDOMONAS AB Interactions between trees and microorganisms are tremendously complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. We review recent studies in Populus to emphasize the importance of such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems. C1 [Hacquard, Stephane] Max Planck Inst Plant Breeding Res, Dept Plant Microbe Interact, Cologne, Germany. [Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Schadt, Christopher W.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37966 USA. RP Hacquard, S (reprint author), Max Planck Inst Plant Breeding Res, Dept Plant Microbe Interact, Cologne, Germany. EM hacquard@mpipz.mpg.de RI Schadt, Christopher/B-7143-2008 OI Schadt, Christopher/0000-0001-8759-2448 FU Max Planck Society; European Research Council; Genomic Science Program, US Department of Energy, as part of the Plant Microbe Interfaces Scientific Focus Area; US Department of Energy [DE-AC05-00OR22725] FX The authors thank B. Hopwood and K. Christen for assistance with the figure graphics, as well as M. Robeson, C. Hamilton, F. Martin and three peer reviewers for critical insights. S.H. is supported by the Max Planck Society and the European Research Council. C.W.S. is supported by the Genomic Science Program, US Department of Energy, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 70 TC 19 Z9 19 U1 18 U2 124 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD MAR PY 2015 VL 205 IS 4 SI SI BP 1424 EP 1430 DI 10.1111/nph.13133 PG 7 WC Plant Sciences SC Plant Sciences GA CB1KN UT WOS:000349386300011 PM 25422041 ER PT J AU Johnson, NC Wilson, GWT Wilson, JA Miller, RM Bowker, MA AF Johnson, Nancy Collins Wilson, Gail W. T. Wilson, Jacqueline A. Miller, R. Michael Bowker, Matthew A. TI Mycorrhizal phenotypes and the Law of the Minimum SO NEW PHYTOLOGIST LA English DT Article DE arbuscular mycorrhizas; context dependency; light; mutualism; nitrogen (N); parasitism; phosphorus (P); stoichiometry ID VESICULAR-ARBUSCULAR MYCORRHIZA; TALLGRASS PRAIRIE; PLANT-RESPONSES; NITROGEN ACQUISITION; RESOURCE LIMITATION; CARBON AVAILABILITY; LIGHT-INTENSITY; ZN-UPTAKE; FUNGI; SOIL AB Mycorrhizal phenotypes arise from interactions among plant and fungal genotypes and the environment. Differences in the stoichiometry and uptake capacity of fungi and plants make arbuscular mycorrhizal (AM) fungi inherently more nitrogen (N) limited and less phosphorus (P) limited than their host plants. Mutualistic phenotypes are most likely in P-limited systems and commensal or parasitic phenotypes in N-limited systems. Carbon (C) limitation is expected to cause phenotypes to shift from mutualism to commensalism and even parasitism. Two experiments compared the influence of fertilizer and shade on mycorrhizas in Andropogon gerardii across three naturally N-limited or P-limited grasslands. A third experiment examined the interactive effects of N and P enrichment and shade on A.gerardii mycorrhizas. Our experiments generated the full spectrum of mycorrhizal phenotypes. These findings support the hypothesis that mutualism is likely in P-limited systems and commensalism or parasitism is likely in N-limited systems. Furthermore, shade decreased C-assimilation and generated less mutualistic mycorrhizal phenotypes with reduced plant and fungal biomass. Soil fertility is a key controller of mycorrhizal costs and benefits and the Law of the Minimum is a useful predictor of mycorrhizal phenotype. In our experimental grasslands arbuscular mycorrhizas can ameliorate P-limitation but not N-limitation. C1 [Johnson, Nancy Collins] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. [Johnson, Nancy Collins] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Wilson, Gail W. T.; Wilson, Jacqueline A.] Oklahoma State Univ, Stillwater, OK 74077 USA. [Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Bowker, Matthew A.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. RP Johnson, NC (reprint author), No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. EM nancy.johnson@nau.edu FU National Science Foundation [DEB-03116136, DEB-0842327, IBN-963285]; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX This work was funded by the National Science Foundation DEB-03116136, DEB-0842327, and IBN-963285 (Konza Prairie LTER). R.M.M.'s participation was in part funded by the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. Thanks to Fermi Lab, Cedar Creek, and Konza Prairie for permission to collect from the sites, and Susan Kirt, Troy Mielke and Abby Kula for assistance with collection of soil and rhizomes. The use of trade, product or firm names is for information purposes and does not constitute endorsement by the US Government. NR 62 TC 37 Z9 37 U1 28 U2 152 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD MAR PY 2015 VL 205 IS 4 SI SI BP 1473 EP 1484 DI 10.1111/nph.13172 PG 12 WC Plant Sciences SC Plant Sciences GA CB1KN UT WOS:000349386300018 PM 25417818 ER PT J AU De Mares, MC Hess, J Floudas, D Lipzen, A Choi, C Kennedy, M Grigoriev, IV Pringle, A AF De Mares, Maryam Chaib Hess, Jaqueline Floudas, Dimitrios Lipzen, Anna Choi, Cindy Kennedy, Megan Grigoriev, Igor V. Pringle, Anne TI Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita SO NEW PHYTOLOGIST LA English DT Article DE Amanita; carbohydrate metabolism; comparative genomics; evolution of symbiosis; evolutionary novelty; horizontal gene transfer (HGT); saprotrophy ID MYCORRHIZAL SYMBIOSIS; PHYLOGENETIC ANALYSES; FUNGAL DEGRADATION; PROVIDES INSIGHTS; PROTEIN FAMILIES; HELPER BACTERIA; SEQUENCE; EVOLUTION; GENOME; ALIGNMENT AB The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A.muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A.muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi. C1 [De Mares, Maryam Chaib] Univ Groningen, Dept Microbial Ecol, NL-9747 AG Groningen, Netherlands. [De Mares, Maryam Chaib; Hess, Jaqueline] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Hess, Jaqueline] Univ Oslo, Dept Biosci, N-0371 Oslo, Norway. [Floudas, Dimitrios] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Pringle, Anne] Harvard Forest, Petersham, MA 01366 USA. RP De Mares, MC (reprint author), Univ Groningen, Dept Microbial Ecol, NL-9747 AG Groningen, Netherlands. EM m.chaib.de.mares@rug.nl OI Hess, Jaqueline/0000-0003-3281-5434 FU National Science Foundation; Faculty of Mathematics and Natural Sciences of the University of Groningen; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge K. Zimmerman for the collection of A. muscaria strain FP01. We thank the National Science Foundation for funding, and a Talent Grant from the Faculty of Mathematics and Natural Sciences of the University of Groningen for enabling M. Chaib De Mares to travel and work in the Pringle laboratory. The work conducted by the US Department of Energy Joint Genome Institute was supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to F. Martin and the Mycorrhizal Genomics Initiative consortium for access to unpublished genome data. We also thank three anonymous referees for thoughtful, useful reviews that greatly improved our manuscript. NR 100 TC 1 Z9 1 U1 3 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD MAR PY 2015 VL 205 IS 4 SI SI BP 1552 EP 1564 DI 10.1111/nph.13140 PG 13 WC Plant Sciences SC Plant Sciences GA CB1KN UT WOS:000349386300025 ER PT J AU Cotton, TEA Fitter, AH Miller, RM Dumbrell, AJ Helgason, T AF Cotton, T. E. Anne Fitter, Alastair H. Miller, R. Michael Dumbrell, Alex J. Helgason, Thorunn TI Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities SO NEW PHYTOLOGIST LA English DT Article DE 18S rRNA; arbuscular mycorrhizas; atmospheric change; free air concentration enrichment (FACE); Glomeromycota; microbial diversity; soil fungi; temporal dynamics ID MICROBE SYMBIOSES; SPECIES RICHNESS; ELEVATED CO2; CARBON FLOW; PLANT; DIVERSITY; OZONE; AIR; ROOTS; PHOSPHORUS AB Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O-3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O-3 within a free air concentration enrichment experiment in three growing seasons over 5yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O-3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi. C1 [Cotton, T. E. Anne; Fitter, Alastair H.; Helgason, Thorunn] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England. [Cotton, T. E. Anne; Dumbrell, Alex J.] Univ Essex, Sch Biol Sci, Colchester CO4 3SQ, Essex, England. [Cotton, T. E. Anne] Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. [Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Cotton, TEA (reprint author), Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England. EM anne.cotton@sheffield.ac.uk OI Helgason, Thorunn/0000-0003-3639-1499 FU Biotechnology and Biological Sciences Research Council (BBSRC) studentship [BB/D527026/1]; Worldwide Universities Network (WUN); US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division [DE-AC02-06CH11357] FX We would like to thank Don Ort and Andrew Leakey from the University of Illinois for their assistance and permission to use the SoyFACE facility, and Celina Whalley of the University of York Genomics Facility for technical assistance. We would also like to thank three reviewers and the editor for their insightful comments that have greatly improved this paper. This work was funded by a Biotechnology and Biological Sciences Research Council (BBSRC) studentship (BB/D527026/1) and the Worldwide Universities Network (WUN). The contributions of R.M.M. were supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division under contract DE-AC02-06CH11357. NR 61 TC 11 Z9 11 U1 9 U2 98 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD MAR PY 2015 VL 205 IS 4 SI SI BP 1598 EP 1607 DI 10.1111/nph.13224 PG 10 WC Plant Sciences SC Plant Sciences GA CB1KN UT WOS:000349386300029 PM 25560980 ER PT J AU Tyutyunnikov, D Ozdol, VB Koch, CT AF Tyutyunnikov, Dmitry Oezdoel, V. Burak Koch, Christoph T. TI Simultaneous orientation and thickness mapping in transmission electron microscopy SO ULTRAMICROSCOPY LA English DT Article DE Orientation and thickness mapping; Transmission electron microscopy ID SPECIMEN-THICKNESS; FOIL-THICKNESS; TEM; STRAIN AB In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 rim technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Tyutyunnikov, Dmitry; Koch, Christoph T.] Univ Ulm, Inst Expt Phys, D-89081 Ulm, Germany. [Oezdoel, V. Burak] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Tyutyunnikov, D (reprint author), Univ Ulm, Inst Expt Phys, Albert Einstein Allee 11, D-89081 Ulm, Germany. EM dmitry.tyutyunnikov@uni-ulm.de RI Koch, Christoph/E-9689-2011 OI Koch, Christoph/0000-0002-3984-1523 FU Carl Zeiss Foundation; German Research Foundation (DFG) [KO 2911/7-1] FX The authors acknowledge financial support by the Carl Zeiss Foundation as well as the German Research Foundation (DFG, Grant no. KO 2911/7-1). The authors also acknowledge the Stuttgart Center for Electron Microscopy (StEM) headed by Professor Peter van Aken for sample preparation and the opportunity to carry out the experiment. NR 32 TC 2 Z9 2 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2015 VL 150 BP 37 EP 43 DI 10.1016/j.ultramic.2014.11.034 PG 7 WC Microscopy SC Microscopy GA CB5NJ UT WOS:000349674100006 PM 25497718 ER PT J AU Phatak, C Gursoy, D AF Phatak, C. Guersoy, D. TI Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography SO ULTRAMICROSCOPY LA English DT Article DE Electron tomography; Three dimensional vector fields; Transmission electron microscopy; Phase retrieval ID DOMAIN-WALL; COMPUTATION; MICROSCOPY; POTENTIALS AB Intense ongoing research on complex nanomagnetic structures requires a fundamental understanding of the 3D magnetization and the stray fields around the nano-objects. 3D visualization of such fields offers the best way to achieve this. Lorentz transmission electron microscopy provides a suitable combination of high resolution and ability to quantitatively visualize the magnetization vectors using phase retrieval methods. In this paper, we present a formalism to represent the magnetic phase shift of electrons as a Radon transform of the magnetic induction of the sample. Using this formalism, we then present the application of common tomographic methods particularly the iterative methods, to reconstruct the 3D components of the vector held. We present an analysis of the effect of missing wedge and the limited angular sampling as well as reconstruction of complex 3D magnetization in a nanowire using simulations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Phatak, C.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Guersoy, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Phatak, C (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cd@anl.gov FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-06CH11357] FX Work by C.P was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. This work is partially supported by the U.S. Department of Energy under Contract no. DE-AC02-06CH11357. NR 26 TC 4 Z9 5 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2015 VL 150 BP 54 EP 64 DI 10.1016/j.ultramic.2014.11.033 PG 11 WC Microscopy SC Microscopy GA CB5NJ UT WOS:000349674100008 PM 25528453 ER PT J AU Gleede, T Riehl, B Shea, C Kersting, L Cankaya, AS Alexoff, D Schueller, M Fowler, JS Qu, WC AF Gleede, Tassilo Riehl, Barbara Shea, Colleen Kersting, Lena Cankaya, Aylin Sibel Alexoff, David Schueller, Michael Fowler, Joanna S. Qu, Wenchao TI Investigation of S(N)2 [C-11]cyanation for base-sensitive substrates: an improved radiosynthesis of L-[5-C-11]-glutamine SO AMINO ACIDS LA English DT Article DE L-[5-C-11]-glutamine; PET imaging; Nucleophilic [C-11] cyanation; Radiolabeling; Base sensitive; Enantiomeric purity ID POSITRON-EMISSION-TOMOGRAPHY; AMINO-ACIDS; ASPARAGINE; METABOLISM; FACILE; PLANTS; TUMORS; N-13 AB Carbon-11 (beta(+) emitter, t (1/2) = 20.4 min) radiolabeled l-glutamine is a potentially useful molecular imaging agent that can be utilized with positron emission tomography for both human oncological diagnosis and plant imaging research. Based upon a previously reported [C-11]cyanide end-capping labeling method, a systematic investigation of nucleophilic cyanation reactions and acidic hydrolysis reaction parameters, including base, metal ion source, phase transfer catalyst, solvent, reaction temperature and reaction time, was conducted. The result was a milder, more reliable, two-step method which provides l-[5-C-11]-glutamine with a radiochemical yield of 63.8 +/- A 8.7 % (range from 51 to 74 %, n = 10) with > 90 % radiochemical purity and > 90 % enantiomeric purity. The total synthesis time was 40-50 min from the end of bombardment. In addition, an Fmoc derivatization method was developed to measure the specific activity of this radiotracer. C1 [Gleede, Tassilo; Riehl, Barbara; Shea, Colleen; Kersting, Lena; Cankaya, Aylin Sibel; Alexoff, David; Schueller, Michael; Fowler, Joanna S.; Qu, Wenchao] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Gleede, Tassilo; Riehl, Barbara; Kersting, Lena; Cankaya, Aylin Sibel] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. RP Qu, WC (reprint author), Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. EM wqu@bnl.gov FU U.S. Department of Energy, Office of Biological and Environmental Research within the Office of Science [DE-AC02-98CH10886]; German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD), Bonn FX This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Biological and Environmental Research within the Office of Science. Additional support was provided by the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD), Bonn, which supported Tassilo Gleede, Barbara Riehl, Lena Kersting, and Aylin Sibel Cankaya. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the USA retains a non-exclusive, paid-up irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purpose. NR 24 TC 5 Z9 5 U1 1 U2 12 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0939-4451 EI 1438-2199 J9 AMINO ACIDS JI Amino Acids PD MAR PY 2015 VL 47 IS 3 BP 525 EP 533 DI 10.1007/s00726-014-1883-z PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CB1MB UT WOS:000349390700008 PM 25488428 ER PT J AU Vorobeychik, Y Letchford, J AF Vorobeychik, Yevgeniy Letchford, Joshua TI Securing interdependent assets SO AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS LA English DT Article ID INTRUSION DETECTION SYSTEMS; NETWORK INTERDICTION; POLICIES; MODEL; GAME AB Stackelberg security game models have become among the leading practical game theoretic approaches to security, having seen actual deployment in the LAX Airport, the United States Federal Air Marshals Service, and the United States Coast Guard, among others. However, most techniques for computing optimal security policies in Stackelberg games to date do not explicitly account for interdependencies among targets. We introduce a novel framework for computing optimal randomized security policies in networked (interdependent) domains. Our framework rests upon a Stackelberg security game model, within which we explicitly capture the indirect spread of damages due either to malicious attacks or unintended failures. We proceed to specify a particular simple, yet natural model of damage spread based on a graphical representation of asset interdependencies coupled with an independent failure cascade model. For the general model, we present an algorithm based on submodularity of the attacker's decision problem, in combination with local search, to approximate optimal security resource allocation across the assets, and show experimentally that our algorithm is far more scalable than an alternative exact approach, yields nearly optimal results, and offers substantial improvement over a well-known heuristic alternative. We then show that in a particular important special case we can compute optimal security policies exactly and efficiently. We proceed to apply our framework to study comparative network resilience, unifying previously disparate strands of research in the area, and to offer insights into other aspects of the interdependent security problem. C1 [Vorobeychik, Yevgeniy] Vanderbilt Univ, Nashville, TN 37235 USA. [Letchford, Joshua] Sandia Natl Labs, Livermore, CA USA. RP Vorobeychik, Y (reprint author), Vanderbilt Univ, 2301 Vanderbilt Pl, Nashville, TN 37235 USA. EM eug.vorobey@gmail.com; jletchf@sandia.gov OI Vorobeychik, Yevgeniy/0000-0003-2471-5345 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Much of this work was performed while Yevgeniy Vorobeychik was at Sandia National Laboratories and Joshua Letchford was at Duke University. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 59 TC 0 Z9 0 U1 3 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-2532 EI 1573-7454 J9 AUTON AGENT MULTI-AG JI Auton. Agents Multi-Agent Syst. PD MAR PY 2015 VL 29 IS 2 BP 305 EP 333 DI 10.1007/s10458-014-9258-0 PG 29 WC Automation & Control Systems; Computer Science, Artificial Intelligence SC Automation & Control Systems; Computer Science GA CB0SP UT WOS:000349337600005 ER PT J AU Appel, AA Larson, JC Garson, AB Guan, HF Zhong, Z Nguyen, BNB Fisher, JP Anastasio, MA Brey, EM AF Appel, Alyssa A. Larson, Jeffery C. Garson, Alfred B., III Guan, Huifeng Zhong, Zhong Nguyen, Bao-Ngoc B. Fisher, John P. Anastasio, Mark A. Brey, Eric M. TI X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE X-ray phase contrast; micro-computed tomography; bioreactor; alginate microbeads; synchrotron; analyzer-based imaging ID MARROW STROMAL CELLS; OPTICAL COHERENCE TOMOGRAPHY; TUBULAR PERFUSION SYSTEM; MICROCOMPUTED TOMOGRAPHY; DYNAMIC CULTURE; IN-VITRO; SCAFFOLDS; RADIOGRAPHY; EXPRESSION; CONSTRUCT AB Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (mu CT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC mu CT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors. Biotechnol. Bioeng. 2015;112: 612-620. (c) 2014 Wiley Periodicals, Inc. C1 [Appel, Alyssa A.; Larson, Jeffery C.; Brey, Eric M.] IIT, Dept Biomed Engn, Chicago, IL 60616 USA. [Appel, Alyssa A.; Larson, Jeffery C.; Brey, Eric M.] Edward Hines Jr VA Hosp, Res Serv, Hines, IL 60141 USA. [Garson, Alfred B., III; Guan, Huifeng; Anastasio, Mark A.] Washington Univ, Dept Biomed Engn, St Louis, MO USA. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Nguyen, Bao-Ngoc B.; Fisher, John P.] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA. RP Brey, EM (reprint author), IIT, Dept Biomed Engn, 3255 South Dearborn St, Chicago, IL 60616 USA. EM brey@iit.edu FU Veterans Administration; National Science Foundation [CBET-1263994, IIS-1125412]; National Institute of Health [R01EB009715, R01AR061460] FX Contract grant sponsor: Veterans Administration; Contract grant sponsor: National Science Foundation; Grant numbers: CBET-1263994; IIS-1125412; Contract grant sponsor: National Institute of Health; Grant numbers: R01EB009715; R01AR061460 NR 47 TC 7 Z9 7 U1 3 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2015 VL 112 IS 3 BP 612 EP 620 DI 10.1002/bit.25467 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CA8IJ UT WOS:000349161400018 PM 25257802 ER PT J AU Tomek, KJ Saldarriaga, CRC Velasquez, FPC Liu, TJ Hodge, DB Whitehead, TA AF Tomek, Kyle J. Castillo Saldarriaga, Carlos Rafael Cordoba Velasquez, Fernando Peregrino Liu, Tongjun Hodge, David B. Whitehead, Timothy A. TI Removal and Upgrading of Lignocellulosic Fermentation Inhibitors by In Situ Biocatalysis and Liquid-Liquid Extraction SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE lignocellulose hydrolysate fermentation; metabolic engineering; in situ biocatalysis ID PHENOLIC-ACID DECARBOXYLASE; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; ETHANOLIC FERMENTATION; AROMATIC-COMPOUNDS; GENE; DETOXIFICATION; BIOCONVERSION; DERIVATIVES; INTEGRATION AB Hydroxycinnamic acids are known to inhibit microbial growth during fermentation of lignocellulosic biomass hydrolysates, and the ability to diminish hydroxycinnamic acid toxicity would allow for more effective biological conversion of biomass to fuels and other value-added products. In this work, we provide a proof-of-concept of an in situ approach to remove these fermentation inhibitors through constituent expression of a phenolic acid decarboxylase combined with liquid-liquid extraction of the vinyl phenol products. As a first step, we confirmed using simulated fermentation conditions in two model organisms, Escherichia coli and Saccharomyces cerevisiae, that the product 4-vinyl guaiacol is more inhibitory to growth than ferulic acid. Partition coefficients of ferulic acid, p-coumaric acid, 4-vinyl guaiacol, and 4-ethyl phenol were measured for long-chain primary alcohols and alkanes, and tetradecane was identified as a co-solvent that can preferentially extract vinyl phenols relative to the acid parent and additionally had no effect on microbial growth rates or ethanol yields. Finally, E. coli expressing an active phenolic acid decarboxylase retained near maximum anaerobic growth rates in the presence of ferulic acid if and only if tetradecane was added to the fermentation broth. This work confirms the feasibility of donating catabolic pathways into fermentative microorganisms in order to ameliorate the effects of hydroxycinnamic acids on growth rates, and suggests a general strategy of detoxification by simultaneous biological conversion and extraction. Biotechnol. Bioeng. 2015;112: 627-632. (c) 2014 Wiley Periodicals, Inc. C1 [Tomek, Kyle J.; Hodge, David B.; Whitehead, Timothy A.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Castillo Saldarriaga, Carlos Rafael; Cordoba Velasquez, Fernando Peregrino] Univ Nacl Colombia, Dept Chem & Environm Engn, Bogota, Colombia. [Liu, Tongjun; Hodge, David B.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Liu, Tongjun] Qilu Univ Technol, Sch Food & Bioengn, Jinan 250353, Peoples R China. [Hodge, David B.] Lulea Univ Technol, Div Sustainable Proc Engn, S-97187 Lulea, Sweden. [Hodge, David B.; Whitehead, Timothy A.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. RP Whitehead, TA (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM taw@msu.edu FU Michigan State University; MSU EnSURE program; DOE Great Lakes Bioenergy Research Center [DE-FC02-07ER64494] FX Contract grant sponsor: Michigan State University; Contract grant sponsor: MSU EnSURE program; Contract grant sponsor: DOE Great Lakes Bioenergy Research Center; Contract grant number: DE-FC02-07ER64494 NR 20 TC 1 Z9 1 U1 3 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2015 VL 112 IS 3 BP 627 EP 632 DI 10.1002/bit.25473 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CA8IJ UT WOS:000349161400020 PM 25311910 ER PT J AU Hicks, BB Pendergrass, WR Vogel, CA Keener, RN Leyton, SM AF Hicks, Bruce B. Pendergrass, W. R., III Vogel, C. A. Keener, R. N., Jr. Leyton, S. M. TI On the Micrometeorology of the Southern Great Plains. 2: Turbulence Statistics SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Free convection; Surface boundary layer; Turbulence kinetic energy; Turbulence statistics ID LOW-LEVEL JET; BOUNDARY-LAYER; FOOTPRINT AB Fast-response micrometeorological data obtained from an instrumented 32-m tower at an arid site near Ocotillo, Texas are used to examine the daily time evolution of the lower atmosphere. Correlation coefficients between turbulence properties (fast response wind-speed components and temperature) confirm that over this sparsely vegetated site the effects of convection are observed soon after sunrise, well ahead of the morning transition from stable to unstable stratification. Details of this kind are obscured when results are considered as functions of conventional stability parameters, since such standard analytical methods combine features of the morning and evening transitions into a single presentation. Partial correlation coefficients and semi-partials indicate that the local turbulent kinetic energy is mainly associated with local fluxes of heat and momentum near neutral and in most stable conditions, but decreases substantially during the times of strongest instability (possibly reflecting the scatter introduced by sampling infrequent convective episodes using a single tower). For many of the variables considered here, the standard deviations are about the same as the linear averages, indicating that the distributions are close to log-normal. The present data indicate that if the intent is to address some specific situation then 10 % error bounds on turbulence quantities (e.g. fluxes) correspond to averaging over a distance scale of the order of 10 km and a time scale of about 3 h. As the distance and time scales become smaller, the uncertainties due to factors external to the local surface increase. C1 [Hicks, Bruce B.] MetCorps, Norris, TN 37828 USA. [Pendergrass, W. R., III; Vogel, C. A.] NOAA ARL ATDD, Oak Ridge, TN 37831 USA. [Vogel, C. A.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Keener, R. N., Jr.; Leyton, S. M.] Duke Energy, Charlotte, NC 28202 USA. RP Hicks, BB (reprint author), MetCorps, POB 1510, Norris, TN 37828 USA. EM hicks.metcorps@gmail.com RI Pendergrass, William/C-9073-2016 NR 14 TC 0 Z9 0 U1 2 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 EI 1573-1472 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD MAR PY 2015 VL 154 IS 3 BP 351 EP 366 DI 10.1007/s10546-014-9981-8 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB1DT UT WOS:000349367700002 ER PT J AU Chaudhry, JH Estep, D Ginting, V Shadid, JN Tavener, S AF Chaudhry, Jehanzeb H. Estep, Donald Ginting, Victor Shadid, John N. Tavener, Simon TI A posteriori error analysis of IMEX multi-step time integration methods for advection-diffusion-reaction equations SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Error estimation; Adjoint operator; Implicit-explicit schemes ID ORDINARY DIFFERENTIAL-EQUATIONS; RUNGE-KUTTA SCHEMES; STIFF SOURCE TERMS; APPROXIMATION; SYSTEMS AB Implicit-Explicit (IMEX) schemes are an important and widely used class of time integration methods for both parabolic and hyperbolic partial differential equations. We develop accurate a posteriori error estimates for a user-defined quantity of interest for two classes of multi-step IMEX schemes for advection-diffusion-reaction problems. The analysis proceeds by recasting the IMEX schemes into a variational form suitable for a posteriori error analysis employing adjoint problems and computable residuals. The a posteriori estimates quantify distinct contributions from various aspects of the spatial and temporal discretizations, and can be used to evaluate discretization choices. Numerical results are presented that demonstrate the accuracy of the estimates for a representative set of problems. Published by Elsevier B.V. C1 [Chaudhry, Jehanzeb H.; Tavener, Simon] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA. [Estep, Donald] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA. [Ginting, Victor] Univ Wyoming, Dept Math, Laramie, WY 82071 USA. [Shadid, John N.] Sandia Natl Labs, Computat Math Dept, Albuquerque, NM 87123 USA. RP Shadid, JN (reprint author), Sandia Natl Labs, Computat Math Dept, Albuquerque, NM 87123 USA. EM jehanzeb@colostate.edu; estep@stat.colostate.edu; vginting@uwyo.edu; jnshadi@sandia.gov; tavener@math.colostate.edu FU Department of Energy [DE-SC0005304, DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724, INL0012-0133, DE0000000SC9279, DE-SC0004982, INL00120133]; Defense Threat Reduction Agency [HDTRA1-09-1-0036]; Dynamics Research Corporation [PO672TO001]; Idaho National Laboratory [00069249, 00115474]; Lawrence Livermore National Laboratory [B573139, B584647, B590495]; National Science Foundation [DMS-0107832, DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559, DMS-1065046, DMS-1016268, DMS-FRG-1065046, DMS-1228206, DMS-1016283]; National Institutes of Health [R01GM096192]; DOE Office of Science ASCR Applied Math Program at Sandia National Laboratory [DE-AC04-94AL85000] FX J.H. Chaudhry's work is supported in part by the Department of Energy (DE-SC0005304). D. Estep's work is supported in part by the Defense Threat Reduction Agency (HDTRA1-09-1-0036), Department of Energy (DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724, DE-SC0005304, INL0012-0133, DE0000000SC9279), Dynamics Research Corporation PO672TO001, Idaho National Laboratory (00069249, 00115474), Lawrence Livermore National Laboratory (B573139, B584647, B590495), National Science Foundation (DMS-0107832, DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559, DMS-1065046, DMS-1016268, DMS-FRG-1065046, DMS-1228206), National Institutes of Health (#R01GM096192). V. Ginting's work is supported in part by the National Science Foundation (DMS-1016283), the Department of Energy (DE-SC0004982). S. Tavener's work is supported in part by the Department of Energy (DE-FG02-04ER25620, INL00120133) and National Science Foundation (DMS-1016268). J.N. Shadid's work is partially supported by the DOE Office of Science ASCR Applied Math Program at Sandia National Laboratory under contract DE-AC04-94AL85000. NR 41 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD MAR 1 PY 2015 VL 285 BP 730 EP 751 DI 10.1016/j.cma.2014.11.015 PG 22 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA CB4ZR UT WOS:000349637700031 ER PT J AU Chen, L Chen, J Lebensohn, RA Ji, YZ Heo, TW Bhattacharyya, S Chang, K Mathaudhu, S Liu, ZK Chen, LQ AF Chen, L. Chen, J. Lebensohn, R. A. Ji, Y. Z. Heo, T. W. Bhattacharyya, S. Chang, K. Mathaudhu, S. Liu, Z. K. Chen, L. -Q. TI An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Phase-field method; Crystal plasticity; Grain growth; Recrystallization ID STATIC RECRYSTALLIZATION; ELASTIC INHOMOGENEITY; NONLINEAR COMPOSITES; CELLULAR-AUTOMATON; NUMERICAL-METHOD; SUBGRAIN GROWTH; SIMULATION; EVOLUTION; MICROSTRUCTURE; KINETICS AB A fast Fourier transform (FFT) based computational approach integrating phase-field method (PFM) and crystal plasticity (CP) is proposed to model recrystallization of plastically deformed polycrystals in three dimensions (3-D). CP at the grain level is employed as the constitutive description to predict the inhomogeneous distribution of strain and stress fields after plastic deformation of a polycrystalline aggregate while the kinetics of recrystallization is obtained employing a PFM in the plastically deformed grain structure. The elasto-viscoplastic equilibrium is guaranteed during each step of temporal phase-field evolution. Static recrystallization involving plasticity during grain growth is employed as an example to demonstrate the proposed computational framework. The simulated recrystallization kinetics is compared using the classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. This study also gives us a new computational pathway to explore the plasticity-driven evolution of 3D microstructures. Published by Elsevier B.V. C1 [Chen, L.; Ji, Y. Z.; Heo, T. W.; Bhattacharyya, S.; Chang, K.; Liu, Z. K.; Chen, L. -Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Chen, J.] Penn State Univ, Altoona Coll, Dept Engn, Altoona, PA 16601 USA. [Lebensohn, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87845 USA. [Mathaudhu, S.] US Army Res Off, Div Mat Sci, Res Triangle Pk, NC 27709 USA. RP Chen, L (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM luc28@psu.edu RI Lebensohn, Ricardo/A-2494-2008; Liu, Zi-Kui/A-8196-2009; Mathaudhu, Suveen/B-4192-2009 OI Lebensohn, Ricardo/0000-0002-3152-9105; Liu, Zi-Kui/0000-0003-3346-3696; Chen, Lei/0000-0002-3053-7373; FU Center for Computational Materials Design (CCMD); National Science Foundation (NSF) Industry/University Cooperative Research Center at Penn State [IIP-1034965]; Georgia Tech [IIP-1034968] FX This work is funded by the Center for Computational Materials Design (CCMD), a joint National Science Foundation (NSF) Industry/University Cooperative Research Center at Penn State (IIP-1034965) and Georgia Tech (IIP-1034968). NR 49 TC 12 Z9 12 U1 10 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD MAR 1 PY 2015 VL 285 BP 829 EP 848 DI 10.1016/j.cma.2014.12.007 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA CB4ZR UT WOS:000349637700036 ER PT J AU Park, C Woehl, TJ Evans, JE Browning, ND AF Park, Chiwoo Woehl, Taylor J. Evans, James E. Browning, Nigel D. TI Minimum Cost Multi-Way Data Association for Optimizing Multitarget Tracking of Interacting Objects SO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE LA English DT Article DE Data association; binary integer programming; decomposition; lagrange dual relaxation ID PROBABILISTIC DATA ASSOCIATION; DETECTION RESPONSES; SPLITTING TARGETS; MULTIPLE TARGETS; VISUAL TRACKING; GROWTH AB This paper presents a general formulation for a minimum cost data association problem which associates data features via one-to-one, m-to-one and one-to-n links with minimum total cost of the links. A motivating example is a problem of tracking multiple interacting nanoparticles imaged on video frames, where particles can aggregate into one particle or a particle can be split into multiple particles. Many existing multitarget tracking methods are capable of tracking non-interacting targets or tracking interacting targets of restricted degrees of interactions. The proposed formulation solves a multitarget tracking problem for general degrees of inter-object interactions. The formulation is in the form of a binary integer programming problem. We propose a polynomial time solution approach that can obtain a good relaxation solution of the binary integer programming, so the approach can be applied for multitarget tracking problems of a moderate size (for hundreds of targets over tens of time frames). The resulting solution is always integral and obtains a better duality gap than the simple linear relaxation solution of the corresponding problem. The proposed method was validated through applications to simulated multitarget tracking problems and a real multitarget tracking problem. C1 [Park, Chiwoo] Florida State Univ, Dept Ind & Mfg Engn, Tallahassee, FL 32310 USA. [Woehl, Taylor J.] Ames Natl Lab, Div Mat Sci & Engn, Ames, IA USA. [Evans, James E.] Pacific NW Natl Lab, Dept Environm & Mol Sci, Richland, WA USA. [Browning, Nigel D.] Pacific NW Natl Lab, Dept Fundamental & Computat Sci, Richland, WA 99352 USA. RP Park, C (reprint author), Florida State Univ, Dept Ind & Mfg Engn, Tallahassee, FL 32310 USA. EM cpark5@fsu.edu; tjwoehl@ameslab.gov; james.evans@pnnl.gov; nigel.browning@pnnl.gov OI Browning, Nigel/0000-0003-0491-251X FU FSU COFRS [032968]; Ralph E. Powe Junior Faculty Enhancement Award; NIH [5RC1GM091755]; DOE [DE-FG02-03ER46057]; UC Lab Fee Program; UC Academic Senate; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) [DE-AC05-76RL01830]; [NSF-CMMI-1334012] FX The authors thank Abhishek Shrivastava for useful discussions. We would like to acknowledge support for this project. Park is supported by the FSU COFRS 032968, the Ralph E. Powe Junior Faculty Enhancement Award, and NSF-CMMI-1334012. Evans and Browning acknowledge NIH funding support from grant no. 5RC1GM091755. Browning also acknowledges DOE funding support from grant no. DE-FG02-03ER46057. Support for Woehl was provided by the UC Lab Fee Program and the UC Academic Senate. A portion of this work is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) under Contract DE-AC05-76RL01830. It was conducted under the Laboratory Directed Research and Development Program at PNNL. NR 37 TC 11 Z9 13 U1 2 U2 23 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0162-8828 EI 1939-3539 J9 IEEE T PATTERN ANAL JI IEEE Trans. Pattern Anal. Mach. Intell. PD MAR PY 2015 VL 37 IS 3 BP 611 EP 624 DI 10.1109/TPAMI.2014.2346202 PG 14 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CB4VK UT WOS:000349626200010 PM 26353265 ER PT J AU Liu, JJ Tjellstrom, H McGlew, K Shaw, V Rice, A Simpson, J Kosma, D Ma, W Yang, WL Strawsine, M Cahoon, E Durrett, TP Ohlrogge, J AF Liu, Jinjie Tjellstroem, Henrik McGlew, Kathleen Shaw, Vincent Rice, Adam Simpson, Jeffrey Kosma, Dylan Ma, Wei Yang, Weili Strawsine, Merissa Cahoon, Edgar Durrett, Timothy P. Ohlrogge, John TI Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa SO INDUSTRIAL CROPS AND PRODUCTS LA English DT Article DE Camelina; Metabolic engineering; Emulsifier; Acetylglyceride; ACETEM ID EUONYMUS VERRUCOSUS SEED; FATTY-ACIDS; ARABIDOPSIS SEEDS; VEGETABLE-OILS; PLANTS; INDUSTRIAL; FUEL; CROP; ACYLTRANSFERASE; TRIGLYCERIDES AB A diacylglycerol acetyltransferase, EaDAcT, from Euonymus alatus, synthesizes sn-3 acetyl triacylglycerols (acetyl-TAG) when expressed in Arabidopsis, Camelina and soybean. Compared to most vegetable oils, acetyl-TAGs have reduced viscosity and improved cold temperature properties that confer advantages in applications as biodegradable lubricants, food emulsifiers, plasticizers, and 'drop-in' fuels for some diesel engines. A high-oleic Camelina line was engineered to express the EaDAcT gene in order to produce acetyl-TAG oils with fatty acid compositions and physiochemical properties complementary to wild-type acetyl-TAG. The accumulation of acetyl-TAGs at 70 mol% of seed TAG in field-grown high-oleic Camelina had minor or no effect on seed weight, oil content, harvest index and seed yield. The total moles of TAG increased up to 27% reflecting the ability to synthesize more acetyl-TAG from the same supply of long-chain fatty acid. Acetyl-TAG could be separated from long-chain TAG by silica column or by reverse phase chromatography. The predominant acetyl-TAG molecular species produced in high-oleic Camelina was acetyl-dioleoyl-glycerol. The crystallization temperature of high-oleic acetyl-TAG (by differential scanning calorimetry at 1.0 degrees C/min) was reduced by 30 C compared to control TAG. The viscosity of high-oleic acetyl-TAG was 27% lower than TAG from the high-oleic control and:the caloric content was reduced by 5%. Field production of T4 and T5 transgenic plants yielded over 250 kg seeds for oil extraction and analysis. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. C1 [Liu, Jinjie; Tjellstroem, Henrik; McGlew, Kathleen; Shaw, Vincent; Rice, Adam; Simpson, Jeffrey; Kosma, Dylan; Ma, Wei; Yang, Weili; Strawsine, Merissa; Ohlrogge, John] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Liu, Jinjie; Tjellstroem, Henrik; Simpson, Jeffrey; Ma, Wei; Ohlrogge, John] Great Lakes Bioenergy Res Ctr, E Lansing, MI USA. [Cahoon, Edgar] Univ Nebraska, Dept Biochem, Lincoln, NE 68583 USA. [Durrett, Timothy P.] Kansas State Univ, Dept Biochem & Mol Biophys, Manhattan, KS 66506 USA. RP Ohlrogge, J (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM ohlrogge@msu.edu FU Department of Energy-Great Lakes Bioenergy Research Center [DE-FCO2-07ER64494] FX We are grateful to Mike Pollard (Michigan State University) for initiating this project and for extensive advice and discussions. We thank Brian Graff, Todd Martin, James Kelly and Kurt. Thelen of the Crop and Soil Sciences Department for assistance with field production, Rachael Sak, Biosystems Engineering Department, for guidance in bomb calorimetry and Michael Rich, Composite Materials & Structures Center, for assistance with differential scanning calorimetry (all of Michigan State University) and Xiaowen Kong and Carol Ohlrogge also for assistance with field production. We are grateful to Tom Clemente (University of Nebraska-Lincoln) for advice on obtaining permits for transgenic field work and on growing Camelina. This work was supported in part by Department of Energy-Great Lakes Bioenergy Research Center Cooperative Agreement DE-FCO2-07ER64494. NR 47 TC 10 Z9 11 U1 2 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-6690 EI 1872-633X J9 IND CROP PROD JI Ind. Crop. Prod. PD MAR PY 2015 VL 65 BP 259 EP 268 DI 10.1016/j.indcrop.2014.11.019 PG 10 WC Agricultural Engineering; Agronomy SC Agriculture GA CB2AV UT WOS:000349430000034 ER PT J AU Iskra, K Hoefler, T AF Iskra, Kamil Hoefler, Torsten TI Operating systems and runtime environments on supercomputers SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material C1 [Iskra, Kamil] Argonne Natl Lab, Argonne, IL 60439 USA. [Hoefler, Torsten] Swiss Fed Inst Technol, Zurich, Switzerland. RP Hoefler, T (reprint author), Swiss Fed Inst Technol, Zurich, Switzerland. EM htor@illinois.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD SPR PY 2015 VL 29 IS 1 SI SI BP 3 EP 4 DI 10.1177/1094342014560666 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CB2JA UT WOS:000349452000001 ER PT J AU Levy, S Ferreira, KB Bridges, PG Thompson, AP Trott, C AF Levy, Scott Ferreira, Kurt B. Bridges, Patrick G. Thompson, Aidan P. Trott, Christian TI A study of the viability of exploiting memory content similarity to improve resilience to memory errors SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE High-performance computing; fault tolerance; resilience ID ROLLBACK-RECOVERY; SYSTEMS AB Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on the characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems. C1 [Levy, Scott; Bridges, Patrick G.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Ferreira, Kurt B.; Thompson, Aidan P.] Sandia Natl Labs, Livermore, CA 94550 USA. [Trott, Christian] Sandia Natl Labs, Scalable Algorithms Grp, Livermore, CA 94550 USA. RP Levy, S (reprint author), Univ New Mexico, Dept Comp Sci, MSC01-1130, Albuquerque, NM 87131 USA. EM slevy@cs.unm.edu FU Sandia's Laboratory Directed Research and Development (LDRD) office FX This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) office. NR 35 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD SPR PY 2015 VL 29 IS 1 SI SI BP 5 EP 20 DI 10.1177/1094342014560354 PG 16 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CB2JA UT WOS:000349452000002 ER PT J AU Lu, Y Chen, Y Zhuang, Y Liu, JL Thakur, R AF Lu, Yin Chen, Yong Zhuang, Yu Liu, Jialin Thakur, Rajeev TI Collective input/output under memory constraints SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Exascale system; parallel input; output; collective input; output; many-core architecture; data-intensive computing; high-performance computing ID I/O; SCIENCE AB Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holds promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity. C1 [Lu, Yin; Zhuang, Yu; Liu, Jialin] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA. [Chen, Yong] Texas Tech Univ, Dept Comp Sci, Data Intens Scalable Comp Lab, Lubbock, TX 79409 USA. [Thakur, Rajeev] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Chen, Y (reprint author), Texas Tech Univ, POB 43104, Lubbock, TX 79409 USA. EM yong.chen@ttu.edu FU National Science Foundation (NSF) [CNS-1162488]; US Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported in part by National Science Foundation (NSF; grant CNS-1162488). It was also supported in part by the US Department of Energy, Office of Science (contract DE-AC02-06CH11357). NR 43 TC 1 Z9 1 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD SPR PY 2015 VL 29 IS 1 SI SI BP 21 EP 36 DI 10.1177/1094342014561696 PG 16 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CB2JA UT WOS:000349452000003 ER PT J AU Wood, L Daily, J Henry, M Palmer, B Schuchardt, K Dazlich, D Heikes, R Randall, D AF Wood, Lynn Daily, Jeff Henry, Michael Palmer, Bruce Schuchardt, Karen Dazlich, Donald Heikes, Ross Randall, David TI A global climate model agent for high spatial and temporal resolution data SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Global cloud-resolving model; software agent; Hoshen-Kopelman algorithm; parallel clustering ID TROPICAL CLOUD CLUSTERS; SHALLOW-WATER EQUATIONS; NUMERICAL-INTEGRATION; ALGORITHM; TRACKING AB Fine cell granularity in modern climate models can produce terabytes of data in each snapshot, causing significant I/O overhead. To address this issue, a method of reducing the I/O latency of high-resolution climate models by identifying and selectively outputting regions of interest is presented. Working with a global cloud-resolving model and running with up to 10,240 processors on a Cray XE6, this method provides significant I/O bandwidth reduction depending on the frequency of writes and the size of the region of interest. The implementation challenges of determining global parameters in a strictly core-localized model and properly formatting output files that only contain subsections of the global grid are addressed, as well as the overall bandwidth impact and benefits of the method. The gains in I/O throughput provided by this method allow dual output rates for high-resolution climate models: a low-frequency global snapshot as well as a high-frequency regional snapshot when events of particular interest occur. C1 [Wood, Lynn; Daily, Jeff; Henry, Michael; Palmer, Bruce; Schuchardt, Karen] Pacific NW Natl Lab, Detect Syst Grp, Richland, WA 99354 USA. [Daily, Jeff] Pacific NW Natl Lab, Data Intens Sci Comp Grp, Richland, WA 99354 USA. [Henry, Michael] Pacific NW Natl Lab, Visual Analyt Grp, Richland, WA 99354 USA. [Palmer, Bruce] Pacific NW Natl Lab, High Performance Comp Grp, Richland, WA 99354 USA. [Schuchardt, Karen] Pacific NW Natl Lab, Richland, WA 99354 USA. [Dazlich, Donald; Heikes, Ross; Randall, David] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Wood, L (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM lynn.wood@pnnl.gov FU U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Department of Energy, Office of Science SciDAC program; Office of Science [DE-AC02-05CH11231] FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute [contract DE-AC06-76RLO 1830]. This work was funded by the Department of Energy, Office of Science SciDAC program, and used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science [contract DE-AC02-05CH11231]. NR 19 TC 0 Z9 0 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD SPR PY 2015 VL 29 IS 1 SI SI BP 107 EP 116 DI 10.1177/1094342013518808 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CB2JA UT WOS:000349452000009 ER PT J AU Kruse, T van de Pas, BA Atteia, A Krab, K Hagen, WR Goodwin, L Chain, P Boeren, S Maphosa, F Schraa, G de Vos, WM van der Oost, J Smidt, H Stams, AJM AF Kruse, Thomas van de Pas, Bram A. Atteia, Ariane Krab, Klaas Hagen, Wilfred R. Goodwin, Lynne Chain, Patrick Boeren, Sjef Maphosa, Farai Schraa, Gosse de Vos, Willem M. van der Oost, John Smidt, Hauke Stams, Alfons J. M. TI Genomic, Proteomic, and Biochemical Analysis of the Organohalide Respiratory Pathway in Desulfitobacterium dehalogenans SO JOURNAL OF BACTERIOLOGY LA English DT Article ID TETRACHLOROETHENE REDUCTIVE DEHALOGENASE; GEOBACTER-SULFURREDUCENS AM-1; ELECTRON-TRANSPORT; ESCHERICHIA-COLI; SIGNAL PEPTIDES; DEHALOCOCCOIDES-ETHENOGENES; WOLINELLA-SUCCINOGENES; METHACRYLATE REDUCTASE; RHODOSPIRILLUM-RUBRUM; FUMARATE REDUCTASE AB Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (ClOHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1T consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. C1 [Kruse, Thomas; van de Pas, Bram A.; Atteia, Ariane; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M.; van der Oost, John; Smidt, Hauke; Stams, Alfons J. M.] Wageningen Univ, Microbiol Lab, NL-6700 AP Wageningen, Netherlands. [Krab, Klaas] Free Univ Amsterdam, BCA IMBW Sect Microbiol, Amsterdam, Netherlands. [Hagen, Wilfred R.] Delft Univ Technol, Kluyver Dept Biotechnol, Delft, Netherlands. [Atteia, Ariane] Aix Marseille Univ, CNRS, Unite Bioenerget & Ingn Prot, UMR 7281, Marseille, France. [Goodwin, Lynne] DOE Joint Genome Inst, Walnut Creek, CA USA. [Goodwin, Lynne; Chain, Patrick] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Boeren, Sjef] Wageningen Univ, Biochem Lab, NL-6700 AP Wageningen, Netherlands. RP Stams, AJM (reprint author), Wageningen Univ, Microbiol Lab, NL-6700 AP Wageningen, Netherlands. EM Fons.stams@wur.nl OI Kruse, Thomas/0000-0002-7551-1505; Chain, Patrick/0000-0003-3949-3634 FU Ecogenomics Project of the Netherlands Genomics Initiative; IOP Environmental Biotechnology program; European Community program FP7 [KBBE-211684, KBBE-222625]; Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Ecogenomics Project of the Netherlands Genomics Initiative, as well as the IOP Environmental Biotechnology program. We furthermore thank the European Community program FP7 (grants KBBE-211684, BACSIN, and KBBE-222625, METAEXPLORE) for financial support.; The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 72 TC 5 Z9 5 U1 3 U2 29 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2015 VL 197 IS 5 BP 893 EP 904 DI 10.1128/JB.02370-14 PG 12 WC Microbiology SC Microbiology GA CB1PC UT WOS:000349399000009 PM 25512312 ER PT J AU Densmore, JD Park, H Wollaber, AB Rauenzahn, RM Knoll, DA AF Densmore, J. D. Park, H. Wollaber, A. B. Rauenzahn, R. M. Knoll, D. A. TI Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Thermal radiative transfer; Moment-based scale-bridging algorithm; Monte Carlo simulation ID DIFFUSION METHOD; TRANSPORT; TIME AB We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption-emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck-Cummings algorithm. (C) 2014 Elsevier Inc. All rights reserved. C1 [Densmore, J. D.] Bettis Atom Power Lab, West Mifflin, PA 15122 USA. [Park, H.; Rauenzahn, R. M.; Knoll, D. A.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA. [Wollaber, A. B.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA. RP Park, H (reprint author), Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, POB 1663,MS B216, Los Alamos, NM 87545 USA. EM jeffery.densmore@unnpp.gov; hkpark@lanl.gov; wollaber@lanl.gov; rick@lanl.gov; nol@lanl.gov OI Wollaber, Allan/0000-0001-5997-9610 FU U.S. Department of Energy under U.S. government [DE-AC52-06NA25396] FX This work was performed under U.S. government contract DE-AC52-06NA25396 for Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy. NR 21 TC 5 Z9 5 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2015 VL 284 BP 40 EP 58 DI 10.1016/j.jcp.2014.12.020 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CA2SD UT WOS:000348756700003 ER PT J AU Hamilton, SP Evans, TM AF Hamilton, Steven P. Evans, Thomas M. TI Efficient solution of the simplified P-N equations SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiation transport; Nuclear criticality; Eigenvalue solvers ID EIGENVALUE PROBLEMS; DAVIDSON METHOD; TRANSPORT CALCULATIONS; ACCELERATION SCHEME; LINEAR-SYSTEMS; APPROXIMATION; UPSCATTERING; MATRICES; SOLVERS AB In this paper we show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy, a robust set of solution strategies may be applied. Power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on the C5G7 MOX test problem as well as an operational pressurized water reactor model. Our results show that the most efficient approach is the generalized Davidson method, which is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method. (C) 2014 Elsevier Inc. All rights reserved. C1 [Hamilton, Steven P.; Evans, Thomas M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hamilton, SP (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM hamiltonsp@ornl.gov; evanstm@ornl.gov FU Oak Ridge National Laboratory [DE-AC05-00OR22725]; U.S. Department of Energy [DEAC05-00OR22725]; Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725] FX Work for this paper was supported by Oak Ridge National Laboratory (DE-AC05-00OR22725), which is managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DEAC05-00OR22725. This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. NR 49 TC 0 Z9 0 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2015 VL 284 BP 155 EP 170 DI 10.1016/j.jcp.2014.12.014 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CA2SD UT WOS:000348756700009 ER PT J AU Larson, DJ Young, CV AF Larson, David J. Young, Christopher V. TI A finite mass based method for Vlasov-Poisson simulations SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Plasma simulation; Particle method; Vlasov equation; Remapping; Shape function; Compact support ID PARTICLE-IN-CELL; MODEL; EQUATIONS; PLASMAS; FORCE; SIZE AB A method for the numerical simulation of plasma dynamics using discrete particles is introduced. The shape function kinetics (SFK) method is based on decomposing the mass into discrete particles using shape functions of compact support. The particle positions and shape evolve in response to internal velocity spread and external forces. Remapping is necessary in order to maintain accuracy and two strategies for remapping the particles are discussed. Numerical simulations of standard test problems illustrate the advantages of the method which include very low noise compared to the standard particle-in-cell technique, inherent positivity, large dynamic range, and ease of implementation. (C) 2014 Elsevier Inc. All rights reserved. C1 [Larson, David J.] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA. [Young, Christopher V.] Stanford Univ, Stanford Plasma Phys Lab, Stanford, CA 94305 USA. RP Larson, DJ (reprint author), Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA. EM larson6@llnl.gov OI Young, Christopher/0000-0002-8075-7550; Larson, David/0000-0003-0814-8555 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE NNSA Stewardship Science Graduate Fellowship [DE-FC52-08NA28752] FX The authors would like to acknowledge extensive discussions with the late Dennis Hewett. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. C.V. Young acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752. NR 33 TC 0 Z9 0 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2015 VL 284 BP 171 EP 185 DI 10.1016/j.jcp.2014.12.022 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CA2SD UT WOS:000348756700010 ER PT J AU Taitano, WT Chacon, L AF Taitano, William T. Chacon, Luis TI Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampere system, part I: Collisionless aspects SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Moment based acceleration; Charge momentum energy conservation; Vlasov; Ampere; Finite volume ID INTEGRATION; SIMULATIONS; EQUATIONS; IMPLICIT AB In this study, we propose a charge, momentum, and energy conserving discretization for the 1D-1V Vlasov-Ampere system of equations on an Eulerian grid. The new conservative discretization is nonlinear in nature, but can be efficiently converged with a moment-based nonlinear accelerator algorithm. We demonstrate the conservation and convergence properties of the scheme with various numerical examples, including a multi-scale ion-acoustic shockwave problem. (C) 2015 Elsevier Inc. All rights reserved. C1 [Taitano, William T.; Chacon, Luis] Los Alamos Natl Lab, Los Alamos, NM USA. RP Taitano, WT (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM taitano@lanl.gov OI Taitano, William/0000-0002-2369-0935; Chacon, Luis/0000-0002-4566-8763 FU Los Alamos National Laboratory Directed Research and Development (LDRD) program; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors would like to acknowledge useful conversations with Dr. D. A. Knoll and Dr. G. Chen at the Los Alamos National Laboratory. This work was sponsored by the Los Alamos National Laboratory Directed Research and Development (LDRD) program. This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under contract DE-AC52-06NA25396. NR 24 TC 7 Z9 7 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2015 VL 284 BP 718 EP 736 DI 10.1016/j.jcp.2014.12.038 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CA2SD UT WOS:000348756700036 ER PT J AU Taitano, WT Knoll, DA Chacon, L AF Taitano, William T. Knoll, Dana A. Chacon, Luis TI Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampere system, part II: Collisional aspects SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Moment based acceleration; Charge and energy conservation; Vlasov; Fokker-Planck; Ampere ID DIFFERENCE SCHEME; MAGNETIC-FIELD; TRANSPORT; IMPLICIT; EQUATION; PLASMAS; ALGORITHM; CODE; 2-D AB In this study, we extend the moment-based acceleration algorithm for the charge, momentum, and energy conserving Vlasov-Ampere discretization developed in Ref. [ 1] by including a reduced Fokker-Planck operator. We propose an energy conserving discretization for the Fokker-Planck collision operator. We show by numerical experiment that the new algorithm 1) efficiently converges the nonlinearly coupled Vlasov-Fokker-Planck-Ampere system, and 2) accurately steps over stiff time-scales such as the inverse electron plasma frequency, and the electron-electron collision time-scale. We demonstrate that discrete energy conservation is critical to eliminate numerical heating issues when strong density gradients exist. (C) 2014 Elsevier Inc. All rights reserved. C1 [Taitano, William T.; Knoll, Dana A.; Chacon, Luis] Los Alamos Natl Lab, Los Alamos, NM USA. RP Taitano, WT (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM taitano@lanl.gov OI Taitano, William/0000-0002-2369-0935; Chacon, Luis/0000-0002-4566-8763 FU Los Alamos National Laboratory Directed Research and Development (LDRD) program; National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was sponsored by the Los Alamos National Laboratory Directed Research and Development (LDRD) program. This work was performed under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under contract DE-AC52-06NA25396. NR 36 TC 4 Z9 4 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2015 VL 284 BP 737 EP 757 DI 10.1016/j.jcp.2014.09.004 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CA2SD UT WOS:000348756700037 ER PT J AU Reeve, KN Anderson, IE Handwerker, CA AF Reeve, Kathlene N. Anderson, Iver E. Handwerker, Carol A. TI Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Cu-Al IMC particles; lead-free solders; aluminum; nucleation; thermodynamics ID THERMODYNAMIC ASSESSMENT; PHASE-EQUILIBRIA; TIN-LEAD; NI; STABILITY; SYSTEM; CU6SN5; JOINTS; ORIENTATION; RELIABILITY AB Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200A degrees C was recorded. During cooling from 1200A degrees C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary beta and Cu-Al delta phases at 450-550A degrees C; this was followed by beta-Sn, and, finally, Cu6Sn5 and Cu-Al gamma(1). Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200A degrees C to 800A degrees C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy. C1 [Reeve, Kathlene N.; Anderson, Iver E.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Reeve, Kathlene N.; Anderson, Iver E.] Iowa State Univ, Ames, IA USA. [Reeve, Kathlene N.; Handwerker, Carol A.] Purdue Univ, W Lafayette, IN 47907 USA. RP Reeve, KN (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM klindley@purdue.edu; andersoni@ameslab.gov; handwerker@purdue.edu FU Iowa State University Research Foundation; US DOE Science Undergraduate Laboratory Internship (SULI) Program [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Iowa State University Research Foundation and the US DOE Science Undergraduate Laboratory Internship (SULI) Program under contract no. DE-AC02-07CH11358. The research group is grateful to the DOE for the assistantship and opportunity to participate in the SULI program. The group would also like to thank Fran Laabs (laabs@ameslab.gov), Kevin Dennis (dennis@ameslab.gov), and David Byrd (byrd@ameslab.gov), of Ames Laboratory, for help with the EBSD and DSC data, and John Holaday (jholaday@purdue.edu), of Purdue University, for computing the Sn-Cu-Al ternary phase diagrams and ternary alloy solidification paths by use of ThermoCalc. http://www.thermocalc.com/start/-ThermoCalc Software. NR 44 TC 6 Z9 6 U1 2 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2015 VL 44 IS 3 BP 842 EP 866 DI 10.1007/s11664-014-3551-1 PG 25 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA CB2FK UT WOS:000349442100011 ER PT J AU Edenborn, SL Edenborn, HM Krynock, RM Haug, KLZ AF Edenborn, S. L. Edenborn, H. M. Krynock, R. M. Haug, K. L. Zickefoose TI Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Canada wild-rye; Reclamation; Acid petroleum tar; Pennsylvania ID NATIVE PRAIRIE GRASSES; MINE TAILINGS; HEAVY-METALS; AIDED PHYTOSTABILIZATION; ORGANIC-CARBON; BLACK CARBON; WATER; RECLAMATION; MOBILITY; AVAILABILITY AB A hardwood biochar was examined for its potential use as an amendment to aid in the phytostabilization of a severely-contaminated soil at a former sulfuric acid recycling factory site. The soil, which has remained unvegetated for nearly a century, contained high pseudo-total concentrations of lead, arsenic and antimony and was both highly acidic and hydrophobic due to the presence of petroleum-based acid tar. Three application approaches were tested with 10 and 20% (vol/vol) biochar: Incorporation into soil, top-dressing on the surface, and layering within the soil. The results suggest that the homogeneous mixing of the hardwood biochar into soil would not promote the long-term restoration at this site due to its inherently low alkalinity relative to the very high net acidity of the existing soil. In contrast, surface application of biochar resulted in the most successful growth of Canada wild-rye grass by exploiting the properties inherent to biochar alone. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Edenborn, S. L.; Krynock, R. M.; Haug, K. L. Zickefoose] Chatham Univ, Dept Nat Sci, Pittsburgh, PA 15232 USA. [Edenborn, H. M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Edenborn, SL (reprint author), Chatham Univ, Dept Nat Sci, Buhl Hall,Woodland Rd, Pittsburgh, PA 15232 USA. EM sedenborn@chatham.edu NR 64 TC 4 Z9 4 U1 15 U2 63 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD MAR 1 PY 2015 VL 150 BP 226 EP 234 DI 10.1016/j.jenvman.2014.11.023 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA CB3BX UT WOS:000349504300024 PM 25514537 ER PT J AU Imhoff, SD Gibbs, PJ Katz, MR Ott, TJ Patterson, BM Lee, WK Fezzaa, K Cooley, JC Clarke, AJ AF Imhoff, S. D. Gibbs, P. J. Katz, M. R. Ott, T. J., Jr. Patterson, B. M. Lee, W. -K. Fezzaa, K. Cooley, J. C. Clarke, A. J. TI Dynamic evolution of liquid-liquid phase separation during continuous cooling SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Alloys; Phase transitions; X-ray microscopy; Solidification ID HYPERMONOTECTIC ALLOYS; COAGULATION EQUATION; IMMISCIBLE ALLOYS; MISCIBILITY GAP; SOLIDIFICATION; KINETICS; GROWTH; PRECIPITATION; COALESCENCE; CONVECTION AB Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography has been used to observe liquid liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis has been used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases. (C) 2015 Elsevier B.V. All rights reserved. C1 [Imhoff, S. D.; Gibbs, P. J.; Katz, M. R.; Ott, T. J., Jr.; Patterson, B. M.; Cooley, J. C.; Clarke, A. J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Lee, W. -K.] Brookhaven Natl Lab, Photon Div, Upton, NY 11973 USA. [Fezzaa, K.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Imhoff, SD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663,MS G770, Los Alamos, NM 87545 USA. EM sdi@lanl.gov OI Patterson, Brian/0000-0001-9244-7376 FU U.S. Department of Energy (DOE), Office of Science; Basic Energy Sciences (BES); Division of Materials Sciences and Engineering; LANL Laboratory Directed Research and Development (LDRD) Program; U.S. DOE [DE-AC02-06CH11357] FX Research at Los Alamos National Laboratory (LANL) by A.J.C, S.D.I, PJ.G, and M.R.K, data analysis, and manuscript preparation were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Division of Materials Sciences and Engineering under AJ.C's Early Career Award. X-ray imaging experiments were supported by the LANL Laboratory Directed Research and Development (LDRD) Program. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We also thank T.V. Beard, R.W. Hudson, B.S. Folks, T. Wheeler, D.A. Aragon, T.J. Tucker (LANL) and A. Deny (ANL-APS) for experimental preparation support and Los Alamos National Laboratory, operated by Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 for the U.S. Deparment of Energy. NR 38 TC 0 Z9 0 U1 3 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 EI 1879-3312 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD MAR 1 PY 2015 VL 153 BP 93 EP 102 DI 10.1016/j.matchemphys.2014.12.039 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA CB3CL UT WOS:000349505700013 ER PT J AU Golovchak, R Lucas, P Oelgoetz, J Kovalskiy, A York-Winegar, J Saiyasombat, C Shpotyuk, O Feygenson, M Neuefeind, J Jain, H AF Golovchak, R. Lucas, P. Oelgoetz, J. Kovalskiy, A. York-Winegar, J. Saiyasombat, Ch Shpotyuk, O. Feygenson, M. Neuefeind, J. Jain, H. TI Medium range order and structural relaxation in As-Se network glasses through FSDP analysis SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Glasses; Powder diffraction; Neutron scattering and diffraction; Glass transitions ID SHARP DIFFRACTION PEAK; TEMPERATURE-DEPENDENCE; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; VITREOUS SILICA; AS2SE3; TRANSITION; SOLIDS; GESE2 AB Synchrotron X-ray diffraction and neutron scattering studies are performed on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. The comparison of structural information shows that density fluctuations, which were thought previously to have a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules. (C) 2015 Elsevier B.V. All rights reserved. C1 [Golovchak, R.; Oelgoetz, J.; Kovalskiy, A.; York-Winegar, J.] Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37044 USA. [Lucas, P.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85712 USA. [Saiyasombat, Ch; Jain, H.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Shpotyuk, O.] Jan Dlugosz Univ Czestochowa, Inst Phys, PL-42200 Czestochowa, Poland. [Feygenson, M.; Neuefeind, J.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Golovchak, R (reprint author), Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37044 USA. EM holoychakr@apsu.edu RI Neuefeind, Joerg/D-9990-2015; Kovalskiy, Andriy/A-8566-2008; Feygenson, Mikhail /H-9972-2014 OI Neuefeind, Joerg/0000-0002-0563-1544; Kovalskiy, Andriy/0000-0002-5014-2467; Feygenson, Mikhail /0000-0002-0316-3265 FU U.S. National Science Foundation (NSF) through International Materials Institute for New Functionality in Glass (IMI-NFG) [DMR-0844014]; NSF [DMR-1409160]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX R. Golovchak acknowledges support from U.S. National Science Foundation (NSF Grant No. DMR-0844014), for his Research Exchange visit to Lehigh University through International Materials Institute for New Functionality in Glass (IMI-NFG). A. Kovalskiy admits funding from NSF's DMR-1409160 project. A portion of this research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 54 TC 0 Z9 0 U1 1 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 EI 1879-3312 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD MAR 1 PY 2015 VL 153 BP 432 EP 442 DI 10.1016/j.matchemphys.2015.01.037 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA CB3CL UT WOS:000349505700055 ER PT J AU Soltanian, MR Ritzi, R Dai, ZX Huang, CC Dominic, D AF Soltanian, Mohamad Reza Ritzi, Robert Dai, Zhenxue Huang, Chaocheng Dominic, David TI Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article ID POROUS FORMATIONS; HYDRAULIC CONDUCTIVITY; SPATIAL CORRELATION; RETARDATION FACTOR; MEDIA; ARCHITECTURE; AQUIFERS; MODELS; DISTRIBUTIONS; PROBABILITIES AB Solute transport in subsurface environments is controlled by geological heterogeneity over multiple scales. In reactive transport characterized by a low Damkohler number, it is also controlled by the rate of kinetic mass transfer. A theory for addressing the impact of sedimentary texture on the transport of kinetically sorbing solutes in heterogeneous porous formations is derived using the Lagrangian-based stochastic methodology. The resulting model represents the hierarchical organization of sedimentary textures and associated modes of log conductivity (K) for sedimentary units through a hierarchical Markov Chain. The model characterizes kinetic sorption using a spatially uniform linear reversible rate expression. Our main interest is to investigate the effect of sorption kinetics relative to the effects of K heterogeneity on the dispersion of a reactive plume. We study the contribution of each scale of stratal architecture to the dispersion of kinetically sorbing solutes in the case of a low Damkohler number. Examples are used to demonstrate the time evolution and relative contributions of the auto-and cross-transition probability terms to dispersion. Our analysis is focused on the model sensitivity to the parameters defined at each hierarchical level (scale) including the integral scales of K spatial correlation, the anisotropy ratio, the indicator correlation scales, and the contrast in mean K between facies defined at different scales. The results show that the anisotropy ratio and integral scales of K have negligible effect upon the longitudinal dispersion of sorbing solutes. Furthermore, dispersion of sorbing solutes depends mostly on indicator correlation scales, and the contrast of the mean conductivity between units at different scales. C1 [Soltanian, Mohamad Reza; Ritzi, Robert; Dominic, David] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Dai, Zhenxue] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Huang, Chaocheng] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA. RP Soltanian, MR (reprint author), Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. EM m.rezasoltanian@gmail.com RI Soltanian Pereshkafti, Mohamad Reza/C-1316-2014; OI Dai, Zhenxue/0000-0002-0805-7621 FU National Science Foundation [EAR-0810151]; college of science and mathematics at Wright State University FX The first author was supported by the National Science Foundation under grant EAR-0810151, and also by a Graduate Fellowship from the college of science and mathematics at Wright State University. Any opinions, findings and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect those of the National Science Foundation or other supporting institutions. We gratefully acknowledge the time and expertise given by three anonymous reviewers and the associate editor. Their constructive comments and suggestions helped us to improve the article. NR 39 TC 3 Z9 3 U1 3 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD MAR PY 2015 VL 29 IS 3 BP 709 EP 726 DI 10.1007/s00477-014-0922-3 PG 18 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA CA5EG UT WOS:000348930500007 ER PT J AU Trajano, HL Pattathil, S Tomkins, BA Tschaplinski, TJ Hahn, MG Van Berkel, GJ Wyman, CE AF Trajano, Heather L. Pattathil, Sivakumar Tomkins, Bruce A. Tschaplinski, Timothy J. Hahn, Michael G. Van Berkel, Gary J. Wyman, Charles E. TI Xylan hydrolysis in Populus trichocarpa x P. deltoides and model substrates during hydrothermal pretreatment SO BIORESOURCE TECHNOLOGY LA English DT Article DE Hydrolysis; Hemicellulose; Lignin-carbohydrate complex ID PLANT-CELL WALLS; DILUTE-ACID; CORN STOVER; HOT-WATER; DELIGNIFICATION; REMOVAL; WOOD; ANTIBODIES; KINETICS; HARDWOOD AB Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa x Populus deltoides, holocellulose isolated from P. trichocarpa x P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa x P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa x P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Trajano, Heather L.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Riverside, CA 92507 USA. [Trajano, Heather L.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Trajano, Heather L.] Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Pattathil, Sivakumar; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Tomkins, Bruce A.; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Trajano, Heather L.; Pattathil, Sivakumar; Tomkins, Bruce A.; Tschaplinski, Timothy J.; Hahn, Michael G.; Van Berkel, Gary J.; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 1084 Columbia Ave, Riverside, CA 92507 USA. EM heather.trajano@ubc.ca; siva@ccrc.uga.edu; tomkinsba@ornl.gov; tschaplinstj@ornl.gov; hahn@ccrc.uga.edu; vanberkelgj@ornl.gov; cewyman@engr.ucr.edu FU Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; U.S. Government [DE-AC05-00OR22725]; Ford Motor Company for the Chair in Environmental Engineering at the University of California Riverside; Natural Sciences and Engineering Research Council of Canada; NSF Plant Genome Program [DBI-0421683, IOS-0923992] FX We thank the Office of Biological and Environmental Research in the DOE Office of Science for supporting this work through the BioEnergy Science Center (BESC). BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This manuscript has been co-authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. We acknowledge support by the Ford Motor Company for the Chair in Environmental Engineering at the University of California Riverside that augments our ability to perform such research. HLT thanks the Natural Sciences and Engineering Research Council of Canada for a PGS-D scholarship. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683 and IOS-0923992). We also wish to thank Seokwon Jung, Georgia Institute of Technology, for preparing the holocellulose used in this study. No sponsor was involved in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication. NR 35 TC 4 Z9 4 U1 5 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAR PY 2015 VL 179 BP 202 EP 210 DI 10.1016/j.biortech.2014.11.090 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AZ2CG UT WOS:000348041600029 PM 25545089 ER PT J AU Soltanian, MR Ritzi, RW Dai, ZX Huang, CC AF Soltanian, Mohamad Reza Ritzi, Robert W. Dai, Zhenxue Huang, Chao Cheng TI Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach SO CHEMOSPHERE LA English DT Article DE Reactive transport; Reactive mineral facies; Hierarchical porous media; Lagrangian-based theory ID STOCHASTIC-ANALYSIS; SPATIAL CORRELATION; AQUIFERS; SCALE; ARCHITECTURE; MACRODISPERSIVITY; CONDUCTIVITY; PARAMETERS; SORPTION AB Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (K-d). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and K-d on reactive solute dispersion. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Soltanian, Mohamad Reza; Ritzi, Robert W.] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Dai, Zhenxue] Los Alamos Natl Lab, Earth & Environm Sci Div, EES 16, Los Alamos, NM 87545 USA. [Huang, Chao Cheng] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA. RP Soltanian, MR (reprint author), Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. EM m.rezasoltanian@gmail.com; robert.ritzi@wright.edu; daiz@lanl.gov; chaocheng.huang@wright.edu RI Soltanian Pereshkafti, Mohamad Reza/C-1316-2014; OI Dai, Zhenxue/0000-0002-0805-7621 NR 46 TC 5 Z9 6 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2015 VL 122 BP 235 EP 244 DI 10.1016/j.chemosphere.2014.11.064 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA CA5MK UT WOS:000348952300032 PM 25532767 ER PT J AU Jay, DA Leffler, K Diefenderfer, HL Borde, AB AF Jay, David A. Leffler, Keith Diefenderfer, Heida L. Borde, Amy B. TI Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-Channel Water Level Variations, Pacific Ocean to Bonneville Dam SO ESTUARIES AND COASTS LA English DT Article DE Estuarine processes; Floodplain; Hydropower impacts; Nonstationary tides; Tidal river; Tides; Water levels; Wetlands ID FRASER-RIVER; SEDIMENT TRANSPORT; CLIMATE INFLUENCES; SALMONID HABITAT; COLORADO RIVER; FLOW; DISCHARGE; PROPAGATION; ENERGETICS; DYNAMICS AB This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234-km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels are increasingly controlled by river flow variations at periods from a parts per thousand currency sign1 day to years. Water level records are only slightly nonstationary near the ocean, but become highly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200 km landward, both relative to major tidal constituents and in absolute terms. Near the head of the tide at Bonneville Dam, strong diel and weekly fluctuations caused by power-peaking replace tidal daily (diurnal and semidiurnal) and fortnightly variations. Tides account for 60-70 %, river flow and seasonal processes 5-20 %, and weather 2-4 % of the total variance in the seaward 60 km of the system. In the landward 70 km of the LCRE, seasonal-fluvial variations account for 80-90 % of the variance, power-peaking 1-6 %, and tides < 5 %. In Part II, regression models of water levels and inundation patterns are used to understand the distribution of floodplain wetlands, and a system zonation is defined based on bedrock geology, hydrology, and biota. C1 [Jay, David A.; Leffler, Keith] Portland State Univ, Dept Civil & Environm Engn, Portland, OR 97207 USA. [Diefenderfer, Heida L.; Borde, Amy B.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. RP Jay, DA (reprint author), Portland State Univ, Dept Civil & Environm Engn, POB 751, Portland, OR 97207 USA. EM djay@cecs.pdx.edu; leffler@cecs.pdx.edu; heida.diefenderfer@pnnl.gov; amy.borde@pnnl.gov FU U.S. Army Corps of Engineers Columbia River Fish Mitigation Program; Bonneville Power Administration; Lower Columbia River Estuary Partnership; National Science Foundation [OCE-0929055] FX This work was supported by the U.S. Army Corps of Engineers Columbia River Fish Mitigation Program. Funding for floodplain water level data collection by PNNL was also provided in part by the Bonneville Power Administration and Lower Columbia River Estuary Partnership. R. Kaufmann and S. Zimmerman, PNNL, conducted RTK surveys and otherwise contributed to water level data collection. Partial support for D. A. Jay was provided by the National Science Foundation, grant OCE-0929055. We thank Carly McNeil for data processing and analyses for the floodplain stations. NR 54 TC 9 Z9 9 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD MAR PY 2015 VL 38 IS 2 BP 415 EP 433 DI 10.1007/s12237-014-9819-0 PG 19 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA CA3EN UT WOS:000348789300002 ER PT J AU Sekhar, PK Brosha, EL AF Sekhar, Praveen Kumar Brosha, Eric L. TI Trace Detection of 2, 4, 6-Trinitrotoluene Using Electrochemical Gas Sensor SO IEEE SENSORS JOURNAL LA English DT Article DE Explosives; TNT; mixed potential; electrochemical sensor ID SOLID-ELECTROLYTE; MASS-SPECTROMETRY; TNT; TRINITROTOLUENE AB In this paper, selective and sensitive detection of trace amounts of 2, 4, 6-trinitrotoluene is demonstrated. The screening system is based on a sampling/concentrator front end and electrochemical potentiometric gas sensors as the detector. Preferential hydrocarbon and nitrogen oxide(s) mixed potential sensors with integrated heaters were used to capture the signature of the explosive. Quantitative measurements based on hydrocarbon and nitrogen oxide sensor responses indicated that the detector sensitivity scaled proportionally with the mass of the explosives (down to 250 ng). The sensitivity was found to depend on the flow rate and sensor orientation. The sensitivity was found to increase with increasing flow rate. This detection technique has the potential to become an orthogonal technique to the existing explosive screening technologies for reducing the number of false positives/false negatives in a cost-effective manner. C1 [Sekhar, Praveen Kumar] Washington State Univ, Sch Engn & Comp Sci, Vancouver, WA 98686 USA. [Brosha, Eric L.] Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87685 USA. RP Sekhar, PK (reprint author), Washington State Univ, Sch Engn & Comp Sci, Vancouver, WA 98686 USA. EM praveen.sekhar@vancouver.wsu.edu; brosha@lanl.gov FU Washington State University Vancouver Start-Up and Mini Grant; U.S. Department of Energy through the Office of Vehicle Technologies; Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Washington State University Vancouver internal grant FX This work was supported in part by the Washington State University Vancouver Start-Up and Mini Grant, in part by the U.S. Department of Energy through the Office of Vehicle Technologies, and in part by the Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA. The work of P. K. Sekhar was supported by the Washington State University Vancouver internal grant. The associate editor coordinating the review of this paper and approving it for publication was Prof. Venkat R. Bhethanabotla. NR 25 TC 3 Z9 3 U1 1 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD MAR PY 2015 VL 15 IS 3 BP 1624 EP 1629 DI 10.1109/JSEN.2014.2364519 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA CA4EZ UT WOS:000348858300006 ER PT J AU Guereca, LP Sosa, RO Gilbert, HE Reynaga, NS AF Gueereca, Leonor Patricia Sosa, Ricardo Ochoa Gilbert, Haley E. Reynaga, Nydia Suppen TI Life cycle assessment in Mexico: overview of development and implementation SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Editorial Material DE Academic sector; Government; LCA Mexico; Private sector; Review ID BIOWASTE MANAGEMENT-SYSTEMS; NETWORKS AB Since 1999, there have been advancements in the use of life cycle assessment (LCA) in Mexico. Many of the efforts, such as training, research, and application of life cycle thinking for decision-making, have been carried out across the government, industrial, and academic sectors, but mostly as independent initiatives, without communication or cooperation between the LCA practitioners. This independent approach to LCA has resulted in the perception that LCA advances in Mexico are minimal. However, there have been advancements and notable achievements. This paper presents a review of the history of the application of LCA in Mexico over the past 15 years. Information was obtained from bibliographic research (i.e., scientific journals, conferences proceedings, thesis, national reports), informal interviews, and the experiences of the authors. Results show that up till 2010, the research and academic communities were leading LCA efforts with a focus on waste management topics. After 2010, there was a shift to study energy systems, carbon and water footprint analysis, and the construction sector. In the private sector, early LCA interest came from companies that were heavily invested in international markets and susceptible to growing international and national support for environmental regulation, such as CEMEX, the mining sector, the footwear sector, Mexican Petroleum (PEMEX), and Federal Electricity Commission. Moreover the government sector has attracted international recognition for its National Strategy for Sustainable Consumption and Production, which is based on an LCA approach. Accordingly, LCA has thrived and continues to grow in Mexico. However, to improve future LCA studies, policies, and analysis, a national life cycle inventory (LCI) database needs to be developed and maintained, and care will need to be taken to ensure that there is proper guidance and training to safeguard the quality of LCA methods and results,. C1 [Gueereca, Leonor Patricia; Sosa, Ricardo Ochoa] Univ Nacl Autonoma Mexico, Inst Ingenieria, Coyoacan 04510, DF, Mexico. [Sosa, Ricardo Ochoa; Gilbert, Haley E.] Ctr Mario Molina Estudios Estrateg Energia & Medi, Bosques De Las Lomas 05120, Cuajimalpa Dist, Mexico. [Gilbert, Haley E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Reynaga, Nydia Suppen] Ctr Anal Ciclo Vida & Diseno Sustentable, Atizapan De Zaragoza 52950, Estado De Mexic, Mexico. RP Guereca, LP (reprint author), Univ Nacl Autonoma Mexico, Inst Ingenieria, Ciudad Univ, Coyoacan 04510, DF, Mexico. EM LGuerecaH@iingen.unam.mx NR 56 TC 1 Z9 2 U1 7 U2 34 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 EI 1614-7502 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD MAR PY 2015 VL 20 IS 3 BP 311 EP 317 DI 10.1007/s11367-014-0844-9 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CA9NA UT WOS:000349250100001 ER PT J AU Sills, RB Thouless, MD AF Sills, R. B. Thouless, M. D. TI Cohesive-length scales for damage and toughening mechanisms SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article; Proceedings Paper CT International Workshop on Computational and Experimental Mechanics of Advanced Materials (CEMAM) CY JUL 01-03, 2013 CL Thuwal, SAUDI ARABIA DE Cohesive zone; Composites; Intrinsic toughening; Extrinsic toughening; Cohesive length; Fiber bridging; Damage ID BRIDGING LAWS; DELAMINATION; COMPOSITES; TOUGHNESS; STRENGTH; FRACTURE; MODEL AB While toughening and damage might seem to be two contradictory concepts for the mechanics of crack growth, they are actually the same phenomena perceived from two different vantage points. Similarly, the concepts of extrinsic and intrinsic toughening, defined in terms of whether a toughening mechanism occurs behind or ahead of a crack, depend on the definition of a crack tip that, in the absence of a singularity, can be somewhat arbitrary. Cohesive-zone models provide useful numerical tools for rationalizing these different concepts and, here, we use them to show how different perspectives of toughening and damage can be understood. The concept of a cohesive length, defined in terms of an effective modulus and the magnitudes of the local tractions and displacements (or work done), can be generalized so that it can be used at any load before failure, and at any point along the interface. We show that this general concept allows multiple damage and toughening mechanisms, each with its own characteristic cohesive length, to be described and tracked in terms of a single traction separation law. In general, the onset of damage corresponds to an increase in cohesive length. This tends to weaken a material unless compensated for by a sufficiently high increment of additional toughness. The ratio between the cohesive length of a particular damage/toughening mechanism and any relevant geometrical length determines whether the mechanism needs to be included in the cohesive-zone formulation. Furthermore, it appears that diffuse damage and crack jumping between interfaces may be induced when the cohesive length of a damage mechanism is large compared to a micro-structural length. It is speculated that this may be of some relevance to the design of hierarchical materials. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Sills, R. B.] Sandia Natl Labs, Livermore, CA 94550 USA. [Thouless, M. D.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Thouless, M. D.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Thouless, MD (reprint author), Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. EM thouless@umich.edu FU Department of Energy through the Clean Energy Research Center Clean Vehicle Consortium [DE-PI0000012]; Otto Mansted fund; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX MDT was partially supported by the Department of Energy under Award Number DE-PI0000012, through the Clean Energy Research Center Clean Vehicle Consortium. MDT also acknowledges support from the Otto Mansted fund for a visit to the DanishTechnical University. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 14 TC 5 Z9 5 U1 4 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD MAR 1 PY 2015 VL 55 SI SI BP 32 EP 43 DI 10.1016/j.ijsolstr.2014.06.010 PG 12 WC Mechanics SC Mechanics GA CA8TH UT WOS:000349193300004 ER PT J AU Gundiah, G Gascon, M Bizarri, G Derenzo, SE Bourret-Courchesne, ED AF Gundiah, Gautam Gascon, Martin Bizarri, Gregory Derenzo, Stephen E. Bourret-Courchesne, Edith D. TI Structure and scintillation of Eu2+-activated calcium bromide iodide SO JOURNAL OF LUMINESCENCE LA English DT Article DE Scintillator; Solid solutions; Cal(2); Europium; Calcium bromide iodide ID INORGANIC-COMPOUNDS; CRYSTAL-STRUCTURE; X-RAY; SYSTEM; BACL2; EU2+ AB We report the structure and scintillation properties of Eu2+-activated calcium bromide iodide. CaBr0.7I1.3 was the only composition that could be synthesized in the CaBr2-Cal(2) system. The compound has an effective atomic number of 47 and crystallizes in a trigonal crystal system with the R-3 space group and a density of 3.93 g/cc. The structure is layered and contains Ca in an octahedral environment with the Br/I anions jointly occupying a single site. Eu2+-activated samples show an intense narrow emission, characteristic of the 5d-4f transition of Eu2+, when excited with UV or X-rays. The sample with 0.5% Eu shows a light output of 63,000 ph/MeV at 662 keV with 96% of the light emitted with a monoexponential decay time of 1332 ns. An energy resolution of 10.4% full width at half maximum (FWHM) has been achieved for 662 keV gamma rays at room temperature. Published by Elsevier B.V. C1 [Gundiah, Gautam; Gascon, Martin; Bizarri, Gregory; Derenzo, Stephen E.; Bourret-Courchesne, Edith D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gundiah, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM GGundiah@lbl.gov FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office; U.S. Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN RD); Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work has been supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, and the U.S. Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) and carried out at the Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231. This support does not constitute an express or implied endorsement on the part of the Government. We thank Dr. G. Wu (University of California, Santa Barbara) for the crystal structure solution; Drs. E. C. Samulon, M. J. Weber, Z. Yan, I. Khodyuk and D. Perrodin for useful discussions and S. M. Hanrahan for measurements. NR 28 TC 4 Z9 5 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD MAR PY 2015 VL 159 BP 274 EP 279 DI 10.1016/j.jlumin.2014.11.031 PG 6 WC Optics SC Optics GA CA5MZ UT WOS:000348953800038 ER PT J AU Frazer, L Lenferink, EJ Chang, KB Poeppelmeier, KR Stern, NP Ketterson, JB AF Frazer, Laszlo Lenferink, Erik J. Chang, Kelvin B. Poeppelmeier, Kenneth R. Stern, Nathaniel P. Ketterson, John B. TI Evaluation of defects in cuprous oxide through exciton luminescence imaging SO JOURNAL OF LUMINESCENCE LA English DT Article DE Excitons; Cuprous oxide; Cu2O; Vacancies; Stress; Hyperspectral imaging ID BOSE-EINSTEIN CONDENSATE; ELECTRICAL-CONDUCTIVITY; PHOTOELECTRIC PROPERTIES; COPPER VACANCIES; OXYGEN VACANCIES; POINT-DEFECTS; CU2O; PARAEXCITONS; RELAXATION; TEMPERATURES AB The various decay mechanisms of excitons in cuprous oxide (Cu2O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing that the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies. (C) 2014 Elsevier B.V. All rights reserved. C1 [Frazer, Laszlo; Lenferink, Erik J.; Stern, Nathaniel P.; Ketterson, John B.] Northwestern Univ, Dept Phys, Evanston, IL 60208 USA. [Chang, Kelvin B.; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Poeppelmeier, Kenneth R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ketterson, John B.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. RP Frazer, L (reprint author), Northwestern Univ, Dept Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM jl@laszlofrazer.com RI Stern, Nathaniel/A-5055-2009; OI Frazer, Laszlo/0000-0003-3574-8003 FU Institute for Sustainability and Energy at Northwestern (ISEN); NSF [DMR-1307698, IGERT DGE-0801685]; Argonne National Laboratory under U.S. Department of Energy [DE-AC02-06CH11357]; Center for Inverse Design, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC36-08GO28308]; MRSEC program of the NSF [DMR-1121262] FX L.F., E.L., and J.K. gratefully acknowledge NSF IGERT DGE-0801685 and funding by the Institute for Sustainability and Energy at Northwestern (ISEN). Crystal growth was supported by NSF DMR-1307698 and in part by Argonne National Laboratory under U.S. Department of Energy Contract DE-AC02-06CH11357. K.C. was supported as part of the Center for Inverse Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-AC36-08GO28308. This work made use of the OMM and Magnet, Low Temperature, and Optical Facilities supported by the MRSEC program of the NSF (DMR-1121262) at the Materials Research Center of Northwestern. N.P.S. acknowledges support as an Alfred P. Sloan Research Fellow. NR 49 TC 2 Z9 2 U1 3 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD MAR PY 2015 VL 159 BP 294 EP 302 DI 10.1016/j.jlumin.2014.11.035 PG 9 WC Optics SC Optics GA CA5MZ UT WOS:000348953800041 ER PT J AU Rossi, ML Taylor, CD AF Rossi, Matthew L. Taylor, Christopher D. TI First-principles insights into the nature of zirconium-iodine interactions and the initiation of iodine-induced stress-corrosion cracking SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ZIRCALOY-4 CLADDING TUBES; COMPACT EFFECTIVE POTENTIALS; EFFECTIVE CORE POTENTIALS; EXPONENT BASIS-SETS; MOLECULAR CALCULATIONS; ALCOHOLIC SOLUTIONS; PCI FAILURES; ZR ALLOYS; FUEL; METAL AB We present research relating to iodine-induced stress corrosion cracking (ISCC) and draw insights relevant to the initiation process. The means by which this corrosion initiates is currently unknown. Our previous work has highlighted some of the chemical processes and properties that must be considered in ISCC, and enable us to make some possible connections in the overall corrosion mechanism. A series of calculations has been performed to better characterize the iodine interaction with zirconium, following a hybrid approach that integrates both molecular and solid-state calculations for incorporation into large scale simulations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Rossi, Matthew L.; Taylor, Christopher D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rossi, ML (reprint author), US Nucl Regulatory Commiss, Rockville, MD 20852 USA. EM chemistry.mlr@gmail.com FU Consortium for Advanced Simulation of Light Water Reactors; Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U. S. Department of Energy [DE-AC05-00OR22725]; Los Alamos National Security LLC for the National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U. S. Department of Energy Contract No. DE-AC05-00OR22725. The Los Alamos National Security LLC for the National Nuclear Security Administration of the US Department of Energy under Contract DE-AC52-06NA25396. NR 58 TC 2 Z9 2 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 1 EP 10 DI 10.1016/j.jnucmat.2014.11.114 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600001 ER PT J AU Lupinacci, A Chen, K Li, Y Kunz, M Jiao, Z Was, GS Abad, MD Minor, AM Hosemann, P AF Lupinacci, A. Chen, K. Li, Y. Kunz, M. Jiao, Z. Was, G. S. Abad, M. D. Minor, A. M. Hosemann, P. TI Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; STRESS-CORROSION CRACKING; MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; INDENTATION; HARDNESS; ELECTROMIGRATION; REACTORS; FISSION; PROTONS AB Characterizing irradiation damage in materials utilized in light water reactors is critical for both material development and application reliability. Here we use both nanoindentation and Laue microdiffraction to characterize both the mechanical response and microstructure evolution due to irradiation. Two different irradiation conditions were considered in 304 stainless steel: 1 dpa and 10 dpa. In addition, an annealed condition of the 10 dpa specimen for 1 h at 500 degrees C was evaluated. Nanoindentation revealed an increase in hardness due to irradiation and also revealed that hardness saturated in the 10 dpa case. Broadening using Laue microdiffraction peaks indicates a significant plastic deformation in the irradiated area that is in good agreement with both the SRIM calculations and the nanoindentation results. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lupinacci, A.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chen, K.; Li, Y.] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Shaanxi, Peoples R China. [Kunz, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jiao, Z.; Was, G. S.] Univ Michigan, Dept Nucl Engn, Ann Arbor, MI 48109 USA. [Abad, M. D.; Hosemann, P.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA. RP Chen, K (reprint author), 4169 Etcheverry Hall, Berkeley, CA USA. EM kchenlbl@gmail.com; Peterh@berkeley.edu RI xjtu, campnano/Q-1904-2015; Foundry, Molecular/G-9968-2014; Abad, Manuel/D-5124-2017; OI Abad, Manuel/0000-0002-5935-5709; Hosemann, Peter/0000-0003-2281-2213 FU Office of Science, DOE-BES, Materials Science Division [DE-AC02-05CH11231]; National Young 1000 Talents Program of China; EPRI; DOE-NEUP [DE-FOA-0000799] FX The ALS is supported by the Director, Office of Science, DOE-BES, Materials Science Division, under Contract No. DE-AC02-05CH11231 at LBNL. Additional support for ALS beam line 12.3.2 comes from NSF (0416243). KC acknowledges the support from the National Young 1000 Talents Program of China. We want to thank EPRI for supporting this research as well as DOE-NEUP under the award DE-FOA-0000799 NR 44 TC 15 Z9 15 U1 12 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 70 EP 76 DI 10.1016/j.jnucmat.2014.11.050 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600009 ER PT J AU Janney, DE Madden, JW O'Holleran, TP AF Janney, Dawn E. Madden, James W. O'Holleran, Thomas P. TI High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RARE-EARTH-ELEMENTS; METALLIC NUCLEAR-FUELS; MINOR ACTINIDES; BEHAVIOR; LANTHANIDES AB Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with similar to 3 at.% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is similar to 2-5 at.% La, 15-20% Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a similar to 0.54 nm. The composition of the only low-Am RE inclusion studied in detail is similar to 35-40 at.% O, 40-45% Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd2O3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases. (C) 2014 Elsevier B.V. All rights reserved. C1 [Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Janney, DE (reprint author), Idaho Natl Lab, Mail Stop 6188, Idaho Falls, ID 83415 USA. EM dawn.janney@inl.gov; james.madden@inl.gov; dr.tpoh@hotmail.com FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX The research presented here was supported by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 25 TC 1 Z9 1 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 106 EP 114 DI 10.1016/j.jnucmat.2014.12.016 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600012 ER PT J AU Miller, BD Gan, J Keiser, DD Robinson, AB Jue, JF Madden, JW Medvedev, PG AF Miller, B. D. Gan, J. Keiser, D. D., Jr. Robinson, A. B. Jue, J. F. Madden, J. W. Medvedev, P. G. TI Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7 wt%Mo dispersion fuels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NONDESTRUCTIVE ANALYSES; LATTICE FORMATION; 7.9-PERCENT FIMA; RIM STRUCTURE; KRYPTON IONS; HIGH BURNUP; UO2 FUEL; MOLYBDENUM; TEMPERATURE; METALS AB Transmission electron microscopy characterization of irradiated U-7 wt%Mo dispersion fuel were performed on various U-Mo fuel samples to understand the effect of irradiation parameters (fission density, fission rate, and temperature) on the self-organized fission-gas-bubble superlattice that forms in the irradiated U-Mo fuel. The bubble superlattice was seen to form a face centered cubic structure coherent with the host U-7 wt%Mo body-centered cubic structure. At a fission density between 3.0 and 4.5 x 10(21) fiss/cm(3), the superlattice bubbles appear to have reached a saturation size with additional fission gas associated with increasing burnup predominately accumulating along grain boundaries. At a fission density of similar to 4.5 x 10(21) fiss/cm(3), the U-7 wt%Mo microstructure starts to undergo grain subdivision and can no longer support the ordered bubble superlattice. The sub-divided fuel grains are less than 500 nm in diameter with what appears to be micron-size fission-gas bubbles present on the grain boundaries. Solid fission products typically decorate the inside surface of the micron-sized fission-gas bubbles. Residual superlattice bubbles are seen in areas where fuel grains remain micron sized. Potential mechanisms of the formation and collapse of the bubble superlattice are discussed. Published by Elsevier B.V. C1 [Miller, B. D.; Gan, J.; Keiser, D. D., Jr.; Robinson, A. B.; Jue, J. F.; Madden, J. W.; Medvedev, P. G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Keiser, DD (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Dennis.Keiser@inl.gov FU U.S. Department of Energy [DE-AC07-05ID14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC, under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 42 TC 4 Z9 4 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 115 EP 121 DI 10.1016/j.jnucmat.2014.12.012 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600013 ER PT J AU Jiang, WL Jung, HJ Kovarik, L Wang, ZY Roosendaal, TJ Zhu, ZH Edwards, DJ Hu, SY Henager, CH Kurtz, RJ Wang, YQ AF Jiang, Weilin Jung, Hee Joon Kovarik, Libor Wang, Zhaoying Roosendaal, Timothy J. Zhu, Zihua Edwards, Danny J. Hu, Shenyang Henager, Charles H., Jr. Kurtz, Richard J. Wang, Yongqiang TI Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STACKING-FAULT TETRAHEDRA; HIGH-TEMPERATURES; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; FCC METALS; IRRADIATION; DIFFUSION; CU; EVOLUTION; ISSUES AB As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the < 100 > axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C-SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C-SiC single crystal at 1573 K has been determined to be 3.8 +/- 0.4 x 10(-19) m(2)/s. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang; Henager, Charles H., Jr.; Kurtz, Richard J.] Pacif Northwest Natl Lab, Richland, WA 99354 USA. [Wang, Yongqiang] Los Alamos Natl Lab, Los Alamos, NM USA. RP Jiang, WL (reprint author), Pacif Northwest Natl Lab, Richland, WA 99354 USA. EM weilin.jiang@pnnl.gov RI Kovarik, Libor/L-7139-2016; OI HU, Shenyang/0000-0002-7187-3082; Henager, Chuck/0000-0002-8600-6803; Jiang, Weilin/0000-0001-8302-8313 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research; Center for Integrated Nanotechnologies (CINT) FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Contract DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. Jiang likes to thank Robert Colby for his early TEM effort, Bruce Arey and Alicia Certain for their FIB work, and Karl Mattlin for vacuum annealing. Ion implantation was conducted at Ion Beam Materials Laboratory through a partial support from Center for Integrated Nanotechnologies (CINT), a DOE nanoscience user facility jointly operated by Los Alamos and Sandia National Laboratories. NR 44 TC 3 Z9 3 U1 2 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 146 EP 155 DI 10.1016/j.jnucmat.2014.12.071 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600017 ER PT J AU Antoshchenkova, E Luneville, L Simeone, D Stoller, RE Hayoun, M AF Antoshchenkova, E. Luneville, L. Simeone, D. Stoller, R. E. Hayoun, M. TI Fragmentation of displacement cascades into subcascades: A molecular dynamics study SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BINARY-COLLISION APPROXIMATION; PRIMARY DAMAGE CREATION; IRRADIATED FCC METALS; COMPUTER-SIMULATION; RECOIL ENERGY; DEFECT PRODUCTION; RADIATION-DAMAGE; HCP METALS; COPPER; IRON AB The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects. A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved. C1 [Antoshchenkova, E.; Simeone, D.] CEA, CNRS CEA ECP, CEN Saclay, DEN,SRMA,LA2M, F-91191 Gif Sur Yvette, France. [Luneville, L.] CEA, CNRS CEA ECP, CEN Saclay, DEN,SERMA,LLPR, F-91191 Gif Sur Yvette, France. [Luneville, L.; Simeone, D.] Ecole Cent Paris, CNRS CEA ECP, Lab SPMS, F-92292 Chatenay Malabry, France. [Stoller, R. E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Hayoun, M.] Ecole Polytech, CNRS, CEA DSM, Lab Solides Irradies, F-91128 Palaiseau, France. RP Antoshchenkova, E (reprint author), CEA, CNRS CEA ECP, CEN Saclay, DEN,SRMA,LA2M, F-91191 Gif Sur Yvette, France. EM ekaterina.antoshchenkova@polytechnique.edu FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX Support for Stoller at the Oak Ridge National Laboratory was provided by the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 41 TC 4 Z9 5 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 168 EP 175 DI 10.1016/j.jnucmat.2014.12.025 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600020 ER PT J AU Folsom, C Xing, CH Jensen, C Ban, H Marshall, DW AF Folsom, Charles Xing, Changhu Jensen, Colby Ban, Heng Marshall, Douglas W. TI Experimental measurement and numerical modeling of the effective thermal conductivity of TRISO fuel compacts SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PARTICLE FUEL; PERFORMANCE; FABRICATION; SILICON C1 [Folsom, Charles; Xing, Changhu; Jensen, Colby; Ban, Heng] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. [Marshall, Douglas W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ban, H (reprint author), 4130 Old Main Hill, Logan, UT 84322 USA. EM heng.ban@usu.edu OI Jensen, Colby/0000-0001-8925-7758 NR 40 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 198 EP 205 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600023 ER PT J AU El-Atwani, O Hattar, K Hinks, JA Greaves, G Harilal, SS Hassanein, A AF El-Atwani, O. Hattar, K. Hinks, J. A. Greaves, G. Harilal, S. S. Hassanein, A. TI Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GRAIN-BOUNDARIES; RADIATION-DAMAGE; ION IRRADIATION; ENERGY; MOLYBDENUM; MICROSTRUCTURE; EVOLUTION; PLATELETS; SILICON; GROWTH C1 [El-Atwani, O.; Harilal, S. S.; Hassanein, A.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [El-Atwani, O.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [El-Atwani, O.] Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [El-Atwani, O.; Harilal, S. S.; Hassanein, A.] Ctr Mat Extreme Environm, W Lafayette, IN 47907 USA. [Hattar, K.] Sandia Natl Labs, Dept Radiat Solid Interact, Albuquerque, NM 87185 USA. [Hinks, J. A.; Greaves, G.] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England. [Harilal, S. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP El-Atwani, O (reprint author), Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; Greaves, Graeme/0000-0001-9656-5185; Hinks, Jonathan/0000-0002-7069-1789; El Atwani, Osman/0000-0002-1862-7018 NR 42 TC 13 Z9 13 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 216 EP 223 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600025 ER PT J AU Haschke, JM Dinh, LN McLean, W AF Haschke, John M. Dinh, Long N. McLean, William, II TI The plutonium-oxygen phase diagram in the 25-900 degrees C range: Non-existence of the PuO1.515 phase SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID OXIDATION AB Evaluation of data for phases formed in the Pu-O system at temperatures below 900 degrees C shows that the observed oxides are not at equilibrium. Results are consistent with coexistence of a hexagonal solid solution (hex-PuO1.5+z, 0 <= z <= 0.010) and a cubic phase (cub-PuO1.60) in equilibrium at 800 degrees C, but fail to confirm that the O/Pu ratio of the body-centered-cubic (bcc) oxide formed near the sesquioxide composition is 1.515 (1.52) or that bcc-PuO1.515 is formed by the peritectic reaction of hex-PuO1.510 with cub-PuO1.60. Stable Pu(IV)/Pu(III) ratios observed for products of the Pu-H2O reaction correspond to members of the PunO2n-2 homologous series, but a product is not formed at O/Pu = 1.515. Metastable bcc-PuO1.50 (n = 4) and stable hex-PuO1.5+z coexist below 285 degrees C, the point at which reversible eutectic decomposition of cubic PuO1.60 (n = 5) produces a non-equilibrium mixture of bcc-PuO1.50 and sub-stoichiometric dioxide (PuO2-y). Transformation of bcc-PuO1.50 to stable hex-PuO1.50 and reactions of the hexagonal oxide to form higher-composition cubic phases are kinetically hindered. An alternative diagram describing non-equilibrium chemical behavior of the Pu-O system is presented. (C) 2014 Elsevier B. V. All rights reserved. C1 [Haschke, John M.; Dinh, Long N.; McLean, William, II] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,Mail Stop L-091, Livermore, CA 94551 USA. EM Dinh1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 20 TC 0 Z9 0 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 275 EP 280 DI 10.1016/j.jnucmat.2014.12.106 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600033 ER PT J AU Hofer, C Stergar, E Maloy, SA Wang, YQ Hosemann, P AF Hofer, C. Stergar, E. Maloy, S. A. Wang, Y. Q. Hosemann, P. TI An intermetallic forming steel under radiation for nuclear applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BEAM-IRRADIATED MATERIALS; ATOM-PROBE; STAINLESS-STEEL; MARAGING-STEEL; FE-19WT-PERCENT-CR ALLOYS; MICROSTRUCTURAL EVOLUTION; PRECIPITATION; FE; BEHAVIOR; INDENTATION AB In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hofer, C.] Univ Leoben, Dept Phys Met & Mat Testing, A-8700 Leoben, Austria. [Hofer, C.; Hosemann, P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Stergar, E.] CEN SCK, Belgian Nucl Res Ctr, B-2400 Mol, Belgium. [Maloy, S. A.; Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Hosemann, P (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 FU DOE-NEET program [DE-NE0000536000]; Center for Advanced Energy Studies (CAES) FX In addition we want to thank the DOE-NEET program for supporting this research under the #DE-NE0000536000.; Atom Probe tomography was supported by the Center for Advanced Energy Studies (CAES) a user facility at INL. NR 61 TC 1 Z9 1 U1 5 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 361 EP 368 DI 10.1016/j.jnucmat.2014.12.099 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600045 ER PT J AU Keiser, DD Perez, E Wiencek, T Leenaers, A Van den Berghe, S AF Keiser, Dennis D., Jr. Perez, Emmanuel Wiencek, Tom Leenaers, Ann Van den Berghe, Sven TI Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U-7Mo/Al matrix dispersion fuel plate SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HEAVY-ION IRRADIATION; PROTON IRRADIATION; THERMAL-OXIDATION; ZIRCONIUM NITRIDE; HIGH-DENSITY; GROWTH; COATINGS; MO; MOLYBDENUM; DEPOSITION AB The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 mu m-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 degrees C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application. Published by Elsevier B.V. C1 [Keiser, Dennis D., Jr.; Perez, Emmanuel] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Wiencek, Tom] Argonne Natl Lab, Argonne, IL 60439 USA. [Leenaers, Ann; Van den Berghe, Sven] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium. RP Keiser, DD (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Dennis.Keiser@inl.gov OI Van den Berghe, Sven/0000-0002-2537-4645 FU U.S. Department of Energy [DE-AC07-05ID14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. Acknowledgment is given to personnel at the Korean Atomic Energy Research Institute for supplying the centrifugally atomized U-7Mo powder. NR 50 TC 2 Z9 2 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 406 EP 418 DI 10.1016/j.jnucmat.2014.12.036 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600050 ER PT J AU Ferroni, F Hammond, KD Wirth, BD AF Ferroni, Francesco Hammond, Karl D. Wirth, Brian D. TI Sputtering yields of pure and helium-implanted tungsten under fusion-relevant conditions calculated using molecular dynamics SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LOW-ENERGY HELIUM; TRANSITION-METALS; BUBBLE FORMATION; IRRADIATION; SIMULATIONS; SURFACES AB This study uses atomistic simulations to calculate the sputtering yield of tungsten in the presence and absence of near-surface helium clusters. We find that near-surface helium in the concentrations tested (consistent with 100 eV implantation fluences of 1: 0 and 2: 2 x 10(19) He m(-2) at a flux on the order of 1025 He m(-2) s(-1)) has a negligible effect on the sputtering yield, suggesting that any changes in sputtering that might be observed experimentally are due either to much higher near-surface concentrations of helium or due to other structural changes in the tungsten that would occur only at much higher helium fluences than we are able to probe using molecular dynamics simulation. We do find a dependence on surface orientation and incident helium energy: comparing {0 0 1}, {1 1 0}, and {1 1 1} surfaces, we find that {1 1 0} surfaces at high energy show the most sputtering, while {1 1 1} surfaces at low energy show the least. We attribute these differences in surface orientation to the more closely-packed nature of {1 1 0} surfaces compared to the other two orientations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ferroni, Francesco] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Hammond, Karl D.; Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Wirth, Brian D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wirth, BD (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM bdwirth@utk.edu RI Hammond, Karl/I-3604-2012; Wirth, Brian/O-4878-2015 OI Hammond, Karl/0000-0002-5424-8752; Wirth, Brian/0000-0002-0395-0285 FU Office of Science of the U.S. Department of Energy [DE-AC02-06CH11231]; Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Fusion Energy Sciences [DE-SC00-08875]; Plasma-Surface Interactions Science Center [DE-SC00-02060]; Engineering and Physical Research Council's (EPSRC) Centre of Doctoral Training (CDT) in Fusion Energy Science and Technology; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors express their thanks to Dr. Marie Backman at UT Knoxville for helpful discussions. This work used computing resources at the National Energy Research and Scientific Computing Facility (NERSC) at Lawrence Berkeley National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11231; the IRIDIS High Performance Computing Facility and associated support services at the University of Southampton; and the Newton computing facility at the University of Tennessee. KDH and BDW acknowledge funding support from the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions, funded the by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Fusion Energy Sciences under award DE-SC00-08875, and through the Plasma-Surface Interactions Science Center, funded the U.S. Department of Energy, Office of Fusion Energy Sciences under award DE-SC00-02060. FF also acknowledges a travel grant from the Engineering and Physical Research Council's (EPSRC) Centre of Doctoral Training (CDT) in Fusion Energy Science and Technology.; Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 24 TC 5 Z9 5 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 419 EP 424 DI 10.1016/j.jnucmat.2014.12.090 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600051 ER PT J AU Perron, A Turchi, PEA Landa, A Soderlind, P Ravat, B Oudot, B Delaunay, F AF Perron, A. Turchi, P. E. A. Landa, A. Soederlind, P. Ravat, B. Oudot, B. Delaunay, F. TI The Pu-U-Am system: An ab initio informed CALPHAD thermodynamic study SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PHASE-TRANSFORMATIONS; AMERICIUM-URANIUM; THERMO-CALC; PLUTONIUM; ALLOYS; ZR AB Phase diagram and thermodynamic properties of the Am-U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu-U and Am-Pu thermodynamic assessments are combined to build a Pu-U-Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful delta-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies. Published by Elsevier B.V. C1 [Perron, A.; Turchi, P. E. A.; Landa, A.; Soederlind, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ravat, B.; Oudot, B.; Delaunay, F.] CEA, Ctr Valduc, F-21120 Is Sur Tille, France. RP Perron, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM perron1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program [12-SI-008]; CEA-Centre de Valduc (France); Post-doctoral program at LLNL FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Work at LLNL was funded by the Laboratory Directed Research and Development Program under project tracking code 12-SI-008. This work was done as part of the international agreement on cooperation between DOE-NNSA and CEA-DAM in fundamental science supporting stockpile stewardship. A.P. gratefully acknowledges the financial support from the CEA-Centre de Valduc (France), and the Post-doctoral program at LLNL. NR 46 TC 1 Z9 1 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2015 VL 458 BP 425 EP 441 DI 10.1016/j.jnucmat.2014.12.101 PG 17 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CA8KS UT WOS:000349169600052 ER PT J AU Sun, Y Hsieh, YC Chang, LC Wu, PW Lee, JF AF Sun, Yu Hsieh, Yu-Chi Chang, Li-Chung Wu, Pu-Wei Lee, Jyh-Fu TI Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Palladium; Ruthenium; Platinum; Oxygen reduction reaction; Core-shell nanoparticles ID CORE-SHELL NANOPARTICLES; PLATINUM-MONOLAYER ELECTROCATALYSTS; FUEL-CELL CATHODES; DEALLOYED PT-CU; CATALYTIC-ACTIVITY; ALLOY NANOPARTICLES; O-2 REDUCTION; SULFURIC-ACID; SURFACE; ENHANCEMENT AB Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA mu g(pt)(-1), as compared to that of commercially available Pt nanopartides (0.107 mA mu g(pt)(-1)). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sun, Yu; Chang, Li-Chung] Natl Chiao Tung Univ, Grad Program Sci & Technol Accelerator Light Sour, Hsinchu 300, Taiwan. [Hsieh, Yu-Chi] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wu, Pu-Wei] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Lee, Jyh-Fu] Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan. RP Wu, PW (reprint author), Natl Chiao Tung Univ, Grad Program Sci & Technol Accelerator Light Sour, Hsinchu 300, Taiwan. EM ppwu@mail.nctu.edu.tw OI Hsieh, Yu-Chi/0000-0003-0823-6571 FU Ministry of Science and Engineering [NSC100-2221-E009-075-MY3, 103-2221-E-009-034-MY3]; National Synchrotron Radiation Research Center FX Financial supports from Ministry of Science and Engineering (NSC100-2221-E009-075-MY3; 103-2221-E-009-034-MY3) and National Synchrotron Radiation Research Center are greatly appreciated. NR 62 TC 7 Z9 7 U1 12 U2 77 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2015 VL 277 BP 116 EP 123 DI 10.1016/j.jpowsour.2014.11.102 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CA5OF UT WOS:000348957000015 ER PT J AU Hu, EY Bak, SM Senanayake, SD Yang, XQ Nam, KW Zhang, LL Shao, MH AF Hu, Enyuan Bak, Seong Min Senanayake, Sanjaya D. Yang, Xiao-Qing Nam, Kyung-Wan Zhang, Lulu Shao, Minhua TI Thermal stability in the blended lithium manganese oxide - Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion batteries; Structural evolution; Thermal stability; Phase transformation; Gas evolution ID LI-ION BATTERIES; ELECTROCHEMICAL EVALUATION; INSERTION MATERIAL; STRUCTURAL-CHANGES; DECOMPOSITION; LIMN2O4; XRD; LICO1/3NI1/3MN1/3O2; LINI0.8CO0.2O2; PERFORMANCE AB Thermal stabilities of a series of blended LiMn2O4 (LMO) LiNi(1/3)Coi(1/3)Mn(1/3)O(2) (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25 degrees C-580 degrees C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250 degrees C. Formation of MnO with rock-salt structure started at 520 degrees C. This observation is in contrast to the previous report for chemically delithiated LMO in air, in which a process of lambda-MnO2 transforming to beta-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Nam, Kyung-Wan] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 100715, South Korea. [Zhang, Lulu; Shao, Minhua] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China. RP Yang, XQ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM xyang@bni.gov; knam@dongguk.edu; kemshao@ust.hk RI Nam, Kyung-Wan/E-9063-2015; Hu, Enyuan/D-7492-2016; Bak, Seong Min/J-4597-2013; Senanayake, Sanjaya/D-4769-2009; OI Nam, Kyung-Wan/0000-0001-6278-6369; Hu, Enyuan/0000-0002-1881-4534; Senanayake, Sanjaya/0000-0003-3991-4232; Bak, Seong-Min/0000-0002-1626-5949; Shao, Minhua/0000-0003-4496-0057 FU U.S. Department of Energy; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Hong Kong University of Science and Technology; Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning grant - Korea government Ministry of Trade, Industry Energy [20142020103090] FX This work was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DE-AC02-98CH10886. Use of the NSLS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. MS is supported by a start-up grant from the Hong Kong University of Science and Technology. This work was also supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning grant funded by the Korea government Ministry of Trade, Industry & Energy (Project no. 20142020103090). The authors appreciate the invaluable discussion with Prof. Jean-Marie Tarascon. NR 35 TC 3 Z9 3 U1 12 U2 165 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2015 VL 277 BP 193 EP 197 DI 10.1016/j.jpowsour.2014.12.015 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CA5OF UT WOS:000348957000024 ER PT J AU Spanos, C Turney, DE Fthenakis, V AF Spanos, Constantine Turney, Damon E. Fthenakis, Vasilis TI Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Lead-acid; Nickel-zinc; Manganese dioxide; Life-cycle analysis; Cumulative energy-demand; Global-warming potential ID GREENHOUSE-GAS EMISSIONS; PLUG-IN HYBRID; ELECTRIC VEHICLES; LITHIUM-ION; ENVIRONMENTAL ASSESSMENT; PHOTOVOLTAIC SYSTEMS; ENERGY ANALYSIS; STORAGE; IMPACT; REDOX AB This paper presents a comprehensive literature review and a full process-based life-cycle analysis (LCA) of three types of batteries, viz., (1) valve-regulated lead-acid (VRLA), (2) flow-assisted nickel-zinc (NiZn), and (3) non-flow manganese dioxide-zinc (MnO2/Zn) for stationary-grid applications. We used the Ecoinvent life-cycle inventory (LCI) databases for the VRLA battery, coupled with inventory data from the CUNY Energy Institute (El) for the NiZn and MnO2/Zn batteries under development there. In doing so, two indicators were tracked: the cumulative energy demand (CED) and global warming potential (GWP) of the upstream processes for producing, manufacturing, and transporting the finished product, as well as the effects of end-of-life impacts. We conducted a normalization of CED and GWP according to Wh of battery capacity to illustrate the effects of discharge rate on this commonly reported metric. We subsequently normalized according to the cumulative kWh of electricity throughput (kWh(throughput)) to account for cycle life and efficiency data. This was done considering slow- and fast-discharge parameters for PbA chemistry and for current- and projected- parameters for the NiZn and MnO2/Zn chemistries to examine all possible effects. Additionally, the effects of recycle content on reducing CED and GWP were considered. Discharge rate was seen to have a significant effect for the VRLA system, with impacts over 41-46% higher in terms of CED and GWP at the 2-h discharge time, versus an 8-h discharge time, when considering the entire life cycle (kWh(throughput) normalization). With kWh(throughput) normalization, the NiZn- chemistry under development has lower CED and GWP than PbA-VRLA batteries for both current and projected targets of round-trip efficiency and cycle life. MnO2/Zn performs poorer than VRLA currently (41-52% higher CED and 35-38% higher GWP), but performs significantly better than VRLA when using projected targets (43% lower CEO and 47% lower GWP). The energy requirement for battery production and transport is most significant for PbA and MnO2/Zn batteries. This is the case for PbA due to its relatively short service life- and this battery was found to be most sensitive to changes in battery service life and efficiency. For MnO2/Zn this was a result of low specific energy. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Spanos, Constantine; Fthenakis, Vasilis] Columbia Univ, Ctr Life Cycle Anal, New York, NY 10027 USA. [Turney, Damon E.] CUNY, City Coll New York, Energy Inst, New York, NY USA. [Fthenakis, Vasilis] Brookhaven Natl Lab, PV Environm Res Ctr, Upton, NY 11973 USA. RP Fthenakis, V (reprint author), Columbia Univ, Ctr Life Cycle Anal, New York, NY 10027 USA. EM vmf5@columbia.edu FU NSF-IGERT; Columbia University's Center for Life Cycle Analysis FX The authors would like to thank Sanjoy Banerjee, director of the CUNY Energy Institute for the data provided. This study was supported with funds from the NSF-IGERT Urbanization Challenges program and from Columbia University's Center for Life Cycle Analysis. NR 74 TC 10 Z9 10 U1 18 U2 104 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD MAR PY 2015 VL 43 BP 478 EP 494 DI 10.1016/j.rser.2014.10.072 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CA4NF UT WOS:000348880600039 ER PT J AU Jung, JS Onen, A Russell, K Broadwater, RP AF Jung, Jaesung Onen, Ahmet Russell, Kevin Broadwater, Robert P. TI Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Distributed generation; Photovoltaic generation; Power system stability; Power system quality; Power factor control; Cloud impact ID VOLTAGE RISE MITIGATION; LOAD RESEARCH DATA; DISTRIBUTION-SYSTEMS; DISTRIBUTION NETWORKS; ENERGY-RESOURCES; UNITED-STATES; CHALLENGES; INTEGRATION; MICROGRIDS; DRIVERS AB Both steady-state and quasi steady-state impact studies in high Photovoltaic (PV) penetration distribution circuits are presented. The steady-state analysis evaluates impacts on the distribution circuit by comparing conditions before and after extreme changes in PV generation at three extreme circuit conditions, maximum load, maximum PV generation, and when the difference between the PV generation and the circuit load is a maximum. The quasi steady-state study consists of a series of steady-state impact studies performed at evenly spaced time Points for evaluating the spectrum of impacts between the extreme impacts. Results addressing the impacts of cloud cover and various power factor control strategies are presented. PV penetration levels are limited and depend upon PV generation control strategies. The steady state and quasi steady-state impact studies provide information that is helpful in evaluating the effect of PV generation on distribution circuits, including circuit problems that result from the PV generation. Published by Elsevier Ltd. C1 [Jung, Jaesung] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Onen, Ahmet] Abdullah Gul Univ, Dept Elect & Elect Engn, Kayseri, Turkey. [Russell, Kevin] Elect Distribut Design Inc, Blacksburg, VA USA. [Broadwater, Robert P.] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. RP Jung, JS (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Bldg 179B POB 5000, Upton, NY 11973 USA. EM jsjung@bnl.gov RI Onen, Ahmet/N-6632-2014; OI Onen, Ahmet/0000-0001-7086-5112 FU Electrical Distribution Design, Inc.; DTE Energy Company FX The authors would like to thank Electrical Distribution Design, Inc. and DTE Energy Company for providing data, funding, and technical assistance. NR 39 TC 5 Z9 5 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD MAR PY 2015 VL 43 BP 569 EP 583 DI 10.1016/j.rser.2014.11.018 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CA4NF UT WOS:000348880600046 ER PT J AU Czerwinski, A Basava, C Dauter, M Dauter, Z AF Czerwinski, Andrzej Basava, Channa Dauter, Miroslawa Dauter, Zbigniew TI Crystal structure of N-{N-[N-acetyl-(S)-leucyl]-(S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome SO ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS LA English DT Article DE crystal structure; proteasome inhibitor; hydrogen bonding; antiparallel beta-sheet ID CANCER-THERAPY; 20S PROTEASOME; DISEASE; SYSTEM; TARGET AB The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. The crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel beta-sheet. C1 [Czerwinski, Andrzej; Basava, Channa] Peptides Int Inc, Louisville, KY 40299 USA. [Dauter, Miroslawa] Argonne Natl Lab, Basic Sci Program, Leidos Biomed Res Inc, Argonne, IL 60439 USA. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov NR 23 TC 1 Z9 1 U1 0 U2 2 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2056-9890 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Crystallogr. Commun. PD MAR PY 2015 VL 71 BP 254 EP + DI 10.1107/S2056989015002091 PN 3 PG 10 WC Crystallography SC Crystallography GA DD5OK UT WOS:000369973400058 PM 25844180 ER PT J AU Fan, N Watson, JP AF Fan, Neng Watson, Jean-Paul TI On integer programming models for the multi-channel PMU placement problem and their solution SO ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS LA English DT Article DE PMU placement; Multi-channel PMUs; Set cover problem; Dominating set problem; Set multi-cover problem; Integer programming ID OBSERVABILITY; NETWORKS AB Phasor Measurement Units (PMUs) are starting to see increased deployment, enabling accurate measurement of power grid electrical properties to determine system health. Due to the costs associated with PMU acquisition and maintenance, it is practically important to place the minimum number of PMUs in order to achieve system complete observability. In this paper, we consider a variety of optimization models for the PMU placement problem that addresses more realistic assumptions than simple infinite-capacity placement models. Specifically, instead of assuming that a PMU can sense all lines incident to the bus at which it is placed, we impose the more realistic assumption that PMUs have restricted channel capacity, with per-unit cost given as a function of channel capacity. The optimization objective is then to minimize the total cost of placed PMUs, in contrast to their number. Further, we leverage the zero-injection bus properties to reduce the quantity and cost of placed PMUs. In formulating our optimization models, we identify a close relationship between the PMU placement problem (PPP) and a classic combinatorial problem, the set cover problem (SCP). If channel capacity limits are ignored, there is a close relationship between the PPP and the dominating set problem (DSP), a special case of the SCP. Similarly, when measurement redundancy is imposed as a design requirement, there is a close relationship between the PPP and the set multi-cover problem (SMCP), a generalized version of the SCP. These connections to well-studied combinational problems are not well-known in the power systems literature, and can be leveraged to improve solution algorithms. We demonstrate that more realistic, high-fidelity PPP optimization models can be solved to optimality using commercial integer programing solvers such as CPLEX. Specifically, run-times for all test cases, ranging from IEEE 14-bus to 300-bus test systems, are less than a second. This result indicates that the size of system that can be analyzed using state-of-the-art solvers is considerable. Further, our results call into question the need for problem-specific heuristic solution algorithms for the PPP, many of which have been proposed over the past decade. Finally, we analyze cost versus performance tradeoffs using our PPP optimization models on various IEEE test systems. C1 [Fan, Neng] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. [Watson, Jean-Paul] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. RP Fan, N (reprint author), Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. EM nfan@email.arizona.edu NR 26 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1868-3967 EI 1868-3975 J9 ENERGY SYST JI Energy Syst. PD MAR PY 2015 VL 6 IS 1 BP 1 EP 19 DI 10.1007/s12667-014-0132-6 PG 19 WC Energy & Fuels SC Energy & Fuels GA DG1LX UT WOS:000371830700001 ER PT J AU Wassenaar, TM Ussery, D Nielsen, LN Ingmer, H AF Wassenaar, Trudy M. Ussery, David Nielsen, Lene N. Ingmer, Hanne TI REVIEW AND PHYLOGENETIC ANALYSIS OF qac GENES THAT REDUCE SUSCEPTIBILITY TO QUATERNARY AMMONIUM COMPOUNDS IN STAPHYLOCOCCUS SPECIES SO EUROPEAN JOURNAL OF MICROBIOLOGY AND IMMUNOLOGY LA English DT Review DE biocide resistance; qac; MFS; smr; MRSA; S. aureus; phylogeny ID ANTISEPTIC-RESISTANCE GENES; MULTIDRUG TRANSPORTER QACA; BETA-LACTAM ANTIBIOTICS; METHICILLIN-RESISTANT; DISINFECTANT RESISTANCE; MEDIATES RESISTANCE; AUREUS INFECTIONS; PROTEIN FAMILY; FOOD-INDUSTRY; PLASMID AB The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera. C1 [Wassenaar, Trudy M.] Mol Microbiol & Genom Consultants, Tannestr 7, D-55576 Zotzenheim, Germany. [Ussery, David] Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Nielsen, Lene N.; Ingmer, Hanne] Univ Copenhagen, Fac Hlth & Med Sci, Dept Vet Dis Biol, Copenhagen, Denmark. [Ussery, David] Oak Ridge Natl Lab, Comparat Genom Grp, Biosci Div, Oak Ridge, TN 37831 USA. RP Wassenaar, TM (reprint author), Mol Microbiol & Genom Consultants, Tannestr 7, D-55576 Zotzenheim, Germany. EM trudy@mmgc.eu OI Ussery, David/0000-0003-3632-5512 NR 60 TC 16 Z9 17 U1 0 U2 12 PU AKADEMIAI KIADO RT PI BUDAPEST PA PRIELLE K U 19, PO BOX 245,, H-1117 BUDAPEST, HUNGARY SN 2062-8633 J9 EUR J MICROBIOL IMMU JI Eur. J. Microbiol. Immunol. PD MAR PY 2015 VL 5 IS 1 BP 44 EP 61 DI 10.1556/EuJMI-D-14-00038 PG 18 WC Microbiology SC Microbiology GA DG5QJ UT WOS:000372132600004 PM 25883793 ER PT J AU Wong-Ng, W Kaduk, JA Siderius, DW Allen, AL Espinal, L Boyerinas, BM Levin, I Suchomel, MR Ilavsky, J Li, L Williamson, I Cockayne, E Wu, H AF Wong-Ng, W. Kaduk, J. A. Siderius, D. W. Allen, A. L. Espinal, L. Boyerinas, B. M. Levin, I. Suchomel, M. R. Ilavsky, J. Li, L. Williamson, I. Cockayne, E. Wu, H. TI Reference diffraction patterns, microstructure, and pore-size distribution for the copper (II) benzene-1,3,5-tricarboxylate metal organic framework (Cu-BTC) compounds SO POWDER DIFFRACTION LA English DT Article DE metal organic framework (MOF); Cu-BTC; X-ray powder patterns; microstructure; poresize distribution ID ADVANCED PHOTON SOURCE; AUGMENTED-WAVE METHOD; SYNCHROTRON X-RAY; POWDER DIFFRACTION; MOLECULAR-SIEVE; SURFACE-AREAS; SCATTERING; CO2; ADSORPTION; SYSTEM AB Cu-paddle-wheel-based Cu-3(BTC)(2) (nicknamed Cu-BTC, where BTC equivalent to benzene 1,3,5-tricarboxylate) is a metal organic framework (MOF) compound that adopts a zeolite-like topology. We have determined the pore-size distribution using the Gelb and Gubbins technique, the microstructure using small-angle neutron scattering and (ultra) small-angle X-ray scattering (USAXS\SAXS) techniques, and X-ray powder diffraction reference patterns for both dehydrated d-Cu-BTC [Cu-3(C9H3O6)(2)] and hydrated h-Cu-BTC [Cu-3(C9H3O6)(2)(H2O)(6.96)] using the Rietveld refinement technique. Both samples were confirmed to be cubic Fm (3) over bar m (no. 225), with lattice parameters of a = 26.279 19(3) angstrom, V = 18 148.31(6) angstrom(3) for d-Cu-BTC, and a = 26.3103(11) angstrom, and V= 18 213(2) angstrom(3) for h-Cu-BTC. The structure of d-Cu-BTC contains three main pores of which the diameters are approximately, in decreasing order, 12.6, 10.6, and 5.0 angstrom. The free volume for d-Cu-BTC is approximately (71.85 +/- 0.05)% of the total volume and is reduced to approximately (61.33 +/- 0.03)% for the h-Cu-BTC structure. The d-Cu-BTC phase undergoes microstructural changes when exposed to moisture in air. The reference X-ray powder patterns for these two materials have been determined for inclusion in the Powder Diffraction File. (C) 2014 International Centre for Diffraction Data. C1 [Wong-Ng, W.; Siderius, D. W.; Allen, A. L.; Espinal, L.; Boyerinas, B. M.; Levin, I.; Cockayne, E.; Wu, H.] NIST, Gaithersburg, MD 20899 USA. [Kaduk, J. A.] IIT, Chicago, IL 60616 USA. [Suchomel, M. R.; Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Li, L.; Williamson, I.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Wu, H.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Wong-Ng, W (reprint author), NIST, Gaithersburg, MD 20899 USA. EM winnie.wong-ng@nist.gov RI Wu, Hui/C-6505-2008; Ilavsky, Jan/D-4521-2013; OI Wu, Hui/0000-0003-0296-5204; Ilavsky, Jan/0000-0003-1982-8900; SUCHOMEL, Matthew/0000-0002-9500-5079 FU National Science Foundation [DMR-0944772]; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; ICDD FX This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Partial financial support from ICDD through the Grants-in-Aid program is also acknowledged. NR 39 TC 6 Z9 6 U1 8 U2 27 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD MAR PY 2015 VL 30 IS 1 BP 2 EP 13 DI 10.1017/S0885715614001195 PG 12 WC Materials Science, Characterization & Testing SC Materials Science GA DE7ZJ UT WOS:000370855300002 ER PT J AU Rodriguez, MA Griego, JJM Brown-Shaklee, HJ Blea-Kirby, MA Ihlefeld, JF Spoerke, ED AF Rodriguez, Mark A. Griego, James J. M. Brown-Shaklee, Harlan J. Blea-Kirby, Mia A. Ihlefeld, John F. Spoerke, Erik D. TI X-ray powder diffraction study of La2LiTaO6 SO POWDER DIFFRACTION LA English DT Article DE La2LiTaO6; X-ray powder diffraction; Rietveld refinement; Li volatility; fast-ion conductor; perovskite ID LITHIUM ION CONDUCTION; MAGNETIC-PROPERTIES; LI5LA3M2O12 M; PEROVSKITE; OXIDES; TA; NB AB The structure of La2LiTaO6 has been derived from the powder X-ray powder diffraction (XRD) data. La2LiTaO6 is monoclinic with unit-cell parameters a = 5.621(1) angstrom, b = 5.776(1) angstrom, c = 7.954(2) angstrom, beta = 90.34(2)degrees, space group P2(1)/n (14), and Z = 2. The structure of La2LiTaO6 is an ordered perovskite with alternating Li and Ta octahedra. A new set of powder XRD data (d-spacing and intensity listing) has been generated to replace entry 00-039-0897 within the Powder Diffraction File. The newly elucidated structural data for La2LiTaO6 shall facilitate quantitative analysis of this impurity phase which is often observed during synthesis of the fast-ion conductor phase Li5La3Ta2O12. (C) 2014 International Centre for Diffraction Data. C1 [Rodriguez, Mark A.; Griego, James J. M.] Sandia Natl Labs, Mat Characterizat & Performance Dept, POB 5800, Albuquerque, NM 87185 USA. [Brown-Shaklee, Harlan J.; Blea-Kirby, Mia A.; Ihlefeld, John F.; Spoerke, Erik D.] Sandia Natl Labs, Elect Opt & Nanomat Dept, Albuquerque, NM 87185 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, Mat Characterizat & Performance Dept, POB 5800, Albuquerque, NM 87185 USA. EM marodri@sandia.gov FU US Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Material synthesis was supported from the US Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program managed by Dr. Stephen Kung. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 12 TC 0 Z9 0 U1 2 U2 2 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD MAR PY 2015 VL 30 IS 1 BP 57 EP 62 DI 10.1017/S0885715614001183 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA DE7ZJ UT WOS:000370855300008 ER PT J AU Zhou, ZY Yang, Q Liu, M Zhang, ZG Zhang, XY Sun, DZ Nan, TX Sun, NX Chen, X AF Zhou, Ziyao Yang, Qu Liu, Ming Zhang, Zhiguo Zhang, Xinyang Sun, Dazhi Nan, Tianxiang Sun, Nianxiang Chen, Xing TI Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures SO SPIN LA English DT Article DE Antiferroelectric material; energy storage; energy conversion; multiferroics ID LEAD-ZIRCONATE-TITANATE; FERROELECTRIC ENERGY-CONVERSION; CHARGE-DISCHARGE PROPERTIES; THIN-FILMS; PHASE-TRANSITION; FERROMAGNETIC-RESONANCE; SHOCK COMPRESSION; ELECTRIC ENERGY; SODIUM NIOBATE; CERAMICS AB Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates. C1 [Zhou, Ziyao; Chen, Xing] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Yang, Qu; Liu, Ming] Xi An Jiao Tong Univ, Minist Educ, Key Lab, Elect Mat Res Lab, Xian 710049, Peoples R China. [Yang, Qu; Liu, Ming] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. [Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi] Shanghai Normal Univ, Educ Minist, Dept Chem, Key Lab Resource Chem, Shanghai 200234, Peoples R China. [Nan, Tianxiang; Sun, Nianxiang] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. RP Zhou, ZY (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zhouz@anl.gov; yangqu@stu.xjtu.edu.cn; Mingliu@mail.xjtu.edu.cn; 411645796@qq.com; 775415935@qq.com; sundazhi@shnu.edu.cn; nan.t@husky.neu.edu; n.sun@neu.edu RI Liu, Ming/B-4143-2009; Nan, Tianxiang/A-8020-2016 OI Liu, Ming/0000-0002-6310-948X; FU Natural Science Foundation of China [51472199]; National 111 Project of China [B14040]; Fundamental Research Funds for the Central Universities; Recruitment Program of Global Youth Experts; Natural Science Foundation of Shanghai [14ZR1430400]; Shanghai Key Laboratory of Rare Earth Functional Materials FX The work in China was supported by the Natural Science Foundation of China (Grant No. 51472199), the National 111 Project of China (B14040), the Fundamental Research Funds for the Central Universities. Ming Liu was supported by the Recruitment Program of Global Youth Experts. The authors also would like to thank the Natural Science Foundation of Shanghai (14ZR1430400) and Shanghai Key Laboratory of Rare Earth Functional Materials for supporting the research. Corresponding authors Zhiyao Zhou and Qu Yang contributed equally to this work. Ming Liu and Dazhi Sun are co-corresponding authors. NR 84 TC 0 Z9 0 U1 15 U2 16 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 2010-3247 EI 2010-3255 J9 SPIN-SINGAPORE JI SPIN PD MAR PY 2015 VL 5 IS 1 AR 1530001 DI 10.1142/S2010324715300017 PG 13 WC Physics, Applied SC Physics GA DS8TV UT WOS:000381056800001 ER PT J AU Zaynetdinov, M See, EM Geist, B Ciovati, G Robinson, HD Kochergin, V AF Zaynetdinov, Madrakhim See, Erich M. Geist, Brian Ciovati, Gianluigi Robinson, Hans D. Kochergin, Vladimir TI A Fiber Bragg Grating Temperature Sensor for 2-400 K SO IEEE SENSORS JOURNAL LA English DT Article DE Bragg gratings; optical fiber devices; optical fiber sensors; temperature sensors ID CRYOGENIC TEMPERATURE; THERMOMETRY; SENSITIVITY; SYSTEM AB We demonstrate fiber optic, multiplexible temperature sensing using a fiber Bragg grating (FBG) with an operational range of 2-400 K, and a temperature resolution better than 10 mK for temperatures < 12 K. This represents a significant reduction in the lowest usable temperature as well as a significant increase in sensitivity at cryogenic temperatures compared with previously reported multiplexible solutions. This is accomplished by mounting the section of the fiber with a FBG on a polytetrafluoroethylene coupon, which has a non-negligible coefficient of thermal expansion down to < 4 K. The sensors exhibit a good stability over multiple temperature cycles and acceptable sensor-to-sensor repeatability. Possible applications for this sensor include distributed temperature sensing across superconducting elements and cryogenic temperature measurements in environments where electrical measurements are impractical or unsafe. C1 [Zaynetdinov, Madrakhim; Geist, Brian; Kochergin, Vladimir] MicroXact Inc, Blacksburg, VA 24060 USA. [See, Erich M.; Robinson, Hans D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Ciovati, Gianluigi] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Zaynetdinov, M (reprint author), MicroXact Inc, Blacksburg, VA 24060 USA. EM mzaynetdinov@microxact.com; serich@vt.edu; bgeist@microxact.com; gciovati@jlab.org; hansr@vt.edu; vkochergin@microxact.com RI Geist, Brian/J-4287-2014; OI Geist, Brian/0000-0002-6091-1629; Kochergin, Vladimir/0000-0002-9433-441X FU U.S. Department of Energy [DE-SC0001964] FX This work was supported by the U.S. Department of Energy under Grant DE-SC0001964. The associate editor coordinating the review of this paper and approving it for publication was Dr. Anna G. Mignani. NR 16 TC 2 Z9 3 U1 3 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD MAR PY 2015 VL 15 IS 3 BP 1908 EP 1912 DI 10.1109/JSEN.2014.2368457 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA AZ7AN UT WOS:000348370700003 ER PT J AU Haglund, A Koehler, M Catoor, D George, EP Keppens, V AF Haglund, A. Koehler, M. Catoor, D. George, E. P. Keppens, V. TI Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures SO INTERMETALLICS LA English DT Article DE High-entropy alloys; Elastic properties ID MULTIPRINCIPAL ELEMENTS; PHASE-STABILITY; MICROSTRUCTURE AB CrMnCoFeNi is a FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence. To understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. This temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81-91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA is not due to the temperature dependence of its shear modulus. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Haglund, A.; Koehler, M.; George, E. P.; Keppens, V.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Catoor, D.; George, E. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Keppens, V (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM vkeppens@utk.edu OI Haglund, Amanda/0000-0003-3973-9577 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX Valuable discussions with G.M. Pharr are gratefully acknowledged. This research was sponsored by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 25 TC 17 Z9 17 U1 10 U2 86 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 EI 1879-0216 J9 INTERMETALLICS JI Intermetallics PD MAR PY 2015 VL 58 BP 62 EP 64 DI 10.1016/j.intermet.2014.11.005 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CA0SK UT WOS:000348626600010 ER PT J AU Staats, WL Brisson, JG AF Staats, Wayne L. Brisson, J. G. TI Active heat transfer enhancement in air cooled heat sinks using integrated centrifugal fans SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Heat exchanger; Heat sink; Fan; Thermal management; Convection enhancement; Active enhancement ID ENTROPY GENERATION MINIMIZATION; OPTIMIZATION; EXCHANGER AB The enhancement of convective heat transfer in an air-cooled heat sink using integrated, interdigitated impellers was investigated. The experimentally investigated heat sink is representative of a subcomponent of an unconventional heat exchanger with a loop heat pipe, multiple parallel flat-plate condensers, and integrated, interdigitated centrifugal fans, designed to meet the challenges of thermal management in compact electronic systems. The close integration of impeller blades with heat transfer surfaces results in a decreased thermal resistance per unit pumping power compared to conventional forced convection heat sinks. The fan performance (i.e. fan curve and power consumption) and heat transfer of a single integrated fan heat sink were experimentally characterized for 12 impeller designs and modeled in terms of dimensionless correlations. Correlations were developed to give estimates of the dimensionless fan curve and the dimensionless power curve based on the fan geometry. Additionally, a two-parameter correlation was developed to estimate the dimensionless heat flux based on the fan's operating point. The heat transfer in the integrated fans was observed to be a function of the operating point (i.e. the rotational speed of the impeller and the flow rate of air), with only a weak direct dependence on the fan geometry. The insensitivity of the heat transfer performance to the impeller geometry greatly simplifies the design process of integrated fan heat sinks because the fan design can be optimized independently of the heat transfer performance. Finally, the heat transfer enhancement (compared to pressure-driven flow at the same flow rate) appears to be due to turbulent flow structures induced by the impeller. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Staats, Wayne L.; Brisson, J. G.] MIT, Cambridge, MA 02139 USA. RP Staats, WL (reprint author), Sandia Natl Labs, POB 969,MS 9052, Livermore, CA 94551 USA. EM wstaats@alum.mit.edu FU DARPA Microtechnologies for Air-Cooled Exchangers (MACE) program [W31P4Q-09-1-0007] FX This work was supported by the DARPA Microtechnologies for Air-Cooled Exchangers (MACE) program, grant # W31P4Q-09-1-0007, under program management from Drs. Thomas Kenny and Avram Bar-Cohen. The authors thank our colleagues, Professors Evelyn Wang and Jeffrey Lang. We thank Professor Philipp Epple for providing a copy of his doctoral dissertation. Additionally, we thank Ari Umans, Tess Saxton-Fox, and Kristyn Kadala for assistance with the experimental data collection. NR 34 TC 0 Z9 0 U1 11 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD MAR PY 2015 VL 82 BP 189 EP 205 DI 10.1016/j.ijheatmasstransfer.2014.10.075 PG 17 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CA5OI UT WOS:000348957300018 ER PT J AU Fukabori, A AF Fukabori, Akihiro TI Crystal growth of La3+-substituted BaCl2 by the micro-pulling-down technique and their luminescence properties SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Phase diagrams; Growth from melt; Single crystal growth; Halides; Scintillator materials; Scintillators ID RAY STORAGE PHOSPHORS; X-RAY; SCINTILLATION PROPERTIES; SINGLE-CRYSTAL; CHEMISTRY; HALIDES AB Due to the phase transition near 920 degrees C and hygroscopicity, the growth of BaCl2 single crystals is difficult. However, owing to the suppression of the cubic-orthorhombic phase transition by La substitution and careful handling to prevent contact with the starting powders and moisture in the air, crack-free BaCl2 single crystals were grown by the micro-pulling-clown technique under ambient pressure. In addition, photo- and radio-luminescence in non-activated and Eu2+-activated compounds were reported for scintillator applications. (C) 2014 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fukabori, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM akihirofukabori@yahoo.co.jp FU U.S. Department of Energy [NNSA/NA22]; Lawrence Berkeley National Laboratory [AC02-05CH11231] FX This work was supported by the U.S. Department of Energy/NNSA/NA22 and carried out at Lawrence Berkeley National Laboratory under Contract no AC02-05CH11231. The author is grateful to Edith D. Bourret-Courchesne, Gregory Bizarri, Martin Gascon, Christopher Ramsey, Stephan Hanrahan, Ivan Khodyuk, Kathleen Brennan, and Woon-Seng Choong for their help. NR 24 TC 1 Z9 1 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 1 PY 2015 VL 413 BP 37 EP 41 DI 10.1016/j.jcrysgro.2014.12.002 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA AZ2AM UT WOS:000348037000007 ER PT J AU Beaton, DA Sanders, C Alberi, K AF Beaton, Daniel A. Sanders, C. Alberi, K. TI Effects of incident UV light on the surface morphology of MBE grown GaAs SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Reflection high energy electron diffraction; Roughening; Surfaces; Molecular beam epitaxy; Semiconducting gallium arsenide ID MOLECULAR-BEAM EPITAXY; MIGRATION-ENHANCED EPITAXY; CRYSTAL-GROWTH; II-VI; SEMICONDUCTORS; DEPOSITION; HYDROGEN; FILMS AB Light-assisted molecular beam epitaxy is a promising technique for improving the growth of metastable semiconductor alloys traditionally grown at low temperatures. The effect of photon irradiation on adatom incorporation dynamics is studied for GaAs homoepitaxy on vicinal surfaces. Irradiation is found to increase the temperature at which the growth mode transitions from layer-by-layer island nucleation to step flow growth and to alter the surface morphology. These surprising changes are discussed in the context of modification of adatom diffusion and incorporation processes. Published by Elsevier B.V. C1 [Beaton, Daniel A.; Sanders, C.; Alberi, K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Beaton, DA (reprint author), Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA. EM daniel.beaton@nrel.gov FU Department of Energy Office of Science, Basic Energy Sciences [DE-AC36-OSGO-28308] FX We acknowledge the financial support of the Department of Energy Office of Science, Basic Energy Sciences under DE-AC36-OSGO-28308. NR 23 TC 2 Z9 2 U1 4 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 1 PY 2015 VL 413 BP 76 EP 80 DI 10.1016/j.jacrysgro.2014.12.015 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA AZ2AM UT WOS:000348037000014 ER PT J AU Chapman, NC Silva, J Williams, JJ Chawla, N Xiao, X AF Chapman, N. C. Silva, J. Williams, J. J. Chawla, N. Xiao, X. TI Characterisation of thermal cycling induced cavitation in particle reinforced metal matrix composites by three-dimensional (3D) X-ray synchrotron tomography SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE Thermal cycling; Metal matrix composite; X-ray synchrotron tomography ID ALUMINUM-ALLOYS; FATIGUE; DAMAGE; BEHAVIOR; MICROTOMOGRAPHY; DEFORMATION; EVOLUTION; POROSITY; GROWTH; LOAD AB Metal matrix composites are known for their high strength, fatigue resistance, and wear resistance. The coefficient of thermal expansion between the reinforcement and matrix can result in thermal stresses during thermal cycling. In this paper we quantify the evolution of cavitation damage in SiC particle reinforced aluminium alloy matrix composite subjected to thermal cycling by X-ray synchrotron tomography at the advanced photon source at the Argonne National Laboratory. It will be shown that, while surface examination did not show significant damage, X-ray synchrotron tomography enabled us to resolve and quantify the amount and nature of cavitation with increasing thermal cycling. The influence of the microstructure in damage initiation and evolution is discussed. C1 [Chapman, N. C.; Silva, J.; Williams, J. J.; Chawla, N.] Arizona State Univ, Tempe, AZ 85287 USA. [Xiao, X.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chawla, N (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. EM nchawla@asu.edu NR 28 TC 5 Z9 5 U1 1 U2 13 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD MAR PY 2015 VL 31 IS 5 BP 573 EP 578 DI 10.1179/1743284714Y.0000000582 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AZ6QB UT WOS:000348342700009 ER PT J AU Gardner, DJ Woodward, CS Reynolds, DR Hommes, G Aubry, S Arsenlis, A AF Gardner, D. J. Woodward, C. S. Reynolds, D. R. Hommes, G. Aubry, S. Arsenlis, A. TI Implicit integration methods for dislocation dynamics SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE time integrators; dislocation dynamics; nonlinear solvers ID NONLINEAR-SYSTEMS; MESOSCOPIC SCALE; SIMULATIONS; EQUATIONS; ACCELERATION; ALGORITHM AB In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. This paper investigates the viability of high-order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems. C1 [Gardner, D. J.; Woodward, C. S.; Hommes, G.; Aubry, S.; Arsenlis, A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Reynolds, D. R.] So Methodist Univ, Dept Math, Dallas, TX 75275 USA. RP Gardner, DJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM gardner48@llnl.gov; woodward6@llnl.gov; reynolds@smu.edu; sylvie.aubry@llnl.gov; arsenlis@llnl.gov RI Woodward, Carol/M-4008-2014; OI Reynolds, Daniel/0000-0002-0911-7841 FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy Office of Advanced Scientific Computing Research; National Nuclear Security Agency; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [B603971] FX Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy Office of Advanced Scientific Computing Research and the National Nuclear Security Agency. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. This work was also performed by Southern Methodist University under subcontract B603971 from Lawrence Livermore National Laboratory. NR 37 TC 1 Z9 1 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR PY 2015 VL 23 IS 2 AR 025006 DI 10.1088/0965-0393/23/2/025006 PG 31 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CA2DP UT WOS:000348719400006 ER PT J AU Ulomek, F O'Brien, CJ Foiles, SM Mohles, V AF Ulomek, F. O'Brien, C. J. Foiles, S. M. Mohles, V. TI Energy conserving orientational force for determining grain boundary mobility SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE grain boundary; mobility; nickel; energy conserving orientational force; ECO force; molecular dynamics ID MOLECULAR-DYNAMICS SIMULATIONS; MIGRATION AB Current experimental methods are not able to determine the mobility of flat grain boundaries across the large misorientation phase space. We find that the synthetic driving force method proposed to achieve this feat by simulation has a deficiency concerning numerical accuracy. We introduce a new synthetic driving force method by defining a new way to differentiate between crystal orientations. In contrast to the former method, this has the advantage that energy is correctly preserved during the simulation and is thus more reliable. This also results in a closer match of the applied energy difference to the thermodynamic free energy. This reduces the necessity of a post-simulation correction of the applied energy per atom to resulting driving pressure. We compare the newly proposed version to the old one for two grain boundaries and investigate the influence of simulation parameters on the resulting mobility values. For future simulations using a synthetic grain boundary driving force, we recommend using this newly proposed version over previous methods. C1 [Ulomek, F.; Mohles, V.] Rhein Westfal TH Aachen, Dept Phys Met & Met Phys, Aachen, Nrw, Germany. [O'Brien, C. J.; Foiles, S. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ulomek, F (reprint author), Rhein Westfal TH Aachen, Dept Phys Met & Met Phys, Aachen, Nrw, Germany. EM ulomek@imm.rwth-aachen.de OI Foiles, Stephen/0000-0002-1907-454X; O'Brien, Christopher/0000-0001-7210-9257 FU Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center [(SFB) 761]; US Department of Energy, Office of Basic Energy Science; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX FU and VM acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB) 761 'Stahl ab-initio. Quantenmechanisch gefuhrtes Design neuer Eisenbasiswerkstoffe'. CJO and SMF acknowledge the support of the core programs of the US Department of Energy, Office of Basic Energy Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 7 Z9 7 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR PY 2015 VL 23 IS 2 AR 025007 DI 10.1088/0965-0393/23/2/025007 PG 13 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CA2DP UT WOS:000348719400007 ER PT J AU Diaz-Ramirez, VH Cuevas, A Kober, V Trujillo, L Awwal, A AF Diaz-Ramirez, Victor H. Cuevas, Andres Kober, Vitaly Trujillo, Leonardo Awwal, Abdul TI Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization SO OPTICS COMMUNICATIONS LA English DT Article DE Object recognition; Composite correlation filters; Multi-objective evolutionary algorithm; Combinatorial optimization ID FACE RECOGNITION; ROBUST FEATURES; TARGET; TRACKING AB Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Moreover, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters. (C) 2014 Elsevier B.V. All rights reserved. C1 [Diaz-Ramirez, Victor H.; Cuevas, Andres] Inst Politecn Nacl CITEDI, Tijuana 22510, BC, Mexico. [Kober, Vitaly] CICESE, Dept Comp Sci, Ensenada 22860, Baja California, Mexico. [Trujillo, Leonardo] Inst Tecnol Tijuana, Tijuana 22500, BC, Mexico. [Awwal, Abdul] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. RP Diaz-Ramirez, VH (reprint author), Inst Politecn Nacl CITEDI, Ave Parque 1310, Tijuana 22510, BC, Mexico. EM vdiazr@ipn.mx OI Kober, Vitaly/0000-0002-9374-9883; Diaz-Ramirez, Victor/0000-0002-9331-1777 FU Consejo Nacional de Ciencia y Tecnologia (CONACYT) [130504]; Secretaria de Investigacion y Posgrado - Instituto Politecnico Nacional (SIP-IPN) [SIP20140678]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was supported by Consejo Nacional de Ciencia y Tecnologia (CONACYT) through project 130504 and Secretaria de Investigacion y Posgrado - Instituto Politecnico Nacional (SIP-IPN) through project SIP20140678. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 40 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 EI 1873-0310 J9 OPT COMMUN JI Opt. Commun. PD MAR 1 PY 2015 VL 338 BP 77 EP 89 DI 10.1016/j.optcom.2014.10.038 PG 13 WC Optics SC Optics GA AY7MA UT WOS:000347743000013 ER PT J AU Andrews, MT Goorley, JT Corcoran, EC Kelly, DG AF Andrews, M. T. Goorley, J. T. Corcoran, E. C. Kelly, D. G. TI MCNP6 simulations of gamma line emissions from fission products and their comparisons to plutonium and uranium measurements SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE MCNP6; Delayed gamma; Special nuclear materials ID ENERGY; SIGNATURES; SPECTRA; PART AB Aqueous solutions containing microgram quantities of special nuclear materials (SNMs) were irradiated for 60 s using a SLOWPOKE-2 reactor, and their delayed gamma (DG) emissions were recorded as a function of count time up to three minutes after irradiation. The irradiation and counting processes were simulated using the production release of MCNP6.1 and the more recent MCNP6.1.1 beta version, and the line emission option was used to create DGs. In every simulation MCNP6 successfully predicted the 25 most prominent measured fission product peaks for each SNM solution in the 0.1-1.6 MeV energy range. Fission products with gamma emissions greater than 0.6 MeV were selected for a detailed comparison of their relative measured and simulated magnitudes. There were significant fission product peak outliers, several of which were attributed to the outdated ENDF/B VI gamma line data used by MCNP6 for DG emissions. The updated time-bin structure used by MCNP6.1.1 beta for DG production and its effect on time-dependent measurements are also discussed. Discrepancies between measurements and simulations were further resolved in a final comparison which used MCNP6.1.1 beta alongside updated gamma line data files. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Andrews, M. T.; Corcoran, E. C.; Kelly, D. G.] Royal Mil Coll Canada, Kingston, ON K7K 7B4, Canada. [Andrews, M. T.; Goorley, J. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Andrews, MT (reprint author), Royal Mil Coll Canada, POB 17000 Stn Forces, Kingston, ON K7K 7B4, Canada. EM madi.andrews16@gmail.com OI Andrews, Madison/0000-0002-8503-1011 FU Advanced Simulations and Computing Program at LANL; CNSC, NSERC award FX Funding for this work was provided by the Advanced Simulations and Computing Program at LANL, and a CNSC sponsored doctoral NSERC award. The technical assistance of K. Mattson, K. Nielson, T. Mumby, and D. Ferguson is appreciated. The authors appreciate the updated files cindergl.dat and cinder.dat provided by T. Wilcox. NR 20 TC 2 Z9 2 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAR PY 2015 VL 79 BP 87 EP 95 DI 10.1016/j.pnucene.2014.11.012 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AZ2TR UT WOS:000348085700009 ER PT J AU Liu, HW Fujikawa, Y Sadowski, JT Xue, QK Sakurai, T AF Liu, H. W. Fujikawa, Y. Sadowski, J. T. Xue, Q. -K. Sakurai, T. TI Adsorption and thermal treatments of 1-dodecene on Si(100) investigated by STM SO SURFACE SCIENCE LA English DT Article DE Scanning tunneling microscopy; 1-Dodecene ID SCANNING-TUNNELING-MICROSCOPY; ORGANIC MONOLAYERS; PENTACENE GROWTH; SI(001) SURFACE; X-1 SURFACE; SPECTROSCOPY; MOLECULES; ETHYLENE; SILICON; FILMS AB We investigate the atomic behaviour of long-chain 1-dodecene adsorbed on Si(100) using a scanning tunnelling microscope with an exposure of 30 to 2.4 Langmuirs. Unlike previous reports on short-chain molecules, remarkable self-ordered assembly of molecules is not observed at room temperature, which is possibly attributed to the asymmetric molecular structure with long chains of 1-dodecene. After annealing at 500-580 degrees C, ordered patterns form with a c(4 x 4) structure, accompanied with thermal decomposition of molecules. (c) 2014 Elsevier B.V. All rights reserved. C1 [Liu, H. W.; Xue, Q. -K.; Sakurai, T.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Fujikawa, Y.] Hirosaki Univ, Dept Adv Phys, Hirosaki, Aomori 0368561, Japan. [Fujikawa, Y.; Sakurai, T.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Xue, Q. -K.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. RP Liu, HW (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM hliu@iphy.ac.cn RI Fujikawa, Yasunori/A-6527-2009; Liu, Hongwen/C-7014-2011; OI Sadowski, Jerzy/0000-0002-4365-7796 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Work at Brookhaven National Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences, contract no. DE-AC02-98CH10886. NR 29 TC 0 Z9 0 U1 3 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD MAR PY 2015 VL 633 BP 89 EP 93 DI 10.1016/j.susc.2014.10.018 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA AZ6NJ UT WOS:000348336000013 ER PT J AU Reshniak, V Khaliq, AQM Voss, DA Zhang, G AF Reshniak, V. Khaliq, A. Q. M. Voss, D. A. Zhang, G. TI Split-step Milstein methods for multi-channel stiff stochastic differential systems SO APPLIED NUMERICAL MATHEMATICS LA English DT Article DE Stochastic differential equations; Split-step method; Langevin equations; Stiff equations; Multi-channel noise; Mean-square stability ID LINEAR-STABILITY ANALYSIS; NUMERICAL-METHODS; MULTISTEP METHODS; EQUATIONS; SIMULATION; DESTABILIZATION; STABILIZATION; NOISE; SDES AB We consider split-step Milstein methods for the solution of stiff stochastic differential equations with an emphasis on systems driven by multi-channel noise. We show their strong order of convergence and investigate mean-square stability properties for different noise and drift structures. The stability matrices are established in a form convenient for analyzing their impact arising from different deterministic drift integrators. Numerical examples are provided to illustrate the effectiveness and reliability of these methods. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved. C1 [Reshniak, V.; Khaliq, A. Q. M.] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Reshniak, V.; Khaliq, A. Q. M.] Middle Tennessee State Univ, Ctr Computat Sci, Murfreesboro, TN 37132 USA. [Voss, D. A.] Western Illinois Univ, Dept Math, Macomb, IL 61455 USA. [Zhang, G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Reshniak, V (reprint author), Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. EM vr2m@mtmail.mtsu.edu; Abdul.Khaliq@mtsu.edu; d-voss1@wiu.edu; zhangg@ornl.gov RI Khaliq, Abdul Qayyum/C-2950-2015; OI Reshniak, Viktor/0000-0003-1545-4462; Zhang, Guannan/0000-0001-7256-150X NR 37 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9274 EI 1873-5460 J9 APPL NUMER MATH JI Appl. Numer. Math. PD MAR PY 2015 VL 89 BP 1 EP 23 DI 10.1016/j.apnum.2014.10.005 PG 23 WC Mathematics, Applied SC Mathematics GA AZ5EM UT WOS:000348243300001 ER PT J AU Asunta, O Govenius, J Budny, R Gorelenkova, M Tardini, G Kurki-Suonio, T Salmi, A Sipila, S AF Asunta, O. Govenius, J. Budny, R. Gorelenkova, M. Tardini, G. Kurki-Suonio, T. Salmi, A. Sipilae, S. CA ASDEX Upgrade Team JET EFDA Contributors TI Modelling neutral beams in fusion devices: Beam let-based model for fast particle simulations SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Neutral beam injection; Beamlet; Monte Carlo; Fast ions ID ASDEX UPGRADE; INJECTION; PLASMAS; TOKAMAKS; RATES; IONS AB Neutral beam injection (NBI) will be one of the main sources of heating and non-inductive current drive in ITER. Due to high level of injected power the beam induced heat loads present a potential threat to the integrity of the first wall of the device, particularly in the presence of non-axisymmetric perturbations of the magnetic field. Neutral beam injection can also destabilize Alfven eigenmodes and energetic particle modes, and act as a source of plasma rotation. Therefore, reliable and accurate simulation of NBI is important for making predictions for ITER, as well as for any other current or future fusion device. This paper introduces a new beamlet-based. neutral beam ionization model called BBNBI. It takes into account the fine structure of the injector, follows the injected neutrals until ionization, and generates a source ensemble of ionized NBI test particles for slowing down calculations. BBNBI can be used as a stand-alone model but together with the particle following code ASCOT it forms a complete and sophisticated tool for simulating neutral beam injection. The test particle ensembles from BBNBI are found to agree well with those produced by PENCIL for JET, and those produced by NUBEAM both for JET and ASDEX Upgrade plasmas. The first comprehensive comparisons of beam slowing down profiles of interest from BBNBI + ASCOT with results from PENCIL and NUBEAM/TRANSP, for both JET and AUG, are presented. It is shown that, for an axisymmetric plasma, BBNBI + ASCOT and NUBEAM agree remarkably well. Together with earlier 3D studies, these results further validate using BBNBI + ASCOT also for studying phenomena that require particle following in a truly three-dimensional geometry. (C) 2014 EURATOM. Published by Elsevier B.V. All rights reserved. C1 [Asunta, O.; Govenius, J.; Kurki-Suonio, T.; Sipilae, S.] Aalto Univ, Dept Appl Phys, Assoc Euratom Tekes, FI-00076 Aalto, Finland. [Budny, R.; Gorelenkova, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tardini, G.; ASDEX Upgrade Team] Max Planck Inst Plasma Phys, IPP EURATOM Assoc, D-85748 Garching, Germany. [Salmi, A.] VIT, Assoc Euratom Tekes, FIN-02044 Espoo, Finland. RP Asunta, O (reprint author), Aalto Univ, Dept Appl Phys, Assoc Euratom Tekes, POB 14100, FI-00076 Aalto, Finland. EM otto.asunta@aalto.fi OI Sipila, Seppo/0000-0002-2748-0601 FU European Community; Academy of Finland [134924, 259675] FX The authors would like to thank Dr. Ian Day for invaluable discussions that helped in understanding the experimental reality of neutral beams. This work, supported by the European Communities under the contract of Association between Euratom/Tekes, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The supercomputing resources of CSC-IT Center for Science and HPC-FF were utilized in the studies. A part of this work was carried out using the HELIOS supercomputer system at International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA. The work was partially funded by the Academy of Finland projects No. 134924 and 259675. NR 37 TC 7 Z9 7 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2015 VL 188 BP 33 EP 46 DI 10.1016/j.cpc.2014.10.024 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AZ5LA UT WOS:000348261300004 ER PT J AU Brandt, O Gutierrez, G Wang, MHLS Ye, Z AF Brandt, O. Gutierrez, G. Wang, M. H. L. S. Ye, Z. TI Acceleration of matrix element computations for precision measurements SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Matrix element; Monte Carlo integration; Low-discrepancy sequences; Hadron collider; Top quark ID QUARK PAIR PRODUCTION; TOP-QUARK; HADRON COLLIDERS; DISCREPANCY; SEQUENCES; GENERATOR; EVENTS; JETS AB The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment. (C) 2014 Elsevier B.V. All rights reserved. C1 [Brandt, O.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Gutierrez, G.; Wang, M. H. L. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. RP Brandt, O (reprint author), Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. EM obrandt@fnal.gov FU Department of Energy (USA); National Science Foundation (USA); Bundesministerium fur Bildung und Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany) FX We thank our DO colleagues for useful discussions and for their kind permission to use the DO detector simulation and other collaborative software to expedite the preparation of this paper. The authors acknowledge the support from the Department of Energy (USA), the National Science Foundation (USA), the Bundesministerium fur Bildung und Forschung (Germany), and the Deutsche Forschungsgemeinschaft (Germany). NR 33 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2015 VL 775 BP 27 EP 33 DI 10.1016/j.nima.2014.11.063 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AZ2CA UT WOS:000348040900005 ER PT J AU He, LL Do, C Qian, S Wignall, GD Heller, WT Littrell, KC Smith, GS AF He, Lilin Do, Changwoo Qian, Shuo Wignall, George D. Heller, William T. Littrell, Kenneth C. Smith, Gregory S. TI Corrections for the geometric distortion of the tube detectors on SANS instruments at ORNL SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Linear position sensitive detector; Small-angle neutron scattering; Staggered array geometry; Solid angle correction; Tube detector shadowing ID ANGLE NEUTRON-SCATTERING; DIFFRACTOMETER; CALIBRATION; ADSORPTION AB The small-angle neutron scattering instruments at the Oak Ridge National Laboratory's High Flux Isotope Reactor recently upgraded the area detectors from the large, single volume crossed-wire detectors originally installed to staggered arrays of linear position-sensitive detectors (LPSDs). The specific geometry of the LPSD array requires that approaches to data reduction traditionally employed be modified. Here, two methods for correcting the geometric distortion produced by the LPSD array are presented and compared. The first method applies a correction derived from a detector sensitivity measurement performed using the same configuration as the samples are measured. In the second method, a solid angle correction is derived that can be applied to data collected in any instrument configuration during the data reduction process in conjunction with a detector sensitivity measurement collected at a sufficiently long camera length where the geometric distortions are negligible. Both methods produce consistent results and yield a maximum deviation of corrected data from isotropic scattering samples of less than 5% for scattering angles up to a maximum of 35 degrees. The results are broadly applicable to any SANS instrument employing LPSD array detectors, which will be increasingly common as instruments having higher incident flux are constructed at various neutron scattering facilities around the world. Published by Elsevier B.V. C1 [He, Lilin; Do, Changwoo; Qian, Shuo; Wignall, George D.; Heller, William T.; Smith, Gregory S.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Littrell, Kenneth C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP He, LL (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM hel3@ornl.gov RI Smith, Gregory/D-1659-2016; Do, Changwoo/A-9670-2011; Littrell, Kenneth/D-2106-2013; OI Smith, Gregory/0000-0001-5659-1805; Do, Changwoo/0000-0001-8358-8417; Littrell, Kenneth/0000-0003-2308-8618; Wignall, George/0000-0002-3876-3244; He, Lilin/0000-0002-9560-8101 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Biological and Environmental Research of the United States Department of Energy through the Center for Structural Molecular Biology at Oak Ridge National Laboratory FX The research at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. S.Q. acknowledges the support of the Office of Biological and Environmental Research of the United States Department of Energy through the Center for Structural Molecular Biology at Oak Ridge National Laboratory. The authors thank Yuri B. Melnichenko for providing single crystal vanadium sample and also thank Yuri B. Melnichenko, Volker S. Urban, Sai Venkatesh Pingali and Christopher Stanley for their technical discussions and Kevin D. Berry for information about the detection efficiency of the LPSDs. NR 23 TC 2 Z9 2 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2015 VL 775 BP 63 EP 70 DI 10.1016/j.nima.2014.11.061 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AZ2CA UT WOS:000348040900010 ER PT J AU LaFerriere, BD Maiti, TC Arnquist, IJ Hoppe, EW AF LaFerriere, B. D. Maiti, T. C. Arnquist, I. J. Hoppe, E. W. TI A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE U; Th; ICP-MS; Majorana; Copper; Lead ID UNDERGROUND MEASUREMENTS; ICP-MS; URANIUM; RADIOACTIVITY; THORIUM; SAMPLES AB This study describes a novel sample preparation and assay method developed, primarily in support of the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment, for the determination of extremely low levels of Th and U in copper and lead shielding components. Meticulously clean sample preparation methods combined with anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by isotope dilution inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg Th-232/g (0.034 mu Bq Th-232/kg) and 0.0106 pg U-238/g (0.131 mu Bq U-238/kg) were determined for copper, while detection limits of 0.23 pg Th-232/g (0.94 mu Bq Th-232/kg) and 0.46 pg U-238/g (5.7 mu Bq U-238/kg) were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector components and ensure that the experiment's stringent radiopurity requirements are met. (C) 2014 Elsevier B.V. All rights reserved. C1 [LaFerriere, B. D.; Maiti, T. C.; Arnquist, I. J.; Hoppe, E. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hoppe, EW (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM eric.hoppe@pnnl.gov FU United States Department of Energy, Office of Nuclear Physics [DE-FG02-97ER41041]; United States Department of Energy [DE-AC05-76RL01830] FX The authors wish to thank the United States Department of Energy, Office of Nuclear Physics under grant DE-FG02-97ER41041 for support of this work. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. The authors would also like to thank Lisa Staudinger (PNNL) for help in proofreading and editing this article. NR 23 TC 10 Z9 10 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2015 VL 775 BP 93 EP 98 DI 10.1016/j.nima.2014.11.052 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AZ2CA UT WOS:000348040900014 ER PT J AU Colli, A Vasquez, J Zaaiman, WJ AF Colli, Alessandra Vasquez, Johan Zaaiman, Willem J. TI Initial stabilization of a statistical sample of forty-four monocrystalline photovoltaic modules SO RENEWABLE ENERGY LA English DT Article DE PV module performance; Monocrystalline silicon; Stabilization; Degradation ID DEGRADATION AB The paper discusses the methodology and presents the results of the stabilization process for a statistic of forty-four monocrystalline silicon photovoltaic (PV) modules. The modules have been exposed to real sunlight in three different sessions and have been measured prior exposure and after each exposure session using a pulsed sun simulator. The first session of exposure shows the highest power loss in the modules, with an average 1.8%. During this initial stabilization step, 17 modules had a loss in the maximum power above 2% (registered losses from 2.1% to a maximum of 2.8%). The overall power losses are in the range 1.7-3.4%, with an average loss of 2.4% for the considered module population. Visual inspection and the analysis of the measured I-V curves revealed some imperfections in the modules. However, those imperfections do not impact on the actual performance at the present time. After the stabilization, the modules have been installed in the Northeast Solar Energy Research Center (NSERC) array, located at Brookhaven National Laboratory. The array will be used to analyze module degradation in the Northeast environmental conditions and to study the grid impact of utility-level PV plants. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Colli, Alessandra] Brookhaven Natl Lab, Upton, NY 11973 USA. [Vasquez, Johan] Suffolk Cty Community Coll, Selden, NY 11784 USA. [Zaaiman, Willem J.] EC Joint Res Ctr, Inst Energy & Transport, Renewable Energy Unit, I-21027 Ispra, Italy. RP Colli, A (reprint author), Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA. EM alessandra.colli@gmail.com; jvasq13@gmail.com; willem.zaaiman@jrc.ec.europa.eu NR 10 TC 0 Z9 0 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD MAR PY 2015 VL 75 BP 326 EP 334 DI 10.1016/j.renene.2014.09.062 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA AY4YJ UT WOS:000347580600033 ER PT J AU Chen, Y Orlovskaya, N Payzant, EA Graule, T Kuebler, J AF Chen, Yan Orlovskaya, Nina Payzant, E. Andrew Graule, Thomas Kuebler, Jakob TI A search for temperature induced time-dependent structural transitions in 10 mol%Sc2O3-1 mol%CeO2-ZrO2 and 8 mol%Y2O3-ZrO2 electrolyte ceramics SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Young's modulus; X-ray diffraction; Neutron diffraction; Scandia and ceria stabilized zirconia; Yttria stabilized zirconia ID OXIDE FUEL-CELLS; SCANDIA-DOPED ZIRCONIA; INTERNAL-FRICTION; STABILIZED ZIRCONIA; RAMAN-SCATTERING; MECHANICAL LOSS; YOUNGS MODULUS; SPECTROSCOPY; SOFCS; CONDUCTIVITY AB Both Sc2O3-CeO2-stabilized-ZrO2 (SCSZ) and Y2O3-stabilized-ZrO2 (YSZ) show similar Young's modulus damping at 175-400 degrees C and 200-400 degrees C, respectively, by impulse excitation acoustic technique. The phase transition in SCSZ is considered responsible for the damping; however for YSZ, such a phase transition has never been reported. To clarify the relation of damping and structural transition in these two materials, the time-dependent high temperature stabilities are studied by in situ X-ray diffraction, neutron diffraction and Raman scattering during long-term annealing of SCSZ at 350 degrees C and YSZ at 275 degrees C. The cubic-to-rhombohedral transition in SCSZ is detected. However, the existence of t' phase in YSZ raw powders is confirmed without significant changes of the cubic structure during isothermal annealing. It is concluded that the phase transition contributes to the Young's modulus damping in SCSZ, while the structural transition is excluded from the reason for damping in YSZ. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Chen, Yan; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Chen, Yan; Payzant, E. Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Graule, Thomas; Kuebler, Jakob] Empa, Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI Payzant, Edward/B-5449-2009; Chen, Yan/H-4913-2014; OI Payzant, Edward/0000-0002-3447-2060; Chen, Yan/0000-0001-6095-1754; Kuebler, Jakob/0000-0003-1331-0721 FU NSF [DMR-0748364, CMMI-1030833]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the NSF projects DMR-0748364 and CMMI-1030833. Neutron diffraction and X-ray diffraction were performed at Spallation Neutron Source and Center for Nanophase Materials Sciences, DOE user facilities at Oak Ridge National Laboratory, which are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. YC and NO thank Mr. Roland Bachtold for the assist in the mechanical testing in Empa, Swiss National Laboratories for Materials Testing and Research, Duebendorf, Switzerland. NR 32 TC 6 Z9 6 U1 5 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAR PY 2015 VL 35 IS 3 BP 951 EP 958 DI 10.1016/j.jeurceramsoc.2014.08.030 PG 8 WC Materials Science, Ceramics SC Materials Science GA AY6GF UT WOS:000347664500011 ER PT J AU Chang, H Wen, Q Parvin, B AF Chang, Hang Wen, Quan Parvin, Bahram TI Coupled segmentation of nuclear and membrane-bound macromolecules through voting and multiphase level set SO PATTERN RECOGNITION LA English DT Article DE Segmentation of membrane-bound macromolecules; Perceptual grouping; Multi-phase level set; Nuclear segmentation; Tissue architecture ID GLIOBLASTOMA-MULTIFORME; IMAGE SEGMENTATION; CELL-NUCLEI AB Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Chang, Hang; Parvin, Bahram] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Parvin, Bahram] Univ Nevada, Dept Biomed Engn, Reno, NV 89557 USA. [Wen, Quan] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Wuhan, Peoples R China. RP Chang, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU NIH [R01 CA140663]; University of California [DE-AC02-05CH11231] FX This work was supported in part by NIH grant R01 CA140663 carried out at Lawrence Berkeley National laboratory under Contract No. DE-AC02-05CH11231 with the University of California. NR 33 TC 1 Z9 1 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0031-3203 EI 1873-5142 J9 PATTERN RECOGN JI Pattern Recognit. PD MAR PY 2015 VL 48 IS 3 BP 882 EP 893 DI 10.1016/j.patcog.2014.10.005 PG 12 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AY7NP UT WOS:000347747000022 PM 25530633 ER PT J AU Demcenko, A Mainini, L Korneev, VA AF Demcenko, A. Mainini, L. Korneev, V. A. TI A study of the noncollinear ultrasonic-wave-mixing technique under imperfect resonance conditions SO ULTRASONICS LA English DT Article DE Nonlinear ultrasonics; Resonance conditions; Scattered field; Kissing bond; Subsurface micro-cracks ID ACOUSTIC HARMONIC-GENERATION; CRACK DETECTION; MODULATION SPECTROSCOPY; 3-PHONON INTERACTIONS; FATIGUE; INTERFACES; DAMAGE; BEHAVIOR; STEEL; VELOCITY AB Geometrical and material property changes cause deviations in the resonant conditions used for noncollinear wave mixing. These deviations are predicted and observed using the SV(omega(1)) + L(omega(2)) -> L(omega(1) + omega(2)) interaction, where SV and L are the shear vertical and longitudinal waves, respectively, and omega(1), omega(2) are their frequencies. Numerical predictions, performed for the scattered secondary field in the far field zone, show three field features of imperfect resonance conditions: (1) rotation of a scattered beam, (2) decrease in the beam amplitude, and (3) beam splitting. The response of the nonlinear ultrasonic wave mixing technique is verified experimentally in two ways: (1) detection of a kissing bond between two polyvinyl chloride (PVC) plates, and (2) detection of subsurface micro-cracks in polymethyl methacrylate (PMMA). A predominant decrease in nonlinear wave energy is observed in both experiments. Beam rotation and splitting is observed in the kissing-bond experiment, while a minor increase in the nonlinear wave energy up to 100% is observed in the micro-cracked PMMA specimen. (C) 2014 Elsevier B.V. All rights reserved. C1 [Demcenko, A.; Mainini, L.] Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands. [Korneev, V. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Demcenko, A (reprint author), Univ Twente, Fac Engn Technol, POB 217, NL-7500 AE Enschede, Netherlands. EM andriejus.demcenko@gmail.com FU Office of Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, of the U.S. Department of Energy [DE-ACO2- 05CH11231] FX This work was partially supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, of the U.S. Department of Energy under Contract No. DE-ACO2- 05CH11231. NR 31 TC 4 Z9 5 U1 8 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X EI 1874-9968 J9 ULTRASONICS JI Ultrasonics PD MAR PY 2015 VL 57 BP 179 EP 189 DI 10.1016/j.ultras.2014.11.009 PG 11 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA AY6CH UT WOS:000347654700021 PM 25497000 ER PT J AU Fan, HD Aubry, S Arsenlis, A El-Awady, JA AF Fan, Haidong Aubry, Sylvie Arsenlis, A. El-Awady, Jaafar A. TI Orientation influence on grain size effects in ultrafine-grained magnesium SO SCRIPTA MATERIALIA LA English DT Article DE Discrete dislocation dynamics; Grain size effects; Ultrafine-grained magnesium; Orientation ID CHANNEL ANGULAR EXTRUSION; ROOM-TEMPERATURE; SINGLE-CRYSTALS; YIELD STRENGTH; PURE MAGNESIUM; DISLOCATION; DEFORMATION; METALS; BEHAVIOR; SLIP AB The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments was observed. These results reveal that the grain size effect depends on three factors: Peierls stress, dislocation source strength and grain boundary strength. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Fan, Haidong; El-Awady, Jaafar A.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Fan, Haidong] Sichuan Univ, Dept Mech, Chengdu 610065, Sichuan, Peoples R China. [Aubry, Sylvie; Arsenlis, A.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. RP Fan, HD (reprint author), Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. EM haidongfan8@foxmail.com OI El-Awady, Jaafar/0000-0002-5715-2481 FU Army Research Laboratory [W911NF-12-2-0022]; Natural Science Foundation of China [11302140] FX This research was sponsored by the Army Research Laboratory (#W911NF-12-2-0022). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARL or the US government. The US government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation herein. H.F. also gratefully acknowledges the financial support of Natural Science Foundation of China (11302140). NR 35 TC 15 Z9 16 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR 1 PY 2015 VL 97 BP 25 EP 28 DI 10.1016/j.scriptamat.2014.10.031 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AX5FT UT WOS:000346952900007 ER PT J AU Chason, E Engwall, AM Miller, CM Chen, CH Bhandari, A Soni, SK Hearne, SJ Freund, LB Sheldon, BW AF Chason, E. Engwall, A. M. Miller, C. M. Chen, C. -H. Bhandari, A. Soni, S. K. Hearne, S. J. Freund, L. B. Sheldon, B. W. TI Stress evolution during growth of 1-D island arrays: Kinetics and length scaling SO SCRIPTA MATERIALIA LA English DT Article DE Thin film; Residual stress; Kinetics; Electrodeposition ID THIN METAL-FILMS; COMPRESSIVE STRESS; INTRINSIC STRESS; COALESCENCE; MECHANISMS; SUBSTRATE; SURFACE; MODEL AB To explore the mechanisms controlling residual stress in thin films, we have measured the stress evolution during electrodeposition of Ni on lithographically patterned substrates with different pattern spacings and growth rates. Studying films with a controlled island geometry allows us to relate the stress (measured using wafer curvature) to the evolution of the morphology. We analyze the measurements with a model that focuses on the stress that develops where adjacent islands grow together to form new elements of grain boundary. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chason, E.; Engwall, A. M.; Miller, C. M.; Chen, C. -H.; Sheldon, B. W.] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Bhandari, A.] PPG Ind Inc, Pittsburgh, PA 15272 USA. [Soni, S. K.] Intel Corp, Hillsboro, OR 97124 USA. [Hearne, S. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Freund, L. B.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Engwall, AM (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA. EM alison_engwall@brown.edu OI Miller, Christopher M./0000-0002-0684-4381 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008799]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge useful input from Allan Bower, Fei Pei, Brittni Thomas and Julia Zaskorski. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0008799. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 3 Z9 3 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR 1 PY 2015 VL 97 BP 33 EP 36 DI 10.1016/j.scriptamat.2014.10.012 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AX5FT UT WOS:000346952900009 ER PT J AU Briscoe, JL Cho, SY Brener, I AF Briscoe, Jayson L. Cho, Sang-Yeon Brener, Igal TI Part-Per-Trillion Level Detection of Microcystin-LR Using a Periodic Nanostructure SO IEEE SENSORS JOURNAL LA English DT Article DE Biosensors; blue-green algae; microcystin; nanohole array; optical sensor; surface plasmon polaritons ID TANDEM MASS-SPECTROMETRY; OPTICAL-TRANSMISSION; LIGHT TRANSMISSION; GOLD-FILMS; PROTEIN-G; WATER; NANOHOLES; ARRAYS; LIVER; CYANOBACTERIA AB Accelerated eutrophication of surface water sources has resulted in an increased presence of cyanobacterial blooms in fresh water. The release of hepatotoxins like microcystins from such blooms can have a catastrophic impact on local human and wildlife ecosystems. Therefore, a rapid, low-cost, reliable, and highly sensitive method for low-concentration detection of microcystins is needed to minimize risks to public health. In this paper, we report the first experimental demonstration of microcystin-leucine-arginine (MC-LR) detection in water at low part-pertrillion levels using a portable optical sensor. The demonstrated biosensor utilizes a highly sensitive electromagnetic surface wave in periodically coupled artificial nanostructures to directly probe the interaction between immobilized antibodies and MC-LR. The surface customization reported here uses a layer-by-layer polyelectrolyte adsorption process to provide highly stable and site-directed immobilization of target antibodies. Steady-state analysis of the sensor's response confirms that the plasmonic sensor can detect the presence of MC-LR antigens at part-pertrillion levels. The demonstrated sensor is an important first step toward realizing a lab-on-a-chip sensing system for in situ, autonomous, real-time, distributed environmental monitoring of MC levels in drinking water. C1 [Briscoe, Jayson L.; Cho, Sang-Yeon] New Mexico State Univ, Klipsch Sch Elect Engn, Las Cruces, NM 88003 USA. [Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Brener, Igal] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Briscoe, JL (reprint author), New Mexico State Univ, Klipsch Sch Elect Engn, Las Cruces, NM 88003 USA. EM briscojl@nmsu.edu; sangycho@nmsu.edu; ibrener@sandia.gov RI Cho, Sang-Yeon/C-3075-2008 OI Cho, Sang-Yeon/0000-0002-4721-4087 FU National Science Foundation [1311735]; U.S. Army Research Laboratory; U.S. Army Research Office [W911NF-12-1-0050, 60492-EL-REP]; National Institute of Health [1R01ES021951-01]; Center for Integrated Nanotechnologies; Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Sandia National Laboratories/New Mexico State University Excellence in Engineering Graduate Research Fellowship FX This work was supported in part by the National Science Foundation under Grant 1311735, in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant W911NF-12-1-0050 and Grant 60492-EL-REP, in part by the National Institute of Health under Grant 1R01ES021951-01, in part by the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science through the Los Alamos National Laboratory under Contract DE-AC52-06NA25396, and in part by Sandia National Laboratories under Contract DE-AC04-94AL85000. The work of J. L. Briscoe was supported by the Sandia National Laboratories/New Mexico State University Excellence in Engineering Graduate Research Fellowship. The associate editor coordinating the review of this paper and approving it for publication was Dr. Chang-Soo Kim. NR 45 TC 1 Z9 1 U1 1 U2 56 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD MAR PY 2015 VL 15 IS 3 BP 1366 EP 1371 DI 10.1109/JSEN.2014.2359881 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA AX1ZS UT WOS:000346743600008 ER PT J AU Akerib, DS Araujo, HM Bai, X Bailey, AJ Balajthy, J Bernard, E Bernstein, A Bradley, A Byram, D Cahn, SB Carmona-Benitez, MC Chan, C Chapman, JJ Chiller, AA Chiller, C Coffey, T Currie, A de Viveiros, L Dobi, A Dobson, J Druszkiewicz, E Edwards, B Faham, CH Fiorucci, S Flores, C Gaitskell, RJ Gehman, VM Ghagi, C Gibson, KR Gilchriese, MGD Hall, C Hertel, SA Horn, M Huang, DQ Ihm, M Jacobsen, RG Kazkaz, K Knoche, R Larsen, NA Lee, C Lindote, A Lopes, MI Malling, DC Mannino, R McKinsey, DN Mei, DM Mock, J Moongweluwan, M Morad, J Murphy, AS Nehrkorn, C Nelson, H Neves, F Ott, RA Pangilinan, M Parker, PD Pease, EK Pech, K Phelps, P Reichharti, L Shutt, T Silva, C Solovov, VN Sorensen, P O'Sullivan, K Sumner, TJ Szydagis, M Taylor, D Tennyson, B Tiedt, DR Tripathi, M Uvarov, S Verbus, JR Walsh, N Webb, R White, JT Witherell, MS Wolfs, FLH Woods, M Zhang, C AF Akerib, D. S. Araujo, H. M. Bai, X. Bailey, A. J. Balajthy, J. Bernard, E. Bernstein, A. Bradley, A. Byram, D. Cahn, S. B. Carmona-Benitez, M. C. Chan, C. Chapman, J. J. Chiller, A. A. Chiller, C. Coffey, T. Currie, A. de Viveiros, L. Dobi, A. Dobson, J. Druszkiewicz, E. Edwards, B. Faham, C. H. Fiorucci, S. Flores, C. Gaitskell, R. J. Gehman, V. M. Ghagi, C. Gibson, K. R. Gilchriese, M. G. D. Hall, C. Hertel, S. A. Horn, M. Huang, D. Q. Ihm, M. Jacobsen, R. G. Kazkaz, K. Knoche, R. Larsen, N. A. Lee, C. Lindote, A. Lopes, M. I. Malling, D. C. Mannino, R. McKinsey, D. N. Mei, D. -M. Mock, J. Moongweluwan, M. Morad, J. Murphy, A. Std. Nehrkorn, C. Nelson, H. Neves, F. Ott, R. A. Pangilinan, M. Parker, P. D. Pease, E. K. Pech, K. Phelps, P. Reichharti, L. Shutt, T. Silva, C. Solovov, V. N. Sorensen, P. O'Sullivan, K. Sumner, T. J. Szydagis, M. Taylor, D. Tennyson, B. Tiedt, D. R. Tripathi, M. Uvarov, S. Verbus, J. R. Walsh, N. Webb, R. White, J. T. Witherell, M. S. Wolfs, F. L. H. Woods, M. Zhang, C. TI Radiogenic and muon-induced backgrounds in the LUX dark matter detector SO ASTROPARTICLE PHYSICS LA English DT Article DE LUX; Dark matter; Radioactive background; Material screening; Simulation ID LARGE-SCALE STRUCTURE; RADIOACTIVE KR-85; INDUCED NEUTRONS; XENON; ISOTOPE; LIGHT; FLUX AB The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6 +/- 02(stat) +/- 0.4(sys)) x 10(-3) events keV(ee)(-1); kg(-1) day(-1) in a 118 kg fiducial volume. The observed background rate is (3.6 +/- 0.4(stat)) X 10(-3) events keV(ee)(-1) kg(-1) day(-1), consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chan, C.; Chapman, J. J.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Huang, D. Q.; Malling, D. C.; Pangilinan, M.; Verbus, J. R.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Akerib, D. S.; Bradley, A.; Carmona-Benitez, M. C.; Coffey, T.; Gibson, K. R.; Lee, C.; Pech, K.; Phelps, P.; Shutt, T.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Araujo, H. M.; Bailey, A. J.; Currie, A.; Sumner, T. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Faham, C. H.; Gehman, V. M.; Gilchriese, M. G. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bernstein, A.; Kazkaz, K.; Sorensen, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [de Viveiros, L.; Lindote, A.; Lopes, M. I.; Neves, F.; Silva, C.; Solovov, V. N.] Univ Coimbra, Dept Phys, LIP Coimbra, P-3004516 Coimbra, Portugal. [Bai, X.; Tiedt, D. R.] South Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. [Taylor, D.] South Dakota Sci & Technol Author, Sanford Underground Res Facil, Lead, SD 57754 USA. [Mannino, R.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Ghagi, C.; Reichharti, L.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Ihm, M.; Jacobsen, R. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Flores, C.; Mock, J.; Morad, J.; Ott, R. A.; Szydagis, M.; Tripathi, M.; Uvarov, S.; Walsh, N.; Woods, M.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Carmona-Benitez, M. C.; Nehrkorn, C.; Nelson, H.; Witherell, M. S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA. [Dobson, J.; Murphy, A. Std.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland. [Balajthy, J.; Dobi, A.; Hall, C.; Knoche, R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Druszkiewicz, E.; Moongweluwan, M.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Byram, D.; Chiller, A. A.; Chiller, C.; Mei, D. -M.; Zhang, C.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Bernard, E.; Cahn, S. B.; Edwards, B.; Hertel, S. A.; Horn, M.; Larsen, N. A.; McKinsey, D. N.; Parker, P. D.; Pease, E. K.; O'Sullivan, K.; Tennyson, B.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. RP Malling, DC (reprint author), Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. EM David_Malling@brown.edu RI de Viveiros, Luiz/M-9205-2013; OI de Viveiros, Luiz/0000-0002-7038-2361; Silva, Claudio/0000-0002-1771-1517; Wolfs, Frank/0000-0001-8693-1196; Araujo, Henrique/0000-0002-5972-2783; Szydagis, Matthew/0000-0002-9334-4659; Murphy, Alexander/0000-0001-8337-4427; Lindote, Alexandre/0000-0002-7965-807X FU U.S. Department of Energy (DOE) [DE-FG02-08ER41549, DE-FG02-91ER40688, DE-FG02-95ER40917, DE-FG02-91ER40674, DE-NA0000979, DE-FG02-11ER41738, DE-SC0006605, DE-AC02-05CH11231, DE-AC52-07NA27344, DE-FG01-91ER40618]; U.S. National Science Foundation [PHYS-0750671, PHY-0801536, PHY-1004661, PHY-1102470, PHY-1003660, PHY-1312561, PHY-1347449]; Research Corporation Grant [RA0350]; Center for Ultra-low Background Experiments in the Dakotas (CUBED); South Dakota School of Mines and Technology (SDSMT); Fundacao para a Ciencia e Tecnologia (FCT) [CERN/FP/123610/2011]; UK Royal Society [IE120804]; Imperial College London; University College London; Edinburgh University; Science & Technology Facilities Council [ST/K502042/1] FX This work was partially supported by the U.S. Department of Energy (DOE) under Award numbers DE-FG02-08ER41549, DE-FG02-91ER40688, DE-FG02-95ER40917, DE-FG02-91ER40674, DE-NA0000979, DE-FG02-11ER41738, DE-SC0006605, DE-AC02-05CH11231, DE-AC52-07NA27344, and DE-FG01-91ER40618; the U.S. National Science Foundation under Award numbers PHYS-0750671, PHY-0801536, PHY-1004661, PHY-1102470, PHY-1003660, PHY-1312561, PHY-1347449; the Research Corporation Grant RA0350; the Center for Ultra-low Background Experiments in the Dakotas (CUBED); and the South Dakota School of Mines and Technology (SDSMT). LIP-Coimbra acknowledges funding from Fundacao para a Ciencia e Tecnologia (FCT) through the Project-Grant CERN/FP/123610/2011. Imperial College and Brown University thank the UK Royal Society for travel funds under the International Exchange Scheme (IE120804). The UK groups acknowledge institutional support from Imperial College London, University College London and Edinburgh University, and from the Science & Technology Facilities Council for Ph. D. studentship ST/K502042/1 (AB). The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336. This research was conducted using computational resources and services at the Center for Computation and Visualization, Brown University. NR 37 TC 17 Z9 17 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2015 VL 62 BP 33 EP 46 DI 10.1016/j.astropartphys.2014.07.009 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW8ZR UT WOS:000346548200006 ER PT J AU Abeysekara, AU Alfaro, R Alvarez, C Alvarez, JD Angeles, F Arceo, R Arteaga-Velazquezd, JC Avila-Aroche, A Solares, HAA Badillo, C Barber, AS Baughman, BM Bautista-Elivar, N Gonzalez, JB Belmont, E Benitez, E BenZvi, SY Berley, D Bernal, A Rosales, MB Braun, J Caballero-Lopez, RA Caballero-More, KS Cabrera, I Carraminana, A Castaneda-Martinez, L Castillo, M Cotti, U Cotzomi, J de la Fuente, E De Leon, C DeYoung, T Diaz-Azuara, A Diaz-Cruz, L Hernandez, RD Diaz-Velez, JC Dingus, BL Dultzin, D DuVernois, MA Ellsworth, RW Fernandez, A Fiorino, DW Fraija, N Galindo, A Garcia-Torales, G Garfias, F Gonzalez, A Gonzalez, LX Gonzalez, MM Goodman, JA Grabski, V Gussert, M Guzman-Ceron, C Hampel-Arias, Z Harding, JP Hernandez-Cervantes, L Hui, CM Huntemeyer, P Imran, A Iriarte, A Karn, P Kieda, D Kunde, GJ Langarica, R Lara, A Lara, G Lauer, RJ Lee, WH Lennarz, D Vargas, HL Linares, EC Linnemann, JT Longo, M Luna-Garcia, R Marinelli, A Martinez, LA Martinez, H Martinez, O Martinez-Castro, J Martos, M Matthews, JAJ McEnery, J Torres, EM Miranda-Romagnoli, P Moreno, E Mostafa, M Nava, J Nellen, L Newbold, M Noriega-Papaqui, R Oceguera-Becerra, T Page, DP Patricelli, B Pelayo, R Perez-Perez, EG Pretz, J Ramirez, I Renteria, A Riviere, C Rosa-Gonzalez, D Ruiz-Sala, F Ruiz-Velasco, EL Ryan, J Sacahui, JR Salazar, H Salesa, F Sandoval, A Santos, E Schneider, M Silich, S Sinnis, G Smith, AJ Woodle, KS Springer, RW Suarez, F Taboada, I Tepe, A Toale, PA Tollefson, K Torres, I Tinoco, S Ukwatta, TN Galicia, JFV Vanegas, P Vazquez, A Villasenor, L Wall, W Weisgarber, T Westerhoff, S Wisher, IG Wood, J Yodh, GB Younk, PW Zaborov, D Zepeda, A Zhou, H AF Abeysekara, A. U. Alfaro, R. Alvarez, C. Alvarez, J. D. Angeles, F. Arceo, R. Arteaga-Velazquezd, J. C. Avila-Aroche, A. Solares, H. A. Ayala Badillo, C. Barber, A. S. Baughman, B. M. Bautista-Elivar, N. Gonzalez, J. Becerra Belmont, E. Benitez, E. BenZvi, S. Y. Berley, D. Bernal, A. Rosales, M. Bonilla Braun, J. Caballero-Lopez, R. A. Caballero-More, K. S. Cabrera, I. Carraminana, A. Castaneda-Martinez, L. Castillo, M. Cotti, U. Cotzomi, J. de la Fuente, E. De Leon, C. DeYoung, T. Diaz-Azuara, A. Diaz-Cruz, L. Hernandez, R. Diaz Diaz-Velez, J. C. Dingus, B. L. Dultzin, D. DuVernois, M. A. Ellsworth, R. W. Fernandez, A. Fiorino, D. W. Fraija, N. Galindo, A. Garcia-Torales, G. Garfias, F. Gonzalez, A. Gonzalez, L. X. Gonzalez, M. M. Goodman, J. A. Grabski, V. Gussert, M. Guzman-Ceron, C. Hampel-Arias, Z. Harding, J. P. Hernandez-Cervantes, L. Hui, C. M. Huentemeyer, P. Imran, A. Iriarte, A. Karn, P. Kieda, D. Kunde, G. J. Langarica, R. Lara, A. Lara, G. Lauer, R. J. Lee, W. H. Lennarz, D. Vargas, H. Leon Linares, E. C. Linnemann, J. T. Longo, M. Luna-Garcia, R. Marinelli, A. Martinez, L. A. Martinez, H. Martinez, O. Martinez-Castro, J. Martos, M. Matthews, J. A. J. McEnery, J. Torres, E. Mendoza Miranda-Romagnoli, P. Moreno, E. Mostafa, M. Nava, J. Nellen, L. Newbold, M. Noriega-Papaqui, R. Oceguera-Becerra, T. Page, D. P. Patricelli, B. Pelayo, R. Perez-Perez, E. G. Pretz, J. Ramirez, I. Renteria, A. Riviere, C. Rosa-Gonzalez, D. Ruiz-Sala, F. Ruiz-Velasco, E. L. Ryan, J. Sacahui, J. R. Salazar, H. Salesa, F. Sandoval, A. Santos, E. Schneider, M. Silich, S. Sinnis, G. Smith, A. J. Woodle, K. Sparks Springer, R. W. Suarez, F. Taboada, I. Tepe, A. Toale, P. A. Tollefson, K. Torres, I. Tinoco, S. Ukwatta, T. N. Galicia, J. F. Valdes Vanegas, P. Vazquez, A. Villasenor, L. Wall, W. Weisgarber, T. Westerhoff, S. Wisher, I. G. Wood, J. Yodh, G. B. Younk, P. W. Zaborov, D. Zepeda, A. Zhou, H. TI VAMOS: A pathfinder for the HAWC gamma-ray observatory SO ASTROPARTICLE PHYSICS LA English DT Article DE Detector prototype; Scientific verification; TeV cosmic rays ID FORBUSH DECREASES AB VAMOS(1) was a prototype detector built in 2011 at an altitude of 4100 m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B. (C) 2014 Elsevier B.V. All rights reserved. C1 [Abeysekara, A. U.; Langarica, R.; Linnemann, J. T.; Tollefson, K.; Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alfaro, R.; Badillo, C.; Belmont, E.; Cabrera, I.; Gonzalez, A.; Grabski, V.; Vargas, H. Leon; Marinelli, A.; Ramirez, I.; Renteria, A.; Sandoval, A.; Suarez, F.; Vanegas, P.; Vazquez, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Alvarez, C.; Arceo, R.; Santos, E.] Univ Autonoma Chiapas, CEFyMAP, Tuxtla Gutierrez, Chiapas, Mexico. [Alvarez, J. D.; Arteaga-Velazquezd, J. C.; Cotti, U.; De Leon, C.; Linares, E. C.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Angeles, F.; Avila-Aroche, A.; Benitez, E.; Bernal, A.; Castaneda-Martinez, L.; Diaz-Azuara, A.; Dultzin, D.; Fraija, N.; Garfias, F.; Gonzalez, M. M.; Guzman-Ceron, C.; Hernandez-Cervantes, L.; Iriarte, A.; Lara, G.; Lee, W. H.; Martinez, L. A.; Martos, M.; Page, D. P.; Patricelli, B.; Riviere, C.; Ruiz-Sala, F.; Ruiz-Velasco, E. L.; Sacahui, J. R.; Tinoco, S.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Solares, H. A. Ayala; Hui, C. M.; Huentemeyer, P.; Zhou, H.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Barber, A. S.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA. [Baughman, B. M.; Gonzalez, J. Becerra; Berley, D.; Braun, J.; Ellsworth, R. W.; Goodman, J. A.; Smith, A. J.; Wood, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bautista-Elivar, N.; Perez-Perez, E. G.] Univ Politecn Pachuca, Pachuca, Hidalgo, Mexico. [Gonzalez, J. Becerra; McEnery, J.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [BenZvi, S. Y.; Diaz-Velez, J. C.; DuVernois, M. A.; Fiorino, D. W.; Hampel-Arias, Z.; Imran, A.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rosales, M. Bonilla; Carraminana, A.; Hernandez, R. Diaz; Galindo, A.; Torres, E. Mendoza; Nava, J.; Rosa-Gonzalez, D.; Silich, S.; Torres, I.; Wall, W.] Inst Nacl Astrofis Opt & Electr, Tonantzintla, Puebla, Mexico. [Caballero-Lopez, R. A.; Gonzalez, L. X.; Lara, A.; Galicia, J. F. Valdes] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Caballero-Lopez, R. A.; Gonzalez, L. X.; Lara, A.; Galicia, J. F. Valdes] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Caballero-More, K. S.; Martinez, H.; Zepeda, A.] IPN, Ctr Invest & Estudios Avanzados, Dept Phys, Mexico City 07738, DF, Mexico. [Castillo, M.; Cotzomi, J.; Diaz-Cruz, L.; Fernandez, A.; Martinez, O.; Moreno, E.; Salazar, H.] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico. [de la Fuente, E.; Garcia-Torales, G.; Oceguera-Becerra, T.] Univ Guadalajara, Dept Fis ITPhd CUCEA, Phys Mat Phd CUVALLES, Guadalajara, Jalisco, Mexico. [de la Fuente, E.; Garcia-Torales, G.; Oceguera-Becerra, T.] Univ Guadalajara, Dept Elect CUCEI, IT Phd CUCEA, Phys Mat Phd CUVALLES, Guadalajara, Jalisco, Mexico. [DeYoung, T.; Mostafa, M.; Pretz, J.; Salesa, F.; Woodle, K. Sparks; Zaborov, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Dingus, B. L.; Harding, J. P.; Kunde, G. J.; Sinnis, G.; Younk, P. W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA. [Ellsworth, R. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Gussert, M.; Longo, M.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Karn, P.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Lauer, R. J.; Matthews, J. A. J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lennarz, D.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys & Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Luna-Garcia, R.; Martinez-Castro, J.; Pelayo, R.] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico. [Miranda-Romagnoli, P.; Noriega-Papaqui, R.] Univ Autonoma Estado Hidalgo, Pachuca, Hidalgo, Mexico. [Nellen, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Ryan, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Schneider, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Toale, P. A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Marinelli, A (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. EM antonio.marinelli@fisica.unam.mx; zaborov@phys.psu.edu OI Lara, Alejandro/0000-0001-6336-5291; Dingus, Brenda/0000-0001-8451-7450; Lauer, Robert/0000-0003-1933-7861; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU National Science Foundation; US Department of Energy Office of High-Energy Physics; LDRD program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia [55155, 103520, 105033, 105666, 122331, 194116, 132197, 179588]; Red de Fisica de Altas Energias; DGAPA-UNAM [IN110212, IN105211, IN108713, IN121309, IN115409, IN111612, IN112412, IG100414-3]; VIEP-BUAP [161-EXC-2011]; Luc-Binette Foundation UNAM Postdoctoral Fellowship; University of Wisconsin Alumni Research Foundation; Institute of Geophysics and Planetary Physics at Los Alamos National Lab FX We gratefully acknowledge Scott DeLay and Federico Bareilles for their dedicated efforts in the construction and maintenance of the VAMOS prototype. This work has been supported by: the National Science Foundation, the US Department of Energy Office of High-Energy Physics, the LDRD program of Los Alamos National Laboratory, Consejo Nacional de Ciencia y Tecnologia (Grants 55155, 103520, 105033, 105666, 122331, 194116, 132197 and 179588), Red de Fisica de Altas Energias, DGAPA-UNAM (Grants IN110212, IN105211, IN108713, IN121309, IN115409, IN111612, IN112412 and IG100414-3), VIEP-BUAP (Grant 161-EXC-2011), Luc-Binette Foundation UNAM Postdoctoral Fellowship, the University of Wisconsin Alumni Research Foundation, and the Institute of Geophysics and Planetary Physics at Los Alamos National Lab. NR 31 TC 3 Z9 3 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2015 VL 62 BP 125 EP 133 DI 10.1016/j.astropartphys.2014.08.004 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW8ZR UT WOS:000346548200015 ER PT J AU Barwick, SW Berg, EC Besson, DZ Duffin, T Hanson, JC Klein, SR Kleinfelder, SA Piasecki, M Ratzlaff, K Reed, C Roumi, M Stezelberger, T Tatar, J Walker, J Young, R Zou, L AF Barwick, S. W. Berg, E. C. Besson, D. Z. Duffin, T. Hanson, J. C. Klein, S. R. Kleinfelder, S. A. Piasecki, M. Ratzlaff, K. Reed, C. Roumi, M. Stezelberger, T. Tatar, J. Walker, J. Young, R. Zou, L. TI Time-domain response of the ARIANNA detector SO ASTROPARTICLE PHYSICS LA English DT Article DE GZK neutrinos; Askaryan effect; Radio detector ID NEUTRINO DETECTION; COSMIC RAYS; EMISSION; SPECTRUM; ANTENNAS; PULSES; CHARGE AB The Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) is a high-energy neutrino detector designed to record the Askaryan electric field signature of cosmogenic neutrino interactions in ice. To understand the inherent radio-frequency (RF) neutrino signature, the time-domain response of the ARIANNA RF receiver must be measured. ARIANNA uses Create CLP5130-2N log-periodic dipole arrays (LPDAs). The associated effective height operator converts incident electric fields to voltage waveforms at the LDPA terminals. The effective height versus time and incident angle was measured, along with the associated response of the ARIANNA RE amplifier. The results are verified by correlating to field measurements in air and ice, using oscilloscopes. Finally, theoretical models for the Askaryan electric field are combined with the detector response to predict the neutrino signature. (C) 2014 Elsevier B.V. All rights reserved. C1 [Barwick, S. W.; Berg, E. C.; Duffin, T.; Hanson, J. C.; Reed, C.; Tatar, J.; Walker, J.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Besson, D. Z.; Hanson, J. C.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Kleinfelder, S. A.; Roumi, M.; Zou, L.] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA USA. [Klein, S. R.; Stezelberger, T.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Piasecki, M.; Ratzlaff, K.; Young, R.] Univ Kansas, Instrumentat Design Lab, Lawrence, KS 66045 USA. [Besson, D. Z.] Moscow Phys & Engn Inst, Los Alamos, NM USA. [Tatar, J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Hanson, JC (reprint author), Univ Kansas, Lawrence, KS 66045 USA. EM j529h838@ku.edu FU Office of Polar Programs and Physics Division of the US National Science Foundation [ANT-08339133, NSF-0970175, NSF-1126672] FX We wish to thank the staff of Antarctic Support Contractors, Raytheon Polar Services and Lockheed Martin, and the entire crew at McMurdo Station for excellent logistical support. We would like to acknowledge and thank the CReSIS project and the Anechoic Chamber facility management for the use of the world class anechoic chamber at the University of Kansas. This work was supported by generous funding from the Office of Polar Programs and Physics Division of the US National Science Foundation, grant awards ANT-08339133, NSF-0970175, and NSF-1126672. NR 38 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2015 VL 62 BP 139 EP 151 DI 10.1016/j.astropartphys.2014.09.002 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW8ZR UT WOS:000346548200017 ER PT J AU Kim, AG Linder, EV Edelstein, J Erskine, D AF Kim, Alex G. Linder, Eric V. Edelstein, Jerry Erskine, David TI Giving cosmic redshift drift a whirl SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmological distances; Cosmic acceleration; Dark energy ID LASER FREQUENCY COMBS; TIME-DELAY; WAVELENGTH CALIBRATION; PECULIAR ACCELERATION; SPECTROGRAPH; DECELERATION; CONSTANT; GALAXIES AB Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10(-9) require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10(-8) (few x10(-10)). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kim, Alex G.; Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Linder, Eric V.; Edelstein, Jerry] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Erskine, David] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kim, AG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU DOE [DE-SC-0007867]; LLNL [DE-AC52-07NA27344]; Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-ACO2-05CH11231]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We acknowledge helpful discussions with Stephen Bailey, Jeff Newman, and Nan Suzuki. EVL thanks the Korea Astronomy and Space Science Institute for hospitality. This work has been supported by DOE grant DE-SC-0007867, by LLNL under Contract DE-AC52-07NA27344, and the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 39 TC 4 Z9 4 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2015 VL 62 BP 195 EP 205 DI 10.1016/j.astropartphys.2014.09.004 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW8ZR UT WOS:000346548200021 ER PT J AU Damewood, L Fong, CY Klein, BM Yang, LH Felser, C AF Damewood, L. Fong, C. Y. Klein, B. M. Yang, L. H. Felser, C. TI Spintronic properties of Li(1.5)Mn(0.5)Z (Z=As, Sb) compounds in the Cu2Sb structure SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Spintronic materials; Ferromagnetic; Half-metals AB We have investigated the spintronic properties of two formula units of Li(1.5)Mn(0.5)Z (Z =As, Sb), in the Cu2Sb tetragonal crystal structure based on first-principles density-functional theory calculations, at, and near, their equilibrium (minimum total energy) lattice constants. Two groups of configurations, A and B. are formed for each type of alloy by interchanging Mn with each Li located at four different positions with respect to Li(4)Z(2). Mn has four nearest neighbors in group-A and has one nearest neighbor in group-B. The bonding features of the alloys are compared to the ionic bonding in Li(4)Z(2), and the tetragonal structure of cubic LiMnZ. The magnetic moments of these compounds are reasonably large and range from 3.724 to 4.056 mu B, where mu B is the Bohr magneton. Both group-B Li(3)MnZ(2), with Z=As, exhibit half-metallic properties at their equilibrium lattice constants while only group-A of the Z=Sb compounds are half-metals. Both the modified Slater-Pauling-Kubler rule and the ionic model can predict the magnetic moments of the alloys showing half-metallicity. The modified rule can be used for exploring other potential half-metals in this class of material. (C) 2014 Elsevier B.V. All rights reserved C1 [Damewood, L.; Fong, C. Y.; Klein, B. M.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Yang, L. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Felser, C.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. RP Damewood, L (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM damewood@physics.ucdavis.edu RI Felser, Claudia/A-5779-2009 OI Felser, Claudia/0000-0002-8200-2063 FU National Science Foundation [ECCS-1232275]; U.S. Department of Energy by Lawrence Livermore National Laboratory [AC52-07NA27344] FX Work at UC Davis was supported in part by the National Science Foundation Grant no, ECCS-1232275. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 27 TC 1 Z9 1 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAR 1 PY 2015 VL 377 BP 411 EP 418 DI 10.1016/j.jmmm.2014.10.117 PG 8 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA AU6AA UT WOS:000345683200069 ER PT J AU Gao, F Kollar, M Kukkadapu, RK Washton, NM Wang, YL Szanyi, J Peden, CHF AF Gao, Feng Kollar, Marton Kukkadapu, Ravi K. Washton, Nancy M. Wang, Yilin Szanyi, Janos Peden, Charles H. F. TI Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mossbauer spectroscopic study SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Selective catalytic reduction; Chabazite; Fe/SSZ-13; Emission control; NOx ID ACTIVE-SITES; FE-ZSM-5 CATALYSTS; N2O DECOMPOSITION; NITROGEN-OXIDES; MOSSBAUER-SPECTROSCOPY; DENO(X) CATALYSTS; BEA ZEOLITE; Y ZEOLITE; NO; FE AB Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N-2, an Fe/SSZ-13 catalyst active in NH3-SCR was synthesized. Mossbauer and FTIR spectroscopies were used to probe the nature of the Fe sites. In the fresh sample, the majority of Fe species are extra-framework cations. The likely monomeric and dimeric ferric ions in hydrated form are [Fe(OH)(2)](+) and [HO-Fe-O-Fe-OH](2+), based on Mossbauer measurements. During the harsh hydrothermal aging (HTA) applied in this study, a majority of cationic Fe species convert to FeAlOx and clustered FeOx species, accompanied by dealumination of the SSZ-13 framework. The clustered FeOx species do not give a sextet Mossbauer spectrum, indicating that these are highly disordered. However, some Fe species in cationic positions remain after aging as determined from Mossbauer measurements and CO/NO FTIR titrations. NO/NH3 oxidation reaction tests reveal that dehydrated cationic Fe is substantially more active in catalyzing oxidation reactions than the hydrated ones. For NH3-SCR, enhancement of NO oxidation under 'dry' conditions promotes SCR rates below similar to 300 degrees C. This is due mainly to contribution from the "fast" SCR channel. Above similar to 300 degrees C, enhancement of NH3 oxidation under 'dry' conditions, however, becomes detrimental to NO conversions. The HTA sample loses much of the SCR activity below similar to 300 degrees C; however, above similar to 400 degrees C much of the activity remains. This may suggest that the FeAlOx and FeOx species become active at such elevated temperatures. Alternatively, the high-temperature activity may be maintained by the remaining extra-framework cationic species. For potential practical applications, Fe/SSZ-13 may be used as a co-catalyst for Cu/CHA as integral aftertreatment SCR catalysts on the basis of the stable high temperature activity after hydrothermal aging. Published by Elsevier B.V. C1 [Gao, Feng; Kollar, Marton; Wang, Yilin; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kukkadapu, Ravi K.; Washton, Nancy M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM feng.gao@pnnl.gov; janos.szanyi@pnnl.gov; chuck.peden@pnnl.gov FU US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office; DOE's Office of Biological and Environmental Research FX The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. Discussions with Drs. A. Yezerets, K. Kamasamudram, J.H. Li, N. Currier and J.Y. Luo from Cummins, Inc., and H.Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated. NR 49 TC 19 Z9 21 U1 18 U2 211 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD MAR PY 2015 VL 164 BP 407 EP 419 DI 10.1016/j.apcatb.2014.09.031 PG 13 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA AT8KH UT WOS:000345181800046 ER PT J AU Sridharan, H Cheriyadat, A AF Sridharan, Harini Cheriyadat, Anil TI Bag of Lines (BoL) for Improved Aerial Scene Representation SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Bag of lines (BoL); classification; clustering; feature representation; line extraction ID CLASSIFICATION; IMAGES AB Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scale invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT-and Gabor-based representations. C1 [Sridharan, Harini; Cheriyadat, Anil] Oak Ridge Natl Lab, Computat Sci & Engn Div, Knoxville, TN 37831 USA. RP Sridharan, H (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Knoxville, TN 37831 USA. EM sridharanh@ornl.gov; cheriyadatam@ornl.gov NR 19 TC 5 Z9 5 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD MAR PY 2015 VL 12 IS 3 BP 676 EP 680 DI 10.1109/LGRS.2014.2357392 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA AT5NE UT WOS:000344988800048 ER PT J AU Cao, W Suzuki, T Elsayed-Ali, HE Abdel-Fattah, TM AF Cao, Wei Suzuki, Takuya Elsayed-Ali, Hani E. Abdel-Fattah, Tarek M. TI Synthesis of Cerium-Doped Titania Nanoparticles and Nanotubes SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Titania; Cerium Doping; Nanotubes; Visible Light Photocatalytic Activity ID PHOTOCATALYTIC ACTIVITY; VISIBLE-LIGHT; DIOXIDE PHOTOCATALYSTS; ENHANCED DEGRADATION; TIO2; OXIDE; COMPOSITES; REDUCTION; NITROGEN; ACID AB Cerium-doped titania nanoparticles and nanotubes were synthesized via hydrothermal processes. X-Ray Diffraction revealed that cerium-doped titania nanoparticles have an anatase crystal structure, while cerium-doped titania nanotubes have an H2Ti3O7-type structure. Scanning electron microscopy and high resolution transmission electron microscopy showed that both types of titania are well crystallized with relatively uniform size distribution. The photocatalytic degradation of methylthioninium chloride known as methylene blue dye was tested and both cerium-doped titania nanoparticles and nanotubes. The preliminary photocatalytic degradation of Methylene Blue data showed significantly improved visible light photocatalytic activities as compared to commercial titania powders. C1 [Cao, Wei; Elsayed-Ali, Hani E.] Old Dominion Univ, Appl Res Ctr, Newport News, VA 23606 USA. [Suzuki, Takuya] Univ Kitakyushu, Fac Chem & Environm Engn, Dept Chem Engn, Kitakyushu, Fukuoka 8080135, Japan. [Abdel-Fattah, Tarek M.] Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Abdel-Fattah, TM (reprint author), Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. FU National Science Foundation [NIRT-0507036]; University of Kitakyushu faculty exchange program; ODU FX This material is based upon work partially supported by the National Science Foundation under Grant NIRT-0507036. T. Suzuki was supported by University of Kitakyushu faculty exchange program with ODU. The authors would like to thank Takashi Oba and Shunta Sakai for their valuable assistance in this project. NR 24 TC 0 Z9 1 U1 2 U2 60 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1533-4880 EI 1533-4899 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD MAR PY 2015 VL 15 IS 3 BP 2508 EP 2513 DI 10.1166/jnn.2015.10299 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT6NC UT WOS:000345054200094 PM 26413697 ER PT J AU Wang, ZQ Shi, XJ Tolbert, LM Wang, F Liang, ZX Costinett, D Blalock, BJ AF Wang, Zhiqiang Shi, Xiaojie Tolbert, Leon M. Wang, Fei (Fred) Liang, Zhenxian Costinett, Daniel Blalock, Benjamin J. TI A High Temperature Silicon Carbide MOSFET Power Module With Integrated Silicon-On-Insulator-Based Gate Drive SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE Power module; silicon carbide (SiC) MOSFET; silicon-on-insulator (SOI); thermosensitive electrical parameter (TSEP) ID PHASE-LEG MODULE; 200 DEGREES-C; PROTECTION SCHEMES; CIRCUIT; DESIGN; PERFORMANCE; ENVIRONMENT; INVERTER; BEHAVIOR AB This paper presents a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200 degrees C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate driver and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225 degrees C. C1 [Wang, Zhiqiang; Tolbert, Leon M.; Wang, Fei (Fred); Liang, Zhenxian; Costinett, Daniel] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. [Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; Wang, Fei (Fred); Liang, Zhenxian; Costinett, Daniel; Blalock, Benjamin J.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Wang, ZQ (reprint author), Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. EM ee.zqwang@gmail.com; xshi5@utk.edu; tolbert@utk.edu; fred.wang@utk.edu; liangz@ornl.gov; daniel.costinett@utk.edu; bblalock@eecs.utk.edu OI Liang, Zhenxian/0000-0002-2811-0944; Tolbert, Leon/0000-0002-7285-609X FU II-VI Foundation; Oak Ridge National Laboratory under the U.S. Department of Energy's Vehicle Technologies Program; Engineering Research Center Program of the National Science Foundation; Department of Energy under NSF [EEC-1041877]; CURENT Industry Partnership Program FX This work was supported in part by the II-VI Foundation and Oak Ridge National Laboratory under the U.S. Department of Energy's Vehicle Technologies Program. This work made use of Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program. Recommended for publication by Associate Editor K. Ngo. NR 37 TC 7 Z9 8 U1 3 U2 50 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 EI 1941-0107 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD MAR PY 2015 VL 30 IS 3 BP 1432 EP 1445 DI 10.1109/TPEL.2014.2321174 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA AS8ZR UT WOS:000344533900031 ER PT J AU You, B Yang, YL Xu, ZD Dai, YY Liu, S Mao, JH Tetsu, O Li, H Jablons, DM You, L AF You, Bin Yang, Yi-Lin Xu, Zhidong Dai, Yuyuan Liu, Shu Mao, Jian-Hua Tetsu, Osamu Li, Hui Jablons, David M. You, Liang TI Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells SO ONCOTARGET LA English DT Article DE non-small cell lung cancer; extracellular signal regulated kinases; Hippo pathway; yes-associated protein; inhibition ID YES-ASSOCIATED PROTEIN; LUNG-CANCER; IN-VITRO; ACQUIRED-RESISTANCE; MEK INHIBITORS; SELF-RENEWAL; LIVER-CANCER; YAP; GROWTH; MIGRATION AB Alterations of the EGFR/ERK and Hippo/YAP pathway have been found in non-small cell lung cancer (NSCLC). Herein, we show that ERK1 and ERK2 have an effect on the Hippo/YAP pathway in human NSCLC cells. Firstly, inhibition of ERK1/2 by siRNA or small-molecular inhibitors decreased the YAP protein level, the reporter activity of the Hippo pathway, and the mRNA levels of the Hippo downstream genes, CTGF, Gli2, and BIRC5. Secondly, degradation of YAP protein was accelerated after ERK1/2 depletion in NSCLC cell lines, in which YAP mRNA level was not decreased. Thirdly, forced over-expression of the ERK2 gene rescued the YAP protein level and Hippo reporter activity after siRNA knockdown targeting 3'UTR of the ERK2 gene in NSCLC cells. Fourthly, depletion of ERK1/2 reduced the migration and invasion of NSCLC cells. Combined depletion of ERK1/2 had a greater effect on cell migration than depletion of either one separately. Finally, the MEK1/2 inhibitor Trametinib decreased YAP protein level and transcriptional activity of the Hippo pathway in NSCLC cell lines. Our results suggest that ERK1/2 inhibition participates in reducing YAP protein level, which in turn down-regulates expression of the downstream genes of the Hippo pathway to suppress migration and invasion of NSCLC cells. C1 [You, Bin; Yang, Yi-Lin; Xu, Zhidong; Dai, Yuyuan; Liu, Shu; Jablons, David M.; You, Liang] Univ Calif San Francisco, Dept Surg, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA. [You, Bin; Li, Hui] Capital Univ Med Sci, Beijing Chao Yang Hosp, Dept Thorac Surg, Beijing, Peoples R China. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Tetsu, Osamu] Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, San Francisco, CA USA. RP You, L (reprint author), Univ Calif San Francisco, Dept Surg, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA. EM liang.you@ucsfmedctr.org RI Dai, Yuyuan/D-6485-2016 FU National Institutes of Health (NIH) [R01 CA140654]; Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley and Oberman Foundation, Inc.; Estate of Robert Griffiths; Jeffrey and Karen Peterson Family Foundation; Estate of Norman Mancini; Barbara Isackson Lung Cancer Research Fund FX This study was supported by the National Institutes of Health (NIH; Grant No. R01 CA140654, to LY). We are grateful for support from the Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley and Oberman Foundation, Inc.; the Estate of Robert Griffiths; the Jeffrey and Karen Peterson Family Foundation; Paul and Michelle Zygielbaum; the Estate of Norman Mancini; and the Barbara Isackson Lung Cancer Research Fund. We thank Pamela Derish in the UCSF Department of Surgery for editorial assistance with the manuscript. NR 55 TC 12 Z9 12 U1 1 U2 4 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1949-2553 J9 ONCOTARGET JI Oncotarget PD FEB 28 PY 2015 VL 6 IS 6 BP 4357 EP 4368 PG 12 WC Oncology; Cell Biology SC Oncology; Cell Biology GA CF6WB UT WOS:000352696200070 PM 25738359 ER PT J AU Ma, Q Li, W Thorne, RM Ni, B Kletzing, CA Kurth, WS Hospodarsky, GB Reeves, GD Henderson, MG Spence, HE Baker, DN Blake, JB Fennell, JF Claudepierre, SG Angelopoulos, V AF Ma, Q. Li, W. Thorne, R. M. Ni, B. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Reeves, G. D. Henderson, M. G. Spence, H. E. Baker, D. N. Blake, J. B. Fennell, J. F. Claudepierre, S. G. Angelopoulos, V. TI Modeling inward diffusion and slow decay of energetic electrons in the Earth's outer radiation belt SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID WAVE-PARTICLE INTERACTIONS; ALLEN PROBES OBSERVATIONS; RELATIVISTIC ELECTRONS; EMIC WAVES; PITCH-ANGLE; RESONANT SCATTERING; GEOMAGNETIC STORMS; CRRES OBSERVATIONS; MAGNETIC STORM; ACCELERATION AB A new 3-D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10 day quiet period on March 2013. During the inward transport, the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3-D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and electromagnetic ion cyclotron (EMIC) waves reproduces the essential features of the observed electron flux evolution. The decay time scales and the pitch angle distributions in our simulation are consistent with the Van Allen Probe observations over multiple energy channels. Our study suggests that the quiet time energetic electron dynamics are effectively controlled by inward radial diffusion and pitch angle scattering due to a combination of plasmaspheric hiss and EMIC waves in the Earth's radiation belts. C1 [Ma, Q.; Li, W.; Thorne, R. M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Ni, B.] Wuhan Univ, Sch Elect Informat, Dept Space Phys, Wuhan 430072, Peoples R China. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Reeves, G. D.; Henderson, M. G.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.] Aerosp Corp, Los Angeles, CA 90009 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA USA. RP Ma, Q (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM qianlima@atmos.ucla.edu RI Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Kletzing, Craig/0000-0002-4136-3348; Ma, Qianli/0000-0001-5452-4756; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878 FU NASA [NNX11AR64G]; JHU/APL [967399, 921647]; JHU/APL NASA's prime contract [NAS5-01072]; NSF [AGS 1405041, 1405054]; EMFISIS [1001057397:01]; ECT [13-041]; NSFC [41204120, 41474141]; Fundamental Research Funds for the Central Universities [2042014kf0251] FX This work was supported by NASA grant NNX11AR64G and by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072 and NSF grants AGS 1405041 and 1405054. The analysis at UCLA was supported by the EMFISIS subaward 1001057397:01 and by the ECT subaward 13-041. B. Ni acknowledges the support from the NSFC grants 41204120 and 41474141 and from the Fundamental Research Funds for the Central Universities grant 2042014kf0251. We acknowledge the Van Allen Probe data from the EMFISIS instrument obtained from http://emfisis.physics.uiowa.edu/data/index/, data from the MagEIS and REPT instruments obtained from http://www.rbsp-ect.lanl.gov/data_pub/, and the THEMIS data obtained from http://themis.ssl.berkeley.edu/data/themis/ under NAS5-02099. We thank the World Data Center for Geomagnetism, Kyoto, for providing the Kp indices (http://wdc.kugi.kyoto-u.ac.jp/kp/index.html) and the Space Physics Data Facility at the NASA Goddard Space Flight Center for providing the OMNI2 data (ftp://spdf.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/). NR 47 TC 19 Z9 19 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2015 VL 42 IS 4 BP 987 EP 995 DI 10.1002/2014GL062977 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CE5DY UT WOS:000351851900004 ER PT J AU Zhu, H Su, ZP Xiao, FL Zheng, HN Wang, YM Shen, C Xian, T Wang, S Kletzing, CA Kurth, WS Hospodarsky, GB Spence, HE Reeves, GD Funsten, HO Blake, JB Baker, DN AF Zhu, Hui Su, Zhenpeng Xiao, Fuliang Zheng, Huinan Wang, Yuming Shen, Chao Xian, Tao Wang, Shui Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Spence, H. E. Reeves, G. D. Funsten, H. O. Blake, J. B. Baker, D. N. TI Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EARTHS INNER MAGNETOSPHERE; DISCRETE CHORUS EMISSIONS; RELATIVISTIC ELECTRONS; DIFFUSION-COEFFICIENTS; ENERGETIC ELECTRONS; PITCH-ANGLE; HISS; ORIGIN; PROPAGATION; EVOLUTION AB Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes, and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons similar to< MeV on a comparable time scale to that associated with the storm time plasmaspheric hiss. These results clearly illustrate that exohiss may need to be taken into account in future radiation belt models. C1 [Zhu, Hui; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. [Zhu, Hui; Su, Zhenpeng; Zheng, Huinan] Chinese Acad Sci, State Key Lab Space Weather, Beijing, Peoples R China. [Zhu, Hui] Univ Sci & Technol China, Sch Earth & Space Sci, Mengcheng Natl Geophys Observ, Hefei 230026, Peoples R China. [Zhu, Hui; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming] Collaborat Innovat Ctr Astronaut Sci & Technol, Harbin, Peoples R China. [Xiao, Fuliang] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha, Hunan, Peoples R China. [Shen, Chao] Chinese Acad Sci, Ctr Space Sci & Appl Res, State Key Lab Space Weather, Beijing, Peoples R China. [Xian, Tao] Univ Sci & Technol China, Sch Earth & Space Sci, CAS, Key Lab Atmospher Composit & Opt Radiat, Hefei 230026, Peoples R China. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Funsten, H. O.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM USA. [Blake, J. B.] Aerosp Corp, Los Alamos, NM USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Su, ZP (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. EM szpe@mail.ustc.edu.cn RI Xiao, Fuliang/B-9245-2011; Wang, Yuming/A-8968-2012; Su, Zhenpeng/E-1641-2011; Reeves, Geoffrey/E-8101-2011; OI Kurth, William/0000-0002-5471-6202; Xiao, Fuliang/0000-0003-1487-6620; Hospodarsky, George/0000-0001-9200-9878; Wang, Yuming/0000-0002-8887-3919; Su, Zhenpeng/0000-0001-5577-4538; Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348; Funsten, Herbert/0000-0002-6817-1039 FU National Natural Science Foundation of China [41274169, 41274174, 41422405, 41174125, 41131065, 41121003, 41074120, 41231066, 41304134]; Chinese Academy of Sciences [KZCX2-EW-QN510, KZZD-EW-01-4]; National Key Basic Research Special Foundation of China [2011CB811403]; JHU/APL [921647, 967399]; JHU/APL under NASA [NAS5-01072] FX The Van Allen Probes data are available at the websites (http://emfisis.physics.uiowa.edu/Flight/ for EMFISIS and http://www.rbsp-ect.lanl.gov/data_pub/for HOPE). This work was supported by the National Natural Science Foundation of China grants 41274169, 41274174, 41422405, 41174125, 41131065, 41121003, 41074120, 41231066, and 41304134, the Chinese Academy of Sciences grant KZCX2-EW-QN510 and KZZD-EW-01-4, and the National Key Basic Research Special Foundation of China grant 2011CB811403. This work was also supported from JHU/APL contracts 921647 and 967399 under NASA Prime contract NAS5-01072. NR 38 TC 8 Z9 8 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2015 VL 42 IS 4 BP 1012 EP 1019 DI 10.1002/2014GL062964 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CE5DY UT WOS:000351851900007 ER PT J AU Forni, O Gaft, M Toplis, MJ Clegg, SM Maurice, S Wiens, RC Mangold, N Gasnault, O Sautter, V Le Mouelic, S Meslin, PY Nachon, M McInroy, RE Ollila, AM Cousin, A Bridges, JC Lanza, NL Dyar, MD AF Forni, Olivier Gaft, Michael Toplis, Michael J. Clegg, Samuel M. Maurice, Sylvestre Wiens, Roger C. Mangold, Nicolas Gasnault, Olivier Sautter, Violaine Le Mouelic, Stephane Meslin, Pierre-Yves Nachon, Marion McInroy, Rhonda E. Ollila, Ann M. Cousin, Agnes Bridges, John C. Lanza, Nina L. Dyar, Melinda D. TI First detection of fluorine on Mars: Implications for Gale Crater's geochemistry SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INDUCED BREAKDOWN SPECTROSCOPY; CHEMCAM INSTRUMENT SUITE; NORTHWEST AFRICA 7034; X-RAY SPECTROMETER; MARTIAN METEORITE; 100 MPA; WATER; CHEMISTRY; CHLORINE; MAGMAS AB Volatiles and especially halogens (F and Cl) have been recognized as important species in the genesis and melting of planetary magmas. Data from the Chemical Camera instrument on board the Mars Science Laboratory rover Curiosity now provide the first in situ analyses of fluorine at the surface of Mars. Two principal F-bearing mineral assemblages are identified. The first is associated with high aluminum and low calcium contents, in which the F-bearing phase is an aluminosilicate. It is found in conglomerates and may indicate petrologically evolved sources. This is the first time that such a petrologic environment is found on Mars. The second is represented by samples that have high calcium contents, in which the main F-bearing minerals are likely to be fluorapatites and/or fluorites. Fluorapatites are found in some sandstone and may be detrital, while fluorites are also found in the conglomerates, possibly indicating low-T alteration processes. C1 [Forni, Olivier; Toplis, Michael J.; Maurice, Sylvestre; Gasnault, Olivier; Meslin, Pierre-Yves] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Forni, Olivier; Toplis, Michael J.; Maurice, Sylvestre; Gasnault, Olivier; Meslin, Pierre-Yves] CNRS, IRAP, Toulouse 4, France. [Gaft, Michael] Laser Distance Spectrometry, Petah Tiqwa, Israel. [Clegg, Samuel M.; Wiens, Roger C.; McInroy, Rhonda E.; Cousin, Agnes; Lanza, Nina L.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mangold, Nicolas; Le Mouelic, Stephane; Nachon, Marion] Univ Nantes, Lab Planetol & Geophys Nantes, Nantes, France. [Sautter, Violaine] Museum Hist Nat, Paris, France. [Ollila, Ann M.] Chevron Energy Technol Co, Houston, TX USA. [Bridges, John C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Dyar, Melinda D.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. RP Forni, O (reprint author), Univ Toulouse, UPS OMP, IRAP, Toulouse, France. EM olivier.forni@irap.omp.eu OI Clegg, Sam/0000-0002-0338-0948 FU French space agency, Centre National d'Etudes Spatiales; INSU/CNRS; NASA FX The development and operation of the ChemCam instrument was supported in France by funds from the French space agency, Centre National d'Etudes Spatiales. Support was also received from INSU/CNRS. Support for the development and operation in the U.S. was provided by NASA to the Mars Exploration Program and specifically to the MSL team. Imaging and chemical data presented here are available in the NASA Planetary Data System http://pds-geosciences.wustl.edu/missions/msl. We are grateful to the MSL engineering and management teams (and especially the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA) for making the mission and this scientific investigation possible and to science team members who contributed to mission operations. We thank Pamela Conrad and an anonymous reviewer for their constructive remarks that greatly improved the manuscript. NR 56 TC 12 Z9 12 U1 4 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2015 VL 42 IS 4 BP 1020 EP 1028 DI 10.1002/2014GL062742 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CE5DY UT WOS:000351851900008 ER PT J AU Foltz, GR Balaguru, K Leung, LR AF Foltz, Gregory R. Balaguru, Karthik Leung, L. Ruby TI A reassessment of the integrated impact of tropical cyclones on surface chlorophyll in the western subtropical North Atlantic SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HURRICANE FELIX; SARGASSO SEA; TEMPERATURE; VARIABILITY; ANOMALIES; OCEANS AB The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998-2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally averaged (June-November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season. C1 [Foltz, Gregory R.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Balaguru, Karthik] Pacific NW Natl Lab, Marine Sci Lab, Seattle, WA USA. [Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Foltz, GR (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. EM gregory.foltz@noaa.gov RI Foltz, Gregory/B-8710-2011 OI Foltz, Gregory/0000-0003-0050-042X FU U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling program; DOE [DE-AC05-76RL01830] FX G.F. was supported by base funds to NOAA/AOML. K.B. and L.R.L. were supported by the U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. We thank two anonymous reviewers for their helpful suggestions. All data used to produce the results of this paper are freely available from the URLs supplied in section 2. NR 21 TC 6 Z9 7 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2015 VL 42 IS 4 BP 1158 EP 1164 DI 10.1002/2015GL063222 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CE5DY UT WOS:000351851900025 ER PT J AU Anoop, KK Polek, MP Bruzzese, R Amoruso, S Harilal, SS AF Anoop, K. K. Polek, M. P. Bruzzese, R. Amoruso, S. Harilal, S. S. TI Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MATERIAL REMOVAL EFFICIENCY; NANOPARTICLE GENERATION; LANGMUIR PROBE; FEMTOSECOND; PLASMA; PULSES; COPPER; EMISSION; TARGETS; VACUUM AB The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to approximate to 75 J/cm(2) by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, approximate to 50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4-5 J/cm(2), followed by a gradual reduction and a transition to a high-fluence regime above approximate to 50 J/cm(2). The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to approximate to 10 J/cm(2). A broader ion component is observed at larger angles for fluences larger than approximate to 10 J/cm(2). Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of approximate to 66 J/cm(2). Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield. (C) 2015 AIP Publishing LLC. C1 [Anoop, K. K.; Bruzzese, R.; Amoruso, S.] Univ Naples Federico II, CNR SPIN, I-80126 Naples, Italy. [Anoop, K. K.; Bruzzese, R.; Amoruso, S.] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy. [Polek, M. P.] Purdue Univ, Sch Nucl Engn, Ctr Mat Extreme Environm, W Lafayette, IN 47907 USA. [Harilal, S. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Anoop, KK (reprint author), Univ Naples Federico II, CNR SPIN, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy. EM anoop.kiliyanamkandy@unina.it RI amoruso, salvatore/E-3941-2012; Harilal, Sivanandan/B-5438-2014; OI amoruso, salvatore/0000-0002-1011-3215; Harilal, Sivanandan/0000-0003-2266-7976; Bruzzese, Riccardo/0000-0003-2195-5407 FU U.S. National Science Foundation; DOE/NSA Office of Nonproliferation and Verification Research and Development [NA-22]; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported in part by the U.S. National Science Foundation and DOE/NSA Office of Nonproliferation and Verification Research and Development (NA-22). Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 46 TC 11 Z9 11 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 083108 DI 10.1063/1.4913505 PG 9 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500008 ER PT J AU Bondi, RJ Marinella, MJ AF Bondi, Robert J. Marinella, Matthew J. TI Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; 1ST PRINCIPLES; MEMRISTOR; DEFECTS; METALS; OXIDES AB First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (V-O(n); n = 0,1+, 2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. V-O(n) of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, V-O(0) is characterized by structural contraction and electron density localization, while V-O(2+) promotes structural expansion and is depleted of electron density. In contrast, interfacial V-O(0) and V-O(2+) show nearly indistinguishable ionic and electronic signatures indicative of a reduced V-O center. Interfacial V-O(2+) extracts electron density from metallic Ta, indicating that V-O(2+) is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation. (C) 2015 AIP Publishing LLC. C1 [Bondi, Robert J.; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bondi, RJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rjbondi@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We also thank Brian Fox, Jonathan Custer, Harry Hjalmarson, Aidan Thompson, and Peter Schultz for helpful discussions. NR 31 TC 2 Z9 2 U1 6 U2 64 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 085308 DI 10.1063/1.4913206 PG 6 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500066 ER PT J AU Borovikov, V Mendelev, MI King, AH LeSar, R AF Borovikov, Valery Mendelev, Mikhail I. King, Alexander H. LeSar, Richard TI Effects of Schmid factor and slip nucleation on deformation mechanism in columnar-grained nanotwinned Ag and Cu SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; ULTRAHIGH-STRENGTH; RATE SENSITIVITY; MAXIMUM STRENGTH; NANOSCALE TWINS; FCC METALS; COPPER; BOUNDARIES; DUCTILITY; STRESS AB We report the results of a molecular dynamics study of the effect of texture on the yield and peak stresses in columnar-grained nanotwinned Ag and Cu. The simulations suggest that in pure nanotwinned face-centered cubic metals, the strength is determined primarily by the cooperation or competition between two major factors: the magnitude of the Schmid factors for the available slip systems and the effectiveness of grain boundaries (and their triple-junctions) in generating dislocations. These factors and their relative impact depend on the geometry of the specimen relative to the applied stress, which is typically reflected in the texture of the material in experimental studies. The detailed mechanisms of plastic deformation are discussed for seven specific geometries that represent a range of different textures. (C) 2015 AIP Publishing LLC. C1 [Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [King, Alexander H.; LeSar, Richard] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Borovikov, V (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM valery@ameslab.gov; mendelev@ameslab.gov; alexking@ameslab.gov; lesar@iastate.edu RI King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-7101-6585 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX This research was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No DE-AC02-07CH11358. NR 31 TC 6 Z9 6 U1 4 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 085302 DI 10.1063/1.4913381 PG 8 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500060 ER PT J AU Brown, KE Bolme, CA McGrane, SD Moore, DS AF Brown, Kathryn E. Bolme, Cynthia A. McGrane, Shawn D. Moore, David S. TI Ultrafast shock-induced chemistry in carbon disulfide probed with dynamic ellipsometry and transient absorption spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLAR ABSORPTIVITIES; STRETCHING MODE; HIGH-PRESSURES; LIQUID CS2; COMPRESSION; ULTRAVIOLET; PHASE; WAVES; SUBSTANCES; DILUTION AB We used transient visible/near-infrared absorption spectroscopy and ultrafast dynamic ellipsometry to characterize carbon disulfide (CS2) shocked with an ultrafast laser pulse. We found a volume-decreasing reaction, characterized by the deviation of the shock and particle velocity (u(s) and u(p)) points from the unreacted Hugoniot, above u(p) = 1.5 km/s. This result contrasts with literature plate-impact data, which found the reaction-induced deviation from the unreacted Hugoniot to occur at u(p) = 1.2 km/s. We attribute this disparity to the difference in timescale between plate-impact experiments (ns to mu s) and our ultrafast experiments (sub-ns), as our ultrafast experiments require higher shock pressures and temperatures for an observable reaction. The volume-decreasing reaction was accompanied by a large increase in absorption of the reaction products, necessitating the use of impedance matching techniques to characterize the u(s)-u(p) points above the reaction cusp. Using transient absorption spectroscopy, we discovered a change in the absorption spectrum for shock strengths below and above the volume-decreasing reaction, suggesting there are multiple chemical reactions in CS2 shocked to above 7.4 GPa in 300 ps. (C) 2015 AIP Publishing LLC. C1 [Brown, Kathryn E.; Bolme, Cynthia A.; McGrane, Shawn D.; Moore, David S.] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. RP Brown, KE (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. OI Mcgrane, Shawn/0000-0002-2978-3980; Bolme, Cynthia/0000-0002-1880-271X FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The authors thank Laura Wetzel and Thomas Hoyt for their assistance conducting experiments. The authors gratefully acknowledge the support of this study by Rick Martineau through Science Campaign 2: HE Science. NR 41 TC 2 Z9 2 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 085903 DI 10.1063/1.4913488 PG 7 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500079 ER PT J AU Charilaou, M Hellman, F AF Charilaou, M. Hellman, F. TI Roughness effects in uncompensated antiferromagnets SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RANDOM-FIELD MODEL; EXCHANGE BIAS; MAGNETIC-PROPERTIES; ANISOTROPY; INTERFACE; FILMS; MECHANISMS; NIO AB Monte Carlo simulations show that roughness in uncompensated antiferromagnets decreases not just the surface magnetization but also the net magnetization and particularly strongly affects the temperature dependence. In films with step-type roughness, each step creates a new compensation front that decreases the global net magnetization. The saturation magnetization decreases non-monotonically with increasing roughness and does not scale with the surface area. Roughness in the form of surface vacancies changes the temperature-dependence of the magnetization; when only one surface has vacancies, the saturation magnetization will decrease linearly with surface occupancy, whereas when both surfaces have vacancies, the magnetization is negative and exhibits a compensation point at finite temperature, which can be tuned by controlling the occupancy. Roughness also affects the spin-texture of the surfaces due to long-range dipolar interactions and generates non-collinear spin configurations that could be used in devices to produce locally modified exchange bias. These results explain the strongly reduced magnetization found in magnetometry experiments and furthers our understanding of the temperature-dependence of exchange bias. (C) 2015 AIP Publishing LLC. C1 [Charilaou, M.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Charilaou, M.; Hellman, F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Charilaou, M.] Swiss Fed Inst Technol, Lab Met Phys & Technol, Dept Mat, CH-8093 Zurich, Switzerland. RP Charilaou, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM charilaou@mar.ethz.ch OI Charilaou, Michalis/0000-0003-1072-1701 FU magnetism program at LBNL; DOE BES DMSE [DE-AC02-05CH11231] FX We gratefully acknowledge H. C. Jacks for fruitful discussions regarding the manuscript and funding from the magnetism program at LBNL, from DOE BES DMSE Contract No. DE-AC02-05CH11231. NR 41 TC 3 Z9 3 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 083907 DI 10.1063/1.4913594 PG 7 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500023 ER PT J AU Johnson-Wilke, RL Wilke, RHT Yeager, CB Tinberg, DS Reaney, IM Levin, I Fong, DD Trolier-McKinstry, S AF Johnson-Wilke, R. L. Wilke, R. H. T. Yeager, C. B. Tinberg, D. S. Reaney, I. M. Levin, I. Fong, D. D. Trolier-McKinstry, S. TI Phase transitions and octahedral rotations in epitaxial Ag(TaxNb1-x)O-3 thin films under tensile strain SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MULTIFUNCTIONAL MATERIALS; PEROVSKITES; FERROELECTRICITY; DIFFRACTION; BIFEO3; AGNBO3; TILTS AB Epitaxial Ag(Ta0.5Nb0.5)O-3 (ATN) films under tensile strain were deposited on (Ba0.4Sr0.6)TiO3/LaAlO3 (001)(p) and KTaO3 (001) substrates. These films exhibited a domain structure with the c-axis aligned primarily along the in-plane direction in contrast with the poly-domain nature of bulk ATN ceramics or relaxed films. While the generic phase transition sequence of the tensile films was qualitatively similar to bulk, the tetragonal and orthorhombic phase field regions expanded by similar to 270 degrees C in ATN/(Ba0.4Sr0.6)TiO3/LaAlO3. Furthermore, the films were found to be in the M-3 (complex octahedral tilting with disordered Nb/Ta displacements) phase at room temperature with either significantly reduced tilt angles or a suppression of the long range order of the complex tilt as compared to bulk materials. It was observed that the octahedral tilt domains were oriented with the complex tilt axes lying in the plane of the film due to the tensile strain. This work demonstrates that tensile strain can be used to strain-engineer materials with complex tilt systems and thereby modify functional properties. (C) 2015 AIP Publishing LLC. C1 [Johnson-Wilke, R. L.; Wilke, R. H. T.; Yeager, C. B.; Tinberg, D. S.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Johnson-Wilke, R. L.; Wilke, R. H. T.; Yeager, C. B.; Tinberg, D. S.; Trolier-McKinstry, S.] Penn State Univ, Mat Sci & Engn Dept, University Pk, PA 16802 USA. [Reaney, I. M.] Univ Sheffield, Dept Engn Mat, Sheffield S1 3JD, S Yorkshire, England. [Levin, I.] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. [Fong, D. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Johnson-Wilke, RL (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. OI Trolier-McKinstry, Susan/0000-0002-7267-9281 FU National Science Foundation [DMR-0602770, DMR-0820404, DMR-0908718]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; DOE-BES [DE-AC02-06CH11357] FX Financial support for this work was provided by the National Science Foundation (DMR-0602770, DMR-0820404, and DMR-0908718). Work at Argonne National Laboratory was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Use of the Advanced Photon Source was supported by DOE-BES, under Contract No. DE-AC02-06CH11357, The authors would also like to thank Jenia Karapetrova and Pete Baldo for their help at bcamline 33-BM at the Advanced Photon Source. NR 35 TC 1 Z9 1 U1 6 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 085309 DI 10.1063/1.4913283 PG 7 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500067 ER PT J AU Shi, S Liu, FL Smith, DL Ruden, PP AF Shi, Sha Liu, Feilong Smith, Darryl L. Ruden, P. Paul TI Effects of disorder on spin injection and extraction for organic semiconductor spin-valves SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LIGHT-EMITTING-DIODES; DEVICE MODEL; TRANSPORT; SPINTRONICS; MAGNETORESISTANCE; INTERFACE; PHYSICS; STATES AB A device model for tunnel injection and extraction of spin-polarized charge carriers between ferromagnetic contacts and organic semiconductors with disordered molecular states is presented. Transition rates for tunneling are calculated based on a transfer Hamiltonian. Transport in the bulk semiconductor is described by macroscopic device equations. Tunneling predominantly involves organic molecular levels near the metal Fermi energy, and therefore typically in the tail of the band that supports carrier transport in the semiconductor. Disorder-induced broadening of the relevant band plays a critical role for the injection and extraction of charge carriers and for the resulting magneto-resistance of an organic semiconductor spin valve. (C) 2015 AIP Publishing LLC. C1 [Shi, Sha; Liu, Feilong; Smith, Darryl L.; Ruden, P. Paul] Univ Minnesota, Minneapolis, MN 55455 USA. [Smith, Darryl L.; Ruden, P. Paul] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shi, S (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM shixx262@umn.edu RI Liu, Feilong/E-1015-2015; OI Liu, Feilong/0000-0002-8638-2294 FU MRSEC program of the National Science Foundation at University of Minnesota [DMR-0819885]; University of Minnesota FX This work was supported by the MRSEC program of the National Science Foundation at University of Minnesota under Award No. DMR-0819885 and a University of Minnesota Doctoral Dissertation Fellowship. Access to the facilities of the Minnesota Supercomputing Institute for Digital Simulation and Advanced Computation is gratefully acknowledged. NR 44 TC 1 Z9 1 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 085501 DI 10.1063/1.4913281 PG 6 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500068 ER PT J AU Yang, G Li, DL Wang, SG Ma, QL Liang, SH Wei, HX Han, XF Hesjedal, T Ward, RCC Kohn, A Elkayam, A Tal, N Zhang, XG AF Yang, G. Li, D. L. Wang, S. G. Ma, Q. L. Liang, S. H. Wei, H. X. Han, X. F. Hesjedal, T. Ward, R. C. C. Kohn, A. Elkayam, A. Tal, N. Zhang, X-G. TI Effect of interfacial structures on spin dependent tunneling in epitaxial L1(0)-FePt/MgO/FePt perpendicular magnetic tunnel junctions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FILMS; ELECTRODES; ANISOTROPY; REVERSAL AB Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1(0)-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photo-emission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions. (C) 2015 AIP Publishing LLC. C1 [Yang, G.; Li, D. L.; Wang, S. G.; Ma, Q. L.; Liang, S. H.; Wei, H. X.; Han, X. F.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Hesjedal, T.; Ward, R. C. C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Kohn, A.; Elkayam, A.; Tal, N.] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel. [Kohn, A.; Elkayam, A.; Tal, N.] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel. [Zhang, X-G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X-G.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Zhang, X-G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X-G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Wang, SG (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. EM Sgwang@iphy.ac.cn RI Yang, Guang/G-4095-2015; Hesjedal, Thorsten/C-6853-2014; Wang, Shouguo/D-5710-2016; Ma, Qinli/H-2508-2011 OI Yang, Guang/0000-0002-1242-7269; Hesjedal, Thorsten/0000-0001-7947-3692; Wang, Shouguo/0000-0002-4488-2645; FU Natural Science Foundation of China [51431009, 51471183, 11274371, 11222432]; National Basic Research Program of China [2015CB921401]; National Instrumentation Program of China [2012YQ120048]; Instrument Development Program of Chinese Academy of Sciences [YZ201345]; China-Israel joint project [2013DFG13020]; John Fell Oxford University Press Research Fund FX This work was supported by the Natural Science Foundation of China (Nos. 51431009, 51471183, 11274371, and 11222432), the National Basic Research Program of China (No, 2015CB921401), the National Instrumentation Program of China (No. 2012YQ120048), the Instrument Development Program of Chinese Academy of Sciences (No. YZ201345), and China-Israel joint project (No. 2013DFG13020). This publication arises from research funded by the John Fell Oxford University Press Research Fund. NR 33 TC 3 Z9 3 U1 6 U2 31 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 28 PY 2015 VL 117 IS 8 AR 083904 DI 10.1063/1.4913265 PG 4 WC Physics, Applied SC Physics GA CD5MR UT WOS:000351132500020 ER PT J AU Bandurin, D Bernardi, G Gerber, C Junk, T Juste, A Kotwal, A Lewis, J Mesropian, C Schellman, H Sekaric, J Toback, D Van Kooten, R Vellidis, C Zivkovic, L AF Bandurin, D. Bernardi, G. Gerber, C. Junk, T. Juste, A. Kotwal, A. Lewis, J. Mesropian, C. Schellman, H. Sekaric, J. Toback, D. Van Kooten, R. Vellidis, C. Zivkovic, L. TI Review of physics results from the Tevatron SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Tevatron ID B-JET IDENTIFICATION; COLLIDER DETECTOR; ENERGY SCALE; TOP-QUARK; COLLISIONS; FERMILAB; LEGACY AB We present a comprehensive review of the physics results obtained by the CDF and DO collaborations up to summer 2014, with emphasis on those achieved in the Run II of the Tevatron collider which delivered a total integrated luminosity of similar to 10 fb(-1) at root s = 1.96 TeV. The results are presented in six main physics topics: QCD, Heavy Flavor, Electroweak, Top quark, Higgs boson and searches for New Particles and Interactions. The characteristics of the accelerator, detectors, and the techniques used to achieve these results are also briefly summarized. C1 [Bandurin, D.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Bernardi, G.] LPNHE Paris, IN2P3, CNRS, F-75005 Paris, France. [Bernardi, G.] Univ Paris 06, F-75005 Paris, France. [Bernardi, G.] Univ Paris 07, F-75005 Paris, France. [Gerber, C.] Univ Illinois, Chicago, IL 60607 USA. [Junk, T.; Lewis, J.; Vellidis, C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Juste, A.] Univ Autonoma Barcelona, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Juste, A.] Univ Autonoma Barcelona, IFAE, E-08193 Bellaterra, Barcelona, Spain. [Kotwal, A.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Schellman, H.] Northwestern Univ, Dept Phys, Evanston, IL 60208 USA. [Sekaric, J.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, Dept Phys & Astron, College Stn, TX 77843 USA. [Van Kooten, R.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Zivkovic, L.] Inst Phys Belgrade, Lab HEP, Zemun 11080, Serbia. RP Bandurin, D (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM gregorio@in2p3.fr RI Juste, Aurelio/I-2531-2015 OI Toback, David/0000-0003-3457-4144; Juste, Aurelio/0000-0002-1558-3291 NR 19 TC 0 Z9 0 U1 2 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 28 PY 2015 VL 30 IS 6 SI SI AR 1541001 DI 10.1142/S0217751X15410018 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CD0IE UT WOS:000350753400001 ER PT J AU Gerber, CE Vellidis, C AF Gerber, Cecilia E. Vellidis, Costas TI Review of Tevatron results: Top quark physics SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Tevatron; CDF; DO; top quark ID P(P)OVER-BAR COLLISIONS; T(T)OVER-BAR PRODUCTION; SPIN CORRELATION; PAIR PRODUCTION; CROSS-SECTION; HEAVY QUARKS; TRANSVERSE-MOMENTUM; MASSLESS PARTICLES; BROKEN SYMMETRIES; COLLIDER DETECTOR AB We present results on top quark physics from the CDF and DO collaborations at the Fermilab Tevatron p (p) over bar collider. These include legacy results from Run II that were published or submitted for publication before mid-2014, as well as a summary of Run I results. The historical perspective of the discovery of the top quark in Run I is also described. C1 [Gerber, Cecilia E.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Vellidis, Costas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Gerber, CE (reprint author), Univ Illinois, Dept Phys, 845 W Taylor St M-C 273, Chicago, IL 60607 USA. EM gerber@uic.edu; vellidis@fnal.gov FU DOE (USA); NSF (USA); ARC (Australia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); NSERC (Canada); NSC (China); CAS (China); CNSF (China); Colciencias (Colombia); MSMT (Czech Republic); GACR (Czech Republic); Academy of Finland (France); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); DAE (India); DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); Korean World Class University Program (Korea); NRF (Korea); CONACyT (Mexico); FOM (Netherlands); MON (Russia); NRC KI (Russia); RFBR (Russia); Slovak R&D Agency (Spain); Ministerio de Ciencia e Innovacion (Spain); Programa Consolider-Ingenio (Spain); Swedish Research Council (Sweden); SNSF (Switzerland); STFC (United Kingdom); Royal Society (United Kingdom); A.P. Sloan Foundation (USA); EU community Marie Curie Fellowship [302103]; Serbian Ministry of Education, Science and Technological development [171004] FX We thank Paul Grannis and Andreas Jung for useful comments and discussions. We thank the Fermi lab staff and technical staffs of the participating institutions for their vital contributions. We acknowledge support from the DOE and NSF (USA), ARC (Australia), CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), NSERC (Canada), NSC, CAS and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), the Academy of Finland, CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), DAE and DST (India), SFI (Ireland), INFN (Italy), MEXT (Japan), the Korean World Class University Program and NRF (Korea), CONACyT (Mexico), FOM (Netherlands), MON, NRC KI and RFBR (Russia), the Slovak R&D Agency, the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), SNSF (Switzerland), STFC and the Royal Society (United Kingdom), the A.P. Sloan Foundation (USA), and the EU community Marie Curie Fellowship contract 302103. One author (L. Z.) is supported by Serbian Ministry of Education, Science and Technological development project 171004. NR 151 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 28 PY 2015 VL 30 IS 6 SI SI AR 1541005 DI 10.1142/S0217751X15410055 PG 39 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CD0IE UT WOS:000350753400005 ER PT J AU Junk, TR Juste, A AF Junk, Thomas R. Juste, Aurelio TI Review of physics results from the Tevatron: Higgs boson physics SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Tevatron; CDF; D0; Higgs boson ID TOP-QUARK PRODUCTION; EXPLICIT CP VIOLATION; B-JET IDENTIFICATION; P(P)OVER-BAR COLLISIONS; STANDARD MODEL; ROOT-S=1.96 TEV; PARTON DISTRIBUTIONS; HADRON-COLLISIONS; PARTICLE PHYSICS; D0 EXPERIMENT AB We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and D phi. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < m(H) < 200 GeV in all main production modes at the Tevatron: gluon-gluon fusion, WH and ZH associated production, vector boson fusion, and ttH production, and in five main decay modes: H -> b (b) over bar, H -> tau(+)tau(-), H -> WW(*), H -> ZZ(*) and H -> gamma gamma. An excess of events was seen in the H -> b (b) over bar searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV < m(H) < 135 GeV. Assuming a Higgs boson mass of m(H) = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model. C1 [Junk, Thomas R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Juste, Aurelio] Univ Autonoma Barcelona, Inst Catalana Recerca & Estudis Avancats, Fac Ciencies, E-08193 Bellaterra, Barcelona, Spain. [Juste, Aurelio] Univ Autonoma Barcelona, Inst Fis Altes Energies, Fac Ciencies, E-08193 Bellaterra, Barcelona, Spain. RP Junk, TR (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM trj@fnal.gov; juste@ifae.es FU DOE; NSF (USA); ARC (Australia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); NSERC (Canada); NSC; CAS; CNSF (China); Colciencias (Colombia); MSMT; GACR (Czech Republic); Academy of Finland; CEA; CNRS/IN2P3 (France); BMBF; DFG (Germany); DAE; DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); Korean World Class University Program; NRF (Korea); CONACyT (Mexico); FOM (Netherlands); MON; NRC KI; RFBR (Russia); Slovak RD Agency; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio (Spain); Swedish Research Council (Sweden); SNSF (Switzerland); STFC; Royal Society (United Kingdom); A.P. Sloan Foundation (USA); EU community Marie Curie Fellowship [302103] FX We thank Gregorio Bernardi, Craig Group, and Ken Herner for useful comments and discussions. We thank the Fermi lab staff and technical staffs of the participating institutions for their vital contributions. We acknowledge support from the DOE and NSF (USA), ARC (Australia), CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), NSERC (Canada), NSC, CAS and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), the Academy of Finland, CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), DAE and DST (India), SFI (Ireland), INFN (Italy), MEXT (Japan), the Korean World Class University Program and NRF (Korea), CONACyT (Mexico), FOM (Netherlands), MON, NRC KI and RFBR (Russia), the Slovak R&D Agency, the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), SNSF (Switzerland), STFC and the Royal Society (United Kingdom), the A.P. Sloan Foundation (USA), and the EU community Marie Curie Fellowship contract 302103. NR 184 TC 2 Z9 2 U1 6 U2 24 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 28 PY 2015 VL 30 IS 6 SI SI AR 1541006 DI 10.1142/S0217751X15410067 PG 52 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CD0IE UT WOS:000350753400006 ER PT J AU Lewis, J Van Kooten, R AF Lewis, Jonathan Van Kooten, Rick TI Review of physics results from the Tevatron: Heavy flavor physics SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Tevatron; CDF; DO; heavy flavor; charm; bottom; mesons; baryons; production; fragmentation; spectroscopy; decays; lifetimes; meson mixing; meson oscillations; CP violation; rare decays; flavor-changing neutral current decays ID BOTTOM-QUARK PRODUCTION; ROOT S=1.8 TEV; PROTON-ANTIPROTON COLLIDER; PRODUCTION CROSS-SECTION; B-MESON DECAYS; SILICON VERTEX DETECTOR; PHI MASS-SPECTRUM; D-STAR PRODUCTION; P(P)OVER-BAR COLLISIONS; ROOT-S=1.8 TEV AB We present a review of heavy flavor physics results from the CDF and DO Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014. C1 [Lewis, Jonathan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Van Kooten, Rick] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RP Lewis, J (reprint author), Fermilab Natl Accelerator Lab, MS-318,POB 500, Batavia, IL 60510 USA. EM jdl@fnal.gov; rvankoot@indiana.edu FU DOE (USA); NSF (USA); ARC (Australia); CNPq (Brazil); FAPERJ (Brazil); FUNDUNESP (Brazil); NSERC (Canada); NSC (China); CAS (China); CNSF (China); Colciencias (Colombia); MSMT (Czech Republic); GACR (Czech Republic); Academy of Finland (France); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); DAE (India); DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); Korean World Class University Program (Korea); NRF (Korea); CONACyT (Mexico); FOM ( Netherlands); MON (Russia); NRC KI (Russia); RFBR (Russia); Slovak R&D Agency (Spain); Ministerio de Ciencia e Innovacion (Spain); Programa Consolider-Ingenio (Spain); Swedish Research Council (Sweden); SNSF (Switzerland); STFC (United Kingdom); Royal Society (United Kingdom); A.P. Sloan Foundation (USA); EU [302103] FX We thank Marjorie Corcoran, Mark Williams, and Daria Zieminska for reviewing and providing valuable comments. We also thank the Fermilab staff and technical staffs of the participating institutions for their vital contributions. We acknowledge support from the DOE and NSF (USA), ARC (Australia), CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), NSERC (Canada), NSC, CAS and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), the Academy of Finland, CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), DAE and DST (India), SFI (Ireland), INFN (Italy), MEXT (Japan), the Korean World Class University Program and NRF (Korea), CONACyT (Mexico), FOM ( Netherlands), MON, NRC KI and RFBR (Russia), the Slovak R&D Agency, the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), SNSF (Switzerland), STFC and the Royal Society (United Kingdom), the A.P. Sloan Foundation (USA), and the EU community Marie Curie Fellowship contract 302103. NR 271 TC 0 Z9 0 U1 6 U2 21 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 28 PY 2015 VL 30 IS 6 SI SI DI 10.1142/S0217751X15410031 PG 56 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CD0IE UT WOS:000350753400003 ER PT J AU Catanzaro, MJ Shi, T Tretiak, S Chernyak, VY AF Catanzaro, Michael J. Shi, Tian Tretiak, Sergei Chernyak, Vladimir Y. TI Counting the number of excited states in organic semiconductor systems using topology SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CONJUGATED MOLECULES; SCATTERING; POLYFLUORENES; EXCITATIONS AB Exciton scattering theory attributes excited electronic states to standing waves in quasi-one-dimensional molecular materials by assuming a quasi-particle picture of optical excitations. The quasi-particle properties at branching centers are described by the corresponding scattering matrices. Here, we identify the topological invariant of a scattering center, referred to as its winding number, and apply topological intersection theory to count the number of quantum states in a quasi-one-dimensional system. (C) 2015 AIP Publishing LLC. C1 [Catanzaro, Michael J.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Math, Detroit, MI 48202 USA. [Shi, Tian; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Catanzaro, MJ (reprint author), Wayne State Univ, Dept Math, 656 W Kirby, Detroit, MI 48202 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI Chernyak, Vladimir/F-5842-2016; Tretiak, Sergei/B-5556-2009 OI Chernyak, Vladimir/0000-0003-4389-4238; Tretiak, Sergei/0000-0001-5547-3647 FU National Science Foundation [CHE-1111350]; U.S. Department of Energy; Los Alamos LDRD funds; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-05NA25396]; Center for Integrated Nanotechnology (CINT) FX This work is supported by the National Science Foundation under Grant No. CHE-1111350, and U.S. Department of Energy and Los Alamos LDRD funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-05NA25396. We acknowledge support of Center for Integrated Nanotechnology (CINT). We would also like to thank John Klein for helpful discussions regarding the index theorem. NR 19 TC 1 Z9 1 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2015 VL 142 IS 8 AR 084113 DI 10.1063/1.4908560 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CC7LC UT WOS:000350548000014 PM 25725718 ER PT J AU Goswami, M Borreguero, JM Sumpter, BG AF Goswami, Monojoy Borreguero, Jose M. Sumpter, Bobby G. TI Self-assembly and structural relaxation in a model ionomer melt SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MICROPHASE SEPARATION STRUCTURE; BLOCK-COPOLYMERS; POLYMER ELECTROLYTE; ANOMALOUS DIFFUSION; SULFONATE IONOMERS; DIBLOCK COPOLYMERS; PHASE-BEHAVIOR; IONIC LIQUID; TRANSPORT AB Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. The self-assembly of charged sites and counterions shows structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Overall, the slow structural decay of counterions in the strongly correlated ionomer system closely resembles transport properties of semi-flexible polymers. (C) 2015 AIP Publishing LLC. C1 [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Borreguero, Jose M.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA. RP Goswami, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM goswamim@ornl.gov RI Sumpter, Bobby/C-9459-2013; Borreguero, Jose/B-2446-2009; Goswami, Monojoy/G-7943-2012 OI Sumpter, Bobby/0000-0001-6341-0355; Borreguero, Jose/0000-0002-0866-8158; Goswami, Monojoy/0000-0002-4473-4888 FU Center for Accelerated Materials Modeling - U.S. Department of Energy (DoE), Office of Basic Energy Sciences, Materials Science and Engineering Division; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Center for Accelerated Materials Modeling funded by the U.S. Department of Energy (DoE), Office of Basic Energy Sciences, Materials Science and Engineering Division. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 58 TC 2 Z9 2 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2015 VL 142 IS 8 AR 084903 DI 10.1063/1.4913517 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CC7LC UT WOS:000350548000049 PM 25725753 ER PT J AU Griffin, PJ Holt, AP Tsunashima, K Sangoro, JR Kremer, F Sokolov, AP AF Griffin, Philip J. Holt, Adam P. Tsunashima, Katsuhiko Sangoro, Joshua R. Kremer, Friedrich Sokolov, Alexei P. TI Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SLOW SECONDARY RELAXATION; POLYMER GLASS-FORMATION; X-RAY-SCATTERING; MOLECULAR-DYNAMICS; DISORDERED SOLIDS; ALKYL NANODOMAINS; CHARGE-TRANSPORT; FORMING LIQUIDS; AC CONDUCTION; SOFT ACIDS AB Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs. (C) 2015 AIP Publishing LLC. C1 [Griffin, Philip J.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Holt, Adam P.; Sokolov, Alexei P.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Tsunashima, Katsuhiko] Wakayama Coll, Natl Inst Technol, Dept Mat Sci, Wakayama 6440023, Japan. [Sangoro, Joshua R.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Kremer, Friedrich] Univ Leipzig, Inst Expt Phys 1, D-04103 Leipzig, Germany. [Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Griffin, PJ (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM pgrif@seas.upenn.edu FU NSF chemistry program [CHE-1213444]; UT/ORNL Science Alliance through the JDRD Collaborative Cohort Program FX This work was funded by the NSF chemistry program through Grant No. CHE-1213444. J.R.S. thanks the UT/ORNL Science Alliance for support through the JDRD Collaborative Cohort Program. NR 47 TC 7 Z9 7 U1 6 U2 57 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2015 VL 142 IS 8 AR 084501 DI 10.1063/1.4913239 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CC7LC UT WOS:000350548000035 PM 25725739 ER PT J AU Xia, YL Peter-Lidard, CD Huang, MY Wei, HL Ek, M AF Xia, Youlong Peter-Lidard, Christa D. Huang, Maoyi Wei, Helin Ek, Mike TI Improved NLDAS-2 Noah-simulated hydrometeorological products with an interim run SO HYDROLOGICAL PROCESSES LA English DT Article DE NLDAS-2; Noah land surface model; hydrometeorological products; snow hydrology ID DATA ASSIMILATION SYSTEM; MESOSCALE ETA-MODEL; LAND-SURFACE; OKLAHOMA MESONET; EVAPOTRANSPIRATION; EVAPORATION; MOISTURE; GCIP AB In North American Land Data Assimilation System Phase 2 (NLDAS-2) Noah simulation, the NLDAS team introduced an intermediate 'fix' to constrain the surface exchange coefficient when the atmospheric boundary layer is stable. In the current NLDAS-2 Noah version, this fix is used for all stable cases including snow-free grid cells. In this study, we simply apply this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously, excluding the snow-free grid cells as we recognize that the fix in NLDAS-2 is too strong. We conduct a 31-year (1979-2009) NLDAS-2 Noah interim (Noah-I) run and use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results, including comparisons with the original NLDAS-2 Noah run. The results show that Noah-I has the same performance as NLDAS-2 Noah for snow water equivalent; however, Noah-I significantly improved the simulation of other hydrometeorological products as noted earlier when compared with NLDAS-2 Noah and the observations. This simple modification is being included in the next Noah version used in NLDAS. The hydrometeorological products from the improved NLDAS-2 Noah-I are being staged on the National Centers for Environmental Prediction public server. Copyright (C) 2014 John Wiley & Sons, Ltd. C1 [Xia, Youlong; Wei, Helin; Ek, Mike] NOAA, EMC, NCEP, College Pk, MD 20740 USA. [Xia, Youlong; Wei, Helin] NOAA, IMSG, EMC, NCEP, College Pk, MD 20740 USA. [Peter-Lidard, Christa D.] NASA, Hydrol Sci Lab, Goddard Fight Space Ctr, Green Belt, MD USA. [Huang, Maoyi] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xia, YL (reprint author), NOAA, IMSG, EMC, NCEP, College Pk, MD 20740 USA. EM youlong.xia@noaa.gov RI Huang, Maoyi/I-8599-2012 OI Huang, Maoyi/0000-0001-9154-9485 FU NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) programme; Department of Energy (DOE)'s Atmospheric System Research (ASR) programme FX Y. X. and C. P. L. were supported by NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) programme. M. H. is supported by Department of Energy (DOE)'s Atmospheric System Research (ASR) programme. In addition, the authors thank two anonymous reviewers whose comments greatly improved the quality of this manuscript. NR 35 TC 8 Z9 8 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD FEB 28 PY 2015 VL 29 IS 5 BP 780 EP 792 DI 10.1002/hyp.10190 PG 13 WC Water Resources SC Water Resources GA CC7LF UT WOS:000350548300010 ER PT J AU Uskov, DB Alsing, PM Fanto, ML Kaplan, L Kim, R Szep, A Smith, AM AF Uskov, D. B. Alsing, P. M. Fanto, M. L. Kaplan, L. Kim, R. Szep, A. Smith, A. M. TI Resource-efficient generation of linear cluster states by linear optics with postselection SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE quantum computer; cluster states; photonic Bell states ID QUANTUM COMPUTATION; ENTANGLEMENT AB We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2)(n-1); an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4)(m-1). C1 [Uskov, D. B.] Univ Brescia, Owensboro, KY 42301 USA. [Uskov, D. B.; Kaplan, L.] Tulane Univ, New Orleans, LA 70118 USA. [Alsing, P. M.; Fanto, M. L.; Szep, A.; Smith, A. M.] Air Force Res Lab, Informat Directorate, Rome, NY 13440 USA. [Kim, R.] Univ Dayton, Res Inst, Dayton, OH 45469 USA. [Smith, A. M.] Oak Ridge Natl Lab, QIS Grp, Oak Ridge, TN 37831 USA. RP Uskov, DB (reprint author), Univ Brescia, Owensboro, KY 42301 USA. EM dmitry.uskov@brescia.edu FU AFRL Information Directorate [FA 8750-11-2-0218]; US NSF [PHY-1005709]; AFOSR; US Department of Energy [DE-AC05-00OR22725] FX DBU acknowledges support from AFRL Information Directorate under grant FA 8750-11-2-0218 and DBU and LK acknowledge support from the US NSF under grant PHY-1005709. PMA, MLF, and AMS would like to thank AFOSR for support of this work. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of AFRL. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 28 TC 2 Z9 2 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD FEB 28 PY 2015 VL 48 IS 4 AR 045502 DI 10.1088/0953-4075/48/4/045502 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CA7SG UT WOS:000349116800012 ER PT J AU Myrent, N Adams, DE Griffith, DT AF Myrent, Noah Adams, Douglas E. Griffith, D. Todd TI Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE wind energy; blade damage; condition monitoring; shear web; disbond; sensitivity analysis AB A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. C1 [Myrent, Noah; Adams, Douglas E.] Vanderbilt Univ, Lab Syst Integr & Reliabil, Nashville, TN 37228 USA. [Griffith, D. Todd] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Adams, DE (reprint author), Vanderbilt Univ, Lab Syst Integr & Reliabil, 566 Mainstream Dr, Nashville, TN 37228 USA. EM douglas.adams@vanderbilt.edu FU Sandia National Laboratories [1067259]; US Department of Energy FX The authors acknowledge Sandia National Laboratories (contract agreement 1067259) and the US Department of Energy for their support of this paper and their continuing support of the wind energy research efforts being performed at Vanderbilt University. NR 18 TC 1 Z9 1 U1 2 U2 12 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD FEB 28 PY 2015 VL 373 IS 2035 AR 20140345 DI 10.1098/rsta.2014.0345 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY9BX UT WOS:000347845700015 ER PT J AU Mcllroy, SJ Lapidus, A Thomsen, TR Han, J Haynes, M Lobos, E Huntemann, M Pati, A Ivanova, NN Markowitz, V Verbarg, S Woyke, T Klenk, HP Kyrpides, N Nielsen, PH AF Mcllroy, Simon J. Lapidus, Alla Thomsen, Trine R. Han, James Haynes, Matthew Lobos, Elizabeth Huntemann, Marcel Pati, Amrita Ivanova, Natalia N. Markowitz, Victor Verbarg, Susanne Woyke, Tanja Klenk, Hans-Peter Kyrpides, Nikos Nielsen, Per H. TI High quality draft genome sequence of Meganema perideroedes str. Gr1(T) and a proposal for its reclassification to the family Meganemaceae fam. nov. SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Activated sludge; Bulking; Facultative methylotroph; Filamentous; Meganema; Meganemaceae; Wastewater ID BIOLOGICAL PHOSPHORUS REMOVAL; ORGANIC LOAD RATE; ACTIVATED-SLUDGE; BATCH REACTOR; BIODEGRADABLE POLYMERS; MICROBIAL GENOMES; BACTERIA; ARCHAEA; ENCYCLOPEDIA; COMMUNITIES AB Meganema perideroedes Gr1(T) is a filamentous bacterium isolated from an activated sludge wastewater treatment plant where it is implicated in poor sludge settleability (bulking). M. perideroedes is the sole described species of the genus Meganema and of the proposed novel family "Meganemaceae". Here we describe the features of the type strain Gr1(T) along with its annotated genome sequence. The 3,409,949 bp long draft genome consists of 22 scaffolds with 3,033 protein-coding and 59 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes KMG project. Notably, genome annotation indicated the potential for facultative methylotrophy. However, the ability to utilize methanol as a carbon source could not be empirically demonstrated for the type strain or for in situ Meganema spp. strains. C1 [Mcllroy, Simon J.; Thomsen, Trine R.; Nielsen, Per H.] Aalborg Univ, Dept Chem & Biosci, Ctr Microbial Communities, Aalborg, Denmark. [Lapidus, Alla] St Petersburg State Univ, Theodosius Dobzhansky Ctr Genome Bionformat, St Petersburg 199034, Russia. [Lapidus, Alla] St Petersburg Acad Univ, Algorithm Biol Lab, St Petersburg, Russia. [Han, James; Haynes, Matthew; Lobos, Elizabeth; Huntemann, Marcel; Pati, Amrita; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos] DOE Joint Genome Inst, Walnut Creek, CA USA. [Markowitz, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Verbarg, Susanne] DSMZ German Collect Microorganisms & Cell Culture, Braunschweig, Germany. [Klenk, Hans-Peter] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Kyrpides, Nikos] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21413, Saudi Arabia. RP Mcllroy, SJ (reprint author), Aalborg Univ, Dept Chem & Biosci, Ctr Microbial Communities, Aalborg, Denmark. EM sjm@bio.aau.dk RI Kyrpides, Nikos/A-6305-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Lapidus, Alla/I-4348-2013; OI Kyrpides, Nikos/0000-0002-6131-0462; Lapidus, Alla/0000-0003-0427-8731; Thomsen, Trine Rolighed/0000-0002-7393-9372; McIlroy, Simon Jon/0000-0003-3749-8730; Nielsen, Per Halkjaer/0000-0002-6402-1877; Ivanova, Natalia/0000-0002-5802-9485 FU US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Russian Ministry of Science Mega-grant [11.G34.31.0068] FX The authors gratefully acknowledge the assistance of J Ildal and M Stevenson at the Center for Microbial Communities for technical assistance, Anja Fruhling for growing M. perideroedes cultures and Evelyne-Marie Brambilla for DNA extraction and quality control (both at the DSMZ). We also acknowledge the LABGeM team at Genoscope for providing access to their automated annotation pipeline as well as for database maintenance and technical assistance. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A.L. was supported in part by Russian Ministry of Science Mega-grant no. 11.G34.31.0068 (PI. Dr Stephen J O'Brien). NR 42 TC 0 Z9 0 U1 1 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD FEB 27 PY 2015 VL 10 AR 23 DI 10.1186/s40793-015-0013-1 PG 8 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DA7LU UT WOS:000367986500001 ER PT J AU Shao, XJ DiMarco, K Richard, TL Lynd, LR AF Shao, Xiongjun DiMarco, Kay Richard, Tom L. Lynd, Lee R. TI Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Winter rye; Secale cereale L; Unpretreated; Lignocellulosic biomass; Growth stage; Boot stage; Harvest maturity; Biological solubilization; Carbohydrate solubilization; Protein recovery; Consolidated bioprocessing; SSCF; Clostridium thermocellum ID ETHANOL-PRODUCTION; CLOSTRIDIUM-THERMOCELLUM; BIOMASS RECALCITRANCE; FORAGE; CELLULOSOMES; PRETREATMENT; BIOFUELS; MAIZE; YIELD; BELT AB Background: Winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. Results: The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughly constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Conclusions: Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained relatively constant while the early-harvest yielded much higher carbohydrate solubilization for both C. thermocellum fermentation and SSCF. C. thermocellum fermentation achieved higher carbohydrate solubilization than SSCF across all growth stages tested. Although winter rye's yield, composition, and biological reactivity change rapidly in the spring, it offers a substantial and stable income across the harvest season and thus flexibility for the farmer. C1 [Shao, Xiongjun; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Shao, Xiongjun; Lynd, Lee R.] Oak Ridge Natl Lab, DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [DiMarco, Kay; Richard, Tom L.] Penn State Univ, University Pk, PA 16802 USA. [Lynd, Lee R.] Enchi Corp, Lebanon, NH 03766 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, 14 Engn Dr, Hanover, NH 03755 USA. EM Lee.R.Lynd@Dartmouth.edu FU BioEnergy Science Center (BESC), a U.S. Department of Energy (DOE) Research Center; Office of Biological and Environmental Research in the DOE Office of Science; Oak Ridge National Laboratory; Mascoma Corporation; Department of Energy [DE-AC05-00OR22725]; Agriculture and Food Research Initiative Competitive Grant from USDA National Institute of Food and Agriculture [2012-68005-19703] FX XS and LL were supported by the BioEnergy Science Center (BESC), a U.S. Department of Energy (DOE) Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory, and Mascoma Corporation. Oak Ridge National Laboratory is managed by University of Tennessee UT-Battelle LLC for the Department of Energy under Contract No. DE-AC05-00OR22725. KD and TR were supported by the Agriculture and Food Research Initiative Competitive Grant No. 2012-68005-19703 from the USDA National Institute of Food and Agriculture. We thank Bill Curran, Ph.D. and the Department of Crop and Soil Sciences at the Pennsylvania State University for providing the plant material used in this study. NR 30 TC 1 Z9 1 U1 4 U2 13 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD FEB 27 PY 2015 VL 8 AR 35 DI 10.1186/s13068-015-0225-z PG 10 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CD7IA UT WOS:000351262800001 PM 25798193 ER PT J AU Wang, JL Swati, FNU Stein, ML Kotamarthi, VR AF Wang, Jiali Swati, F. N. U. Stein, Michael L. Kotamarthi, V. Rao TI Model performance in spatiotemporal patterns of precipitation: New methods for identifying value added by a regional climate model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UNITED-STATES; REANALYSIS; SIMULATION; TEMPERATURE; ABILITY AB Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future projection. In addition to model performance in climatological means and marginal distributions, a model's ability to capture spatiotemporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and nonseasonal precipitation components used to assess the spatial variations of precipitation, and (2) spatiotemporal correlation for a wide range of distances, directions, and time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatiotemporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy Atmospheric Model Intercomparison Project II reanalysis data (NCEP-R2), which provide initial and lateral boundary conditions for the RCM. The RCM performs significantly better than NCEP-R2 in capturing both the spatial variations of total and nonseasonal precipitation components and the spatiotemporal correlations of daily precipitation occurrences, which are related to dynamic behavior of precipitating systems. The improvements are apparent not only at resolutions finer than that of NCEP-R2 but also when the RCM and observational data are aggregated to the resolution of NCEP-R2. C1 [Wang, Jiali; Kotamarthi, V. Rao] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Swati, F. N. U.; Stein, Michael L.] Univ Chicago, Dept Stat, Chicago, IL 60637 USA. RP Wang, JL (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jialiwang@anl.gov FU Strategic Environmental Research and Development Program through DOE [RC-2242, DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We thank all anonymous reviewers for their constructive comments and insights. This work is supported under a military interdepartmental purchase request from the Strategic Environmental Research and Development Program, RC-2242, through DOE contract DE-AC02-06CH11357. The PRISM data are available at http://www.prism.oregonstate.edu/, and the CPC and NCEP-R2 precipitation are at ftp://ftp.cdc.noaa.gov/Datasets. Computational resources are provided by the DOE-supported Argonne Leadership Computing Facility and the National Energy Research Scientific Computing Center. The submitted manuscript has been created by University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357. The U.S. government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in the said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 38 TC 8 Z9 8 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2015 VL 120 IS 4 BP 1239 EP 1259 DI 10.1002/2014JD022434 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6EN UT WOS:000351182400002 ER PT J AU Boyle, JS Klein, SA Lucas, DD Ma, HY Tannahill, J Xie, S AF Boyle, J. S. Klein, S. A. Lucas, D. D. Ma, H. -Y. Tannahill, J. Xie, S. TI The parametric sensitivity of CAM5's MJO SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MADDEN-JULIAN OSCILLATION; COMMUNITY ATMOSPHERE MODEL; MOIST STATIC ENERGY; TROPICAL INTRASEASONAL VARIABILITY; GENERAL-CIRCULATION MODELS; COUPLED EQUATORIAL WAVES; CLIMATE MODELS; PART I; SHALLOW CONVECTION; PARAMETERIZATION AB We systematically explore the ability of the Community Atmospheric Model version 5 (CAM5) to simulate the Madden-Julian Oscillation (MJO), through an analysis of MJO metrics calculated from a 1100-member perturbed parameter ensemble of 5 year simulations with observed sea surface temperatures. Parameters from the deep convection scheme make the greatest contribution to the variance in MJO simulation quality with a much smaller contribution from parameters in the large-scale cloud, shallow convection, and boundary layer turbulence schemes. Improved MJO variability results from a larger lateral entrainment rate and a reduction in the precipitation efficiency of deep convection that was achieved by a smaller autoconversion of cloud to rainwater and a larger evaporation of convective precipitation. Unfortunately, simulations with an improved MJO also have a significant negative impact on the climatological values of low-level cloud and absorbed shortwave radiation, suggesting that structural in addition to parametric modifications to CAM5's parameterization suite are needed in order to simultaneously well simulate the MJO and mean-state climate. C1 [Boyle, J. S.; Klein, S. A.; Lucas, D. D.; Ma, H. -Y.; Tannahill, J.; Xie, S.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Klein, SA (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. EM klein21@llnl.gov RI Xie, Shaocheng/D-2207-2013; Ma, Hsi-Yen/K-1019-2013; Klein, Stephen/H-4337-2016 OI Xie, Shaocheng/0000-0001-8931-5145; Klein, Stephen/0000-0002-5476-858X FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Earth System Modeling program; Regional and Global Climate Modeling program FX Work at LLNL was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The efforts of the authors were funded by the Regional and Global Climate Modeling and Earth System Modeling programs and the Scientific Discovery through Advanced Computing project of the U. S. Department of Energy's Office of Science. The perturbed parameter ensemble analyzed in this study was performed for the Climate Science for Sustainable Energy Future project supported by the Earth System Modeling program. Given the very large quantities of data involved, only summaries of simulation output can be made available upon request from the authors. The authors appreciate conversations with Richard Neale, Brian Mapes, and Leo Donner. Comments on the manuscript provided by Ken Sperber, Chidong Zhang, and the anonymous reviewers are appreciated. NR 74 TC 14 Z9 14 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2015 VL 120 IS 4 BP 1424 EP 1444 DI 10.1002/2014JD022507 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6EN UT WOS:000351182400013 ER PT J AU Xu, L Pierce, DW Russell, LM Miller, AJ Somerville, RCJ Twohy, CH Ghan, SJ Singh, B Yoon, JH Rasch, PJ AF Xu, Li Pierce, David W. Russell, Lynn M. Miller, Arthur J. Somerville, Richard C. J. Twohy, Cynthia H. Ghan, Steven J. Singh, Balwinder Yoon, Jin-Ho Rasch, Philip J. TI Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; TROPOSPHERIC OZONE; CLOUD MICROPHYSICS; MARINE AEROSOL; NORTH PACIFIC; SYSTEM MODEL; EL-NINO; ENSO; OCEAN; SIMULATIONS AB This study examines multiyear climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150 year simulation for preindustrial conditions of the Community Earth System Model version 1.0. The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the El Nino-Southern Oscillation cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency variability in the Pacific Ocean similar to the Interdecadal Pacific Oscillation but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variability may contribute to SWCF variability in the tropical Pacific, explaining up to 20-30% of the variance in that region. Elsewhere, there is only a small sea salt aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multiyear aerosol-cloud-wind interaction. C1 [Xu, Li; Pierce, David W.; Russell, Lynn M.; Miller, Arthur J.; Somerville, Richard C. J.; Twohy, Cynthia H.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Twohy, Cynthia H.] Northwest Res Associates, Redmond, WA USA. [Ghan, Steven J.; Singh, Balwinder; Yoon, Jin-Ho; Rasch, Philip J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Russell, LM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM lmrussell@ucsd.edu RI YOON, JIN-HO/A-1672-2009; Ghan, Steven/H-4301-2011 OI YOON, JIN-HO/0000-0002-4939-8078; Ghan, Steven/0000-0001-8355-8699 FU NSF [AGS1048995]; DOE as part of the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program [DE-SC0006679]; DOE [DE-AC05-76RLO 1830] FX This research was supported by NSF AGS1048995 and by DOE DE-SC0006679 as part of the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RLO 1830. We are grateful for the NASA MEaSUREs project providing the SeaWiFS AOD satellite data and for Joseph M. Prospero and Michael Schulz providing the long-term measurements of aerosols over the global ocean. All model results are available at http://portal.nersc.gov/project/m1374/SeaSalt/ in the National Energy Research Scientific Computing Center (NERSC). NR 65 TC 3 Z9 3 U1 3 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2015 VL 120 IS 4 BP 1502 EP 1519 DI 10.1002/2014JD022888 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6EN UT WOS:000351182400018 ER PT J AU Mahboobi, SH Javanpour, AA Mofrad, MRK AF Mahboobi, Seyed Hanif Javanpour, Alex A. Mofrad, Mohammad R. K. TI The Interaction of RNA Helicase DDX3 with HIV-1 Rev-CRM1-RanGTP Complex during the HIV Replication Cycle SO PLOS ONE LA English DT Article ID PROTEIN-PROTEIN DOCKING; NUCLEAR-PORE COMPLEX; MOLECULAR-MECHANICS; CONTINUUM SOLVENT; FREE-ENERGIES; CONFORMATIONAL-CHANGES; MESSENGER-RNA; LEPTOMYCIN B; BINDING; EXPORT AB Molecular traffic between the nucleus and the cytoplasm is regulated by the nuclear pore complex (NPC), which acts as a highly selective channel perforating the nuclear envelope in eukaryotic cells. The human immunodeficiency virus (HIV) exploits the nucleocytoplasmic pathway to export its RNA transcripts across the NPC to the cytoplasm. Despite extensive study on the HIV life cycle and the many drugs developed to target this cycle, no current drugs have been successful in targeting the critical process of viral nuclear export, even though HIV's reliance on a single host protein, CRM1, to export its unspliced and partially spliced RNA transcripts makes it a tempting target. Due to recent findings implicating a DEAD-box helicase, DDX3, in HIV replication and a member of the export complex, it has become an appealing target for anti-HIV drug inhibition. In the present research, we have applied a hybrid computational protocol to analyze protein-protein interactions in the HIV mRNA export cycle. This method is based on molecular docking followed by molecular dynamics simulation and accompanied by approximate free energy calculation (MM/GBSA), computational alanine scanning, clustering, and evolutionary analysis. We highlight here some of the most likely binding modes and interfacial residues between DDX3 and CRM1 both in the absence and presence of RanGTP. This work shows that although DDX3 can bind to free CRM1, addition of RanGTP leads to more concentrated distribution of binding modes and stronger binding between CRM1 and RanGTP. C1 [Mahboobi, Seyed Hanif; Javanpour, Alex A.; Mofrad, Mohammad R. K.] Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA. [Mahboobi, Seyed Hanif; Javanpour, Alex A.; Mofrad, Mohammad R. K.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Mofrad, Mohammad R. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Mofrad, MRK (reprint author), Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA. EM mofrad@berkeley.edu NR 65 TC 6 Z9 6 U1 2 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 27 PY 2015 VL 10 IS 2 AR e0112969 DI 10.1371/journal.pone.0112969 PG 27 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC3LS UT WOS:000350251200001 PM 25723178 ER PT J AU Lee, S Gonzalez, JJ Yoo, JH Chirinos, JR Russo, RE Jeong, S AF Lee, Seokhee Gonzalez, Jhanis J. Yoo, Jong H. Chirinos, Jose R. Russo, Richard E. Jeong, Sungho TI Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se-2 solar cell films SO THIN SOLID FILMS LA English DT Article DE Femtosecond; LA-ICP-MS; CIGS; Solar cell; Composition ID LA-ICP-MS; ANALYTICAL-CHEMISTRY; NANOSECOND; SAMPLES; LAYER AB This work reports that the composition of Cu(In,Ga)Se-2 (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (lambda = 1030 nm, tau = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95-97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lee, Seokhee; Jeong, Sungho] Gwangju Inst Sci & Technol, Sch Mechatron, Kwangju 500712, South Korea. [Gonzalez, Jhanis J.; Chirinos, Jose R.; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gonzalez, Jhanis J.; Yoo, Jong H.; Russo, Richard E.] Appl Spectra Inc, Fremont, CA 94538 USA. [Chirinos, Jose R.] Cent Univ Venezuela, Fac Ciencias, Caracas 1041A, Venezuela. RP Jeong, S (reprint author), Gwangju Inst Sci & Technol, Sch Mechatron, 1 Oryong Dong, Kwangju 500712, South Korea. EM shjeong@gist.ac.kr FU National Research Foundation of Korea (NRF) - Korea government (Ministry of Education, Science, and Technology) [2013-064113]; Chemical Science Division, Office of Basic Energy Sciences of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education, Science, and Technology) (No. 2013-064113) and RER, XM and JJG acknowledge the support from the Chemical Science Division, Office of Basic Energy Sciences of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. NR 34 TC 4 Z9 4 U1 3 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 27 PY 2015 VL 577 BP 82 EP 87 DI 10.1016/j.tsf.2015.01.026 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CD2KO UT WOS:000350907200013 ER PT J AU Makowska-Grzyska, M Kim, Y Maltseva, N Osipiuk, J Gu, MY Zhang, MJ Mandapati, K Gollapalli, DR Gorla, SK Hedstrom, L Joachimiak, A AF Makowska-Grzyska, Magdalena Kim, Youngchang Maltseva, Natalia Osipiuk, Jerzy Gu, Minyi Zhang, Minjia Mandapati, Kavitha Gollapalli, Deviprasad R. Gorla, Suresh Kumar Hedstrom, Lizbeth Joachimiak, Andrzej TI A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID INOSINE 5'-MONOPHOSPHATE DEHYDROGENASE; NICOTINAMIDE ADENINE-DINUCLEOTIDE; MONOPHOSPHATE DEHYDROGENASE; CRYPTOSPORIDIUM-PARVUM; CRYSTAL-STRUCTURE; INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE; 5-MONOPHOSPHATE DEHYDROGENASE; STRUCTURAL BASIS; PROTEIN; ENZYMES AB The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+) binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. C1 [Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Joachimiak, Andrzej] Univ Chicago, Ctr Struct Genom Infect Dis, Chicago, IL 60637 USA. [Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Joachimiak, Andrzej] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Kim, Youngchang; Osipiuk, Jerzy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA. [Hedstrom, Lizbeth] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA. RP Hedstrom, L (reprint author), Brandeis Univ, Dept Biol & Chem, 415 South St, Waltham, MA 02454 USA. EM hedstrom@brandeis.edu; andrzejj@anl.gov FU United States Department of Energy, Office of Biological and Environmental Research under National Institutes of Health [DE-AC02-06CH11357] FX The use of Structural Biology Center beamlines was supported by the United States Department of Energy, Office of Biological and Environmental Research under National Institutes of Health Contract DE-AC02-06CH11357, Argonne, a United States Department of Energy Office of Science Laboratory, is operated under Contract DE-AC02-06CH11357. NR 53 TC 11 Z9 11 U1 4 U2 14 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 27 PY 2015 VL 290 IS 9 BP 5893 EP 5911 DI 10.1074/jbc.M114.619767 PG 19 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CC0RS UT WOS:000350044200053 PM 25572472 ER PT J AU Dun, ZL Ma, J Cao, HB Qiu, Y Copley, JRD Hong, T Matsuda, M Cheng, JG Lee, M Choi, ES Johnston, S Zhou, HD AF Dun, Z. L. Ma, J. Cao, H. B. Qiu, Y. Copley, J. R. D. Hong, T. Matsuda, M. Cheng, J. G. Lee, M. Choi, E. S. Johnston, S. Zhou, H. D. TI Competition between the inter- and intra-sublattice interactions in Yb2V2O7 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-LIQUID STATE; CRYSTAL-FIELD; YB2TI2O7; EXCITATIONS; FERROMAGNET; TRANSITION; ICE AB We studied the magnetic properties of single-crystal Yb2V2O7 using dc and ac susceptibility measurements, elastic and inelastic neutron-scattering measurements, and linear spin-wave theory. The experimental data show a ferromagnetic ordering of V4+ ions at 70 K, a short-range ordering of Yb3+ ions below 40 K, and finally a long-range noncollinear ordering of Yb3+ ions below 15 K. With external magnetic field oriented along the [111] axis, the Yb sublattice experiences a spin flop transition related to the "three-inone-out" spin structure. By modeling the spin-wave excitations, we extract the Hamiltonian parameters. Our results confirm that although the extra inter-sublattice Yb-V interactions dramatically increase the Yb ordering temperature to 15 K, the intra-sublattice Yb-Yb interactions, based on the pyrochlore lattice, still stabilize the Yb ions' noncollinear spin structure and spin flop transition. C1 [Dun, Z. L.; Johnston, S.; Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ma, J.; Cao, H. B.; Hong, T.; Matsuda, M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37381 USA. [Qiu, Y.; Copley, J. R. D.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Cheng, J. G.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Cheng, J. G.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Lee, M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Lee, M.; Choi, E. S.; Zhou, H. D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Johnston, S.] Univ Tennessee, Joint Inst Adv Mat, Knoxville, TN 37996 USA. RP Dun, ZL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Hong, Tao/F-8166-2010; Ma, Jie/C-1637-2013; Cao, Huibo/A-6835-2016; Matsuda, Masaaki/A-6902-2016; Cheng, Jinguang/A-8342-2012; Lee, Minseong/D-5371-2016; Dun, Zhiling/F-5617-2016; Johnston, Steven/J-7777-2016; Zhou, Haidong/O-4373-2016 OI Hong, Tao/0000-0002-0161-8588; Cao, Huibo/0000-0002-5970-4980; Matsuda, Masaaki/0000-0003-2209-9526; Dun, Zhiling/0000-0001-6653-3051; FU National Science Foundation of China [11304371]; State of Florida; Department of Energy; NHMFL User Collaboration Support Grant; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; [NSF-DMR-1350002]; [NSF-DMR-0944772]; [NSF-DMR-1157490] FX The authors thank L. Balents, M. Gingras, J. Quilliam, K. Ross, and L. Savary for useful discussions and exchanges. Z.L.D. and H.D.Z. acknowledge the support of NSF-DMR-1350002. J.G.C. is supported by the National Science Foundation of China (Grant No. 11304371). The work at NIST is supported in part by NSF-DMR-0944772. The work at NHMFL is supported by NSF-DMR-1157490, the State of Florida, the Department of Energy, and by the additional funding from NHMFL User Collaboration Support Grant. The work at ORNL High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 0 Z9 0 U1 8 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 27 PY 2015 VL 91 IS 6 AR 064425 DI 10.1103/PhysRevB.91.064425 PG 7 WC Physics, Condensed Matter SC Physics GA CC4IP UT WOS:000350317300015 ER PT J AU Johnston, DC AF Johnston, David C. TI Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets SO PHYSICAL REVIEW B LA English DT Article ID TRIANGULAR LATTICE; PHASE-TRANSITION AB A unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility. versus temperature T below the AF ordering temperature T-N to be carried out for arbitrary Heisenberg exchange interactions J(ij) between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature theta(p) in the Curie-Weiss law is written in terms of the J(ij) values and T-N in terms of the J(ij) values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t = T/T-N, the ratio f = theta(p)/T-N, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that chi(T <= T-N) of noncollinear 120 degrees spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed. C1 [Johnston, David C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Johnston, David C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Johnston, DC (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX The author is grateful to V. K. Anand, R. J. Goetsch, A. Honecker, and M. E. Zhitomirsky for helpful discussions. This work was partially supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 26 TC 10 Z9 10 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 27 PY 2015 VL 91 IS 6 AR 064427 DI 10.1103/PhysRevB.91.064427 PG 27 WC Physics, Condensed Matter SC Physics GA CC4IP UT WOS:000350317300017 ER PT J AU Lin, WZ Ganesh, P Gianfrancesco, A Wang, J Berlijn, T Maier, TA Kalinin, SV Sales, BC Pan, MH AF Lin, Wenzhi Ganesh, P. Gianfrancesco, Anthony Wang, Jun Berlijn, Tom Maier, Thomas A. Kalinin, Sergei V. Sales, Brian C. Pan, Minghu TI Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex SO PHYSICAL REVIEW B LA English DT Article ID INTERPLAY; MAGNETISM; IMPURITIES; STATES; PROBE AB Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon, we performed a combination of magnetic susceptibility, specific heat, and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m >= 1) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds. C1 [Lin, Wenzhi; Ganesh, P.; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gianfrancesco, Anthony] Univ Tennessee, UT ORNL, Bredesen Ctr, Knoxville, TN 37996 USA. [Berlijn, Tom; Maier, Thomas A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Sales, Brian C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pan, Minghu] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China. RP Pan, MH (reprint author), Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China. EM mhupan@gmail.com RI Ganesh, Panchapakesan/E-3435-2012; Berlijn, Tom/A-3859-2016; Kalinin, Sergei/I-9096-2012; Wang, Jun/N-6882-2014; Maier, Thomas/F-6759-2012 OI Ganesh, Panchapakesan/0000-0002-7170-2902; Berlijn, Tom/0000-0002-1001-2238; Kalinin, Sergei/0000-0001-5354-6152; Wang, Jun/0000-0003-4974-1240; Maier, Thomas/0000-0002-1424-9996 FU US Department of Energy; Office of Science; Basic Energy Sciences; Materials Sciences and Engineering Division; Center for Nanophase Materials Sciences; Oak Ridge National Laboratory by the Scientific User Facilities Division; Office of Basic Energy Sciences; Oak Ridge National Laboratory; National Energy Research Scientific Computing Center; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX Research was supported (W.L., B.C.S., S.V.K.) by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research was conducted (W.L., J.W., M.P., P.G., T.M., T.B.) at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. T.B. was supported as a Wigner Fellow at the Oak Ridge National Laboratory. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. WSXM software has been used to assist STM data analysis [39]. NR 39 TC 3 Z9 3 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 27 PY 2015 VL 91 IS 6 AR 060513 DI 10.1103/PhysRevB.91.060513 PG 5 WC Physics, Condensed Matter SC Physics GA CC4IP UT WOS:000350317300008 ER PT J AU Nakajima, Y Wang, RX Metz, T Wang, XF Wang, LM Cynn, H Weir, ST Jeffries, JR Paglione, J AF Nakajima, Yasuyuki Wang, Renxiong Metz, Tristin Wang, Xiangfeng Wang, Limin Cynn, Hyunchae Weir, Samuel T. Jeffries, Jason R. Paglione, Johnpierre TI High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressure SO PHYSICAL REVIEW B LA English DT Article AB We report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe2As2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low-pressure regime, we show that the superconducting transition temperature T-c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T-c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T-c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phase transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole-to electron-like, which agrees with our band structure calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe2As2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T-c superconductivity in iron pnictide superconductors. C1 [Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; Wang, Xiangfeng; Wang, Limin; Paglione, Johnpierre] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Cynn, Hyunchae; Weir, Samuel T.; Jeffries, Jason R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Nakajima, Y (reprint author), Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. RI Wang, Xiangfeng/I-2848-2014 OI Wang, Xiangfeng/0000-0001-9845-1659 FU AFOSR Grant [FA9550-14-1-0332]; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4419]; DOE, NNSA [DE-AC52-07NA27344]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF FX The authors acknowledge valuable discussions with R. L. Greene and L. Taillefer. Work at the University of Maryland was supported by AFOSR Grant FA9550-14-1-0332 and the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4419. Portions of this work were performed under LDRD (Tracking Code 14-ERD-041). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the DOE, NNSA under Contract No. DE-AC52-07NA27344. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. A portion of the beamtime was provided by the Carnegie DOE-Alliance Center (CDAC). NR 36 TC 13 Z9 13 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 27 PY 2015 VL 91 IS 6 AR 060508 DI 10.1103/PhysRevB.91.060508 PG 5 WC Physics, Condensed Matter SC Physics GA CC4IP UT WOS:000350317300003 ER PT J AU Popovic, ZV Scepanovic, M Lazarevic, N Opacic, M Radonjic, MM Tanaskovic, D Lei, HC Petrovic, C AF Popovic, Z. V. Scepanovic, M. Lazarevic, N. Opacic, M. Radonjic, M. M. Tanaskovic, D. Lei, Hechang Petrovic, C. TI Lattice dynamics of BaFe2X3(X = S, Se) compounds SO PHYSICAL REVIEW B LA English DT Article ID BA-FE-S; IRON; BA6FE8S15; BAFE2S3; PHASES AB We present the Raman scattering spectra of the BaFe2X3 (X = S, Se) compounds in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe2S3(BaFe2Se3) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe2S(Se)(3) is supported by the lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe2Se3 below T-N = 255 K leaves a fingerprint both in the A(1g) and B-3g phonon mode linewidth and energy. C1 [Popovic, Z. V.; Scepanovic, M.; Lazarevic, N.; Opacic, M.] Univ Belgrade, Ctr Solid State Phys & New Mat, Inst Phys Belgrade, Belgrade 11080, Serbia. [Radonjic, M. M.; Tanaskovic, D.] Univ Belgrade, Inst Phys Belgrade, Comp Sci Lab, Belgrade 11080, Serbia. [Radonjic, M. M.] Univ Augsburg, Ctr Elect Correlat & Magnetism Theoret Phys 3, Inst Phys, D-86135 Augsburg, Germany. [Lei, Hechang; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Popovic, ZV (reprint author), Univ Belgrade, Ctr Solid State Phys & New Mat, Inst Phys Belgrade, Pregrev 118, Belgrade 11080, Serbia. RI Petrovic, Cedomir/A-8789-2009; Radonjic, Milos/M-1890-2015; LEI, Hechang/H-3278-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; FU Ministry of Education, Science, and Technological Development of Republic of Serbia [ON171032, ON171017, III45018]; Center for Emergent Superconductivity, an energy frontier research center - US Department of Energy, Office for Basic Energy Science; Deutsche Forschungsgemeinschaft [TRR 80, FOR 1346] FX This work was supported by the Ministry of Education, Science, and Technological Development of Republic of Serbia under Projects ON171032, ON171017, and III45018. Work at Brookhaven was supported by the Center for Emergent Superconductivity, an energy frontier research center funded by the US Department of Energy, Office for Basic Energy Science (H.L. and C.P.). Numerical simulations were run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of Physics Belgrade, supported in part by the Ministry of Education, Science, and Technological Development of Republic of Serbia under Project ON171017. M.M.R. acknowledges the Support by the Deutsche Forschungsgemeinschaft through Transregio TRR 80 and Research Unit FOR 1346. NR 21 TC 0 Z9 0 U1 10 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 27 PY 2015 VL 91 IS 6 AR 064303 DI 10.1103/PhysRevB.91.064303 PG 7 WC Physics, Condensed Matter SC Physics GA CC4IP UT WOS:000350317300009 ER PT J AU Willenberg, B Ryll, H Kiefer, K Tennant, DA Groitl, F Rolfs, K Manuel, P Khalyavin, D Rule, KC Wolter, AUB Sullow, S AF Willenberg, B. Ryll, H. Kiefer, K. Tennant, D. A. Groitl, F. Rolfs, K. Manuel, P. Khalyavin, D. Rule, K. C. Wolter, A. U. B. Suellow, S. TI Luttinger liquid behavior in the alternating spin-chain system copper nitrate SO PHYSICAL REVIEW B LA English DT Article ID BOSE-EINSTEIN CONDENSATION; MAGNETIC-FIELD; CARBON NANOTUBES; CU(NO3)2.21/2H2O; TLCUCL3; LADDERS AB We determine the phase diagram of copper nitrate Cu(NO3)(2)center dot 2.5D(2)O in the context of quantum phase transitions and novel states of matter. We establish this compound as an ideal candidate to study quasi-1D Luttinger liquids, 3D Bose-Einstein-Condensation of triplons, and the crossover between 1D and 3D physics. Magnetocaloric effect, magnetization, and neutron scattering data provide clear evidence for transitions into a Luttinger liquid regime and a 3D long-range ordered phase as a function of field and temperature. Theoretical simulations of this model material allow us to fully establish the phase diagram and to discuss it in the context of dimerized spin systems. C1 [Willenberg, B.; Ryll, H.; Kiefer, K.; Tennant, D. A.; Groitl, F.; Rolfs, K.; Rule, K. C.] Helmholtz Ctr Berlin Mat & Energy, D-14109 Berlin, Germany. [Willenberg, B.; Suellow, S.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Condensed Matter Phys, D-38106 Braunschweig, Germany. [Tennant, D. A.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Groitl, F.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland. [Groitl, F.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Rolfs, K.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Manuel, P.; Khalyavin, D.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Rule, K. C.] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia. [Wolter, A. U. B.] IFW Dresden, Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany. RP Willenberg, B (reprint author), Helmholtz Ctr Berlin Mat & Energy, D-14109 Berlin, Germany. RI Tennant, David/Q-2497-2015; EPFL, Physics/O-6514-2016; Khalyavin, Dmitry/E-4335-2017 OI Tennant, David/0000-0002-9575-3368; Khalyavin, Dmitry/0000-0002-6724-7695 FU DFG [WO 1532/3-1, SU229/9-1] FX We gratefully acknowledge fruitful discussions with W. Brenig and A. Honecker. Further, we acknowledge access to the experimental facilities of the Laboratory for Magnetic Measurements (LaMMB) at HZB. This work has partially been supported by the DFG under Contracts No. WO 1532/3-1 and No. SU229/9-1. NR 31 TC 5 Z9 5 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 27 PY 2015 VL 91 IS 6 AR 060407 DI 10.1103/PhysRevB.91.060407 PG 5 WC Physics, Condensed Matter SC Physics GA CC4IP UT WOS:000350317300002 ER PT J AU Jimenez-Delgado, P Hobbs, TJ Londergan, JT Melnitchouk, W AF Jimenez-Delgado, P. Hobbs, T. J. Londergan, J. T. Melnitchouk, W. TI New Limits on Intrinsic Charm in the Nucleon from Global Analysis of Parton Distributions SO PHYSICAL REVIEW LETTERS LA English DT Article ID FLAVOR ASYMMETRY; SEA; SCATTERING; COMPONENT; PROTON; HARD; HERA AB We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q(2) greater than or similar to 1 GeV2 and W-2 greater than or similar to 3.5 GeV2, including fixed-target proton and deuteron cross sections at lower energies that were excluded in previous global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with hxiIC at most 0.5% (corresponding to an IC normalization of similar to 1%) at the 4 sigma level for Delta chi(2) = 1. We also critically assess the impact of older EMC measurements of F-2(c) at large x, which favor a nonzero IC, but with very large chi(2) values. C1 [Jimenez-Delgado, P.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Hobbs, T. J.; Londergan, J. T.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Hobbs, T. J.; Londergan, J. T.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA. [Hobbs, T. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Jimenez-Delgado, P (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. FU National Science Foundation [PHY-1205019]; DOE under which Jefferson Science Associates, LLC operates Jefferson Lab [DE-FG02-87ER40365, DE-FG02-97ER-41014, DE-AC05-06OR23177] FX This material is based upon work supported by the National Science Foundation (T. J. H. and J. T. L.) under Grant No. PHY-1205019. The work of T. J. H. was also supported in part by DOE Grants No. DE-FG02-87ER40365 and No. DE-FG02-97ER-41014. P. J.- D. and W. M. were supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab. NR 39 TC 25 Z9 25 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2015 VL 114 IS 8 AR 082002 DI 10.1103/PhysRevLett.114.082002 PG 5 WC Physics, Multidisciplinary SC Physics GA CC3MI UT WOS:000350253000004 PM 25768757 ER PT J AU Singer, W Singer, X Jelezov, I Kneisel, P AF Singer, W. Singer, X. Jelezov, I. Kneisel, P. TI Hydroforming of elliptical cavities SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E-acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multi cell and nine-cell cavities. Several seamless two-and three-cell units were explored. Accelerating gradients E-acc of 30-35 MV/m were measured after BCP and E-acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E-acc = 30-35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper. C1 [Singer, W.; Singer, X.] DESY, D-22603 Hamburg, Germany. [Jelezov, I.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kneisel, P.] Jefferson Lab, Newport News, VA 23606 USA. RP Singer, W (reprint author), DESY, Notkestr 85, D-22603 Hamburg, Germany. EM waldemar.singer@desy.de NR 53 TC 4 Z9 4 U1 4 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB 27 PY 2015 VL 18 IS 2 AR 022001 DI 10.1103/PhysRevSTAB.18.022001 PG 22 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CC5AF UT WOS:000350367800001 ER PT J AU Das, T Zhu, JX Graf, MJ AF Das, Tanmoy Zhu, Jian-Xin Graf, Matthias J. TI Theory of nodal s(+/-)-wave pairing symmetry in the Pu-based 115 superconductor family SO SCIENTIFIC REPORTS LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; PUCOGA5; TEMPERATURE; TRANSITION; CECOIN5; GAP AB The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T-c superconductors and predict the presence of a nodal s(+-) wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface "hot-spots'' in the inter-band scattering channel, which are aligned along the wavevector Q = (pi, pi, pi), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s(+-) wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum-and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. C1 [Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Das, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tnmydas@gmail.com FU U.S. DOE under at the Los Alamos National Laboratory through the LDRD Program [DE-AC52-06NA25396]; Office of Science of the U.S. DOE [DE-AC02-05CH11231] FX This work was supported by the U.S. DOE under Contract No. DE-AC52-06NA25396 at the Los Alamos National Laboratory through the LDRD Program. We are grateful for the computational resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 43 TC 0 Z9 0 U1 1 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 27 PY 2015 VL 5 AR 8632 DI 10.1038/srep08632 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4BC UT WOS:000350294700004 PM 25721375 ER PT J AU Yan, Q Bi, Y Deng, Y He, ZL Wu, LY Van Nostrand, JD Shi, Z Li, JJ Wang, X Hu, ZY Yu, YH Zhou, JH AF Yan, Qingyun Bi, Yonghong Deng, Ye He, Zhili Wu, Liyou Van Nostrand, Joy D. Shi, Zhou Li, Jinjin Wang, Xi Hu, Zhengyu Yu, Yuhe Zhou, Jizhong TI Impacts of the Three Gorges Dam on microbial structure and potential function SO SCIENTIFIC REPORTS LA English DT Article ID GRADIENT GEL-ELECTROPHORESIS; COMMUNITY COMPOSITION; COMPARATIVE METAGENOMICS; FAUNAL SIMILARITY; GENE MICROARRAYS; DIVERSITY; RESERVOIR; RIVER; PHYTOPLANKTON; SEQUENCES AB The Three Gorges Dam has significantly altered ecological and environmental conditions within the reservoir region, but how these changes affect bacterioplankton structure and function is unknown. Here, three widely accepted metagenomic tools were employed to study the impact of damming on the bacterioplankton community in the Xiangxi River. Our results indicated that bacterioplankton communities were both taxonomically and functionally different between backwater and riverine sites, which represent communities with and without direct dam effects, respectively. There were many more nitrogen cycling Betaproteobacteria (e.g., Limnohabitans), and a higher abundance of functional genes and KEGG orthology (KO) groups involved in nitrogen cycling in the riverine sites, suggesting a higher level of bacterial activity involved in generating more nitrogenous nutrients for the growth of phytoplankton. Additionally, the KO categories involved in carbon and sulfur metabolism, as well as most of the detected functional genes also showed clear backwater and riverine patterns. As expected, these diversity patterns all significantly correlated with environmental characteristics, confirming that the bacterioplankton communities in the Xiangxi River were really affected by environmental changes from the Three Gorges Dam. This study provides a first comparative metagenomic insight for evaluating the impacts of the large dam on microbial function. C1 [Yan, Qingyun; Bi, Yonghong; Li, Jinjin; Wang, Xi; Hu, Zhengyu; Yu, Yuhe] Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan, Peoples R China. [Yan, Qingyun; Deng, Ye; He, Zhili; Wu, Liyou; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Yan, Qingyun; Deng, Ye; He, Zhili; Wu, Liyou; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Deng, Ye] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, CAS Key Lab Environm Biotechnol, Beijing, Peoples R China. [Li, Jinjin; Wang, Xi] Grad Univ Chinese Acad Sci, Beijing, Peoples R China. RP Yu, YH (reprint author), Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan, Peoples R China. EM yhyu@ihb.ac.cn; jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632 FU China Three Gorges Corporation [IHB/CN/2012103]; Youth Innovation Promotion Association, CAS [Y22Z07]; National Natural Science Foundation of China [31071896] FX This work was supported by the China Three Gorges Corporation (IHB/CN/2012103), the Youth Innovation Promotion Association, CAS (Y22Z07) and the National Natural Science Foundation of China (31071896). NR 58 TC 13 Z9 15 U1 18 U2 95 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 27 PY 2015 VL 5 AR 8605 DI 10.1038/srep08605 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4AX UT WOS:000350294100004 PM 25721383 ER PT J AU Singh, M Wang, ZH Cascio, D Feigon, J AF Singh, Mahavir Wang, Zhonghua Cascio, Duilio Feigon, Jull TI Structure and Interactions of the CS Domain of Human H/ACA RNP Assembly Protein Shq1 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE NMR; chemical shift perturbation; X-ray crystal structure; dyskerin and Cbf5; telomerase ID DYSKERATOSIS-CONGENITA; SMALL NUCLEOLAR; RIBONUCLEOPROTEIN PARTICLE; TELOMERASE RNA; ATPASES PONTIN; TARGET GENES; BIOGENESIS; IDENTIFICATION; COMPLEX; CANCER AB Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here, we present the crystal structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two beta-sheets that form an immunoglobulin-like beta-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra beta-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Singh, Mahavir; Wang, Zhonghua; Feigon, Jull] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Cascio, Duilio; Feigon, Jull] Univ Calif Los Angeles, UCLA DOE, Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Feigon, J (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM feigon@mbi.ucla.edu FU National Institutes of Health [GM048123, P41 RR015301, P41 GM103403]; National Science Foundation [MCB1022379]; Department of Energy [DE-FC0302ER63421, DE-AC02-06CH11357] FX This research was supported by National Institutes of Health grant GM048123 and National Science Foundation grant MCB1022379 to J.F. The NMR core facility and X-ray core facility are supported in part by the Department of Energy grant DE-FC0302ER63421. We thank M. Capel, K. Rajashankar, N. Sukumar, F. Murphy, and I. Kourinov of Northeastern Collaborative Access Team beamline ID-24 at the Advanced Photon Source of Argonne National Laboratory, which are supported by National Institutes of Health grants P41 RR015301 and P41 GM103403. Use of the Advanced Photon Source is supported by Department of Energy under Contract DE-AC02-06CH11357. We would also like to thank R. Peterson for help with NMR data collection, M. Collazo for help with crystallization screening, and M. Sawaya for helpful discussions. NR 53 TC 1 Z9 1 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 27 PY 2015 VL 427 IS 4 BP 807 EP 823 DI 10.1016/j.jmb.2014.12.012 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CC1BO UT WOS:000350076400010 PM 25553844 ER PT J AU Ji, HT Zweibel, E AF Ji, Hantao Zweibel, Ellen TI Understanding particle acceleration in astrophysical plasmas SO SCIENCE LA English DT Editorial Material ID GAMMA-RAY FLARES; CRAB-NEBULA; MAGNETIC RECONNECTION; ELECTRON ACCELERATION C1 [Ji, Hantao] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ji, Hantao] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Ji, Hantao] Harbin Inst Technol, Lab Space Environm & Phys Sci, Harbin 150001, Heilongjiang, Peoples R China. [Zweibel, Ellen] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Zweibel, Ellen] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Ji, HT (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM hji@princeton.edu NR 15 TC 1 Z9 1 U1 3 U2 18 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 27 PY 2015 VL 347 IS 6225 BP 944 EP 945 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB9NQ UT WOS:000349958900015 PM 25722394 ER PT J AU Bussmann, E Rudolph, M Subramania, GS Misra, S Carr, SM Langlois, E Dominguez, J Pluym, T Lilly, MP Carroll, MS AF Bussmann, E. Rudolph, M. Subramania, G. S. Misra, S. Carr, S. M. Langlois, E. Dominguez, J. Pluym, T. Lilly, M. P. Carroll, M. S. TI Scanning capacitance microscopy registration of buried atomic-precision donor devices SO NANOTECHNOLOGY LA English DT Article DE scanning tunneling microscopy; scanning capacitance microscopy; quantum computing; nanoelectronics; hydrogen depassivation lithography; silicon; phosphorus donors ID TUNNELING-MICROSCOPY; QUANTUM COMPUTER; SILICON; SCALE; FABRICATION; LITHOGRAPHY; SURFACE; SPIN AB We show that a scanning capacitance microscope (SCM) can image buried delta-doped donor nanostructures fabricated in Si via a recently developed atomic-precision scanning tunneling microscopy (STM) lithography technique. A critical challenge in completing atomic-precision nanoelectronic devices is to accurately align mesoscopic metal contacts to the STM defined nanostructures. Utilizing the SCMs ability to image buried dopant nanostructures, we have developed a technique by which we are able to position metal electrodes on the surface to form contacts to underlying STM fabricated donor nanostructures with a measured accuracy of 300 nm. Low temperature (T = 4 K) transport measurements confirm successful placement of the contacts to the donor nanostructures. C1 [Bussmann, E.; Rudolph, M.; Subramania, G. S.; Misra, S.; Carr, S. M.; Langlois, E.; Dominguez, J.; Pluym, T.; Lilly, M. P.; Carroll, M. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bussmann, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ebussma@sandia.gov FU Sandia's Laboratory Directed Research and Development Program; US Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank Michelle Y Simmons (UNSW), John Randall, Josh Ballard and James Owen (Zyvex Labs) for helpful discussions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US DOE, Office of Basic Energy Sciences user facility. The work was supported by Sandia's Laboratory Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. NR 25 TC 2 Z9 2 U1 8 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 27 PY 2015 VL 26 IS 8 AR 085701 DI 10.1088/0957-4484/26/8/085701 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CA9LH UT WOS:000349244600018 PM 25649193 ER PT J AU Hashiguchi, T Fusco, ML Bornholdt, ZA Lee, JE Flyak, AI Matsuoka, R Kohda, D Yanagi, Y Hammel, M Crowe, JE Saphire, EO AF Hashiguchi, Takao Fusco, Marnie L. Bornholdt, Zachary A. Lee, Jeffrey E. Flyak, Andrew I. Matsuoka, Rei Kohda, Daisuke Yanagi, Yusuke Hammel, Michal Crowe, James E., Jr. Saphire, Erica Ollmann TI Structural Basis for Marburg Virus Neutralization by a Cross-Reactive Human Antibody SO CELL LA English DT Article ID NIEMANN-PICK C1; ENDOSOMAL CYSTEINE PROTEASES; VIRAL HEMORRHAGIC-FEVER; RECEPTOR-BINDING SITE; EBOLA-VIRUS; INFLUENZA-VIRUS; MONOCLONAL-ANTIBODIES; NONHUMAN-PRIMATES; RESTON-EBOLAVIRUS; RHESUS MACAQUES AB The filoviruses, including Marburg and Ebola, express a single glycoprotein on their surface, termed GP, which is responsible for attachment and entry of target cells. Filovirus GPs differ by up to 70% in protein sequence, and no antibodies are yet described that cross-react among them. Here, we present the 3.6 angstrom crystal structure of Marburg virus GP in complex with a cross-reactive antibody from a human survivor, and a lower resolution structure of the antibody bound to Ebola virus GP. The antibody, MR78, recognizes a GP1 epitope conserved across the filovirus family, which likely represents the binding site of their NPC1 receptor. Indeed, MR78 blocks binding of the essential NPC1 domain C. These structures and additional small-angle X-ray scattering of mucin-containing MARV and EBOV GPs suggest why such antibodies were not previously elicited in studies of Ebola virus, and provide critical templates for development of immunotherapeutics and inhibitors of entry. C1 [Hashiguchi, Takao; Fusco, Marnie L.; Bornholdt, Zachary A.; Lee, Jeffrey E.; Saphire, Erica Ollmann] Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA. [Hashiguchi, Takao; Yanagi, Yusuke] Kyushu Univ, Dept Virol, Fac Med, Fukuoka 8128582, Japan. [Flyak, Andrew I.; Crowe, James E., Jr.] Vanderbilt Univ, Dept Pathol Microbiol & Immunol, Nashville, TN 37232 USA. [Matsuoka, Rei; Kohda, Daisuke] Kyushu Univ, Med Inst Bioregulat, Div Struct Biol, Fukuoka 8128582, Japan. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Crowe, James E., Jr.] Vanderbilt Univ, Vanderbilt Vaccine Ctr, Nashville, TN 37232 USA. [Saphire, Erica Ollmann] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Saphire, EO (reprint author), Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA. EM erica@scripps.edu RI Crowe, James/B-5549-2009; U-ID, Kyushu/C-5291-2016; OI Crowe, James/0000-0002-0049-1079; Flyak, Andrew/0000-0002-8722-479X FU NIAID CETR [U19 AI109762, R01 AI089498, R21AI069347]; Defense Threat Reduction Agency [HDTRA1-13-1-0034]; NIAID [U19 AI109711]; MEXT [26713018, 24115005]; MEXT Platform for Drug Discovery Informatics and Structural Life Science; JSPS; Uehara Memorial Foundation; Burroughs Wellcome Fund; NIH [MINOS GM105404] FX We would like to thank Dr. Adrianna P.P. Zhang (TSRI) for help with data collection, Dr. Sebastien Igonet (TSRI and Calixar) for assistance with S2 cell expression, Dr. Kartik Chandran (Albert Einstein College of Medicine), C. Daniel Murin, and Dr. Andrew Ward (TSRI) for valuable discussions, and the beamline staff of Photon Factory (Tsukuba, Japan) for technical help during data collection. We thank NIAID CETR U19 AI109762 (E.O.S.), R01 AI089498, and R21AI069347 (E.O.S.); Defense Threat Reduction Agency grant HDTRA1-13-1-0034; NIAID grant U19 AI109711 (J.E.C.); MEXT KAKENHI grant numbers 26713018 (T.H.) and 24115005 (Y.Y.); MEXT Platform for Drug Discovery Informatics and Structural Life Science (T.H.), JSPS Postdoctoral Fellowships (DC2 [R.M.], Research Abroad [T.H.]); a Research Fellowship of The Uehara Memorial Foundation (TH.); an Investigators in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund (E.O.S.); and an NIH grant MINOS GM105404 (M.H.) for support. SIBYLS beamline efforts to combine SAXS and crystallography at the Advanced Light Source of Lawrence Berkeley National Laboratory are supported in part by US DOE program Integrated Diffraction Analysis Technologies (IDAT). This is manuscript # 28060 from The Scripps Research Institute. NR 61 TC 19 Z9 19 U1 5 U2 30 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD FEB 26 PY 2015 VL 160 IS 5 BP 904 EP 912 DI 10.1016/j.cell.2015.01.041 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CD5GN UT WOS:000351116100013 PM 25723165 ER PT J AU Hibberd, AM Doan, HQ Glass, EN de Groot, FMF Hill, CL Cuk, T AF Hibberd, Amber M. Doan, Hoang Q. Glass, Elliot N. de Groot, Frank M. F. Hill, Craig L. Cuk, Tanja TI Co Polyoxonnetalates and a Co3O4 Thin Film Investigated by L-Edge X-ray Absorption Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WATER OXIDATION CATALYST; TRANSITION-METAL COMPOUNDS; PRUSSIAN BLUE ANALOGS; AQUEOUS-SOLUTION; CHARGE-TRANSFER; NANOPARTICLES; BATTERIES; PHOSPHATE; SPECTRA; LIGAND AB We have performed cobalt L-edge X-ray absorption spectroscopy (XAS) on important materials for photoactive catalysis, namely nanoscale cobalt polyoxometalates (Co POM) and a Co3O4 thin film. A set of Co POM analogues were studied that vary according to the position and number of cobalts within the POM structure, metal valence state, oxygen ligand coordination geometry and heteroatom identity. Ligand field multiplet calculations simulate experimental XAS spectra in well-defined model systems provided by the Co POMs and extended to a Co3O4 thin film, thereby characterizing atomic multiplet and ligand field effects, including the ligand field parameter, structural distortions, and electronelectron interactions for Co2+ and Co3+ ions in both O-h and T-d environments. The ligand field parameter, 10D(q), is determined to within an accuracy of +/- 0.1 eV, the spectra are sensitive to small structural distortions that further split d-levels (0.16 eV), and the strength of electron-electron interactions is found to within +/- 5% of the atomic value. We also find that the electronic structure parameters and the XAS spectra do not vary among POMs with pronounced differences in catalytic activity, and therefore X-ray spectroscopies even more sensitive to the 3d electronic structure (such as resonant inelastic X-ray scattering (RIXS)) should be used to differentiate the more active catalysts. C1 [Hibberd, Amber M.; Cuk, Tanja] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Doan, Hoang Q.; Cuk, Tanja] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Glass, Elliot N.; Hill, Craig L.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [de Groot, Frank M. F.] Univ Utrecht, Dept Chem, NL-3584 CG Utrecht, Netherlands. RP Cuk, T (reprint author), Univ Calif Berkeley, Dept Chem, 419 Latimer Hall, Berkeley, CA 94720 USA. EM tanjacuk@berkeley.edu RI de Groot, Frank/A-1918-2009; Institute (DINS), Debye/G-7730-2014 FU Air Force Research Laboratory [FA9550-12-1-0337]; National Science Foundation Graduate Student Fellowship FX This material is based on research sponsored by the Air Force Research Laboratory, under agreement number FA9550-12-1-0337. H.Q.D. was supported by the National Science Foundation Graduate Student Fellowship. We thank the Frances Hellman Lab in the Physics Department at University of California-Berkeley for the use of the sputtering system and the Joel Ager Lab in the Materials Sciences Division at Lawrence Berkeley National Laboratory and the Material Sciences Division X-ray Diffraction facility for use of characterization equipment. Dr. Jinghua Guo, Dr. Wanli Yang, Mr. Wei-Cheng Wang, Mr. Hui Zhang, and Ms. Ruimin Qiao are gratefully acknowledged for their help at the Advanced Light Source. NR 44 TC 5 Z9 5 U1 15 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 26 PY 2015 VL 119 IS 8 BP 4173 EP 4179 DI 10.1021/jp5124037 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CC4NE UT WOS:000350329300031 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R De Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM Van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ dit Latour, BM Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Maettig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Moenig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schaefer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E YauWong, KH Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. B Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. De Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dureen, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. Van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. dit Latour, B. Martin Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero y Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. S Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, Hs. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. YauWong, K. H. Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for Higgs Boson Pair Production in the gamma gamma b(b)over-bar Final State Using pp Collision Data at root s=8 TeV from the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL; LHC; PARTICLE AB Searches are performed for resonant and nonresonant Higgs boson pair production in the gamma gamma b (b) over bar final state using 20 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of nonresonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow X -> hh resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; dit Latour, B. Martin; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; YauWong, K. H.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Cerqueira, A. S.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politeh Bucharest, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Ren, H.; Sun, X.; Wang, J.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Song, H. Y.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Capua, M.; Crosetti, G.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Koperny, S.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Mohr, W.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartmento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dureen, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.; Yang, H.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yan, Z.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Greenwood, Z. D.; Grimm, K.; Grout, Z. J.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Karpova, Z. M.; Kartvelishvili, V.; Krumshteyn, Z. V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Ren, Z. L.; Smizanska, M.; Walder, J.; Yan, Z.; Zhang, Z.; Zhao, Z.; Zinonos, Z.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Almond, J.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Klinger, J. A.; Loebinger, F. K.; Masik, J.; Oh, A.; Pater, J. R.; Price, D.; Robinson, J. E. M.; Schwanenberger, C.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartmento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.; Yanush, S.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.; Yanush, S.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartmento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Budker Inst Nucl Phys, SB RAS, Novosibirsk 630090, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; Van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.; Yamazaki, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartmento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] INFN Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] CAFPE, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K. S; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C. B; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C. B; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; David, C.; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Straessner, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hsu, C.; Garcia, B. R. Mellado; Ruan, X.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Univ Stockholm, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yang, U. K.; Yang, Y.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yang, U. K.; Yang, Y.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Aloisio, A.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Canepa, A.; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.; Soualah, R.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Fayard, L.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Aloisio, A.; Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Bawa, H. S.; Lowe, A. J.] Calif State Univ, Dept Phys, Fresno, CA USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.; Robertson, S. H.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Waterloo, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Li, B.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Lin, S. C.] Univ Paris 11, LAL, Orsay, France. [Mal, P.] CNRS, IN2P3, F-91405 Orsay, France. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Nessi, M.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Ciubancan, Liviu Mihai/L-2412-2015; Joergensen, Morten/E-6847-2015; Moraes, Arthur/F-6478-2010; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Boyko, Igor/J-3659-2013; Mitsou, Vasiliki/D-1967-2009; Carquin, Edson/G-5221-2015; Livan, Michele/D-7531-2012; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Mashinistov, Ruslan/M-8356-2015; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015 OI Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Joergensen, Morten/0000-0002-6790-9361; Moraes, Arthur/0000-0002-5157-5686; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Boyko, Igor/0000-0002-3355-4662; Mitsou, Vasiliki/0000-0002-1533-8886; Carquin, Edson/0000-0002-7863-1166; Livan, Michele/0000-0002-5877-0062; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; I-CORE; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; BRF; RCN, Norway; MNiSW; NCN, Poland; GRICES; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; U.S. DOE; NSF FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC andWallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (U.S.), and in the Tier-2 facilities worldwide. NR 54 TC 26 Z9 26 U1 11 U2 86 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2015 VL 114 IS 8 AR 081802 DI 10.1103/PhysRevLett.114.081802 PG 19 WC Physics, Multidisciplinary SC Physics GA CC2YH UT WOS:000350210600004 ER PT J AU Squire, J Bhattacharjee, A AF Squire, J. Bhattacharjee, A. TI Statistical Simulation of the Magnetorotational Dynamo SO PHYSICAL REVIEW LETTERS LA English DT Article ID ZERO NET FLUX; MAGNETIC PRANDTL NUMBERS; SHEARING BOX; MHD SIMULATIONS; TURBULENT TRANSPORT; ACCRETION DISKS; INSTABILITY; FLOW AB Turbulence and dynamo induced by the magnetorotational instability (MRI) are analyzed using quasilinear statistical simulation methods. It is found that homogenous turbulence is unstable to a large-scale dynamo instability, which saturates to an inhomogenous equilibrium with a strong dependence on the magnetic Prandtl number (Pm). Despite its enormously reduced nonlinearity, the dependence of the angular momentum transport on Pm in the quasilinear model is qualitatively similar to that of nonlinear MRI turbulence. This demonstrates the importance of the large-scale dynamo and suggests how dramatically simplified models may be used to gain insight into the astrophysically relevant regimes of very low or high Pm. C1 [Squire, J.; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bhattacharjee, A.] Princeton Univ, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. RP Squire, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. FU Max Planck/Princeton Center for Plasma Physics; U.S. DOE [DE-AC02-09CH11466] FX We extend thanks to Jim Stone, Jiming Shi, and John Krommes for enlightening discussion. This work was supported by Max Planck/Princeton Center for Plasma Physics and U.S. DOE (DE-AC02-09CH11466). NR 36 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2015 VL 114 IS 8 AR 085002 DI 10.1103/PhysRevLett.114.085002 PG 5 WC Physics, Multidisciplinary SC Physics GA CC2YH UT WOS:000350210600007 PM 25768767 ER PT J AU Anderson, SJ Kierepka, EM Swihart, RK Latch, EK Rhodes, OE AF Anderson, Sara J. Kierepka, Elizabeth M. Swihart, Robert K. Latch, Emily K. Rhodes, Olin E., Jr. TI Assessing the Permeability of Landscape Features to Animal Movement: Using Genetic Structure to Infer Functional Connectivity SO PLOS ONE LA English DT Article ID CHIPMUNKS TAMIAS-STRIATUS; DEER CERVUS-ELAPHUS; HABITAT FRAGMENTATION; SMALL MAMMALS; POPULATION-GENETICS; FOREST FRAGMENTATION; CONSERVATION; DISPERSAL; DIVERSITY; RANGE AB Human-altered environments often challenge native species with a complex spatial distribution of resources. Hostile landscape features can inhibit animal movement (i.e., genetic exchange), while other landscape attributes facilitate gene flow. The genetic attributes of organisms inhabiting such complex environments can reveal the legacy of their movements through the landscape. Thus, by evaluating landscape attributes within the context of genetic connectivity of organisms within the landscape, we can elucidate how a species has coped with the enhanced complexity of human altered environments. In this research, we utilized genetic data from eastern chipmunks (Tamias striatus) in conjunction with spatially explicit habitat attribute data to evaluate the realized permeability of various landscape elements in a fragmented agricultural ecosystem. To accomplish this we 1) used logistic regression to evaluate whether land cover attributes were most often associated with the matrix between or habitat within genetically identified populations across the landscape, and 2) utilized spatially explicit habitat attribute data to predict genetically-derived Bayesian probabilities of population membership of individual chipmunks in an agricultural ecosystem. Consistency between the results of the two approaches with regard to facilitators and inhibitors of gene flow in the landscape indicate that this is a promising new way to utilize both landscape and genetic data to gain a deeper understanding of human-altered ecosystems. C1 [Anderson, Sara J.] Minnesota State Univ Moorhead, Biosci Dept, Moorhead, MN 56563 USA. [Anderson, Sara J.; Swihart, Robert K.; Rhodes, Olin E., Jr.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. [Kierepka, Elizabeth M.; Latch, Emily K.] Univ Wisconsin, Dept Biol Sci, Behav & Mol Ecol Grp, Milwaukee, WI 53024 USA. [Rhodes, Olin E., Jr.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Kierepka, EM (reprint author), Univ Wisconsin, Dept Biol Sci, Behav & Mol Ecol Grp, 3209 N Maryland Ave, Milwaukee, WI 53024 USA. EM Liz.Kierepka@gmail.com RI Swihart, Rob/D-2787-2016 FU Cooperative State Research Education and Extension Service, U.S. Department of Agriculture [2000-04649]; John S. Wright Fund; Department of Forestry and Natural Resources, Purdue University; U.S. Department of Education Graduate Assistance in Areas of National Need Award [P200A030188] FX Financial support for this work was provided by: 1) Cooperative State Research Education and Extension Service, U.S. Department of Agriculture under Agreement no. 2000-04649 (http://www.csrees.usda.gov/Extension/), 2) the John S. Wright Fund (http://www.treefund.org/home), 3) Department of Forestry and Natural Resources, Purdue University (https://ag.purdue.edu/fnr/Pages/default.aspx), and 4) U.S. Department of Education Graduate Assistance in Areas of National Need Award P200A030188 (http://www2.ed.gov/programs/gaann/index.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 84 TC 4 Z9 4 U1 8 U2 56 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 26 PY 2015 VL 10 IS 2 AR e0117500 DI 10.1371/journal.pone.0117500 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC2ZH UT WOS:000350213200025 PM 25719366 ER PT J AU Dodson, LG Shen, LH Savee, JD Eddingsaas, NC Welz, O Taatjes, CA Osborn, DL Sander, SP Okumura, M AF Dodson, Leah G. Shen, Linhan Savee, John D. Eddingsaas, Nathan C. Welz, Oliver Taatjes, Craig A. Osborn, David L. Sander, Stanley P. Okumura, Mitchio TI VUV Photoionization Cross Sections of HO2, H2O2, and H2CO SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GASEOUS-HYDROGEN PEROXIDE; RESOLUTION PHOTOELECTRON-SPECTROSCOPY; FLIGHT MASS-SPECTROMETRY; VACUUM-ULTRAVIOLET; LOW-PRESSURES; FREE-RADICALS; RESOLVED PHOTOIONIZATION; COMBUSTION CHEMISTRY; CHEMICAL-DYNAMICS; MOLECULAR-OXYGEN C1 [Dodson, Leah G.; Shen, Linhan; Eddingsaas, Nathan C.; Okumura, Mitchio] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Sander, Stanley P.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. [Savee, John D.; Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Dodson, LG (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. EM lgdodson@caltech.edu; cataatj@sandia.gov; dlosbor@sandia.gov; mo@caltech.edu RI Okumura, Mitchio/I-3326-2013; OI Okumura, Mitchio/0000-0001-6874-1137; Dodson, Leah/0000-0001-5960-056X FU National Science Foundation [CHE-0957490, CHE-1413712]; National Aeronautics and Space Administration's (NASA) Upper Atmospheric Research Program [NNX12AI01G]; EPA STAR Fellowship; Sandia Campus Executive Fellowship; Dreyfus Foundation Postdoctoral Fellowship in Environmental Chemistry; NASA; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; National Nuclear Security Administration [DE-AC04-94-AL85000]; DOE Office of Science User Facility at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The Caltech effort was supported by the National Science Foundation grants CHE-0957490 and CHE-1413712 and the National Aeronautics and Space Administration's (NASA) Upper Atmospheric Research Program grant NNX12AI01G. L.G.D. was supported by an EPA STAR Fellowship and a Sandia Campus Executive Fellowship. N.C.E. was supported in part by a Dreyfus Foundation Postdoctoral Fellowship in Environmental Chemistry. Part of this research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The participation of D.L.O, J.D.S, O.W., and C.A.T. and the development and maintenance of the MPIMS apparatus are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. The research conducted used resources of the Advanced Light Source, which is a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231. NR 94 TC 10 Z9 10 U1 14 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 26 PY 2015 VL 119 IS 8 BP 1279 EP 1291 DI 10.1021/jp508942a PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CC4MZ UT WOS:000350328800006 PM 25621533 ER PT J AU Mifflin, AL Velarde, L Ho, JM Psciuk, BT Negre, CFA Ebben, CJ Upshur, MA Lu, Z Strick, BL Thomson, RJ Batista, VS Wang, HF Geiger, FM AF Mifflin, Amanda L. Velarde, Luis Ho, Junming Psciuk, Brian T. Negre, Christian F. A. Ebben, Carlena J. Upshur, Mary Alice Lu, Zhou Strick, Benjamin L. Thomson, Regan J. Batista, Victor S. Wang, Hong-Fei Geiger, Franz M. TI Accurate Line Shapes from Sub-1 cm(-1) Resolution Sum Frequency Generation Vibrational Spectroscopy of alpha-Pinene at Room Temperature SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SIMPLE IONIC SURFACTANTS; MOLECULAR-ORIENTATION; SFG-VS; CONFORMATIONAL STABILITY; STRETCHING VIBRATIONS; LIQUID INTERFACES; TIO2 FILM; SPECTRA; RAMAN; METHYLENE C1 [Mifflin, Amanda L.] Univ Puget Sound, Dept Chem, Tacoma, WA 98416 USA. [Velarde, Luis; Lu, Zhou; Wang, Hong-Fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Ho, Junming; Psciuk, Brian T.; Negre, Christian F. A.; Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Ebben, Carlena J.; Upshur, Mary Alice; Strick, Benjamin L.; Thomson, Regan J.; Geiger, Franz M.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM hongfei.wang@pnnl.gov; geigerf@chem.northwestern.edu RI Wang, Hongfei/B-1263-2010; Ho, Junming /A-1070-2012; Lu, Zhou/D-3994-2012; Velarde, Luis/D-4929-2011 OI Wang, Hongfei/0000-0001-8238-1641; Ho, Junming /0000-0001-9381-924X; Lu, Zhou/0000-0001-8527-0381; Velarde, Luis/0000-0001-6329-3486 FU Office of Science and Engineering Education Alternate Sponsored Fellowship Program at PNNL; University of Puget Sound Faculty Research Fund; National Science Foundation (NSF) Graduate Research Fellowship Program (NSF-GRFP); National Aeronautics and Space Administration Earth and Space (NASA ESS) Fellowship; NSF [CHE-1213742]; U.S. Department of Energy's (DOE) Office of Biological and Environmental Research (BER); U.S. DOE, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP); Initiative for Sustainability and Energy at Northwestern (ISEN); NSF Environmental Chemical Sciences Program in the Division of Chemistry [1212692, SP0017343] FX A.L.M. acknowledges support from the Office of Science and Engineering Education Alternate Sponsored Fellowship Program at PNNL and the University of Puget Sound Faculty Research Fund. C.J.E. gratefully acknowledges support from the National Science Foundation (NSF) Graduate Research Fellowship Program (NSF-GRFP). M.A.U. gratefully acknowledges support from a National Aeronautics and Space Administration Earth and Space (NASA ESS) Fellowship. V.S.B. acknowledges high performance computing time from NERSC and support from the NSF grant CHE-1213742. Part of this work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory and sponsored by the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research (BER). This work was also supported by the U.S. DOE, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP). This work was also supported by the Initiative for Sustainability and Energy at Northwestern (ISEN) and the NSF Environmental Chemical Sciences Program in the Division of Chemistry under Grants No. 1212692 and No. SP0017343. NR 74 TC 20 Z9 20 U1 8 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 26 PY 2015 VL 119 IS 8 BP 1292 EP 1302 DI 10.1021/jp510700z PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CC4MZ UT WOS:000350328800007 PM 25647092 ER PT J AU Bora, RP Mills, MJL Frushicheva, MP Warshel, A AF Bora, Ram Prasad Mills, Matthew J. L. Frushicheva, Maria P. Warshel, Arieh TI On the Challenge of Exploring the Evolutionary Trajectory from Phosphotriesterase to Arylesterase Using Computer Simulations SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FREE-ENERGY RELATIONSHIPS; AIDED ENZYME DESIGN; MOLECULAR-DYNAMICS SIMULATIONS; DNA-POLYMERASE-BETA; BACTERIAL PHOSPHOTRIESTERASE; DIMINISHING RETURNS; KEMP ELIMINASE; BENEFICIAL MUTATIONS; PSEUDOMONAS-DIMINUTA; DIRECTED EVOLUTION AB The ability to design effective enzymes presents a fundamental challenge in biotechnology and also in biochemistry. Unfortunately, most of the progress on this field has been accomplished by bringing the reactants to a reasonable orientation relative to each other, rather than by rational optimization of the polar preorganization of the environment, which is the most important catalytic factor. True computer based enzyme design would require the ability to evaluate the catalytic power of designed active sites. This work considers the evolution from a phosphotriesterase (with the paraoxon substrate) to arylesterase (with the 2-naphthylhexanoate (2NH) substrate) catalysis. Both the original and the evolved enzymes involve two zinc ions and their ligands, making it hard to obtain a reliable quantum mechanical description and then to obtain an effective free energy sampling. Furthermore, the options for the reaction path are quite complicated. To progress in this direction we started with DFT calculations of the energetics of different mechanistic options of cluster models and then used the results to calibrate empirical valence bond (EVB) models and to generate properly sampled free energy surfaces for different mechanisms in the enzyme. Interestingly, it is found that the catalytic effect depends on the ZnZn distance making the mechanistic analysis somewhat complicated. Comparing the activation barriers of paraoxon and the 2NH ester at the beginning and end of the evolutionary path reproduced the observed evolutionary trend. However, although our findings provide an advance in exploring the nature of promiscuous enzymes, they also indicate that modeling the reaction mechanism in the case of enzymes with a binuclear zinc center is far from trivial and presents a challenge for computer-aided enzyme design. C1 [Bora, Ram Prasad; Warshel, Arieh] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Mills, Matthew J. L.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Mills, Matthew J. L.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94550 USA. [Frushicheva, Maria P.] MIT, Dept Chem Engn, Cambridge, MA 02142 USA. RP Warshel, A (reprint author), Univ So Calif, Dept Chem, 3620 McClintock Ave, Los Angeles, CA 90089 USA. EM warshel@usc.edu FU NIH [GM24492]; Cancer Research Institute Irvington Fellowship FX This work was supported by NIH Grant GM24492. We gratefully thank Professors Colin J. Jackson, Nobuhiko Tokuriki, and Dan S. Tawfik for stimulating discussion and for sharing results with us before publication. M.P.F. thanks the Cancer Research Institute Irvington Fellowship for financial support. We thank the University of Southern California's High Performance Computing and Communication Center (HPCC) for computer time. NR 89 TC 4 Z9 4 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 26 PY 2015 VL 119 IS 8 BP 3434 EP 3445 DI 10.1021/jp5124025 PG 12 WC Chemistry, Physical SC Chemistry GA CC4NB UT WOS:000350329000011 PM 25620270 ER PT J AU Mehio, N Lashely, MA Nugent, JW Tucker, L Correia, B Do-Thanh, CL Dai, S Hancock, RD Bryantsev, VS AF Mehio, Nada Lashely, Mark A. Nugent, Joseph W. Tucker, Lyndsay Correia, Bruna Chi-Linh Do-Thanh Dai, Sheng Hancock, Robert D. Bryantsev, Vyacheslav S. TI Acidity of the Amidoxime Functional Group in Aqueous Solution: A Combined Experimental and Computational Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLARIZABLE CONTINUUM MODEL; MAIN-GROUP THERMOCHEMISTRY; SOLVATION FREE-ENERGIES; PK(A) CALCULATIONS; NONCOVALENT INTERACTIONS; ANISOTROPIC DIELECTRICS; DENSITY FUNCTIONALS; VOLUME POLARIZATION; METHACRYLIC-ACID; IONIC-SOLUTIONS AB Poly(acrylamidoxime) adsorbents are often invoked in discussions of mining uranium from seawater. While the amidoximeuranyl chelation mode has been established, a number of essential binding constants remain unclear. This is largely due to the wide range of conflicting pK(a) values that have been reported for the amidoxime functional group. To resolve this existing controversy we investigated the pK(a) values of the amidoxime functional group using a combination of experimental and computational methods. Experimentally, we used spectroscopic titrations to measure the pK(a) values of representative amidoximes, acetamidoxime, and benzamidoxime. Computationally, we report on the performance of several protocols for predicting the pK(a) values of aqueous oxoacids. Calculations carried out at the MP2 or M06-2X levels of theory combined with solvent effects calculated using the SMD model provide the best overall performance, with a root-mean-square deviation of 0.46 pK(a) units and 0.45 pK(a) units, respectively. Finally, we employ our two best methods to predict the pK(a) values of promising, uncharacterized amidoxime ligands, which provides a convenient means for screening suitable amidoxime monomers for future generations of poly(acrylamidoxime) adsorbents. C1 [Mehio, Nada; Chi-Linh Do-Thanh; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Lashely, Mark A.; Nugent, Joseph W.; Tucker, Lyndsay; Correia, Bruna; Hancock, Robert D.] Univ N Carolina, Dept Chem & Biochem, Wilmington, NC 28403 USA. [Dai, Sheng; Bryantsev, Vyacheslav S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hancock, RD (reprint author), Univ N Carolina, Dept Chem & Biochem, Wilmington, NC 28403 USA. EM hancockr@uncw.edu; bryantsevv@ornl.gov RI Dai, Sheng/K-8411-2015; Bryantsev, Vyacheslav/M-5111-2016; OI Dai, Sheng/0000-0002-8046-3931; Bryantsev, Vyacheslav/0000-0002-6501-6594; Tucker, Lyndsay/0000-0002-3199-1164; Do-Thanh, Chi-Linh/0000-0003-2263-8331 FU US Department of Energy, Office of Nuclear Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was sponsored by the US Department of Energy, Office of Nuclear Energy, under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 14 Z9 14 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 26 PY 2015 VL 119 IS 8 BP 3567 EP 3576 DI 10.1021/jp512778x PG 10 WC Chemistry, Physical SC Chemistry GA CC4NB UT WOS:000350329000024 PM 25621618 ER PT J AU Bozin, ES Zhong, RD Knox, KR Gu, GD Hill, JP Tranquada, JM Billinge, SJL AF Bozin, Emil S. Zhong, Ruidan Knox, Kevin R. Gu, Genda Hill, John P. Tranquada, John M. Billinge, Simon J. L. TI Reconciliation of local and long-range tilt correlations in underdoped La2-xBaxCuO4 (0 <= x <= 0.155) SO PHYSICAL REVIEW B LA English DT Article ID STRUCTURAL PHASE-TRANSITION; HIGH-TC SUPERCONDUCTIVITY; COPPER-OXIDE SUPERCONDUCTORS; SOFT-PHONON BEHAVIOR; NEUTRON-SCATTERING; CUO2 PLANE; LATTICE INSTABILITIES; TETRAGONAL PHASE; OCTAHEDRAL TILTS; C SUPPRESSION AB A long-standing puzzle regarding the disparity of local and long-range CuO6 octahedral tilt correlations in the underdoped regime of La2-xBaxCuO4 is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. This system is of interest because of the strong depression of the bulk superconducting transition at x = 1/8 in association with charge and spin stripe order. The latter unidirectional order is tied to Cu-O bond-length anisotropy present in the so-called low-temperature tetragonal (LTT) phase. On warming, the lattice exhibits two sequential structural transitions, involving changes in the CuO6 tilt pattern, first to the low-temperature orthorhombic (LTO) and then the high-temperature tetragonal (HTT) phase. Despite the changes in static order, inspection of the instantaneous local atomic structure suggests that the LTT-type tilts persist through the transitions. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO and HTT phases. Within the low-temperature phase, the Cu-O bond-length splitting inferred from lattice symmetry and fitted atomic position parameters reaches a maximum of 0.3% at x = 1/8, suggesting that electron-phonon coupling may contribute to optimizing the structure to stabilize stripe order. This splitting is much too small to be resolved in the pair distribution function, and in fact we do not resolve any enhancement of the instantaneous bond-length distribution in association with stripe order. This study exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses. C1 [Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Zhong, Ruidan] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Bozin, ES (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM bozin@bnl.gov RI Tranquada, John/A-9832-2009; Zhong, Ruidan/D-5296-2013 OI Tranquada, John/0000-0003-4984-8857; Zhong, Ruidan/0000-0003-1652-9454 FU US DOE, Office of Science, Office of Basic Energy Sciences (DOE-BES) [DE-SC00112704]; DOE BES; DOE [DE-AC52-06NA25396]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Work at Brookhaven National Laboratory was supported by US DOE, Office of Science, Office of Basic Energy Sciences (DOE-BES), under Contract No. DE-SC00112704. Neutron PDF experiments were carried out on NPDF at LANSCE, funded by DOE BES; Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. Inelastic neutron scattering experiments were carried out on HYSPEC at Spallation Neutron Source at ORNL, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. J.M.T. and R.D.Z. are grateful to B. L. Winn and M. Graves-Brook for assistance with the HYSPEC measurements. E.S.B. gratefully acknowledges T. E. Proffen and J. Siewenie for assistance with the NPDF measurements. NR 80 TC 6 Z9 6 U1 7 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 26 PY 2015 VL 91 IS 5 AR 054521 DI 10.1103/PhysRevB.91.054521 PG 13 WC Physics, Condensed Matter SC Physics GA CC2XB UT WOS:000350207200009 ER PT J AU Deng, HX Luo, JW Wei, SH AF Deng, Hui-Xiong Luo, Jun-Wei Wei, Su-Huai TI Chemical trends of stability and band alignment of lattice-matched II-VI/III-V semiconductor interfaces SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; STACKING-FAULT DENSITY; ZNSE/GAAS(001) HETEROSTRUCTURES; SYNCHROTRON-RADIATION; ELECTRONIC-PROPERTIES; LASER-DIODES; OFFSETS; DISCONTINUITIES; SUPERLATTICES; METALS AB Using the first-principles density functional theory method, we systematically investigate the structural and electronic properties of heterovalent interfaces of the lattice-matched II-VI/III-V semiconductors, i.e., ZnTe/GaSb, ZnSe/GaAs, ZnS/GaP, andZnO/GaN. We find that, independent of the orientations, the heterovalent superlattices with period n = 6 are energetically more favorable to form nonpolar interfaces. For the [001] interface, the stable nonpolar interfaces are formed by mixing 50% group-III with 50% group-II atoms or by mixing 50% group-V with 50% group-VI atoms; for the [111] nonpolar interfaces, the mixings are 25% group-III (II) and 75% group-II (III) atoms or 25% group-V (VI) and 75% group-VI (V) atoms. For all the nonpolar interfaces, the [110] interface has the lowest interfacial energy because it has the minimum number of II-V or III-VI "wrong bonds" per unit interfacial area. The interfacial energy increases when the atomic number of the elements decreases, except for the ZnO/GaN system. The band alignments between the II-VI and III-V compounds are drastically different depending on whether they have mixed-cation or mixed-anion interfaces, but the averaged values are nearly independent of the orientations. Similarly, other than ZnO/GaN, the valence-band offsets also increase as the atomic number of the elements decreases. The abnormal trends in interfacial energy and band alignment for ZnO/GaN are primarily attributed to the very short bond lengths in this system. The underlying physics behind these trends are explained. C1 [Deng, Hui-Xiong; Luo, Jun-Wei] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Deng, HX (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM hxdeng@semi.ac.cn; swei@nrel.gov RI LUO, JUNWEI/B-6545-2013 FU National Basic Research Program of China (973 Program) [G2009CB929300]; National Natural Science Foundation of China [61121491, 11474273, 11104264]; US Department of Energy [DE-AC36-08GO28308] FX The work at Institute of Semiconductors, Chinese Academy of Sciences was supported by the National Basic Research Program of China (973 Program) Grant No. G2009CB929300 and the National Natural Science Foundation of China under Grants No. 61121491, No. 11474273, and No. 11104264. The work at National Renewable Energy Laboratory was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308. NR 44 TC 4 Z9 4 U1 8 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 26 PY 2015 VL 91 IS 7 AR 075315 DI 10.1103/PhysRevB.91.075315 PG 8 WC Physics, Condensed Matter SC Physics GA CC2XH UT WOS:000350207800005 ER PT J AU Kermarrec, E Marjerrison, CA Thompson, CM Maharaj, DD Levin, K Kroeker, S Granroth, GE Flacau, R Yamani, Z Greedan, JE Gaulin, BD AF Kermarrec, E. Marjerrison, C. A. Thompson, C. M. Maharaj, D. D. Levin, K. Kroeker, S. Granroth, G. E. Flacau, R. Yamani, Z. Greedan, J. E. Gaulin, B. D. TI Frustrated fcc antiferromagnet Ba2YOsO6: Structural characterization, magnetic properties, and neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL-STRUCTURE; STATE; VISUALIZATION; LI3MG2RUO6; PHASE; OXIDE AB We report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba2YOsO6. The Fm (3) over barm space group is found both at 290 K and 3.5 K with cell constants a(0) = 8.3541(4) angstrom and 8.3435(4) angstrom, respectively. Os5+ (5d(3)) ions occupy a nondistorted, geometrically frustrated face-centeredcubic (fcc) lattice. A Curie-Weiss temperature theta similar to -700 K suggests the presence of a large antiferromagnetic interaction and a high degree ofmagnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below T-N similar to 69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) mu(B) on Os5+. The ordered moment is much reduced from either the expected spin-only value of similar to 3 mu(B) or the value appropriate to 4d(3) Ru5+ in isostructural (BaYRuO6)-Y-2 of 2.2(1) mu(B), suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T = 67.45 K, and the existence of a second-ordered state. Time-of-flight inelastic neutron results reveal a large spin gap Delta similar to 17 meV, unexpected for an orbitally quenched, d(3) electronic configuration. We discuss this in the context of the similar to 5 meV spin gap observed in the related Ru5+, 4d(3) cubic double perovskite Ba2YRuO6, and attribute the similar to 3 times larger gap to stronger SOC present in this heavier, 5d, osmate system. C1 [Kermarrec, E.; Marjerrison, C. A.; Maharaj, D. D.; Gaulin, B. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Thompson, C. M.; Greedan, J. E.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Levin, K.; Kroeker, S.] Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. [Granroth, G. E.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA. [Flacau, R.; Yamani, Z.] AECL, Canadian Neutron Beam Ctr, Chalk River, ON K0J IJ0, Canada. [Gaulin, B. D.] Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gaulin, B. D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Kermarrec, E (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI yamani, zahra/B-7892-2012; Granroth, Garrett/G-3576-2012; OI Granroth, Garrett/0000-0002-7583-8778; Kermarrec, Edwin/0000-0002-3467-5482 FU Scientific User Facilities Division; Office of Basic Energy Sciences; US Department of Energy; Canada Foundation for Innovation and Manitoba Research Innovation Fund; NSERC of Canada FX We acknowledge useful discussions with J. P. Clancy and thank J. P. Carlo for sharing information on experimental setup. SEQUOIA data were reduced using MANTID [44], and the DAVE software package [45] was used for data analysis. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. S.K. acknowledges the Canada Foundation for Innovation and Manitoba Research Innovation Fund for infrastructure support. S.K., J.E.G., and B.D.G. thank the NSERC of Canada for operating funds via a Discovery Grant. NR 45 TC 20 Z9 20 U1 7 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 26 PY 2015 VL 91 IS 7 AR 075133 DI 10.1103/PhysRevB.91.075133 PG 9 WC Physics, Condensed Matter SC Physics GA CC2XH UT WOS:000350207800003 ER PT J AU Wen, JJ Tian, W Garlea, VO Koohpayeh, SM McQueen, TM Li, HF Yan, JQ Rodriguez-Rivera, JA Vaknin, D Broholm, CL AF Wen, J. -J. Tian, W. Garlea, V. O. Koohpayeh, S. M. McQueen, T. M. Li, H. -F. Yan, J. -Q. Rodriguez-Rivera, J. A. Vaknin, D. Broholm, C. L. TI Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4 SO PHYSICAL REVIEW B LA English DT Article ID FRUSTRATED MAGNET; LATTICE AB We describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Neel (up arrow down arrow up arrow down arrow) and double-Neel (up arrow up arrow down arrow down arrow) ground states, respectively. Below T-N = 0.68(2) K, the Neel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Neel chains so they remain in a disordered incommensurate state for T below T-S = 0.52(2) K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasi-d-dimensional spin system can preclude order in d + 1 dimensions. C1 [Wen, J. -J.; Koohpayeh, S. M.; McQueen, T. M.; Broholm, C. L.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Wen, J. -J.; Koohpayeh, S. M.; McQueen, T. M.; Broholm, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Tian, W.; Garlea, V. O.; Broholm, C. L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [McQueen, T. M.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [McQueen, T. M.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Li, H. -F.] Forschungszentrum Julich, Outstn Inst Laue Langevin, JCNS, F-38042 Grenoble 9, France. [Li, H. -F.] Rhein Westfal TH Aachen, Inst Kristallog, D-52056 Aachen, Germany. [Yan, J. -Q.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Rodriguez-Rivera, J. A.; Broholm, C. L.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Rodriguez-Rivera, J. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Vaknin, D.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Vaknin, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Wen, JJ (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RI Garlea, Vasile/A-4994-2016; Vaknin, David/B-3302-2009; Tian, Wei/C-8604-2013; Rodriguez-Rivera, Jose/A-4872-2013; Wen, Jiajia/C-5370-2013 OI Garlea, Vasile/0000-0002-5322-7271; Vaknin, David/0000-0002-0899-9248; Tian, Wei/0000-0001-7735-3187; Rodriguez-Rivera, Jose/0000-0002-8633-8314; Wen, Jiajia/0000-0002-1651-3578 FU US Department of Energy, office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-08ER46544]; US National Science Foundation [DMR-0944772]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy [DE-AC02-07CH11358] FX We thank O. Tchernyshyov, J. Zang, and Y. Wan for discussion. Work at IQM was supported by the US Department of Energy, office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant No. DE-FG02-08ER46544. This work utilized facilities supported in part by the US National Science Foundation under Agreement No. DMR-0944772. Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 25 TC 4 Z9 4 U1 4 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 26 PY 2015 VL 91 IS 5 AR 054424 DI 10.1103/PhysRevB.91.054424 PG 9 WC Physics, Condensed Matter SC Physics GA CC2XB UT WOS:000350207200005 ER PT J AU Xu, ZJ Schneeloch, JA Zhong, RD Rodriguez-Rivera, JA Harriger, LW Birgeneau, RJ Gu, GD Tranquada, JM Xu, GY AF Xu, Zhijun Schneeloch, J. A. Zhong, R. D. Rodriguez-Rivera, J. A. Harriger, L. W. Birgeneau, R. J. Gu, G. D. Tranquada, J. M. Xu, Guangyong TI Low-energy phonons and superconductivity in Sn0.8In0.2Te SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL INSULATORS; NEUTRON-SCATTERING; SNTE; NB3SN; GAP AB We present neutron scattering measurements on low-energy phonons from a superconducting (T-c = 2.7 K) Sn0.8In0.2Te single-crystal sample. The longitudinal acoustic phonon mode and one transverse acoustic branch have been mapped out around the (002) Bragg peak for temperatures of 1.7 and 4.2 K. We observe a substantial energy width of the transverse phonons at energies comparable to twice the superconducting gap; however, there is no change in this width between the superconducting and normal states, and the precise origin of this energy width anomaly is not entirely clear. We also confirm that the compound is well ordered, with no indications of structural instability. C1 [Xu, Zhijun; Schneeloch, J. A.; Zhong, R. D.; Gu, G. D.; Tranquada, J. M.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schneeloch, J. A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Zhong, R. D.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Rodriguez-Rivera, J. A.; Harriger, L. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Rodriguez-Rivera, J. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Xu, ZJ (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009; xu, zhijun/A-3264-2013; Zhong, Ruidan/D-5296-2013; Xu, Guangyong/A-8707-2010; Rodriguez-Rivera, Jose/A-4872-2013 OI Tranquada, John/0000-0003-4984-8857; xu, zhijun/0000-0001-7486-2015; Zhong, Ruidan/0000-0003-1652-9454; Xu, Guangyong/0000-0003-1441-8275; Rodriguez-Rivera, Jose/0000-0002-8633-8314 FU Center for Emergent Superconductivity; Office of Basic Energy Science of the Department of Energy; Office of Basic Energy Sciences (BES), Division of Materials Science and Engineering, U.S. Department of Energy (DOE) [DE-AC02-98CH10886, DE-AC02-05CH1123]; National Science Foundation [DMR-0944772] FX J.A.S. and R.Z. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Consortium supported by the Office of Basic Energy Science of the Department of Energy. The work at Brookhaven National Laboratory and Lawrence Berkeley National Laboratory was supported by the Office of Basic Energy Sciences (BES), Division of Materials Science and Engineering, U.S. Department of Energy (DOE), under Contracts No. DE-AC02-98CH10886 and No. DE-AC02-05CH1123, respectively. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. NR 39 TC 0 Z9 0 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 26 PY 2015 VL 91 IS 5 AR 054522 DI 10.1103/PhysRevB.91.054522 PG 5 WC Physics, Condensed Matter SC Physics GA CC2XB UT WOS:000350207200010 ER PT J AU Freytsis, M Robinson, DJ Tsai, Y AF Freytsis, Marat Robinson, Dean J. Tsai, Yuhsin TI Galactic center gamma-ray excess through a dark shower SO PHYSICAL REVIEW D LA English DT Article ID EMISSION; MATTER AB The reported excess of gamma rays, emitted from an extended region around the galactic center, has a distribution and rate suggestive of an origin in dark matter (DM) annihilations. The conventional annihilation channels into standard model (SM) b quarks or tau leptons may, however, be in tension with various experimental constraints on antiproton and positron fluxes. We present a framework that is free from such constraints. The key idea is that the mediators between the dark matter and the SM are themselves part of a strongly coupled sector: a hidden valley. In this scenario, the dark matter particles annihilate only into hidden quarks that subsequently shower and hadronize. Hidden quark effective couplings to SM hypercharge allow the lightest hidden bound states to subsequently decay into SM photons, producing the observed photon energy spectrum. Associated production of SM fermions is, in contrast, suppressed by electroweak, loop or helicity effects. We find that, generically, similar to 10 GeV DM and a confinement scale similar to 1 GeV provide a good fit to the observed spectrum. An SU(2) hidden confining group is preferred over SU(3) or higher-rank gauge groups, up to uncertainties in the extraction of the astrophysical background. An explicit realization of this framework is also presented, and its phenomenology is discussed in detail, along with pertinent cosmological, astrophysical and collider bounds. This framework may be probed by model-independent searches, including future beam-dump experiments. C1 [Freytsis, Marat] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Robinson, Dean J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Robinson, Dean J.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tsai, Yuhsin] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Freytsis, M (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. OI Tsai, Yuhsin/0000-0001-7847-225X FU Department of Energy (DOE) [DE-SC003916, DE-FG02-91ER40674]; National Science Foundation (NSF) [PHY-1258729, PHY-1002399, PHYS-1066293] FX The authors thank Yang Bai, Joshua Berger, Thomas Dumitrescu, Ben Heidenreich, Simon Knapen, Duccio Pappadopulo, Michele Papucci, Matthew Reece, Daniel Stolarski, Philip Tanedo, Jon Walsh, and Kathryn Zurek for helpful discussions. The work of M. F. is supported by the Department of Energy (DOE) under grant DE-SC003916 and the National Science Foundation (NSF) under Grant No. PHY-1258729. The work of D. R. is supported by the NSF under Grant No. PHY-1002399. The work of Y. T. is supported by the DOE under Grant No DE-FG02-91ER40674. This work was also supported in part by the NSF under grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. NR 72 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 26 PY 2015 VL 91 IS 3 AR 035028 DI 10.1103/PhysRevD.91.035028 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC2XP UT WOS:000350208800008 ER PT J AU Henning, B Kehayias, J Murayama, H Pinner, D Yanagida, TT AF Henning, Brian Kehayias, John Murayama, Hitoshi Pinner, David Yanagida, Tsutomu T. TI A keV string axion from high scale supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID X-RAY-LINE; STANDARD MODEL; DARK-MATTER; GRAVITY MEDIATION; BREAKING THEORIES; GAUGE-THEORIES; BOSON MASS; CONSTRAINTS; INFLATION; LHC AB Various theoretical and experimental considerations motivate models with high-scale supersymmetry breaking. While such models may be difficult to test in colliders, we propose looking for signatures at much lower energies. We show that a keV line in the x-ray spectrum of galaxy clusters (such as the recently disputed 3.5-keV observation) can have its origin in a universal string axion coupled to a hidden supersymmetry breaking sector. A linear combination of the string axion and an additional axion in the hidden sector remains light, obtaining a mass of order 10 keV through supersymmetry breaking dynamics. In order to explain the x-ray line, the scale of supersymmetry breaking must be about 1011-12 GeV. This motivates high-scale supersymmetry as in pure gravity mediation or minimal split supersymmetry and is consistent with all current limits. Since the axion mass is controlled by a dynamical mass scale, this mass can be much higher during inflation, avoiding isocurvature (and domain wall) problems associated with high-scale inflation. In an appendix, we present a mechanism for dilaton stabilization that additionally leads to O(1) modifications of the gaugino mass from anomaly mediation. C1 [Henning, Brian; Murayama, Hitoshi; Pinner, David] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Henning, Brian; Murayama, Hitoshi; Pinner, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Kehayias, John; Murayama, Hitoshi; Yanagida, Tsutomu T.] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, Todai Inst Adv Study, Kashiwa, Chiba 2778582, Japan. RP Henning, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bhenning@berkeley.edu; john.kehayias@ipmu.jp; hitoshi.murayama@ipmu.jp; dpinner@berkeley.edu; tsutomu.tyanagida@ipmu.jp FU U.S. DOE [DE-AC03-76SF00098]; NSF [PHY-1002399, PHY-1316783]; JSPS [23540289]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; [26104009]; [26287039] FX B.H. and D.P. would like to thank the hospitality of Kavli IPMU, where this work was initiated. They are also grateful to Friends of UTokyo, Inc. and WPI Initiative for travel support that helped make this work possible. The work of H.M. was supported by the U.S. DOE under Contract No. DE-AC03-76SF00098, by the NSF under Grants No. PHY-1002399 and No. PHY-1316783, by the JSPS Grant (C) No. 23540289. The work of T.T.Y. was supported by the Grant-in-Aid for Scientific Research on Innovative Areas, No. 26104009 and Scientific Research (B), No. 26287039. This work was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. NR 62 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 26 PY 2015 VL 91 IS 4 AR 045036 DI 10.1103/PhysRevD.91.045036 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC2XV UT WOS:000350209400005 ER PT J AU Schmittfull, M Baldauf, T Seljak, U AF Schmittfull, Marcel Baldauf, Tobias Seljak, Uros TI Near optimal bispectrum estimators for large-scale structure SO PHYSICAL REVIEW D LA English DT Article ID MATTER POWER SPECTRUM; PRIMORDIAL NON-GAUSSIANITY; GALAXY REDSHIFT SURVEY; 3-POINT CORRELATION-FUNCTIONS; PRECISION EMULATION; BIAS; DENSITY; UNIVERSE; MODELS; CONSTRAINTS AB Clustering of large-scale structure provides significant cosmological information through the power spectrum of density perturbations. Additional information can be gained from higher-order statistics like the bispectrum, especially to break the degeneracy between the linear halo bias b(1) and the amplitude of fluctuations s(8). We propose new simple, computationally inexpensive bispectrum statistics that are near optimal for the specific applications like bias determination. Corresponding to the Legendre decomposition of nonlinear halo bias and gravitational coupling at second order, these statistics are given by the cross-spectra of the density with three quadratic fields: the squared density, a tidal term, and a shift term. For halos and galaxies the first two have associated nonlinear bias terms b(2) and b(s)(2), respectively, while the shift term has none in the absence of velocity bias (valid in the k -> 0 limit). Thus the linear bias b(1) is best determined by the shift cross-spectrum, while the squared density and tidal cross-spectra mostly tighten constraints on b(2) and b(s)(2) once b(1) is known. Since the form of the cross-spectra is derived from optimal maximum-likelihood estimation, they contain the full bispectrum information on bias parameters. Perturbative analytical predictions for their expectation values and covariances agree with simulations on large scales, k less than or similar to 0.09h/Mpc at z = 0.55 with Gaussian R = 20h(-1) Mpc smoothing, for matter-mattermatter, and matter-matter-halo combinations. For halo-halo-halo cross-spectra the model also needs to include corrections to the Poisson stochasticity. C1 [Schmittfull, Marcel] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Schmittfull, Marcel; Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Baldauf, Tobias] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Dept Astron, Berkeley, CA 94720 USA. RP Schmittfull, M (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. FU Institute for Advanced Study through the Corning Glass Works Foundation Fellowship; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; BIS National E-infrastructure capital [ST/J005673/1]; STFC [ST/H008586/1, ST/K00333X/1] FX We thank Florian Beutler and Blake Sherwin for many helpful discussions, and Martin White and Beth Reid for providing the N-body simulations used in this paper. We are also very grateful to Anatoly Klypin for sharing a CIC and power spectrum code. We acknowledge useful discussions with James Fergusson, Airam Marcos-Caballero, Paul Shellard and Zvonimir Vlah. T. B. gratefully acknowledges support from the Institute for Advanced Study through the Corning Glass Works Foundation Fellowship, Institute for Advanced Study. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It also used the COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility and funded by BIS National E-infrastructure capital Grant No. ST/J005673/1 and STFC Grants No. ST/H008586/1 and No. ST/K00333X/1. NR 59 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 26 PY 2015 VL 91 IS 4 AR 043530 DI 10.1103/PhysRevD.91.043530 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC2XV UT WOS:000350209400002 ER PT J AU Wiechczynski, J Stypula, J Abdesselam, A Adachi, I Adamczyk, K Aihara, H Al Said, S Arinstein, K Asner, DM Aulchenko, V Aushev, T Ayad, R Bakich, AM Bansal, V Bhardwaj, V Bhuyan, B Bobrov, A Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Cervenkov, D Chekelian, V Cheon, BG Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Danilov, M Dingfelder, J Dolezal, Z Draasal, Z Drutskoy, A Eidelman, S Farhat, H Fast, JE Ferber, T Frost, O Gaur, V Gabyshev, N Ganguly, S Garmash, A Getzkow, D Gillard, R Goh, YM Grzymkowska, O Haba, J Hara, T Hayasaka, K Hayashii, H He, XH Hou, WS Huschle, M Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Jaegle, I Joffe, D Joo, KK Julius, T Kang, KH Kato, E Kawasaki, T Kichimi, H Kim, DY Kim, JB Kim, JH Kim, MJ Kim, SH Kim, YJ Kinoshita, K Ko, BR Kodys, P Krizan, P Krokovny, P Kuhr, T Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, IS Li, Y Gioi, LL Libby, J Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moll, A Mori, T Mussa, R Nakao, M Nanut, T Natkaniec, Z Nisar, NK Nishida, S Ogawa, S Okuno, S Pakhlov, P Pakhlova, G Park, CW Park, H Pedlar, TK Petric, M Piilonen, LE Ribezl, E Ritter, M Rostomyan, A Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Senyo, K Seon, O Sevior, ME Shebalin, V Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Solovieva, E Staric, M Steder, M Sumihama, M Tamponi, U Tanida, K Tatishvili, G Teramoto, Y Thorne, F Trabelsi, K Uchida, M Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Van Hulse, C Vanhoefer, P Varner, G Vinokurova, A Vorobyev, V Vossen, A Wagner, MN Wang, CH Wang, MZ Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yamaoka, J Yashchenko, S Yook, Y Yusa, Y Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Wiechczynski, J. Stypula, J. Abdesselam, A. Adachi, I. Adamczyk, K. Aihara, H. Al Said, S. Arinstein, K. Asner, D. M. Aulchenko, V. Aushev, T. Ayad, R. Bakich, A. M. Bansal, V. Bhardwaj, V. Bhuyan, B. Bobrov, A. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Cervenkov, D. Chekelian, V. Cheon, B. G. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dingfelder, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Eidelman, S. Farhat, H. Fast, J. E. Ferber, T. Frost, O. Gaur, V. Gabyshev, N. Ganguly, S. Garmash, A. Getzkow, D. Gillard, R. Goh, Y. M. Grzymkowska, O. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. He, X. H. Hou, W. -S. Huschle, M. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Jaegle, I. Joffe, D. Joo, K. K. Julius, T. Kang, K. H. Kato, E. Kawasaki, T. Kichimi, H. Kim, D. Y. Kim, J. B. Kim, J. H. Kim, M. J. Kim, S. H. Kim, Y. J. Kinoshita, K. Ko, B. R. Kodys, P. Krizan, P. Krokovny, P. Kuhr, T. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, I. S. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Mori, T. Mussa, R. Nakao, M. Nanut, T. Natkaniec, Z. Nisar, N. K. Nishida, S. Ogawa, S. Okuno, S. Pakhlov, P. Pakhlova, G. Park, C. W. Park, H. Pedlar, T. K. Petric, M. Piilonen, L. E. Ribezl, E. Ritter, M. Rostomyan, A. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Seon, O. Sevior, M. E. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Solovieva, E. Staric, M. Steder, M. Sumihama, M. Tamponi, U. Tanida, K. Tatishvili, G. Teramoto, Y. Thorne, F. Trabelsi, K. Uchida, M. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Van Hulse, C. Vanhoefer, P. Varner, G. Vinokurova, A. Vorobyev, V. Vossen, A. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yamaoka, J. Yashchenko, S. Yook, Y. Yusa, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. TI Measurement of B-0 -> (Ds-KS0)pi(+) and B+ -> Ds-K+K+ branching fractions SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; DETECTOR AB We report a measurement of the B-0 and B+ meson decays to the (Ds-KS0)pi(+) and Ds-K+K+ final states, respectively, using 657 x 10(6)B (B) over bar pairs collected at the gamma(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. Using the D-s(-) -> phi pi(-), K*(892)K-0(-) and (KSK-)-K-0 decay modes for the D-s reconstruction, we measure the following branching fractions: B(B-0 -> (Ds-KS0)pi(+))= [0.47 +/- 0.06(stat) +/- 0.05(syst)] x 10(-4) and B(B+ -> Ds-K+K+)= [0.93 +/- 0.22(stat) +/- 0.10(syst)] x 10(-5). We find the ratio of the branching fraction of B+ -> Ds-K+K+ to that of the analogous Cabibbo-favored B+ -> Ds-K+pi(+) decay to be R-B= 0.054 +/- 0.013(stat) +/- 0.006(syst), which is consistent with the naive factorization model. We also observe a deviation of the DsK invariant-mass distribution from the three-body phase-space model for both studied decays. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Dingfelder, J.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Arinstein, K.; Aulchenko, V.; Bobrov, A.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Arinstein, K.; Aulchenko, V.; Bobrov, A.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 12116, Czech Republic. [Joo, K. K.] Chonnam Natl Univ, Kwangju 660701, South Korea. [Kinoshita, K.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Frost, O.; Rostomyan, A.; Steder, M.; Yashchenko, S.] Deutsches Elekt Synchrotron, D-22607 Hamburg, Germany. [Getzkow, D.; Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uno, S.] Grad Univ Adv Studies, Hayama, Kanagawa 2400193, Japan. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Kichimi, H.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.] Indian Inst Technol Madras, Madras 600036, Tamil Nadu, India. [Vossen, A.] Indiana Univ, Bloomington, IN 47408 USA. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.; Thorne, F.] Inst High Energy Phys, A-1050 Vienna, Austria. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Krizan, P.; Nanut, T.; Petric, M.; Ribezl, E.; Santelj, L.; Staric, M.; Zupanc, A.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Huschle, M.; Kuhr, T.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Joffe, D.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Al Said, S.] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kang, K. H.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.] Univ Maribor, Maribor 2000, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Gioi, L. Li; Moll, A.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Iijima, T.; Mori, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Wang, C. H.] Nat United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Wiechczynski, J.; Stypula, J.; Adamczyk, K.; Bozek, A.; Grzymkowska, O.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Kawasaki, T.; Miyata, H.; Watanabe, M.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Bansal, V.; Fast, J. E.; Tatishvili, G.; Yamaoka, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdesselam, A.; Al Said, S.; Ayad, R.] Univ Tabuk, Fac Sci, Dept Phys, Tabuk 71451, Saudi Arabia. [Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Univ, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Ishikawa, A.; Kato, E.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Wiechczynski, J (reprint author), H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. RI Pakhlova, Galina/C-5378-2014; Cervenkov, Daniel/D-2884-2017; Solovieva, Elena/B-2449-2014; Aihara, Hiroaki/F-3854-2010; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Faculty of, Sciences, KAU/E-7305-2017; EPFL, Physics/O-6514-2016; Drutskoy, Alexey/C-8833-2016 OI Pakhlova, Galina/0000-0001-7518-3022; Cervenkov, Daniel/0000-0002-1865-741X; Solovieva, Elena/0000-0002-5735-4059; Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Drutskoy, Alexey/0000-0003-4524-0422 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16, P 26794-N20]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 11175187, 11475187]; Ministry of Education, Youth and Sports of the Czech Republic [LG14034]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea [2011-0029457, 2012-0008143, 2012R1A1A2008330, 2013R1A1A3007772, 2014R1A2A2A01005286, 2014R1A2A2A01002734, 2014R1A1A2006456]; Basic Research Lab program under NRF [KRF-2011-0020333, KRF-2011-0021196]; Center for Korean J-PARC Users [NRF-2013K1A3A7A06056592]; Brain Korea 21-Plus program; Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Foundation for Basic Research; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); Euskal Herriko Unibertsitatea (UPV/EHU) (Spain) [UFI 11/55]; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"); JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics") FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16 and P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, and No. 11475187; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2014R1A1A2006456; the Basic Research Lab program under NRF Grant No. KRF-2011-0020333, No. KRF-2011-0021196, Center for Korean J-PARC Users, No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program and the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics") and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). NR 19 TC 0 Z9 0 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 26 PY 2015 VL 91 IS 3 AR 032008 DI 10.1103/PhysRevD.91.032008 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC2XP UT WOS:000350208800002 ER PT J AU Cline, BH Costa-Nunes, JP Cespuglio, R Markova, N Santos, AI Bukhman, YV Kubatiev, A Steinbusch, HWM Lesch, KP Strekalova, T AF Cline, Brandon H. Costa-Nunes, Joao P. Cespuglio, Raymond Markova, Natalyia Santos, Ana I. Bukhman, Yury V. Kubatiev, Aslan Steinbusch, Harry W. M. Lesch, Klaus-Peter Strekalova, Tatyana TI Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and niRNAs of NMDA receptor subunits in mouse models of depression SO FRONTIERS IN BEHAVIORAL NEUROSCIENCE LA English DT Article DE chronic stress; insulin receptor; dicholine succinate; phosphorylated glycogen synthase kinase-3beta (pGSK-3beta); NMDA receptor subunits NR2A and NR2B; sleep EEG; aging; hippocampal plasticity ID CHRONIC MILD STRESS; GLYCOGEN-SYNTHASE KINASE-3; CENTRAL-NERVOUS-SYSTEM; FORCED SWIMMING TEST; MEMORY CONSOLIDATION; INDUCED ANHEDONIA; GENE-EXPRESSION; IN-VIVO; SYNAPTIC PLASTICITY; PREFRONTAL CORTEX AB Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. C1 [Cline, Brandon H.] Univ Strasbourg, Federat Med Translat Strasbourg, Fac Med, INSERM,U1119, Strasbourg, France. [Costa-Nunes, Joao P.; Steinbusch, Harry W. M.; Lesch, Klaus-Peter; Strekalova, Tatyana] Maastricht Univ, Dept Neurosci, NL-6229 ER Maastricht, Netherlands. [Costa-Nunes, Joao P.; Strekalova, Tatyana] Univ Nova Lisboa, Inst Hyg & Trop Med, Grp Behav Neurosci & Pharmacol, Lisbon, Portugal. [Cespuglio, Raymond] Univ Lyon 1, Fac Med, Neurosci Res Ctr Lyon, INSERM,U1028, F-69365 Lyon, France. [Markova, Natalyia; Strekalova, Tatyana] Russian Acad Sci, Inst Physiol Act Cpds, Lab Biomol Screening, Moscow, Russia. [Markova, Natalyia; Kubatiev, Aslan] Russian Acad Med Sci, Inst Gen Pathol & Pathophysiol, Lab Cognit Dysfunct, Moscow, Russia. [Santos, Ana I.] Univ Nova Lisboa, NOVA Med Sch, Fac Ciencias Med, P-1200 Lisbon, Portugal. [Bukhman, Yury V.] Univ Wisconsin, Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Lesch, Klaus-Peter] Univ Wurzburg, Ctr Mental Hlth, Div Mol Psychiat, Lab Translat Neurosci, D-97070 Wurzburg, Germany. RP Strekalova, T (reprint author), Maastricht Univ, Dept Neurosci, Univ Singel 40, NL-6229 ER Maastricht, Netherlands. EM t.strekalova@maastrichtuniversity.nl RI Cline, Brandon/K-2626-2016; Lesch, Klaus-Peter/J-4906-2013; Faculdade de Ciencias Medicas, Nova Medical School/K-6209-2013 OI Lesch, Klaus-Peter/0000-0001-8348-153X; FU DFG [SFB TRR 58/A5]; Neuroscience Research Center of Lyon (CNRL); RFBR [15-04-03602]; US Department of Energy (DOE BER Office of Science) [DE-FC02-07ER64494]; European Community (EC: AGGRESSOTYPE) [602805] FX We thank DFG (SFB TRR 58/A5) to KPL, the Neuroscience Research Center of Lyon (CNRL) to RC, RFBR 15-04-03602 to TS for support of this study YVB was supported by the US Department of Energy (DOE BER Office of Science DE-FC02-07ER64494). The authors' work reported here was also supported by the European Community (EC: AGGRESSOTYPE FP7/No. 602805). NR 132 TC 4 Z9 4 U1 1 U2 19 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1662-5153 J9 FRONT BEHAV NEUROSCI JI Front. Behav. Neurosci. PD FEB 26 PY 2015 VL 9 AR 37 DI 10.3389/fnbeh.2015.00037 PG 18 WC Behavioral Sciences; Neurosciences SC Behavioral Sciences; Neurosciences & Neurology GA CB9MH UT WOS:000349955200001 PM 25767439 ER PT J AU Piarulli, M Girlanda, L Schiavilla, R Perez, RN Amaro, JE Arriola, ER AF Piarulli, M. Girlanda, L. Schiavilla, R. Navarro Perez, R. Amaro, J. E. Ruiz Arriola, E. TI Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Delta resonances SO PHYSICAL REVIEW C LA English DT Article ID PHASE-SHIFT ANALYSIS; PARTIAL-WAVE ANALYSIS; ASYMPTOTIC D-STATE; TO-LEADING ORDER; SCATTERING DATA; NN-SCATTERING; DEUTERON; FORCES; LAGRANGIANS; FORMALISM AB We construct a coordinate-space chiral potential, including Delta-isobar intermediate states in its two-pion-exchange component up to order Q(3) (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q(2) andQ(4), respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0-300 MeV. For the total 5291 pp and np data in this range, we obtain a chi(2)/datum of roughly 1.3 for a set of three models characterized by long-and short-range cutoffs, R-L and R-S, respectively, ranging from (R-L, R-S) = (1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one-and two-pion exchange (contact) part of the potential. C1 [Piarulli, M.; Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. Univ Salento, Dept Math & Phys, I-73100 Lecce, Italy. [Girlanda, L.] Ist Nazl Fis Nucl, I-73100 Lecce, Italy. [Schiavilla, R.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Navarro Perez, R.; Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Navarro Perez, R.; Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. RP Piarulli, M (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RI Amaro, Jose/K-2551-2012; Ruiz Arriola, Enrique/A-9388-2015; OI Amaro, Jose/0000-0002-3234-9755; Ruiz Arriola, Enrique/0000-0002-9570-2552; Girlanda, Luca/0000-0002-5560-005X FU US Department of Energy, Office of Nuclear Science [DE-AC05-06OR23177]; Spanish DGI [FIS2011-24149]; Junta de Andalucia [FQM225]; Mexican CONACYT FX We like to thank J. Sarich and S. M. Wild in the Mathematics and Computer Science Division at Argonne National Laboratory for advice on the implementation of POUNDerS in the chi2-minimization programs. Conversations with F. Gross, J. W. Van Orden, and R. B. Wiringa at various stages of this project are gratefully acknowledged. Finally, we also would like to thank D. Lonardoni and A. Lovato for help on the parallelization of the minimization programs. The work of R.S. is supported by the US Department of Energy, Office of Nuclear Science, under Contract No. DE-AC05-06OR23177. The work of R.N.P., J.E.A., and E.R.A. is supported by the Spanish DGI (Grant No. FIS2011-24149) and Junta de Andalucia (Grant No. FQM225). R.N.P. is also supported by a Mexican CONACYT grant. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center (NERSC). NR 69 TC 22 Z9 22 U1 3 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 26 PY 2015 VL 91 IS 2 AR 024003 DI 10.1103/PhysRevC.91.024003 PG 27 WC Physics, Nuclear SC Physics GA CC2XK UT WOS:000350208100001 ER PT J AU Agapov, AL Kolesnikov, AI Novikov, VN Richert, R Sokolov, AP AF Agapov, A. L. Kolesnikov, A. I. Novikov, V. N. Richert, R. Sokolov, A. P. TI Quantum effects in the dynamics of deeply supercooled water SO PHYSICAL REVIEW E LA English DT Article ID AMORPHOUS SOLID WATER; INELASTIC NEUTRON-SCATTERING; HYPERQUENCHED GLASSY WATER; LIQUID-LIQUID TRANSITION; DIELECTRIC-RELAXATION; CONFINED WATER; MOLECULAR-DYNAMICS; HEAT-CAPACITY; X-RAY; ICE AB Despite its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature T-g similar to 136 K. We demonstrate that this anomalous behavior can be explained well by quantum effects. These results have significant implications for our understanding of water dynamics. C1 [Agapov, A. L.; Novikov, V. N.; Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Agapov, A. L.; Novikov, V. N.; Sokolov, A. P.] Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Agapov, A. L.; Novikov, V. N.; Sokolov, A. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Richert, R.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Agapov, AL (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI Richert, Ranko/M-8942-2015; Kolesnikov, Alexander/I-9015-2012 OI Richert, Ranko/0000-0001-8503-3175; Kolesnikov, Alexander/0000-0003-1940-4649 FU UT-Battelle, LLC; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; NSF [CHE-1213444] FX We thank C. A. Angell and P. Griffin for helpful discussions. This work was supported by UT-Battelle, LLC. A.I.K. was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The UT team also thanks NSF for partial financial support under Grant No. CHE-1213444. NR 90 TC 5 Z9 5 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 26 PY 2015 VL 91 IS 2 AR 022312 DI 10.1103/PhysRevE.91.022312 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC2YB UT WOS:000350210000006 PM 25768510 ER PT J AU Das, P Kanchanavatee, N Helton, JS Huang, K Baumbach, RE Bauer, ED White, BD Burnett, VW Maple, MB Lynn, JW Janoschek, M AF Das, Pinaki Kanchanavatee, N. Helton, J. S. Huang, K. Baumbach, R. E. Bauer, E. D. White, B. D. Burnett, V. W. Maple, M. B. Lynn, J. W. Janoschek, M. TI Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; HIDDEN-ORDER TRANSITION; FERMION SYSTEM URU2SI2; COMPOUND URU2SI2; MAGNETIC EXCITATIONS; SURFACE; TEMPERATURE; RESISTIVITY; ENTROPY; LATTICE AB We have used specific heat and neutron diffraction measurements on single crystals of URu2-xFexSi2 for Fe concentrations x <= 0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" P-ch as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 ( 2011)] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x = 0.1, reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px approximate to 0.5-0.7 GP(a) in URu2Si2. Using the unit-cell volume determined from our measurements and an isothermal compressibility kappa(T) = 5.2 x 10(-3) GPa(-1) for URu2Si2, we determine the chemical pressure Pch in URu2-xFexSi2 as a function of x. The resulting temperature (T)-chemical pressure ( P-ch) phase diagram for URu2-xFexSi2 is in agreement with the established temperature (T)-external pressure (P) phase diagram of URu2Si2. C1 [Das, Pinaki; Baumbach, R. E.; Bauer, E. D.; Janoschek, M.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Kanchanavatee, N.; White, B. D.; Burnett, V. W.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kanchanavatee, N.; Huang, K.; White, B. D.; Burnett, V. W.; Maple, M. B.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Helton, J. S.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. [Helton, J. S.; Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Huang, K.; Maple, M. B.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Baumbach, R. E.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Janoschek, M (reprint author), Los Alamos Natl Lab, MPA CMMS, POB 1663, Los Alamos, NM 87545 USA. EM mjanoschek@lanl.gov RI Das, Pinaki/C-2877-2012; Janoschek, Marc/M-8871-2015; OI Janoschek, Marc/0000-0002-2943-0173; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-04ER46105]; National Science Foundation [DMR-0802478] FX The research at UCSD was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant No. DE-FG02-04ER46105 (sample synthesis) and the National Science Foundation under Grant No. DMR-0802478 (sample characterization). Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The identification of any commercial product or trade name does not imply endorsement or recommendation by NIST. We thank William Ratcliff and Yang Zhao for technical support during the experiments. NR 47 TC 11 Z9 11 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 26 PY 2015 VL 91 IS 8 AR 085122 DI 10.1103/PhysRevB.91.085122 PG 6 WC Physics, Condensed Matter SC Physics GA CC2XI UT WOS:000350207900001 ER PT J AU Rahman, NA Parks, DH Willner, DL Engelbrektson, AL Goffredi, SK Warnecke, F Scheffrahn, RH Hugenholtz, P AF Rahman, Nurdyana Abdul Parks, Donovan H. Willner, Dana L. Engelbrektson, Anna L. Goffredi, Shana K. Warnecke, Falk Scheffrahn, Rudolf H. Hugenholtz, Philip TI A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes SO MICROBIOME LA English DT Article ID BACTERIAL COMMUNITY STRUCTURE; PHYLOGENETIC DIVERSITY; FLAGELLATED PROTISTS; COPTOTERMES-FORMOSANUS; CUBITERMES SPP.; SEQUENCING DATA; ISOPTERA; EVOLUTION; HINDGUT; BACTEROIDALES AB Background: Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This important symbiosis is obligate but relatively open and more complex in comparison to other well-known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative roles of vertical inheritance and environmental factors such as diet in shaping the termite gut microbiome are not well understood. Results: The gut microbiomes of 66 specimens representing seven higher and nine lower termite genera collected in Australia and North America were profiled by small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-independent gut microbiome data for three higher termite genera: Tenuirostritermes, Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in >= 50% of collected specimens. Archaea are generally considered to comprise only a minority of the termite gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either reacquired after protists loss in higher termites or persisted in low numbers across this transition. Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the relative abundance, but not membership, of the gut communities. Conclusions: Vertical inheritance is the primary force shaping the termite gut microbiome indicating that species are successfully and faithfully passed from one generation to the next via trophallaxis or coprophagy. Changes in relative abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary fluctuations. C1 [Rahman, Nurdyana Abdul; Parks, Donovan H.; Willner, Dana L.; Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, Brisbane, Qld, Australia. [Engelbrektson, Anna L.; Warnecke, Falk; Hugenholtz, Philip] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Goffredi, Shana K.] Occidental Coll, Dept Biol, Los Angeles, CA 90041 USA. [Warnecke, Falk] Univ Jena, JSMC, Jena, Germany. [Warnecke, Falk] Univ Jena, Microbial Ecol Grp, Jena, Germany. [Scheffrahn, Rudolf H.] Univ Florida, Ft Lauderdale Res & Educ Ctr, Davie, FL USA. RP Hugenholtz, P (reprint author), Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, Brisbane, Qld, Australia. EM p.hugenholtz@uq.edu.au RI Hugenholtz, Philip/G-9608-2011 FU UQ Research Scholarship FX We thank the following colleagues for assistance with collection and processing of specimens used in this study: Martin Allgaier, Gary Cochrane, John Gosper, Patrick Keeling, Scott Kleinschmidt, Victor Kunin, Linda Ly, Lisa Margonelli, Mark Morrison, Micheal Neal, Peter O'Donoghue, Carly Rosewarne, Rochelle Soo, and Brian Thistleton. We thank Shaomei He and Susannah Tringe for sample sorting and shipping of US termite samples to Australia; Fiona May, Sue Read, and members of the JGI production team for assistance with pyrosequencing; Stephanie Malfatti for assistance with sequence analysis; Lyn Cook for useful discussions on marker genes; and Ray Lee for isotope analysis. The study was supported by funding to the Australian Centre for Ecogenomics and the DOE Joint Genome Institute and Queensland Smart Futures Fund (Future biofuels). NAR was supported by a UQ Research Scholarship. We dedicate this manuscript to the memory of our friend and colleague Falk Warnecke (1972-2014). NR 93 TC 15 Z9 15 U1 9 U2 33 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD FEB 25 PY 2015 VL 3 AR 5 DI 10.1186/s40168-015-0067-8 PG 16 WC Microbiology SC Microbiology GA CU0TI UT WOS:000363231200001 ER PT J AU Abdel-Fattah, TM Mahmoud, ME Ahmed, SB Huff, MD Lee, JW Kumar, S AF Abdel-Fattah, Tarek M. Mahmoud, Mohamed E. Ahmed, Somia B. Huff, Matthew D. Lee, James W. Kumar, Sandeep TI Biochar from woody biomass for removing metal contaminants and carbon sequestration SO JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY LA English DT Article DE Biochar; Carbon sequestration; Cation exchange capacity; Adsortption; Isotherm; Metal ions ID SOLID-PHASE EXTRACTION; ACTIVATED CARBON; HYDROTHERMAL CARBONIZATION; WASTE-WATER; AQUEOUS-SOLUTION; IONIC-STRENGTH; HEAVY-METALS; SILICA-GEL; LEAD IONS; ADSORPTION AB Biochar generated from pinewood via slow pyrolysis was studied for its viability as a soil amendment as well as for its absorptive capacity for Mg, Ca, Cr, and Pb in solution. Cation exchange capacity (CEC) measurements showed that the biochar sample has a CEC of roughly double that of the reference soil sample. A high CEC value indicates that not only can the biochar sample be used as a carbon sequestration agent, but also as a valuable soil amendment for increasing a soil's natural CEC. Biochar was characterized using elemental analysis, SEM, BET surface area, FTIR, and XRF. These results showed that biochar produced via slow pyrolysis possesses several highly beneficial attributes. The metal adsorption characteristics of biochar were studied in presence of various controlling parameters such as pH, contact time, adsorbent dosage, and interfering species. The results confirmed excellent adsorption capacity values of the biochar for Mg(II), Ca(II), Cr(VI), and Pb(II) by producing 440 (pH 7.0), 120 (pH 7.0), 680 (pH 1.0), and 520 (pH 6.0) mu mol g(-1), respectively. The potential applications of the biochar for removal of these four metal ions from real water samples were also studied and evaluated. (C) 2014 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved. C1 [Abdel-Fattah, Tarek M.] Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Abdel-Fattah, Tarek M.] Christopher Newport Univ, Dept Mol Biol & Chem, Newport News, VA 23606 USA. [Mahmoud, Mohamed E.; Ahmed, Somia B.] Univ Alexandria, Dept Chem, Fac Sci, Alexandria 21321, Egypt. [Huff, Matthew D.; Lee, James W.] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA. [Kumar, Sandeep] Old Dominion Univ, Dept Civil & Environm Engn, Norfolk, VA 23529 USA. RP Abdel-Fattah, TM (reprint author), Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM fattah@cnu.edu FU NSF [0959807]; Old Dominion University Multidisciplinary Seed Funding Program [533571] FX The authors gratefully acknowledge the financial support from NSF award no. 0959807. The authors would like to acknowledge Ms. Doris Hamill (NASA Langley Center) and the friends at City of Hampton Master Gardeners for arranging the slow pyrolysis demonstration at Hampton, VA and sharing the part of biochar for this research study. This research was also supported, in part, by the 2013 Old Dominion University Multidisciplinary Seed Funding Program (Grant No. 533571) (Lee and Kumar). The authors would also like to extend our thanks to Drs. Richard Gregory, Thomas Sprinkle, and Wei Cao Applied Research Center at Old Dominion for their assistance in obtaining FT-IR spectra and SEM images. NR 54 TC 20 Z9 23 U1 7 U2 70 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1226-086X EI 1876-794X J9 J IND ENG CHEM JI J. Ind. Eng. Chem. PD FEB 25 PY 2015 VL 22 BP 103 EP 109 DI 10.1016/j.jiec.2014.06.030 PG 7 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA CJ1HN UT WOS:000355234800013 ER PT J AU Noh, JH Fowlkes, JD Timilsina, R Stanford, MG Lewis, BB Rack, PD AF Noh, J. H. Fowlkes, J. D. Timilsina, R. Stanford, M. G. Lewis, B. B. Rack, P. D. TI Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF2: Enhanced Reaction Rate and Precursor Transport SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE focused electron-beam-induced etching (FEBIE); focused electron-beam-induced processing (FEBIP); laser-assisted reaction; Ti; XeF2; nanofabrication ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; ION-BEAM; PLATINUM; REPAIR; WF6 AB In order to enhance the etch rate-of electron-beam-induced etching, we introduce a laser-assisted focused electron-bears induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing. The results demonstrate that the titanium electron stimulated etch rate Via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. The evolution of the etching, process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. The increased etch rate is attributed to photothermally enhanced Ti-F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone. C1 [Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.] Univ Tennessee, Dept Mat Sci, Knoxville, TN 37996 USA. [Fowlkes, J. D.; Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci, Knoxville, TN 37996 USA. EM prack@utk.edu OI Rack, Philip/0000-0002-9964-3254 FU National Defense Science and Engineering Graduate Fellowship through the AFOSR; University of Tennessee Chancellor's Fellowship program; Center for Nanophase Materials Sciences which is a DOE Office of Science User Facility FX The authors acknowledge that this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. MGS acknowledges support from the National Defense Science and Engineering Graduate Fellowship funded through the AFOSR. BBL acknowledges support via the University of Tennessee Chancellor's Fellowship program. PDR and JDF acknowledge that their contributions (mentoring, design of experiments, modeling, and manuscript preparation) were supported by the Center for Nanophase Materials Sciences which is a DOE Office of Science User Facility. NR 33 TC 2 Z9 2 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 25 PY 2015 VL 7 IS 7 BP 4179 EP 4184 DI 10.1021/am508443s PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CC2RT UT WOS:000350193000037 PM 25629708 ER PT J AU Kovacs, A Konings, RJM Gibson, JK Infante, I Gagliardi, L AF Kovacs, Attila Konings, Rudy J. M. Gibson, John K. Infante, Ivan Gagliardi, Laura TI Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides SO CHEMICAL REVIEWS LA English DT Review ID COUPLED-CLUSTER METHOD; POTENTIAL-ENERGY FUNCTION; DENSITY-FUNCTIONAL THEORY; MANY-ELECTRON THEORY; COLLISION-INDUCED DISSOCIATION; DOUGLAS-KROLL TRANSFORMATION; FROZEN-CORE APPROXIMATION; PERCHLORIC-ACID SOLUTIONS; BODY PERTURBATION-THEORY; MATRIX INFRARED-SPECTRA C1 [Kovacs, Attila; Konings, Rudy J. M.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Kovacs, Attila] Budapest Univ Technol & Econ, Dept Inorgan & Analyt Chem, H-1111 Budapest, Hungary. [Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Infante, Ivan] Euskal Herriko Unibertsitatea EHU UPV, Kim Fak, Donostia San Sebastian 20080, Euskadi, Spain. [Infante, Ivan] DIPC, Donostia San Sebastian 20080, Euskadi, Spain. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Supercomp Inst, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA. RP Kovacs, A (reprint author), Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, POB 2340, D-76125 Karlsruhe, Germany. EM attila.kovacs@ec.europa.eu; rudy.konings@ec.europa.eu RI Infante, Ivan/A-1912-2011; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 OI Infante, Ivan/0000-0003-3467-9376; FU European Commission [323300]; Hungarian Scientific Research Foundation [75972]; Eusko Jaurlaritza [GIC07/85 IT-330-07]; Spanish Office for Scientific Research [CTQ2011-27374]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC002183, DE-AC02-05CH11231] FX The seventh Framework Programme of the European Commission under grant no. 323300 (TALISMAN), the Hungarian Scientific Research Foundation under grant no. 75972 (A.K.), Eusko Jaurlaritza under contract no. GIC07/85 IT-330-07, the Spanish Office for Scientific Research under contract no. CTQ2011-27374 (II), and the U.S. Department of Energy Director, Office of Basic Energy Sciences under award number DE-SC002183 (L.G.) and contract number DE-AC02-05CH11231 (J.K.G.) NR 296 TC 23 Z9 23 U1 11 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB 25 PY 2015 VL 115 IS 4 BP 1725 EP 1759 DI 10.1021/cr500426s PG 35 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RS UT WOS:000350192900003 PM 25679237 ER PT J AU Ladshaw, A Yiacoumi, S Tsouris, C DePaoli, D AF Ladshaw, Austin Yiacoumi, Sotira Tsouris, Costas DePaoli, David TI Generalized gas-solid adsorption modeling: Single-component equilibria SO FLUID PHASE EQUILIBRIA LA English DT Article DE Gas solid equilibrium; Computer modeling; Adsorption isotherm; Statistical thermodynamics ID HETEROGENEOUS SURFACES; MIXTURES AB Over the last several decades, modeling of gas-solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Toth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can be further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg-Marquardfs algorithm to handle the nonlinear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set of optimal GSTA parameters, both dimensional and non-dimensional, as well as the corresponding thermodynamic parameters necessary to predict the behavior of the system at temperatures for which data were not available. It will be shown that this code, utilizing the GSTA model, was able to describe a wide variety of gas-solid adsorption systems at equilibrium. Additionally, a physical interpretation of these results will be provided, as well as an alternate derivation of the GSTA model, which intends to reaffirm the physical meaning. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Tsouris, Costas; DePaoli, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yiacoumi, S (reprint author), Daniel Lab, 200 Bobby Dodd Way, Atlanta, GA 30332 USA. EM sotira.yiacoumi@ce.gatech.edu RI Tsouris, Costas/C-2544-2016 OI Tsouris, Costas/0000-0002-0522-1027 FU DOE Office of Nuclear Energy's Nuclear Energy University Programs; U.S. Department of Energy [DE-AC05-00OR22725] FX This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs and is conducted at the Georgia Institute of Technology in collaboration with the Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 17 TC 3 Z9 3 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3812 EI 1879-0224 J9 FLUID PHASE EQUILIBR JI Fluid Phase Equilib. PD FEB 25 PY 2015 VL 388 BP 169 EP 181 DI 10.1016/j.fluid.2015.01.003 PG 13 WC Thermodynamics; Chemistry, Physical; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA CB8KP UT WOS:000349878800023 ER PT J AU Loble, MW Keith, JM Altman, AB Stieber, SCE Batista, ER Boland, KS Conradson, SD Clark, DL Pacheco, JL Kozimor, SA Martin, RL Minasian, SG Olson, AC Scott, BL Shuh, DK Tyliszczak, T Wilkerson, MP Zehnder, RA AF Loeble, Matthias W. Keith, Jason M. Altman, Alison B. Stieber, S. Chantal E. Batista, Enrique R. Boland, Kevin S. Conradson, Steven D. Clark, David L. Pacheco, Juan Lezama Kozimor, Stosh A. Martin, Richard L. Minasian, Stefan G. Olson, Angela C. Scott, Brian L. Shuh, David K. Tyliszczak, Tolek Wilkerson, Marianne P. Zehnder, Ralph A. TI Covalency in Lanthanides. An X-ray Absorption Spectroscopy and Density Functional Theory Study of LnCl(6)(x-) (x=3, 2) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LIGAND K-EDGE; CORE PHOTOABSORPTION SPECTRA; INVERTED-SANDWICH COMPLEXES; ENERGY-LOSS SPECTROSCOPY; SET MODEL CHEMISTRY; RARE-EARTH-OXIDES; ELECTRONIC-STRUCTURE; METALLOCENE DICHLORIDES; ACTINIDE COMPLEXES; CRYSTAL-STRUCTURES AB Covalency in Ln-Cl bonds of O-h-LnCl(6)(x-) (x = 3 for Ln = Ce-III, Nd-III, Sm-III, Eu-III, Gd-III; x = 2 for Ln = Ce-IV) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L-3,L-2-edge and M-5,M-4-edge XAS were also used to characterize CeCl6x- (x = 2, 3). The M-5,M-4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce-III and Ce-IV). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t(2g)* and e(g)*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl(6)(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce-IV 4f-orbital mixing (t(1u)* + t(2u)*) in CeCl62-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl62- (M = Ti, Zr, Hf, U). C1 [Loeble, Matthias W.; Keith, Jason M.; Stieber, S. Chantal E.; Batista, Enrique R.; Boland, Kevin S.; Conradson, Steven D.; Clark, David L.; Kozimor, Stosh A.; Martin, Richard L.; Olson, Angela C.; Scott, Brian L.; Wilkerson, Marianne P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Keith, Jason M.] Colgate Univ, Hamilton, NY 13346 USA. [Minasian, Stefan G.; Shuh, David K.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altman, Alison B.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Pacheco, Juan Lezama] Stanford Univ, Stanford, CA 94305 USA. [Zehnder, Ralph A.] Angelo State Univ, San Angelo, TX 76909 USA. RP Batista, ER (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM erb@lanl.gov; stosh@lanl.gov; rlmartin@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU Heavy Element Chemistry Program at LANL by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Heavy Element Chemistry Program at LBNL (Minasian, Shuh) by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Heavy Element Chemistry Program of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; LBNL by a Berkeley Actinide Postdoctoral Fellowship; LANL by a Glenn T. Seaborg Institute Postdoctoral Fellowship; Department of Energy Integrated University Program Fellowship (Altman) at the University of California, Berkeley; National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA25396] FX We are grateful for the comments provided by the reviewers of this paper, especially the anonymous reviewer that encouraged us to conduct the CTM4XAS calculations. We also thank Prof. Frank M. F. de Groot for his help with the CTM4XAS computational effort, and Prof. Eric Schelter for providing insightful discussions in regard to this research. The work was supported under the Heavy Element Chemistry Program at LANL by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (Batista, Boland, Conradson, Clark, Kozimor, Martin, Scott, Wilkerson, Zehnder), and at LBNL (Minasian, Shuh) by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Heavy Element Chemistry Program of the U.S. Department of Energy (contract DE-AC02-05CH11231). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. We acknowledge the Synchrotron Light Source Angstroemquelle Karlsruhe (ANKA) for provision of instruments at their INE-Beamline. We are also grateful for experimental time at the Advanced Light Source which is supported by the Director, Office of Science, Office of Basic Energy Sciences (as is Tyliszczak); the Molecular Environmental Science Beamline 11.02 that is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Heavy Element Chemistry and Condensed Phase and Interfacial Molecular Sciences programs; all of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. Portions of this work were supported at LBNL by a Berkeley Actinide Postdoctoral Fellowship, at LANL by a Glenn T. Seaborg Institute Postdoctoral Fellowship (Minasian, Olson, Loble, Stieber), the director's Postdoctoral Fellowship (Keith), and by a Department of Energy Integrated University Program Fellowship (Altman) at the University of California, Berkeley. Colgate University startup funding provided additional support for Keith. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). NR 164 TC 34 Z9 34 U1 22 U2 96 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2506 EP 2523 DI 10.1021/ja510067v PG 18 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700021 PM 25689484 ER PT J AU Wang, L Song, J Qiao, RM Wray, LA Hossain, MA Chuang, YD Yang, WL Lu, YH Evans, D Lee, JJ Vail, S Zhao, X Nishijima, M Kakimoto, S Goodenough, JB AF Wang, Long Song, Jie Qiao, Ruimin Wray, L. Andrew Hossain, Muhammed A. Chuang, Yi-De Yang, Wanli Lu, Yuhao Evans, David Lee, Jong-Jan Vail, Sean Zhao, Xin Nishijima, Motoaki Kakimoto, Seizoh Goodenough, John B. TI Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SOFT-X-RAY; ELECTRODES; BLUE; HEXACYANOFERRATE; SPECTROSCOPY; FRAMEWORK AB A novel air-stable sodium iron hexacyanoferrate (R-Na1.92Fe[Fe(CN)(6)]) with rhombohedral structure is demonstrated to be a scalable, low-cost cathode material for sodium-ion batteries exhibiting high capacity, long cycle life, and good rate capability. The cycling mechanism of the iron redox is clarified and understood through synchrotron-based soft X-ray absorption spectroscopy, which also reveals the correlation between the physical properties and the cell performance of this novel material. More importantly, successful preparation of a dehydrated iron hexacyanoferrate with high sodium-ion concentration enables the fabrication of a discharged sodium-ion battery with a non-sodium metal anode, and the manufacturing feasibility of low cost sodium-ion batteries with existing lithium-ion battery infrastructures has been tested. C1 [Wang, Long; Lu, Yuhao; Evans, David; Lee, Jong-Jan; Vail, Sean; Zhao, Xin] Sharp Labs Amer, Camas, WA 98607 USA. [Song, Jie; Goodenough, John B.] Univ Texas Austin, Austin, TX 78712 USA. [Qiao, Ruimin; Wray, L. Andrew; Hossain, Muhammed A.; Chuang, Yi-De; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Nishijima, Motoaki; Kakimoto, Seizoh] Sharp Co Ltd, CRDD, Tenri, Nara 6328567, Japan. [Wray, L. Andrew] NYU, Dept Phys, New York, NY 10003 USA. [Wray, L. Andrew] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Lu, YH (reprint author), Sharp Labs Amer, Camas, WA 98607 USA. EM luy@sharplabs.com RI Yang, Wanli/D-7183-2011; Qiao, Ruimin/E-9023-2013; OI Yang, Wanli/0000-0003-0666-8063; Goodenough, John Bannister/0000-0001-9350-3034 FU Advanced Research Projects Agency-Energy, U.S. Department of Energy [DE-AR0000297]; CRDD in Sharp, Japan; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Advanced Research Projects Agency-Energy, U.S. Department of Energy, under contract DE-AR0000297. The work was also supported by CRDD in Sharp, Japan. We acknowledge Dr. Anthony Dylla for collecting the Raman spectra, and Dr. Karalee A. Jarvis for the experiment of D-STEM. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 66 Z9 66 U1 48 U2 324 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2548 EP 2554 DI 10.1021/ja510347s PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700025 PM 25615887 ER PT J AU Park, SJ Zhao, H Ai, G Wang, C Song, XY Yuca, N Battaglia, VS Yang, WL Liu, G AF Park, Sang-Jae Zhao, Hui Ai, Guo Wang, Cheng Song, Xiangyun Yuca, Neslihan Battaglia, Vincent S. Yang, Wanli Liu, Gao TI Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LIFEPO4 COMPOSITE ELECTRODES; NEGATIVE ELECTRODES; LI; CAPACITY; CHALLENGES; STORAGE; NETWORK; DESIGN AB Here we describe a class of electric-conducting polymers that conduct electrons via the side chain p-p stacking. These polymers can be designed and synthesized with different chemical moieties to perform different functions, extremely suitable as a conductive polymer binder for lithium battery electrodes. A class of methacrylate polymers based on a polycyclic aromatic hydrocarbon side moiety, pyrene, was synthesized and applied as an electrode binder to fabricate a silicon (Si) electrode. The electron mobilities for PPy and PPyE are characterized as 1.9 x 10(-4) and 8.5 x 10(-4) cm(2) V-1 s(-1), respectively. These electric conductive polymeric binders can maintain the electrode mechanical integrity and Si interface stability over a thousand cycles of charge and discharge. The as-assembled batteries exhibit a high capacity and excellent rate performance due to the self-assembled solid-state nanostructures of the conductive polymer binders. These pyrene-based methacrylate binders also enhance the stability of the solid electrolyte interphase (SEI) of a Si electrode over long-term cycling. The physical properties of this polymer are further tailored by incorporating ethylene oxide moieties at the side chains to enhance the adhesion and adjust swelling to improve the stability of the high loading Si electrode. C1 [Park, Sang-Jae; Zhao, Hui; Ai, Guo; Song, Xiangyun; Battaglia, Vincent S.; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Wang, Cheng; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ai, Guo] Sci & Technol Reliabil Phys & Applicat Elect Comp, Guangzhou 510610, Guangdong, Peoples R China. [Yuca, Neslihan] Istanbul Tech Univ, Energy Inst, TR-34469 Istanbul, Turkey. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov RI Yang, Wanli/D-7183-2011; Foundry, Molecular/G-9968-2014; Wang, Cheng/A-9815-2014 OI Yang, Wanli/0000-0003-0666-8063; FU Assistant Secretary for Energy Efficiency and Renewal Energy under the Advanced Battery Materials Research (BMR) program; University of California, Office of the President through the University of California Discovery Grant program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewal Energy under the Advanced Battery Materials Research (BMR) program and by University of California, Office of the President through the University of California Discovery Grant program. Transmission electron microscopy was performed at the National Center for Electron Microscopy (NCEM), soft X-ray scattering and analysis at the Advanced Light Source (ALS), and nuclear magnetic resonance spectroscopy (NMR) analyses at the Molecular Foundry-all located at Lawrence Berkeley National Laboratory and supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. G.A. is supported by the China Scholarship Council Fellowship. NR 47 TC 39 Z9 40 U1 32 U2 320 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2565 EP 2571 DI 10.1021/ja511181p PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700027 PM 25646659 ER PT J AU Tang, W Liu, YP Peng, CX Hu, MY Deng, XC Lin, M Hu, JZ Loh, KP AF Tang, Wei Liu, Yanpeng Peng, Chengxin Hu, Mary Y. Deng, Xuchu Lin, Ming Hu, Jian Zhi Loh, Kian Ping TI Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ION-BATTERY ANODES; SOLID-STATE NMR; ELECTROCHEMICAL LITHIATION; COMPOSITE ANODE; HIGH-CAPACITY; GE NANOWIRES; PERFORMANCE; SITU; ELECTRODES; SILICON AB Lithium alloys of group IV elements such as silicon and germanium are attractive candidates for use as anodes in high-energy-density lithium-ion batteries. However, the poor capacity retention arising from volume swing during lithium cycling restricts their widespread application. Herein, we report high reversible capacity and superior rate capability from core-shell structure consisting of germanium nanorods embedded in multiwall carbon nanotubes. To understand how the core-shell structure helps to mitigate volume swings and buffer against mechanical instability, transmission electron microscopy, X-ray diffraction, and in situ Li-7 nuclear magnetic resonance were used to probe the structural rearrangements and phase evolution of various Li-Ge alloy phases during (de)alloying reactions with lithium. The results provide insights into amorphous-to-crystalline transition and lithium germanide alloy phase transformation, which are important reactions controlling performance in this system. C1 [Tang, Wei; Liu, Yanpeng; Peng, Chengxin; Loh, Kian Ping] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore. [Tang, Wei; Liu, Yanpeng; Peng, Chengxin; Loh, Kian Ping] Natl Univ Singapore, Graphene Res Ctr, Singapore 117543, Singapore. [Hu, Mary Y.; Deng, Xuchu; Hu, Jian Zhi] Pacific NW Natl Lab, Richland, WA 99354 USA. [Lin, Ming] ASTAR, Inst Mat Res & Engn, Singapore S117602, Singapore. [Tang, Wei] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore. RP Lin, M (reprint author), ASTAR, Inst Mat Res & Engn, 3 Res Link, Singapore S117602, Singapore. EM m-lin@imre.a-star.edu.sg; Jianzhi.Hu@pnnl.gov; chmlohkp@nus.edu.sg RI Hu, Jian Zhi/F-7126-2012; Loh, Kian Ping/M-3122-2016; Lin, Ming/M-1401-2014; Tang, Wei/R-2997-2016 OI Loh, Kian Ping/0000-0002-1491-743X; Lin, Ming/0000-0001-5284-6591; FU MOE Tier II grant "Interface Engineering of Graphene Hybrids for Energy Conversion" [R-143-000-488-112]; DOE's Office of Biological and Environmental Research; DOE [DE-AC06-76RLO 1830] FX MOE Tier II grant "Interface Engineering of Graphene Hybrids for Energy Conversion." Grant no. R-143-000-488-112. In-situ 7Li NMR experiments were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The authors receive assistance from Dr. Xilin Chen and Dr. Xiaolin Li in PNNL, Ms. Lili Liu, and Prof. Yuping Wu in Fudan University for conducting ball-milling and Dr. Tan Teck Leong in Institute of High Performance Computing (Singapore) for theoretical calculations. NR 71 TC 14 Z9 14 U1 13 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2600 EP 2607 DI 10.1021/ja5116259 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700030 PM 25646600 ER PT J AU Lee, H Doud, EH Wu, R Sanishvili, R Juncosa, JI Liu, DL Kelleher, NL Silverman, RB AF Lee, Hyunbeom Doud, Emma H. Wu, Rui Sanishvili, Ruslan Juncosa, Jose I. Liu, Dali Kelleher, Neil L. Silverman, Richard B. TI Mechanism of Inactivation of gamma-Aminobutyric Acid Aminotransferase by (1S,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANTIEPILEPSY DRUG VIGABATRIN; GABA-AMINOTRANSFERASE; GLUTAMATE-DECARBOXYLASE; CRYSTAL-STRUCTURE; ETHYNYL-GABA; AMINO-ACIDS; VINYL GABA; BRAIN; ENZYMES; INHIBITOR AB gamma-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general. C1 [Lee, Hyunbeom; Doud, Emma H.; Juncosa, Jose I.; Kelleher, Neil L.; Silverman, Richard B.] Northwestern Univ, Dept Chem, Chem Life Proc Inst, Evanston, IL 60208 USA. [Lee, Hyunbeom; Doud, Emma H.; Juncosa, Jose I.; Kelleher, Neil L.; Silverman, Richard B.] Northwestern Univ, Ctr Mol Innovat & Drug Discovery, Evanston, IL 60208 USA. [Doud, Emma H.; Kelleher, Neil L.; Silverman, Richard B.] Northwestern Univ, Dept Mol Biosci, Evanston, IL 60208 USA. [Wu, Rui; Liu, Dali] Loyola Univ Chicago, Dept Chem & Biochem, Chicago, IL 60660 USA. [Sanishvili, Ruslan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Silverman, RB (reprint author), Northwestern Univ, Dept Chem, Chem Life Proc Inst, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM Agman@chem.northwestern.edu FU National Institutes of Health [GM066132, DA030604, GM067725, ACB-12002, AGM-12006]; DOE Office of Science [DE-AC02-06CH11357] FX The authors are grateful to the National Institutes of Health for financial support (grants GM066132 and DA030604 to R.B.S.; GM067725 to N.L.K.; contracts ACB-12002 and AGM-12006 to R.S. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.). NR 43 TC 2 Z9 2 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2628 EP 2640 DI 10.1021/ja512299n PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700033 PM 25616005 ER PT J AU Zhang, YB Furukawa, H Ko, N Nie, WX Park, HJ Okajima, S Cordova, KE Deng, HX Kim, J Yaghi, OM AF Zhang, Yue-Biao Furukawa, Hiroyasu Ko, Nakeun Nie, Weixuan Park, Hye Jeong Okajima, Satoshi Cordova, Kyle E. Deng, Hexiang Kim, Jaheon Yaghi, Omar M. TI Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal Organic Framework-177 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SURFACE-AREAS; RETICULAR CHEMISTRY; HYDROGEN ADSORPTION; BUILDING-BLOCKS; POROSITY; LIGAND; NETS; MOFS; MICROPOROSITY; CRYSTALS AB Metal-organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn4O(-COO)(6) and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We find that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH2, and -C4H4) is an important strategy for the incorporation of a specific functionality (-NO2) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%. C1 [Zhang, Yue-Biao; Furukawa, Hiroyasu; Nie, Weixuan; Okajima, Satoshi; Cordova, Kyle E.; Deng, Hexiang; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Dept Chem, Berkeley, CA 94720 USA. [Zhang, Yue-Biao; Furukawa, Hiroyasu; Nie, Weixuan; Okajima, Satoshi; Cordova, Kyle E.; Deng, Hexiang; Yaghi, Omar M.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Ko, Nakeun; Park, Hye Jeong; Kim, Jaheon] Soongsil Univ, Dept Chem, Seoul 156743, South Korea. [Deng, Hexiang] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China. [Cordova, Kyle E.] Vietnam Natl Univ, Ctr Mol & NanoArchitecture, Ho Chi Minh City 721337, Vietnam. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. RP Deng, HX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Dept Chem, Berkeley, CA 94720 USA. EM hdeng@whu.edu.cn; jaheon@ssu.ac.kr; yaghi@berkeley.edu RI ZHANG, Yue-Biao/E-7870-2011; Furukawa, Hiroyasu/C-5910-2008; OI ZHANG, Yue-Biao/0000-0002-8270-1067; Furukawa, Hiroyasu/0000-0002-6082-1738; Yaghi, Omar/0000-0002-5611-3325; Cordova, Kyle/0000-0002-4988-0497 FU Korea CCS R&D Center - Ministry of Science, ICT & Future Planning [2014M1A8A1049332]; National Key Basic Research Program of China [2014CB239203]; National Thousand Young Talent Plan FX This work was partially supported for synthesis by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center (DE-SC0001015); for characterization by KACST (Saudi Arabia); and for gas adsorption by BASF SE (Ludwigshafen, Germany). We acknowledge Drs. S. K. Dey and C. Valente and Prof. J. F. Stoddart (Northwestern University) for preliminary work on the synthesis of the links; Drs. S. Teat and K. Gagnon for the synchrotron X-ray diffraction data acquisition support at the beamline 11.3.1 (Advanced Light Source, Lawrence Berkeley National Laboratory); Drs. F. Gandara (Yaghi group) and C. B. Knobler (UCLA) for support in X-ray crystallography; and Drs. A. C.-H. Sue, M. Suzuki, A. M. Fracaroli, and J. Yuan (Yaghi group) and Mr. J. Park (KAIST, Republic of Korea) for support in the sample preparation and characterization. J.K. acknowledges support from the Korea CCS R&D Center grant funded by the Ministry of Science, ICT & Future Planning (2014M1A8A1049332), and the Pohang Accelerator Laboratory for the X-ray data collection (Republic of Korea). H.D. thanks the support by the National Key Basic Research Program of China (No.2014CB239203) and National Thousand Young Talent Plan. NR 48 TC 74 Z9 75 U1 46 U2 303 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2641 EP 2650 DI 10.1021/ja512311a PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700034 PM 25646798 ER PT J AU Song, J Wang, L Lu, YH Liu, J Guo, BK Xiao, PH Lee, JJ Yang, XQ Henkelman, G Goodenough, JB AF Song, Jie Wang, Long Lu, Yuhao Liu, Jue Guo, Bingkun Xiao, Penghao Lee, Jong-Jan Yang, Xiao-Qing Henkelman, Graeme Goodenough, John B. TI Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PRUSSIAN BLUE STRUCTURES; LONG CYCLE LIFE; ENERGY-STORAGE; LOW-COST; ELECTRODE MATERIALS AB Sodium is globally available, which makes a sodium-ion rechargeable battery preferable to a lithium-ion battery for large-scale storage of electrical energy, provided a host cathode for Na can be found that provides the necessary capacity, voltage, and cycle life at the prescribed charge/discharge rate. Low-cost hexacyanometallates are promising cathodes because of their ease of synthesis and rigid open framework that enables fast Na+ insertion and extraction. Here we report an intriguing effect of interstitial H2O on the structure and electrochemical properties of sodium manganese(II) hexacyanoferrates(II) with the nominal composition Na2MnFe(CN)(6)(.)zH(2)O (Na-2-delta MnHFC). The newly discovered dehydrated Na2-delta MnHFC phase exhibits superior electrochemical performance compared to other reported Na-ion cathode materials; it delivers at 3.5 V a reversible capacity of 150 mAh g(-1) in a sodium half cell and 140 mAh g(-1) in a full cell with a hard-carbon anode. At a charge/discharge rate of 20 C, the half-cell capacity is 120 mAh g(-1), and at 0.7 C, the cell exhibits 75% capacity retention after 500 cycles. C1 [Song, Jie; Guo, Bingkun; Goodenough, John B.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Song, Jie; Guo, Bingkun; Goodenough, John B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Xiao, Penghao; Henkelman, Graeme] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. [Xiao, Penghao; Henkelman, Graeme] Univ Texas Austin, Inst Computat & Engn Sci, Austin, TX 78712 USA. [Wang, Long; Lu, Yuhao; Lee, Jong-Jan] Sharp Labs Amer, Camas, WA 98607 USA. [Liu, Jue] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Goodenough, JB (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. EM jgoodenough@mail.utexas.edu RI Guo, Bingkun/J-5774-2014; LIU, JUE/I-8631-2016 OI LIU, JUE/0000-0002-4453-910X FU Advanced Research Projects Agency-Energy, United States Department of Energy [DE-AR0000297]; United States Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC02-98CH10886, DE-SC0012704]; United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-SC0012704]; Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy FX This work was supported by the Advanced Research Projects Agency-Energy, United States Department of Energy, under contract DE-AR0000297. The work at Stony Brook University and Brookhaven National Laboratory was supported by the United States Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under contract nos. DE-AC02-98CH10886 and DE-SC0012704. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract nos. DE-AC02-98CH10886 and DE-SC0012704. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy. NR 21 TC 68 Z9 68 U1 51 U2 266 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 25 PY 2015 VL 137 IS 7 BP 2658 EP 2664 DI 10.1021/ja512383b PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CC2RQ UT WOS:000350192700036 PM 25679040 ER PT J AU Qi, B AF Qi, Bing TI Trustworthiness of detectors in quantum key distribution with untrusted detectors SO PHYSICAL REVIEW A LA English DT Article ID UNCONDITIONAL SECURITY; DEAD-TIME; CRYPTOGRAPHY; CRYPTOSYSTEMS; ATTACK AB Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. Recently, to bridge the strong security of MDI-QKD with the high efficiency of conventional QKD, the detector-device-independent (DDI) QKD has been proposed. One crucial assumption made in DDI-QKD is that the untrusted Bell state measurement (BSM) located inside the receiver's laboratory cannot send any unwanted information to the outside. Here, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow an eavesdropper to gain information of the quantum key without being detected. To prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required. C1 [Qi, Bing] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. [Qi, Bing] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Qi, B (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. EM qib1@ornl.gov RI Qi, Bing/J-5028-2014 OI Qi, Bing/0000-0001-7723-8998 FU U.S. Department of Energy [DE-AC05-00OR22725]; laboratory directed research and development program FX I would like to thank Marcos Curty for very helpful discussions. This work was performed at Oak Ridge National Laboratory, operated by UT-Battelle for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The author acknowledges support from the laboratory directed research and development program. NR 54 TC 7 Z9 7 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 25 PY 2015 VL 91 IS 2 AR 020303 DI 10.1103/PhysRevA.91.020303 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CC4HM UT WOS:000350313600002 ER PT J AU Rescigno, TN Trevisan, CS McCurdy, CW AF Rescigno, T. N. Trevisan, C. S. McCurdy, C. W. TI Tracking hole localization in K-shell and core-valence-excited acetylene photoionization via body-frame photoelectron angular distributions SO PHYSICAL REVIEW A LA English DT Article ID EXCITATION; MOLECULES; STATES AB Asymmetry in the molecular-frame photoelectron angular distributions from core-hole- or core-valence-excited polyatomic targets with symmetry-equivalent atoms can provide direct evidence for core-hole localization. Using acetylene as an example, we contrast the small asymmetry that can be seen in direct core-level ionization, due to the competition between two competing pathways to the continuum, with ionization from core-valence-excited HCCH, which offers the prospect of observing markedly greater asymmetry. C1 [Rescigno, T. N.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci, Berkeley, CA 94720 USA. [Trevisan, C. S.] Calif Maritime Acad, Dept Sci & Math, Vallejo, CA 94590 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Rescigno, TN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci, Berkeley, CA 94720 USA. FU US Department of Energy, Office of Science, Division of Chemical Sciences of the Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This material is based upon work performed at the University of California Lawrence Berkeley National Laboratory and was supported by the US Department of Energy, Office of Science, Division of Chemical Sciences of the Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. NR 16 TC 0 Z9 0 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 25 PY 2015 VL 91 IS 2 AR 023429 DI 10.1103/PhysRevA.91.023429 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CC4HM UT WOS:000350313600005 ER PT J AU Savukov, IM AF Savukov, I. M. TI Configuration-interaction many-body-perturbation-theory energy levels of four-valent Si I SO PHYSICAL REVIEW A LA English DT Article ID PARITY NONCONSERVATION; OPTICAL-ROTATION; ATOMIC LEAD AB The mixed configuration-interaction (CI) many-body-perturbation-theory method is accurate in divalent atoms. In more complex atoms, with the number of valence electrons it becomes progressively more difficult to saturate CI space. Here, a four-valence electron atom, Si I, is considered. It is found that by using a relatively small cavity of 30 a.u. and by choosing carefully configuration space, it is possible to obtain quite accurate agreement between the theory and experiment. After subtraction of systematic shifts of 481 and -426 cm(-1) for the lowest even and odd states, respectively, the deviation between theory and experiment becomes at the level of 100 cm(-1). This agreement is comparable to that in divalent atoms where the CI saturation has been achieved. It is anticipated that the approach can also give good results for atoms with more valence electrons to be considered in the future. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Savukov, IM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. OI Savukov, Igor/0000-0003-4190-5335 FU U. S. DOE by LANL [DE-AC52-06NA25396] FX The work of I. Savukov has been performed under the auspices of the U. S. DOE by LANL under Contract No. DE-AC52-06NA25396. The author is grateful to Dr. Dzuba for valuable discussion of the CI-MBPT method. NR 12 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 25 PY 2015 VL 91 IS 2 AR 022514 DI 10.1103/PhysRevA.91.022514 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CC4HM UT WOS:000350313600004 ER PT J AU Chatterji, T Kumar, CMN Wdowik, UD AF Chatterji, Tapan Kumar, C. M. N. Wdowik, Urszula D. TI Anomalous temperature-induced volume contraction in GeTe SO PHYSICAL REVIEW B LA English DT Article ID STRUCTURAL PHASE-TRANSITION; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DIFFRACTION; PROGRAM; MODE AB The recent surge of interest in phase-change materials GeTe, Ge2Sb2Te5, and related compounds motivated us to revisit the structural phase transition in GeTe in more detail than was done before. The rhombohedral-to-cubic ferroelectric phase transition in GeTe has been studied using high-resolution neutron powder diffraction on a spallation neutron source. We determined the temperature dependence of the structural parameters in a wide temperature range extending from 309 to 973 K. The results of our studies clearly show an anomalous volume contraction of 0.6% at the phase transition from the rhombohedral-to-cubic phase. In order to better understand the phase transition and the associated anomalous volume decrease in GeTe, we have performed phonon calculations based on the density functional theory. Results of the present investigations are also discussed with respect to the experimental data obtained for single crystals of GeTe. C1 [Chatterji, Tapan] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Kumar, C. M. N.] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany. [Kumar, C. M. N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kumar, C. M. N.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Wdowik, Urszula D.] Pedag Univ, Inst Technol, PL-30084 Krakow, Poland. RP Chatterji, T (reprint author), Inst Max Von Laue Paul Langevin, BP 156, F-38042 Grenoble 9, France. OI Chogondahalli Muniraju, Naveen Kumar/0000-0002-8867-8291 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Interdisciplinary Center for Mathematical and Computational Modeling (ICM), Warsaw University, Poland [G28-12]; IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava, Czech Republic [CZ.1.05/1.1.00/02.0070] FX The research conducted at the Spallation Neutron Source at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Interdisciplinary Center for Mathematical and Computational Modeling (ICM), Warsaw University, Poland, Grant No. G28-12 and the IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava, Czech Republic, Grant Reg. No. CZ.1.05/1.1.00/02.0070 are acknowledged for providing the computer facilities. NR 36 TC 3 Z9 3 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 25 PY 2015 VL 91 IS 5 AR 054110 DI 10.1103/PhysRevB.91.054110 PG 8 WC Physics, Condensed Matter SC Physics GA CC4HP UT WOS:000350314100001 ER PT J AU Luo, YK Chen, H Dai, JH Xu, ZA Thompson, JD AF Luo, Yongkang Chen, Hua Dai, Jianhui Xu, Zhu-an Thompson, J. D. TI Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of SmB6 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-SYSTEM SMB6 AB Motivated by the high sensitivity to Fermi surface topology and scattering mechanisms in magnetothermoelectric transport, we have measured the thermopower and Nernst effect on the (011) plane of the proposed topological Kondo insulator SmB6. These experiments, together with electrical resistivity and Hall effect measurements, suggest that the (011) plane also harbors a metallic surface with an effective mass on the order of 10-10(2) m(0). The surface and bulk conductances are well distinguished in these measurements and are categorized into metallic and nondegenerate semiconducting regimes, respectively. Electronic correlations play an important role in enhancing scattering and also contribute to the heavy surface state. C1 [Luo, Yongkang; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chen, Hua] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Chen, Hua] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Chen, Hua] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Dai, Jianhui] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China. [Xu, Zhu-an] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. RP Luo, YK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ykluo@lanl.gov FU Los Alamos LDRD program; Natural Science Foundation of China [11474082, 11190023] FX We are grateful to Zengwei Zhu, N. Wakeham, M. Neupane, and Z. Fisk for helpful discussions. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Division of Materials Science and Engineering. Y.L. acknowledges support through the Los Alamos LDRD program. J.D. is supported in part by the Natural Science Foundation of China (Grant No. 11474082). Work at ZJU is supported by the Natural Science Foundation of China (Grant No. 11190023). NR 46 TC 17 Z9 17 U1 5 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 25 PY 2015 VL 91 IS 7 AR 075130 DI 10.1103/PhysRevB.91.075130 PG 6 WC Physics, Condensed Matter SC Physics GA CC4HX UT WOS:000350315100003 ER PT J AU Dytrych, T Hayes, AC Launey, KD Draayer, JP Maris, P Vary, JP Langr, D Oberhuber, T AF Dytrych, T. Hayes, A. C. Launey, K. D. Draayer, J. P. Maris, P. Vary, J. P. Langr, D. Oberhuber, Tomas TI Electron-scattering form factors for Li-6 in the ab initio symmetry-guided framework SO PHYSICAL REVIEW C LA English DT Article ID CORE-SHELL-MODEL; MONTE-CARLO CALCULATIONS; CROSS-SECTIONS; NUCLEI; STATES; SU(3) AB We present an ab initio symmetry-adapted no-core shell-model description for Li-6. We study the structure of the ground state of Li-6 and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to q similar to 4 fm(-1). We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E2 andM1 reduced transition probabilities, as well as point-nucleon matter rms radii. C1 [Dytrych, T.; Launey, K. D.; Draayer, J. P.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Hayes, A. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Maris, P.; Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Langr, D.] Czech Tech Univ, Fac Informat Technol, Prague 16000, Czech Republic. [Langr, D.] Aerosp Res & Test Estab, Prague 19905, Czech Republic. [Oberhuber, Tomas] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. RP Dytrych, T (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. FU US NSF [OCI-0904874, OCI-0904782]; US Department of Energy [DE-SC0005248, DE-FG02-87ER40371, DESC0008485]; National Energy Research Scientific Computing Center; DOE's Office of Science [DE-AC02-05CH11231]; Southeastern Universities Research Association; Czech Science Foundation [P202/12/2011]; Michal Pajr and CQK Holding FX This work was supported in part by the US NSF Grants No. OCI-0904874 and No. OCI-0904782), the US Department of Energy [Grants No. DE-SC0005248, No. DE-FG02-87ER40371, and No. DESC0008485 (SciDAC-3/NUCLEI)], the National Energy Research Scientific Computing Center (supported by the DOE's Office of Science under Contract No. DE-AC02-05CH11231), the Southeastern Universities Research Association, and the Czech Science Foundation under Grant No. P202/12/2011. This work also benefitted from computing resources provided by Blue Waters, as well as the Louisiana Optical Network Initiative and Louisiana State University's Center for Computation & Technology. T.D., D.L., and T.O. acknowledge support from Michal Pajr and CQK Holding. NR 46 TC 2 Z9 2 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 25 PY 2015 VL 91 IS 2 AR 024326 DI 10.1103/PhysRevC.91.024326 PG 8 WC Physics, Nuclear SC Physics GA CC4IS UT WOS:000350317600002 ER PT J AU Nobre, GPA Palumbo, A Herman, M Brown, D Hoblit, S Dietrich, FS AF Nobre, G. P. A. Palumbo, A. Herman, M. Brown, D. Hoblit, S. Dietrich, F. S. TI Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential SO PHYSICAL REVIEW C LA English DT Article ID EQUILIBRIUM STATISTICAL-MODEL; FAST-NEUTRONS INCIDENT; HARD-CORE INTERACTION; COUPLED-CHANNELS; CROSS-SECTIONS; SCATTERING; DEPENDENCE; ENERGY; W-182 AB The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground-state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic, and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. These results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare-earth nuclei. C1 [Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Nobre, GPA (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM gnobre@bnl.gov FU Office of Nuclear Physics, Office of Science of the US Department of Energy [DE-AC02-98CH10886]; Brookhaven Science Associates, LLC. FX The work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the US Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. NR 43 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 25 PY 2015 VL 91 IS 2 AR 024618 DI 10.1103/PhysRevC.91.024618 PG 11 WC Physics, Nuclear SC Physics GA CC4IS UT WOS:000350317600003 ER PT J AU Baessler, S Nesvizhevsky, VV Pignol, G Protasov, KV Rebreyend, D Kupriyanova, EA Voronin, AY AF Baessler, S. Nesvizhevsky, V. V. Pignol, G. Protasov, K. V. Rebreyend, D. Kupriyanova, E. A. Voronin, A. Yu. TI Frequency shifts in gravitational resonance spectroscopy SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM STATES; FIELD; NEUTRON AB Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts-which we call the Stern-Gerlach shift, interference shift, and spectator-state shift-appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments. C1 [Baessler, S.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Baessler, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nesvizhevsky, V. V.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Pignol, G.; Protasov, K. V.; Rebreyend, D.] Univ Grenoble Alpes, LPSC, CNRS IN2P3, F-38026 Grenoble, France. [Kupriyanova, E. A.; Voronin, A. Yu.] PN Lebedev Phys Inst, Moscow 119991, Russia. RP Baessler, S (reprint author), Univ Virginia, Dept Phys, 382 McCormick Rd, Charlottesville, VA 22904 USA. EM baessler@virginia.edu RI Kupriyanova, Ekaterina/J-3199-2015; Voronin, Alexey/J-3034-2015 OI Kupriyanova, Ekaterina/0000-0001-7837-254X; Voronin, Alexey/0000-0001-9169-1342 FU National Science Foundation [NSF-0855610] FX The authors are grateful to members of the GRANIT Collaboration for help and advice. S. B. thanks Tom Gallagher for a helpful conversation about Ref. [24]. We acknowledge support from the National Science Foundation NSF-0855610. NR 26 TC 3 Z9 3 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 25 PY 2015 VL 91 IS 4 AR 042006 DI 10.1103/PhysRevD.91.042006 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC4KB UT WOS:000350321200001 ER PT J AU Hooper, D AF Hooper, Dan TI Z ' mediated dark matter models for the Galactic Center gamma-ray excess SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; GAUGE BOSONS; PHENOMENOLOGY; DEPENDENCE; COLLISIONS; EMISSION; SEARCH; PROTON; U(1); HALO AB With the goal of generating the Galactic Center gamma-ray excess, we revisit models in which the dark matter interacts with the Standard Model through the exchange of a new neutral gauge boson, Z'. We find several scenarios that can account for this signal, while respecting all existing constraints from colliders and direct-detection experiments. In such models, the Z' either 1) couples axially to light quarks and is leptophobic, 2) couples dominantly to the third generation, or 3) is near resonance, m(Z') approximate to 2m(DM). We identify an example of an anomaly-free U(1)' that leads to an axial and leptophobic Z'. Many of the models presented here are within the reach of near-future direct-detection experiments, such as LUX and XENON1T. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy [DE-FG02-13ER41958, DE-AC02-07CH11359] FX We would like to thank Sam McDermott, Asher Berlin, Claudia Frugiuele, Prateek Agrawal, and Yann Manbrini for helpful interactions. This work has been supported by the U.S. Department of Energy under Contract No. DE-FG02-13ER41958. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 135 TC 25 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 25 PY 2015 VL 91 IS 3 AR 035025 DI 10.1103/PhysRevD.91.035025 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC4JK UT WOS:000350319500006 ER PT J AU Ross, JS Ho, D Milovich, J Doppner, T McNaney, J MacPhee, AG Hamza, A Biener, J Robey, HF Dewald, EL Tommasini, R Divol, L Le Pape, S Hopkins, LB Celliers, PM Landen, O Meezan, NB Mackinnon, AJ AF Ross, J. S. Ho, D. Milovich, J. Doeppner, T. McNaney, J. MacPhee, A. G. Hamza, A. Biener, J. Robey, H. F. Dewald, E. L. Tommasini, R. Divol, L. Le Pape, S. Hopkins, L. Berzak Celliers, P. M. Landen, O. Meezan, N. B. Mackinnon, A. J. TI High-density carbon capsule experiments on the national ignition facility SO PHYSICAL REVIEW E LA English DT Article ID INERTIAL CONFINEMENT FUSION; TARGETS AB Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. A series of five experiments were completed with 76-mu m-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (similar to 90%) and excellent nuclear performance. A deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6 x 10(15) +/- 3 x 10(13), a yield over simulated in one dimension of 70%. C1 [Ross, J. S.; Ho, D.; Milovich, J.; Doeppner, T.; McNaney, J.; MacPhee, A. G.; Hamza, A.; Biener, J.; Robey, H. F.; Dewald, E. L.; Tommasini, R.; Divol, L.; Le Pape, S.; Hopkins, L. Berzak; Celliers, P. M.; Landen, O.; Meezan, N. B.; Mackinnon, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ross, JS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI lepape, sebastien/J-3010-2015; MacKinnon, Andrew/P-7239-2014; Tommasini, Riccardo/A-8214-2009 OI MacKinnon, Andrew/0000-0002-4380-2906; Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program [06-ERD-056] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and was partially funded by the Laboratory Directed Research and Development Program under project tracking code 06-ERD-056. NR 39 TC 6 Z9 6 U1 5 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD FEB 25 PY 2015 VL 91 IS 2 AR 021101 DI 10.1103/PhysRevE.91.021101 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC4KM UT WOS:000350322300001 PM 25768451 ER PT J AU Lappi, T Mantysaari, H Venugopalan, R AF Lappi, T. Mantysaari, H. Venugopalan, R. TI Ballistic Protons in Incoherent Exclusive Vector Meson Production as a Measure of Rare Parton Fluctuations at an Electron-Ion Collider SO PHYSICAL REVIEW LETTERS LA English DT Article ID PB-PB COLLISIONS; J/PSI PHOTOPRODUCTION; ROOT-S(NN)=2.76 TEV; COHERENT; SCATTERING; ENERGIES; E(+)E(-); LHC AB We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model. C1 [Lappi, T.; Mantysaari, H.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Lappi, T.] Univ Jyvaskyla, Helsinki Inst Phys, Jyvaskyla 40014, Finland. [Venugopalan, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lappi, T (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, Jyvaskyla 40014, Finland. FU Academy of Finland [267321, 273464]; Graduate School of Particle and Nuclear Physics; U.S. Department of Energy under DOE [DE-AC02-98CH10886] FX We thank E. Aschenauer for discussions and useful comments on the manuscript. H. M. and T. L. are supported by the Academy of Finland, Projects No. 267321 and No. 273464, and the Graduate School of Particle and Nuclear Physics (H. M.). H. M. wishes to thank the nuclear theory group at BNL for hospitality during the early stages of this work. R. V.'s work is supported by the U.S. Department of Energy under DOE Contract No. DE-AC02-98CH10886. NR 31 TC 7 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2015 VL 114 IS 8 AR 082301 DI 10.1103/PhysRevLett.114.082301 PG 5 WC Physics, Multidisciplinary SC Physics GA CC4MC UT WOS:000350326500005 PM 25768758 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Mandelkern, M Dey, B Gary, JW Long, O Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Vazquez, WP Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Sciolla, G Cheaib, R Patel, PM Robertson, SH Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Simard, M Taras, P De Nardo, G Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S Vasseur, G Anulli, F Aston, D Bard, DJ Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Lewis, P Lindemann, D Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wisniewski, WJ Wulsin, HW Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Albert, J Banerjee, S Beaulieu, A Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Mandelkern, M. Dey, B. Gary, J. W. Long, O. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Roehrken, M. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. Vasseur, G. Anulli, F. Aston, D. Bard, D. J. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Lewis, P. Lindemann, D. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Wulsin, H. W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Albert, J. Banerjee, Sw. Beaulieu, A. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BABAR Collaboration TI Study of CP Asymmetry in B-0-(B)over-bar(0) Mixing with Inclusive Dilepton Events SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGE ASYMMETRY; BABAR DETECTOR; DECAY AB We present a measurement of the asymmetry A(CP) between same- sign inclusive dilepton samples l(+) l(+) and l(-) l(-) ( l = e, mu) from semileptonic B decays in Y(4S) -> B (B) over bar events, using the complete data set recorded by the BABAR experiment near the Y(4S) resonance, corresponding to 471 x 10(6) B (B) over bar pairs. The asymmetry A(CP) allows comparison between the mixing probabilities P((B) over bar (0) -> B-0) and P(B-0 -> (B) over bar (0)) and therefore probes CP and T violation. The result, A(CP) = [-3.9 +/- 3.5(stat) +/- 1.9(syst)] x 10(-3), is consistent with the standard model expectation. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roehrken, M.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Bougher, J.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.; Pacetti, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Anulli, F.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Patrignani, Claudia/C-5223-2009; White, Ryan/E-2979-2015; Lo Vetere, Maurizio/J-5049-2012; Kravchenko, Evgeniy/F-5457-2015; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/N-2976-2015; Forti, Francesco/H-3035-2011; Kolomensky, Yury/I-3510-2015; Martinez Vidal, F*/L-7563-2014; Oyanguren, Arantza/K-6454-2014; Monge, Maria Roberta/G-9127-2012 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Patrignani, Claudia/0000-0002-5882-1747; White, Ryan/0000-0003-3589-5900; Lo Vetere, Maurizio/0000-0002-6520-4480; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; Kolomensky, Yury/0000-0001-8496-9975; Martinez Vidal, F*/0000-0001-6841-6035; Oyanguren, Arantza/0000-0002-8240-7300; Monge, Maria Roberta/0000-0003-1633-3195 FU SLAC; DOE; NSF (U.S.); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (Netherlands); NFR (Norway); MES (Russia); MINECO (Spain); STFC (United Kingdom); BSF (U.S.-Israel); Marie Curie EIF (European Union); A. P. Sloan Foundation (U.S.) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom), and BSF (U.S.-Israel). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (U.S.). NR 24 TC 9 Z9 9 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2015 VL 114 IS 8 AR 081801 DI 10.1103/PhysRevLett.114.081801 PG 8 WC Physics, Multidisciplinary SC Physics GA CC4MC UT WOS:000350326500004 ER PT J AU Suzuki, K Barbiellini, B Orikasa, Y Go, N Sakurai, H Kaprzyk, S Itou, M Yamamoto, K Uchimoto, Y Wang, YJ Hafiz, H Bansil, A Sakurai, Y AF Suzuki, K. Barbiellini, B. Orikasa, Y. Go, N. Sakurai, H. Kaprzyk, S. Itou, M. Yamamoto, K. Uchimoto, Y. Wang, Yung Jui Hafiz, H. Bansil, A. Sakurai, Y. TI Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-Ray Compton Scattering Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON MOMENTUM DISTRIBUTION; CHARGE-TRANSFER; LITHIUM BATTERIES; AMORPHOUS-ALLOYS; MANGANESE OXIDES; LIMN2O4; TRANSITION; POSITRON; DENSITY; PROFILE AB We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel LixMn(2)O(4), a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16 +/- 0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery. C1 [Suzuki, K.; Go, N.; Sakurai, H.] Gunma Univ, Fac Sci & Technol, Kiryu, Gunma 3768515, Japan. [Barbiellini, B.; Kaprzyk, S.; Wang, Yung Jui; Hafiz, H.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Orikasa, Y.; Yamamoto, K.; Uchimoto, Y.] Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, Japan. [Kaprzyk, S.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Itou, M.; Sakurai, Y.] SPring 8, Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. [Wang, Yung Jui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Suzuki, K (reprint author), Gunma Univ, Fac Sci & Technol, Tenjin Cho, Kiryu, Gunma 3768515, Japan. EM kosuzuki@gunma-u.ac.jp RI Barbiellini, Bernardo/K-3619-2015 OI Barbiellini, Bernardo/0000-0002-3309-1362 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan [24750065]; Japan Science and Technology Agency; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-FG02-07ER46352]; DOE [DE-AC02-05CH11231]; Polish National Science Center (NCN) [DEC-2011/02/A/ST3/00124] FX K. S. was supported by a Grant-in-Aid for Young Scientists (B) (No. 24750065) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and the work at JASRI was partially supported by the Japan Science and Technology Agency. Compton scattering experiments were performed with the approval of JASRI (Proposals No. 2011A1869, No. 2011B2004, and No. 2012B1470). The work at Northeastern University was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352, and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC), and the allocation of time at the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. S. K. was supported by the Polish National Science Center (NCN) under Grant No. DEC-2011/02/A/ST3/00124. NR 55 TC 7 Z9 7 U1 7 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2015 VL 114 IS 8 AR 087401 DI 10.1103/PhysRevLett.114.087401 PG 6 WC Physics, Multidisciplinary SC Physics GA CC4MC UT WOS:000350326500007 PM 25768779 ER PT J AU Manna, E Fungura, F Biswas, R Shinar, J Shinar, R AF Manna, Eeshita Fungura, Fadzai Biswas, Rana Shinar, Joseph Shinar, Ruth TI Tunable Near UV Microcavity OLED Arrays: Characterization and Analytical Applications SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LIGHT-EMITTING DIODE; OPTICAL-PROPERTIES; SENSOR ARRAY; DEVICES; FILMS; OXYGEN; FABRICATION; ABSORPTION; MICROCHIP; SUBSTRATE AB A new approach is demonstrated to fabricate narrow-band emission near-UV microcavity OLEDs (mu cOLEDs) with peak emission at approximate to 385 nm, in near-perfect alignment with the narrow primary 385 nm absorption band of Pt octaethylporphyrin dye, using 4,4'-bis(9-carbazolyl)-1,1'-biphenyl (CBP) as the emissive layer. Although OLEDs have been extensively operated at optical wavelengths, only few have achieved near-UV emission. Yet there is a growing need for portable compact narrow-band near UV sources for many biomedical and forensic applications. A microcavity effect, due to metallic electrodes enclosing an optical cavity, is employed to achieve the desired narrow peak emission. An Al/Pd bi-layer anode enables attaining a turn on voltage of 3.8 V and a 4,4'-cyclohexylidenebis [N,N -bis (4-methylphenyl) benzenamine] (TAPC) layer improves electron-hole recombination in the emissive layer. The fabricated mu cOLED is efficiently used as the excitation source in a structurally integrated all-organic oxygen sensor. Moreover, a CBP-based combinatorial array of mu cOLED pixels is fabricated by varying the thickness of the organic layers to obtain nine sharp, discrete emission peaks from 370 to 430 nm, employed in an all-organic on-chip spectrophotometer. The photodetectors are based on P3HT:PCBM (poly(3-hexylthiophene):[6,6]-phenyl-C-60-butyric acid methyl ester) or the more sensitive PTB7:PCBM (PTB7 is polythieno [3,4-b]-thiophene-co-benzodithiophene). Simulations of the OLEDs' emission are used for analysis of the experimental data, assisting in device fabrication. C1 [Manna, Eeshita; Fungura, Fadzai; Biswas, Rana; Shinar, Joseph] US DOE, Ames Lab, Ames, IA 50011 USA. [Manna, Eeshita; Biswas, Rana; Shinar, Ruth] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Fungura, Fadzai; Biswas, Rana; Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Biswas, Rana; Shinar, Ruth] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. RP Manna, E (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM jshinar@iastate.edu; rshinar@iastate.edu FU US Department of Energy (USDOE) [DE-AC 02-07CH11358]; Basic Energy Sciences, Division of Materials Science and Engineering, USDOE; Office of Science of the USDOE [DE-AC02-05CH11231] FX Ames Laboratory is operated by Iowa State University for the US Department of Energy (USDOE) under Contract No. DE-AC 02-07CH11358. The research was partially supported by Basic Energy Sciences, Division of Materials Science and Engineering, USDOE. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the USDOE under Contract No. DE-AC02-05CH11231. The authors also thank Chun Xu for computational programs. NR 43 TC 7 Z9 8 U1 9 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 25 PY 2015 VL 25 IS 8 BP 1226 EP 1232 DI 10.1002/adfm.201403313 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB7OO UT WOS:000349817200007 ER PT J AU Schultz, PA AF Schultz, Peter A. TI The E1-E2 center in gallium arsenide is the divacancy SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE gallium arsenide; defects; density functional theory ID LEVEL OPTICAL SPECTROSCOPY; ELECTRON-IRRADIATED GAAS; AS-GROWN GAAS; NATIVE DEFECTS; VACANCY; EL2; SEMICONDUCTORS; METASTABILITY; ANTISITE; BEHAVIOR AB Based on defect energy levels computed from first-principles calculations, it is shown the E1-E2 center in irradiated GaAs cannot be due to an isolated arsenic vacancy. The only simple intrinsic defect with levels compatible with E1 and E2 is the divacancy. The arsenic monovacancy is reassigned to the E3 center in irradiated GaAs. These new assignments are shown to reconcile a number of seemingly contradictory experimental observations. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Schultz, PA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM paschul@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX I thank Anatole von Lilienfeld for assistance in the calculations. I am very grateful to R Fleming and D Lang for innumerable enlightening insights regarding the interpretation of the vast experimental literature in irradiated GaAs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 1 Z9 1 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 25 PY 2015 VL 27 IS 7 AR 075801 DI 10.1088/0953-8984/27/7/075801 PG 6 WC Physics, Condensed Matter SC Physics GA CB4NH UT WOS:000349604100017 PM 25634829 ER PT J AU Coakley, J Vorontsov, VA Littrell, KC Heenan, RK Ohnuma, M Jones, NG Dye, D AF Coakley, James Vorontsov, Vassili A. Littrell, Kenneth C. Heenan, Richard K. Ohnuma, Masato Jones, Nicholas G. Dye, David TI Nanoprecipitation in a beta-titanium alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Metals and alloys; Precipitation; Transmission Electron Microscopy, TEM; Neutron scattering; Titanium alloys ID ANGLE NEUTRON-SCATTERING; HIGH-VOLUME FRACTION; NICKEL-BASE SUPERALLOY; PLASTIC-DEFORMATION; EVOLUTION; TEMPERATURE; PHASE; MECHANISM AB This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in beta-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal omega can be induced by cold-rolling Gum metal, a beta-Ti alloy. During thermal exposure at 400 degrees C, isothermal omega particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6 nm after thermal exposures up to 16 h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the beta matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy. (C) 2014 Elsevier B.V. All rights reserved. C1 [Coakley, James; Vorontsov, Vassili A.; Dye, David] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Littrell, Kenneth C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Heenan, Richard K.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ohnuma, Masato] Hokkaido Univ, Lab Quantum Beam Syst Engn, Sapporo, Hokkaido 0600808, Japan. [Jones, Nicholas G.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Coakley, J (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM j.coakley06@imperial.ac.uk RI Dye, David/B-5603-2012; Vorontsov, Vassili/A-8837-2010; Littrell, Kenneth/D-2106-2013; OI Dye, David/0000-0002-8756-3513; Vorontsov, Vassili/0000-0002-1958-0602; Littrell, Kenneth/0000-0003-2308-8618; Heenan, Richard/0000-0002-7729-1454 FU EPSRC [EP/H0004882/01]; JSPS; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX JC, VV, NGJ and DD would like to acknowledge funding from EPSRC under grant EP/H0004882/01. JC and MO would also like to acknowledge fellowship funding provided by JSPS. This work utilizes the Oak Ridge National Laboratory's High Flux Isotope Reactor, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We would like to thank Matthias Knop at Imperial, Mark Ward at the University of Birmingham and Richard Dashwood at Warwick University for their help with sample manufacture and preparation. NR 42 TC 12 Z9 12 U1 6 U2 74 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 25 PY 2015 VL 623 BP 146 EP 156 DI 10.1016/j.jallcom.2014.10.038 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AU6ZP UT WOS:000345750600024 ER PT J AU Laplanche, G Gadaud, P Horst, O Otto, F Eggeler, G George, EP AF Laplanche, G. Gadaud, P. Horst, O. Otto, F. Eggeler, G. George, E. P. TI Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Metals and alloys; Entropy; Microstructure; Thermal expansion coefficient; Elasticity ID SOLID-SOLUTION ALLOYS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; ELEVATED-TEMPERATURE; YOUNGS MODULUS; GRAIN-GROWTH; STABILITY; MICROSTRUCTURE; EVOLUTION; CONSTANTS AB The equiatomic CoCrFeMnNi alloy is now regarded as a model face-centered cubic single-phase high-entropy alloy. Therefore, determination of its intrinsic properties such as the temperature dependencies of elastic moduli and thermal expansion coefficient are important to improve understanding of this new class of material. These temperature dependencies were measured over a large temperature range (200-1270 K) in this study. (C) 2014 Elsevier B.V. All rights reserved. C1 [Laplanche, G.; Horst, O.; Otto, F.; Eggeler, G.; George, E. P.] Ruhr Univ Bochum, Inst Werkstoffe, D-44801 Bochum, Germany. [Gadaud, P.] CNRS ISAE ENSMA Univ Poitiers, Inst P, UPR 3346, Dept Phys & Mecan Mat, F-86961 Futuroscope, France. [George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RP Laplanche, G (reprint author), Ruhr Univ Bochum, Inst Werkstoffe, D-44801 Bochum, Germany. EM guillaume.laplanche@rub.de RI Eggeler, Gunther/R-9833-2016; OI Laplanche, Guillaume/0000-0001-9559-0928 FU Alexander von Humboldt Foundation; Materials Sciences and Engineering Division, Basic Energy Sciences, US Department of Energy FX G.L. and F.O. received funding from the Alexander von Humboldt Foundation and E.P.G. from the Materials Sciences and Engineering Division, Basic Energy Sciences, US Department of Energy. NR 45 TC 32 Z9 32 U1 24 U2 169 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 25 PY 2015 VL 623 BP 348 EP 353 DI 10.1016/j.jallcom.2014.11.061 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AU6ZP UT WOS:000345750600053 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, M Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buescher, D Buescher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chend, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R DeCastro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gaob, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Goessling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Heng, Y Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huelsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakob, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koeneke, K Koenig, AC Koenig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Koepke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kyriazopoulos, D LaRosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P LeDortz, O LeGuirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL LoSterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G McKee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morton, A Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Garcia, RFN Narayanb, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulona, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjlin, J Sjursen, TB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strhmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, M. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chend, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. C Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. DeCastro, S. De Cecco, S. De Groot, N. De Jong, P. De laTorre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gaob, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Heng, Y. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakob, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Keyes, R. A. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kyriazopoulos, D. LaRosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. LeDortz, O. LeGuirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. LoSterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. McKee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morton, A. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Garcia, R. F. Naranjo Narayanb, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulona, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjlin, J. Sjursen, T. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strhmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EFFECTIVE-FIELD THEORY; CONSTRAINTS; GENERATOR; LHC AB This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb(-1) of pp collisions collected at root s = 8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Kuday, S.; Cakir, I. Turk] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, IN2P3, CNRS, LAPP, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; Talyshev, A. A.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, M.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Axen, B.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Lohwasser, K.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; DeCastro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Caforio, D.; DeCastro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hagebock, S.; Hellmich, D.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Velz, T.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A. C; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Galster, G.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Scherzer, M. I.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gaob, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chend, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Univ, CNRS, Lab Phys Corpusculaire,IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Medinnis, M.; Monig, K.; Morton, A.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Medinnis, M.; Monig, K.; Morton, A.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Picazio, A.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakob, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; LaRosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stenzel, H.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulona, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayanb, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. Univ Hong Kong, Dept Phys, Pok Fu Lam, Hong Kong, Peoples R China. Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Glonti, G. L.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, CONICET, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dassoulas, J.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Daya-Ishmukhametova, R. K.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Dept Phys, Jozef Stefan Inst, Ljubljana 61000, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Barreiro, F.; Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies,UPMC, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Cantero, J.; De laTorre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hallewell, G. D.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; LeGuirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; McKee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Lefebvre, G.; Ramos, J. A. Manjarres; Codina, E. Perez; Qureshi, A.; Salvucci, A.; Strubig, A.; Talyshev, A. A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Kharlamov, A.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Beacham, J. B.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Scifo, E.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Becker, K.; Behr, K.; Boddy, C. R.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pickering, M. A.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Dept Fis Teor & Cosmos, Granada, Spain. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Dept Fis, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] Commissariat Energie Atom & Energies Alternat, CEA Saclay, IRFU, DSM,Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Horton, A. J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjlin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjlin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; LoSterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Int Ctr Elementary Particle Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Brelier, B.; Chau, C. C.; DeMarco, D. A.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Oram, C. J.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, CSIC, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, CSIC, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, CSIC, IMB, CNM,Inst Fis Corpuscular IFIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Strhmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Bedikian, S.; Cummings, J.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, F.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.; Castillo, L. R. Flores] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chend, L.; Gaob, J.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Santa Cruz, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] Univ Paris Diderot, CNRS, UPMC, Lab Phys Nucl & Hautes Energies,IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. RI Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Juste, Aurelio/I-2531-2015; Grinstein, Sebastian/N-3988-2014; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Capua, Marcella/A-8549-2015; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Doyle, Anthony/C-5889-2009; Brooks, William/C-8636-2013; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Boyko, Igor/J-3659-2013; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Chekulaev, Sergey/O-1145-2015; Negrini, Matteo/C-8906-2014; Carquin, Edson/G-5221-2015; Livan, Michele/D-7531-2012; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Grancagnolo, Sergio/J-3957-2015; Marti-Garcia, Salvador/F-3085-2011; Mitsou, Vasiliki/D-1967-2009; Di Domenico, Antonio/G-6301-2011; Della Pietra, Massimo/J-5008-2012; Bosman, Martine/J-9917-2014; Petrucci, Fabrizio/G-8348-2012; Korol, Aleksandr/A-6244-2014; Fullana Torregrosa, Esteban/A-7305-2016; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Fassi, Farida/F-3571-2016; OI Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Wang, Kuhan/0000-0002-6151-0034; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Leonidopoulos, Christos/0000-0002-7241-2114; Troncon, Clara/0000-0002-7997-8524; Chen, Hucheng/0000-0002-9936-0115; Qian, Jianming/0000-0003-4813-8167; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Lacasta, Carlos/0000-0002-2623-6252; Veneziano, Stefano/0000-0002-2598-2659; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Castro, Nuno/0000-0001-8491-4376; Pina, Joao /0000-0001-8959-5044; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Irles, Adrian/0000-0001-5668-151X; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Dell'Asta, Lidia/0000-0002-9601-4225; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Arratia, Miguel/0000-0001-6877-3315; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Doyle, Anthony/0000-0001-6322-6195; Brooks, William/0000-0001-6161-3570; spagnolo, stefania/0000-0001-7482-6348; Boyko, Igor/0000-0002-3355-4662; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Negrini, Matteo/0000-0003-0101-6963; Carquin, Edson/0000-0002-7863-1166; Livan, Michele/0000-0002-5877-0062; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Grancagnolo, Sergio/0000-0001-8490-8304; Mitsou, Vasiliki/0000-0002-1533-8886; Di Domenico, Antonio/0000-0001-8078-2759; Della Pietra, Massimo/0000-0003-4446-3368; Bosman, Martine/0000-0002-7290-643X; Petrucci, Fabrizio/0000-0002-5278-2206; Giorgi, Filippo Maria/0000-0003-1589-2163; Nisati, Aleandro/0000-0002-5080-2293; Korol, Aleksandr/0000-0001-8448-218X; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Osculati, Bianca Maria/0000-0002-7246-060X; Giordani, Mario/0000-0002-0792-6039; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; la rotonda, laura/0000-0002-6780-5829; Fassi, Farida/0000-0002-6423-7213; Hays, Chris/0000-0003-2371-9723 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; MSTD, Serbia; JINR; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We would like to thank Tongyan Lin (University of Chicago) for helpful discussions about the models presented and the interplay between collider DM constraints and direct and indirect DM experiments. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 67 TC 16 Z9 16 U1 5 U2 56 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 24 PY 2015 VL 75 IS 2 AR 92 DI 10.1140/epjc/s10052-015-3306-z PG 22 WC Physics, Particles & Fields SC Physics GA CI2AG UT WOS:000354546000007 ER PT J AU Gong, YJ Fei, HL Zou, XL Zhou, W Yang, SB Ye, GL Liu, Z Peng, ZW Lou, J Vajtai, R Yakobson, BI Tour, JM Ajayan, PM AF Gong, Yongji Fei, Huilong Zou, Xiaolong Zhou, Wu Yang, Shubin Ye, Gonglan Liu, Zheng Peng, Zhiwei Lou, Jun Vajtai, Robert Yakobson, Boris I. Tour, James M. Ajayan, Pulickel M. TI Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction SO CHEMISTRY OF MATERIALS LA English DT Article AB We show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Furthermore, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. First-principles calculations suggest that such excellent electrotatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energy barriers of the rate-determining steps of the ORR reaction. C1 [Gong, Yongji; Fei, Huilong; Peng, Zhiwei; Yakobson, Boris I.; Tour, James M.; Ajayan, Pulickel M.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Zou, Xiaolong; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Lou, Jun; Vajtai, Robert; Yakobson, Boris I.; Tour, James M.; Ajayan, Pulickel M.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Tour, James M.] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yang, Shubin] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. RP Yang, SB (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. EM yangshubin@buaa.edu.cn; tour@rice.edu; ajayan@rice.edu RI Zhou, Wu/D-8526-2011; Liu, Zheng/C-1813-2014; Gong, Yongji/L-7628-2016; OI Zhou, Wu/0000-0002-6803-1095; Liu, Zheng/0000-0002-8825-7198; Tour, James/0000-0002-8479-9328 FU Welch Foundation [C-1716]; NSF [DMR-0928297, CNS-0821727, OCI-0959097]; U.S. Army Research Office MURI [W911NF-11-1-0362]; Air Force Office of Scientific Research [FA9550-09-1-0581]; Air Force Office of Scientific Research MURI [FA9550-12-1-0035]; Office of Naval Research MURI [N000014-09-1-1066]; Wigner Fellowship through Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE FX This work was supported by the Welch Foundation Grant C-1716, the NSF Grant DMR-0928297, the U.S. Army Research Office MURI Grant W911NF-11-1-0362, The Air Force Office of Scientific Research Grant FA9550-09-1-0581, The Air Force Office of Scientific Research MURI Grant FA9550-12-1-0035, and the Office of Naval Research MURI Grant N000014-09-1-1066. The computations were performed at the Cyberinfrastructure for Computational Research funded by NSF under Grant CNS-0821727 and the Data Analysis and Visualization Cyberinfrastructure funded by NSF under Grant OCI-0959097. This research was also supported in part by a Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. DOE (WZ), and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. NR 0 TC 58 Z9 58 U1 26 U2 153 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2015 VL 27 IS 4 BP 1181 EP 1186 DI 10.1021/cm5037502 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC2RO UT WOS:000350192500007 ER PT J AU Ko, S Kim, DH Ayzner, AL Mannsfeld, SCB Verploegen, E Nardes, AM Kopidakis, N Toney, MF Bao, ZN AF Ko, Sangwon Kim, Do Hwan Ayzner, Alexander L. Mannsfeld, Stefan C. B. Verploegen, Eric Nardes, Alexander M. Kopidakis, Nikos Toney, Michael F. Bao, Zhenan TI Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics SO CHEMISTRY OF MATERIALS LA English DT Article ID HAIRY-ROD POLYFLUORENE; ORGANIC SEMICONDUCTORS; EXCITON DIFFUSION; SELF-ORGANIZATION; MOLECULAR-WEIGHT; SOLAR-CELLS; TRANSISTORS; POLYMERS; MOBILITY; BEHAVIOR AB We observed a thermotropic phase transition in poly[3,4-dihexyl thiophene-2,2':5,6'-benzo[1,2-b:4,5-b']dithiophene] (PDHBDT) thin films accompanied by a transition from a random orientation to an ordered lamellar phase via a nearly hexagonal lattice upon annealing. We demonstrate the effect of temperature-dependent molecular packing on charge carrier mobility (mu) in organic field-effect transistors (OFETs) and photovoltaic characteristics, such as exciton diffusion length (L-D) and power conversion efficiency (PCE), in organic solar cells (OSCs) using PDHBDT. The mu was continuously improved with increasing annealing temperature and PDHBDT films annealed at 270 degrees C resulted in a maximum mu up to 0.46 cm(2)/(V s) (mu(avg) = 0.22 cm(2)/(V s)), which is attributed to the well-ordered lamellar structure with a closer pi-pi stacking distance of 3.5 angstrom as shown by grazing incidence-angle X-ray diffraction (GIXD). On the other hand, PDHBDT films with a random molecular orientation are more effective in photovoltaic devices than films with an ordered hexagonal or lamellar phase based on current-voltage characteristics of PDHBDT/C60 bilayer solar cells. This observation corresponds to an enhanced dark current density (J(D)) and a decreased L-D upon annealing. This study provides insight into the dependence of charge transport and photovoltaic characteristics on molecular packing in polymer semiconductors, which is crucial for the management of charge and energy transport in a range of organic optoelectronic devices. C1 [Ko, Sangwon; Kim, Do Hwan] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Kim, Do Hwan; Ayzner, Alexander L.; Verploegen, Eric; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Ayzner, Alexander L.; Mannsfeld, Stefan C. B.; Verploegen, Eric; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Nardes, Alexander M.; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ko, Sangwon] Korea Railroad Res Inst, Transportat Environm Res Team, Uiwang Si 437757, South Korea. [Kim, Do Hwan] Soongsil Univ, Dept Organ Mat & Fiber Engn, Seoul 156743, South Korea. [Ayzner, Alexander L.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Bao, ZN (reprint author), Stanford Univ, Dept Chem Engn, 443 Via Ortega, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Nardes, Alexandre/C-8556-2012; Kopidakis, Nikos/N-4777-2015; OI Ayzner, Alexander/0000-0002-6549-4721 FU Center for Advanced Molecular Photovoltaics by King Abdullah University of Science and Technology (KAUST) [KUS-C1-015-21]; Korea Railroad Research Institute [PK1504C]; Center for Advanced Soft-Electronics under Global Frontier Project [CASE-2014M3A6A5060932]; Basic Science Research Program of the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [2014R1A1A1005933]; Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences) [DE-SC0001342:001] FX This work was supported by the Center for Advanced Molecular Photovoltaics, Award KUS-C1-015-21, made by King Abdullah University of Science and Technology (KAUST). GIXS measurements were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. S.K. acknowledges financial support by Korea Railroad Research Institute through the project "Development of Improvement Technology of Railroad Environment (PK1504C)" D.H.K. acknowledges financial support by the Center for Advanced Soft-Electronics under the Global Frontier Project (CASE-2014M3A6A5060932) and the Basic Science Research Program (2014R1A1A1005933) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning. The photoluminescence measurements (A.M.N. and N.K.) were carried out under funding from the Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0001342:001. NR 39 TC 5 Z9 5 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2015 VL 27 IS 4 BP 1223 EP 1232 DI 10.1021/cm503773j PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC2RO UT WOS:000350192500013 ER PT J AU Bo, ZY Eaton, TR Gallagher, JR Canlas, CP Miller, JT Notestein, JM AF Bo, Zhenyu Eaton, Todd R. Gallagher, James R. Canlas, Christian P. Miller, Jeffrey T. Notestein, Justin M. TI Size-Selective Synthesis and Stabilization of Small Silver Nanoparticles on TiO2 Partially Masked by SiO2 SO CHEMISTRY OF MATERIALS LA English DT Article ID SUPPORTED METAL-CLUSTERS; ATOMIC LAYER DEPOSITION; PARTICLE-SIZE; SINTER-RESISTANT; CATALYSTS; SURFACE; STABILITY; NANOCRYSTALS; TEMPERATURE; REACTIVITY AB Controlling metal nanopartide size is one of the principle challenges in developing new supported catalysts. Typical methods where a metal salt is deposited and reduced can result in a polydisperse mixture of metal nanopartides, especially at higher loading. Polydispersity can exacerbate the already significant challenge of controlling sintering at high temperatures, which decreases catalytic surface area. Here, we demonstrate the size-selective photoreduction of Ag nano-particles on TiO2 whose surface has been partially masked with a thin SiO, layer. To synthesize this layered oxide material, TiO2 particles are grafted with tert-butylcalix[4]arene molecular templates (similar to 2 nm in diameter) at surface densities of 0.05-0.17 templates.nm(-2), overcoated with similar to 2 nm of SiO2 through repeated condensation cycles of limiting amounts of tetraethoxysilane (TEOS), and the templates are removed oxidatively. Ag photodeposition results in uniform nanoparticle diameters <= 3.5 nm (by transmission electron microscopy (TEM)) on the partially masked TiO2 whereas Ag nanopartides deposited on the unmodified TiO2 are larger and more polydisperse (4.7 +/- 2.7 nm by TEM). Furthermore, Ag nanopartides on the partially masked TiO2 do not sinter after heating at 450 degrees C for 3 h, while nanopartides on the control surfaces sinter and grow by at least 30%, as is typical. Overall, this new synthesis approach controls metal nanopartide dispersion and enhances thermal stability, and this facile synthesis procedure is generalizable to other TiO2-supported nanopartides and sizes and may find use in the synthesis of new catalytic materials. C1 [Bo, Zhenyu; Eaton, Todd R.; Notestein, Justin M.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Gallagher, James R.; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Canlas, Christian P.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Notestein, JM (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM j-notestein@northwestern.edu RI Notestein, Justin/B-7651-2009; BM, MRCAT/G-7576-2011; Gallagher, James/E-4896-2014; OI Gallagher, James/0000-0002-5628-5178; Notestein, Justin/0000-0003-1780-7356 FU Department of Energy, Basic Energy Sciences [DE-SC0006718]; Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Basic Energy Sciences; U.S. Department of Energy [DE-AC02-06CH11357]; MRSEC at the Materials Research Center of the National Science Foundation, the State of Illinois [NSF DMR-1121262]; MRSEC at the Nanoscale Science and Engineering Center of the National Science Foundation, the State of Illinois [EEC-0118025/003]; Northwestern University FX This material is supported by the Department of Energy, Basic Energy Sciences Grant DE-SC0006718 and is also based upon work supported as part of the Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357. This work made use of the EPIC facility (NUANCE Center, Northwestern University), which has received support from the MRSEC program (Grant NSF DMR-1121262) at the Materials Research Center, and the Nanoscale Science and Engineering Center (Grant EEC-0118025/003), both programs of the National Science Foundation, the State of Illinois, and Northwestern University. NR 47 TC 5 Z9 5 U1 17 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2015 VL 27 IS 4 BP 1269 EP 1277 DI 10.1021/cm504243f PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC2RO UT WOS:000350192500018 ER PT J AU Lu, P Yan, PF Romero, E Spoerke, ED Zhang, JG Wang, CM AF Lu, Ping Yan, Pengfei Romero, Eric Spoerke, Erik David Zhang, Ji-Guang Wang, Chong-Min TI Observation of Electron-Beam-Induced Phase Evolution Mimicking the Effect of the Charge-Discharge Cycle in Li-Rich Layered Cathode Materials Used for Li Ion Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID SURFACE RECONSTRUCTION; LITHIUM BATTERIES; NICKEL; LI1.2NI0.2MN0.6O2; QUANTIFICATION; MICROSCOPY; STABILITY; OXIDES AB Capacity loss and voltage fade upon electrochemical chargedischarge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O-2, where TM = Ni, Co, or Fe) have recently been correlated with a gradual phase transformation featuring the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge to a relatively thick (similar to 5 nm), spinel or rock-salt layer upon continuous chargedischarge cycling. Here we report observations of an SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O-2 (LNMO) particles, which are identical to those reported due to the chargedischarge cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of a thin, defect spinel layer on surfaces of the particles upon exposure to a 200 kV electron beam for as little as 30 s under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by energy dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without deconstruction of the lattice. This study provides insight into understanding the mechanism of forming the SRL and also possibly a means of studying structural evolution in the Li-rich layered oxides without involving electrochemistry. C1 [Lu, Ping; Romero, Eric; Spoerke, Erik David] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Yan, Pengfei; Wang, Chong-Min] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Lu, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM plu@sandia.gov; chongmin.wang@pnnl.gov RI yan, pengfei/E-4784-2016 OI yan, pengfei/0000-0001-6387-7502 FU U.S. Department of Energy's (DOE's) National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Vehicle Technologies of the U.S. Department of Energy under Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231, 6951379]; Laboratory Directed Research and Development Program as part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration under Contract DE-AC04-94AL85000. The materials processing is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract DE-AC02-05CH11231 and Subcontract 6951379 under the Batteries for Advanced Transportation Technologies (BATT) Program. Part of the transmission electron microscopy study described in this paper is supported by the Laboratory Directed Research and Development Program as part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). The work was partly conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. NR 29 TC 11 Z9 11 U1 10 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2015 VL 27 IS 4 BP 1375 EP 1380 DI 10.1021/cm5045573 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC2RO UT WOS:000350192500031 ER PT J AU Zheng, JM Xu, PH Gu, M Xiao, J Browning, ND Yan, PF Wang, CM Zhang, JG AF Zheng, Jianming Xu, Pinghong Gu, Meng Xiao, Jie Browning, Nigel D. Yan, Pengfei Wang, Chongmin Zhang, Ji-Guang TI Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; MANGANESE OXIDE ELECTRODES; X-RAY-DIFFRACTION; HIGH-CAPACITY; VOLTAGE FADE; COMPOSITE CATHODE; ELECTROCHEMICAL PERFORMANCE; INTERFACE MODIFICATIONS; SURFACE RECONSTRUCTION; ANOMALOUS CAPACITY AB Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, the voltage fading mechanism in these materials as well as its relationships to fundamental structural changes is far froth being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O-2) during cycling for samples prepared by the hydrothermal assisted (HA) method. It is found that the transformation pathway of the LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that the LMR cathode prepared by the HA approach experiences a phase transformation from the layered structure (initial C2/m phase transforms to R (3) over barm phase after activation) to a LT-LiCoO2 type defect spinel-like structure (with the Fd (3) over barm space group) and then to a disordered rock-salt structure (with the Fm (3) over barm space group). The voltage fade can be well correlated with Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like and disordered rock-salt structures. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that permits Li percolation in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a large quantity of oxygen vacancies, a significant decrease in the Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change provides unique understanding of the voltage fade and capacity degradation mechanisms in the LMR cathode. The results also inspire us to further enhance the reversibility of the LMR cathode via improved surface structural stability. C1 [Zheng, Jianming; Xiao, Jie; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Xu, Pinghong; Browning, Nigel D.] Univ Calif Davis, Davis, CA 95616 USA. [Gu, Meng; Yan, Pengfei; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Chongmin.wang@pnnl.gov; Jiguang.zhang@pnnl.gov RI Gu, Meng/B-8258-2013; yan, pengfei/E-4784-2016; Zheng, Jianming/F-2517-2014; OI yan, pengfei/0000-0001-6387-7502; Zheng, Jianming/0000-0002-4928-8194; Browning, Nigel/0000-0003-0491-251X FU Office of Vehicle Technologies of the U.S. Department of Energy under Advanced Battery Materials Research Program [DE-AC02-05CH11231, 18769]; Laboratory Directed Research and Development Program as part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX This work is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769, under the Advanced Battery Materials Research Program. The microscopic study described in this paper is supported by the Laboratory Directed Research and Development Program as part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) and conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 58 TC 49 Z9 49 U1 23 U2 182 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2015 VL 27 IS 4 BP 1381 EP 1390 DI 10.1021/cm5045978 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC2RO UT WOS:000350192500032 ER PT J AU Gary, DC Terban, MW Billinge, SJL Cossairt, BM AF Gary, Dylan C. Terban, Maxwell W. Billinge, Simon J. L. Cossairt, Brandi M. TI Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates SO CHEMISTRY OF MATERIALS LA English DT Article ID ONE-POT SYNTHESIS; AMORPHOUS CALCIUM-PHOSPHATE; CORE-SHELL NANOCRYSTALS; INP/ZNS NANOCRYSTALS; CDSE NANOCRYSTALS; ALKYLPHOSPHONIC ACIDS; INAS NANOCRYSTALS; NANOCLUSTERS; PRECURSORS; LINEWIDTHS AB We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. Heterogeneous growth from the MSCs directly to InP QDs was observed without intermediate sized particles. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate-terminated MSCs was found to bypass the formation of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400 degrees C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UVvis absorption spectroscopy, powder XRD analysis, and solution P-31{H-1} and H-1 NMR spectroscopy. Finally, the carboxylate-terminated MSCs were identified as effective single-source precursors (SSPs) for the synthesis of high-quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism. C1 [Gary, Dylan C.; Cossairt, Brandi M.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Terban, Maxwell W.; Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Cossairt, BM (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM cossairt@chem.washington.edu FU University of Washington FX University of Washington Startup Funds and the University of Washington Royalty Research Fund. NR 71 TC 31 Z9 31 U1 14 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2015 VL 27 IS 4 BP 1432 EP 1441 DI 10.1021/acs.chemmater.5b00286 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC2RO UT WOS:000350192500039 ER PT J AU Zhou, X Huang, J Barr, KW Lin, ZX Maya, F Abbott, LJ Colina, CM Svec, F Turner, SR AF Zhou, Xu Huang, Jing Barr, Kevin W. Lin, Zhixing Maya, Fernando Abbott, Lauren J. Colina, Coray M. Svec, Frantisek Turner, S. Richard TI Nanoporous hypercrosslinked polymers containing T-g enhancing comonomers SO POLYMER LA English DT Article DE Hypercrosslinked polymer; Nanoporous; Semi-rigid alternating copolymers ID INTRINSIC MICROPOROSITY PIMS; COVALENT ORGANIC FRAMEWORKS; UNITED-ATOM DESCRIPTION; HIGH-SURFACE-AREA; HYDROGEN STORAGE; TRANSFERABLE POTENTIALS; PHASE-EQUILIBRIA; MALEIC-ANHYDRIDE; COPOLYMERS; STILBENE AB Hypercrosslinked polymers containing functionalized alternating copolymer sequences of substituted stilbene or styrene and N-aryl substituted maleimides have been synthesized. Alternating copolymers containing these comonomers possess semi-rigid structures, and incorporation of these units into the precursor polymer particles for hypercrosslinking leads to a systematic increase in T-g and chain stiffness of these materials as the concentration of the comonomers is increased. Surface area and porosity of the subsequent hypercrosslinked polymers were investigated using nitrogen adsorption/desorption isotherms at 77 K. These hypercrosslinked polymers exhibit BET surface areas ranging from 1058 m(2)/g at 25 mol% alternating copolymer incorporation down to loss of measurable surface area at ca. 60% incorporation. The experimental surface area results correlate with predictions from simulations and serve as model systems for future studies on specifically functionalized hypercrosslinked polymer particles. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zhou, Xu; Huang, Jing; Barr, Kevin W.; Turner, S. Richard] Virginia Tech, Dept Chem & Macromol, Blacksburg, VA 24061 USA. [Zhou, Xu; Huang, Jing; Barr, Kevin W.; Turner, S. Richard] Virginia Tech, Interfaces Inst, Blacksburg, VA 24061 USA. [Lin, Zhixing; Maya, Fernando; Svec, Frantisek] Mol Foundry, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abbott, Lauren J.; Colina, Coray M.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Turner, SR (reprint author), Virginia Tech, Dept Chem & Macromol, Blacksburg, VA 24061 USA. EM srturner@vt.edu RI Maya, Fernando/I-3355-2012; Foundry, Molecular/G-9968-2014; OI Maya, Fernando/0000-0003-1458-736X; Abbott, Lauren/0000-0003-3523-9380 FU National Science Foundation (NSF) [DMR-0905231, DMR-1206409, DMR-1310258]; Department of Chemistry at Virginia Tech.; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [OCI-0821527] FX This work was supported by the National Science Foundation (NSF) under grant number DMR-0905231, DMR-1206409, and DMR-1310258, and the Department of Chemistry at Virginia Tech. The specific surface area measurements were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory. This work as well as F. Svec were supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Computational resources for this research were provided in part by the Materials Simulation Center of the Materials Research Institute, the Research Computing and Cyberinfrastructure unit of Penn State Information Technology Services, and the Penn State Center for Nanoscale Science, as well as instrumentation funded by the National Science Foundation (OCI-0821527). We would like to acknowledge Dr. Michael W. Ellis, Dr. Junbo Hou at Institute for Critical Technology and Applied Science for the help with BET surface area measurements. We thank Dr. James E. McGrath's group for assistance with TGA and DSC instruments, and Steve McCartney for assistance with SEM. NR 49 TC 5 Z9 5 U1 3 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD FEB 24 PY 2015 VL 59 BP 42 EP 48 DI 10.1016/j.polymer.2014.12.065 PG 7 WC Polymer Science SC Polymer Science GA CC8KQ UT WOS:000350618000007 ER PT J AU Johnson, QR Lindsay, RJ Nellas, RB Fernandez, EJ Shen, TY AF Johnson, Quentin R. Lindsay, Richard J. Nellas, Ricky B. Fernandez, Elias J. Shen, Tongye TI Mapping Allostery through Computational Glycine Scanning and Correlation Analysis of Residue-Residue Contacts SO BIOCHEMISTRY LA English DT Article ID INDUCED CONFORMATIONAL-CHANGES; PHOTOACTIVE YELLOW PROTEIN; LIGAND-BINDING DOMAIN; MOLECULAR-DYNAMICS; NEGATIVE COOPERATIVITY; ENERGY LANDSCAPE; HOT-SPOTS; RECEPTOR; SITES; PHOSPHORYLATION AB Understanding allosteric mechanisms is essential for the physical control of molecular switches and downstream cellular responses. However, it is difficult to decode essential allosteric motions in a high-throughput scheme. A general two-pronged approach to performing automatic data reduction of simulation trajectories is presented here. The first step involves coarse-graining and identifying the most dynamic residue-residue contacts. The second step is performing principal component analysis of these contacts and extracting the large-scale collective motions expressed via these residue-residue contacts. We demonstrated the method using a protein complex of nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand effector. The important motions that are responsible for the allostery are reported. In contrast to conventional induced-fit and lock-and-key binding mechanisms, a novel "frustrated-fit" binding mechanism of RXR for allosteric control was revealed. C1 [Johnson, Quentin R.; Shen, Tongye] UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Johnson, Quentin R.; Lindsay, Richard J.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Lindsay, Richard J.; Fernandez, Elias J.; Shen, Tongye] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Nellas, Ricky B.] Univ Philippines Diliman, Inst Chem, Quezon City 1101, Philippines. RP Shen, TY (reprint author), UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. EM tshen@utk.edu RI Shen, Tongye/A-9718-2008 OI Shen, Tongye/0000-0003-1495-3104 FU American Chemical Society Petroleum Research Fund [52616-DNI6]; National Science Foundation; National Institutes of Health [DK097337-01]; JDRD program of Science Alliance at UT-ORNL FX Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (52616-DNI6) for partial support of this research. Q.R.J. was supported by a National Science Foundation-funded graduate fellowship program SCALE-IT. E.J.F. is supported in part by National Institutes of Health Grant DK097337-01. Support from the JDRD program of Science Alliance at UT-ORNL is also acknowledged. NR 48 TC 9 Z9 9 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 24 PY 2015 VL 54 IS 7 BP 1534 EP 1541 DI 10.1021/bi501152d PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CC2SB UT WOS:000350193800011 PM 25658131 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaouid, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustosb, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, J Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighria, M Goujdamic, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczkab, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubuab, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Filho, LMDA Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, N Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanov, L Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmittb, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Struebig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, K Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, R Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaouid, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustosb, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighria, M. Goujdamic, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczkab, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubuab, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Filho, L. Manhaes de Andrade Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanov, L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmittb, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Struebig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. . Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the inclusive jet cross-section in proton-proton collisions at root s=7 TeV using 4.5 fb(-1) of data with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID PARTON DISTRIBUTIONS; FRAGMENTATION AB The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb(-1) collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-k(t) algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Neubauer, M. S.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Dimitrievska, A.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Wendland, D.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Wendland, D.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Nedden, M. zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Nessi, M.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Filho, L. Manhaes de Andrade] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nepomuceno, A. A.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politeh Bucharest, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero Y.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Endo, M.; Erdmann, J.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Li, H. L.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hu, X.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartmento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubuab, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Giulini, M.; Kasieczkab, G.; Narayan, R.; Schaetzel, S.; Schmittb, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 305, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Moscow Phys Engn Inst, MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engelmann, R.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartmento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Struebig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bogdanchikov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Soukharev, A. M.; Talyshev, A. A.] Budker Inst Nucl Phys, SB RAS, Novosibirsk 630090, Russia. [Aloisio, A.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, J.; Gupta, S.; Gwenlan, C.; Hall, D.; Havranek, M.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Neumann, M.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartmento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighria, M.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdamic, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaouid, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaouid, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Antos, J.; Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T. .] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsu, C.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustosb, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular, IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, IN2P3, Villeurbanne, France. Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Gao, J.] CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Ottawa, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanov, L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Li, B.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] CNRS, IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Moscow Engn & Phys Inst, MEPhI, Moscow, Russia. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Mashinistov, Ruslan/M-8356-2015; Fullana Torregrosa, Esteban/A-7305-2016; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Boyko, Igor/J-3659-2013; Mitsou, Vasiliki/D-1967-2009; Carquin, Edson/G-5221-2015; Mir, Lluisa-Maria/G-7212-2015; Livan, Michele/D-7531-2012; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Gabrielli, Alessandro/H-4931-2012; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012 OI Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Mashinistov, Ruslan/0000-0001-7925-4676; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Boyko, Igor/0000-0002-3355-4662; Mitsou, Vasiliki/0000-0002-1533-8886; Carquin, Edson/0000-0002-7863-1166; Mir, Lluisa-Maria/0000-0002-4276-715X; Livan, Michele/0000-0002-5877-0062; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Gabrielli, Alessandro/0000-0001-5346-7841; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 57 TC 7 Z9 7 U1 7 U2 71 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 24 PY 2015 IS 2 AR 153 DI 10.1007/JHEP02(2015)153 PG 54 WC Physics, Particles & Fields SC Physics GA CC6QF UT WOS:000350490700001 ER PT J AU Zhang, HH Xing, CH Hu, QS Hong, KL AF Zhang, Hong-Hai Xing, Chun-Hui Hu, Qiao-Sheng Hong, Kunlun TI 'Controlled Pd(0)/t-Bu3P-Catalyzed Suzuki Cross-Coupling Polymerization of AB-Type Monomers with ArPd(t-Bu3P)X or Pd-2(dba)(3)/t-Bu3P/ArX as the Initiator SO MACROMOLECULES LA English DT Article ID CATALYST-TRANSFER POLYCONDENSATION; TRANSFER RADICAL POLYMERIZATION; CHAIN-GROWTH POLYMERIZATION; ARYLPALLADIUM(II) HALIDE-COMPLEXES; CONTROLLED MOLECULAR-WEIGHT; REDUCTIVE ELIMINATION; REGIOREGULAR POLY(3-ALKYLTHIOPHENES); CONDENSATION POLYMERIZATION; ORGANOBORON COMPOUNDS; GRIGNARD METATHESIS AB Controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerizations of AB-type monomers via the chain-growth mechanism with a series of ArPd(t-Bu3P)X (X = I, Br, Cl) complexes as initiators were described. Both isolated PhPd(t-Bu3P)X (X = I, Br) complexes and ArPd(t-Bu3P)X (X = I, Br, Cl) complexes in situ generated from Pd-2(dba)(3)/t-Bu3P/ArX (X = I, Br, Cl) were employed as initiators for the controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization. The in situ generated ArPd(t-Bu3P)X complexes were found to be better initiators in general. Among them, the combinations of p-BrC6H4I, p-HOCH2C6H4Br and p-PhCOC6H4Br with Pd-2(dba)(3)/t-Bu3P were identified as highly robust initiator systems, resulted in polymers with narrow PDIs (1.13-1.20). In addition, the Pd-2(dba)(3)/t-Bu3P/p-HOCH2C6H4Br and Pd-2(dba)(3)/t-Bu3P/p-PhCOC6H4Br initiator systems also offered heterobifunctional chain ends with high fidelity. Our study showed that an additional amount of t-Bu3P in the initiator system helped to achieve the narrow PDIs, likely by stabilizing Pd(0) species in the initiator system via coordination to form more stable Pd(t-Bu3P)(n) (n >= 2) complexes. Our study opens a new avenue toward well-defined conjugated polymers. C1 [Zhang, Hong-Hai; Xing, Chun-Hui; Hu, Qiao-Sheng] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. [Zhang, Hong-Hai; Xing, Chun-Hui; Hu, Qiao-Sheng] CUNY, Grad Ctr, Staten Isl, NY 10314 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Center Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Hu, QS (reprint author), CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. EM qiaosheng.hu@csi.cuny.edu; hongkq@ornl.gov RI Zhang, Honghai/J-9829-2015; Hong, Kunlun/E-9787-2015 OI Zhang, Honghai/0000-0003-1413-8847; Hong, Kunlun/0000-0002-2852-5111 FU NSF [CHE0911533]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We gratefully thank the NSF (CHE0911533) for funding. K.H. thanks the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 66 TC 15 Z9 15 U1 1 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2015 VL 48 IS 4 BP 967 EP 978 DI 10.1021/ma502521u PG 12 WC Polymer Science SC Polymer Science GA CC2SC UT WOS:000350193900010 ER PT J AU Barnhill, SA Bell, NC Patterson, JP Olds, DP Gianneschi, NC AF Barnhill, Sarah A. Bell, Nia C. Patterson, Joseph P. Olds, Daniel P. Gianneschi, Nathan C. TI Phase Diagrams of Polynorbornene Amphiphilic Block Copolymers in Solution SO MACROMOLECULES LA English DT Article ID OPENING-METATHESIS-POLYMERIZATION; DIBLOCK COPOLYMERS; MULTIPLE MORPHOLOGIES; MICELLE MORPHOLOGIES; NANOPARTICLES; ROMP; SIZE; PARTICLES; KINETICS; EQUILIBRIUM AB We report phase diagrams for amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). A library of 30 block copolymers with variable hydrophilic functionality, block ratios, and degrees of polymerization was prepared, and the resulting assemblies were analyzed by small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). A phase diagram of the self-assemblies was constructed for each of the various copolymer systems screened, representing the first of its kind for polynorbornene block copolymers in dilute solutions. Furthermore, we take advantage of kinetic control in the preparation of an array of particle morphologies accessed from the same polymer structure. C1 [Barnhill, Sarah A.; Bell, Nia C.; Patterson, Joseph P.; Gianneschi, Nathan C.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Olds, Daniel P.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Gianneschi, NC (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ngianneschi@ucsd.edu RI Olds, Daniel/D-1722-2016; Patterson, Joseph/M-9981-2016 OI Olds, Daniel/0000-0002-4611-4113; Patterson, Joseph/0000-0002-1975-1854 FU AFOSR through a PECASE grant [FA9550-11-1-0105]; AFOSR through a BRI grant [FA99550-12-1-0414]; NIH; DOE [DE-AC52-06NA25396] FX We acknowledge generous support for this research from the AFOSR through a PECASE (FA9550-11-1-0105) and from a BRI grant (FA99550-12-1-0414). TEM analysis of materials was conducted at the UCSD Cryo-Electron Microscopy Facility, supported by NIH funding to Dr. Timothy S. Baker and the Agouron Institute gifts to UCSD. The authors also gratefully acknowledge the Lujan Neutron Scattering Center at Los Alamos National Science Center and scientists Dr. Rex Hjelm, Dr. Monika Hartl, and Dr. Daniel Olds for their assistance in conducting and analyzing SANS experiments on the Low-Q Diffractometer. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 71 TC 13 Z9 13 U1 7 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2015 VL 48 IS 4 BP 1152 EP 1161 DI 10.1021/ma502163j PG 10 WC Polymer Science SC Polymer Science GA CC2SC UT WOS:000350193900030 ER PT J AU Buitrago, CF Bolintineanu, DS Seitz, ME Opper, KL Wagener, KB Stevens, MJ Frischknecht, AL Winey, KI AF Buitrago, C. Francisco Bolintineanu, Dan S. Seitz, Michelle E. Opper, Kathleen L. Wagener, Kenneth B. Stevens, Mark J. Frischknecht, Amalie L. Winey, Karen I. TI Direct Comparisons of X-ray Scattering and Atomistic Molecular Dynamics Simulations for Precise Acid Copolymers and lonomers SO MACROMOLECULES LA English DT Article ID SULFONATED POLYSTYRENE IONOMERS; ION-CONTAINING POLYETHYLENES; NANOSCALE MORPHOLOGY; CATION TYPE; CRYSTALLIZATION; ARCHITECTURES; TEMPERATURE; CONDUCTORS; MELTS; SHAPE AB Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. In these polymers, the simulations at 120 degrees C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). The modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average distance between branches of type 2 or 3 aggregates. This direct comparison of X-ray scattering data to the atomistic MD simulations is a substantive step toward providing a comprehensive, predictive model for ionomer morphology, gives substantial support for this atomistic MD model, and provides new credibility to the presence of stringy, branched, and percolated ionic aggregates in precise ionomer melts. C1 [Buitrago, C. Francisco; Seitz, Michelle E.; Winey, Karen I.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Buitrago, C. Francisco; Seitz, Michelle E.; Winey, Karen I.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Opper, Kathleen L.; Wagener, Kenneth B.] Univ Florida, Dept Chem, George & Josephine Butler Polymer Res Lab, Gainesville, FL 32611 USA. RP Frischknecht, AL (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM alfrisc@sandia.gov; winey@seas.upenn.edu RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 FU National Science Foundation Polymers Program [DMR 1103858, DMR 0703261]; Sandia National Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC04-94AL85000]; U.S. Army Research Laboratory; U.S. Army Research Office [W911NF-13-1-0362]; Miller Institute for Basic Research in Science at the University of California Berkeley FX This work was supported by the National Science Foundation Polymers Program, Grant DMR 1103858 (Buitrago, Seitz, and Winey) and Grant DMR 0703261 (Opper, Wagener). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States National Science Foundation. This work was also supported by the Sandia National Laboratory Directed Research and Development Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract DE-AC04-94AL85000. The authors thank L. Robert Middleton for contributions to the manuscript. K.B.W. also acknowledges funding from the U.S. Army Research Laboratory and the U.S. Army Research Office under W911NF-13-1-0362. K.I.W. was also supported by the Miller Institute for Basic Research in Science at the University of California Berkeley. NR 45 TC 14 Z9 14 U1 9 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2015 VL 48 IS 4 BP 1210 EP 1220 DI 10.1021/ma5022117 PG 11 WC Polymer Science SC Polymer Science GA CC2SC UT WOS:000350193900037 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Akimoto, R Al-Bataineh, H Al-Ta'ani, H Alexander, J Angerami, A Aoki, K Apadula, N Aphecetche, L Aramaki, Y Asai, J Asano, H Aschenauer, EC Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Bannier, B Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Baumgart, S Bazilevsky, A Belikov, S Belmont, R Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Bing, X Blau, DS Boissevain, JG Bok, JS Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Castera, P Chang, BS Chang, WC Charvet, JL Chen, CH Chernichenko, S Chi, CY Chiu, M Choi, IJ Choi, JB Choi, S Choudhury, RK Christiansen, P Chujo, T Chung, P Churyn, A Chvala, O Cianciolo, V Citron, Z Cole, BA Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K Datta, A Daugherity, MS David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dharmawardane, KV Dietzsch, O Ding, L Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durham, JM Durum, A Dutta, D Dzhordzhadze, V D'Orazio, L Edwards, S Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gainey, K Gal, C Garishvili, A Garishvili, I Glenn, A Gong, H Gong, X Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Guo, L Gustafsson, HA Hachiya, T Henni, AH Haggerty, JS Hahn, KI Hamagaki, H Han, R Hanks, J Hartouni, EP Haruna, K Hashimoto, K Haslum, E Hayano, R He, X Heffner, M Hemmick, TK Hester, T Hill, JC Hohlmann, M Hollis, RS Holzmann, W Homma, K Hong, B Horaguchi, T Hori, Y Hornback, D Huang, S Ichihara, T Ichimiya, R Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Iordanova, A Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Ivanishchev, D Jacak, BV Javani, M Jia, J Jiang, X Jin, J Johnson, BM Joo, KS Jouan, D Jumper, DS Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneti, S Kang, BH Kang, JH Kang, JS Kapustinsky, J Karatsu, K Kasai, M Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, C Kim, DH Kim, DJ Kim, E Kim, EJ Kim, HJ Kim, KB Kim, SH Kim, YJ Kim, YK Kinney, E Kiriluk, K Kiss, A Kistenev, E Klatsky, J Klay, J Klein-Boesing, C Kleinjan, D Kline, P Kochenda, L Komatsu, Y Komkov, B Konno, M Koster, J Kotchetkov, D Kotov, D Kozlov, A Kral, A Kravitz, A Krizek, F Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, B Lee, DM Lee, J Lee, KB Lee, KS Lee, SH Lee, SR Lee, T Leitch, MJ Leite, MAL Leitgab, M Lenzi, B Lewis, B Li, X Liebing, P Lim, SH Levy, LAL Liska, T Litvinenko, A Liu, H Liu, MX Love, B Lynch, D Maguire, CF Makdisi, YI Makek, M Malakhov, A Malik, MD Manion, A Manko, VI Mannel, E Mao, Y Masek, L Masui, H Masumoto, S Matathias, F McCumber, M McGaughey, PL McGlinchey, D McKinney, C Means, N Mendoza, M Meredith, B Miake, Y Mibe, T Mignerey, AC Mikes, P Miki, K Milov, A Mishra, DK Mishra, M Mitchell, JT Miyachi, Y Miyasaka, S Mohanty, AK Moon, HJ Morino, Y Morreale, A Morrison, DP Motschwiller, S Moukhanova, TV Mukhopadhyay, D Murakami, T Murata, J Nagae, T Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, KR Nakamura, T Nakano, K Nattrass, C Nederlof, A Newby, J Nguyen, M Nihashi, M Niida, T Nouicer, R Novitzky, N Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Oka, M Okada, K Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, BH Park, IH Park, J Park, SK Park, WJ Pate, SF Patel, L Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Petti, R Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Reynolds, D Riabov, V Riabov, Y Richardson, E Riveli, N Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sano, M Sarsour, M Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Sen, A Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Soumya, M Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sun, J Sziklai, J Takagui, EM Takahara, A Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tarjan, P Tennant, E Themann, H Thomas, TL Todoroki, T Togawa, M Toia, A Tomasek, L Tomasek, M Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tsuji, T Vale, C Valle, H van Hecke, HW Vargyas, M Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vossen, A Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Watanabe, YS Wei, F Wei, R Wessels, J Whitaker, S White, SN Winter, D Wolin, S Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S You, Z Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zelenski, A Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Akimoto, R. Al-Bataineh, H. Al-Ta'ani, H. Alexander, J. Angerami, A. Aoki, K. Apadula, N. Aphecetche, L. Aramaki, Y. Asai, J. Asano, H. Aschenauer, E. C. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Bannier, B. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Baumgart, S. Bazilevsky, A. Belikov, S. Belmont, R. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Bing, X. Blau, D. S. Boissevain, J. G. Bok, J. S. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Castera, P. Chang, B. S. Chang, W. C. Charvet, J. -L. Chen, C. -H. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choi, J. B. Choi, S. Choudhury, R. K. Christiansen, P. Chujo, T. Chung, P. Churyn, A. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. Connors, M. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. Datta, A. Daugherity, M. S. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dharmawardane, K. V. Dietzsch, O. Ding, L. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durham, J. M. Durum, A. Dutta, D. Dzhordzhadze, V. D'Orazio, L. Edwards, S. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gainey, K. Gal, C. Garishvili, A. Garishvili, I. Glenn, A. Gong, H. Gong, X. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Guo, L. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haggerty, J. S. Hahn, K. I. Hamagaki, H. Han, R. Hanks, J. Hartouni, E. P. Haruna, K. Hashimoto, K. Haslum, E. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Hester, T. Hill, J. C. Hohlmann, M. Hollis, R. S. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hori, Y. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Iordanova, A. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Ivanishchev, D. Jacak, B. V. Javani, M. Jia, J. Jiang, X. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneti, S. Kang, B. H. Kang, J. H. Kang, J. S. Kapustinsky, J. Karatsu, K. Kasai, M. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, C. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, H. J. Kim, K. -B. Kim, S. H. Kim, Y. -J. Kim, Y. K. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klatsky, J. Klay, J. Klein-Boesing, C. Kleinjan, D. Kline, P. Kochenda, L. Komatsu, Y. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kotov, D. Kozlov, A. Kral, A. Kravitz, A. Krizek, F. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, B. Lee, D. M. Lee, J. Lee, K. B. Lee, K. S. Lee, S. H. Lee, S. R. Lee, T. Leitch, M. J. Leite, M. A. L. Leitgab, M. Lenzi, B. Lewis, B. Li, X. Liebing, P. Lim, S. H. Levy, L. A. Linden Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Makek, M. Malakhov, A. Malik, M. D. Manion, A. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Masumoto, S. Matathias, F. McCumber, M. McGaughey, P. L. McGlinchey, D. McKinney, C. Means, N. Mendoza, M. Meredith, B. Miake, Y. Mibe, T. Mignerey, A. C. Mikes, P. Miki, K. Milov, A. Mishra, D. K. Mishra, M. Mitchell, J. T. Miyachi, Y. Miyasaka, S. Mohanty, A. K. Moon, H. J. Morino, Y. Morreale, A. Morrison, D. P. Motschwiller, S. Moukhanova, T. V. Mukhopadhyay, D. Murakami, T. Murata, J. Nagae, T. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, K. R. Nakamura, T. Nakano, K. Nattrass, C. Nederlof, A. Newby, J. Nguyen, M. Nihashi, M. Niida, T. Nouicer, R. Novitzky, N. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Oka, M. Okada, K. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, B. H. Park, I. H. Park, J. Park, S. K. Park, W. J. Pate, S. F. Patel, L. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Petti, R. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Reynolds, D. Riabov, V. Riabov, Y. Richardson, E. Riveli, N. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sano, M. Sarsour, M. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Sen, A. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Soumya, M. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sun, J. Sziklai, J. Takagui, E. M. Takahara, A. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tarjan, P. Tennant, E. Themann, H. Thomas, T. L. Todoroki, T. Togawa, M. Toia, A. Tomasek, L. Tomasek, M. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tsuji, T. Vale, C. Valle, H. van Hecke, H. W. Vargyas, M. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vossen, A. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Watanabe, Y. S. Wei, F. Wei, R. Wessels, J. Whitaker, S. White, S. N. Winter, D. Wolin, S. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. You, Z. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zelenski, A. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Measurement of gamma(1S+2S+3S) production in p plus p and Au plus Au collisions at root sNN=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID UPSILON-PRODUCTION; P(P)OVER-BAR COLLISIONS; ROOT-S=1.8 TEV; J-PSI; SUPPRESSION; QCD; RESONANCES; GAMMA AB Measurements of bottomonium production in heavy-ion and p + p collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three states, (1S + 2S + 3S), was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au + Au and p + p collisions at root sNN = 200 GeV. The (1S + 2S + 3S) -> e(+)e(-) differential cross section at midrapidity was found to be B(ee)d sigma/dy = 108 +/- 38 (stat) +/- 15 (syst) +/- 11 (luminosity) pb in p + p collisions. The nuclear modification factor in the 30% most central Au + Au collisions indicates a suppression of the total. state yield relative to the extrapolation from p + p collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider. C1 [Basye, A. T.; Daugherity, M. S.; Gainey, K.; Qu, H.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Grau, N.] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mishra, D. K.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.] CUNY, Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Edwards, S.; Makdisi, Y. I.; Zelenski, A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aschenauer, E. C.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Chvala, O.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Hollis, R. S.; Kleinjan, D.; Mendoza, M.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Masek, L.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Choi, J. B.; Kim, E. -J.; Kim, K. -B.; Lee, S. R.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing 102413, Peoples R China. [Akimoto, R.; Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Hori, Y.; Isobe, T.; Kajihara, F.; Komatsu, Y.; Masumoto, S.; Morino, Y.; Oda, S. X.; Ozawa, K.; Takahara, A.; Tsuchimoto, Y.; Tsuji, T.; Watanabe, Y. S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Levy, L. A. Linden; McCumber, M.; McGlinchey, D.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Tomasek, M.; Virius, M.; Vrba, V.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.; Vargyas, M.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.; Klatsky, J.; McGlinchey, D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Javani, M.; Patel, L.; Qu, H.; Sarsour, M.; Sen, A.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Kang, B. H.; Kang, J. S.; Kim, Y. K.; Lee, B.; Park, B. H.] Hanyang Univ, Seoul 133792, South Korea. [Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Nihashi, M.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, D.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Choi, I. J.; Perdekamp, M. Grosse; Jumper, D. S.; Kim, Y. -J.; Koster, J.; Layton, D.; Leitgab, M.; McKinney, C.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Vossen, A.; Wolin, S.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.; Semenov, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Ding, L.; Dion, A.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Silva, C. L.; Vale, C.; Wei, F.; Whitaker, S.] Iowa State Univ, Ames, IA 50011 USA. [Imai, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Naka, Ibaraki 3191195, Japan. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Iinuma, H.; Mibe, T.; Nagamiya, S.; Saito, N.; Sawada, S.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, B. I.; Kim, C.; Kweon, M. J.; Lee, K. B.; Lee, K. S.; Park, S. K.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Blau, D. S.; Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow 123098, Russia. [Aoki, K.; Asano, H.; Dairaku, S.; Fukao, Y.; Imai, K.; Karatsu, K.; Murakami, T.; Nagae, T.; Nakamura, K. R.; Saito, N.; Shoji, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore 54792, Pakistan. [Aidala, C.; Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Durham, J. M.; Guo, L.; Jiang, X.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.; You, Z.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Blaise Pascal, CNRS IN2P3, LPC, F-63177 Aubiere, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [D'Orazio, L.; Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Aidala, C.; Datta, A.; Kawall, D.; Stepanov, M.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.; Motschwiller, S.; Nederlof, A.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.; Moon, H. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Samsonov, V.; Taranenko, A.] Natl Res Nucl Univ, MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia. [Bassalleck, B.; Butsyk, S.; Fields, D. E.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Ta'ani, H.; Bok, J. S.; Dharmawardane, K. V.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Tennant, E.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Bing, X.; Frantz, J. E.; Kotchetkov, D.; Riveli, N.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Enokizono, A.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, IPN Orsay, CNRS IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Ivanishchev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Kotov, D.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Aramaki, Y.; Asai, J.; Asano, H.; Baumgart, S.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hashimoto, K.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Ishihara, M.; Isobe, T.; Kametani, S.; Karatsu, K.; Kasai, M.; Kurita, K.; Kurosawa, M.; Mao, Y.; Miyachi, Y.; Miyasaka, S.; Murakami, T.; Murata, J.; Nagamiya, S.; Nakagawa, I.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nihashi, M.; Onuki, Y.; Ouchida, M.; Rykov, V. L.; Saito, N.; Sakashita, K.; Seidl, R.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Todoroki, T.; Togawa, M.; Torii, H.; Watanabe, Y.; Yamaguchi, Y. L.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bathe, S.; Boyle, K.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Nouicer, R.; Okada, K.; Saito, N.; Seidl, R.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Hashimoto, K.; Kasai, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.; Kotov, D.; Riabov, Y.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Choi, S.; Kim, E.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Gong, X.; Holzmann, W.; Issah, M.; Jia, J.; Lacey, R.; Reynolds, D.; Soumya, M.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Apadula, N.; Atomssa, E. T.; Averbeck, R.; Bannier, B.; Bennett, R.; Boyle, K.; Campbell, S.; Castera, P.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Frantz, J. E.; Gal, C.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Kaneti, S.; Kline, P.; Lee, S. H.; Lewis, B.; Manion, A.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Petti, R.; Proissl, M.; Sahlmueller, B.; Sun, J.; Taneja, S.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, SUBATECH Ecole Mines Nantes, CNRS IN2P3, F-44307 Nantes, France. [Garishvili, A.; Garishvili, I.; Hornback, D.; Kwon, Y.; Nattrass, C.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Miyachi, Y.; Miyasaka, S.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Horaguchi, T.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niida, T.; Oka, M.; Sakai, S.; Sano, M.; Sato, T.; Shimomura, M.; Tanabe, R.; Todoroki, T.; Tomita, Y.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Greene, S. V.; Huang, S.; Issah, M.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Makek, M.; Milov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Csoergo, T.; Nagy, M. I.; Ster, A.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci Wigner RCP, RMKI, Wigner Res Ctr Phys, Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, H. J.; Kim, S. H.; Kwon, Y.; Lim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Makek, M.] Univ Zagreb, Fac Sci, Dept Phys, HR-10002 Zagreb, Croatia. RP Morrison, DP (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM morrison@bnl.gov; jamie.nagle@colorado.edu RI Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sen, Abhisek/J-1157-2016; Nattrass, Christine/J-6752-2016; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Sen, Abhisek/0000-0003-1192-3938; Nattrass, Christine/0000-0002-8768-6468; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Croatian Science Foundation; Ministry of Science, Education, and Sports (Croatia); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat a l' Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA; Hungarian American Enterprise Scholarship Fund (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation; WCU program of the Ministry Education Science and Technology (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science, Russian Academy of Sciences, Russian Academy of Sciences (Russia); VR and Wallenberg Foundation (Sweden); U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; U.S.-Hungarian Fulbright Foundation for Educational Exchange; U.S.-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Croatian Science Foundation and Ministry of Science, Education, and Sports (Croatia); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat a l' Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA, and the Hungarian American Enterprise Scholarship Fund (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science, Russian Academy of Sciences, Russian Academy of Sciences (Russia); VR and Wallenberg Foundation (Sweden); the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; the U.S.-Hungarian Fulbright Foundation for Educational Exchange; and the U.S.-Israel Binational Science Foundation. NR 75 TC 3 Z9 3 U1 9 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 24 PY 2015 VL 91 IS 2 AR 024913 DI 10.1103/PhysRevC.91.024913 PG 16 WC Physics, Nuclear SC Physics GA CC1MK UT WOS:000350104800006 ER PT J AU Felmy, AR Qafoku, O Arey, BW Kovarik, L Liu, J Perea, D Ilton, ES AF Felmy, Andrew R. Qafoku, Odeta Arey, Bruce W. Kovarik, Libor Liu, Jia Perea, Daniel Ilton, Eugene S. TI Enhancing magnesite formation at low temperature and high CO2 pressure: The impact of seed crystals and minor components SO CHEMICAL GEOLOGY LA English DT Article DE Magnesite; Carbon dioxide; Nucleation; Seed crystals ID CALCITE-STRUCTURE CARBONATES; SATURATED SUPERCRITICAL CO2; AQUIFER DISPOSAL; OLIVINE CARBONATION; AQUEOUS-SOLUTION; DEGREES-C; SEQUESTRATION; PRECIPITATION; WATER; FORSTERITE AB The formation of magnesite was followed in aqueous solution containing initially added Mg(OH)(2) equilibrated with supercritical carbon dioxide (90 atm pressure, 50 degrees C) in the presence of introduced magnesite particles and minor components, Co(II). As expected, the introduction of magnesite particles accelerated the formation of magnesite from solution. However, the formation rate of magnesite was even greater when small concentrations of Co(II) were introduced, indicating that the increased rate of magnesite formation in the presence of Co(II) was not solely due to the addition of a growth promoting surface. Detailed analysis of the magnesite particles by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atom probe tomography (APT) revealed that the originally added Co(II) was concentrated in the center but also present throughout the growing magnesite particles. Addition of the Co(II) in different chemical forms (i.e. as solid phase CoCO3 or Co(OH)(2)) could alter the growth rate of magnesite depending upon the addition of bicarbonate to the starting solution. Geochemical modeling calculations indicate that this difference is related to the thermodynamic stability of these different phases in the initial solutions. More broadly, these results indicate that the presence of even small concentrations of foreign ions that form carbonate compounds with a similar structure as magnesite can be incorporated into the magnesite lattice, accelerating the formation of anhydrous carbonates in natural environments. (C) 2015 Elsevier B.V. All rights reserved. C1 [Felmy, Andrew R.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Felmy, Andrew R.; Qafoku, Odeta; Ilton, Eugene S.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Arey, Bruce W.; Kovarik, Libor; Liu, Jia; Perea, Daniel] EMSL, Richland, WA 99253 USA. RP Felmy, AR (reprint author), Pacific Northwest Natl Lab, POB 999,MS K8-96, Richland, WA 99352 USA. EM ar.felmy@pnnl.gov RI Perea, Daniel/A-5345-2010; Kovarik, Libor/L-7139-2016 FU Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences [DE-AC06-76RLO-1830]; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences (#DE-AC06-76RLO-1830). A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for DOE by Battelle. NR 41 TC 2 Z9 2 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD FEB 24 PY 2015 VL 395 BP 119 EP 125 DI 10.1016/j.chemgeo.2014.12.003 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CB8EN UT WOS:000349861600010 ER PT J AU Dickson, JO Harsh, JB Lukens, WW Pierce, EM AF Dickson, Johnbull O. Harsh, James B. Lukens, Wayne W. Pierce, Eric M. TI Perrhenate incorporation into binary mixed sodalites: The role of anion size and implications for technetium-99 sequestration SO CHEMICAL GEOLOGY LA English DT Article DE Mixed-anion sodalites; Anion selectivity; Distribution coefficient; Perrhenate; Pertechnetate, technetium-99; Nuclear waste ID RAY-ABSORPTION SPECTROSCOPY; TECHNETIUM; PERTECHNETATE; SPECIATION; BEHAVIOR; RHENIUM; NITRATE; NMR AB Perrhenate (ReO4-), as a TcO4- analogue, was incorporated into mixed-anion sodalites from binary solutions containing ReO4- and a competing anion Xn- (Cl-, CO32-, SO42-, MnO4- , or WO42-). Our objective was to determine the extent of solid solution formation and the dependence of competing ion selectivity on ion size. Using equivalent aqueous concentrations of the anions (ReO4- /Xn- molar ratio = 1:1), we synthesized mixed-anion sodalites from zeolite and NaOH at 90 degrees C for 96 h. The resulting solids were characterized by bulk chemical analysis, powder X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure (XANES) spectroscopy to determine crystal structure, chemical composition, morphology, and rhenium (Re) oxidation state. Rhenium in the solid phase occurred predominately as Re(VII) O-4(-) in the sodalites, which have a primitive cubic pattern in the space group P (4) over bar 3n. The refined unit-cell parameters of the mixed sodalites ranged from 8.88 to 9.15 angstrom and showed a linear dependence on the size and mole fraction of the incorporated anion(s). The ReO4- selectivity, represented by its distribution coefficient (K-d), increased in the following order: Cl- < NO3- < MnO4- and CO32- < SO42- < WO42- for the monovalent and divalent anions, respectively. The relationship between the ReO4- distribution coefficient and competing anion size was nonlinear. When the difference in ionic radius (DIR) between ReO4- and Xn- (n = 1 or 2) was greater than similar to 12%, then ReO4- incorporation into sodalite was insignificant. The results imply that anion size is the major factor that determines sodalite anion compositions. Given the similarity in chemical behavior and anion size, ReO4- serves as a suitable analogue for TcO4- under oxidizing conditions where both elements are expected to remain as oxyanions in the +7 oxidation state. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dickson, Johnbull O.; Harsh, James B.] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA. [Lukens, Wayne W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Pierce, Eric M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Dickson, JO (reprint author), Washington State Univ, Dept Crop & Soil Sci, POB 646420, Pullman, WA 99164 USA. EM J.dickson@wsu.edu RI Pierce, Eric/G-1615-2011; Dickson, Johnbull/I-3637-2016; Harsh, James/C-7455-2014 OI Pierce, Eric/0000-0002-4951-1931; Dickson, Johnbull/0000-0003-2916-7368; Harsh, James/0000-0002-0177-3342 FU U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program (SBR) [DE-PS02-09ER65075, DE-AC05-00OR22725]; DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, Heavy Element Chemistry Program [DE-AC02-05CH11231] FX This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program (SBR), and was performed at Washington State University under contract No. DE-PS02-09ER65075 and at Oak Ridge National Laboratory under contract No. DE-AC05-00OR22725. Portions of this work were supported by DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, Heavy Element Chemistry Program and were performed at Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231. Portions of this work were performed at the Stanford Synchrotron Radiation Lightsource (SSRL), which is a DOE office of Science user facility operated by Stanford University. We are also indebted to the staff at the Franceschi Microscopy and Imaging Center at Washington State University for access to and assistance with the use of their SEM facilities. NR 35 TC 9 Z9 9 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD FEB 24 PY 2015 VL 395 BP 138 EP 143 DI 10.1016/j.chemgeo.2014.12.009 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CB8EN UT WOS:000349861600012 ER PT J AU Friedman, B Larson, D AF Friedman, B. Larson, D. TI Overbarrier model with electron backcapture SO PHYSICAL REVIEW A LA English DT Article ID MULTIPLY-CHARGED IONS; OVER-BARRIER MODEL; CROSS-SECTIONS; COLLISIONS; EXCHANGE; ATOMS; HYDROGEN; CAPTURE; IONIZATION; VAPORS AB We present an extension of the classical overbarrier model [F. Sattin, Phys. Rev. A 62, 042711 (2000)] to include the effect of electron backcapture. Backcapture is the process by which an electron that has already been captured by the projectile ion is recaptured by the target atom. Backcapture reduces the electron capture cross section at low impact velocities when the projectile ionization energy is less than that of the target. This creates a cross-section peak. We alter the location of this peak to correspond to that predicted by an adiabatic criterion by using a free parameter of the model. These extensions bring the overbarrier model more in line with experimental data, especially at low impact velocity. C1 [Friedman, B.; Larson, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Friedman, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM friedman11@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 22 TC 0 Z9 0 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 24 PY 2015 VL 91 IS 2 AR 022710 DI 10.1103/PhysRevA.91.022710 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CC1LL UT WOS:000350102100005 ER PT J AU Sharma, A Rabani, E AF Sharma, Auditya Rabani, Eran TI Landauer current and mutual information SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM AB We study quantum evolution of the mutual information of a quantum dot connected to left and right leads initially maintained at chemical potentials mu(L) and mu(R), respectively, within the noninteracting resonant-level model. The full nonequilirbium mixed state density matrix of the whole system is written down exactly, and the mutual information of the dot with respect to the leads is computed. A strong and direct correlation is found between the Landauer current and the mutual information at all times, the steady-state values in particular displaying a quadratic relationship at high temperatures. Strikingly, it is found that one can obtain a maximal mutual information by simply applying a sufficiently large "source-drain" voltage V-SD even at high temperatures. C1 [Sharma, Auditya] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Rabani, Eran] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rabani, Eran] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sharma, A (reprint author), Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. FU Center for Nanoscience and Nanotechnology at Tel Aviv University; Israel Science Foundation [611/11] FX A.S. gratefully acknowledges helpful discussions with Simone Paganelli, Giacomo Gori, Pasquale Sodano, and Andrea Trombettoni. Both authors thank Tal Levy and Eli Wilner for helpful discussions. A.S. is grateful to The Center for Nanoscience and Nanotechnology at Tel Aviv University for a postdoctoral fellowship. E.R. thanks the Marko and Lucie Chaoul Chair. This work was supported by the Israel Science Foundation (Grant No. 611/11). We are grateful to the anonymous referee and Peter Young for helping tighten our understanding of the notion of mutual information in relation to entanglement, Shivaji Sondhi for inspiring an analytical study of the high-temperature quadratic dependence, and Alexei Andreanov for a remark about the spectral function of a matrix. NR 29 TC 1 Z9 1 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 24 PY 2015 VL 91 IS 8 AR 085121 DI 10.1103/PhysRevB.91.085121 PG 7 WC Physics, Condensed Matter SC Physics GA CC1MG UT WOS:000350104200003 ER PT J AU Yin, W Smithe, K Weiser, P Stavola, M Fowler, WB Boatner, L Pearton, SJ Hays, DC Koch, SG AF Yin, Weikai Smithe, Kirby Weiser, Philip Stavola, Michael Fowler, W. Beall Boatner, Lynn Pearton, Stephen J. Hays, David C. Koch, Sandro G. TI Hydrogen centers and the conductivity of In2O3 single crystals SO PHYSICAL REVIEW B LA English DT Article ID HARTREE-FOCK; DOPED IN2O3; OXIDE; SEMICONDUCTORS; MOBILITY; DENSITY AB A series of infrared absorption experiments and complementary theory have been performed to determine the properties of OH and OD centers in In2O3 single crystals. Annealing In2O3 samples in H-2 or D-2 at temperatures near 450 degrees C produces an n-type layer approximate to 0.06mm thick with an n-type doping of 1.6 x 10(19) cm(-3). The resulting free-carrier absorption is correlated with an OH center with a vibrational frequency of 3306 cm(-1) that we associate with interstitial H+. Additional O-H (O-D) vibrational lines are assigned to metastable configurations of the interstitial H+ (D+) center and complexes of H (D) with In vacancies. Unlike other oxides studied recently where H trapped at an oxygen vacancy is the dominant shallow donor (ZnO and SnO2, for example), interstitial H+ is found to be the dominant H-related shallow donor in In2O3. C1 [Yin, Weikai; Smithe, Kirby; Weiser, Philip; Stavola, Michael; Fowler, W. Beall] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Yin, Weikai; Smithe, Kirby; Weiser, Philip; Stavola, Michael; Fowler, W. Beall] Lehigh Univ, Sherman Fairchild Lab, Bethlehem, PA 18015 USA. [Boatner, Lynn] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pearton, Stephen J.; Hays, David C.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Koch, Sandro G.] Tech Univ Dresden, D-01062 Dresden, Germany. RP Yin, W (reprint author), Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. EM michael.stavola@Lehigh.edu RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU National Science Foundation (NSF) [DMR 1160756]; NSF Research Experiences for Undergraduates (REU) Program [PHY-0849416]; Humboldt Foundation; U.S. Department of Energy, Basic Energy Sciences, Materials Science and Technology Division; NSF [EPMD 1159682] FX The work at Lehigh University was supported by National Science Foundation (NSF) Grant No. DMR 1160756 and NSF Research Experiences for Undergraduates (REU) Program Grant No. PHY-0849416. M.S. is grateful for support for visits to Dresden from the Humboldt Foundation. Research at the ORNL for L.A.B. is sponsored by the U.S. Department of Energy, Basic Energy Sciences, Materials Science and Technology Division. The work at the University of Florida was partially supported by NSF Grant No. EPMD 1159682. NR 37 TC 5 Z9 5 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 24 PY 2015 VL 91 IS 7 AR 075208 DI 10.1103/PhysRevB.91.075208 PG 7 WC Physics, Condensed Matter SC Physics GA CC1MC UT WOS:000350103800003 ER PT J AU Mertens, S Dolde, K Korzeczek, M Glueck, F Groh, S Martin, RD Poon, AWP Steidl, M AF Mertens, S. Dolde, K. Korzeczek, M. Glueck, F. Groh, S. Martin, R. D. Poon, A. W. P. Steidl, M. TI Wavelet approach to search for sterile neutrinos in tritium beta-decay spectra SO PHYSICAL REVIEW D LA English DT Article ID WARM DARK-MATTER; DENSITY PROFILES; MODEL; MASS; EMISSION; GALAXIES AB Sterile neutrinos in the mass range of a few keV are candidates for both cold and warm dark matter. An admixture of a heavy neutrino mass eigenstate to the electron neutrino would result in a minuscule distortion-a kink-in a beta-decay spectrum. In this paper we show that a wavelet transform is a very powerful shape analysis method to detect this signature. For a tritium source strength, similar to what is expected from the KATRIN experiment, a statistical sensitivity to active-to-sterile neutrino mixing down to sin(2)theta = 10(-6) (90% C. L.) can be obtained after three years of measurement time. It is demonstrated that the wavelet approach is largely insensitive to systematic effects that result in smooth spectral modifications. To make full use of this analysis technique a high- resolution measurement (FWHM of similar to 100 eV) of the tritium beta-decay spectrum is required. C1 [Mertens, S.; Martin, R. D.; Poon, A. W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Mertens, S.; Dolde, K.; Korzeczek, M.; Glueck, F.; Groh, S.; Steidl, M.] Karlsruhe Inst Technol, Inst Nucl Phys, D-76344 Eggenstein Leopoldshafen, Germany. [Glueck, F.] Wigner Res Inst Phys, H-1525 Budapest, Hungary. [Martin, R. D.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. RP Mertens, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Inst Nucl & Particle Astrophys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Feodor Lynen Research Fellowship of the Alexander von Humboldt Foundation; Helmholtz Association; KHYS at KIT; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; KIT FX S. Mertens gratefully acknowledges support by a Feodor Lynen Research Fellowship of the Alexander von Humboldt Foundation, the Helmholtz Association, and KHYS at KIT. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231. K. Dolde and M. Korzeczek would like to thank KIT for financial support and LBNL for hospitality during their internship at Berkeley. Special thanks to D. Radford for fruitful discussions. NR 60 TC 9 Z9 9 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 24 PY 2015 VL 91 IS 4 AR 042005 DI 10.1103/PhysRevD.91.042005 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC1MY UT WOS:000350106300001 ER PT J AU Lukyanov, SL Saleur, H Jacobsen, JL Vasseur, R AF Lukyanov, Sergei L. Saleur, Hubert Jacobsen, Jesper L. Vasseur, Romain TI Exact Overlaps in the Kondo Problem SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM IMPURITY PROBLEMS; CHANGING OPERATORS; ABSORPTION; METALS; FIELD AB It is well known that the ground states of a Fermi liquid with and without a single Kondo impurity have an overlap that decays as a power law of the system size, expressing the Anderson orthogonality catastrophe. Ground states with two different values of the Kondo couplings have, however, a finite overlap in the thermodynamic limit. This overlap, which plays an important role in quantum quenches for impurity systems, is a universal function of the ratio of the corresponding Kondo temperatures, which is not accessible using perturbation theory or the Bethe ansatz. Using a strategy based on the integrable structure of the corresponding quantum field theory, we propose an exact formula for this overlap, which we check against extensive density matrix renormalization group calculations. C1 [Lukyanov, Sergei L.; Saleur, Hubert] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. [Saleur, Hubert] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Saleur, Hubert] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Jacobsen, Jesper L.] Ecole Normale Super, LPTENS, F-75231 Paris, France. [Jacobsen, Jesper L.] Univ Paris 06, F-75252 Paris, France. [Vasseur, Romain] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Vasseur, Romain] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Lukyanov, SL (reprint author), Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. OI Jacobsen, Jesper Lykke/0000-0002-7615-2874 FU French Agence Nationale pour la Recherche (ANR); Institut Universitaire de France; U.S. DOE [DE-FG03-01ER45908]; Quantum Materials program of Lawrence Berkeley National Laboratory; NSF [NSF-PHY-1404056] FX We thank I. Affleck, N. Andrei, J. Dubail, F. H. L. Essler, A. M. Tsvelick, and A. B. Zamolodchikov for useful discussions. We also thank A. Weichselbaum for checking our formula in the isotropic case using the NRG. H. S. gratefully acknowledges the hospitality of the Rutgers Physics Department where this work was started. The work of H. S. and J. L. J. was supported by the French Agence Nationale pour la Recherche (ANR Projet 2010 Blanc SIMI 4: DIME); the research of J. L. J. was also supported by the Institut Universitaire de France. The work of H. S. was also supported by the U.S. DOE under Grant No. DE-FG03-01ER45908. The work of R. V. was supported by the Quantum Materials program of Lawrence Berkeley National Laboratory, and the work of S. L. L. was supported by the NSF under Grant No. NSF-PHY-1404056. NR 23 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 24 PY 2015 VL 114 IS 8 AR 080601 DI 10.1103/PhysRevLett.114.080601 PG 5 WC Physics, Multidisciplinary SC Physics GA CC1NM UT WOS:000350107800001 PM 25768744 ER PT J AU Deng, JJ Vine, DJ Chen, S Nashed, YSG Jin, QL Phillips, NW Peterka, T Rossc, R Vogt, S Jacobsen, CJ AF Deng, Junjing Vine, David J. Chen, Si Nashed, Youssef S. G. Jin, Qiaoling Phillips, Nicholas W. Peterka, Tom Rossc, Rob Vogt, Stefan Jacobsen, Chris J. TI Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ptychography; X-ray fluorescence microscopy; cryogenic biological samples ID DIFFERENTIAL PHASE-CONTRAST; DIFFRACTION MICROSCOPY; CHLAMYDOMONAS-REINHARDTII; CYCLOTELLA-MENEGHINIANA; BIOLOGICAL APPLICATIONS; COMPUTED-TOMOGRAPHY; RESOLUTION; CELLS; RECONSTRUCTION; POLYPHOSPHATE AB Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context. C1 [Deng, Junjing; Jacobsen, Chris J.] Northwestern Univ, Evanston, IL 60208 USA. [Vine, David J.; Chen, Si; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Nashed, Youssef S. G.; Peterka, Tom; Rossc, Rob] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Jin, Qiaoling; Jacobsen, Chris J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Phillips, Nicholas W.] La Trobe Univ, Ctr Excellence Adv Mol Imaging, Australian Res Council, Bundoora, Vic 3086, Australia. [Phillips, Nicholas W.] La Trobe Univ, Ctr Excellence Coherent Xray Sci, Australian Res Council, Bundoora, Vic 3086, Australia. [Phillips, Nicholas W.] Commonwealth Sci & Ind Res Org Mfg Flagship, Parkville, Vic 3052, Australia. [Jacobsen, Chris J.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Jacobsen, CJ (reprint author), Northwestern Univ, Evanston, IL 60208 USA. EM cjacobsen@anl.gov RI Jacobsen, Chris/E-2827-2015; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Jacobsen, Chris/0000-0001-8562-0353; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Phillips, Nicholas/0000-0002-9742-7937 FU NIH National Institute of General Medical Sciences [1R01GM104530]; NIH/National Center for Research Resources High End Instrumentation Grant, American Recovery and Reinvestment Act [1S10RR029272-01]; US DOE [DE-AC02-06CH11357] FX We thank R. Mak and M. Guizar-Sicairos for valuable discussions, and K. Brister, C. Roehrig, J. VonOsinkski, and M. Bolbat for help during the experiments. We thank NIH National Institute of General Medical Sciences for support of this work under Grant 1R01GM104530. The Bionanoprobe is funded by NIH/National Center for Research Resources High End Instrumentation Grant 1S10RR029272-01 as part of the American Recovery and Reinvestment Act. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract DE-AC02-06CH11357. NR 67 TC 25 Z9 25 U1 5 U2 40 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 24 PY 2015 VL 112 IS 8 BP 2314 EP 2319 DI 10.1073/pnas.1413003112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB8WE UT WOS:000349911700025 PM 25675478 ER PT J AU Willers, T Strigari, F Hu, ZW Sessi, V Brookes, NB Bauer, ED Sarrao, JL Thompson, JD Tanaka, A Wirth, S Tjeng, LH Severing, A AF Willers, Thomas Strigari, Fabio Hu, Zhiwei Sessi, Violetta Brookes, Nicholas B. Bauer, Eric D. Sarrao, John L. Thompson, J. D. Tanaka, Arata Wirth, Steffen Tjeng, Liu Hao Severing, Andrea TI Correlation between ground state and orbital anisotropy in heavy fermion materials SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE heavy fermions; crystal fields; X-ray absorption; rare earth ID CERHIN5; SUPERCONDUCTIVITY; CEIRIN5; TRANSITION; PRESSURE; CECOIN5 AB The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions of the strongly correlated materials CeRh1-xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states. C1 [Willers, Thomas; Strigari, Fabio; Severing, Andrea] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. [Hu, Zhiwei; Wirth, Steffen; Tjeng, Liu Hao] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Sessi, Violetta; Brookes, Nicholas B.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Bauer, Eric D.; Sarrao, John L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Tanaka, Arata] Hiroshima Univ, Grad Sch Adv Sci Matter, Dept Quantum Matter, Higashihiroshima 7398530, Japan. RP Severing, A (reprint author), Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. EM severing@ph2.uni-koeln.de RI Hu, Zhiwei/B-8635-2008; OI Bauer, Eric/0000-0003-0017-1937 FU German funding agency Deutsche Forschungsgemeinschaft [583872]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX We thank P. Thalmeier for fruitful discussions. The wave function density plots were calculated using the Crystal Field Theory package for Mathematica written by M. W. Haverkort. Support from the German funding agency Deutsche Forschungsgemeinschaft under Grant 583872 is gratefully acknowledged. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 39 TC 11 Z9 11 U1 3 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 24 PY 2015 VL 112 IS 8 BP 2384 EP 2388 DI 10.1073/pnas.1415657112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB8WE UT WOS:000349911700037 PM 25675488 ER PT J AU Julier, Z Martino, MM de Titta, A Jeanbart, L Hubbell, JA AF Julier, Ziad Martino, Mikael M. de Titta, Alexandre Jeanbart, Laura Hubbell, Jeffrey A. TI The TLR4 Agonist Fibronectin Extra Domain A is Cryptic, Exposed by Elastase-2; use in a fibrin matrix cancer vaccine SO SCIENTIFIC REPORTS LA English DT Article ID FACTOR-BINDING DOMAIN; T-CELL RESPONSES; IN-VIVO; EXTRACELLULAR-MATRIX; BIOLOGICAL-ACTIVITY; SUPPRESSOR-CELLS; DENDRITIC CELLS; EIIIA SEGMENT; PSORIASIS; IDENTIFICATION AB Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with its neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. In addition, we reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8(+) T cell responses in two murine cancer models. C1 [Julier, Ziad; Martino, Mikael M.; de Titta, Alexandre; Jeanbart, Laura; Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland. [Martino, Mikael M.] Osaka Univ, World Premier Int Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Hubbell, Jeffrey A.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. RP Hubbell, JA (reprint author), Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland. EM jeffrey.hubbell@epfl.ch RI Martino, Mikael/N-9345-2013 OI Martino, Mikael/0000-0002-5012-4605 FU Swiss National Science Foundation; Heinrich-Lohstoter-Stiftung FX We thank E. Simeoni, X. Quaglia, F. Tortelli, A.J. Grimm and P. Corthesy-Henrioud for technical assistance and useful discussions. Assistance from the Protein Production Core Facility and the Animal Facility staff of the Ecole Polytechnique Federale de Lausanne is gratefully acknowledged. This work was funded by the Swiss National Science Foundation and the Heinrich-Lohstoter-Stiftung. NR 58 TC 5 Z9 5 U1 2 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 24 PY 2015 VL 5 AR 8569 DI 10.1038/srep08569 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB7HY UT WOS:000349798800003 PM 25708982 ER PT J AU Shen, M Han, A Wang, XJ Ro, YG Kargar, A Lin, Y Guo, H Du, PW Jiang, J Zhang, JY Dayeh, SA Xiang, B AF Shen, Meng Han, Ali Wang, Xijun Ro, Yun Goo Kargar, Alireza Lin, Yue Guo, Hua Du, Pingwu Jiang, Jun Zhang, Jingyu Dayeh, Shadi A. Xiang, Bin TI Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires SO SCIENTIFIC REPORTS LA English DT Article ID HYDROGEN-PRODUCTION; OXYGEN REDUCTION; STEPPED SURFACES; WATER; PLATINUM; TIO2; PHOTOCATALYST; NANOCRYSTALS; MORPHOLOGY; OXIDATION AB Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction ( HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiONWphoto- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale. C1 [Shen, Meng; Han, Ali; Du, Pingwu; Xiang, Bin] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. [Wang, Xijun; Jiang, Jun] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China. [Ro, Yun Goo; Kargar, Alireza; Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Ro, Yun Goo; Kargar, Alireza; Dayeh, Shadi A.] Univ Calif San Diego, Mat Sci Program, La Jolla, CA 92093 USA. [Lin, Yue] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Guo, Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Xiang, Bin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. RP Xiang, B (reprint author), Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China. EM dupingwu@ustc.edu.cn; binxiang@ustc.edu.cn RI Du, Pingwu/G-3329-2010; Xiang, Bin/C-9192-2012; Kargar, Alireza/C-2113-2016; Foundry, Molecular/G-9968-2014; jiang, jun/P-5378-2014 OI Du, Pingwu/0000-0002-2715-0979; jiang, jun/0000-0002-6116-5605 FU National Natural Science Foundation of China (NSFC) [21373196]; Recruitment Program of Global Experts; Fundamental Research Funds for the Central Universities [WK2060140014, WK2340000050]; US National Science Foundation [CBET-1236155, ECCS-1351980] FX This work was supported by National Natural Science Foundation of China (NSFC) (21373196), the Recruitment Program of Global Experts, the Fundamental Research Funds for the Central Universities (WK2060140014, WK2340000050). S.A.D. acknowledges support by the US National Science Foundation (CBET-1236155 and ECCS-1351980). NR 30 TC 1 Z9 1 U1 12 U2 136 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 24 PY 2015 VL 5 AR 8557 DI 10.1038/srep08557 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB7HR UT WOS:000349798100002 PM 25707903 ER PT J AU Doudna, JA AF Doudna, Jennifer A. TI Genomic Engineering and the Future of Medicine SO JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION LA English DT Editorial Material ID CRISPR/CAS9 C1 [Doudna, Jennifer A.] Univ Calif Berkeley, Ctr RNA Syst Biol, Innovat Genom Initiat, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Ctr RNA Syst Biol, Innovat Genom Initiat, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, 731 Stanley Hall,MS 3220, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU Howard Hughes Medical Institute NR 9 TC 9 Z9 9 U1 7 U2 32 PU AMER MEDICAL ASSOC PI CHICAGO PA 330 N WABASH AVE, STE 39300, CHICAGO, IL 60611-5885 USA SN 0098-7484 EI 1538-3598 J9 JAMA-J AM MED ASSOC JI JAMA-J. Am. Med. Assoc. PD FEB 24 PY 2015 VL 313 IS 8 BP 791 EP 792 PG 2 WC Medicine, General & Internal SC General & Internal Medicine GA CB7RY UT WOS:000349826400007 PM 25710652 ER PT J AU Matta, JT Garg, U Li, W Frauendorf, S Ayangeakaa, AD Patel, D Schlax, KW Palit, R Saha, S Sethi, J Trivedi, T Ghugre, SS Raut, R Sinha, AK Janssens, RVF Zhu, S Carpenter, MP Lauritsen, T Seweryniak, D Chiara, CJ Kondev, FG Hartley, DJ Petrache, CM Mukhopadhyay, S Lakshmi, DV Raju, MK Rao, PVM Tandel, SK Ray, S Donau, F AF Matta, J. T. Garg, U. Li, W. Frauendorf, S. Ayangeakaa, A. D. Patel, D. Schlax, K. W. Palit, R. Saha, S. Sethi, J. Trivedi, T. Ghugre, S. S. Raut, R. Sinha, A. K. Janssens, R. V. F. Zhu, S. Carpenter, M. P. Lauritsen, T. Seweryniak, D. Chiara, C. J. Kondev, F. G. Hartley, D. J. Petrache, C. M. Mukhopadhyay, S. Lakshmi, D. Vijaya Raju, M. Kumar Rao, P. V. Madhusudhana Tandel, S. K. Ray, S. Doenau, F. TI Transverse Wobbling in Pr-135 SO PHYSICAL REVIEW LETTERS LA English DT Article ID COINCIDENCE DATA; NUCLEI; MODE AB A pair of transverse wobbling bands is observed in the nucleus Pr-135. The wobbling is characterized by Delta I = 1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model. C1 [Matta, J. T.; Garg, U.; Li, W.; Frauendorf, S.; Ayangeakaa, A. D.; Patel, D.; Schlax, K. W.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Palit, R.; Saha, S.; Sethi, J.; Trivedi, T.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Ghugre, S. S.; Raut, R.; Sinha, A. K.] UGC DAE Consortium Sci Res, Kolkata 700098, India. [Janssens, R. V. F.; Zhu, S.; Carpenter, M. P.; Lauritsen, T.; Seweryniak, D.; Chiara, C. J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Hartley, D. J.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. [Petrache, C. M.] Univ Paris 11, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France. [Petrache, C. M.] CNRS, IN2P3, F-91405 Orsay, France. [Mukhopadhyay, S.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Lakshmi, D. Vijaya; Raju, M. Kumar; Rao, P. V. Madhusudhana] Andhra Univ, Dept Nucl Phys, Visakhapatnam 530003, Andhra Pradesh, India. [Tandel, S. K.] UM DAE Ctr Excellence Basic Sci, Bombay 400098, Maharashtra, India. [Ray, S.] Saha Inst Nucl Phys, Kolkata 700064, India. [Doenau, F.] Helmholtz Zentrum, Inst Strahlenphys, D-01314 Dresden, Germany. RP Matta, JT (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RI Palit, Rudrajyoti/F-5185-2012; Carpenter, Michael/E-4287-2015; Ayangeakaa, Akaa/F-3683-2015; Mukhi, Kumar Raju/C-8099-2016; OI Carpenter, Michael/0000-0002-3237-5734; Ayangeakaa, Akaa/0000-0003-1679-3175; Mukhi, Kumar Raju/0000-0002-2717-281X; Matta, James/0000-0002-0244-8445 FU U.S. National Science Foundation [PHY-1068192 (UND), PHY-1203100 (USNA)]; APS-IUSSTF Physics Student and Post-doc Visitation Program; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357 (ANL), DE-FG02-95ER40934 (UND), DE- FG02-94ER40834 (UMCP)]; Department of Science and Technology, Government of India [IR/S2/PF-03/2003-II, IR/S2/PF-03/2003-III] FX We thank Dr. Michael Albers for the helpful discussions about the angular distribution analysis procedures. This work has been supported in part by the U.S. National Science Foundation [Grants No. PHY-1068192 (UND) and No. PHY-1203100 (USNA)]; by the APS-IUSSTF Physics Student and Post-doc Visitation Program; by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL), No. DE-FG02-95ER40934 (UND), and No. DE- FG02-94ER40834 (UMCP); and by the Department of Science and Technology, Government of India (Grants No. IR/S2/PF-03/2003-II and No. IR/S2/PF-03/2003-III). This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility. NR 26 TC 9 Z9 10 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 23 PY 2015 VL 114 IS 8 AR 082501 DI 10.1103/PhysRevLett.114.082501 PG 6 WC Physics, Multidisciplinary SC Physics GA CE8DR UT WOS:000352072100006 PM 25768759 ER PT J AU He, LY Hu, H Liu, XJ AF He, Lianyi Hu, Hui Liu, Xia-Ji TI Two-band description of resonant superfluidity in atomic Fermi gases SO PHYSICAL REVIEW A LA English DT Article ID BCS-BEC CROSSOVER; FESHBACH RESONANCES; SUPERCONDUCTIVITY; CONDENSATION; TEMPERATURE AB Fermionic superfluidity in atomic Fermi gases across a Feshbach resonance is normally described by the atom-molecule theory, which treats the closed channel as a noninteracting point boson. In this work we present a theoretical description of the resonant superfluidity in analogy to the two-band superconductors. We employ the underlying two-channel scattering model of Feshbach resonance where the closed channel is treated as a composite boson with binding energy epsilon(0) and the resonance is triggered by the microscopic interchannel coupling U-12. The binding energy epsilon(0) naturally serves as an energy scale of the system, which has been sent to infinity in the atom-molecule theory. We show that the atom-molecule theory can be viewed as a leading-order low-energy effective theory of the underlying fermionic theory in the limit epsilon(0) -> infinity and U-12 -> 0, while keeping the phenomenological atom-molecule coupling finite. The resulting two-band description of the superfluid state is in analogy to the BCS theory of two-band superconductors. In the dilute limit epsilon(0) -> infinity, the two-band description recovers precisely the atom-molecule theory. The two-band theory provides a natural approach to study the corrections because of a finite binding energy epsilon(0) in realistic experimental systems. For broad and moderate resonances, the correction is not important for current experimental densities. However, for extremely narrow resonance, we find that the correction becomes significant. The finite binding energy correction could be important for the stability of homogeneous polarized superfluid against phase separation in imbalanced Fermi gases across a narrow Feshbach resonance. C1 [He, Lianyi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hu, Hui; Liu, Xia-Ji] Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia. RP He, LY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI He, Lianyi/G-5110-2010; HU, Hui/C-6878-2009; Liu, Xia-Ji/C-6888-2009 OI He, Lianyi/0000-0002-9965-0446; HU, Hui/0000-0002-1541-1756; Liu, Xia-Ji/0000-0003-4158-5474 FU US Department of Energy Nuclear Physics Office [DE-AC02-05CH11231]; Australian Research Council (ARC) [FT140100003, FT130100815, DP140103231, DP140100637] FX The work of L.H. was supported by the US Department of Energy Nuclear Physics Office (Contract No. DE-AC02-05CH11231). H.H. and X.J.L. were supported by the Australian Research Council (ARC) (Grants No. FT140100003, No. FT130100815, No. DP140103231, and No. DP140100637). NR 35 TC 3 Z9 3 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 23 PY 2015 VL 91 IS 2 AR 023622 DI 10.1103/PhysRevA.91.023622 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CE3ZF UT WOS:000351768100005 ER PT J AU Zhang, Y Zhang, F Wang, CZ Mendelev, MI Kramer, MJ Ho, KM AF Zhang, Y. Zhang, F. Wang, C. Z. Mendelev, M. I. Kramer, M. J. Ho, K. M. TI Cooling rates dependence of medium-range order development in Cu64.5Zr35.5 metallic glass SO PHYSICAL REVIEW B LA English DT Article ID CU-ZR ALLOYS; STRUCTURAL BEHAVIOR; SUPERCOOLED LIQUID; AMORPHOUS-ALLOYS; LOCAL ORDER; TRANSITION; SIMULATION; PACKING; MODEL AB The atomic structure of metallic glasses (MGs) plays an important role in their properties. Numerous molecular dynamics (MD) simulations have revealed icosahedral short-range order (ISRO) as a dominant motif in Cu-Zr metallic glasses. However, the cooling rates utilized in most of the MD simulations (usually on the order of 10(10-13) K/s) can be too high to allow the structure to relax into the actual structures. By performing a long sub-T-g annealing of the Cu64.5Zr35.5 alloy model at 700 K up to 2.0 mu s using MD simulations, we systematically address the evolution of medium-range order (MRO) as the cooling rates in MD simulations approach the experimental cooling rates (usually 10(3-6) K/s). By reducing the effective cooling rates to as low as 2.8 x 10(7) K/s, we found a significant enhancement of the ISRO and Bergman-type MRO. Comparing to the widely used face-, edge-, or vertex-sharing icosahedra, we propose that the Bergman-type MRO is a much more unambiguous metric to characterize the MRO in Cu-Zr MGs. By analyzing the network formed by interpenetrating icosahedra using the graphical theory, we show that the degree of interpenetration of the icosahedra centers increases with decreasing cooling rates. The network becomes aggressively assortative, indicating that higher degree nodes tend to cluster and form backbones in the MG. All these results show that the networks in the models prepared using lower cooling rates strongly deviate from a stringlike morphology. C1 [Zhang, Y.; Zhang, F.; Wang, C. Z.; Mendelev, M. I.; Kramer, M. J.; Ho, K. M.] Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zhang, Y (reprint author), Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. EM wangcz@ameslab.gov FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, including the computer time allocations at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, CA. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 37 TC 14 Z9 14 U1 15 U2 63 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 23 PY 2015 VL 91 IS 6 AR 064105 DI 10.1103/PhysRevB.91.064105 PG 8 WC Physics, Condensed Matter SC Physics GA CE4BF UT WOS:000351774900004 ER PT J AU Humby, P Simon, A Beausang, CW Ross, TJ Hughes, RO Burke, JT Casperson, RJ Koglin, J Ota, S Allmond, JM McCleskey, M McCleskey, E Saastamoinen, A Chyzh, R Dag, M Gell, K Tarlow, T Vyas, G AF Humby, P. Simon, A. Beausang, C. W. Ross, T. J. Hughes, R. O. Burke, J. T. Casperson, R. J. Koglin, J. Ota, S. Allmond, J. M. McCleskey, M. McCleskey, E. Saastamoinen, A. Chyzh, R. Dag, M. Gell, K. Tarlow, T. Vyas, G. TI Improved measurement of the half-life of the J(pi)=8(-) nuclear isomer Eu-152m2 SO PHYSICAL REVIEW C LA English DT Article ID DECAY AB The standard gamma-ray energy calibration source Eu-152 is well known based on the 13.5 y decay of its ground state. However, in addition to this decay Eu-152 also has two relatively long-lived isomeric states: a 9 h J(pi) = 0(-) state at E* = 46 keV and a 96 min J(pi) = 8(-) state at E* = 148 keV. Here we report a new measurement of the half-lives of both of these isomeric states. Excited states in Eu-152 were populated following the Sm-154(p, 3n) reaction using a 25 MeV proton beam from the K-150 cyclotron at the Cyclotron Institute of Texas A&M University. Post irradiation,. rays from the de-excitation of the long lived isomeric states were measured using the six BGO shielded high-purity germanium (HPGe) clover detectors that are part of the STARLiTeR array. The half-life of the J(pi) = 8(-) isomer Eu-152m2 was obtained by measuring the decrease in intensity of the 90 keV gamma ray from the cascade to the ground state. The half-life of this state was measured to be 95.8(4) min which is in agreement with and significantly more precise than the previously measured value of 96(1) min. In a manner similar to the ground state the second long-lived isomer Eu-151m1, the J(pi) = 0(-) state at 46 keV, beta decays to excited states in Gd-152 and Sm-152. The half-life of this state was measured to be 9.39(7) h using five gamma-ray transitions. C1 [Humby, P.; Simon, A.; Beausang, C. W.; Gell, K.; Tarlow, T.; Vyas, G.] Univ Richmond, Dept Phys, Richmond, VA 23171 USA. [Humby, P.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Ross, T. J.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Koglin, J.; Ota, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Allmond, J. M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [McCleskey, M.; McCleskey, E.; Saastamoinen, A.; Chyzh, R.; Dag, M.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. RP Humby, P (reprint author), Univ Richmond, Dept Phys, Richmond, VA 23171 USA. RI Burke, Jason/I-4580-2012 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-05ER41379, DE-FG02-93ER40773]; U.S. Department of Energy, National Nuclear Security Administration [DE-NA0001801, DE-FG52-09NA29467]; National Science Foundation [PHY-130581]; U.S. Department of Energy NNSA Office of Defense Nuclear Nonproliferation Research Development [DE-AC52-07NA27344] FX This material is partly based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grant Nos. DE-FG02-05ER41379 and DE-FG02-93ER40773, by the U.S. Department of Energy, National Nuclear Security Administration under Grant Nos. DE-NA0001801 and DE-FG52-09NA29467, by the National Science Foundation under Contract No. PHY-130581, and by the U.S. Department of Energy NNSA Office of Defense Nuclear Nonproliferation Research & Development under Contract No. DE-AC52-07NA27344 (Lawrence Livermore National Laboratory). The authors are grateful to the operators of the cyclotron at Texas A&M University for the excellent beam conditions. NR 15 TC 1 Z9 1 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 23 PY 2015 VL 91 IS 2 AR 024322 DI 10.1103/PhysRevC.91.024322 PG 4 WC Physics, Nuclear SC Physics GA CE7LH UT WOS:000352021000003 ER PT J AU Jiang, K Zhu, YY Liu, WT Chen, HF Li, C Ruan, LJ Tang, ZB Xu, ZB AF Jiang, Kun Zhu, Yinying Liu, Weitao Chen, Hongfang Li, Cheng Ruan, Lijuan Tang, Zebo Xu, Zhangbu TI Onset of radial flow in p plus p collisions SO PHYSICAL REVIEW C LA English DT Article ID PROTON-PROTON COLLISIONS; QUARK-GLUON-PLASMA; TRANSVERSE-MOMENTUM; PARTICLE-PRODUCTION; CHARGED-PARTICLES; ROOT-S=0.9 TEV; COLLIDER; ALICE; STATISTICS; NONEXTENSIVITY AB It has been debated for decades whether hadrons emerging from p + p collisions exhibit collective expansion. The signal of the collective motion in p + p collisions is not as clear or as clean as in heavy-ion collisions because of the low multiplicity and large fluctuation in p + p collisions. The Tsallis blast-wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p + p collisions from the BNL Relativistic Heavy Ion Collider (RHIC) to the CERN Large Hadron Collider (LHC) using TBW and have found no appreciable radial flow in p + p collisions below root s = 900 GeV. At the LHC higher energy of 7 TeV in p + p collisions, the radial flow velocity achieves an average value of = 0.320 +/- 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au + Au collisions at the RHIC. Breaking of the identified particle spectra mT scaling was also observed at the LHC from a model-independent test. C1 [Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Tang, Zebo] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Ruan, Lijuan; Xu, Zhangbu] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Jiang, K (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. EM zbtang@ustc.edu.cn FU National Nature Science Foundation of China [11005104, 11375172, 11005103]; Office of NP within the U.S. DOE Office of Science [DE-AC02-98CH10886]; Office of HEP within the U.S. DOE Office of Science [DE-AC02-98CH10886] FX This work was supported in part by the National Nature Science Foundation of China under Grants No. 11005104, No. 11375172, and No. 11005103 and by the Offices of NP and HEP within the U.S. DOE Office of Science under Contract No. DE-AC02-98CH10886. NR 51 TC 1 Z9 1 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 23 PY 2015 VL 91 IS 2 AR 024910 DI 10.1103/PhysRevC.91.024910 PG 6 WC Physics, Nuclear SC Physics GA CE7LH UT WOS:000352021000007 ER PT J AU Moore, SG Stevens, MJ Grest, GS AF Moore, Stan G. Stevens, Mark J. Grest, Gary S. TI Liquid-vapor interface of the Stockmayer fluid in a uniform external field SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; LENNARD-JONES FLUID; ELECTRIC-FIELD; COMPUTER-SIMULATIONS; ORIENTATIONAL ORDER; PERTURBATION-THEORY; PHASE-TRANSITIONS; EWALD SUMMATION; DIPOLAR FLUIDS; CRITICAL-POINT AB The effect of a uniform (nonspatially varying) external field on the liquid-vapor interface of the Stockmayer fluid (Lennard-Jones particles embedded with a point dipole) has been investigated by molecular-dynamics simulations. The long-ranged parts of both the dipole and Lennard-Jones interactions are treated using an Ewald summation, which removes the effects of the cutoff. The direction of the field shifts the critical point and interfacial properties in different directions. For an external field parallel to the interface, the critical temperature increases, while for a field applied perpendicular to the interface, it decreases. The effects of the field on surface tension and interfacial width are also investigated. For zero field, dipoles near the liquid-vapor interface show a weak orientation parallel to the interface. For fields parallel to the interface, ordering in the liquid phase is greater than the vapor, while for fields perpendicular to the interface, the opposite is true. C1 [Moore, Stan G.; Stevens, Mark J.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moore, SG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM stamoor@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 52 TC 1 Z9 1 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 23 PY 2015 VL 91 IS 2 AR 022309 DI 10.1103/PhysRevE.91.022309 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CE8AY UT WOS:000352064400004 PM 25768507 ER PT J AU Stolbova, I Backhaus, S Chertkov, M AF Stolbova, Irina Backhaus, Scott Chertkov, Michael TI Fault-induced delayed voltage recovery in a long inhomogeneous power-distribution feeder SO PHYSICAL REVIEW E LA English DT Article ID INDUCTION-MOTOR; STABILITY; SYSTEMS; MODEL AB We analyze the dynamics of a distribution circuit loaded with many induction motors and subjected to sudden changes in voltage at the beginning of the circuit. As opposed to earlier work by Duclut et al. [Phys. Rev. E 87, 062802 (2013)], the motors are disordered, i.e., the mechanical torque applied to the motors varies in a random manner along the circuit. In spite of the disorder, many of the qualitative features of a homogeneous circuit persist, e.g., long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence of the spatially extended and propagating normal and stalled phases. We also observed a new phenomenon absent in the case without inhomogeneity or disorder. Specifically, the transition front between the normal and stalled phases becomes somewhat random, even when the front is moving very slowly or is even stationary. Motors within the blurred domain appear in a normal or stalled state depending on the local configuration of the disorder. We quantify the effects of the disorder and discuss the statistics of distribution dynamics, e.g., the front position and width, total active and reactive consumption of the feeder, and maximum clearing time. C1 [Stolbova, Irina] Moscow Inst Phys & Technol, Dolgoprudnyj 141700, Moscow Regiona, Russia. [Backhaus, Scott] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Backhaus, Scott; Chertkov, Michael] New Mexico Consortium, Los Alamos, NM 87544 USA. [Chertkov, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chertkov, Michael] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Stolbova, I (reprint author), Moscow Inst Phys & Technol, Dolgoprudnyj 141700, Moscow Regiona, Russia. RI Chertkov, Michael/O-8828-2015; OI Backhaus, Scott/0000-0002-0344-6791; Chertkov, Michael/0000-0002-6758-515X FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Advanced Grid Modeling Program in the U.S. Department of Energy Office of Electricity; NSF/ECCS collaborative research project on Power Grid Spectroscopy through NMC; Ministry of Education and Science of Russian Federation [14.615.21.0001] FX The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. M.C. and S.B. also acknowledge partial support of the Advanced Grid Modeling Program in the U.S. Department of Energy Office of Electricity and of the NSF/ECCS collaborative research project on Power Grid Spectroscopy through NMC. The work was partially supported by the Ministry of Education and Science of Russian Federation, Grant Agreement No. 14.615.21.0001. NR 15 TC 0 Z9 0 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 23 PY 2015 VL 91 IS 2 AR 022812 DI 10.1103/PhysRevE.91.022812 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CE8AY UT WOS:000352064400009 PM 25768557 ER PT J AU Pirovano, P Farquhar, ER Swart, M Fitzpatrick, AJ Morgan, GG McDonald, AR AF Pirovano, Paolo Farquhar, Erik R. Swart, Marcel Fitzpatrick, Anthony J. Morgan, Grace G. McDonald, Aidan R. TI Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE high-valent metals; metal-oxo species; nickel; oxidation catalysis; reactive intermediates ID CARBON-DIOXIDE FIXATION; C-H ACTIVATION; NICKEL(II) COMPLEXES; ALKANE-HYDROXYLATION; WATER OXIDATION; M-CPBA; MOLECULAR-OXYGEN; STRUCTURAL-CHARACTERIZATION; SPECTROSCOPIC CAPTURE; DIOXYGEN ACTIVATION AB High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni-II-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca.95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar Ni-III-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. C1 [Pirovano, Paolo; McDonald, Aidan R.] Univ Dublin Trinity Coll, Sch Chem, Dublin 2, Ireland. [Pirovano, Paolo; McDonald, Aidan R.] Univ Dublin Trinity Coll, CRANN AMBER Nanosci Inst, Dublin 2, Ireland. [Farquhar, Erik R.] Case Western Reserve Univ, Ctr Synchrotron Biosci, Natl Synchrotron Light Source, Brookhaven Natl Lab, Upton, NY 11973 USA. [Swart, Marcel] Pg Lluis Co 23, ICREA, Barcelona, Spain. [Swart, Marcel] Univ Girona, Fac Ciencies, Inst Quim Computac & Catalisi, Girona 17071, Catalunya, Spain. [Fitzpatrick, Anthony J.; Morgan, Grace G.] Univ Coll Dublin, Ctr Sci, Sch Chem & Chem Biol, Dublin 4, Ireland. RP McDonald, AR (reprint author), Univ Dublin Trinity Coll, Sch Chem, Dublin 2, Ireland. EM aidan.mcdonald@tcd.ie RI Fitzpatrick, Anthony/A-5901-2015; Swart, Marcel/A-5083-2008; OI Fitzpatrick, Anthony/0000-0001-9436-8129; Swart, Marcel/0000-0002-8174-8488; McDonald, Aidan/0000-0002-8930-3256 FU European Union [FP7-333948]; Science Foundation Ireland [SFI/12/RC/2278]; COST Action [CM1305]; MINECO [CTQ2011-25086/BQU]; DIUE of the Generalitat de Catalunya [2014SGR1202]; MICINN (Ministry of Science and Innovation, Spain); FEDER fund [UNGI08-4E-003]; CESCA; NIH [P30-EB-009998]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This publication has emanated from research supported in part by the European Union (FP7-333948, AMcD), a research grant from Science Foundation Ireland (SFI/12/RC/2278, AMcD), and COST Action CM1305 (ECOSTBio). M.S. acknowledges MINECO (CTQ2011-25086/BQU), DIUE of the Generalitat de Catalunya (2014SGR1202), MICINN (Ministry of Science and Innovation, Spain), the FEDER fund (UNGI08-4E-003) and CESCA. Operation of NSLS X3B is supported by NIH grant P30-EB-009998. The NSLS is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 95 TC 6 Z9 6 U1 11 U2 43 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 23 PY 2015 VL 21 IS 9 BP 3785 EP 3790 DI 10.1002/chem.201406485 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CC1QJ UT WOS:000350116200036 PM 25612563 ER PT J AU Ly, S Laurence, TA Shen, N Hollingsworth, B Norton, M Bude, JD AF Ly, Sonny Laurence, Ted A. Shen, Nan Hollingsworth, Bill Norton, Mary Bude, Jeff D. TI Gigashot optical degradation in silica optics at 351 nm SO OPTICS EXPRESS LA English DT Article ID LASER-INDUCED ABSORPTION; FUSED-SILICA; DAMAGE PRECURSORS; SURFACES; FLUENCE; VACUUM; PULSES AB As applications of lasers demand higher average powers, higher repetition rates, and longer operation times, optics will need to perform well under unprecedented conditions. We investigate the optical degradation of fused silica surfaces at 351 nm for up to 10(9) pulses with pulse fluences up to 12 J/cm(2). The central result is that the transmission loss from defect generation is a function of the pulse intensity, I-p, and total integrated fluence, phi(T), and is influenced by oxygen partial pressure. In 10(-6) Torr vacuum, at low I-p, a transmission loss is observed that increases monotonically as a function of number of pulses. As the pulse intensity increases above 13 MW/cm(2), the observed transmission losses decrease, and are not measureable for 130 MW/cm(2). A physical model which supports the experimental data is presented to describe the suppression of transmission loss at high pulse intensity. Similar phenomena are observed in anti-reflective sol-gel coated optics. Absorption, not scattering, is the primary mechanism leading to transmission loss. In 2.5 Torr air, no transmission loss was detected under any pulse intensity used. We find that the absorption layer that leads to transmission loss is less than 1 nm in thickness, and results from a laser-activated chemical process involving photo-reduction of silica within a few monolayers of the surface. The competition between photo-reduction and photo-oxidation explains the measured data: transmission loss is reduced when either the light intensity or the O-2 concentration is high. We expect processes similar to these to occur in other optical materials for high average power applications. (C) 2015 Optical Society of America C1 [Ly, Sonny; Laurence, Ted A.; Shen, Nan; Hollingsworth, Bill; Norton, Mary; Bude, Jeff D.] Lawrence Livermore Natl Lab, Phys & Life Sci, Livermore, CA 94550 USA. [Ly, Sonny; Laurence, Ted A.; Shen, Nan; Hollingsworth, Bill; Norton, Mary; Bude, Jeff D.] Lawrence Livermore Natl Lab, NIF & Photon Sci, Livermore, CA 94550 USA. RP Ly, S (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci, 7000 East Ave, Livermore, CA 94550 USA. EM ly2@llnl.gov; laurence2@llnl.gov; bude2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 within the LDRD program. NR 23 TC 2 Z9 2 U1 2 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 23 PY 2015 VL 23 IS 4 BP 4074 EP 4091 DI 10.1364/OE.23.004074 PG 18 WC Optics SC Optics GA CD1ZH UT WOS:000350872700024 PM 25836446 ER PT J AU Sistrunk, E Grilj, J Jeong, J Samant, MG Gray, AX Durr, HA Parkin, SSP Guhr, M AF Sistrunk, Emily Grilj, Jakob Jeong, Jaewoo Samant, Mahesh G. Gray, Alexander X. Duerr, Hermann A. Parkin, Stuart S. P. Guehr, Markus TI Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide SO OPTICS EXPRESS LA English DT Article ID METAL-INSULATOR TRANSITIONS; DIFFRACTIVE OPTICS; SPECTROSCOPY; DYNAMICS; VO2; TEMPERATURE; FILMS AB Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO2 film with EUV diffraction from the optically excited sample. The VO2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features. (C) 2015 Optical Society of America C1 [Sistrunk, Emily; Grilj, Jakob; Guehr, Markus] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Sistrunk, Emily] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94550 USA. [Sistrunk, Emily] Lawrence Livermore Natl Lab, Photon Sci, Livermore, CA 94550 USA. [Grilj, Jakob] Ecole Polytech Fed Lausanne, Lab Ultrafast Spect, CH-1015 Lausanne, Switzerland. [Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. [Gray, Alexander X.; Duerr, Hermann A.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Gray, Alexander X.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Parkin, Stuart S. P.] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. RP Guhr, M (reprint author), SLAC Natl Accelerator Lab, Stanford PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mguehr@stanford.edu RI Durr, Hermann/F-6205-2012 FU European Research Agency via the FP-7 PEOPLE Program (Marie Curie Action) [298210]; Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy; AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy FX J.G. and E.S. contributed equally to the experimental set-up, data acquisition, and analysis. J.G. acknowledges support by the European Research Agency via the FP-7 PEOPLE Program (Marie Curie Action 298210). M.G. acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy. This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. Work at SIMES was supported through the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. NR 40 TC 6 Z9 6 U1 4 U2 44 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 23 PY 2015 VL 23 IS 4 BP 4340 EP 4347 DI 10.1364/OE.23.004340 PG 8 WC Optics SC Optics GA CD1ZH UT WOS:000350872700048 PM 25836470 ER PT J AU Voronov, DL Goray, LI Warwick, T Yashchuk, VV Padmore, HA AF Voronov, Dmitriy L. Goray, Leonid I. Warwick, Tony Yashchuk, Valeriy V. Padmore, Howard A. TI High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy SO OPTICS EXPRESS LA English DT Article ID INTEGRAL-EQUATION METHOD; EXTREME-ULTRAVIOLET; DIFFRACTION EFFICIENCY; TRANSMISSION GRATINGS; ECHELLE GRATINGS; REGION; DEMULTIPLEXER; SPECTROMETER AB A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10(4) achieved routinely today to well above 10(5). This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency. (C) 2015 Optical Society of America C1 [Voronov, Dmitriy L.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Goray, Leonid I.] St Petersburg Acad Univ, St Petersburg 194021, Russia. [Goray, Leonid I.] Inst Analyt Instrumentat, St Petersburg 190103, Russia. RP Voronov, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dlvoronov@lbl.gov RI Foundry, Molecular/G-9968-2014; Goray, Leonid/D-4426-2013 OI Goray, Leonid/0000-0002-0381-9607 FU U. S. Department of Energy [DE-AC02-05CH11231.] FX The authors are indebted to A. Rathsfeld (WIAS, Germany) for cross-checking the efficiency calculations, and we are very grateful to Yu. V. Shvyd'ko (APS, Argonne National Laboratory) for fruitful discussions. This work was supported by the U. S. Department of Energy under contract number DE-AC02-05CH11231. NR 38 TC 5 Z9 6 U1 2 U2 26 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 23 PY 2015 VL 23 IS 4 BP 4771 EP 4790 DI 10.1364/OE.23.004771 PG 20 WC Optics SC Optics GA CD1ZH UT WOS:000350872700090 PM 25836513 ER PT J AU Nilsen, GJ Thompson, CM Ehlers, G Marjerrison, CA Greedan, JE AF Nilsen, Goran. J. Thompson, Corey M. Ehlers, Georg Marjerrison, Casey A. Greedan, John E. TI Diffuse magnetic neutron scattering in the highly frustrated double perovskite Ba2YRuO6 SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL; MULTIDETECTOR AB Diffuse magnetic scattering in the highly frustrated double perovskite Ba2YRuO6 was investigated using polarized neutrons. Consistent with previous reports, the material shows two apparent transitions at 47 and 36 K to an eventual type I face-centered-cubic magnetic ground state. The (100) magnetic reflection shows different behavior from the five other observed reflections upon heating from 1.8 K, with the former broadening well beyond the resolution limit near 36 K. Closer examination of the latter group reveals a small, but clear, increase in peak widths between 36 and 47 K, indicating that this regime is dominated by short-range spin correlations. Diffuse magnetic scattering persists above 47 K near the position of (100) to at least 200 K, consistent with strong frustration. Reverse Monte Carlo (RMC) modeling of the diffuse scattering from 45 to 200 K finds that the spin-spin correlations between nearest and next-nearest neighbors are antiferromagnetic and ferromagnetic, respectively, at temperatures near the upper ordering temperature, but both become antiferromagnetic and of similar magnitude above 100 K. The significance of this unusual crossover is discussed in light of the super-superexchange interactions between nearest and next-nearest neighbors in this material and the demands of type I order. The dimensionality of the correlations is addressed by reconstructing the scattering in the (hk0) plane using the RMC spin configurations. This indicates that one-dimensional spin correlations dominate at temperatures close to the first transition. In addition, a comparison between mean-field calculations and (hk0) scattering implies that further neighbor couplings play a significant role in the selection of the ground state. The results and interpretation are compared with those recently published for monoclinic Sr2YRuO6, and similarities and differences are emphasized. C1 [Nilsen, Goran. J.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Thompson, Corey M.; Greedan, John E.] McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON, Canada. [Thompson, Corey M.; Greedan, John E.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON, Canada. [Ehlers, Georg] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Marjerrison, Casey A.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Nilsen, GJ (reprint author), Inst Max Von Laue Paul Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble, France. EM nilsen@ill.fr RI Ehlers, Georg/B-5412-2008 OI Ehlers, Georg/0000-0003-3513-508X FU Natural Sciences and Engineering Research Council of Canada; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank J. P. Carlo for useful discussions and for providing his inelastic neutron scattering data. We also acknowledge fruitful discussions with B.D. Gaulin and E. Kermarrec. J.E.G. thanks the Natural Sciences and Engineering Research Council of Canada for support via a Discover Grant. G.J.N. is grateful to McMaster University for hospitality during a one-month residence. G.E. acknowledges funding by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 29 TC 9 Z9 9 U1 5 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 23 PY 2015 VL 91 IS 5 AR 054415 DI 10.1103/PhysRevB.91.054415 PG 10 WC Physics, Condensed Matter SC Physics GA CE3ZY UT WOS:000351770800002 ER PT J AU Degrande, C Maltoni, F Wang, J Zhang, C AF Degrande, Celine Maltoni, Fabio Wang, Jian Zhang, Cen TI Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes SO PHYSICAL REVIEW D LA English DT Article ID STANDARD; DECAYS; LEVEL AB Computations at next-to-leading order in the Standard Model offer new technical challenges in the presence of higher dimensional operators. We introduce a framework that, starting from the top-quark effective field theory at dimension six, allows one to make predictions for cross sections as well as distributions in a fully automatic way. As an application, we present the first complete results at next-toleading order in QCD for flavor-changing neutral interactions including parton shower effects, for tZ, th, t gamma. associated production at the LHC. C1 [Degrande, Celine] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. [Maltoni, Fabio] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain, Belgium. [Wang, Jian] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany. [Wang, Jian] Johannes Gutenberg Univ Mainz, Mainz Inst Theoret Phys, D-55099 Mainz, Germany. [Zhang, Cen] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Degrande, C (reprint author), Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. FU ERC [291377]; FP7 Marie Curie Initial Training Network MCnetITN [PITN-GA-2012-315877]; Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter [PRISMA-EXC 1098]; IISN [4.4517.08]; U.S. Department of Energy [DE-AC02- 98CH10886] FX We would like to thank G. Durieux, R. Frederix, V. Hirschi, O. Mattelaer and Y. Wang for many discussions. C. D. is a Durham International Junior Research Fellow. This work has been performed in the framework of the ERC Grant No. 291377 "LHCTheory" and of the FP7 Marie Curie Initial Training Network MCnetITN (PITN-GA-2012-315877). The research of J. W. has been supported by the Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA-EXC 1098). C. Z. has been supported by the IISN "Fundamental interactions" convention 4.4517.08, and by U.S. Department of Energy under Grant No. DE-AC02- 98CH10886. NR 39 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 23 PY 2015 VL 91 IS 3 AR 034024 DI 10.1103/PhysRevD.91.034024 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE3RX UT WOS:000351747200003 ER PT J AU Becker, C Posen, S Groll, N Cook, R Schleputz, CM Hall, DL Liepe, M Pellin, M Zasadzinski, J Proslier, T AF Becker, Chaoyue Posen, Sam Groll, Nickolas Cook, Russell Schlepuetz, Christian M. Hall, Daniel Leslie Liepe, Matthias Pellin, Michael Zasadzinski, John Proslier, Thomas TI Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications SO APPLIED PHYSICS LETTERS LA English DT Article ID V3SI AB We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 +/- 0.4 meV and superconducting critical temperatures (T-c) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an similar to 2 mu m thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators. (C) 2015 AIP Publishing LLC. C1 [Becker, Chaoyue; Groll, Nickolas; Pellin, Michael; Proslier, Thomas] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Becker, Chaoyue; Groll, Nickolas; Proslier, Thomas] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Becker, Chaoyue; Zasadzinski, John] IIT, Dept Phys, Chicago, IL 60616 USA. [Posen, Sam; Hall, Daniel Leslie; Liepe, Matthias] Cornell Lab Accelerator Based Sci & Educ, Ithaca, NY 14853 USA. [Cook, Russell] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. [Schlepuetz, Christian M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Liepe, Matthias] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. RP Proslier, T (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM prolier@anl.gov RI Pellin, Michael/B-5897-2008; Schleputz, Christian/C-4696-2008; OI Pellin, Michael/0000-0002-8149-9768; Schleputz, Christian/0000-0002-0485-2708; Posen, Sam/0000-0002-6499-306X FU U.S. Department of Energy, Office of Sciences, Office of High Energy Physics [FWP 50335]; DOE [ER41628]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of Science User Facility [DE-AC02-06CH11357] FX This work was funded by the U.S. Department of Energy, Office of Sciences, Office of High Energy Physics, early Career Award FWP 50335 and DOE Award ER41628. Use of the Center for Nanoscale Materials and resources of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of Science User Facility, under Contract No. DE-AC02-06CH11357. NR 24 TC 5 Z9 5 U1 4 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2015 VL 106 IS 8 AR 082602 DI 10.1063/1.4913617 PG 4 WC Physics, Applied SC Physics GA CC7KP UT WOS:000350546600052 ER PT J AU Das, SR Kwon, J Prakash, A Delker, CJ Das, S Janes, DB AF Das, Suprem R. Kwon, Jiseok Prakash, Abhijith Delker, Collin J. Das, Saptarshi Janes, David B. TI Low-frequency noise in MoSe2 field effect transistors SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOWIRE TRANSISTORS; MULTILAYER MOS2; MOBILITY; CONTACTS; GRAPHENE; WSE2; WS2 AB One of the important performance metrics of emerging nanoelectronic devices, including low dimensional Field Effect Transistors (FETs), is the magnitude of the low-frequency noise. Atomically thin 2D semiconductor channel materials such as MoX2 (X equivalent to S, Se) have shown promising transistor characteristics such as I-ON/I-OFF ratio exceeding 10(6) and low I-OFF, making them attractive as channel materials for next generation nanoelectronic devices. However, MoS2 FETs demonstrated to date exhibit high noise levels under ambient conditions. In this letter, we report at least two orders of magnitude smaller values of Hooge parameter in a back-gated MoSe2 FET (10 atomic layers) with nickel S/D contacts and measured at atmospheric pressure and temperature. The channel dominated regime of noise was extracted from the total noise spectrum and is shown to follow a mobility fluctuation model with 1/f dependence. The low noise in MoSe2 FETs is comparable to other 1D nanoelectronic devices such as carbon nanotube FETs (CNT-FETs) and paves the way for use in future applications in precision sensing and communications. (C) 2015 AIP Publishing LLC. C1 [Das, Suprem R.; Kwon, Jiseok; Prakash, Abhijith; Janes, David B.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Das, Suprem R.; Kwon, Jiseok; Prakash, Abhijith; Das, Saptarshi; Janes, David B.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Delker, Collin J.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Das, Saptarshi] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. RP Das, SR (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM srdaspurdue@gmail.com; janes@purdue.edu OI KWON, JISEOK/0000-0003-0145-658X NR 30 TC 9 Z9 9 U1 10 U2 79 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2015 VL 106 IS 8 AR 083507 DI 10.1063/1.4913714 PG 5 WC Physics, Applied SC Physics GA CC7KP UT WOS:000350546600081 ER PT J AU Li, Y Kalia, RK Nakano, A Vashishta, P AF Li, Ying Kalia, Rajiv K. Nakano, Aiichiro Vashishta, Priya TI Oxidation dynamics of aluminum nanorods SO APPLIED PHYSICS LETTERS LA English DT Article ID AL THIN WIRE; NANOENERGETIC COMPOSITES; COMBUSTION; PARTICLES; AGGLOMERATION; ELECTROMIGRATION; NANOPARTICLES; PROPAGATION; PROPELLANTS; FABRICATION AB Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a "nanoreactor" for oxidation. (C) 2015 AIP Publishing LLC. C1 [Li, Ying] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya] Univ So Calif, Collaboratory Adv Comp & Simulat, Dept Phys & Astron, Dept Chem Engn & Mat Sci,Dept Comp Sci, Los Angeles, CA 90089 USA. RP Li, Y (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Defense Threat Reduction Agency (DTRA) [HDTRA1-08-1-0036]; Office of Naval Research (ONR) [N000014-12-1-0555] FX This research work was started with support from the Basic Research Program of Defense Threat Reduction Agency (DTRA) Grant No. HDTRA1-08-1-0036 and was completed with support from the Office of Naval Research (ONR) Grant No. N000014-12-1-0555. Simulations were performed at the Center for High Performance Computing of the University of Southern California. NR 30 TC 0 Z9 0 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2015 VL 106 IS 8 AR 083101 DI 10.1063/1.4913490 PG 5 WC Physics, Applied SC Physics GA CC7KP UT WOS:000350546600059 ER PT J AU Posen, S Liepe, M Hall, DL AF Posen, S. Liepe, M. Hall, D. L. TI Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q(0) applications SO APPLIED PHYSICS LETTERS LA English DT Article AB Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q(0) out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2K Q(0) at quench of 8 x 10(9). In each case, the peak surface magnetic field at quench was well above H-c1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that-taking into account the thermodynamic efficiency of the cryogenic plant-the 4.2K Q(0) values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Posen, S.; Liepe, M.; Hall, D. L.] Cornell Lab Accelerator Based Sci & Educ, Ithaca, NY 14853 USA. RP Posen, S (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM sep93@cornell.edu FU NSF Career Award [PHY-0841213]; NSF [PHY-1416318]; DOE [ER41628]; Alfred P. Sloan Foundation FX This work was supported by NSF Career Award No. PHY-0841213, NSF Award No. PHY-1416318, DOE Award No. ER41628, and the Alfred P. Sloan Foundation. NR 35 TC 7 Z9 7 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2015 VL 106 IS 8 AR 082601 DI 10.1063/1.4913247 PG 4 WC Physics, Applied SC Physics GA CC7KP UT WOS:000350546600051 ER PT J AU Li, XF Basile, L Yoon, M Ma, C Puretzky, AA Lee, J Idrobo, JC Chi, MF Rouleau, CM Geohegan, DB Xiao, K AF Li, Xufan Basile, Leonardo Yoon, Mina Ma, Cheng Puretzky, Alexander A. Lee, Jaekwang Idrobo, Juan C. Chi, Miaofang Rouleau, Christopher M. Geohegan, David B. Xiao, Kai TI Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE gallium selenide; interlayer orientation; monolayers; stacking; vapor-phase deposition ID HEXAGONAL BORON-NITRIDE; GRAPHENE; MOS2; GASE; PHOTORESPONSE; SUPERLATTICES; POLARIZATION; TRANSITION; NANOSHEETS; SYMMETRY AB Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0 degrees or 60 degrees interlayer rotations were investigated. The commensurate stacking configurations (AA and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals. C1 [Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo, Juan C.; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Basile, Leonardo] Escuela Politec Nacl, Dept Fis, Quito, Ecuador. RP Xiao, K (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xiaok@ornl.gov RI Geohegan, David/D-3599-2013; Ma, Cheng/C-9120-2014; Idrobo, Juan/H-4896-2015; Chi, Miaofang/Q-2489-2015; Rouleau, Christopher/Q-2737-2015; Yoon, Mina/A-1965-2016; Li, Xufan/A-8292-2013; Puretzky, Alexander/B-5567-2016 OI Xiao, Kai /0000-0002-0402-8276; Geohegan, David/0000-0003-0273-3139; Idrobo, Juan/0000-0001-7483-9034; Chi, Miaofang/0000-0003-0764-1567; Rouleau, Christopher/0000-0002-5488-3537; Yoon, Mina/0000-0002-1317-3301; Li, Xufan/0000-0001-9814-0383; Puretzky, Alexander/0000-0002-9996-4429 FU Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL); Materials Science and Engineering Division, Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE); Scientific User Facilities Division, BES, DOE; Office of Science of the DOE [DE-AC02-05CH11231]; National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT) FX Materials development was sponsored by the Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL). Synthesis science and theoretical studies were sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). Materials characterization was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Scientific User Facilities Division, BES, DOE. Computing resources were provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the DOE under Contract No. DE-AC02-05CH11231. L.B. acknowledges the financial support of the National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT). NR 31 TC 9 Z9 9 U1 12 U2 88 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 23 PY 2015 VL 54 IS 9 BP 2712 EP 2717 DI 10.1002/anie.201409743 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CC2BZ UT WOS:000350151000025 PM 25611050 ER PT J AU He, JF Hafiz, H Mion, TR Hogan, T Dhital, C Chen, X Lin, QS Hashimoto, M Lu, DH Zhang, Y Markiewicz, RS Bansil, A Wilson, SD He, RH AF He, Junfeng Hafiz, H. Mion, Thomas R. Hogan, T. Dhital, C. Chen, X. Lin, Qisen Hashimoto, M. Lu, D. H. Zhang, Y. Markiewicz, R. S. Bansil, A. Wilson, S. D. He, Rui-Hua TI Fermi Arcs vs. Fermi Pockets in Electron-doped Perovskite Iridates SO SCIENTIFIC REPORTS LA English DT Article ID SUPERCONDUCTORS; EVOLUTION; SURFACE; BI2SR2CACU2O8+DELTA; PSEUDOGAP; STATE AB We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)(3)Ir2O7. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected "Fermi arcs", reminiscent of those reported recently in surface electron-doped Sr2IrO4. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system. C1 [He, Junfeng; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Wilson, S. D.; He, Rui-Hua] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Hafiz, H.; Markiewicz, R. S.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Zhang, Y.] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Wilson, S. D.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Dhital, C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP He, RH (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM junfeng.he@bc.edu; ar.bansil@neu.edu; here@bc.edu RI He, Junfeng/J-2664-2014; Dhital, Chetan/O-5634-2016 OI Dhital, Chetan/0000-0001-8125-6048 FU BC startup fund; US NSF CAREER Award [DMR-1454926, DMR-1056625]; NSF Graduate Research Fellowship [DGE-1258923]; DOE, BES [DE-FG02-07ER46352]; NEU's ASCC; DOE [DE-AC02-05CH11231]; US DOE, BES [DE-AC02-76SF00515] FX The work at Boston College was supported by a BC startup fund (J.H., R.-H.H.), the US NSF CAREER Awards DMR-1454926 (R.-H.H., in part) and DMR-1056625 (T.H., C.D., X.C., S.D.W.), and NSF Graduate Research Fellowship DGE-1258923 (T.R.M.). The work at NEU was supported by the DOE, BES grant number DE-FG02-07ER46352, and benefited from NEU's ASCC and the allocation of supercomputer time at NERSC through DOE grant DE-AC02-05CH11231. ARPES experiments were performed at the SSRL supported by the US DOE, BES Contract No. DE-AC02-76SF00515. NR 29 TC 7 Z9 7 U1 7 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 23 PY 2015 VL 5 AR 8533 DI 10.1038/srep08533 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB6BW UT WOS:000349712900006 PM 25704850 ER PT J AU Roach, BD Williams, NJ Duncan, NC Delmau, LH Lee, DL Birdwell, JF Moyer, BA AF Roach, Benjamin D. Williams, Neil J. Duncan, Nathan C. Delmau, Laetitia H. Lee, Denise L. Birdwell, Joseph F., Jr. Moyer, Bruce A. TI Radiolytic Treatment of the Next-Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article ID RADIATION-CHEMISTRY; TRIVALENT ACTINIDES; CESIUM REMOVAL; CSSX PROCESS; SEPARATION; STABILITY; IDENTIFICATION; SYSTEMS; ARTICLE AB It is shown in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing of irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses. C1 [Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.; Delmau, Laetitia H.; Lee, Denise L.; Birdwell, Joseph F., Jr.; Moyer, Bruce A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Roach, BD (reprint author), Oak Ridge Natl Lab, Room A119,Bldg 4100,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM roachbd@ornl.gov RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 FU Office of Technology Innovation and Development, U.S. Department of Energy; Office of Environmental Management, U.S. Department of Energy FX This research was sponsored by the Office of Technology Innovation and Development, Office of Environmental Management, U.S. Department of Energy. NR 30 TC 0 Z9 0 U1 0 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD FEB 23 PY 2015 VL 33 IS 2 BP 134 EP 151 DI 10.1080/07366299.2014.952531 PG 18 WC Chemistry, Multidisciplinary SC Chemistry GA CA1GF UT WOS:000348660100004 ER PT J AU Castellanos-Martin, A Castillo-Lluva, S Saez-Freire, MD Blanco-Gomez, A Hontecillas-Prieto, L Patino-Alonso, C Galindo-Villardon, P del Villar, LP Martin-Seisdedos, C Isidoro-Garcia, M Abad-Hernandez, MD Cruz-Hernandez, JJ Rodriguez-Sanchez, CA Gonzalez-Sarmiento, R Alonso-Lopez, D Rivas, J Gariia-Cenador, B Garcia-Criado, J Lee, DY Bowen, B Reindl, W Northen, T Mao, JH Perez-Losada, J AF Castellanos-Martin, Andres Castillo-Lluva, Sonia del Mar Saez-Freire, Maria Blanco-Gomez, Adrian Hontecillas-Prieto, Lourdes Patino-Alonso, Carmen Galindo-Villardon, Purificacion Perez del Villar, Luis Martin-Seisdedos, Carmen Isidoro-Garcia, Maria del Mar Abad-Hernandez, Maria Jesus Cruz-Hernandez, Juan Augusto Rodriguez-Sanchez, Cesar Gonzalez-Sarmiento, Rogelio Alonso-Lopez, Diego De Las Rivas, Javier Garcia-Cenador, Begona Garcia-Criado, Javier Lee, Do Yup Bowen, Benjamin Reindl, Wolfgang Northen, Trent Mao, Jian-Hua Perez-Losada, Jesus TI Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach SO GENOME BIOLOGY LA English DT Article ID ACTIVATED PROTEIN-KINASE; MISSING HERITABILITY; HUMAN-DISEASE; PROGNOSTIC-SIGNIFICANCE; MAMMARY TUMORIGENESIS; TRANSGENIC MICE; MOUSE MODELS; EXPRESSION; ONCOGENE; SURVIVAL AB Background: An essential question in cancer is why individuals with the same disease have different clinical outcomes. Progress toward a more personalized medicine in cancer patients requires taking into account the underlying heterogeneity at different molecular levels. Results: Here, we present a model in which there are complex interactions at different cellular and systemic levels that account for the heterogeneity of susceptibility to and evolution of ERBB2-positive breast cancers. Our model is based on our analyses of a cohort of mice that are characterized by heterogeneous susceptibility to ERBB2-positive breast cancers. Our analysis reveals that there are similarities between ERBB2 tumors in humans and those of backcross mice at clinical, genomic, expression, and signaling levels. We also show that mice that have tumors with intrinsically high levels of active AKT and ERK are more resistant to tumor metastasis. Our findings suggest for the first time that a site-specific phosphorylation at the serine 473 residue of AKT1 modifies the capacity for tumors to disseminate. Finally, we present two predictive models that can explain the heterogeneous behavior of the disease in the mouse population when we consider simultaneously certain genetic markers, liver cell signaling and serum biomarkers that are identified before the onset of the disease. Conclusions: Considering simultaneously tumor pathophenotypes and several molecular levels, we show the heterogeneous behavior of ERBB2-positive breast cancer in terms of disease progression. This and similar studies should help to better understand disease variability in patient populations. C1 [Castellanos-Martin, Andres; Castillo-Lluva, Sonia; del Mar Saez-Freire, Maria; Blanco-Gomez, Adrian; Hontecillas-Prieto, Lourdes; Jesus Cruz-Hernandez, Juan; Gonzalez-Sarmiento, Rogelio; Alonso-Lopez, Diego; De Las Rivas, Javier; Perez-Losada, Jesus] Univ Salamanca, CSIC, IBMCC, Salamanca 37007, Spain. [Castellanos-Martin, Andres; Castillo-Lluva, Sonia; del Mar Saez-Freire, Maria; Blanco-Gomez, Adrian; Hontecillas-Prieto, Lourdes; Patino-Alonso, Carmen; Galindo-Villardon, Purificacion; Perez del Villar, Luis; Martin-Seisdedos, Carmen; Isidoro-Garcia, Maria; del Mar Abad-Hernandez, Maria; Jesus Cruz-Hernandez, Juan; Augusto Rodriguez-Sanchez, Cesar; Gonzalez-Sarmiento, Rogelio; Alonso-Lopez, Diego; De Las Rivas, Javier; Garcia-Cenador, Begona; Garcia-Criado, Javier; Perez-Losada, Jesus] Inst Invest Biomed Salamanca IBSAL, Salamanca 37007, Spain. [del Mar Saez-Freire, Maria] Univ Salamanca, Dept Fisiol & Farmacol, Salamanca 37007, Spain. [Patino-Alonso, Carmen; Galindo-Villardon, Purificacion] Univ Salamanca, Dept Estadist, Salamanca 37007, Spain. [Perez del Villar, Luis] Univ Salamanca, CIETUS, Dept Parasitol, Salamanca 37007, Spain. [Martin-Seisdedos, Carmen; Isidoro-Garcia, Maria] Hosp Univ Salamanca, Serv Bioquim Clin, Salamanca 37007, Spain. [Jesus Cruz-Hernandez, Juan; Gonzalez-Sarmiento, Rogelio] Univ Salamanca, Dept Med, Salamanca 37007, Spain. [del Mar Abad-Hernandez, Maria; Jesus Cruz-Hernandez, Juan] Hosp Univ Salamanca, Serv Oncol, Salamanca 37007, Spain. [del Mar Abad-Hernandez, Maria] Univ Salamanca, Fac Med, Dept Anat Patol, Salamanca 37007, Spain. [Alonso-Lopez, Diego; De Las Rivas, Javier] CIC IBMCC, Unidad Bioinformat, Salamanca 37007, Spain. [Garcia-Cenador, Begona; Garcia-Criado, Javier] Univ Salamanca, Dept Cirugia, Salamanca 37007, Spain. [Lee, Do Yup; Perez-Losada, Jesus] Kookmin Univ, Adv Fermentat Fus Sci & Technol, Seoul 136702, South Korea. [Bowen, Benjamin; Reindl, Wolfgang; Northen, Trent] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Bioenergy GTL & Struct Biol, Berkeley, CA 94720 USA. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Northen, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Bioenergy GTL & Struct Biol, Berkeley, CA 94720 USA. EM TRNorthen@lbl.gov; jhmao@lbl.gov; jperezlosada@usal.es RI Galindo-Villardon, M Purificacion/E-3594-2013; Castellanos, Andres/F-3302-2016; De Las Rivas, Javier/G-5936-2014 OI Galindo-Villardon, M Purificacion/0000-0001-6977-7545; Alonso Lopez, Diego/0000-0003-1015-9923; Castillo-LLuva, Sonia/0000-0001-5357-7178; Northen, Trent/0000-0001-8404-3259; De Las Rivas, Javier/0000-0002-0984-9946 FU FEDER; MICINN [PLE2009-119]; FIS [PI07/0057, PI10/00328, PIE14/00066]; Junta de Castilla y Leon [SAN673/SA26/08, SAN126/SA66/09, SA078A09, CSI034U13]; Fundacion Eugenio Rodriguez Pascual; Fundacion Inbiomed (Instituto Oncologico Obra Social de la Caja Guipozcoa-San Sebastian, Kutxa); Fundacion Sandra Ibarra de Solidaridad frente al Cancer; JAEdoc Fellowship (CSIC)/FSE; Junta de Castilla y Leon; Forschungsstipendium of the Deutsche Forschungsgemeinschaft (DFG) [RE 3108/1-1]; US Department of Energy Low-Dose SFA Program at Berkeley Lab [DE-AC02-05CH11231]; National Institutes of Health [RC1NS069177]; California Breast Cancer Research Program [15IB-0063]; National Institutes of Health, a National Cancer Institute grant [R01 CA116481]; Low-Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy [DE-AC02-05CH11231] FX JPL was partially supported by FEDER and MICINN (PLE2009-119), FIS (PI07/0057, PI10/00328, PIE14/00066), the Junta de Castilla y Leon (SAN673/SA26/08; SAN126/SA66/09, SA078A09, CSI034U13), the "Fundacion Eugenio Rodriguez Pascual", the Fundacion Inbiomed (Instituto Oncologico Obra Social de la Caja Guipozcoa-San Sebastian, Kutxa), and the "Fundacion Sandra Ibarra de Solidaridad frente al Cancer". AC was supported by MICINN (PLE2009-119). SCLL is funded by a JAEdoc Fellowship (CSIC)/FSE. MMSF and ABG are funded by fellowships from the Junta de Castilla y Leon. WR was supported by a Forschungsstipendium of the Deutsche Forschungsgemeinschaft (DFG) [RE 3108/1-1]. TN, BPB and DYL acknowledge support from the US Department of Energy Low-Dose SFA Program at Berkeley Lab [DE-AC02-05CH11231], the National Institutes of Health [RC1NS069177] and the California Breast Cancer Research Program [15IB-0063]. JHM was supported by the National Institutes of Health, a National Cancer Institute grant (R01 CA116481), and the Low-Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy (DE-AC02-05CH11231). We thank Isidro Sanchez-Garcia, Cesar Cobaleda, Pedro A Lazo, Irene Rodriguez-Hernandez, Dionisio Martin-Zanca, Elena Perez-Losada and Allan Balmain for useful comments about the manuscript, Rocio Puras Pardo for Figure 1A construction, Maria Luz Hernendez Mulas and Isabel Ramos for their technical assistance and Nicholas Skinner for his useful help in English editing. This paper is dedicated to the memory of our friend and colleague Luis Perez del Villar. NR 55 TC 5 Z9 5 U1 2 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1465-6906 EI 1474-760X J9 GENOME BIOL JI Genome Biol. PD FEB 21 PY 2015 VL 16 AR 40 DI 10.1186/s13059-015-0599-z PG 23 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA CF0XD UT WOS:000352266800001 PM 25853295 ER PT J AU Harvey, SP Repins, I Teeter, G AF Harvey, Steven P. Repins, Ingrid Teeter, Glenn TI Defect chemistry and chalcogen diffusion in thin-film Cu2ZnSnSe4 materials SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SELF-DIFFUSION; SOLAR-CELLS; STATE AB Selenium diffusion in polycrystalline thin-film Cu2ZnSn(S,Se)(4) (CZTSe) on molybdenum-coated soda-lime glass substrates was investigated by in situ monitoring of the molybdenum back-contact resistance during high-temperature selenization treatments. In these measurements, selenium diffusion through the CZTSe layer results in conversion of the molybdenum layer to MoSe2, increasing the sheet resistance of the film stack. By monitoring the rate of MoSe2 formation as a function of annealing temperature, an activation energy of 0.5 +/- 0.1 eV has been measured for selenium diffusion in CZTSe. The partial pressure dependence of chalcogen diffusion suggests that chalcogen vacancies are not the defect controlling chalcogen diffusion in thin-film CZTSe. (C) 2015 AIP Publishing LLC. C1 [Harvey, Steven P.; Repins, Ingrid; Teeter, Glenn] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Harvey, SP (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 26 TC 3 Z9 3 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 21 PY 2015 VL 117 IS 7 AR 074902 DI 10.1063/1.4907951 PG 7 WC Physics, Applied SC Physics GA CD5MC UT WOS:000351130900030 ER PT J AU Mardirossian, N Head-Gordon, M AF Mardirossian, Narbe Head-Gordon, Martin TI Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MAIN-GROUP THERMOCHEMISTRY; CORRELATED MOLECULAR CALCULATIONS; ELECTRONIC-STRUCTURE CALCULATIONS; BENCHMARK INTERACTION ENERGIES; COORDINATE-SPACE MODEL; BASIS-SET CONVERGENCE; GAUSSIAN-BASIS SETS; RARE-GAS ATOMS; NONCOVALENT INTERACTIONS; WATER CLUSTERS AB A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 1010 choices carved out of a functional space of almost 1040 possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights. (C) 2015 AIP Publishing LLC. C1 [Mardirossian, Narbe; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu FU Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX N.M. would like to thank Jonathan Thirman for help with the parallel implementation of the least-squares fitting code and Jonathon Witte for providing a useful script for analyzing geometries. This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 147 TC 40 Z9 40 U1 9 U2 44 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2015 VL 142 IS 7 AR 074111 DI 10.1063/1.4907719 PG 32 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CC7KY UT WOS:000350547500011 PM 25702006 ER PT J AU Sasdelli, M Hillebrandt, W Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Benitez-Herrera, S Bongard, S Buton, C Canto, A Cellier-Holzem, F Chen, J Childress, M Chotard, N Copin, Y Fakhouri, HK Feindt, U Fink, M Fleury, M Fouchez, D Gangler, E Guy, J Ishida, EEO Kim, AG Kowalski, M Kromer, M Lombardo, S Mazzali, PA Nordin, J Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Rigault, M Runge, K Saunders, C Scalzo, R Smadja, G Suzuki, N Tao, C Taubenberger, S Thomas, RC Tilquin, A Weaver, BA AF Sasdelli, Michele Hillebrandt, W. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Benitez-Herrera, S. Bongard, S. Buton, C. Canto, A. Cellier-Holzem, F. Chen, J. Childress, M. Chotard, N. Copin, Y. Fakhouri, H. K. Feindt, U. Fink, M. Fleury, M. Fouchez, D. Gangler, E. Guy, J. Ishida, E. E. O. Kim, A. G. Kowalski, M. Kromer, M. Lombardo, S. Mazzali, P. A. Nordin, J. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Rigault, M. Runge, K. Saunders, C. Scalzo, R. Smadja, G. Suzuki, N. Tao, C. Taubenberger, S. Thomas, R. C. Tilquin, A. Weaver, B. A. TI A metric space for Type Ia supernova spectra SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE line: profiles; methods: data analysis; methods: statistical; techniques: spectroscopic; stars: statistics; supernovae: general ID PRINCIPAL COMPONENT ANALYSIS; HIGH-VELOCITY FEATURES; ABUNDANCE STRATIFICATION; SPECTROSCOPIC DIVERSITY; EQUIVALENT WIDTHS; SN 2011FE; DATA SET; CLASSIFICATION; MODELS; REDSHIFT AB We develop a new framework for use in exploring Type Ia supernovae (SNe Ia) spectra. Combining principal component analysis (PCA) and partial least square (PLS) analysis we are able to establish correlations between the principal components (PCs) and spectroscopic/photometric SNe Ia features. The technique was applied to similar to 120 SN and similar to 800 spectra from the Nearby Supernova Factory. The ability of PCA to group together SNe Ia with similar spectral features, already explored in previous studies, is greatly enhanced by two important modifications: (1) the initial data matrix is built using derivatives of spectra over the wavelength, which increases the weight of weak lines and discards extinction, and (2) we extract time evolution information through the use of entire spectral sequences concatenated in each line of the input data matrix. These allow us to define a stable PC parameter space which can be used to characterize synthetic SN Ia spectra by means of real SN features. Using PLS, we demonstrate that the information from important previously known spectral indicators (namely the pseudo-equivalent width of Si II 5972 angstrom/Si II 6355 angstrom and the line veloci of S II 5640 angstrom/Si II 6355 angstrom) at a given epoch is contained within the PC space and can be determined through a linear combination of the most important PCs. We also show that the PC space encompasses photometric features like B/V magnitudes, B - V colours and SALT2 parameters c and x(1). The observed colours and magnitudes, which are heavily affected by extinction, cannot be reconstructed using this technique alone. All the above-mentioned applications allowed us to construct a metric space for comparing synthetic SN Ia spectra with observations. C1 [Sasdelli, Michele; Hillebrandt, W.; Benitez-Herrera, S.; Fink, M.; Ishida, E. E. O.; Kromer, M.; Mazzali, P. A.; Taubenberger, S.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Kim, A. G.; Nordin, J.; Perlmutter, S.; Runge, K.; Saunders, C.; Suzuki, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Pain, R.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS IN2P3, F-75252 Paris 05, France. [Baltay, C.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Buton, C.; Feindt, U.; Kowalski, M.; Lombardo, S.; Rigault, M.] Bond Univ, Inst Phys, D-53115 Bonn, Germany. [Buton, C.; Feindt, U.; Kowalski, M.; Lombardo, S.; Rigault, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Chen, J.; Chotard, N.; Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Childress, M.; Fakhouri, H. K.; Perlmutter, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chotard, N.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Copin, Y.; Gangler, E.; Pereira, R.; Smadja, G.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS IN2P3, F-69622 Villeurbanne, France. [Fouchez, D.; Tao, C.; Tilquin, A.] Aix Marseille Univ, Ctr Phys Particules Marseille, CNRS IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Ishida, E. E. O.] Univ Sao Paulo, IAG, BR-05508900 Sao Paulo, Brazil. [Kromer, M.] Stockholm Univ, AlbaNova, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Kromer, M.] Stockholm Univ, AlbaNova, Dept Astron, SE-10691 Stockholm, Sweden. [Mazzali, P. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Mazzali, P. A.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Nordin, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Pecontal, E.] Univ Lyon 1, Ctr Rech Astron Lyon, F-69561 St Genis Laval, France. [Scalzo, R.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Weston, ACT 2611, Australia. [Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Sasdelli, M (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. EM sasdelli@mpa-garching.mpg.de RI Copin, Yannick/B-4928-2015; OI Copin, Yannick/0000-0002-5317-7518; Ishida, Emille/0000-0002-0406-076X; Scalzo, Richard/0000-0003-3740-1214 FU Brazilian agency FAPESP [2011/09525-3]; Brazilian agency CAPES [9229-13-2]; German DFG Cluster of Excellence 'Origin and Structure of the Universe'; DFG Transregio Project 33 'Dark Universe'; Director, Office of Science, Office of High Energy Physics, of the US Department of Energy [DE-AC02-05CH11231]; Gordon & Betty Moore Foundation in France [CNRS/IN2P3]; CNRS/INSU, PNCG; Lyon Institute of Origins [ANR-10-LABX-66]; DFG through TRR33 'The Dark Universe'; Director, Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [ANI-0087344]; University of California, San Diego FX We thank all the PYTHON, NUMPY and SCIPY communities for the high-quality free software they made available. MS thanks Philipp Edelmann for all the technical support during the developing of this work. EEOI acknowledges financial support from Brazilian agencies FAPESP (2011/09525-3) and CAPES (9229-13-2). Supported by German DFG Cluster of Excellence 'Origin and Structure of the Universe' and the DFG Transregio Project 33 'Dark Universe'. We thank Dan Birchall for observing assistance, the technical and scientific staffs of the Palomar Observatory, the High Performance Wireless Radio Network (HPWREN) and the University of Hawaii 2.2-m telescope. We recognize the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct observations from this revered site. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231; by a grant from the Gordon & Betty Moore Foundation; in France by support from CNRS/IN2P3, CNRS/INSU, PNCG and the Lyon Institute of Origins under grant ANR-10-LABX-66; and in Germany by the DFG through TRR33 'The Dark Universe'. Some results were obtained using resources and support from the National Energy Research Scientific Computing Center, supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. HPWREN is funded by National Science Foundation Grant Number ANI-0087344, and the University of California, San Diego. This work was written using the collaborative ShareLaTeX platform. NR 82 TC 5 Z9 5 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 21 PY 2015 VL 447 IS 2 BP 1247 EP 1266 DI 10.1093/mnras/stu2416 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TM UT WOS:000350272900018 ER PT J AU Yoo, J Seljak, U AF Yoo, Jaiyul Seljak, Uros TI Wide-angle effects in future galaxy surveys SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: analytical; cosmology: observations; large-scale structure of Universe ID REDSHIFT-SPACE DISTORTIONS; DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; DARK ENERGY SURVEY; LUMINOUS RED GALAXIES; SPHERICAL HARMONIC-ANALYSIS; POWER-SPECTRUM ANALYSIS; REAL-SPACE; COSMOLOGICAL IMPLICATIONS; DATA RELEASE AB Current and future galaxy surveys cover a large fraction of the entire sky with a significant redshift range, and the recent theoretical development shows that general relativistic effects are present in galaxy clustering on very large scales. This trend has renewed interest in the wide-angle effect in galaxy clustering measurements, in which the distant-observer approximation is often adopted. Using the full wide-angle formula for computing the redshift-space correlation function, we show that compared to the sample variance, the deviation in the redshift-space correlation function from the simple Kaiser formula with the distant-observer approximation is negligible in galaxy surveys such as the Sloan Digital Sky Survey, Euclid and the BigBOSS, if the theoretical prediction from the Kaiser formula is properly averaged over the survey volume. We also find corrections to the wide-angle formula and clarify the confusion in literature between the wide-angle effect and the velocity contribution in galaxy clustering. However, when the FKP method is applied, substantial deviations can be present in the power spectrum analysis in future surveys, due to the non-uniform distribution of galaxy pairs. C1 [Yoo, Jaiyul; Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Yoo, Jaiyul; Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea. RP Yoo, J (reprint author), Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. EM jyoo@physik.uzh.ch FU Swiss National Foundation (SNF) [200021-116696/1]; WCU grant [R32-10130]; SNF Ambizione Grant FX We acknowledge useful discussions with Florian Beutler, Eyal Kazin, Shun Saito, Anze Slosar, and Martin White. This work is supported by the Swiss National Foundation (SNF) under contract 200021-116696/1 and WCU grant R32-10130. JY is supported by the SNF Ambizione Grant. NR 66 TC 17 Z9 17 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 21 PY 2015 VL 447 IS 2 BP 1789 EP 1805 DI 10.1093/mnras/stu2491 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TM UT WOS:000350272900064 ER PT J AU Kneisel, P Ciovati, G Dhakal, P Saito, K Singer, W Singer, X Myneni, GR AF Kneisel, P. Ciovati, G. Dhakal, P. Saito, K. Singer, W. Singer, X. Myneni, G. R. TI Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE SRF cavities; Ingot Niobium AB As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineracao (CBMM), ingot niobium was explored as a possible material for superconducting radioirequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E-acc =45.6 MV/m. The quality factor of those cavities was also higher than that of line-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard PG material and opportunities for further developments. Published by Elsevier B.V. C1 [Kneisel, P.; Ciovati, G.; Dhakal, P.; Myneni, G. R.] Jefferson Lab, Newport News, VA 23606 USA. [Saito, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Singer, W.; Singer, X.] DESY, D-22607 Hamburg, Germany. RP Myneni, GR (reprint author), Jefferson Lab, Newport News, VA 23606 USA. EM kneisel@jlab.org; rao@jlab.org NR 102 TC 10 Z9 10 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2015 VL 774 BP 133 EP 150 DI 10.1016/j.nima.2014.11.083 PG 18 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AY2GW UT WOS:000347407800018 ER PT J AU Wang, Q Vogan, EM Nocka, LM Rosen, CE Zorn, JA Harrison, SC Kuriyan, J AF Wang, Qi Vogan, Erik M. Nocka, Laura M. Rosen, Connor E. Zorn, Julie A. Harrison, Stephen C. Kuriyan, John TI Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate SO ELIFE LA English DT Article ID X-LINKED AGAMMAGLOBULINEMIA; CELL ANTIGEN RECEPTOR; ELECTRON-DENSITY MAPS; B-CELL; PH DOMAIN; SH3 DOMAIN; CRYSTAL-STRUCTURE; C-ABL; STRUCTURAL BASIS; NMR SYSTEM AB Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk. C1 [Wang, Qi; Rosen, Connor E.; Zorn, Julie A.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wang, Qi; Rosen, Connor E.; Zorn, Julie A.; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Wang, Qi; Rosen, Connor E.; Zorn, Julie A.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Vogan, Erik M.; Harrison, Stephen C.] Boston Childrens Hosp, Mol Med Lab, Boston, MA 02115 USA. [Vogan, Erik M.; Harrison, Stephen C.] Boston Childrens Hosp, Howard Hughes Med Inst, Boston, MA USA. [Vogan, Erik M.; Harrison, Stephen C.] Harvard Univ, Sch Med, Boston, MA USA. [Nocka, Laura M.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phy Biosci Div, Berkeley, CA 94720 USA. RP Harrison, SC (reprint author), Boston Childrens Hosp, Mol Med Lab, Boston, MA 02115 USA. EM harrison@crystal.harvard.edu; kuriyan@berkeley.edu FU NIH [PO1 A1091580]; Cancer Research Institute-Irvington Institute Fellowship Program FX This work was supported in part by NIH grant PO1 A1091580 to J.K. Q.W. is supported by the Cancer Research Institute-Irvington Institute Fellowship Program. NR 78 TC 10 Z9 10 U1 1 U2 3 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD FEB 20 PY 2015 VL 4 AR e06074 DI 10.7554/eLife.06074 PG 84 WC Biology SC Life Sciences & Biomedicine - Other Topics GA CB7QB UT WOS:000349821300001 ER PT J AU Pilania, G Liu, XY Valone, SM AF Pilania, Ghanshyam Liu, Xiang-Yang Valone, Steven M. TI First principles approach to ionicity of fragments SO CHEMICAL PHYSICS LA English DT Article DE Ionicity; Constrained density functional theory; Fragment Hamiltonian model; Valence electron charge density decomposition ID ELECTRONIC POPULATION ANALYSIS; MOLECULAR WAVE FUNCTIONS; STRUCTURAL STABILITY; CHEMICAL-BOND; CHARGE; ELECTRONEGATIVITY; DENSITY; ENERGIES; SCALE; ATOMS AB We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pilania, Ghanshyam; Liu, Xiang-Yang; Valone, Steven M.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Pilania, G (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM gpilania@lanl.gov OI Pilania, Ghanshyam/0000-0003-4460-1572 FU Los Alamos National Laboratory (LANL) Directed Research and Development Program [20120053ER]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Los Alamos National Laboratory (LANL) Directed Research and Development Program (20120053ER). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 60 TC 0 Z9 0 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD FEB 20 PY 2015 VL 448 BP 26 EP 33 DI 10.1016/j.chemphys.2014.12.013 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD0FV UT WOS:000350747000004 ER PT J AU Pitts, TA Laine, MR Schwarz, J Rambo, PK Hautzenroeder, BM Karelitz, DB AF Pitts, Todd A. Laine, Mark R. Schwarz, Jens Rambo, Patrick K. Hautzenroeder, Brenna M. Karelitz, David B. TI Numerical modeling considerations for an applied nonlinear Schrodinger equation SO APPLIED OPTICS LA English DT Article ID OPTICAL PARAMETRIC-AMPLIFIERS; DISPERSIVE DIELECTRIC FIBERS; CONTINUUM GENERATION; PULSE-PROPAGATION; TRANSPARENT MEDIA; FILAMENTATION; TRANSMISSION; GUIDE; LIGHT; AIR AB A model for nonlinear optical propagation is cast into a split-step numerical framework via a variable stencil-size Crank-Nicolson finite-difference method for the linear step and a choice of two different nonlinear integration schemes for the nonlinear step. The model includes Kerr, Raman scattering, and ionization effects (as well as linear and nonlinear shock, diffraction, and dispersion). We demonstrate the practical importance of numerical effects when interpreting computational studies of high-intensity optical pulse propagation in physical materials. Examples demonstrate the significant error that can arise in discrete, limited precision implementations as one attempts to improve practical operator accuracy through increased operator support size and sampling frequency. We also demonstrate the effect of the method used to obtain the finite-difference operator coefficients defining the equations ultimately used in the discrete model. Smooth, plausible, but incorrect solutions may result from these numerical effects. This implies the necessity of a complete, precise description of all numerical methods when reporting results of computational physics investigations in order to ensure proper interpretation and reproducibility. (C) 2015 Optical Society of America C1 [Pitts, Todd A.; Laine, Mark R.; Schwarz, Jens; Rambo, Patrick K.; Hautzenroeder, Brenna M.; Karelitz, David B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pitts, TA (reprint author), Sandia Natl Labs, POB 5800,MS 0980, Albuquerque, NM 87185 USA. EM tapitts@sandia.gov FU Sandia Corporation [DE-AC04-94AL85000]; U.S. Department of Energy FX This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the U.S. Department of Energy. NR 36 TC 0 Z9 0 U1 1 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 20 PY 2015 VL 54 IS 6 BP 1426 EP 1435 DI 10.1364/AO.54.001426 PG 10 WC Optics SC Optics GA CB5RR UT WOS:000349685700028 PM 25968209 ER PT J AU Akilavasan, J Al-Jassim, M Bandara, J AF Akilavasan, Jeganathan Al-Jassim, Maufick Bandara, Jayasundera TI Designing nanostructured one-dimensional TiO2 nanotube and TiO2 nanoparticle multilayer composite film as photoanode in dye-sensitized solar cells to increase the charge collection efficiency SO JOURNAL OF NANOPHOTONICS LA English DT Article DE 1-D TiO2 nanotube structures; TiO2 nanotube; dye sensitized solar cell; electron transport; scattering layer ID PHOTOVOLTAIC PERFORMANCE; CONVERSION EFFICIENCY; TITANIA NANOTUBES; LIGHT-SCATTERING; ARRAYS; LAYER; ELECTROLYTE; TRANSPORT; RECOMBINATION; FABRICATION AB A photoanode consisting of hydrothermally synthesized TiO2 nanotubes (TNT) and TiO2 nanoparticles (TNP) was designed for efficient charge collection in dye-sensitized solar cells. TNT and TNP films were fabricated on a conductive glass substrate by using electrophoretic deposition and doctor-blade methods, respectively. The TNP, TNT, and TNT/TNP bi-layer electrodes exhibit solar cell efficiencies of 5.3, 7.4, and 9.2%, respectively. Solar cell performance results indicate a higher short-circuit current density (J(sc)) for the TNT/TNP bi-layer electrode when compared to a TNT or TNP electrode alone. The open-circuit voltages (V-oc) of TNT/TNP and TNT electrodes are comparable while the V (oc) of TNP electrode is inferior to that of the TNT/TNP electrode. Fill factors of TNT/TNP, TNT, and TNP electrodes also exhibit similar behaviors. The enhanced efficiency of the TNT/TNP bi-layer electrode is found to be mainly due to the enhancement of charge collection efficiency, which is confirmed by the charge transport parameters measured by electrochemical impedance spectroscopy (EIS). EIS analyses also revealed that the TNT/TNP incurs smaller charge transport resistances and longer electron life times when compared to those of TNT or TNP electrodes alone. It was demonstrated that the TNT/TNP bi-layer electrode can possess the advantages of both rapid electron transport rate and a high light scattering effect. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Akilavasan, Jeganathan; Bandara, Jayasundera] Inst Fundamental Studies, Kandy, Sri Lanka. [Al-Jassim, Maufick] NREL, Golden, CO 80401 USA. RP Bandara, J (reprint author), Inst Fundamental Studies, Hantana Rd,CP20000, Kandy, Sri Lanka. EM bandaraj@ifs.ac.lk FU NRC, Sri Lanka [NRC 2007-46] FX Financial support from NRC, Sri Lanka (NRC 2007-46) is highly appreciated. NR 37 TC 3 Z9 3 U1 0 U2 25 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1934-2608 J9 J NANOPHOTONICS JI J. Nanophotonics PD FEB 20 PY 2015 VL 9 AR 093091 DI 10.1117/1.JNP.9.093091 PG 12 WC Nanoscience & Nanotechnology; Optics SC Science & Technology - Other Topics; Optics GA CC6HY UT WOS:000350467200001 ER PT J AU Pershoguba, SS Abergel, DSL Yakovenko, VM Balatsky, AV AF Pershoguba, Sergey S. Abergel, D. S. L. Yakovenko, Victor M. Balatsky, A. V. TI Effects of a tilted magnetic field in a Dirac double layer SO PHYSICAL REVIEW B LA English DT Article ID DEPENDENT MAGNETORESISTANCE OSCILLATION; FERMI-SURFACE; BERRYS PHASE; TRANSPORT; GRAPHENE; SR2RUO4; METAL; SUPERCONDUCTOR; TRANSITION; GRAPHITE AB We calculate the energy spectrum of a Dirac double layer, where each layer has the Dirac electronic dispersion, in the presence of a tilted magnetic field and small interlayer tunneling. We show that the energy splitting between the Landau levels has an oscillatory dependence on the in-plane magnetic field and vanishes at a series of special tilt angles of the magnetic field. Using a semiclassical analysis, we show that these special tilt angles are determined by the Berry phase of the Dirac Hamiltonian. The interlayer tunneling conductance also exhibits an oscillatory dependence on the magnetic field tilt angle, known as the angular magnetoresistance oscillations (AMRO). Our results are applicable to graphene double layers and thin films of topological insulators. C1 [Pershoguba, Sergey S.; Abergel, D. S. L.; Balatsky, A. V.] KTH Royal Inst Technol, NORDITA, SE-10691 Stockholm, Sweden. [Pershoguba, Sergey S.; Abergel, D. S. L.; Balatsky, A. V.] Stockholm Univ, SE-10691 Stockholm, Sweden. [Pershoguba, Sergey S.; Yakovenko, Victor M.] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. RP Pershoguba, SS (reprint author), KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden. RI Abergel, David/D-4838-2015; Yakovenko, Victor/A-7559-2008; OI Abergel, David/0000-0002-6166-181X; Pershoguba, Sergey/0000-0001-5003-3415 FU ERC [DM-321031]; US DOE BES [E304] FX This work was supported by ERC DM-321031 and US DOE BES E304 (S.S.P., D.S.L.A., and A.V.B). We would like to thank Tim Khodkov and Yaron Kedem for helpful discussions. NR 51 TC 4 Z9 4 U1 9 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 20 PY 2015 VL 91 IS 8 AR 085418 DI 10.1103/PhysRevB.91.085418 PG 9 WC Physics, Condensed Matter SC Physics GA CB7DL UT WOS:000349786400007 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Goessling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageb, Ck Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, AC Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spanoo, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageb Ck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, A. C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurements of the Nuclear Modification Factor for Jets in Pb plus Pb Collisions at root SNN=2.76 TeV with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSVERSE-MOMENTUM DEPENDENCE; CHARGED-PARTICLE PRODUCTION; LEAD-LEAD COLLISIONS; QUARK-GLUON PLASMA; ROOT-S(NN)=2.76 TEV; INCLUSIVE JET; ROOT-S-NN=2.76 TEV; COLLABORATION; PERSPECTIVE; SUPPRESSION AB Measurements of inclusive jet production are performed in pp and Pb + Pb collisions at root SNN = 2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R = 0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32 < pT < 500 GeV and absolute rapidity |y| < 2.1 and as a function of collision centrality. The nuclear modification factor R-AA is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to pp collisions. The RAA shows a slight increase with pT and no significant variation with rapidity. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Dept Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieger, J.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bagiacchi, P.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageb Ck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Krstic, J.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Alberghi, G. L.; Bagiacchi, P.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Otero y Garzon, G.; Parker, M. A.; Robinson, D.; Sandoval, C.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Battistin, M.; Beltramello, O.; Boyd, J.; Burckhart, H.; Cabrera Urban, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Chromek-Burckhart, D.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchini, M.; Francis, D.; Froidevaux, D.; Gianotti, F.; Glatzer, J.; Goossens, L.; Gorini, B.; Helsens, C.; Hoecker, A.; Jaekel, M. R.; Jansen, H.; Kaneda, M.; Klioutchnikova, T.; Kono, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, C.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, A.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Schaefer, D.; Serfon, C.; Spigo, G.; Stelzer, B.; Teischinger, F. A.; Ten Kate, H.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vigne, R.; Voss, R.; Vuillermet, R.; Wang, H.; Wells, P. S.; Werner, M.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, S.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wildt, M. A.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Wildt, M. A.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Wildt, M. A.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Santonico, R.; Theveneaux-Pelzer, T.; Valero, A.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valero, A.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Guo, J.; Hu, D.; Hughes, G.; Kravchenko, A.; Mohapatra, S.; Nikiforov, A.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, A. S.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Astalos, R.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fiascaris, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvucci, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Nazl Frascati Lab, Grp Collegato Cosenza, Milan, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howard, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, A.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Rubinskiy, I.; Schaepe, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, H.; Wasicki, C.; Wildt, M. A.; Yildirim, E.] DESY, Hamburg, Germany. [Alison, J.; Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Debenedetti, C.; Deterre, C.; Glatzer, J.; Fajardo, L. S. Gomez; Hiller, K. H.; Howard, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, A.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Peschke, R.; Petit, E.; Radeka, V.; Rubinskiy, I.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, H.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, A.; Li, L.; Li, S.; Liu, M.; Oh, A.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glasman, C.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokoshin, F.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruncko, D.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Schillo, C.; Schumacher, M.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, S.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Wang, H.; Warsinsky, M.; Werner, M.; Wielers, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexander, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Giacobbe, B.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Picazio, A.; Pohl, D.; Pohl, M.; Rosbach, K.; Tykhonov, A.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, J.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giuliani, C.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst fr Tech Informat, Heidelberg, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, J.; Terada, S.; Terashi, K.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Milan, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipuzzi, M.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, P.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chisholm, A. S.; Cooper, B. D.; Davison, P.; Falla, R. J.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scannicchio, D. A.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Ocariz, J.; Pires, S.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davies, M.; De Cecco, S.; Demilly, A.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.; Wang, H.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, C.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koeneke, K.; Lin, T. H.; Lungwitz, M.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Schulz, H.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Petersen, T. C.; Price, D.; Qin, G.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, A. S.; Tomlinson, L.; Watts, G.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, K.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubacek, Z.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagai, K.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, C.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, B.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimoto, G.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonaki, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasznahorkay, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Soldevila, U.; Timoshenko, S.; Toth, J.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, M.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, A. C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Sander, H. G.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ Naples Federico II, Dipartmento Fis, Naples, Italy. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koepke, L.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Cole, B.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannoury, N.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. J.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Milan, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Beccherle, R.; Bertolucci, F.; Cavaliere, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, I.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Azuelos, G.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallo, V.; Gee, C. N. P.; Gingrich, D. M.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Oakham, F. G.; Phillips, P. W.; Sankey, D. P. C.; Savard, P.; Scott, W. G.; Tyndel, M.; Vetterli, M. C.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Milan, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Milan, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Milan, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Inst Rech Lois Fondament Univers, Commissariat Energie Atom & Energies Alternat, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; De la Torre, H.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittkowski, J.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsu, P. J.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg 2050, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Mastrandrea, P.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjoelin, J.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastroberardino, A.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Salvo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hakobyan, H.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, A.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, D.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, O.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.; Yamamoto, K.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Kouskoura, V.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Staerz, S.; Stelzer-Chilton, O.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, A.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular, IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrari, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valery, L.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Ferrer, A.; Fiorini, L.; Torregrosa, E. Fullana; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, A.; Soldevila, U.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Navarro, J. E. Garcia; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona, IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrari, A.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Perez Garcia-Estan, M. T.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Lenzi, B.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, P.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Physik, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Kings Coll London, Dept Phys, London, England. [Apolle, R.; Davies, E.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.; Chen, C.; Gao, J.] Tomsk State Univ, Tomsk 634050, Russia. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Univ Napoli Parthenope, Naples, Italy. [Fedin, O. L.] Inst Particle Phys, Toronto, ON, Canada. [Castillo, L. R. Flores] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Greenwood, Z. D.; Sawyer, L.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Ilchenko, Y.; Onyisi, P. U. E.] ICREA, Inst Catalana Recerca i Estudis Avancats, Barcelona, Spain. [Jejelava, J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Konoplich, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Manhattan Coll, New York, NY USA. [Li, B.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Liu, K.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Messina, A.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Nessi, M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Purohit, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Shi, L.; Soh, D. A.; Weng, Z.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Tikhomirov, V. O.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Vickey, T.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Xu, L.] Univ Hamburg, Inst fur Experimentalphys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Livan, Michele/D-7531-2012; Moraes, Arthur/F-6478-2010; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Boyko, Igor/J-3659-2013; Mitsou, Vasiliki/D-1967-2009; Carquin, Edson/G-5221-2015 OI Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Livan, Michele/0000-0002-5877-0062; Moraes, Arthur/0000-0002-5157-5686; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Boyko, Igor/0000-0002-3355-4662; Mitsou, Vasiliki/0000-0002-1533-8886; Carquin, Edson/0000-0002-7863-1166 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC andWallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America; CERNATLAS Tier-1 facilities at TRIUMF (Canada); NDGF (Denmark, Norway, and Sweden); CC-IN2P3 (France); KIT/GridKA (Germany); INFN-CNAF (Italy); NL-T1 (Netherlands); PIC (Spain); ASGC (Taiwan); RAL (United Kingdom); BNL (USA) FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC andWallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (USA) and in the Tier-2 facilities worldwide. NR 38 TC 27 Z9 27 U1 11 U2 89 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 20 PY 2015 VL 114 IS 7 AR 072302 DI 10.1103/PhysRevLett.114.072302 PG 18 WC Physics, Multidisciplinary SC Physics GA CB7EA UT WOS:000349788000008 PM 25763955 ER PT J AU Aleiner, IL Andreev, AV Vinokur, V AF Aleiner, I. L. Andreev, A. V. Vinokur, V. TI Aharonov-Bohm Oscillations in Singly Connected Disordered Conductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION; FLUCTUATIONS AB We show that the transport and thermodynamic properties of a singly connected disordered conductor exhibit quantum Aharonov-Bohm oscillations as a function of the total magnetic flux through the sample. The oscillations are associated with the interference contribution from a special class of electron trajectories confined to the surface of the sample. C1 [Aleiner, I. L.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Andreev, A. V.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Vinokur, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Aleiner, IL (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. FU Simons Foundation; U.S. Department of Energy [DE-FG02-07ER46452]; ANL by Materials Theory Institute; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division FX We thank B. Spivak and D. Cobden for useful discussions and comments on the manuscript. I. A. was supported by the Simons Foundation. A. A. was supported by the U.S. Department of Energy by the Grant No. DE-FG02-07ER46452 and partly supported at ANL by the Materials Theory Institute. V.V. was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. NR 21 TC 2 Z9 2 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 20 PY 2015 VL 114 IS 7 AR 076802 DI 10.1103/PhysRevLett.114.076802 PG 5 WC Physics, Multidisciplinary SC Physics GA CB7EA UT WOS:000349788000011 PM 25763968 ER PT J AU Gale, C Hidaka, Y Jeon, S Lin, S Paquet, JF Pisarski, RD Satow, D Skokov, VV Vujanovic, G AF Gale, Charles Hidaka, Yoshimasa Jeon, Sangyong Lin, Shu Paquet, Jean-Francois Pisarski, Robert D. Satow, Daisuke Skokov, Vladimir V. Vujanovic, Gojko TI Production and Elliptic Flow of Dileptons and Photons in a Matrix Model of the Quark-Gluon Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRONIC GAS; FRAGMENTATION FUNCTIONS; EMISSION RATES; QCD; ENERGIES; GLASMA AB We consider a nonperturbative approach to the thermal production of dileptons and photons at temperatures near the critical temperature in QCD. The suppression of colored excitations at low temperature is modeled by including a small value of the Polyakov loop, in a "semi"-quark-gluon plasma (QGP). Comparing the semi-QGP to the perturbative QGP, we find a mild enhancement of thermal dileptons. In contrast, to leading logarithmic order in weak coupling there are far fewer hard photons from the semi-QGP than the usual QGP. To illustrate the possible effects on photon and dilepton production in heavy-ion collisions, we integrate the rate with a simulation using ideal hydrodynamics. Dileptons uniformly exhibit a small flow, but the strong suppression of photons in the semi-QGP tends to weight the elliptical flow of photons to that generated in the hadronic phase. C1 [Gale, Charles; Jeon, Sangyong; Paquet, Jean-Francois; Vujanovic, Gojko] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gale, Charles] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. [Hidaka, Yoshimasa; Satow, Daisuke] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. [Lin, Shu; Pisarski, Robert D.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Pisarski, Robert D.; Satow, Daisuke] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Skokov, Vladimir V.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Gale, C (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. OI Skokov, Vladimir/0000-0001-7619-1796 FU Natural Sciences and Engineering Research Council of Canada; JSPS KAKENHI [24740184]; RIKEN Foreign Postdoctoral Researchers Program; U.S. Department of Energy [DE-AC02-98CH10886]; JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation [R2411]; RIKEN iTHES Project; Hydro-Quebec; FRQNT; Canadian Institute of Nuclear Physics FX We thank H. van Hees, Y.-Q. Ma, L. McLerran, J.-W. Qiu, R. Rapp, B. Schenke, W. Vogelsang, and I. Zahed for useful discussions. C.G., S.J., J.-F.P., and G. V. are supported in part by the Natural Sciences and Engineering Research Council of Canada. Y.H. is partially supported by JSPS KAKENHI Grant No. 24740184 and by the RIKEN iTHES Project. S. L. is supported by the RIKEN Foreign Postdoctoral Researchers Program. J.-F.P. and G. V. acknowledge scholarships from Hydro-Quebec, FRQNT, and from the Canadian Institute of Nuclear Physics. R. D. P. is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. D. S. is supported by JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (No. R2411). NR 86 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 20 PY 2015 VL 114 IS 7 AR 072301 DI 10.1103/PhysRevLett.114.072301 PG 6 WC Physics, Multidisciplinary SC Physics GA CB7EA UT WOS:000349788000007 PM 25763954 ER PT J AU Abeysekara, AU Alfaro, R Alvarez, C Alvarez, JD Arceo, R Arteaga-Velazquez, JC Solares, HAA Barber, AS Baughman, BM Bautista-Elivar, N BenZvi, SY Rosales, MB Braun, J Caballero-Mora, KS Carraminana, A Castillo, M Cotti, U Cotzomi, J de la Fuente, E De Leon, C DeYoung, T Hernandez, RD Dingus, BL DuVernois, MA Ellsworth, RW Fiorino, DW Fraija, N Galindo, A Garfias, F Gonzalez, MM Goodman, JA Gussert, M Hampel-Arias, Z Harding, JP Huntemeyer, P Hui, CM Imran, A Iriarte, A Karn, P Kieda, D Kunde, GJ Lara, A Lauer, RJ Lee, WH Lennarz, D Vargas, HL Linnemann, JT Longo, M Luna-Garcia, R Malone, K Marinelli, A Marinelli, SS Martinez, H Martinez, O Martinez-Castro, J Matthews, JAJ Torres, EM Miranda-Romagnoli, P Moreno, E Mostafa, M Nellen, L Newbold, M Noriega-Papaqui, R Oceguera-Becerra, TO Patricelli, B Pelayo, R Perez-Perez, EG Pretz, J Riviere, C Rosa-Gonzalez, D Salazar, H Greus, FS Sandoval, A Schneider, M Sinnis, G Smith, AJ Woodle, KS Springer, RW Taboada, I Tollefson, K Torres, I Ukwatta, TN Villasenor, L Weisgarber, T Westerhoff, S Wisher, IG Wood, J Yodh, GB Younk, PW Zaborov, D Zepeda, A Zhou, H AF Abeysekara, A. U. Alfaro, R. Alvarez, C. Alvarez, J. D. Arceo, R. Arteaga-Velazquez, J. C. Solares, H. A. Ayala Barber, A. S. Baughman, B. M. Bautista-Elivar, N. BenZvi, S. Y. Bonilla Rosales, M. Braun, J. Caballero-Mora, K. S. Carraminana, A. Castillo, M. Cotti, U. Cotzomi, J. de la Fuente, E. De Leon, C. DeYoung, T. Diaz Hernandez, R. Dingus, B. L. DuVernois, M. A. Ellsworth, R. W. Fiorino, D. W. Fraija, N. Galindo, A. Garfias, F. Gonzalez, M. M. Goodman, J. A. Gussert, M. Hampel-Arias, Z. Harding, J. P. Huentemeyer, P. Hui, C. M. Imran, A. Iriarte, A. Karn, P. Kieda, D. Kunde, G. J. Lara, A. Lauer, R. J. Lee, W. H. Lennarz, D. Leon Vargas, H. Linnemann, J. T. Longo, M. Luna-Garcia, R. Malone, K. Marinelli, A. Marinelli, S. S. Martinez, H. Martinez, O. Martinez-Castro, J. Matthews, J. A. J. Mendoza Torres, E. Miranda-Romagnoli, P. Moreno, E. Mostafa, M. Nellen, L. Newbold, M. Noriega-Papaqui, R. Oceguera-Becerra, T. O. Patricelli, B. Pelayo, R. Perez-Perez, E. G. Pretz, J. Riviere, C. Rosa-Gonzalez, D. Salazar, H. Greus, F. Salesa Sandoval, A. Schneider, M. Sinnis, G. Smith, A. J. Woodle, K. Sparks Springer, R. W. Taboada, I. Tollefson, K. Torres, I. Ukwatta, T. N. Villasenor, L. Weisgarber, T. Westerhoff, S. Wisher, I. G. Wood, J. Yodh, G. B. Younk, P. W. Zaborov, D. Zepeda, A. Zhou, H. CA HAWC Collaboration TI SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB 130427A); gamma rays: general ID HIGH-ENERGY EMISSION; VERY-HIGH-ENERGY; HESS OBSERVATIONS; BURSTS; PROSPECTS; COMPONENT; SWIFT; MODEL AB The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the > 100 GeV energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift z less than or similar to 0.5 and featured the longest lasting emission above 100 MeV. The energy spectrum extends at least up to 95 GeV, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavorable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the Fermi Large Area Telescope energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light. C1 [Abeysekara, A. U.; DeYoung, T.; Linnemann, J. T.; Marinelli, S. S.; Tollefson, K.; Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Abeysekara, A. U.; Barber, A. S.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA. [Alfaro, R.; Leon Vargas, H.; Marinelli, A.; Oceguera-Becerra, T. O.; Sandoval, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Alfaro, R.; Baughman, B. M.; Braun, J.; Ellsworth, R. W.; Gonzalez, M. M.; Goodman, J. A.; Riviere, C.; Smith, A. J.; Wood, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Alvarez, C.; Arceo, R.] Univ Autonoma Chiapas, CEFyMAP, Tuxtla Gutierrez, Chiapas, Mexico. [Alvarez, J. D.; Arteaga-Velazquez, J. C.; Cotti, U.; De Leon, C.; Villasenor, L.] Univ Michoacana San Nicol Hidalgo, Morelia, Michoacan, Mexico. [Solares, H. A. Ayala; Huentemeyer, P.; Hui, C. M.; Zhou, H.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Bautista-Elivar, N.; Perez-Perez, E. G.] Univ Politecn Pachuca, Municipio De Zempoala, Hidalgo, Mexico. [BenZvi, S. Y.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [BenZvi, S. Y.; Braun, J.; DuVernois, M. A.; Fiorino, D. W.; Hampel-Arias, Z.; Imran, A.; Karn, P.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI USA. [BenZvi, S. Y.; Braun, J.; DuVernois, M. A.; Fiorino, D. W.; Hampel-Arias, Z.; Imran, A.; Karn, P.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bonilla Rosales, M.; Carraminana, A.; Diaz Hernandez, R.; Galindo, A.; Mendoza Torres, E.; Rosa-Gonzalez, D.; Torres, I.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Castillo, M.; Cotzomi, J.; Martinez, O.; Moreno, E.; Salazar, H.] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico. [de la Fuente, E.; Oceguera-Becerra, T. O.] Univ Guadalajara, Dept Fis, Ctr Univ Ciencias Exactas & Ingn, Guadalajara 44430, Jalisco, Mexico. [Dingus, B. L.; Harding, J. P.; Imran, A.; Kunde, G. J.; Sinnis, G.; Ukwatta, T. N.; Younk, P. W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA. [Ellsworth, R. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Fraija, N.; Garfias, F.; Gonzalez, M. M.; Iriarte, A.; Lee, W. H.; Patricelli, B.; Riviere, C.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Gussert, M.; Longo, M.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Karn, P.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Lara, A.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Lauer, R. J.; Matthews, J. A. J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Luna-Garcia, R.; Martinez-Castro, J.; Pelayo, R.] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico. [Malone, K.; Mostafa, M.; Pretz, J.; Greus, F. Salesa; Woodle, K. Sparks; Zaborov, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Miranda-Romagnoli, P.; Noriega-Papaqui, R.] Univ Autonoma Estado Hidalgo, Pachuca, Hidalgo, Mexico. [Nellen, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Schneider, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. RP Abeysekara, AU (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM dirk.lennarz@gatech.edu OI Dingus, Brenda/0000-0001-8451-7450 FU US National Science Foundation (NSF); US Department of Energy Office of High-Energy Physics; Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [55155, 105666, 122331, 132197]; Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM [IG100414-3, IN108713, IN121309, IN115409, IN113612]; VIEP-BUAP [161-EXC-2011]; University of Wisconsin Alumni Research Foundation; Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Luc Binette Foundation UNAM Postdoctoral Fellowship program FX We acknowledge the support from: the US National Science Foundation (NSF); the US Department of Energy Office of High-Energy Physics; the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico (grants 55155, 105666, 122331, 132197); Red de Fisica de Altas Energias, Mexico; DGAPA-UNAM (grants IG100414-3, IN108713, IN121309, IN115409, IN113612); VIEP-BUAP (grant 161-EXC-2011); the University of Wisconsin Alumni Research Foundation; the Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; the Luc Binette Foundation UNAM Postdoctoral Fellowship program. NR 48 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2015 VL 800 IS 2 AR 78 DI 10.1088/0004-637X/800/2/78 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB7CA UT WOS:000349782500001 ER PT J AU Bachetti, M Harrison, FA Cook, R Tomsick, J Schmid, C Grefenstette, BW Barret, D Boggs, SE Christensen, FE Craig, WW Fabian, AC Furst, F Gandhi, P Hailey, CJ Kara, E Maccarone, TJ Miller, JM Pottschmidt, K Stern, D Uttley, P Walton, DJ Wilms, J Zhang, WW AF Bachetti, Matteo Harrison, Fiona A. Cook, Rick Tomsick, John Schmid, Christian Grefenstette, Brian W. Barret, Didier Boggs, Steven E. Christensen, Finn E. Craig, William W. Fabian, Andrew C. Fuerst, Felix Gandhi, Poshak Hailey, Charles J. Kara, Erin Maccarone, Thomas J. Miller, Jon M. Pottschmidt, Katja Stern, Daniel Uttley, Phil Walton, Dominic J. Wilms, Joern Zhang, William W. TI NO TIME FOR DEAD TIME: TIMING ANALYSIS OF BRIGHT BLACK HOLE BINARIES WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; methods: data analysis; methods: statistical; X-rays: stars ID QUASI-PERIODIC OSCILLATIONS; X-RAY VARIABILITY; FREQUENCY-RESOLVED SPECTROSCOPY; CYGNUS X-1; GRS 1915+105; XMM-NEWTON; GX 339-4; SOFT STATE; POWER-LAW; TELESCOPE-ARRAY AB Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (similar to 2.5msec) and varies event-to-event by a few percent. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be easily modeled with standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cospectrum, the real part of the cross PDS, to obtain a good proxy of the white-noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely, a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal-to-noise ratio relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1, and GRS 1915+105. C1 [Bachetti, Matteo; Barret, Didier] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Bachetti, Matteo; Barret, Didier] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [Harrison, Fiona A.; Cook, Rick; Grefenstette, Brian W.; Fuerst, Felix; Walton, Dominic J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Tomsick, John; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Schmid, Christian; Wilms, Joern] Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Schmid, Christian; Wilms, Joern] ECAP, D-96049 Bamberg, Germany. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, Andrew C.; Kara, Erin] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gandhi, Poshak] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Maccarone, Thomas J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Pottschmidt, Katja] UMBC, CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Uttley, Phil] Univ Amsterdam, Anton Pannekoek Inst, NL-1098 XH Amsterdam, Netherlands. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bachetti, M (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. EM matteo.bachetti@irap.omp.eu RI Wilms, Joern/C-8116-2013; Boggs, Steven/E-4170-2015; OI Wilms, Joern/0000-0003-2065-5410; Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337 NR 77 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2015 VL 800 IS 2 AR 109 DI 10.1088/0004-637X/800/2/109 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB7CA UT WOS:000349782500032 ER PT J AU Gastaldello, F Wik, DR Molendi, S Westergaard, NJ Hornstrup, A Madejski, G Ferreira, DDM Boggs, SE Christensen, FE Craig, WW Grefenstette, BW Hailey, CJ Harrison, FA Madsen, KK Stern, D Zhang, WW AF Gastaldello, Fabio Wik, Daniel R. Molendi, S. Westergaard, N. J. Hornstrup, A. Madejski, G. Ferreira, D. D. M. Boggs, S. E. Christensen, F. E. Craig, W. W. Grefenstette, B. W. Hailey, C. J. Harrison, F. A. Madsen, K. K. Stern, D. Zhang, W. W. TI A NuSTAR OBSERVATION OF THE CENTER OF THE COMA CLUSTER SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: individual (Coma); X-rays: galaxies: clusters ID X-RAY EXCESS; DIFFUSE RADIO-EMISSION; DARK-MATTER SUBHALOS; INTRACLUSTER MEDIUM; GALAXY CLUSTERS; XMM-NEWTON; RADIATION; CHANDRA; SUBSTRUCTURES; PROFILES AB We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1x10(-12) erg cm(-2) s(-1) in a 12' x 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with nonimaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observations of Coma will further address this issue. The temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium. C1 [Gastaldello, Fabio; Molendi, S.] IASF Milano, INAF, I-20133 Milan, Italy. [Gastaldello, Fabio] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Wik, Daniel R.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Wik, Daniel R.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Westergaard, N. J.; Hornstrup, A.; Ferreira, D. D. M.; Christensen, F. E.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Madejski, G.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gastaldello, F (reprint author), IASF Milano, INAF, Via Bassini 15, I-20133 Milan, Italy. EM gasta@lambrate.inaf.it RI Boggs, Steven/E-4170-2015; Gastaldello, Fabio/N-4226-2015; Ferreira, Desiree/M-1666-2016; OI Boggs, Steven/0000-0001-9567-4224; Gastaldello, Fabio/0000-0002-9112-0184; Ferreira, Desiree/0000-0003-4003-3256; Molendi, Silvano/0000-0002-2483-278X FU NASA FX This research made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 53 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2015 VL 800 IS 2 AR 139 DI 10.1088/0004-637X/800/2/139 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB7CA UT WOS:000349782500062 ER PT J AU Materese, CK Nuevo, M Sandford, SA AF Materese, Christopher K. Nuevo, Michel Sandford, Scott A. TI N- AND O-HETEROCYCLES PRODUCED FROM THE IRRADIATION OF BENZENE AND NAPHTHALENE IN H2O/NH3-CONTAINING ICES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; astrochemistry; molecular data; molecular processes; solid state: refractory ID POLYCYCLIC AROMATIC-HYDROCARBONS; MURCHISON METEORITE; ULTRAVIOLET PHOTOIRRADIATION; EXTRATERRESTRIAL NUCLEOBASES; CARBONACEOUS METEORITES; NITROGEN-HETEROCYCLES; INFRARED-SPECTROSCOPY; PREBIOTIC MOLECULES; UV-IRRADIATION; PYRIMIDINE AB Aromatic heterocyclic molecules are an important class of molecules of astrophysical and biological significance that include pyridine, pyrimidine, and their derivatives. Such compounds are believed to exist in interstellar and circumstellar environments, though they have never been observed in the gas phase. Regardless of their presence in the gas phase in space, numerous heterocycles have been reported in carbonaceous meteorites, which indicates that they are formed under astrophysical conditions. The experimental work described here shows that N- and O-heterocyclic molecules can form from the ultraviolet (UV) irradiation of the homocyclic aromatic molecules benzene (C6H6) or naphthalene (C10H8) mixed in ices containing H2O and NH3. This represents an alternative way to generate aromatic heterocycles to those considered before and may have important implications for astrochemistry and astrobiology. C1 [Materese, Christopher K.; Nuevo, Michel; Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Materese, Christopher K.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Nuevo, Michel] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. RP Materese, CK (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM christopher.k.materese@nasa.gov FU NASA's Origins of Solar Systems and Exobiology programs FX C.K.M. acknowledges R.L. Walker (NASA Ames) for technical support, Drs. L. Allamandola and A. Mattioda for helpful comments and discussion, and the NASA Postdoctoral Program (NPP) administered by ORAU. S.A.S. acknowledges support from NASA's Origins of Solar Systems and Exobiology programs. We also thank an anonymous reviewer for useful comments and suggestions. NR 44 TC 4 Z9 4 U1 5 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2015 VL 800 IS 2 AR 116 DI 10.1088/0004-637X/800/2/116 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB7CA UT WOS:000349782500039 ER PT J AU Nynka, M Hailey, CJ Zhang, S Morris, MM Zhao, JH Goss, M Bauer, FE Boggs, SE Craig, WW Christensen, FE Gotthelf, EV Harrison, FA Mori, K Perez, KM Stern, D Zhang, WW AF Nynka, Melania Hailey, Charles J. Zhang, Shuo Morris, Mark M. Zhao, Jun-Hui Goss, Miller Bauer, Franz E. Boggs, Stephen E. Craig, William W. Christensen, Finn E. Gotthelf, Eric V. Harrison, Fiona A. Mori, Kaya Perez, Kerstin M. Stern, Daniel Zhang, William W. TI G359.97-0.038: A HARD X-RAY FILAMENT ASSOCIATED WITH A SUPERNOVA SHELL-MOLECULAR CLOUD INTERACTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: center ID SAGITTARIUS-A-EAST; PULSAR-WIND NEBULAE; LARGE ARRAY OBSERVATIONS; GALACTIC-CENTER REGION; HIGH-ENERGY EMISSION; 1720 MHZ MASERS; NONTHERMAL EMISSION; CIRCUMNUCLEAR DISK; SOURCE CATALOG; COSMIC-RAYS AB We present the first high-energy X-ray (>10 keV) observations of the non-thermal filament G359.97-0.038 using the Nuclear Spectroscopic Telescope Array (NuSTAR). This filament is one of approximately 20 X-ray filaments of unknown origin located in the central 20 pc region in the Galactic Center near Sgr A*. Its NuSTAR and Chandra broadband spectrum is characterized by a single power law with Gamma = 1.3 +/- 0.3 that extends from 2 to 50 keV, with an unabsorbed luminosity of 1.3 x 10(33) erg s(-1) (d/8 kpc)(2) in the 2-8 keV band. Despite possessing a cometary X-ray morphology that is typical of a pulsar wind nebula (PWN) in high-resolution Chandra imaging, our spatially resolved Chandra spectral analysis found no significant spectral softening along the filament as would be expected from particle synchrotron cooling. Coincident radio emission is detected using the Very Large Array at 5.5 and 8.3 GHz. We examine and subsequently discard a PWN or magnetic flux tube as the origin of G359.97-0.038. We use broadband spectral characteristics and a morphological analysis to show that G359.97-0.038 is likely an interaction site between the shell of Sgr A East and an adjacent molecular cloud. This is supported by CS molecular line spectroscopy and the presence of an OH maser. C1 [Nynka, Melania; Hailey, Charles J.; Zhang, Shuo; Gotthelf, Eric V.; Mori, Kaya; Perez, Kerstin M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Morris, Mark M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Zhao, Jun-Hui] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Goss, Miller] NRAO, Socorro, NM 87801 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, Stephen E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Nynka, M (reprint author), Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; CONICYT-Chile [Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101]; Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009] FX This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. F.E.B. acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101), and Project IC120009 "Millennium Institute of Astrophysics (MAS)" funded by the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 54 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2015 VL 800 IS 2 AR 119 DI 10.1088/0004-637X/800/2/119 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB7CA UT WOS:000349782500042 ER PT J AU Ptak, A Hornschemeier, A Zezas, A Lehmer, B Yukita, M Wik, D Antoniou, V Argo, MK Ballo, L Bechtol, K Boggs, S Della Ceca, R Christensen, FE Craig, WW Hailey, CJ Harrison, FA Krivonos, R Maccarone, TJ Stern, D Tatum, M Venters, T Zhang, WW AF Ptak, A. Hornschemeier, A. Zezas, A. Lehmer, B. Yukita, M. Wik, D. Antoniou, V. Argo, M. K. Ballo, L. Bechtol, K. Boggs, S. Della Ceca, R. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Krivonos, R. Maccarone, T. J. Stern, D. Tatum, M. Venters, T. Zhang, W. W. TI A FOCUSED, HARD X-RAY LOOK AT ARP 299 WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (Arp 299); galaxies: starburst; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; INFRARED GALAXIES; NGC 253; EMISSION; CHANDRA; MODEL; CONSTRAINTS; STARBURSTS; DISCOVERY AB We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of similar to 45 keV. Fitting the 3-40 keV spectrum reveals a column density of N-H similar to 4 x 10(24) cm(-2), characteristic of a Compton-thick active galactic nucleus (AGN), and a 10-30 keV luminosity of 1.2 x 1043 erg s(-1). The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus also thought to harbor an AGN, as well as X-ray binaries, contribute less than or similar to 10% to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: (1) any AGN in Arp 299-A must be heavily obscured (N-H > 10(24) cm(-2)) or have a much lower luminosity than Arp 299-B and (2) the extranuclear X-ray binaries have spectra that cut-off above similar to 10 keV. Such soft spectra are characteristic of ultraluminous X-ray sources observed to date by NuSTAR. C1 [Ptak, A.; Hornschemeier, A.; Lehmer, B.; Yukita, M.; Wik, D.; Tatum, M.; Venters, T.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ptak, A.; Hornschemeier, A.; Lehmer, B.; Yukita, M.; Wik, D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Zezas, A.] Univ Crete, Dept Phys, Iraklion, Greece. [Zezas, A.] FORTH, IESL, Iraklion, Crete, Greece. [Zezas, A.; Antoniou, V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Argo, M. K.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ballo, L.; Della Ceca, R.] Osservatorio Astron Brera INAF, I-20121 Milan, Italy. [Bechtol, K.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Boggs, S.; Craig, W. W.; Krivonos, R.] UC Berkeley Space Sci Lab, Berkeley, CA USA. [Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hailey, C. J.] Columbia Univ, New York, NY USA. [Harrison, F. A.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Maccarone, T. J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ptak, A (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RI Boggs, Steven/E-4170-2015; Zezas, Andreas/C-7543-2011; Antoniou, Vallia/E-3837-2013; OI Boggs, Steven/0000-0001-9567-4224; Zezas, Andreas/0000-0001-8952-676X; Ballo, Lucia/0000-0002-5036-3497; Antoniou, Vallia/0000-0001-7539-1593; Della Ceca, Roberto/0000-0001-7551-2252; Argo, Megan/0000-0003-3594-0214 FU NuSTAR Data Analysis Software (NUSTARDAS); ASI Science Data Center (ASDC, Italy); Caltech (USA); NASA [NNX12AN05G]; Chandra grant [GO3-14124X]; [267251] FX This research has made use of data obtained with the NuSTAR mission, a project led by the California Institute of Technology (Caltech), managed by the Jet Propulsion Laboratory (JPL) and funded by NASA. The scientific results reported in this article are based in part on observations made by the Chandra X-ray Observatory. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NUSTARDAS), jointly developed by the ASI Science Data Center (ASDC, Italy) and Caltech (USA). We also made use of the NASA/IPAC Extragalactic Database (NED) and NASA's Astrophysics Data System. L. B. received financial supports from the European Commission Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 267251 "Astronomy Fellowships in Italy" (AstroFIt). A.Z. acknowledges partial support by NASA grant NNX12AN05G and Chandra grant GO3-14124X. We thank the anonymous referee for suggestions that improved this paper. NR 37 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2015 VL 800 IS 2 AR 104 DI 10.1088/0004-637X/800/2/104 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB7CA UT WOS:000349782500027 ER PT J AU Dietrich, S Mayer, W Byrnes, S Vitkalov, S Sergeev, A Bollinger, AT Bozovic, I AF Dietrich, Scott Mayer, William Byrnes, Sean Vitkalov, Sergey Sergeev, A. Bollinger, Anthony T. Bozovic, Ivan TI Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL SYSTEMS; PHASE-TRANSITIONS; TEMPERATURE; SUPERFLUID; LA2-XSRXCUO4 AB The effects of microwave radiation on the transport properties of atomically thin La2-xSrxCuO4 films were studied in the 0.1-13 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures near the superconducting transition. The nonlinear response decreases by several orders of magnitude within a few GHz of a cutoff frequency nu(cut) approximate to 2 GHz. Numerical simulations that assume an ac response to follow the dc V - I characteristics of the films reproduce well the low-frequency behavior, but fail above.cut. The results indicate that two-dimensional (2D) superconductivity is resilient against high-frequency microwave radiation, because vortex-antivortex dissociation is dramatically suppressed in 2D superconducting condensates oscillating at high frequencies. C1 [Dietrich, Scott; Mayer, William; Byrnes, Sean; Vitkalov, Sergey] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Sergeev, A.] SUNY Buffalo, SUNY Res Fdn, Buffalo, NY 14226 USA. [Bollinger, Anthony T.; Bozovic, Ivan] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Vitkalov, S (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM vitkalov@sci.ccny.cuny.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation, Division of Electrical, Communications and Cyber Systems [ECCS-1128459] FX Sample synthesis by ALL-MBE and characterization (I.B.) and device fabrication (A.T.B.) were supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at CCNY and SUNY was supported by National Science Foundation, Division of Electrical, Communications and Cyber Systems (ECCS-1128459). NR 24 TC 1 Z9 1 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 20 PY 2015 VL 91 IS 6 AR 060506 DI 10.1103/PhysRevB.91.060506 PG 4 WC Physics, Condensed Matter SC Physics GA CB7DH UT WOS:000349785900002 ER PT J AU Li, XB Qin, HF Zhang, ZS Zhang, TJ AF Li, Xi-Bin Qin, Hao-Feng Zhang, Zhi-Song Zhang, Tong-Jie TI Fluctuation of the Hubble parameter SO PHYSICAL REVIEW D LA English DT Article ID PROBE WMAP OBSERVATIONS; COSMOLOGICAL PARAMETERS; INHOMOGENEOUS FLUIDS; LUMINOSITY DISTANCE; GENERAL-RELATIVITY; AVERAGE PROPERTIES; DARK ENERGY; SUPERNOVAE; CONSTANT; GALAXIES AB We study the Hubble parameter H(z) in perturbed Friedmann universe and obtain an expression of the perturbed Hubble parameter H(z, n). We derive the Hubble parameter power spectrum by using the initial spectrum during inflation and the Bardeen transfer function. We obtain a semianalytical expression in the case of cold dark matter universe. Similar with luminosity distance, the Hubble parameter spectrum is suggested to be a useful observational tool to determine some cosmological parameters. In addition, we show that the Hubble parameter power spectrum could be used to check whether the expansion is accelerated by the second order small scale fluctuation. C1 [Li, Xi-Bin; Qin, Hao-Feng; Zhang, Tong-Jie] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Zhang, Zhi-Song] Harbin Inst Technol, Sch Astronaut, Dept Aerosp Engn, Harbin 150001, Heilongjiang, Peoples R China. [Zhang, Tong-Jie] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Zhang, Tong-Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Li, XB (reprint author), Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. EM tjzhang@bnu.edu.cn FU National Science Foundation of China [11173006]; Ministry of Science and Technology National Basic Science program (project 973) [2012CB821804] FX We thank X. Yang and J. C Zheng for useful and stimulating discussions. This work was supported by the National Science Foundation of China (Grant No. 11173006), the Ministry of Science and Technology National Basic Science program (project 973) under Grant No. 2012CB821804. NR 49 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 20 PY 2015 VL 91 IS 4 AR 043525 DI 10.1103/PhysRevD.91.043525 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB7DU UT WOS:000349787400002 ER PT J AU Phillips, CL Peterka, T Karpeyev, D Glatz, A AF Phillips, Carolyn L. Peterka, Tom Karpeyev, Dmitry Glatz, Andreas TI Detecting vortices in superconductors: Extracting one-dimensional topological singularities from a discretized complex scalar field SO PHYSICAL REVIEW E LA English DT Article ID VORTEX; RECONNECTION; LOOPS AB In type II superconductors, the dynamics of superconducting vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter. Extracting their precise positions and motion from discretized numerical simulation data is an important, but challenging, task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces. However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale poorly to large-scale simulations, and do not easily enable isolating and tracking individual vortices. Here we present a method for exactly finding the vortex core lines from a complex order parameter field. With this method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher resolution than has previously been possible. By representing the field as the set of vortices, this method also massively reduces the data footprint of the simulations and provides the data structures for further analysis and feature tracking. C1 [Phillips, Carolyn L.; Peterka, Tom; Karpeyev, Dmitry] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Glatz, Andreas] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Phillips, CL (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cphillips@anl.gov FU US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program; Materials Sciences and Engineering Division; Office of the Director through the Named Postdoctoral Fellowship Program (Aneesur Rahman Postdoctoral Fellowship), Argonne National Laboratory FX We thank Alexei Koshelev and Hanqi Guo for useful discussions and the latter for the method of efficiently solving the inverse bilinear interpolation. We thank Sylvain Peyrefitte and Volker Poplawski for providing python implementations of the Ramer-Douglas-Peucker algorithm and Schneider algorithm, respectively. This material was based upon work supported by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program and the Materials Sciences and Engineering Division. C. L. P. was funded by the Office of the Director through the Named Postdoctoral Fellowship Program (Aneesur Rahman Postdoctoral Fellowship), Argonne National Laboratory. NR 27 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 20 PY 2015 VL 91 IS 2 AR 023311 DI 10.1103/PhysRevE.91.023311 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CB7DX UT WOS:000349787700006 PM 25768639 ER PT J AU Gandha, K Tsai, PC Chaubey, G Poudyal, N Elkins, K Cui, J Liu, JP AF Gandha, Kinjal Tsai, Poching Chaubey, Girija Poudyal, Narayan Elkins, Kevin Cui, Jun Liu, J. Ping TI Synthesis and characterization of FeCo nanowires with high coercivity SO NANOTECHNOLOGY LA English DT Article DE magnetic nanowires; FeCo alloy; high coercivity; chemical synthesis; nanostructured materials; FeCo nanowires; single crystal ID MAGNETIC-PROPERTIES; NANOPARTICLES; ARRAYS; COBALT; ALLOY; FABRICATION; MORPHOLOGY; NANORODS; SHAPE AB Ferromagnetic FeCo nanocrystals with high coercivity have been synthesized using a reductive decomposition method. The sizes and shapes of the nanocrystals were found to be dependent on reaction parameters such as the surfactant ratio, the precursor concentration and the heating rate. Synthesized nanocrystals have a body-centered cubic crystal structure for both particles and nanowires and the (110) crystalline direction is along the long axis of the nanowires. The coercivity and magnetization of the FeCo nanocrystals are found to be dependent on morphology. Nanowires of Fe60Co40 with saturation magnetization of 92 emu g(-1) and coercive force of 1.2 kOe have been obtained in this study. C1 [Gandha, Kinjal; Tsai, Poching; Chaubey, Girija; Poudyal, Narayan; Elkins, Kevin; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Cui, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Gandha, K (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM pliu@uta.edu FU US DoD/ARO [W911NF-11-1-0507]; Center for Nanostructured Materials and Characterization Center for Materials and Biology at the University of Texas at Arlington; Materials Synthesis and Simulation Across Scales (MS3) Initiative at Pacific Northwest National Laboratory FX This work has been supported by the US DoD/ARO under grant W911NF-11-1-0507, and the Center for Nanostructured Materials and Characterization Center for Materials and Biology at the University of Texas at Arlington, and by the Materials Synthesis and Simulation Across Scales (MS3) Initiative at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the US Department of Energy. NR 32 TC 8 Z9 8 U1 9 U2 67 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 20 PY 2015 VL 26 IS 7 AR 075601 DI 10.1088/0957-4484/26/7/075601 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CA9LF UT WOS:000349244400015 PM 25609497 ER PT J AU McGarr, A Bekins, B Burkardt, N Dewey, J Earle, P Ellsworth, W Ge, S Hickman, S Holland, A Majer, E Rubinstein, J Sheehan, A AF McGarr, A. Bekins, B. Burkardt, N. Dewey, J. Earle, P. Ellsworth, W. Ge, S. Hickman, S. Holland, A. Majer, E. Rubinstein, J. Sheehan, A. TI Coping with earthquakes induced by fluid injection SO SCIENCE LA English DT Editorial Material ID INDUCED SEISMICITY; CENTRAL OKLAHOMA; ARKANSAS; SWARM; TEXAS C1 [McGarr, A.; Ellsworth, W.; Hickman, S.; Rubinstein, J.] US Geol Survey, Earthquake Sci Ctr, Menlo Pk, CA 94025 USA. [Bekins, B.] US Geol Survey, Natl Water Qual Assessment Program, Menlo Pk, CA 94025 USA. [Burkardt, N.] US Geol Survey, Powell Ctr, Ft Collins, CO 80526 USA. [Dewey, J.; Earle, P.] US Geol Survey, Geol Hazards Ctr, Golden, CO 80225 USA. [Ge, S.; Sheehan, A.] Univ Colorado, Boulder, CO 80302 USA. [Holland, A.] Oklahoma Geol Survey, Norman, OK 73069 USA. [Majer, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP McGarr, A (reprint author), US Geol Survey, Earthquake Sci Ctr, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM mcgarr@usgs.gov NR 23 TC 20 Z9 21 U1 10 U2 54 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 20 PY 2015 VL 347 IS 6224 BP 830 EP 831 DI 10.1126/science.aaa0494 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB6UB UT WOS:000349761100025 PM 25700505 ER PT J AU Nardini, E Reeves, JN Gofford, J Harrison, FA Risaliti, G Braito, V Costa, MT Matzeu, GA Walton, DJ Behar, E Boggs, SE Christensen, FE Craig, WW Hailey, CJ Matt, G Miller, JM O'Brien, PT Stern, D Turner, TJ Ward, MJ AF Nardini, E. Reeves, J. N. Gofford, J. Harrison, F. A. Risaliti, G. Braito, V. Costa, M. T. Matzeu, G. A. Walton, D. J. Behar, E. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Matt, G. Miller, J. M. O'Brien, P. T. Stern, D. Turner, T. J. Ward, M. J. TI Black hole feedback in the luminous quasar PDS 456 SO SCIENCE LA English DT Article ID RADIO-QUIET AGNS; HOST GALAXIES; SIGMA RELATION; OUTFLOWS; WIND; ABSORBER; LOCATION AB The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 1046 ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution. C1 [Nardini, E.; Reeves, J. N.; Gofford, J.; Costa, M. T.; Matzeu, G. A.] Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Reeves, J. N.; Gofford, J.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Harrison, F. A.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Risaliti, G.] Osserv Astrofis Arcetri, Ist Nazl Astrofis, I-50125 Florence, Italy. [Risaliti, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Braito, V.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Walton, D. J.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Behar, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Matt, G.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [O'Brien, P. T.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Turner, T. J.] Eureka Sci Inc, Oakland, CA 94602 USA. [Ward, M. J.] Univ Durham, Dept Phys, Durham DH1 3LE, England. RP Nardini, E (reprint author), Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. EM e.nardini@keele.ac.uk RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Braito, Valentina/0000-0002-2629-4989; Risaliti, Guido/0000-0002-3556-977X FU U.K. Science and Technology Facilities Council [ST/J001384/1]; ESA member states; National Aeronautics and Space Administration; NASA [NNX11AJ57G, NNG08FD60C]; Italian Space Agency [ASI-INAF I/037/12/0]; Italian National Institute for Astrophysics [PRIN-INAF 2012]; I-CORE program of the Planning and Budgeting Committee; Israel Science Foundation [1937/12, 1163/10]; Israel's Ministry of Science and Technology FX This research was supported under the U.K. Science and Technology Facilities Council grant ST/J001384/1 and is based on x-ray observations obtained with the XMM-Newton and NuSTAR satellites. XMM-Newton is a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA member states and the National Aeronautics and Space Administration. The NuSTAR mission is a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software, and Calibration teams for support with execution and analysis of these observations. We also acknowledge financial support from the Italian Space Agency under grant ASI-INAF I/037/12/0 (G.R. and G.M.); the Italian National Institute for Astrophysics under grant PRIN-INAF 2012 (G.R.); the I-CORE program of the Planning and Budgeting Committee, the Israel Science Foundation under grants 1937/12 and 1163/10, Israel's Ministry of Science and Technology (E.B.); and NASA under grants NNX11AJ57G and NNG08FD60C (T.J.T.). The data are stored in the science archives of the two x-ray observatories involved and will become publicly available on 25 March 2015 (XMM-Newton) and with the upcoming DR6 data release (NuSTAR). NR 26 TC 30 Z9 30 U1 0 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 20 PY 2015 VL 347 IS 6224 BP 860 EP 863 DI 10.1126/science.1259202 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB6UB UT WOS:000349761100040 PM 25700515 ER PT J AU Reichert, MD Alvarez, NJ Brooks, CF Grillet, AM Mondy, LA Anna, SL Walker, LM AF Reichert, Matthew D. Alvarez, Nicolas J. Brooks, Carlton F. Grillet, Anne M. Mondy, Lisa A. Anna, Shelley L. Walker, Lynn M. TI The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS LA English DT Article DE Pendant drop; Pendant bubble; CiEj; Nonionic surfactant; Interfacial elasticity ID AIR-WATER-INTERFACE; OSCILLATING BUBBLE TECHNIQUE; FLUID INTERFACES; DILATIONAL PROPERTIES; ADSORPTION-KINETICS; AIR/WATER INTERFACE; MIXED LAYERS; DROP; PROTEINS; MICROTENSIOMETER AB Pendent bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid-fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. The application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air-water interfaces over a wide range of curvatures as applied to both expansion/ contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured properties is quantified and compared to other scaling relationships in the literature. The results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties. (C) 2014 Elsevier B.V. All rights reserved. C1 [Reichert, Matthew D.; Alvarez, Nicolas J.; Anna, Shelley L.; Walker, Lynn M.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Anna, Shelley L.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Brooks, Carlton F.; Grillet, Anne M.; Mondy, Lisa A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Walker, LM (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM lwalker@andrew.cmu.edu RI Walker, Lynn/I-2562-2016; OI Walker, Lynn/0000-0002-7478-9759; Alvarez, Nicolas/0000-0002-0976-6542 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04- 94AL85000] FX The authors acknowledge Dr. Anthony Kotula (CMU) and both Timothy Koehler and Chris Brotherton (Sandia) for useful discussions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. NR 43 TC 8 Z9 8 U1 9 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7757 EI 1873-4359 J9 COLLOID SURFACE A JI Colloid Surf. A-Physicochem. Eng. Asp. PD FEB 20 PY 2015 VL 467 BP 135 EP 142 DI 10.1016/j.colsurfa.2014.11.035 PG 8 WC Chemistry, Physical SC Chemistry GA AY5NA UT WOS:000347617900014 ER PT J AU Anderson, RW Dobrev, VA Kolev, TV Rieben, RN AF Anderson, R. W. Dobrev, V. A. Kolev, Tz. V. Rieben, R. N. TI Monotonicity in high-order curvilinear finite element arbitrary Lagrangian-Eulerian remap SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE shock hydrodynamics; multi-material hydrodynamics; monotonicity; ALE methods; finite element methods; high-order methods ID SCALAR FIELDS; DISCRETIZATION AB The remap phase in arbitrary Lagrangian-Eulerian (ALE) hydrodynamics involves the transfer of field quantities defined on a post-Lagrangian mesh to some new mesh, usually generated by a mesh optimization algorithm. This problem is often posed in terms of transporting (or advecting) some state variable from the old mesh to the new mesh over a fictitious time interval. It is imperative that this remap process be monotonic, that is, not generate any new extrema in the field variables. It is well known that the only linear methods that are guaranteed to be monotonic for such problems are first-order accurate; however, much work has been performed in developing non-linear methods, which blend both high and low (first) order solutions to achieve monotonicity and preserve high-order accuracy when the field is sufficiently smooth. In this paper, we present a set of methods for enforcing monotonicity targeting high-order discontinuous Galerkin methods for advection equations in the context of high-order curvilinear ALE hydrodynamics. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. C1 [Anderson, R. W.; Dobrev, V. A.; Kolev, Tz. V.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Rieben, R. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rieben, RN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-095, Livermore, CA 94550 USA. EM rieben1@llnl.gov FU US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-651254] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-651254. NR 19 TC 3 Z9 3 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD FEB 20 PY 2015 VL 77 IS 5 BP 249 EP 273 DI 10.1002/fld.3965 PG 25 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA AZ2JJ UT WOS:000348059700001 ER PT J AU Zhu, XJ Zhang, WJ AF Zhu, Xuejun Zhang, Wenjun TI Tagging polyketides/non-ribosomal peptides with a clickable functionality and applications SO FRONTIERS IN CHEMISTRY LA English DT Article DE natural product labeling; bioorthogonal chemistry; alkyne-azide cycloaddition; polyketides; non-ribosomal peptides; biosynthesis ID NATURAL-PRODUCTS; ANTIMYCIN BIOSYNTHESIS; CHEMISTRY; PROBES; DIVERSITY; ANTIBIOTICS; SELECTIVITY; RESISTANCE; DISCOVERY; ENZYMES AB Bioorthogonal chemistry has recently emerged to be one of the most powerful tools in drug discovery and chemical biology. The exploration of it has successfully advanced the field of natural product research. In this Perspective, we survey current strategies for the installation of chemical handles into the molecular scaffolds of several major classes of natural products, including polyketides (PKs), non-ribosomal peptides (NRPs), and their hybrids. By tagging these natural products with chemical handles and coupling them with subsequent bioorthogonal reactions, researchers have visualized and studied the mode of action of natural products, as well as synthesized derivatives with better pharmaceutical properties. We conclude this Perspective by considering two questions: is there a general way to synthesize tagged PKs/NRPs? Does natural product labeling have a broader impact in the field of natural product research beyond current known applications? C1 [Zhu, Xuejun; Zhang, Wenjun] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Zhu, Xuejun; Zhang, Wenjun] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Zhang, Wenjun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Zhang, WJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Energy Biosci Inst, Berkeley, CA 94720 USA. EM wjzhang@berkeley.edu FU Pew Scholars Program and University of California Cancer Research Coordinating Committee funds FX Research in our laboratory on this topic has been financially supported by the Pew Scholars Program and University of California Cancer Research Coordinating Committee funds. NR 27 TC 2 Z9 2 U1 1 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND EI 2296-2646 J9 FRONT CHEM JI Front. Chem. PD FEB 20 PY 2015 VL 3 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DI2IY UT WOS:000373320500001 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, BY Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandta, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chend, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftcia, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A DeVivieDeRegie, JB Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R De Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Gonalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, A Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM Van Huysduynen, LH Hopkins, WH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P LeDortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzanoa, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mckee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjrnmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddara, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, S Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK TenKate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Ster, D Van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H Von Radziewski, H Von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, B. Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandta, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chend, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftcia, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. De Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. DeVivieDeRegie, J. B. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. De Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Gonalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. Van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. LeDortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzanoa, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mckee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjrnmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddara, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. TenKate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Ster, D. Van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurements of the W production cross sections in association with jets with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CARLO EVENT GENERATOR; MONTE-CARLO; PARTON DISTRIBUTIONS; PAIR PRODUCTION AB This paper presents cross sections for the production of a W boson in association with jets, measured in proton-proton collisions at root s = 7 TeV with the ATLAS experiment at the large hadron collider. With an integrated luminosity of 4.6 fb(-1), this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftcia, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Radloff, P.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Radloff, P.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Pasztor, G.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Artamonov, A.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; TenKate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Van Eldik, N.; Van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, B. Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chend, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Chen, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Picazio, A.; Rave, T. C.; Ronzani, M.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; Von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Calace, N.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; Della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; De Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandta, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddara, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Poveda, J.; Weinert, B.; Ye, J.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Penwell, J.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjrnmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Hulsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chend, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chend, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mckee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Taylor, F. E.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Heinrich, L.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Seuster, R.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Heinrich, L.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Seuster, R.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; DeVivieDeRegie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; DeVivieDeRegie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Gonalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Grossi, G. C.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzanoa, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Grossi, G. C.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energie At, IRFU Inst Rech Lois Fondament Univers, DSM, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Stanitzki, M. M.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Chen, X.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Yorita, K.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Negrini, M.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Waterloo, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Doyle, Anthony/C-5889-2009; Brooks, William/C-8636-2013; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Boyko, Igor/J-3659-2013; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Chekulaev, Sergey/O-1145-2015; Grancagnolo, Sergio/J-3957-2015; Carquin, Edson/G-5221-2015; Livan, Michele/D-7531-2012; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Mitsou, Vasiliki/D-1967-2009; Di Domenico, Antonio/G-6301-2011; Della Pietra, Massimo/J-5008-2012; Bosman, Martine/J-9917-2014; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Juste, Aurelio/I-2531-2015; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Grinstein, Sebastian/N-3988-2014; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015 OI Doyle, Anthony/0000-0001-6322-6195; Brooks, William/0000-0001-6161-3570; spagnolo, stefania/0000-0001-7482-6348; Boyko, Igor/0000-0002-3355-4662; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Grancagnolo, Sergio/0000-0001-8490-8304; Carquin, Edson/0000-0002-7863-1166; Livan, Michele/0000-0002-5877-0062; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Mitsou, Vasiliki/0000-0002-1533-8886; Di Domenico, Antonio/0000-0001-8078-2759; Della Pietra, Massimo/0000-0003-4446-3368; Bosman, Martine/0000-0002-7290-643X; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Veneziano, Stefano/0000-0002-2598-2659; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Galhardo, Bruno/0000-0003-0641-301X; Arratia, Miguel/0000-0001-6877-3315; Castro, Nuno/0000-0001-8491-4376; Pina, Joao /0000-0001-8959-5044; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Irles, Adrian/0000-0001-5668-151X; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi, Farida/0000-0002-6423-7213; Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo Maria/0000-0003-1589-2163; Hays, Chris/0000-0003-2371-9723; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Haas, Andrew/0000-0002-4832-0455; Nisati, Aleandro/0000-0002-5080-2293; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Dell'Asta, Lidia/0000-0002-9601-4225; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Wang, Kuhan/0000-0002-6151-0034; Sawyer, Lee/0000-0001-8295-0605; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Leonidopoulos, Christos/0000-0002-7241-2114; Troncon, Clara/0000-0002-7997-8524; Chen, Hucheng/0000-0002-9936-0115; Qian, Jianming/0000-0003-4813-8167; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; Benoziyo Center, Israel; DIP, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, UK; Royal Society, UK; Leverhulme Trust, UK; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 64 TC 11 Z9 11 U1 12 U2 62 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 19 PY 2015 VL 75 IS 2 AR 82 DI 10.1140/epjc/s10052-015-3262-7 PG 46 WC Physics, Particles & Fields SC Physics GA CI1ZZ UT WOS:000354545300001 ER PT J AU Browne, EC Franklin, JP Canagaratna, MR Massoli, P Kirchstetter, TW Worsnop, DR Wilson, KR Kroll, JH AF Browne, Eleanor C. Franklin, Jonathan P. Canagaratna, Manjula R. Massoli, Paola Kirchstetter, Thomas W. Worsnop, Douglas R. Wilson, Kevin R. Kroll, Jesse H. TI Changes to the Chemical Composition of Soot from Heterogeneous Oxidation Reactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; AEROSOL MASS-SPECTROMETER; BLACK CARBON PARTICLES; AGING TIME-SCALES; ORGANIC AEROSOL; VOLATILITY MEASUREMENTS; PARTICULATE MATTER; MIXING STATE; OZONE; MODEL AB The atmospheric aging of soot particles, in which various atmospheric processes alter the particles' chemical and physical properties, is poorly understood and consequently is not well-represented in models. In this work, soot aging via heterogeneous oxidation by OH and ozone is investigated using an aerosol flow reactor coupled to a new high-resolution aerosol mass spectrometric technique that utilizes infrared vaporization and single-photon vacuum ultraviolet ionization. This analytical technique simultaneously measures the elemental and organic carbon components of soot, allowing for the composition of both fractions to be monitored. At oxidant exposures relevant to the particles' atmospheric lifetimes (the equivalent of several days of oxidation), the elemental carbon portion of the soot, which makes up the majority of the particle mass, undergoes no discernible changes in mass or composition. In contrast, the organic carbon (which in the case of methane flame soot is dominated by aliphatic species) is highly reactive, undergoing first the addition of oxygen-containing functional groups and ultimately the loss of organic carbon mass from fragmentation reactions that form volatile products. These changes occur on time scales comparable to those of other nonoxidative aging processes such as condensation, suggesting that further research into the combined effects of heterogeneous and condensational aging is needed to improve our ability to accurately predict the climate and health impacts of soot particles. C1 [Browne, Eleanor C.; Franklin, Jonathan P.; Kroll, Jesse H.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Canagaratna, Manjula R.; Massoli, Paola; Worsnop, Douglas R.] Aerodyne Res Inc, Ctr Aerosol & Cloud Chem, Billerica, MA 01821 USA. [Kirchstetter, Thomas W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Kirchstetter, Thomas W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Kroll, JH (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jhkroll@mit.edu RI Browne, Eleanor/J-4517-2015; Worsnop, Douglas/D-2817-2009 OI Browne, Eleanor/0000-0002-8076-9455; Worsnop, Douglas/0000-0002-8928-8017 FU EPA-STAR [RD-83503301]; NSF [CHE-1012809]; US EPA; NOAA Climate and Global Change fellowship; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; DOE SBIR [DE-FG02-07ER84890] FX This work was supported by EPA-STAR RD-83503301 and NSF CHE-1012809. Although the research described in this article has been funded in part by the US EPA, it has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. E.C.B. gratefully acknowledges the NOAA Climate and Global Change fellowship for financial support. The ALS, Chemical Dynamics Beamline, and K.R.W are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. M.R.C., P.M., and D.R.W. acknowledge support from NSF CHE-1012809 and DOE SBIR DE-FG02-07ER84890. NR 82 TC 6 Z9 6 U1 16 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 19 PY 2015 VL 119 IS 7 BP 1154 EP 1163 DI 10.1021/jp511507d PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB9HI UT WOS:000349942200008 PM 25654760 ER PT J AU Tsyshevsky, R Pagoria, P Zhang, MX Racoveanu, A DeHope, A Parrish, D Kuklja, MM AF Tsyshevsky, Roman Pagoria, Philip Zhang, Maoxi Racoveanu, Ana DeHope, Alan Parrish, Damon Kuklja, Maija M. TI Searching for Low-Sensitivity Cast-Melt High-Energy-Density Materials: Synthesis, Characterization, and Decomposition Kinetics of 3,4-Bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-2-oxide SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BOND-DISSOCIATION ENERGIES; GAS-PHASE DECOMPOSITION; WAVE BASIS-SET; THERMAL-DECOMPOSITION; AB-INITIO; MOLECULAR MATERIALS; UNIMOLECULAR DECOMPOSITION; HYDROGEN-TRANSFER; MECHANISMS; EXPLOSIVES AB The most comprehensive approach to analyze and characterize energetic materials is suggested and applied to enable rational, rigorous design of novel materials and targeted improvements of existing materials to achieve desired properties. We report synthesis, characterization of the structure and sensitivity, and modeling of thermal and electronic stability of the energetic, heterocyclic compound, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-2-oxide (BNFF). The proposed novel, relatively simple synthesis of BNFF in excellent yields allows for an efficient scale up. Performing careful characterization indicates that these materials offer an unusual combination of properties and exhibit a relatively high energy density, high and controllable stability against decomposition, low melting temperature, and low sensitivity to initiation of detonation. First-principles calculations of activation barriers and reaction rate constants reveal the decomposition scenarios that govern the thermal stability and chemical behavior of BNFF, which appreciably differ from conventional nitro compounds. Details of the electronic structure and calculated electronic properties suggest that BNFF is an excellent candidate energetic material on its own and an attractive ingredient of modern energetic formulations to improve their stability and enable highly controllable chemical decomposition. C1 [Tsyshevsky, Roman; Kuklja, Maija M.] Univ Maryland, Mat Sci & Engn Dept, College Pk, MD 20742 USA. [Pagoria, Philip; Zhang, Maoxi; Racoveanu, Ana; DeHope, Alan] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. [Parrish, Damon] Naval Res Lab, Washington, DC 20375 USA. RP Kuklja, MM (reprint author), Univ Maryland, Mat Sci & Engn Dept, College Pk, MD 20742 USA. EM mkukla@umd.edu FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; ONR [N00014-12-1-0529]; NSF; NSF XSEDE [DMR-130077]; DOE NERSC [DE-AC02-05CH11231]; Office of the Director of National Science Foundation under IRD program FX Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research is also supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE resources (Grant DMR-130077) and DOE NERSC resources (Contract DE-AC02-05CH11231). MMK is grateful to the Office of the Director of National Science Foundation for support under the IRD program. NR 89 TC 10 Z9 12 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 19 PY 2015 VL 119 IS 7 BP 3509 EP 3521 DI 10.1021/jp5118008 PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9HK UT WOS:000349942400009 ER PT J AU Mahapatra, M Burkholder, L Devarajan, SP Boscoboinik, A Garvey, M Bai, Y Tysoe, WT AF Mahapatra, Mausumi Burkholder, Luke Devarajan, Sunil P. Boscoboinik, Anibal Garvey, Michael Bai, Yun Tysoe, Wilfred T. TI Formation of Induced-Fit Chiral Templates by Amino Acid-Functionalized Pd(111) Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE-PROGRAMMED DESORPTION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ENANTIOSELECTIVE CHEMISORPTION; MODIFIED PLATINUM; ULTRAHIGH-VACUUM; PROPYLENE-OXIDE; BASIS-SET; ALANINE; HYDROGENATION AB Chiral probe molecules, propylene oxide, and glycidol are used to measure the enantioselectivity of a range of amino acid-functionalized Pd(111) surfaces. Only those surfaces that contain tetrameric amino acid assemblies are found to be enantioselective, indicating that they act as chiral templates in which several modifiers operate in concert to form a chiral reaction pocket. It has previously been shown that the tetramers assemble from antiparallel anionic-zwitterionic dimers where three of the amino acids then undergo a concerted translational motion to form a more stable tetramer. However, density functional theory calculations reveal that the most stable tetramer has a pocket that is too small to accommodate the chiral probes, while the more open antiparallel anionic-zwitterionic dimer structure provides sufficient space for the epoxide to adsorb enantioselectively on the most stable atop palladium adsorption site. Amino acid destabilization is confirmed by its lower desorption temperature measured in temperature-programmed desorption. C1 [Mahapatra, Mausumi; Burkholder, Luke; Devarajan, Sunil P.; Boscoboinik, Anibal; Garvey, Michael; Bai, Yun; Tysoe, Wilfred T.] Univ Wisconsin, Dept Chem, Milwaukee, WI 53211 USA. [Mahapatra, Mausumi; Burkholder, Luke; Devarajan, Sunil P.; Boscoboinik, Anibal; Garvey, Michael; Bai, Yun; Tysoe, Wilfred T.] Univ Wisconsin, Surface Studies Lab, Milwaukee, WI 53211 USA. [Boscoboinik, Anibal] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Tysoe, WT (reprint author), Univ Wisconsin, Dept Chem, POB 413, Milwaukee, WI 53211 USA. EM wtt@uwm.edu RI Garvey, Michael/F-6334-2012 OI Garvey, Michael/0000-0002-7077-8091 FU U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences [DE-FG02-03ER15474] FX We gratefully acknowledge support of this work by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under Grant DE-FG02-03ER15474. We thank Professor Michael Weinert for advice on carrying out density functional theory calculations. NR 43 TC 4 Z9 4 U1 4 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 19 PY 2015 VL 119 IS 7 BP 3556 EP 3563 DI 10.1021/jp5110483 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9HK UT WOS:000349942400015 ER PT J AU Civis, S Ferus, M Zukalova, M Zukal, A Kavan, L Jordan, KD Sorescu, DC AF Civis, Svatopluk Ferus, Martin Zukalova, Marketa Zukal, Arnost Kavan, Ladislav Jordan, Kenneth D. Sorescu, Dan C. TI Oxygen Atom Exchange between Gaseous CO2 and TiO2 Nanoclusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; TITANIUM-DIOXIDE; CARBON-DIOXIDE; SURFACE DEFECT; BASIS-SET; 1ST STEP; ANATASE; NANOPARTICLES; PHOTOCATALYSIS AB Isotopic exchange of oxygen atoms between gaseous (CO2)-O-18 and (TiO2)-O-16 nanoparticles has been studied using high-resolution Fourier transform infrared absorption and first-principles density functional theory calculations. The rate of formation of gaseous (CO2)-O-16 is found to be highly dependent on the nature of the titania sample, growing with increasing calcination temperature (i.e., with decreasing surface area) for both quasi-amorphous and crystalline samples. The unprecedented faster kinetics on high-surface-area titania made from Ti(IV) isopropoxide points at fundamental differences between this material and the usual nanocrystalline TiO2 (anatase). This is attributed to unique cluster-like structure of the noncalcined ex-isopropoxide titania. The experimental observations are rationalized by calculations of the activation barriers for oxygen exchange on a (TiO2)(10) cluster. The calculations predict that titanium nanoclusters with 4-fold coordinated titanium atoms have much lower barriers for O atom exchange than previously found for the oxygen defect sites on the single crystal (101) anatase surface. C1 [Civis, Svatopluk; Ferus, Martin; Zukalova, Marketa; Zukal, Arnost; Kavan, Ladislav] Acad Sci Czech Republic, Vvi, J Heyrovsky Inst Phys Chem, CR-18223 Prague 8, Czech Republic. [Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15260 USA. [Jordan, Kenneth D.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sorescu, Dan C.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Sorescu, DC (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM civis@jh-inst.cas.cz; sorescu@netl.doe.gov RI Ferus, Martin/F-5226-2014; COST, CM1104/I-8057-2015; Zukalova, Marketa/F-5212-2014; Kavan, Ladislav/F-5218-2014 OI Zukalova, Marketa/0000-0002-1773-6642; FU Grant Agency of the Czech Republic [13-07724S, P108/12/0814]; Ministry of Education Youth and Sports of the Czech Republic (COST Action) [CM1104, LD13060, LD14115]; National Energy Technology Laboratory's Office of Research and Development [DE-FE0004000.2.661.251.001] FX We acknowledge grants of computer time at Pittsburgh Supercomputing Center and on the NETL HPCEE supercomputer system. The work at the J. Heyrovsky Institute of Physical Chemistry was supported by the Grant Agency of the Czech Republic (Contracts 13-07724S and P108/12/0814) and by the Ministry of Education Youth and Sports of the Czech Republic (COST Action CM1104, Contracts LD13060 and LD14115). The work at University of Pittsburgh was performed in support of the National Energy Technology Laboratory's Office of Research and Development under Contract DE-FE0004000.2.661.251.001. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the United States Department of Energy. NR 51 TC 7 Z9 7 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 19 PY 2015 VL 119 IS 7 BP 3605 EP 3612 DI 10.1021/jp512059b PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9HK UT WOS:000349942400021 ER PT J AU Han, J McBean, C Wang, L Jaye, C Liu, HQ Fischer, DA Wong, SS AF Han, Jinkyu McBean, Coray Wang, Lei Jaye, Cherno Liu, Haiqing Fischer, Daniel A. Wong, Stanislaus S. TI Synthesis of Compositionally Defined Single-Crystalline Eu3+-Activated Molybdate Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D Ca MoO4-CaWO4:Eu3+-0D CdS/CdSe QD Nanoscale Heterostructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-ABSORPTION; LIGHT-EMITTING DIODES; CDSE QUANTUM DOTS; CARBON NANOTUBE; SEMICONDUCTOR NANOCRYSTALS; PHOTOVOLTAIC DEVICES; ELECTRONIC-STRUCTURE; CO-PHTHALOCYANINE; RED PHOSPHORS; LUMINESCENCE AB As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu3+-activated alkaline-earth metal tungstate/molybdate solid-solution composite CaW1-xMoxO4 (0 <= "x" <= 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW1-xMoxO4:Eu3+ (0 <= "x" <= 1) solid-solution composite nanowires increase with increasing Mo component ("x"). We note a clear dependence of luminescence output upon nanowire chemical composition with our 1D CaW1-xMoxO4:Eu3+ (0 <= "x" <= 1) evincing the highest photoluminescence (PL) output at "x" = 0.8, among samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4:Eu3+ ("x" = 0.8)-0D QD composite nanoscale heterostructures. Our results show that CaW1-xMoxO4:Eu3+ ("x" = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaWO4-CaMoO4:Eu3+ nanowires. The observed PL quenching is especially pronounced in CaW1-xMoxO4:Eu3+ ("x" = 0.8)-0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The differences in optical behavior between 1D Eu3+ activated tungstate and molybdate solid-solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photoinduced electron transfer process from CaW1-xMoxO4:Eu3+ ("x" = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. C1 [Han, Jinkyu; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [McBean, Coray; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20889 USA. RP Wong, SS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA. EM sswong@bnl.gov FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886] FX Research was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Experiments were performed in part at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under contract number DE-AC02-98CH10886. NEXAFS measurements were collected at the U7A NIST/DOW beamline, located at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), which is also supported by the U.S. Department of Energy under contract number DE-AC02-98CH10886. NR 76 TC 4 Z9 4 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 19 PY 2015 VL 119 IS 7 BP 3826 EP 3842 DI 10.1021/jp512490d PG 17 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9HK UT WOS:000349942400044 ER PT J AU Talbayev, D Lee, J Trugman, SA Zhang, CL Cheong, SW Averitt, RD Taylor, AJ Prasankumar, RP AF Talbayev, D. Lee, Jinho Trugman, S. A. Zhang, C. L. Cheong, S. -W. Averitt, R. D. Taylor, A. J. Prasankumar, R. P. TI Spin-dependent polaron formation dynamics in Eu0.75Y0.25MnO3 probed by femtosecond pump-probe spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID CORRELATED ELECTRON MATERIALS; MANGANITES; TRANSPORT; SPECTRA; LAMNO3 AB We present a femtosecond optical pump-probe study of the multiferroic manganite Eu0.75Y0.25MnO3. The optical response of the material at pump energies of 1.55 and 3.1 eV is dominated by the d-d and p-d transitions of the Mn3+ ions. The relaxation of photoexcited electrons includes the relaxation of the Jahn-Teller distortion and polaron trapping at Mn2+ andMn(4+) sites. Ultrafast switching of superexchange interactions due to modulated e(g) orbital occupancy creates a localized spin excitation, which then decays on a time scale of tens of picoseconds at low temperatures. The localized spin state decay appears as a tremendous increase in the amplitude of the photoinduced reflectance, due to the strong coupling of optical transitions to the spin-spin correlations in the crystalline a-b plane. C1 [Talbayev, D.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Lee, Jinho; Trugman, S. A.; Taylor, A. J.; Prasankumar, R. P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. [Zhang, C. L.; Cheong, S. -W.] Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Zhang, C. L.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Averitt, R. D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Averitt, R. D.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Talbayev, D (reprint author), Tulane Univ, Dept Phys & Engn Phys, 6400 Freret St, New Orleans, LA 70118 USA. EM dtalbayev@gmail.com RI Talbayev, Diyar/C-5525-2009; OI Talbayev, Diyar/0000-0003-3537-1656; Trugman, Stuart/0000-0002-6688-7228 FU Louisiana Board of Regents through the Board of Regents Support Fund [LEQSF(2012-15)-RD-A-23]; LDRD program; Center for Integrated Nanotechnologies; DOE [DE-FG02-07ER46382] FX The work at Tulane was supported by the Louisiana Board of Regents through the Board of Regents Support Fund Contract No. LEQSF(2012-15)-RD-A-23. The work at Los Alamos National Laboratory was supported by the LDRD program and by the Center for Integrated Nanotechnologies. The work at Rutgers University was supported by DOE Grant No. DE-FG02-07ER46382. NR 41 TC 6 Z9 6 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 19 PY 2015 VL 91 IS 6 AR 064420 DI 10.1103/PhysRevB.91.064420 PG 6 WC Physics, Condensed Matter SC Physics GA CC3LV UT WOS:000350251500003 ER PT J AU Aaltonen, T Alon, R Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M de Barbaro, P Demortier, L Deninno, M D'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR Donati, S D'Onofrio, M Dorigo, M Driutti, A Duchovni, E Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Galloni, C Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SH Kim, SB Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Luca, A Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Marchese, L Margaroli, F Marino, P Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Perez, G Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V St Denis, R Stancari, M Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchellia, S AF Aaltonen, T. Alon, R. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. de Barbaro, P. Demortier, L. Deninno, M. D'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. Donati, S. D'Onofrio, M. Dorigo, M. Driutti, A. Duchovni, E. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Galloni, C. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. H. Kim, S. B. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Luca, A. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Marchese, L. Margaroli, F. Marino, P. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Perez, G. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. St Denis, R. Stancari, M. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchellia, S. CA CDF Collaboration TI Studies of high-transverse momentum jet substructure and top quarks produced in 1.96 TeV proton-antiproton collisions SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS; DETECTOR; ENERGY AB Results of a study of the substructure of the highest transverse momentum (p(T)) jets observed by the CDF Collaboration are presented. Events containing at least one jet with p(T) > 400 GeV/c in a sample corresponding to an integrated luminosity of 5.95 fb(-1), collected in 1.96 TeV proton-antiproton collisions at the Fermilab Tevatron collider, are selected. A study of the jet mass, angularity, and planar-flow distributions is presented, and the measurements are compared with predictions of perturbative quantum chromodynamics. A search for boosted top-quark production is also described, leading to a 95% confidence level upper limit of 38 fb on the production cross section of top quarks with p(T) > 400 GeV/c. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, Athens 15771, Greece. [Camarda, S.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Marchese, L.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchellia, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchellia, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Pilot, J.; Shalhout, S. Z.; Smith, J. R.; Wilbur, S.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wallny, R.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Yang, U. K.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Alon, R.; Duchovni, E.; Perez, G.; Sinervo, P.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Alon, R.; Duchovni, E.; Perez, G.; Sinervo, P.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Alon, R.; Duchovni, E.; Perez, G.; Sinervo, P.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Alon, R.; Duchovni, E.; Perez, G.; Sinervo, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 5588585, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Cremonesi, M.; Di Canto, A.; Donati, S.; Galloni, C.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Galloni, C.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] INFN Pavia, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; de Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste, I-33100 Udine, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Grp Coll Udine, I-33100 Udine, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Martinez, Mario /I-3549-2015; Ruiz, Alberto/E-4473-2011; vilar, rocio/P-8480-2014; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; maestro, paolo/E-3280-2010; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014 OI Brucken, Jens Erik/0000-0001-6066-8756; Simonenko, Alexander/0000-0001-6580-3638; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946; Ruiz, Alberto/0000-0002-3639-0368; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; maestro, paolo/0000-0002-4193-1288; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program, the National Research Foundation of Korea; Science and Technology Facilities Council and the Royal Society, United Kingdom; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103]; Shrum Foundation; Weizman Institute of Science; Israel Science Foundation FX We acknowledge the contributions of numerous theorists for insights and calculations. Special thanks go to I. Sung and G. Sterman for discussions involving nonperturbative effects in QCD jets, and to N. Kidonakis for updated top-quark differential cross section calculations. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103. This work was also supported by the Shrum Foundation, the Weizman Institute of Science and the Israel Science Foundation. NR 75 TC 1 Z9 1 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 19 PY 2015 VL 91 IS 3 AR 032006 DI 10.1103/PhysRevD.91.032006 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC3NL UT WOS:000350256100001 ER PT J AU Cho, S Hattori, K Lee, SH Morita, K Ozaki, S AF Cho, Sungtae Hattori, Koichi Lee, Su Houng Morita, Kenji Ozaki, Sho TI Charmonium spectroscopy in strong magnetic fields by QCD sum rules: S-wave ground states SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; CHIRAL-SYMMETRY BREAKING; SHORT-DISTANCE ANALYSIS; SOFT GAMMA-REPEATERS; QUANTUM CHROMODYNAMICS; NEUTRON-STARS; NUCLEAR MEDIUM; VECTOR-MESONS; QUARK SYSTEMS; VACUUM BIREFRINGENCE AB We investigate quarkonium mass spectra in external constant magnetic fields by using QCD sum rules. We first discuss a general framework of QCD sum rules necessary for properly extracting meson spectra from current correlators computed in the presence of strong magnetic fields, that is, a consistent treatment of mixing effects caused in the mesonic degrees of freedom. We then implement operator product expansions for pseudoscalar and vector heavy-quark current correlators by taking into account external constant magnetic fields as operators and obtain mass shifts of the lowest-lying bound states eta(c) and J/psi in the static limit with their vanishing spatial momenta. Comparing results from QCD sum rules with those from hadronic effective theories, we find that the dominant origin of mass shifts comes from a mixing between eta(c) and J/psi with a longitudinal spin polarization, accompanied by other subdominant effects such as mixing with higher excited states and continua. C1 [Cho, Sungtae; Hattori, Koichi; Lee, Su Houng; Ozaki, Sho] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Cho, Sungtae] Kangwon Natl Univ, Div Sci Educ, Chunchon 200701, South Korea. [Hattori, Koichi] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. [Hattori, Koichi] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Morita, Kenji] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. [Morita, Kenji] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Morita, Kenji] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Ozaki, Sho] High Energy Accelerator Res Org KEK, IPNS, Ctr Theory, Tsukuba, Ibaraki 3050801, Japan. RP Cho, S (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. EM sungtae.cho@kangwon.ac.kr; koichi.hattori@riken.jp; suhoung@yonsei.ac.kr; kmorita@yukawa.kyoto-u.ac.jp; sho@post.kek.jp RI Morita, Kenji/R-8116-2016 OI Morita, Kenji/0000-0001-6272-1290 FU Korean Research Foundation [KRF-2011-0020333, KRF-2011-0030621]; HIC for FAIR; Polish Science Foundation (NCN) [2013/10/A/ST2/00106]; MEXT [24105008]; JSPS [25287066]; Korean Ministry of Education through the BK21 PLUS program FX K. H. thanks Hung-chong Kim for fruitful conversations in the early stage of this work. This work was supported by the Korean Research Foundation under Grants No. KRF-2011-0020333 and No. KRF-2011-0030621. K. M. is supported by HIC for FAIR, the Polish Science Foundation (NCN) under Maestro Grant No. 2013/10/A/ST2/00106 and the Grant-in-Aid for Scientific Research on Innovative Areas from MEXT (Grant No. 24105008). The research of K. H. is supported by JSPS Grants-in-Aid No. 25287066. S. C. was supported in part by the Korean Ministry of Education through the BK21 PLUS program. Three of the authors (K. H., K. M. and S. O.) thank Yukawa Institute for Theoretical Physics, Kyoto University, where a part of this work was discussed during the YIPQS international workshop "New Frontiers in QCD 2013." NR 136 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 19 PY 2015 VL 91 IS 4 AR 045025 DI 10.1103/PhysRevD.91.045025 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC3OH UT WOS:000350258300009 ER PT J AU Fernando, IP Goity, JL AF Fernando, I. P. Goity, J. L. TI Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum SO PHYSICAL REVIEW D LA English DT Article ID N-C-QCD; EXCITED BARYONS; EXPANSION; MASSES AB The excited baryon masses are analyzed in the framework of the 1/N-C expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56, l(P) = 0(+)] ground-state and excited baryons, and the [56, 2(+)] and [70, 1(-)] excited states are analyzed. The analyses are carried out to O(1/N-c) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter-independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and equal-spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spinflavor composition of the baryons is observed with increasing pion mass (equivalently, increasing m(u,d) masses), as measured by the number of significant mass operators. C1 [Fernando, I. P.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Fernando, IP (reprint author), Hampton Univ, Dept Phys, Hampton, VA 23668 USA. EM ishara@jlab.org; goity@jlab.org FU DOE [DE-AC05-06OR23177]; National Science Foundation [PHY-0855789, PHY-1307413] FX The authors thank Jozef Dudek and Robert Edwards for useful discussions. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the National Science Foundation through Grants No. PHY-0855789 and PHY-1307413 (I. P. F. and J. L. G.). NR 39 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 19 PY 2015 VL 91 IS 3 AR 036005 DI 10.1103/PhysRevD.91.036005 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC3NL UT WOS:000350256100009 ER PT J AU Takayama, T Kato, A Dinnebier, R Nuss, J Kono, H Veiga, LSI Fabbris, G Haskel, D Takagi, H AF Takayama, T. Kato, A. Dinnebier, R. Nuss, J. Kono, H. Veiga, L. S. I. Fabbris, G. Haskel, D. Takagi, H. TI Hyperhoneycomb Iridate beta-Li2IrO3 as a Platform for Kitaev Magnetism SO PHYSICAL REVIEW LETTERS LA English DT Article ID CIRCULAR-DICHROISM AB A complex iridium oxide beta-Li2IrO3 crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J(eff) = 1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O-2-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J(eff) = 1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J(eff) = 1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility chi(T) which shows a positive Curie-Weiss temperature theta(CW) similar to +40 K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J(eff) = 1/2 moments, is observed at T-c = 38 K. With the application of magnetic field to the ordered state, a large moment of more than 0.35 mu(B)/Ir is induced above 3 T, a substantially polarized J(eff) = 1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb beta-Li2IrO3 is located in close proximity of a Kitaev spin liquid. C1 [Takayama, T.; Dinnebier, R.; Nuss, J.; Takagi, H.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Takayama, T.; Kato, A.; Kono, H.; Takagi, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Takayama, T.; Kato, A.; Kono, H.; Takagi, H.] Univ Tokyo, Dept Adv Mat, Tokyo 1130033, Japan. [Veiga, L. S. I.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil. [Veiga, L. S. I.] Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil. [Veiga, L. S. I.; Fabbris, G.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fabbris, G.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. RP Takayama, T (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. RI Nuss, Juergen/G-2711-2010; Fabbris, Gilberto/F-3244-2011; Takagi, Hidenori/B-2935-2010; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Nuss, Juergen/0000-0002-0679-0184; Fabbris, Gilberto/0000-0001-8278-4985; FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; FAPESP (SP-Brazil) [2013/14338-3]; [24224010] FX We thank A. W. Rost for invaluable discussions and critical reading of the manuscript. We are grateful to B. J. Kim, A. Jain, L. Hozoi, and G. Jackeli for fruitful discussion. This work was partly supported by Grant-in-Aid for Scientific Research (S) (Grant No. 24224010). Work at Argonne was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. L. S. I. Veiga is supported by FAPESP (SP-Brazil) under Contract No. 2013/14338-3. NR 33 TC 57 Z9 57 U1 14 U2 78 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2015 VL 114 IS 7 AR 077202 DI 10.1103/PhysRevLett.114.077202 PG 5 WC Physics, Multidisciplinary SC Physics GA CC3UF UT WOS:000350274900011 PM 25763972 ER PT J AU Ren, CY Morohashi, K Plotnikov, AN Jakoncic, J Smith, SG Li, JJ Zeng, L Rodriguez, Y Stojanoff, V Walsh, M Zhou, MM AF Ren, Chunyan Morohashi, Keita Plotnikov, Alexander N. Jakoncic, Jean Smith, Steven G. Li, Jiaojie Zeng, Lei Rodriguez, Yoel Stojanoff, Vivian Walsh, Martin Zhou, Ming-Ming TI Small-Molecule Modulators of Methyl-Lysine Binding for the CBX7 Chromodomain SO CHEMISTRY & BIOLOGY LA English DT Article ID EMBRYONIC STEM-CELLS; POLYCOMB COMPLEXES; PROTEINS BIND; HISTONE H3; LOCUS; FAMILY; INK4A; RNA AB Chromobox homolog 7 (CBX7) plays an important role in gene transcription in a wide array of cellular processes, ranging from stem cell self-renewal and differentiation to tumor progression. CBX7 functions through its N-terminal chromodomain (ChD), which recognizes trimethylated lysine 27 of histone 3 (H3K27me3), a conserved epigenetic mark that signifies gene transcriptional repression. In this study, we report the discovery of small molecules that inhibit CBX7ChD binding to H3K27me3. Our crystal structures reveal the binding modes of these molecules that compete against H3K27me3 binding through interactions with key residues in the methyl-lysine binding pocket of CBX7ChD. We further show that a lead compound, MS37452, derepresses transcription of Polycomb repressive complex target gene p16/CDKN2A by displacing CBX7 binding to the INK4A/ARF locus in prostate cancer cells. These small molecules have the potential to be developed into high-potency chemical modulators that target CBX7 functions in gene transcription in different disease pathways. C1 [Ren, Chunyan; Morohashi, Keita; Plotnikov, Alexander N.; Smith, Steven G.; Li, Jiaojie; Zeng, Lei; Rodriguez, Yoel; Walsh, Martin; Zhou, Ming-Ming] Icahn Sch Med Mt Sinai, Dept Struct & Chem Biol, New York, NY 10029 USA. [Jakoncic, Jean; Stojanoff, Vivian] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Rodriguez, Yoel] CUNY Hostos Community Coll, Dept Nat Sci, Bronx, NY 10451 USA. RP Zhou, MM (reprint author), Icahn Sch Med Mt Sinai, Dept Struct & Chem Biol, 1425 Madison Ave, New York, NY 10029 USA. EM ming-ming.zhou@mssm.edu RI REN, CHUNYAN/F-1880-2017 OI REN, CHUNYAN/0000-0002-3913-2479 FU National Institute of General Medical Sciences [GM0080]; DOE [DE-AC02-98CH10886]; NIH FX We thank X6A Workbench 2012 and RapiData 2013 for the X-ray crystallography training both theoretically and experimentally, and beamline members for technical help in data collection at National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory. We thank G. Zhang, Q. Zhang, K.-L. Cheung, G. Lu, L. Peng, S.D. Li, R. Sharma, and Y.F. Sun for technical discussion and advice. The X6A beamline at the Brookhaven National Laboratory is supported by the National Institute of General Medical Sciences (GM0080) and the NSLS is funded by DOE (DE-AC02-98CH10886). This work is supported in part by the research grants from NIH (to M.-M.Z.). NR 21 TC 18 Z9 18 U1 2 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-5521 EI 1879-1301 J9 CHEM BIOL JI Chem. Biol. PD FEB 19 PY 2015 VL 22 IS 2 BP 161 EP 168 DI 10.1016/j.chembiol.2014.11.021 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CB9QG UT WOS:000349966200001 PM 25660273 ER PT J AU Nakano, A Ito, H Bhogilla, SS Motyka, T Corgnale, C Greenway, S Hauback, BC AF Nakano, Akihiro Ito, Hiroshi Bhogilla, Satya Sekhar Motyka, Theodore Corgnale, Claudio Greenway, Scott Hauback, Bjorn C. TI Research and development for a metal hydride tank with double coil type heat exchanger below 1.0 MPa (G) operation SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Metal hydride; Reaction heat; Renewable energy; Hydrogen system ID ENERGY-UTILIZATION SYSTEM; HYDROGEN STORAGE; FUEL-CELL AB A metal hydride tank has been developed with the aim of recovering the reaction heat of a metal hydride for the Totalized Hydrogen Energy Utilization System application. The metal hydride tank, which had the same geometrical configuration as one previously evaluated at SRNL, was fabricate with a different composition of the metal hydride alloy for operation below 1.0 MPa (Gauge). The hydrogen mass flow data from hydrogen production by renewable energy (solar power) and the fuel cell operation, which were obtained at SRNL, were used for the testing at AIST. The relatively large heat leak from the tank support of the metal hydride tank at SRNL was confirmed, and thus the tank support was replaced in this work. Furthermore, a vacuum thermal insulator was developed and applied to the metal hydride tank. This resulted in overall tank size reduction without reducing the thermal insulation performance. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Nakano, Akihiro; Ito, Hiroshi; Bhogilla, Satya Sekhar] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058564, Japan. [Motyka, Theodore; Corgnale, Claudio] Savannah River Natl Lab, Energy Secur Dept, Aiken, SC 29808 USA. [Greenway, Scott] Greenway Energy LLC, Aiken, SC 29803 USA. [Hauback, Bjorn C.] Inst Energy Technol IFE, Dept Phys, NO-2027 Kjeller, Norway. RP Nakano, A (reprint author), Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, 1-2-1 Namiki, Tsukuba, Ibaraki 3058564, Japan. EM a.nakano@aist.go.jp FU Ministry of Economy, Trade, and Industry (METI); CONCERT-Japan joint research program of the Japan Science and Technology Agency (JST) FX This study was supported from U.S.-Japan joint research under the program of U.S.-Japan clean energy action plan based on a grant from the Ministry of Economy, Trade, and Industry (METI). A part of this study was also supported from CONCERT-Japan joint research program of the Japan Science and Technology Agency (JST). NR 17 TC 2 Z9 2 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB 19 PY 2015 VL 40 IS 6 BP 2663 EP 2672 DI 10.1016/j.ijhydene.2014.12.051 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA CB6LK UT WOS:000349738300023 ER PT J AU Ward, PA Teprovich, JA Compton, RN Schwartz, V Veith, GM Zidan, R AF Ward, Patrick A. Teprovich, Joseph A., Jr. Compton, R. N. Schwartz, Viviane Veith, Gabriel M. Zidan, Ragaiy TI Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Fullerenes; C60H60; Physisorption; Chemisorption ID C-60; STORAGE; PRESSURE; FULLERANES; RAMAN; GAS AB In this study, alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In particular, we investigated the interaction of hydrogen with lithium and sodium doped fullerenes via physisorpdon. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77 K to 303 K were measured demonstrating an increase in hydrogen uptake versus pure C-60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. The hydrogen uptake in Na6C60, Li6C60, and Li12C60 was enhanced compared to pure C-60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm and 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ward, Patrick A.; Compton, R. N.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Ward, Patrick A.; Teprovich, Joseph A., Jr.; Zidan, Ragaiy] Savannah River Natl Lab, Ctr Hydrogen Res, Clean Energy Directorate, Aiken, SC 29803 USA. [Schwartz, Viviane; Veith, Gabriel M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zidan, R (reprint author), Savannah River Natl Lab, Ctr Hydrogen Res, Clean Energy Directorate, Aiken, SC 29803 USA. EM Ragaiy.Zidan@srnl.doe.gov FU National Science Foundation [DGE0801470]; "Sustainable Technology through Advanced Interdisciplinary Research" (STAIR); U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Oak Ridge National Laboratory, Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported by National Science Foundation Grant DGE0801470, "Sustainable Technology through Advanced Interdisciplinary Research" (STAIR), awarded to the University of Tennessee Knoxville. Work at SRNL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. XPS studies (GMV) were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Hydrogen physisorption measurements were carried out at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 30 TC 9 Z9 9 U1 6 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB 19 PY 2015 VL 40 IS 6 BP 2710 EP 2716 DI 10.1016/j.ijhydene.2014.12.033 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA CB6LK UT WOS:000349738300027 ER PT J AU Hellebusch, DJ Manthiram, K Beberwyck, BJ Alivisatos, AP AF Hellebusch, Daniel J. Manthiram, Karthish Beberwyck, Brandon J. Alivisatos, A. Paul TI In Situ Transmission Electron Microscopy of Cadmium Selenide Nanorod Sublimation SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SEMICONDUCTOR QUANTUM RODS; CDSE NANOCRYSTALS; GROWTH; CRYSTALS; NANOPARTICLES; LITHOGRAPHY; ORIENTATION; DEPENDENCE; EMISSION; SURFACES AB In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod's long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. We propose a mechanism that accounts for the observed sublimation behavior based on the terrace-ledge kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation. C1 [Hellebusch, Daniel J.; Manthiram, Karthish] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Beberwyck, Brandon J.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hellebusch, Daniel J.; Beberwyck, Brandon J.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Hellebusch, Daniel J.; Manthiram, Karthish; Beberwyck, Brandon J.; Alivisatos, A. Paul] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. [Hellebusch, Daniel J.; Manthiram, Karthish; Beberwyck, Brandon J.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Foundry, Molecular/G-9968-2014; Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation; Physical Chemistry of Inorganic Nanostructures program [KC3103]; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH112321] FX The authors would like to thank J. Ciston and K. Bustillo for their assistance with the NCEM facility, P. Ercius for sharing his knowledge of image processing, and C. Bear for help with the TOC figure. This work was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.H. was supported in part by the U.S. National Science Foundation Graduate Research Fellowship. Work on image analysis was supported by the Physical Chemistry of Inorganic Nanostructures program, KC3103, Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract DE-AC02-05CH112321. NR 48 TC 7 Z9 7 U1 7 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 19 PY 2015 VL 6 IS 4 BP 605 EP 611 DI 10.1021/jz502566m PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB9HL UT WOS:000349942500022 PM 26262474 ER PT J AU Dijkstra, AG Wang, C Cao, JS Fleming, GR AF Dijkstra, Arend G. Wang, Chen Cao, Jianshu Fleming, Graham R. TI Coherent Exciton Dynamics in the Presence of Underdamped Vibrations SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LIGHT-HARVESTING COMPLEXES; ENERGY-TRANSFER; ELECTRONIC COHERENCE; QUANTUM COHERENCE; TEMPERATURE; SYSTEMS AB Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to the bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration. C1 [Dijkstra, Arend G.; Cao, Jianshu] MIT, Dept Chem, Cambridge, MA 02139 USA. [Wang, Chen; Cao, Jianshu] Singapore MIT Alliance Res & Technol, Singapore 138602, Singapore. [Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Cao, JS (reprint author), MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jianshu@mit.edu FU Center for Excitonics, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001088]; National Science Foundation [CHE-(1112825)]; Office of Science, Office of Basic Energy Sciences, of the USA Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences [DE-AC03-76SF000098] FX We thank T. Avila for carefully reading the manuscript. A.G.D. thanks J. Moix and J. Cerrillo-Moreno for helpful discussions. The work at MIT was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001088. J.C. was also supported by the National Science Foundation (Grant No. CHE-(1112825)). The work at LBNL and U.C. Berkeley was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the USA Department of Energy under contract DE-AC02-05CH11231 and the Division of Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences through grant DE-AC03-76SF000098. NR 33 TC 16 Z9 16 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 19 PY 2015 VL 6 IS 4 BP 627 EP 632 DI 10.1021/jz502701u PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB9HL UT WOS:000349942500007 PM 26262477 ER PT J AU Bohlin, A Kliewer, CJ AF Bohlin, Alexis Kliewer, Christopher J. TI Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LASER-INDUCED INCANDESCENCE; SCATTERING THERMOMETRY; FEMTOSECOND-CARS; SPECTROSCOPY; COMBUSTION; SIMULATIONS; CALIBRATION; BURNER; LINE; FLOW AB A single-shot coherent Raman imaging technique has been developed for spatially correlated one-dimensional high-fidelity gas-phase thermometry and multiplex chemical detection in flames. The technique utilizes two beam phase matching, operating a single ultrashort pump/Stokes excitation pulse (7 fs) and a narrowband picosecond probe pulse (70 ps), interrogating a Raman active window of similar to 4200 cm(-1) with similar to 0.3 cm(-1) spectral resolution. The measurement geometry is formed intersecting the two beams shaped as laser sheets and the one coordinate spatial information is retrieved with a linespread function of <40 mu m. The advance provides the possibility for the multiplexed measurement of all combustion relevant major species simultaneously with gaseous temperature monitored over a several millimeter field of view. The current technique is optimized in a premixed hydrocarbon flat-flame. At the flame-front, it is shown that direct imaging renders the temperature profile within similar to 1% inaccuracy, whereas typical point-wise raster scanning may have relative systematic deviations up to 15% due to spatial averaging effects. C1 [Bohlin, Alexis; Kliewer, Christopher J.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kliewer, CJ (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM cjkliew@sandia.gov RI Bohlin, Alexis/L-8973-2015; Kliewer, Christopher/E-4070-2010 OI Bohlin, Alexis/0000-0003-4383-8332; Kliewer, Christopher/0000-0002-2661-1753 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Hope Michelsen, Matthew Campbell, Olof Johansson, and Paul Schrader of Sandia for stimulating discussions and access to their burner prototype. Thanks also to Brian Patterson of Sandia for technical assistance. Funding provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 7 Z9 7 U1 3 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 19 PY 2015 VL 6 IS 4 BP 643 EP 649 DI 10.1021/acs.jpclett.5b00014 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB9HL UT WOS:000349942500009 PM 26262480 ER PT J AU Paulite, M Acharya, KP Nguyen, HM Hollingsworth, JA Htoon, H AF Paulite, Melissa Acharya, Krishna P. Hue Minh Nguyen Hollingsworth, Jennifer A. Htoon, Han TI Inverting Asymmetric Confinement Potentials in Core/Thick-Shell Nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID BIEXCITON QUANTUM YIELD; AUGER RECOMBINATION; SUPPRESSED BLINKING; SINGLE NANOCRYSTALS; II NANOCRYSTALS; DOTS; EMISSION; SPECTROSCOPY; TRACKING AB We investigate CdSe/ZnSe core/thick-shell nanocrystals (a.k.a. giant-nanocrystal quantum dots [g-NQDs]) that have an asymmetric electron/hole confinement potential opposite to nonblinking CdSe/CdS g-NQDs. We deconstruct the photon streams into five different photoluminescence (PL) intensity levels and analyze second-order photon correlation (g((2))) traces of each PL intensity level. This analysis allows us to decouple the contribution of exciton charging from the g((2)) experiment and determine the quantum yield of neutral biexciton states to be in the range of similar to 20-50%, a value comparable to that of CdSe/CdS g-NQDs. We also show that the Auger recombination rate of positive trion states is suppressed compared to that of negative trions. This suppression, however, is shown not to be strong enough to yield complete suppression of PL fluctuations due to the heavy effective mass of holes. Strong intensity fluctuations also result from the fact that hole charging occurs more readily in CdSe/ZnSe g-NQDs than electron charging in CdSe/CdS g-NQDs. C1 [Paulite, Melissa; Acharya, Krishna P.; Hue Minh Nguyen; Hollingsworth, Jennifer A.; Htoon, Han] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Htoon, H (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM htoon@lanl.gov OI Htoon, Han/0000-0003-3696-2896 FU Division of Materials Science and Engineering (MSE), Office of Basic Energy Sciences (OBES), Office of Science (OS), U.S. Department of Energy (DOE) [2009LANL1096] FX This work was supported by a Single Investigator Small Group Research Grant (2009LANL1096), Division of Materials Science and Engineering (MSE), Office of Basic Energy Sciences (OBES), Office of Science (OS), U.S. Department of Energy (DOE) and conducted at the Center for Integrated Nanotechnologies (CINT), a U.S. DOE, OBES Nanoscale Science Research Center and User Facility. NR 49 TC 2 Z9 2 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 19 PY 2015 VL 6 IS 4 BP 706 EP 711 DI 10.1021/jz5027163 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB9HL UT WOS:000349942500026 PM 26262490 ER PT J AU Ellis, JE Green, U Sorescu, DC Zhao, Y Star, A AF Ellis, James E. Green, Uri Sorescu, Dan C. Zhao, Yong Star, Alexander TI Indium Oxide Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID GAS SENSOR; NANOSTRUCTURES; NANOPARTICLES; PERFORMANCE AB Utilizing a sol-gel synthesis, indium oxide is grown on the surface of oxidized single-walled carbon nanotubes (SWCNT) to form a hybrid material with high conductivity and sensitivity toward certain organic vapors. The room-temperature sensing of dilute ethanol and acetone vapors on the surface of indium oxide/SWCNT hybrid material is studied using electrical conductance experiments in a nonoxidizing environment. Through testing of variously calcinated materials, it was observed that the degree of annealing greatly affects the material's response to acetone and ethanol, such that the intermediate calcination condition yields the best sensitivity. DFT simulations are used to study the interface between defective SWCNT and indium oxide, as well as the interaction between ethanol and acetone molecules with the indium oxide/SWCNT hybrid material. C1 [Ellis, James E.; Green, Uri; Zhao, Yong; Star, Alexander] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sorescu, Dan C.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Star, A (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM astar@pitt.edu RI Zhao, Yong/C-9160-2014 OI Zhao, Yong/0000-0003-1990-4387 FU NSF [0954345]; Bayer Material Science FX This work was supported by NSF career award No. 0954345. Y.Z. acknowledges a graduate student fellowship through Bayer Material Science. We thank the Department of Biological Sciences, the Department of Materials Science, and the Nanoscale Fabrication and Characterization Facility at the University of Pittsburgh for access to the TEM, SEM, HRTEM, and XRD instrumentation. NR 23 TC 11 Z9 11 U1 4 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 19 PY 2015 VL 6 IS 4 BP 712 EP 717 DI 10.1021/jz502631a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB9HL UT WOS:000349942500027 PM 26262491 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F Da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J De Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposit, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L De la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hann, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Heng, Y Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM Van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczkab, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kyriazopoulos, D LaRosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P LeDortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL LoSterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade Filho, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mckee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjrnmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Mnig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morton, A Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Garcia, RFN Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Esta, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, R Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Snchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sircar, A Sisakyan, N Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, A Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strhmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK TenKate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, JJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Ster, D Van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H Von Radziewski, H Von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoobb, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J. -F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. De Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. De Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Micco, B. Di Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposit, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Martinez, P. Fernandez Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. De la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K. -J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hann, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Heng, Y. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. Van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J. -Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczkab, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Keyes, R. A. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kyriazopoulos, D. LaRosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. LeDortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. LoSterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mckee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Middleton, R. P. Migas, S. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjrnmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Mnig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morton, A. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Garcia, R. F. Naranjo Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Esta, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Snchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sircar, A. Sisakyan, N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strhmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. TenKate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Ster, D. Van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoobb, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yanush, S. Yao, L. Yao, W. -M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at root s=8 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; PAIR PRODUCTION; CROSS-SECTION; LHC; PHENOMENOLOGY; RESUMMATION; TEVATRON; SYMMETRY AB A search for the production of single-top-quarks in association with missing energy is performed in proton-proton collisions at a centre-of-mass energy of root s = 8 TeV with the ATLAS experiment at the large hadron collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb(-1). In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the standard model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with amass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95% confidence level for the top quark and an invisible spin-1/2 state with mass between 0 and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95% confidence level for the top quark and an invisible spin-1 state with mass between 0 and 657 GeV. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Karamaoun, A.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Kuday, S.; Cakir, I. Turk] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Ozturk, N.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Janus, M.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Janus, M.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mosidze, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J. J.; Uhlenbrock, M.; Velz, T.; Vogel, A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Morris, J. D.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; TenKate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Van Eldik, N.; Van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; De Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hodgkinson, M. C.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Wang, H.; Ye, J.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Mnig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Mnig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposit, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Flechl, M.; Gadomski, S.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; Von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; Della Volpe, D.; Doglioni, C.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; LaRosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Moss, J.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczkab, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Glonti, G. L.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dassoulas, J.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjrnmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Diglio, S.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Hulsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hallewell, G. D.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Moser, H. G.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hallewell, G. D.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Moser, H. G.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Morvaj, L.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mckee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Arik, M.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Morton, A.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Kharlamov, A.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Beacham, J. B.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Legger, F.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Merritt, H.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Becker, K.; Behr, K.; Boddy, C. R.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pickering, M. A.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Motohashi, K.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao Fis & Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Spousta, M.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Micco, B. Di; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Micco, B. Di; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hann, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Horton, A. J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mornacchi, G.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Lee, C. A.; Yacoobb, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; LoSterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Brelier, B.; Chau, C. C.; DeMarco, D. A.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Snchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Snchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Snchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Snchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Snchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Strhmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Bedikian, S.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.; Castillo, L. R. Flores] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Gao, J.] CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Waterloo, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] CNRS, IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoobb, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Korol, Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Doyle, Anthony/C-5889-2009; Brooks, William/C-8636-2013; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Boyko, Igor/J-3659-2013; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Snesarev, Andrey/H-5090-2013; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Chekulaev, Sergey/O-1145-2015; Grancagnolo, Sergio/J-3957-2015; Carquin, Edson/G-5221-2015; Livan, Michele/D-7531-2012; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Mitsou, Vasiliki/D-1967-2009; Di Domenico, Antonio/G-6301-2011; Della Pietra, Massimo/J-5008-2012; Bosman, Martine/J-9917-2014; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014 OI Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Coccaro, Andrea/0000-0003-2368-4559; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi, Farida/0000-0002-6423-7213; Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo Maria/0000-0003-1589-2163; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Doyle, Anthony/0000-0001-6322-6195; Brooks, William/0000-0001-6161-3570; spagnolo, stefania/0000-0001-7482-6348; Boyko, Igor/0000-0002-3355-4662; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Grancagnolo, Sergio/0000-0001-8490-8304; Carquin, Edson/0000-0002-7863-1166; Livan, Michele/0000-0002-5877-0062; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Mitsou, Vasiliki/0000-0002-1533-8886; Di Domenico, Antonio/0000-0001-8078-2759; Della Pietra, Massimo/0000-0003-4446-3368; Bosman, Martine/0000-0002-7290-643X; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 84 TC 4 Z9 4 U1 8 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 18 PY 2015 VL 75 IS 2 AR 79 DI 10.1140/epjc/s10052-014-3233-4 PG 24 WC Physics, Particles & Fields SC Physics GA CI1ZX UT WOS:000354545100001 ER PT J AU Li, JC Ma, C Chi, MF Liang, CD Dudney, NJ AF Li, Juchuan Ma, Cheng Chi, Miaofang Liang, Chengdu Dudney, Nancy J. TI Solid Electrolyte: the Key for High-Voltage Lithium Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article DE high-voltage cathodes; LiNi; Mn; O spinels; solid electrolytes; lithium-ion batteries; solid-state batteries ID LI-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; LINI0.5MN1.5O4 SPINEL; SECONDARY BATTERIES; FLUORINATED ELECTROLYTES; SUPERIONIC CONDUCTOR; RECENT PROGRESS; PERFORMANCE; DEPOSITION C1 [Li, Juchuan; Dudney, Nancy J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ma, Cheng; Chi, Miaofang; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Li, JC (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM lij2@ornl.gov; dudneynj@ornl.gov RI Ma, Cheng/C-9120-2014; Li, Juchuan/A-2992-2009; Chi, Miaofang/Q-2489-2015; Dudney, Nancy/I-6361-2016 OI Li, Juchuan/0000-0002-6587-5591; Chi, Miaofang/0000-0003-0764-1567; Dudney, Nancy/0000-0001-7729-6178 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; Scientific User Facilities Division, DOE-BES FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Electron microscopy work was performed through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, DOE-BES. This article was modified on February 18, 2015 to correct typographical errors in the left column of page 5. NR 61 TC 49 Z9 49 U1 51 U2 332 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD FEB 18 PY 2015 VL 5 IS 4 AR 1401408 DI 10.1002/aenm.201401408 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CC7RM UT WOS:000350566000010 ER PT J AU Heinzl, T Harvey, C Ilderton, A Marklund, M Bulanov, SS Rykovanov, S Schroeder, CB Esarey, E Leemans, WP AF Heinzl, Thomas Harvey, Chris Ilderton, Anton Marklund, Mattias Bulanov, Stepan S. Rykovanov, Sergey Schroeder, Carl B. Esarey, Eric Leemans, Wim P. TI Detecting radiation reaction at moderate laser intensities SO PHYSICAL REVIEW E LA English DT Article ID COMPTON-SCATTERING; ELECTRONS; ACCELERATION; IONIZATION; THOMSON; VACUUM; SHIFT; PULSE AB We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizable for particles that gain almost no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which radiation reaction is actually the dominant influence on charged particle motion. C1 [Heinzl, Thomas] Univ Plymouth, Sch Comp & Math, Plymouth PL4 8AA, Devon, England. [Harvey, Chris] Queens Univ Belfast, Ctr Plasma Phys, Belfast BT7 1NN, Antrim, North Ireland. [Harvey, Chris; Ilderton, Anton; Marklund, Mattias] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. [Marklund, Mattias] Umea Univ, Dept Phys, SE-90187 Umea, Sweden. [Bulanov, Stepan S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Rykovanov, Sergey; Schroeder, Carl B.; Esarey, Eric; Leemans, Wim P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Heinzl, T (reprint author), Univ Plymouth, Sch Comp & Math, Plymouth PL4 8AA, Devon, England. EM theinzl@plymouth.ac.uk OI Ilderton, Anton/0000-0002-6520-7323; Schroeder, Carl/0000-0002-9610-0166 FU EPSRC [EP/I029206/1-YOTTA]; European Research Council [204059-QPQV]; Swedish Research Council [2011-4221]; National Science Foundation [PHY-0935197]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-12ER41798] FX The authors are supported by EPSRC, Grant No. EP/I029206/1-YOTTA (C.H.), the European Research Council, Contract No. 204059-QPQV (A.I. and M.M.), the Swedish Research Council, Contract No. 2011-4221 (A.I.), the National Science Foundation under Grant No. PHY-0935197, and the Office of Science of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 and No. DE-FG02-12ER41798. NR 44 TC 6 Z9 6 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD FEB 18 PY 2015 VL 91 IS 2 AR 023207 DI 10.1103/PhysRevE.91.023207 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC3TV UT WOS:000350273900011 PM 25768626 ER PT J AU Fan, RH Zhou, Y Ren, XP Peng, RW Jiang, SC Xu, DH Xiong, X Huang, XR Wang, M AF Fan, Ren-Hao Zhou, Yu Ren, Xiao-Ping Peng, Ru-Wen Jiang, Shang-Chi Xu, Di-Hu Xiong, Xiang Huang, Xian-Rong Wang, Mu TI Freely Tunable Broadband Polarization Rotator for Terahertz Waves SO ADVANCED MATERIALS LA English DT Article ID TIME-DOMAIN SPECTROSCOPY; METAMATERIAL; TECHNOLOGY; POLARIZERS; GRATINGS; INDEX; LENS AB A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. C1 [Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Wang, Mu] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Wang, Mu] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China. [Huang, Xian-Rong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Peng, RW (reprint author), Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. EM rwpeng@nju.edu.cn; xiahuang@aps.anl.gov; muwang@nju.edu.cn FU Ministry of Science and Technology of China [2012CB921502]; National Natural Science Foundation of China [11034005, 61475070, 11474157, 11321063, 91321312]; China Postdoctoral Science Foundation [2014M551548]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Ministry of Science and Technology of China (Grant No. 2012CB921502), the National Natural Science Foundation of China (Grant Nos. 11034005, 61475070, 11474157, 11321063, and 91321312), and partially by the China Postdoctoral Science Foundation (Grant No. 2014M551548), and X.R.H. was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 39 TC 26 Z9 26 U1 17 U2 120 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2015 VL 27 IS 7 BP 1201 EP 1206 DI 10.1002/adma.201404981 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CC0VX UT WOS:000350057400007 PM 25545177 ER PT J AU Fischer, FSU Trefz, D Back, J Kayunkid, N Tornow, B Albrecht, S Yager, KG Singh, G Karim, A Neher, D Brinkmann, M Ludwigs, S AF Fischer, Florian S. U. Trefz, Daniel Back, Justus Kayunkid, Navaphun Tornow, Benjamin Albrecht, Steve Yager, Kevin G. Singh, Gurpreet Karim, Alamgir Neher, Dieter Brinkmann, Martin Ludwigs, Sabine TI Highly Crystalline Films of PCPDTBT with Branched Side Chains by Solvent Vapor Crystallization: Influence on Opto-Electronic Properties SO ADVANCED MATERIALS LA English DT Article ID LOW-BANDGAP POLYMER; HETEROJUNCTION SOLAR-CELLS; THIN-FILMS; EXCITON DISSOCIATION; CARRIER GENERATION; CHARGE-TRANSPORT; ALKANE DITHIOLS; MORPHOLOGY; ADDITIVES; BLENDS AB PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. C1 [Fischer, Florian S. U.; Trefz, Daniel; Back, Justus; Ludwigs, Sabine] Univ Stuttgart, IPOC Funct Polymers, D-70569 Stuttgart, Germany. [Kayunkid, Navaphun; Brinkmann, Martin] CNRS, Inst Charles Sadron UPR22, F-67034 Strasbourg 2, France. [Tornow, Benjamin; Albrecht, Steve; Neher, Dieter] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Yager, Kevin G.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Singh, Gurpreet; Karim, Alamgir] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. RP Ludwigs, S (reprint author), Univ Stuttgart, IPOC Funct Polymers, Pfaffenwaldring 55, D-70569 Stuttgart, Germany. EM sabine.ludwigs@ipoc.uni-stuttgart.de RI Yager, Kevin/F-9804-2011; Neher, Dieter/A-9334-2015; OI Yager, Kevin/0000-0001-7745-2513; Brinkmann, martin/0000-0002-2680-1506 FU DFG [SPP-1355]; Emmy Noether Program; EU; BMBF [FKZ 03IS2151D]; European Community [C25 Rhin-Solar]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Division of Basic Energy Sciences [DE-FG02-10ER4779] FX Experimental work by M. Plachetta, the scientific discussions with C. Ruiz Delgado and B. Lotz and the assembly of the TDCF setup by J. Kurpiers are gratefully acknowledged. We thank the DFG for funding within the priority program "Elementary processes in organic solar cells" (SPP-1355), the Emmy Noether Program, the EU for funding within Smartonics, the BMBF for funding within the project PVCOMB (FKZ 03IS2151D) the European Community for funding via the Interreg IV-A program (C25 Rhin-Solar).; Research carried out in part at the Center for the Functional Nanomaterials and the National Synchrotron Light Source, the Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. A. Karim and G. Singh acknowledge support by the U.S. Department of Energy, Division of Basic Energy Sciences under contract No. DE-FG02-10ER4779 for the research towards this work. NR 37 TC 16 Z9 16 U1 2 U2 65 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2015 VL 27 IS 7 BP 1223 EP 1228 DI 10.1002/adma.201403475 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CC0VX UT WOS:000350057400010 PM 25482608 ER PT J AU Zhao, YB Kornienko, N Liu, Z Zhu, CH Asahina, S Kuo, TR Bao, W Xie, CL Hexemer, A Terasaki, O Yang, PD Yaghi, OM AF Zhao, Yingbo Kornienko, Nikolay Liu, Zheng Zhu, Chenhui Asahina, Shunsuke Kuo, Tsung-Rong Bao, Wei Xie, Chenlu Hexemer, Alexander Terasaki, Osamu Yang, Peidong Yaghi, Omar M. TI Mesoscopic Constructs of Ordered and Oriented Metal-Organic Frameworks on Plasmonic Silver Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POROUS COORDINATION POLYMERS; RESONANCE RAMAN; GOLD NANORODS; SURFACE; NANOPARTICLES; FABRICATION; SPECTRA AB We enclose octahedral silver nanocrystals (Ag NCs) in metal-organic frameworks (MOFs) to make mesoscopic constructs O-h-nano-Ag MOF in which the interface between the Ag and the MOF is pristine and the MOF is ordered (crystalline) and oriented on the Ag NCs. This is achieved by atomic layer deposition of aluminum oxide on Ag NCs and addition of a tetra-topic porphyrin-based linker, 4,4',4?,4 ''-(porphyrin-5,10,15,20-tetrayl)tetrabenzoic acid (H4TCPP), to react with alumina and make MOF [Al-2(OH)2TCPP] enclosures around Ag NCs. Alumina thickness is precisely controlled from 0.1 to 3 nm, thus allowing control of the MOF thickness from 10 to 50 nm. Electron microscopy and grazing angle X-ray diffraction confirm the order and orientation of the MOF by virtue of the porphyrin units being perpendicular to the planes of the Ag. We use surface-enhanced Raman spectroscopy to directly track the metalation process on the porphyrin and map the distribution of the metalated and unmetalated linkers on a single-nanoparticle level. C1 [Zhao, Yingbo; Kornienko, Nikolay; Kuo, Tsung-Rong; Bao, Wei; Xie, Chenlu; Yang, Peidong; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Dept Chem, Berkeley, CA 94720 USA. [Zhao, Yingbo; Kornienko, Nikolay; Kuo, Tsung-Rong; Bao, Wei; Xie, Chenlu; Yang, Peidong; Yaghi, Omar M.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Liu, Zheng] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan. [Zhu, Chenhui; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Asahina, Shunsuke] JEOL Ltd, SMBU, Tokyo 1968558, Japan. [Terasaki, Osamu] Stockholm Univ, Dept Mat & Environm Chem & EXSELENT, SE-10691 Stockholm, Sweden. [Terasaki, Osamu] Korea Adv Inst Sci & Technol, WCU BK21Plus, Grad Sch EEWS, Taejon 305701, South Korea. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. RP Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu; yaghi@berkeley.edu RI Bao, Wei/B-4520-2014; Foundry, Molecular/G-9968-2014; OI Yaghi, Omar/0000-0002-5611-3325 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231]; Suzhou Industrial Park fellowship; [25390023] FX This research was partially supported by BASF SE (Ludwigshafen, Germany) for bulk synthesis of MOF, and Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 for plasmonic nanocrystals. We acknowledge Mr. J. Resasco and Dr. S. Brittman for help with the ALD, and Dr. K. Bustillo, Dr. H. Furukawa, and Dr. Y. Zhang for helpful discussion. This work made use of facilities at the Molecular Foundry and the National Center of Electron Microscopy at Lawrence Berkeley National Laboratory (LBNL), at the Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), and at SMBU, JEOL, Tokyo. Work at the Molecular Foundry is supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. GIWAXS measurements were performed at the Advanced Light Source (ALS) at LBNL. The ALS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by LBNL and supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.Z. is supported by the Suzhou Industrial Park fellowship. Z.L. acknowledges Grant-in-Aid for Scientific Research (C) (25390023). NR 22 TC 24 Z9 25 U1 58 U2 435 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 18 PY 2015 VL 137 IS 6 BP 2199 EP 2202 DI 10.1021/ja512951e PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KX UT WOS:000349807000013 PM 25622094 ER PT J AU Fang, L Im, J Stoumpos, CC Shi, FY Dravid, V Leroux, M Freeman, AJ Kwok, WK Chung, DY Kanatzidis, M AF Fang, Lei Im, Jino Stoumpos, Constantinos C. Shi, Fengyuan Dravid, Vinayak Leroux, Maxime Freeman, Arthur J. Kwok, Wai-Kwong Chung, Duck Young Kanatzidis, Mercouri TI Two-Dimensional Mineral [Pb2BiS3][AuTe2]: High-Mobility Charge Carriers in Single-Atom-Thick Layers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CRYSTAL-STRUCTURE; TOPOLOGICAL INSULATORS; PHASE; BUCKHORNITE; NANORIBBONS; GRAPHENE AB Two-dimensional (2D) electronic systems are of wide interest due to their richness in chemical and physical phenomena and potential for technological applications. Here we report that [Pb2BiS3][AuTe2], known as the naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets. The insulating [Pb2BiS3] sheet inhibits interlayer charge hopping and confines the carriers in the basal plane of the single-atom-thick [AuTe2] layer. Magneto-transport measurements on synthesized samples and theoretical calculations show that [Pb2BiS3][AuTe2] is a multiband semimetal with a compensated density of electrons and holes, which exhibits a high hole carrier mobility of similar to 1360 cm(2)/(V s). This material possesses an extremely large anisotropy, G = rho(c)/rho(ab) approximate to 10(4), comparable to those of the benchmark 2D materials graphite and Bi2Sr2CaCu2O6+delta. The electronic structure features linear band dispersion at the Fermi level and ultrahigh Fermi velocities of 10(6) m/s, which are virtually identical to those of graphene. The weak interlayer coupling gives rise to the highly cleavable property of the single crystal specimens. Our results provide a novel candidate for a monolayer platform to investigate emerging electronic properties. C1 [Fang, Lei; Stoumpos, Constantinos C.; Kanatzidis, Mercouri] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Im, Jino; Freeman, Arthur J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shi, Fengyuan; Dravid, Vinayak] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Fang, Lei; Stoumpos, Constantinos C.; Leroux, Maxime; Kwok, Wai-Kwong; Chung, Duck Young; Kanatzidis, Mercouri] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Fang, L (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM lei.fang@northwestern.edu; m-kanatzidis@northwestern.edu RI Shi, Fengyuan/Q-2584-2015; Leroux, Maxime/E-8703-2016; Dravid, Vinayak/B-6688-2009; OI Shi, Fengyuan/0000-0001-9769-3824; Leroux, Maxime/0000-0001-9778-323X; Stoumpos, Constantinos/0000-0001-8396-9578 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX This research was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Transmission electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) facility of the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois, and Northwestern University. NR 50 TC 6 Z9 6 U1 7 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 18 PY 2015 VL 137 IS 6 BP 2311 EP 2317 DI 10.1021/ja5111688 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KX UT WOS:000349807000032 PM 25612093 ER PT J AU Dogan, F Long, BR Croy, JR Gallagher, KG Iddir, H Russell, JT Balasubramanian, M Key, B AF Dogan, Fulya Long, Brandon R. Croy, Jason R. Gallagher, Kevin G. Iddir, Hakim Russell, John T. Balasubramanian, Mahalingam Key, Baris TI Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-ABSORPTION; PAIR DISTRIBUTION FUNCTION; NICKEL MANGANESE OXIDES; MAS NMR; VOLTAGE FADE; NEUTRON-DIFFRACTION; ELECTRODE MATERIAL; LAYERED OXIDES; 1ST PRINCIPLES; TRANSITION AB Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. Li-6 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated (0).(5Li2MnO3)-Li-6.(0).(5LiMn0)-Li-6.Ni-5(0).O-5(2), lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new Li-6 resonances centered at 1600 ppm that are assigned to LiMn6-TMtet sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn-tet), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior. C1 [Dogan, Fulya; Long, Brandon R.; Croy, Jason R.; Gallagher, Kevin G.; Key, Baris] Argonne Natl Lab, Chem Sci & Engn Div, Adv Photon Source, Argonne, IL 60439 USA. [Iddir, Hakim; Russell, John T.] Argonne Natl Lab, Mat Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Balasubramanian, M (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM mali@aps.anl.gov; bkey@anl.gov FU Vehicle Technologies Program, Hybrid and Electric Systems at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Support from the Vehicle Technologies Program, Hybrid and Electric Systems, in particular, David Howell, Tien Duong, and Peter Faguy, at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy are gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. NR 43 TC 37 Z9 37 U1 29 U2 185 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 18 PY 2015 VL 137 IS 6 BP 2328 EP 2335 DI 10.1021/ja511299y PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KX UT WOS:000349807000034 PM 25634302 ER PT J AU Kang, H Uddin, MA Lee, C Kim, KH Nguyen, TL Lee, W Li, Y Wang, C Woo, HY Kim, BJ AF Kang, Hyunbum Uddin, Mohammad Afsar Lee, Changyeon Kim, Ki-Hyun Thanh Luan Nguyen Lee, Wonho Li, Yuxiang Wang, Cheng Woo, Han Young Kim, Bumjoon J. TI Determining the Role of Polymer Molecular Weight for High-Performance All-Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SEMICONDUCTING POLYMER; ORGANIC PHOTOVOLTAICS; ELECTRON-TRANSPORT; EFFICIENCY; BLENDS; COPOLYMERS; MOBILITY; ACCEPTOR; ORIENTATION; MORPHOLOGY AB The molecular weight of a conjugated polymer is one of the key factors determining the electrical, morphological, and mechanical properties as well as its solubility in organic solvents and miscibility with other polymers. In this study, a series of semicrystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FB(T)) polymers with different number-average molecular weights (M(n)s) (PPDT2FBT(L), M-n = 12 kg/mol; PPDT2FBT(M), M-n= 24 kg/mol; PPDT2FBT(H), M-n= 40 kg/mol) were synthesized, and their photovoltaic properties as electron donors for all-polymer solar cells (all-PSCs) with poly[[N,N'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T-2)) acceptor were studied. The Mn effect of PPDT2FBT on the structural, morphological, electrical, and photovoltaic properties was systematically investigated. In particular, tuning the Mn induced dramatic effects on the aggregation behaviors of the polymers and their bulk heterojunction morphology of all-PSCs, which was thoroughly examined by grazing incident X-ray scattering, resonant soft X-ray scattering, and other microscopy measurements. High Mn PPDT2FBTH promoted a strong face-on geometry in the blend film, suppressed the formation of an excessively large crystalline domain, and facilitated molecularly intermixed phases with P(NDI2OD-T-2). Therefore, the optimized all-PSCs based on PPDT2FBTH/P(NDI2OD-T-2) showed substantially higher hole and electron mobilities than those of PPDT2FBTL/P(NDI2OD-T-2), leading to a power conversion efficiency exceeding 5%, which is one of the highest values for all-PSCs reported thus far. C1 [Kang, Hyunbum; Lee, Changyeon; Kim, Ki-Hyun; Lee, Wonho; Kim, Bumjoon J.] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. [Uddin, Mohammad Afsar; Thanh Luan Nguyen; Li, Yuxiang; Woo, Han Young] Pusan Natl Univ, Dept Nanofus Engn, Dept Cognomechatron Engn, Miryang 627706, South Korea. [Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Woo, HY (reprint author), Pusan Natl Univ, Dept Nanofus Engn, Dept Cognomechatron Engn, Miryang 627706, South Korea. EM hywoo@pusan.ac.kr; bumjoonkim@kaist.ac.kr RI Kim, Bumjoon J./C-1714-2011; Wang, Cheng/A-9815-2014 FU National Research Foundation - Korean Government [2012M3A6A7055540, 2013R1A2A1A03069803, 2012R1A1A2005855]; New & Renewable Energy Program of KETEP Grant - Ministry of Trade, Industry & Energy, Republic of Korea [20133030011330]; U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the National Research Foundation Grant (2012M3A6A7055540, 2013R1A2A1A03069803, 2012R1A1A2005855), funded by the Korean Government. This research was supported by the New & Renewable Energy Program of KETEP Grant (20133030011330), funded by the Ministry of Trade, Industry & Energy, Republic of Korea. We thank Prof. Gila Stein for helpful discussions. The Advanced Light Source is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 78 Z9 78 U1 12 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 18 PY 2015 VL 137 IS 6 BP 2359 EP 2365 DI 10.1021/ja5123182 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KX UT WOS:000349807000038 PM 25605316 ER PT J AU Zhang, Q Tian, W Peterson, SG Dennis, KW Vaknin, D AF Zhang, Qiang Tian, Wei Peterson, Spencer G. Dennis, Kevin W. Vaknin, David TI Spin reorientation and Ce-Mn coupling in antiferromagnetic oxypnictide CeMnAsO SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH; EXCHANGE INTERACTIONS; SUPERCONDUCTIVITY; TEMPERATURE; DIFFRACTION; TRANSITIONS; CRYSTAL AB Structure and magnetic properties of high-quality polycrystlline CeMnAsO, a parent compound of the "1111"-type oxypnictides, have been investigated using neutron powder diffraction and magnetization measurements. We find that CeMnAsO undergoes a C-type antiferromagnetic order with Mn2+(S = 5/2) moments pointing along the c axis below a relatively high Neel temperature of T-N = 347(1) K. Below T-SR = 35 K, two simultaneous transitions occur where the Mn moments reorient from the c axis to the ab plane preserving the C-type magnetic order, and Ce moments undergo long-range AFM ordering with antiparallel moments pointing in the ab plane. Another transition to a noncollinear magnetic structure occurs below 7 K. The ordered moments of Mn and Ce at 2 K are 3.32(4) mu(B) and 0.81(4) mu(B), respectively. We find that CeMnAsO primarily falls into the category of a local-moment antiferromagnetic insulator in which the nearest-neighbor interaction (J(1)) is dominant with J(2) < J(1)/2 in the context of J(1) - J(2) - J(c) model. The spin reorientation transition driven by the coupling between Ce and the transition metal seems to be common to Mn, Fe, and Cr ions, but not to Co and Ni ions in the isostructural oxypnictides. A schematic illustration of magnetic structures in Mn and Ce sublattices in CeMnAsO is presented. C1 [Zhang, Qiang; Peterson, Spencer G.; Dennis, Kevin W.; Vaknin, David] Ames Lab, Ames, IA 50011 USA. [Zhang, Qiang; Peterson, Spencer G.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tian, Wei] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zhang, Q (reprint author), Ames Lab, Ames, IA 50011 USA. EM qzhangemail@gmail.com; vaknin@ameslab.gov RI Zhang, Qiang/A-7901-2010; Vaknin, David/B-3302-2009; Tian, Wei/C-8604-2013 OI Zhang, Qiang/0000-0003-0389-7039; Vaknin, David/0000-0002-0899-9248; Tian, Wei/0000-0001-7735-3187 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division FX Research at Ames Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. Use of the high flux isotope reactor at the Oak Ridge National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. NR 41 TC 3 Z9 3 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 18 PY 2015 VL 91 IS 6 AR 064418 DI 10.1103/PhysRevB.91.064418 PG 7 WC Physics, Condensed Matter SC Physics GA CC3UQ UT WOS:000350276400003 ER PT J AU Korgul, A Baczyk, P Urban, W Rzaca-Urban, T Smith, AG Ahmad, I AF Korgul, A. Baczyk, P. Urban, W. Rzaca-Urban, T. Smith, A. G. Ahmad, I. TI Investigation of the i(13/2) neutron orbital in the Sn-132 region: New excited levels in Sb-135 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; SPIN STATES; TRANSITION; FISSION; MASSES; DECAY AB Excited states in Sb-135, populated in spontaneous fission of Cm-248, are studied by means of prompt gamma spectroscopy, using the EUROGAM2 detector array. New excited states containing the neutron i(13/2) orbital in their wave functions are proposed. A more accurate value of the i(13/2) neutron single-particle energy in the Sn-132 core potential is determined. C1 [Korgul, A.; Baczyk, P.; Urban, W.; Rzaca-Urban, T.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Smith, A. G.] Univ Manchester, Dept Phys & Astron, Schuster Lab, Manchester M13 9PL, Lancs, England. [Ahmad, I.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Korgul, A (reprint author), Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The authors are also indebted for the use of 248Cm to the Office of Nuclear Physics, US Department of Energy, through the transplutonium element production facilities at Oak Ridge National Laboratory. NR 30 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 18 PY 2015 VL 91 IS 2 AR 027303 DI 10.1103/PhysRevC.91.027303 PG 4 WC Physics, Nuclear SC Physics GA CC3MU UT WOS:000350254400006 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonazlez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Slattery, PSP Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonazlez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the electron charge asymmetry in p(p)over-bar -> W + X -> ev plus X decays in p(p)over-bar collisions at root S=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS; CALORIMETER; COLLISIONS; COLLIDERS; DETECTOR; DECAY; LHC AB We present a measurement of the electron charge asymmetry in p (p) over bar -> W + X -> ev + X events at a center-of-mass energy of 1.96 TeV, using data corresponding to 9.7 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron pseudorapidity and is presented in five kinematic bins based on the electron transverse energy and the missing transverse energy in the event. The measured asymmetry is compared with next-to-leading-order predictions in perturbative quantum chromodynamics and provides accurate information for the determination of parton distribution functions of the proton. This is the most precise lepton charge asymmetry measurement to date. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. [Bernardi, G.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonazlez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Rec & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Bross, A.; Burdin, S.; Fox, H.; Ratoff, P. N.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Deterre, C.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Sharyy, Viatcheslav/F-9057-2014; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Gutierrez, Phillip/C-1161-2011 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Dudko, Lev/0000-0002-4462-3192; FU Department of Energy; National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission; National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation; National Research Center "Kurchatov Institute" of the Russian Federation; Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology; Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (the Netherlands); Science and Technology Facilities Council; Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences; National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (the Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 39 TC 9 Z9 9 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 18 PY 2015 VL 91 IS 3 DI 10.1103/PhysRevD.91.032007 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC3ND UT WOS:000350255300002 ER PT J AU Dobrescu, BA Martin, A AF Dobrescu, Bogdan A. Martin, Adam TI Interpretations of anomalous LHC events with electrons and jets SO PHYSICAL REVIEW D LA English DT Article ID HEAVY NEUTRINOS; W BOSONS; COLLISIONS; SEARCH AB The CMS Collaboration has recently reported some excess events in final states with electrons and jets, in searches for leptoquarks and W' bosons. Although these excesses may be due to some yet-to-be-understood background mismodeling, it is useful to seek realistic interpretations involving new particles that could generate such events. We show that resonant pair production of vectorlike leptons that decay to an electron and two jets leads to kinematic distributions consistent with the CMS data. C1 [Dobrescu, Bogdan A.] Fermilab Natl Accelerator Lab, Dept Appl Math & Theoret Phys, Batavia, IL 60510 USA. [Martin, Adam] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Dept Appl Math & Theoret Phys, Batavia, IL 60510 USA. FU National Science Foundation [PHY14-17118] FX We thank John Paul Chou, Patrick Fox, Steve Mrenna, and Felix Yu for helpful comments and conversations. We are grateful to Pavel Fileviez Perez for pointing out that the interactions displayed in an earlier version violated U(1)B. The work of A. M. was partially supported by the National Science Foundation under Grant No. PHY14-17118. NR 19 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 18 PY 2015 VL 91 IS 3 AR 035019 DI 10.1103/PhysRevD.91.035019 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC3ND UT WOS:000350255300003 ER PT J AU Avila, ML Rogachev, GV Koshchiy, E Baby, LT Belarge, J Kemper, KW Kuchera, AN Mukhamedzhanov, AM Santiago-Gonzalez, D Uberseder, E AF Avila, M. L. Rogachev, G. V. Koshchiy, E. Baby, L. T. Belarge, J. Kemper, K. W. Kuchera, A. N. Mukhamedzhanov, A. M. Santiago-Gonzalez, D. Uberseder, E. TI Constraining the 6.05 MeV 0(+) and 6.13 MeV 3(-) Cascade Transitions in the C-12(alpha,gamma)O-16 Reaction Using the Asymptotic Normalization Coefficients SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELASTIC-SCATTERING; S FACTOR; ALPHA; GAMMA)O-16; C-12(ALPHA AB The C-12(alpha,gamma)O-16 reaction plays a fundamental role in astrophysics and needs to be known with accuracy better than 10%. Cascade. transitions through the excited states of 16O are contributing to the uncertainty. We constrained the contribution of the 0(+) (6.05 MeV) and 3(-) (6.13 MeV) cascade transitions by measuring the asymptotic normalization coefficients for these states using the alpha-transfer reaction Li-6(C-12, d)O-16 at sub-Coulomb energy. The contribution of the 0(+) and 3(-) cascade transitions at 300 keV is found to be 1.96 +/- 0.3 and 0.12 +/- 0.04 keV b for destructive interference of the direct and resonance capture and 4.36 +/- 0.45 and 1.44 +/- 0.12 keV b for constructive interference, respectively. The combined contribution of the 0(+) and 3(-) cascade transitions to the C-12(alpha, gamma)O-16 reaction cross section at 300 keV does not exceed 4%. Significant uncertainties have been dramatically reduced. C1 [Avila, M. L.; Baby, L. T.; Belarge, J.; Kemper, K. W.; Kuchera, A. N.; Santiago-Gonzalez, D.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Rogachev, G. V.; Koshchiy, E.; Mukhamedzhanov, A. M.; Uberseder, E.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Rogachev, G. V.; Koshchiy, E.; Mukhamedzhanov, A. M.; Uberseder, E.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. RP Avila, ML (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM mavila@anl.gov RI Rogachev, Grigory/J-2693-2015 FU National Science Foundation [PHY-456463]; U.S. Department of Energy, Office of Science, Office of Nuclear Science [DE-FG02-93ER40773]; U.S. Department of Energy, National Nuclear Security Administration [DE-FG52-09NA29467]; Office of Science, Office of Nuclear Science [DE-SC0004958]; U.S. National Science Foundation [PHY-1415656] FX The authors are grateful to Dr. R. J. deBoer for helpful comments and suggestions and acknowledge the financial support provided by the National Science Foundation under Grant No. PHY-456463. The authors G. V. R., E. K., A. M. M., and E. U. acknowledge that this material is based upon their work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Science, under Award No. DE-FG02-93ER40773. The author G. V. R. is also supported by the Welch Foundation (Grant No. A-1853). A. M. M. is also supported by the U.S. Department of Energy, National Nuclear Security Administration, under Award No. DE-FG52-09NA29467, Office of Science, Office of Nuclear Science under Award No. DE-SC0004958 and by the U.S. National Science Foundation under Grant No. PHY-1415656. NR 27 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2015 VL 114 IS 7 AR 071101 DI 10.1103/PhysRevLett.114.071101 PG 5 WC Physics, Multidisciplinary SC Physics GA CC3UD UT WOS:000350274700001 PM 25763945 ER PT J AU Zhang, L Cole, JM AF Zhang, Lei Cole, Jacqueline M. TI Anchoring Groups for Dye-Sensitized Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Review DE dye-sensitized solar cells; anchor group; dye center dot center dot center dot TiO2 adsorption; materials characterization ID FREE ORGANIC-DYES; AMPHIPHILIC RUTHENIUM SENSITIZER; INTERFACIAL ELECTRON-TRANSFER; DYE-TO-TIO2 CHARGE-TRANSFER; TRANSITION-METAL-COMPLEXES; PYRIDINE-N-OXIDE; IN-SITU SAXS; TIO2 FILMS; FLUORESCENT DYES; TITANIUM-DIOXIDE AB The dyes in dye-sensitized solar cells (DSSCs) require one or more chemical substituents that can act as an anchor, enabling their adsorption onto a metal oxide substrate. This adsorption provides a means for electron injection, which is the process that initiates the electrical circuit in a DSSC. Understanding the structure of various DSSC anchors and the search for new anchors are critical factors for the development of improved DSSCs. Traditionally, carboxylic acid and cyanoacrylic acid groups are employed as dye anchors in DSSCs. In recent years, novel anchor groups have emerged, which make a larger pool of materials available for DSSC dyes, and their associated physical and chemical characteristics offer interesting effects at the interface between dye and metal oxide. This review focuses especially on the structural aspects of these novel dye anchors for TiO2-based DSSCs, including pyridine, phosphonic acid, tetracyanate, perylene dicarboxylic acid anhydride, 2-hydroxylbenzonitrile, 8-hydroxylquinoline, pyridine-N-oxide, hydroxylpyridium, catechol, hydroxamate, sulfonic acid, acetylacetanate, boronic acid, nitro, tetrazole, rhodanine, and salicylic acid substituents. We anticipate that further exploration and understanding of these new types of anchoring groups for TiO2 substrates will not only contribute to the development of advanced DSSCs, but also of quantum dot-sensitized solar cells, water splitting systems, and other self-assembled monolayer-based technologies. C1 [Zhang, Lei; Cole, Jacqueline M.] Univ Cambridge, Cavevdish Lab, Cambridge CB3 OHE, England. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cole, JM (reprint author), Univ Cambridge, Cavevdish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008; OI Zhang, Lei/0000-0001-6873-7314 FU Fulbright Commission; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX J.M.C. thanks the Fulbright Commission for a UK-US Fulbright Scholar Award hosted by Argonne National Laboratory, where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 140 TC 101 Z9 101 U1 66 U2 352 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 18 PY 2015 VL 7 IS 6 BP 3427 EP 3455 DI 10.1021/am507334m PG 29 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CB7KV UT WOS:000349806800001 PM 25594514 ER PT J AU Volkow, ND Wang, GJ Kojori, ES Fowler, JS Benveniste, H Tomasi, D AF Volkow, Nora D. Wang, Gene-Jack Kojori, Ehsan Shokri Fowler, Joanna S. Benveniste, Helene Tomasi, Dardo TI Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers Than Controls But Has No Effect on Stimulation-Induced Metabolic Increases SO JOURNAL OF NEUROSCIENCE LA English DT Article DE acetate metabolism; alcoholism; glial metabolism; glycolysis; positron emission tomography ID POSITRON-EMISSION-TOMOGRAPHY; ETHANOL WITHDRAWAL SYNDROME; FRONTAL HYPOMETABOLISM; CEREBRAL METABOLISM; NEURAL ACTIVITY; ACETATE; ACTIVATION; RAT; PET; DEGENERATION AB During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD(20 +/- 13%) than controls (9 +/- 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 +/- 12%) compared with NS in both groups (15 +/- 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. C1 [Volkow, Nora D.; Wang, Gene-Jack; Kojori, Ehsan Shokri; Tomasi, Dardo] NIAAA, Bethesda, MD 20892 USA. [Fowler, Joanna S.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Benveniste, Helene] Stony Brook Med, Dept Anesthesiol, Stony Brook, NY 11794 USA. RP Volkow, ND (reprint author), NIDA, NIH, 6001 Execut Blvd,Room 5274, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov RI Tomasi, Dardo/J-2127-2015 FU National Institutes of Health FX This work was supported by the National Institutes of Health Intramural Research Program. We thank Christopher Wong, Dave Alexoff, Colleen Shea, Pauline Carter, Karen Torres Apelskog, and Ruben Baler for their contributions. NR 42 TC 1 Z9 2 U1 1 U2 10 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD FEB 18 PY 2015 VL 35 IS 7 BP 3248 EP 3255 DI 10.1523/JNEUROSCI.4877-14.2015 PG 8 WC Neurosciences SC Neurosciences & Neurology GA CB9ZD UT WOS:000349992800037 PM 25698759 ER PT J AU Abelev, B Adam, J Adamova, D Aggarwal, MM Agnello, M Agostinelli, A Agrawal, N Ahammed, Z Ahmad, N Masoodi, AA Ahmed, I Ahn, SU Ahn, SA Aimo, I Aiola, S Ajaz, M Akindinov, A Aleksandrov, D Alessandro, B Alexandre, D Alici, A Alkin, A Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshaeuser, H Arbor, N Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Awes, TC Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBS Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, D Das, I Das, K Das, S Dash, A Dash, S De, S Delagrange, H Deloff, A Denes, E D'Erasmo, G De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Corchero, MAD Dietel, T Divia, R Di Bari, D Di Liberto, S Di Mauro, A Di Nezza, P Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Ehlers, RJ Elia, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Esposito, M Estienne, M Esumi, S Evans, D Evdokimov, S Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gerlich, L Gotovac, S Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Khan, KH Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hicks, B Hippolyte, B Hladky, J Hristov, P Huang, M Humanic, TJ Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Innocenti, GM Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Ivanytskyi, O Jacholkowski, A Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kadyshevskiy, V Kalcher, S Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A La Pointe, SL La Rocca, P Lea, R Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenti, V Leogrande, E Leoncino, M Monzon, IL Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Lopez, X Torres, EL Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luzzi, C Ma, R Maevskaya, A Mager, M Mahapatra, DP Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garcia, GM Blanco, JM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, CM Mlynarz, J Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Nilsen, BS Noferini, F Nomokonov, P Nooren, G Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Okatan, A Olah, L Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Sahoo, P Pachmayer, Y Pachr, M Pagano, P Paic, G Painke, F Pajares, C Pal, SK Palmeri, A Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Patalakha, DI Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Pohjoisaho, EHO Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohni, S Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, R Sahu, PK Saini, J Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Rodriguez, FJS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Segato, G Seger, JE Sekiguchi, Y Selyuzhenkov, I Seo, J Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Shangaraev, A Sharma, N Sharma, S Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, J Song, M Soramel, F Sorensen, S Spacek, M Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Torii, H Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Uras, A Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vyvre, PV Vannucci, L Van Hoorne, JW van Leeuwen, M Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wagner, V Wang, M Wang, Y Watanabe, D Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Xiang, C Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yang, S Yano, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yushmanov, I Zaccolo, V Zach, C Zaman, A Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, F Zhou, Y Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zoccarato, Y Zynovyev, M Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Aggarwal, M. M. Agnello, M. Agostinelli, A. Agrawal, N. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahmed, I. Ahn, S. U. Ahn, S. A. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Aleksandrov, D. Alessandro, B. Alexandre, D. Alici, A. Alkin, A. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Prado, C. Alves Garcia Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Awes, T. C. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Dos Santos Pedrosa, F. Baltasar Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Sanchez, C. Ceballos Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Maldonado, I. Cortes Cosentino, M. R. Costa, F. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, D. Das, I. Das, K. Das, S. Dash, A. Dash, S. De, S. Delagrange, H. Deloff, A. Denes, E. D'Erasmo, G. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Corchero, M. A. Diaz Dietel, T. Divia, R. Di Bari, D. Di Liberto, S. Di Mauro, A. Di Nezza, P. Djuvsland, O. Dobrin, A. Dobrowolski, T. Gimenez, D. Domenicis Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Esposito, M. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Khan, K. H. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hicks, B. Hippolyte, B. Hladky, J. Hristov, P. Huang, M. Humanic, T. J. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, G. M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Ivanytskyi, O. Jacholkowski, A. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kadyshevskiy, V. Kalcher, S. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. de Guevara, P. Ladron Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. La Pointe, S. L. La Rocca, P. Lea, R. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenti, V. Leogrande, E. Leoncino, M. Monzon, I. Leon Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Lopez, X. Torres, E. Lopez Lu, X. -G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luzzi, C. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Majka, R. D. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Blanco, J. Martin Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. M. Mlynarz, J. Mohanty, B. Molnar, L. Zetina, L. Montano Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Nilsen, B. S. Noferini, F. Nomokonov, P. Nooren, G. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Okatan, A. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Sahoo, P. Pachmayer, Y. Pachr, M. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palmeri, A. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira De Oliveira Filho, E. Pereira Peresunko, D. Lara, C. E. Perez Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Pohjoisaho, E. H. O. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Raesaenen, S. S. Rascanu, B. T. Rathee, D. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rocco, E. Cahuantzi, M. Rodriguez Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohni, S. Rohr, D. Roehrih, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Russo, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, R. Sahu, P. K. Saini, J. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Rodriguez, F. J. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Segato, G. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Seo, J. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Shangaraev, A. Sharma, N. Sharma, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, J. Song, M. Soramel, F. Sorensen, S. Spacek, M. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tauro, A. Munoz, G. Tejeda Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Torii, H. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Uras, A. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vyvre, P. Vande Vannucci, L. Van Hoorne, J. W. van Leeuwen, M. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Limon, S. Vergara Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wagner, V. Wang, M. Wang, Y. Watanabe, D. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Xiang, C. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yang, S. Yano, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yushmanov, I. Zaccolo, V. Zach, C. Zaman, A. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, F. Zhou, Y. Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zoccarato, Y. Zynovyev, M. Zyzak, M. TI K*(892)(0) and phi(1020) production in Pb-Pb collisions at root s(NN)=2.76 TeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; PHI-MESON PRODUCTION; STRANGE HADRON RESONANCES; QUARK-GLUON PLASMA; FREEZE-OUT; PARTICLE-PRODUCTION; BARYON PRODUCTION; PP COLLISIONS; MID-RAPIDITY; QCD AB The yields of the K*(892)(0) and phi(1020) resonances are measured in Pb-Pb collisions at root s(NN) = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (vertical bar y vertical bar < 0.5) in the transverse-momentum ranges 0.3 < p(T) < 5 GeV/c for the K*(892)(0) and 0.5 < p(T) < 5 GeV/c for the phi(1020). The yields of K*(892)(0) are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer-lived phi(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the pT distribution of the phi(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate p(T), the p/phi(1020) ratio is flat in p(T), while the p/pi and phi(1020)/pi ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the p(T) distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, phi(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the Lambda and Xi. C1 [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petran, M.; Pospisil, V.; Schulc, M.; Smakal, R.; Spacek, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, Rezu Prahy, Czech Republic. [Aggarwal, M. M.; Bhati, A. K.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bruna, E.; Bufalino, S.; Cerello, P.; De Marco, N.; Feliciello, A.; Manceau, L.; Oppedisano, C.; Prino, F.; Rivetti, A.; Scomparin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Aimo, I.; Bedda, C.] Politecn Torino, Turin, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pant, D.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai, Maharashtra, India. [Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Variable Energy Cyclotron Ctr, Kolkata, India. [Ahmad, N.; Masoodi, A. Ahmad; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Hicks, B.; Ma, R.; Majka, R. D.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Zichichi, A.] Museo Stor Fis, Ctr Fermi, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Petracek, V.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Skjerdal, K.; Ullaland, K.; Velure, A.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Prado, C. Alves Garcia; Bregant, M.; Cosentino, M. R.; Gimenez, D. Domenicis; Jahnke, C.; Fernandes, C. Lagana; De Godoy, D. A. Moreira; Munhoz, M. G.; Da Silva, A. C. Oliveira; De Oliveira Filho, E. Pereira; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Fasel, M.; Glaessel, P.; Klein, J.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Anticic, T.; Planinic, M.; Poljak, N.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antinori, F.; Dainese, A.; Fabris, D.; Toia, A.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Aphecetche, L.; Batigne, G.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Blanco, J. Martin; Mas, A.; Massacrier, L.; Pillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS IN2P3, Nantes, France. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Kramer, F.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Ulery, J.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Arbor, N.; Balbastre, G. Conesa; Delagrange, H.; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, IGFAE, Santiago De Compostela, Spain. [Augustinus, A.; Dos Santos Pedrosa, F. Baltasar; Betev, L.; Buncic, P.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Divia, R.; Di Mauro, A.; Erazmus, B.; Esposito, M.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hristov, P.; Ionita, C.; Kalweit, A.; Kluge, A.; Kobdaj, C.; Kryshen, E.; Kugathasan, T.; Legrand, I.; Luzzi, C.; Mager, M.; Martinengo, P.; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Pinazza, O.; Poghosyan, M. G.; Reidt, F.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossegger, S.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Awes, T. C.; Ganoti, P.; Garabatos, C.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Azmi, M. D.; Cleymans, J.; Murray, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Badala, A.; Palmeri, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Baek, Y. W.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Clermont Univ, CNRS, IN2P3,LPC, Clermont Ferrand, France. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Potukuchi, B.; Rohni, S.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Dipartimento Fis, I-95129 Catania, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Astron Univ, Catania, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Olah, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Batyunya, B.; Grigoryan, S.; Kadyshevskiy, V.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res JINR, Dubna, Russia. [Batzing, P. C.; Dordic, O.; Lindal, S.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, CNRS, IPHC, Strasbourg, France. [Bellwied, R.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Jena, S.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Belmont-Moreno, E.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Bhattacharjee, B.] Gauhati Univ, Dept Phys, Gauhati, India. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sano, M.; Watanabe, D.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Bianchi, N.; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Blanco, F.; Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Montero, A. J. Rubio; Serradilla, E.] CIEMAT, Madrid, Spain. [Bock, F.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.; Stolpovskiy, M.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Borissov, A.; Cormier, T. M.; Loggins, V. R.; Mlynarz, J.; Prasad, S. K.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, NJ USA. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Broz, M.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Caffarri, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Astron Univ, Padua, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Cai, X.; Dang, R.; Li, S.; Luo, J.; Wang, M.; Xiang, C.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhou, D.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Villar, E. Calvo; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fisica, Lima, Peru. [Camerini, P.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Camerini, P.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Sanchez, C. Ceballos; Torres, E. Lopez] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Chang, B.; Kim, D. J.; Kral, J.; Morreale, A.; Rak, J.; Trzaska, W. H.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Cherney, M.; Nilsen, B. S.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE USA. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Christiansen, P.; Ljunggren, H. M.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, Orsay, France. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano] CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano] CINVESTAV, Merida, Mexico. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Cahuantzi, M. Rodriguez; Munoz, G. Tejeda; Vargas, A.; Limon, S. Vergara] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cuautle, E.; Bustamante, R. T. Jimenez; de Guevara, P. Ladron; Cervantes, I. Maldonado; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Das, S.; Ghosh, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Raha, S.] CAPSS, Kolkata, India. [Dash, A.; Takahashi, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] ER Caianiello Univ, Dipartimento Fis, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [de Cataldo, G.; Elia, D.; Lenti, V.; Manzari, V.; Nappi, E.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Di Liberto, S.; Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Figueredo, M. A. S.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Acad Sci, Moscow 117312, Russia. [Floratos, E.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.] Univ Athens, Dept Phys, Athens, Greece. [Fragiacomo, E.; Grion, N.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Garcia-Solis, E.; Harton, A.] Calif State Univ Chico, Chicago, IL USA. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pawlak, T.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Hladky, J.; Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hwang, D. S.; Kim, S.; Vasileiou, M.] Sejong Univ, Dept Phys, Seoul, South Korea. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Kang, J. H.; Kim, B.; Kim, M.; Kim, T.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Keidel, R.] ZTT, Fachhochsch Worms, Worms, Germany. [Khan, M. M.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Kobdaj, C.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Lemmon, R. C.; Romita, R.] Nucl Phys Grp, STFC Daresbury Lab, Daresbury, England. [Monzon, I. Leon; Podesta-Lerma, P. L. M.; Rodriguez, F. J. Sanchez] Univ Autonoma Sinaloa, Culiacan, Mexico. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Mishra, A. N.; Sahoo, P.; Pareek, P.; Roy, A.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Mohanty, B.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Planinic, M.; Simatovic, G.] Univ Zagreb, Zagreb 41000, Croatia. [Pohjoisaho, E. H. O.; Raesaenen, S. S.] Helsinki Inst Phys HIP, Helsinki, Finland. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Ricci, R. A.; Vannucci, L.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM alice-publications@cern.ch RI Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Vinogradov, Leonid/K-3047-2013; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Barbera, Roberto/G-5805-2012; Bruna, Elena/C-4939-2014; Kovalenko, Vladimir/C-5709-2013; Sevcenco, Adrian/C-1832-2012; Salgado, Carlos A./G-2168-2015; Karasu Uysal, Ayben/K-3981-2015; Bregant, Marco/I-7663-2012; Kucera, Vit/G-8459-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Vajzer, Michal/G-8469-2014; Sumbera, Michal/O-7497-2014; Barnby, Lee/G-2135-2010; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Guber, Fedor/I-4271-2013; Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; feofilov, grigory/A-2549-2013; Adamova, Dagmar/G-9789-2014 OI Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Beole', Stefania/0000-0003-4673-8038; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Vinogradov, Leonid/0000-0001-9247-6230; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Barbera, Roberto/0000-0001-5971-6415; Bruna, Elena/0000-0001-5427-1461; Kovalenko, Vladimir/0000-0001-6012-6615; Sevcenco, Adrian/0000-0002-4151-1056; Salgado, Carlos A./0000-0003-4586-2758; Karasu Uysal, Ayben/0000-0001-6297-2532; Sumbera, Michal/0000-0002-0639-7323; Barnby, Lee/0000-0001-7357-9904; Pshenichnov, Igor/0000-0003-1752-4524; Guber, Fedor/0000-0001-8790-3218; Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; feofilov, grigory/0000-0003-3700-8623; FU State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; CNCS-UEFISCDI-Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut AMP; Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation, and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the Region Pays de Loire, Region Alsace, Region Auvergne, and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI-Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations, and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 107 TC 36 Z9 36 U1 3 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 17 PY 2015 VL 91 IS 2 AR 024609 DI 10.1103/PhysRevC.91.024609 PG 26 WC Physics, Nuclear SC Physics GA CF1KH UT WOS:000352303500007 ER PT J AU Vietze, L Klos, P Menendez, J Haxton, WC Schwenk, A AF Vietze, L. Klos, P. Menendez, J. Haxton, W. C. Schwenk, A. TI Nuclear structure aspects of spin-independent WIMP scattering off xenon SO PHYSICAL REVIEW D LA English DT Article ID SHELL-MODEL AB We study the structure factors for spin-independent WIMP scattering off xenon based on state-of-the-art large-scale shell-model calculations, which are shown to yield a good spectroscopic description of all experimentally relevant isotopes. Our results are based on the leading scalar one-body currents only. At this level and for the momentum transfers relevant to direct dark matter detection, the structure factors are in very good agreement with the phenomenological Helm form factors used to give experimental limits for WIMP-nucleon cross sections. In contrast to spin-dependent WIMP scattering, the spin-independent channel, at the one-body level, is less sensitive to nuclear structure details. In addition, we explicitly show that the structure factors for inelastic scattering are suppressed by similar to 10(-4) compared to the coherent elastic scattering response. This implies that the detection of inelastic scattering will be able to discriminate clearly between spin-independent and spin-dependent scattering. Finally, we provide fits for all calculated structure factors. C1 [Vietze, L.; Klos, P.; Menendez, J.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Vietze, L.; Klos, P.; Menendez, J.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Haxton, W. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Haxton, W. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Vietze, L (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM lvietze@theorie.ikp.physik.tu-darmstadt.de; pklos@theorie.ikp.physik.tu-darmstadt.de; menendez@nt.phys.s.u-tokyo.ac.jp; haxton@berkeley.edu; schwenk@physik.tu-darmstadt.de RI Menendez, Javier/A-3533-2016 OI Menendez, Javier/0000-0002-1355-4147 FU ARCHES; DFG [SFB 634]; ERC [307986 STRONGINT]; Helmholtz Alliance Program of the Helmholtz Association [HA216/EMMI]; U.S. Department of Energy [DE-SC00046548, DE-AC02-98CH10886]; Alexander von Humboldt Foundation FX We thank M. Hoferichter for discussions. This work was supported by ARCHES, the DFG through Grant No. SFB 634, the ERC Grant No. 307986 STRONGINT, the Helmholtz Alliance Program of the Helmholtz Association, Contract No. HA216/EMMI "Extremes of Density and Temperature: Cosmic Matter in the Laboratory," and by the U.S. Department of Energy under Contracts No. DE-SC00046548 and No. DE-AC02-98CH10886. W. H. thanks the Alexander von Humboldt Foundation for support. NR 29 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 17 PY 2015 VL 91 IS 4 AR 043520 DI 10.1103/PhysRevD.91.043520 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CF1LE UT WOS:000352306000003 ER PT J AU Auerbach, B Chekanov, S Love, J Proudfoot, J Kotwal, AV AF Auerbach, B. Chekanov, S. Love, J. Proudfoot, J. Kotwal, A. V. TI Sensitivity to new high-mass states decaying to t(t)over-bar at a 100 TeV collider SO PHYSICAL REVIEW D LA English DT Article ID HADRON-COLLISIONS; ALGORITHM; PHYSICS AB We discuss the sensitivity of a 100 TeV pp collider to heavy particles decaying to top-antitop (t (t) over bar) final states. This center-of-mass energy, together with an integrated luminosity of 10 ab(-1), can produce heavy particles in the mass range of several tens of teraelectronvolts (TeV). A Monte Carlo study is performed using boosted-top techniques to reduce QCD background for the reconstruction of heavy particles with masses in the range of 8-20 TeV, and various widths. In particular, we study two models that predict heavy states, a model with an extra gauge boson (Z(0)') and with a Kaluza-Klein (KK) excitation of the gluon (g(KK)). We estimate the sensitive values of sigma x Br of about 2 (4) fb for Z(0)' (g(KK)), with a corresponding mass reach of 13 (20) TeV. C1 [Auerbach, B.; Chekanov, S.; Love, J.; Proudfoot, J.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Kotwal, A. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kotwal, A. V.] Duke Univ, Durham, NC 27708 USA. RP Auerbach, B (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; Fermilab; U.S. Department of Energy [DE-SC0010007, DE-AC02-07CH11359] FX We thank Lily Asquith for a discussion of the implementation of the splitting scale variable. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. A fraction of the simulated event samples presented in this paper were generated using the ATLAS Connect virtual cluster service. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. The work of A. V. Kotwal was supported by Fermilab and by the U.S. Department of Energy under Grant No. DE-SC0010007 to Duke University. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 53 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 17 PY 2015 VL 91 IS 3 AR 034014 DI 10.1103/PhysRevD.91.034014 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CF1KZ UT WOS:000352305400005 ER PT J AU Montero, JC Sanchez-Vega, BL AF Montero, J. C. Sanchez-Vega, B. L. TI Accidental symmetries and massless quarks in the economical 3-3-1 model SO PHYSICAL REVIEW D LA English DT Article ID STRONG CP PROBLEM; ELECTROWEAK INTERACTIONS; MASSES AB In the framework of a 3-3-1 model with a minimal scalar sector, known as the economical 3-3-1 model, we study its capabilities of generating realistic quark masses. After a detailed study of the symmetries of the model, before and after the spontaneous symmetry breaking, we find a remaining axial symmetry that prevents some quarks from gaining mass at all orders in perturbation theory. Since this accidental symmetry is anomalous, we also consider briefly the possibility of generating their masses for nonperturbative effects. However, we find that nonperturbative effects are not enough to generate the measured masses for the three massless quarks. Hence, these results imply that the economical 3-3-1 model is not a realistic description of the electroweak interaction. C1 [Montero, J. C.] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Sanchez-Vega, B. L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Montero, JC (reprint author), Univ Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil. EM montero@ift.unesp.br; brucesanchez@anl.gov RI Sanchez Vega, Bruce Lehmann/G-1993-2015 OI Sanchez Vega, Bruce Lehmann/0000-0002-6735-5813 FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil [2264-13-7] FX B. L. S. V. would like to thank Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil, for financial support under Contract No. 2264-13-7 and the Argonne National Laboratory for kind hospitality. We are grateful to V. Pleitez for valuable discussions. NR 18 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 17 PY 2015 VL 91 IS 3 AR 037302 DI 10.1103/PhysRevD.91.037302 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CF1KZ UT WOS:000352305400010 ER PT J AU Diallo, SO Vlcek, L Mamontov, E Keum, JK Chen, JH Hayes, JS Chialvo, AA AF Diallo, S. O. Vlcek, L. Mamontov, E. Keum, J. K. Chen, Jihua Hayes, J. S., Jr. Chialvo, A. A. TI Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation SO PHYSICAL REVIEW E LA English DT Article ID SUPERCOOLED WATER; CONFINEMENT BEHAVIOR; SCATTERING; SURFACE; ADSORPTION; FIBERS; CROSSOVER; SILICA; MCM-41 AB When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (similar to 150 K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size similar to 11.6 angstrom, with primarily slit-like pores) from temperature T = 280 K in its stable liquid state down to T = 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time (tau) when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 angstrom. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 angstrom gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q <= 0.9 angstrom(-1)). At highQ, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q, t). C1 [Diallo, S. O.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Vlcek, L.; Chialvo, A. A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mamontov, E.] Oak Ridge Natl Lab, Chem & Engn Sci Div, Oak Ridge, TN 37831 USA. [Keum, J. K.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hayes, J. S., Jr.] Amer Tech Trading Inc, Pleasantville, NY 10570 USA. RP Diallo, SO (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM omardiallos@ornl.gov; chialvoaa@ornl.gov RI Chen, Jihua/F-1417-2011; Mamontov, Eugene/Q-1003-2015; Diallo, Souleymane/B-3111-2016; Keum, Jong/N-4412-2015; Vlcek, Lukas/N-7090-2013; OI Chen, Jihua/0000-0001-6879-5936; Mamontov, Eugene/0000-0002-5684-2675; Diallo, Souleymane/0000-0002-3369-8391; Keum, Jong/0000-0002-5529-1373; Vlcek, Lukas/0000-0003-4782-7702; Chialvo, Ariel/0000-0002-6091-4563 FU Fluid Interface Reactions, Structures and Transport (FIRST) center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank R. Moody (SNS) for her help with the sample preparation and R. Goyette (SNS) for his technical assistance at the beamline. This research was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Research at ORNL's SNS is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The TEM measurements and analysis were performed at the ORNL's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 44 TC 5 Z9 5 U1 5 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 17 PY 2015 VL 91 IS 2 AR 022124 DI 10.1103/PhysRevE.91.022124 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CF1LP UT WOS:000352307300008 PM 25768475 ER PT J AU Vucelja, M Turitsyn, KS Chertkov, M AF Vucelja, M. Turitsyn, K. S. Chertkov, M. TI Extreme-value statistics of work done in stretching a polymer in a gradient flow SO PHYSICAL REVIEW E LA English DT Article ID FREE-ENERGY DIFFERENCES; FLUCTUATION THEOREM; DYNAMICAL ENSEMBLES; STOCHASTIC DYNAMICS; STATES AB We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the large deviation function (LDF) of thework in the full range of appropriate parameters by combining analytical and numerical tools. The LDF shows two distinct asymptotes: "near tails"are linear in work and dominated by coiled polymer configurations, while "far tails"are quadratic in work and correspond to preferentially fully stretched polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition. C1 [Vucelja, M.] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10065 USA. [Turitsyn, K. S.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Chertkov, M.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. [Chertkov, M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chertkov, M.] New Mexico Consortium, Los Alamos, NM 87545 USA. RP Vucelja, M (reprint author), Rockefeller Univ, Ctr Studies Phys & Biol, 1230 York Ave, New York, NY 10065 USA. EM vmarija@rockefeller.edu RI Chertkov, Michael/O-8828-2015; Vucelja, Marija/F-4880-2013; Turitsyn, Konstantin/K-5978-2012; OI Vucelja, Marija/0000-0003-0742-5290; Turitsyn, Konstantin/0000-0002-7997-8962; Chertkov, Michael/0000-0002-6758-515X FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; NSF [1066293]; BSF foundation FX The authors acknowledge illuminating discussions with T. Witten, A. Grosberg, S. R. Varadhan, L. Zdeborova, F. Krzakala, and L. Peliti, and fruitful comments made by the referees. The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. M.V. thanks the Aspen Center for Physics and the NSF Grant No. 1066293 for hospitality during the preparation of this manuscript. K.S.T. acknowledges the support from BSF foundation. NR 36 TC 2 Z9 2 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 17 PY 2015 VL 91 IS 2 AR 022123 DI 10.1103/PhysRevE.91.022123 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CF1LP UT WOS:000352307300007 PM 25768474 ER PT J AU Beland, LK Osetsky, YN Stoller, RE Xu, HX AF Beland, Laurent Karim Osetsky, Yuri N. Stoller, Roger E. Xu, Haixuan TI Slow relaxation of cascade-induced defects in Fe SO PHYSICAL REVIEW B LA English DT Article ID AMORPHOUS-SILICON; IRRADIATED IRON; DYNAMICS; SIMULATION; KINETICS; MOBILITY; GLASSES; SYSTEMS AB On-the-fly kinetic Monte Carlo simulations are performed to investigate slow relaxation of nonequilibrium systems. Point defects induced by 25 keV cascades in alpha-Fe are shown to lead to a characteristic time evolution, described by the replenish-and-relax mechanism. Then, we produce an atomistically based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstitial atoms in 10-lattice-parameter alpha-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signatures. Four atomistic effects explain the time scales involved in the evolution: defect concentration heterogeneities, concentration-enhanced mobility, cluster-size-dependent bonding energies, and defect-induced pressure. These findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role in limiting the rate of relaxation of these simple point-defect systems. C1 [Beland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Xu, Haixuan] Univ Tennessee, Dept Mat Sci, Knoxville, TN 37996 USA. RP Beland, LK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM xhx@utk.edu RI Xu, Haixuan/C-9841-2009; OI Beland, Laurent Karim/0000-0001-5332-7128; Osetskiy, Yury/0000-0002-8109-0030 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, "Center for Defect Physics," an Energy Frontier Research Center; Fonds Quebecois de recherche Nature et Technologies FX Research at the Oak Ridge National Laboratory is sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, "Center for Defect Physics," an Energy Frontier Research Center. L.K.B. acknowledges a fellowship awarded by the Fonds Quebecois de recherche Nature et Technologies. The k-ART software is available upon request to Normand Mousseau and SEAKMC is available upon request to the authors. We also thank Normand Mousseau and Peter Brommer for insightful discussions. NR 61 TC 5 Z9 5 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 5 AR 054108 DI 10.1103/PhysRevB.91.054108 PG 8 WC Physics, Condensed Matter SC Physics GA CF1JR UT WOS:000352301900002 ER PT J AU Fabbris, G Lim, J Veiga, LSI Haskel, D Schilling, JS AF Fabbris, G. Lim, J. Veiga, L. S. I. Haskel, D. Schilling, J. S. TI Electronic and structural ground state of heavy alkali metals at high pressure SO PHYSICAL REVIEW B LA English DT Article ID ABSORPTION FINE-STRUCTURE; CRYSTAL-STRUCTURE; X-RAY; DENSE LITHIUM; CESIUM; TRANSITION; SODIUM; PHASE; SUPERCONDUCTIVITY; POTASSIUM AB Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state. C1 [Fabbris, G.; Veiga, L. S. I.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fabbris, G.; Lim, J.; Schilling, J. S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Veiga, L. S. I.] Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil. [Veiga, L. S. I.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil. RP Fabbris, G (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM haskel@aps.anl.gov; jss@wuphys.wustl.edu RI Fabbris, Gilberto/F-3244-2011; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Fabbris, Gilberto/0000-0001-8278-4985; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation (NSF) [DMR-1104742]; Carnegie/DOE Alliance Center (CDAC) through NNSA/DOE Grant [DE-FC52-08NA28554]; FAPESP (SP-Brazil) [2013/14338-3]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775] FX Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported by the National Science Foundation (NSF) through Grant No. DMR-1104742 and by the Carnegie/DOE Alliance Center (CDAC) through NNSA/DOE Grant No. DE-FC52-08NA28554. L.S.I.V. was supported by FAPESP (SP-Brazil) under Contract No. 2013/14338-3. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775. The authors would like to thank Curtis Kenney-Benson, Changyong Park, and Dmitry Popov for their support in the x-ray diffraction measurements. NR 103 TC 3 Z9 3 U1 6 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 8 AR 085111 DI 10.1103/PhysRevB.91.085111 PG 9 WC Physics, Condensed Matter SC Physics GA CF1JM UT WOS:000352301300005 ER PT J AU Hou, ZF Landau, DP Stocks, GM Brown, G AF Hou, Zhuofei Landau, D. P. Stocks, G. M. Brown, G. TI Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets SO PHYSICAL REVIEW B LA English DT Article ID RENORMALIZATION-GROUP METHODS; DYNAMIC CRITICAL PHENOMENA; SIZE MAGNETIC WIRES; ISOTROPIC ANTIFERROMAGNETS; CRITICAL-BEHAVIOR; RBMNF3; SIMULATIONS; SYSTEMS; QUANTIZATION; ALGORITHMS AB Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L <= 40 at a temperature below the Neel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the "infinite" system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q,omega) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor S-T (q,omega) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q,omega) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films. C1 [Hou, Zhuofei; Landau, D. P.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Stocks, G. M.] Oak Ridge Natl Lab, Ctr Defect Phys, Oak Ridge, TN 37831 USA. [Brown, G.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Hou, ZF (reprint author), Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. EM zhuofei@physast.uga.edu; dlandau@physast.uga.edu; stocksgm@ornl.gov; gbrown@fsu.edu RI Brown, Gregory/F-7274-2016; Stocks, George Malcollm/Q-1251-2016 OI Brown, Gregory/0000-0002-7524-8962; Stocks, George Malcollm/0000-0002-9013-260X FU UT-Battelle [4000040811]; Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX We are indebted to S.-H. Tsai for very helpful discussions and for assistance on computing techniques. We would also like to thank X. Tao and J. Yin for valuable discussions. Computer simulations were carried out on the ORNL Institutional Cluster (OIC) at Oak Ridge National Laboratory, and the IBM Cluster (pcluster) at the University of Georgia. This research was supported in part by UT-Battelle Subcontract No. 4000040811, and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 29 TC 1 Z9 1 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 6 AR 064417 DI 10.1103/PhysRevB.91.064417 PG 9 WC Physics, Condensed Matter SC Physics GA CF1JV UT WOS:000352302300004 ER PT J AU Konik, RM Sfeir, MY Misewich, JA AF Konik, Robert M. Sfeir, Matthew Y. Misewich, James A. TI Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL-SPECTRA; ANTIFERROMAGNETIC CHAINS; RENORMALIZATION-GROUP; MAGNETIC-FIELD; SPACE APPROACH; ISING-MODEL; TRANSPORT; BENZOATE; SYMMETRY AB We demonstrate that a nonperturbative framework for the treatment of the excitations of single-walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. We test this theory explicitly on the data reported by Dukovic et al. [Nano Lett. 5, 2314 (2005)] and Sfeir et al. [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra. C1 [Konik, Robert M.; Misewich, James A.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Konik, RM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Konik, Robert/L-8076-2016; OI Konik, Robert/0000-0003-1209-6890; Sfeir, Matthew/0000-0001-5619-5722 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The research herein was carried out in part in the CMPMS Department (R.M.K. and J.M.) and at the Center for Functional Nanomaterials (MS), Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 61 TC 2 Z9 2 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 7 AR 075417 DI 10.1103/PhysRevB.91.075417 PG 10 WC Physics, Condensed Matter SC Physics GA CF1JF UT WOS:000352300300009 ER PT J AU Moseley, DA Yates, KA Peng, N Mandrus, D Sefat, AS Branford, WR Cohen, LF AF Moseley, D. A. Yates, K. A. Peng, N. Mandrus, D. Sefat, A. S. Branford, W. R. Cohen, L. F. TI Magnetotransport of proton-irradiated BaFe2As2 and BaFe1.985Co0.015As2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM LINEAR MAGNETORESISTANCE; IRON PNICTIDES; SUPERCONDUCTIVITY; ELECTRONS AB Here we study the magnetotransport properties of the ferropnictide crystals BaFe2As2 and BaFe1.985Co0.015As2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. A number of other scaling trends in the magnetoresistance and high field Hall data are observed and discussed. C1 [Moseley, D. A.; Yates, K. A.; Branford, W. R.; Cohen, L. F.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Peng, N.] Univ Surrey, Fac Engn & Phys Sci, Surrey Ion Beam Ctr, ATI, Guildford GU2 7XH, Surrey, England. [Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, D.; Sefat, A. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Moseley, DA (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2BZ, England. EM dam06@ic.ac.uk; l.cohen@ic.ac.uk RI Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; UK funding agency the EPSRC [EP/H040048/1] FX D.M. and A.S. acknowledge support from the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. L.F.C. and K.Y. acknowledge support from the UK funding agency the EPSRC Grant No. EP/H040048/1. NR 62 TC 4 Z9 4 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 5 AR 054512 DI 10.1103/PhysRevB.91.054512 PG 8 WC Physics, Condensed Matter SC Physics GA CF1JR UT WOS:000352301900009 ER PT J AU Park, JS Yang, JH Kanevce, A Choi, S Repins, IL Wei, SH AF Park, Ji-Sang Yang, Ji-Hui Kanevce, Ana Choi, Sukgeun Repins, Ingrid L. Wei, Su-Huai TI Ordering-induced direct-to-indirect band gap transition in multication semiconductor compounds SO PHYSICAL REVIEW B LA English DT Article ID SOLAR-CELLS; EFFICIENCY AB Using first-principles calculations and symmetry analysis, we show that as cation atoms in a zinc blende-based semiconductor are replaced through atomic mutation (e.g., evolve from ZnSe to CuGaSe2 to Cu2ZnGeSe4), the band gaps of the semiconductors will become more and more indirect because of the band splitting at the zone boundary, and in some cases will even form the segregating states. For example, although ZnSe is a direct band gap semiconductor, quaternary compounds Cu2ZnGeSe4 and Cu2ZnSnSe4 can be indirect band gap semiconductors if they form the primitive mixed CuAu ordered structures. We also find that the stability and the electronic structure of the quaternary polytypes with different atomic ordering are almost negative-linearly correlated. We suggest that these intrinsic properties of the multication semiconductors can have a large influence on the design and device performance of these materials. C1 [Park, Ji-Sang; Yang, Ji-Hui; Kanevce, Ana; Choi, Sukgeun; Repins, Ingrid L.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Park, JS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Park, Ji-Sang/F-9944-2010 OI Park, Ji-Sang/0000-0002-1374-8793 FU US Department of Energy, EERE [DE-AC36-08GO28308] FX The work at NREL was supported by the US Department of Energy, EERE, under Contract No. DE-AC36-08GO28308. NR 22 TC 2 Z9 2 U1 4 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 7 AR 075204 DI 10.1103/PhysRevB.91.075204 PG 5 WC Physics, Condensed Matter SC Physics GA CF1JF UT WOS:000352300300006 ER PT J AU Yang, JH Park, JS Kang, J Wei, SH AF Yang, Ji-Hui Park, Ji-Sang Kang, Joongoo Wei, Su-Huai TI First-principles multiple-barrier diffusion theory: The case study of interstitial diffusion in CdTe SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; SELF-DIFFUSION; IMPURITY DIFFUSION; SILICON; METALS; SEMICONDUCTORS; CONSTANTS; LITHIUM AB The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple- barrier diffusion pathways. We found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is general for many other systems. C1 [Yang, Ji-Hui; Park, Ji-Sang; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kang, Joongoo] DGIST, Dept Emerging Mat Sci, Daegu 711873, South Korea. RP Yang, JH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM joongoo.kang@dgist.ac.kr; Suhuai.Wei@nrel.gov RI Park, Ji-Sang/F-9944-2010 OI Park, Ji-Sang/0000-0002-1374-8793 FU US Department of Energy [DE-AC36-08GO28308]; DGIST MIREBraiN Program; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The work at NREL was funded by the US Department of Energy under Contract No. DE-AC36-08GO28308. The work at DGIST was supported by the DGIST MIREBraiN Program. The calculations were done on NREL's Peregrine supercomputer and at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 39 TC 9 Z9 9 U1 6 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 17 PY 2015 VL 91 IS 7 AR 075202 DI 10.1103/PhysRevB.91.075202 PG 6 WC Physics, Condensed Matter SC Physics GA CF1JF UT WOS:000352300300004 ER PT J AU Wu, GC Torn, MS Williams, JH AF Wu, Grace C. Torn, Margaret S. Williams, James H. TI Incorporating Land-Use Requirements and Environmental Constraints in Low-Carbon Electricity Planning for California SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RENEWABLE ENERGY; SOLAR-ENERGY; IMPACTS; EFFICIENCY AB The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning. C1 [Wu, Grace C.; Torn, Margaret S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Williams, James H.] Energy & Environm Econ, San Francisco, CA 94104 USA. RP Wu, GC (reprint author), Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. EM grace.cc.wu@berkeley.edu RI Torn, Margaret/D-2305-2015; OI Wu, Grace C./0000-0002-8290-119X FU University of California Berkeley Fellowship; National Science Foundation's Graduate Research Fellowship; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the University of California Berkeley Fellowship, the National Science Foundation's Graduate Research Fellowship, and the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank K Deshmukh for valuable discussions of results and manuscript comments, G. Heath for data leads; K. Koy for data acquisition support; J. Gilbreath and the California Energy Commission for spatial data; J. Reilly and L. Holiday for manuscript comments. NR 46 TC 1 Z9 1 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 17 PY 2015 VL 49 IS 4 BP 2013 EP 2021 DI 10.1021/es502979v PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CB7KT UT WOS:000349806400005 PM 25541644 ER PT J AU Dubrawski, KL van Genuchten, CM Delaire, C Amrose, SE Gadgil, AJ Mohseni, M AF Dubrawski, Kristian L. van Genuchten, Case M. Delaire, Caroline Amrose, Susan E. Gadgil, Ashok J. Mohseni, Madjid TI Production and Transformation of Mixed-Valent Nanoparticles Generated by Fe(0) Electrocoagulation SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HYDROXYCARBONATE GREEN RUST; IN-SITU IDENTIFICATION; IRON ELECTROCOAGULATION; MAGNETITE NANOPARTICLES; SIMULATING GROUNDWATER; CORROSION PRODUCTS; ARSENIC REMOVAL; FILM FORMATION; PASSIVE FILMS; ION AB Mixed-valent iron nanoparticles (NP) generated electrochemically by Fe(0) electrocoagulation (EC) show promise for on-demand industrial and drinking water treatment in engineered systems. This work applies multiple characterization techniques (in situ Raman spectroscopy, XRD, SEM, and cryo-TEM) to investigate the formation and persistence of magnetite and green rust (GR) NP phases produced via the Fe(0) EC process. Current density and background electrolyte composition were examined in a controlled anaerobic system to determine the initial Fe phases generated as well as transformation products with aging. Fe phases were characterized in an aerobic EC system with both simple model electrolytes and real groundwater to investigate the formation and aging of Fe phases produced in a system representing treatment of arsenic-contaminated ground waters in South Asia. Two central pathways for magnetite production via Fe(0) EC were identified: (i) as a primary product (formation within seconds when DO absent, no intermediates detected) and (ii) as a transformation product of GR (from minutes to days depending on pH, electrolyte composition, and aging conditions). This study provides a better understanding of the formation conditions of magnetite, GR, and ferric (oxyhydr)oxides in Fe EC, which is essential for process optimization for varying source waters. C1 [Dubrawski, Kristian L.; Mohseni, Madjid] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [van Genuchten, Case M.; Delaire, Caroline; Amrose, Susan E.; Gadgil, Ashok J.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Gadgil, Ashok J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Mohseni, M (reprint author), Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. EM Madjid.mohseni@ubc.ca OI Gadgil, Ashok/0000-0002-0357-9455 FU Natural Science and Engineering Research Council of Canada; A. J. and Catherine Orselli Fund; Robert B. Rothschild, Jr. Memorial Fellowship; Trussell Fellowship in Environmental Engineering; Maybelle B. Tucker and John T. Tucker Fund FX This study was financially supported by the Natural Science and Engineering Research Council of Canada, the A. J. and Catherine Orselli Fund, the Robert B. Rothschild, Jr. Memorial Fellowship, the Trussell Fellowship in Environmental Engineering, and the Maybelle B. Tucker and John T. Tucker Fund. The authors acknowledge Michael Smith Laboratories and Bio-Imaging Facility (UBC) and also Tim Teague and Haizhou Liu (UC Berkeley). NR 55 TC 7 Z9 7 U1 5 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 17 PY 2015 VL 49 IS 4 BP 2171 EP 2179 DI 10.1021/es505059d PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CB7KT UT WOS:000349806400025 PM 25608110 ER PT J AU Choudhury, S Thomas, JK Sylvain, NJ Ponomarenko, O Gordon, RA Heald, SM Janz, DM Krone, PH Coulthard, I George, GN Pickering, IJ AF Choudhury, Sanjukta Thomas, Jith K. Sylvain, Nicole J. Ponomarenko, Olena Gordon, Robert A. Heald, Steve M. Janz, David M. Krone, Patrick H. Coulthard, Ian George, Graham N. Pickering, Ingrid J. TI Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ZEBRAFISH DANIO-RERIO; DIETARY SELENOMETHIONINE; ABSORPTION SPECTROSCOPY; CHEMICAL FORMS; TOXICITY; FISH; SELENOCYSTEINE; PERFORMANCE; DOWNSTREAM; SPECIATION AB Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens. C1 [Choudhury, Sanjukta; Ponomarenko, Olena; George, Graham N.; Pickering, Ingrid J.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. [Thomas, Jith K.; Janz, David M.; Krone, Patrick H.; George, Graham N.; Pickering, Ingrid J.] Univ Saskatchewan, Toxicol Ctr, Saskatoon, SK S7N 5B3, Canada. [Sylvain, Nicole J.; Coulthard, Ian] Univ Saskatchewan, Canadian Light Source Inc, Saskatoon, SK S7N 2V3, Canada. [Gordon, Robert A.] Argonne Natl Lab, PNCSRF, APS Sect 20, Argonne, IL 60439 USA. [Heald, Steve M.] Argonne Natl Lab, Xray Sci Div, APS, Argonne, IL 60439 USA. [Krone, Patrick H.] Univ Saskatchewan, Dept Anat & Cell Biol, Saskatoon, SK S7N 5E5, Canada. [George, Graham N.; Pickering, Ingrid J.] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada. RP Pickering, IJ (reprint author), Univ Saskatchewan, Dept Geol Sci, 114 Sci Pl, Saskatoon, SK S7N 5E2, Canada. EM ingrid.pickering@usask.ca RI Pickering, Ingrid/A-4547-2013 FU Natural Sciences and Engineering Research Council of Canada (NSERC); CIHR; Saskatchewan Health Research Foundation; Canadian Foundation of Innovation; University of Washington; Advanced Photon Source (APS); U.S. DOE [DE-AC02-06CH11357]; DOE Office of Biological and Environmental Research; National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) [P41GM103393] FX We thank members of the George, Pickering, Krone, and Janz research groups at the University of Saskatchewan for their assistance and helpful discussions. S.C. is a Fellow in the Canadian Institutes of Health Research (CIHR) Training grant in Health Research Using Synchrotron Techniques (CIHR-THRUST). G.N.G. and I.J.P. are Canada Research Chairs. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the CIHR and the Saskatchewan Health Research Foundation. This work was also supported by the Canadian Foundation of Innovation through funding for BioXAS: Life Science Beam line for X-ray Absorption Spectroscopy at the Canadian Light Source Inc. Confocal X-ray fluorescence imaging data were collected on the PNC/XSD 20-ID-B. PNC/XSD facilities at the Advanced Photon Source are supported by the U.S. Department of Energy (DOE) - Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source (APS). Use of the APS, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Standard spectra were measured at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) (including P41GM103393). The contents of this publication are the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. NR 41 TC 11 Z9 11 U1 4 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 17 PY 2015 VL 49 IS 4 BP 2255 EP 2261 DI 10.1021/es503848s PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CB7KT UT WOS:000349806400035 PM 25607235 ER PT J AU Hayes, DG del Rio, JAG Ye, R Urban, VS Pingali, SV O'Neill, HM AF Hayes, Douglas G. del Rio, Javier A. Gomez Ye, Ran Urban, Volker S. Pingali, Sai Venkatesh O'Neill, Hugh M. TI Effect of Protein Incorporation on the Nanostructure of the Bicontinuous Microemulsion Phase of Winsor-III Systems: A Small-Angle Neutron Scattering Study SO LANGMUIR LA English DT Article ID SODIUM BIS(2-ETHYLHEXYL) SULFOSUCCINATE; BOVINE SERUM-ALBUMIN; 1,3-DIOXOLANE ALKYL ETHOXYLATE; IN-OIL MICROEMULSIONS; SKIN FRIENDLY OIL; REVERSE MICELLES; NONIONIC SURFACTANTS; BENDING RIGIDITY; FROTH FLOTATION; WASTE-WATER AB Small-angle neutron scattering (SANS) analysis using the TeubnerStrey model has been employed to evaluate the effect of protein incorporation into the middle, bicontinuous microemulsion (B mu E) phase of Winsor-III (W-III) systems formed by an aerosol-OT (AOT)/alkyl ethoxylate mixed surfactant system to understand better the extraction of proteins into and out of B mu Es and to study the effect of proteins on a system that serves as a biomimetic analog of cell membranes. Under conditions of high salinity, the incorporation of positively charged proteins cytochrome c, lysozyme, and a-chymotrypsin, near their solubilization limit in the B mu Es promoted the release of water and oil from the B mu Es, a decrease in the quasi-periodic repeat distance (d), an increase in ordering (a decrease in the amphiphilicity factor, f(a)) for the surfactant monolayers, and a decrease in the surface area per surfactant headgroup, suggesting that the proteins affected the self-assembly of components in the B mu E phase and produced Debye shielding of AOTs sulfonate headgroup. For WIII systems possessing lower salinity, cytochrome c reduced the efficiency of surfactant in the B mu E phase, noted by increases in d and f(a), suggesting that the enzyme and AOT underwent ion pairing. The results of this study demonstrate the importance of ionic strength to modulate proteinsurfactant interactions, which in turn will control the release of proteins encapsulated in the B mu Es, relevant to WIII-based protein extraction and controlled release from B mu E delivery systems, and demonstrate the utility of B mu Es as a model system to understand the effect of proteins on biomembranes. C1 [Hayes, Douglas G.; del Rio, Javier A. Gomez; Ye, Ran] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Urban, Volker S.; Pingali, Sai Venkatesh; O'Neill, Hugh M.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Hayes, DG (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. EM dhayes1@utk.edu RI Urban, Volker/N-5361-2015; OI Urban, Volker/0000-0002-7962-3408; Pingali, Sai Venkatesh/0000-0001-7961-4176; O'Neill, Hugh/0000-0003-2966-5527 FU National Science Foundation [BES-0437507]; Laboratory Directed Research and Development program of Oak Ridge National Laboratory; Office of Biological and Environmental Research of the U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; [DMR-9986442] FX This work was supported by National Science Foundation grant BES-0437507 and by the Laboratory Directed Research and Development program of Oak Ridge National Laboratory. SANS data collection at the National Institute of Standards and Technology, U.S. Department of Commerce (NIST), was supported under agreement no. DMR-9986442. The Oak Ridge National Laboratory Center for Structural Molecular Biology (F.W.P. ERKP291) operates the CG-3 Bio-SANS instrument and is supported by the Office of Biological and Environmental Research of the U.S. Department of Energy. Research at the High Flux Isotope Reactor of Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 55 TC 0 Z9 0 U1 4 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 17 PY 2015 VL 31 IS 6 BP 1901 EP 1910 DI 10.1021/la504606x PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB7KP UT WOS:000349805900006 PM 25603188 ER PT J AU Lynch, PT Troy, TP Ahmed, M Tranter, RS AF Lynch, Patrick T. Troy, Tyler P. Ahmed, Musahid Tranter, Robert S. TI Probing Combustion Chemistry in a Miniature Shock Tube with Synchrotron VUV Photo Ionization Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID DIMETHYL ETHER; THERMAL-DECOMPOSITION; SELF-REACTION; PHOTOIONIZATION; DISSOCIATION; OXIDATION; ENERGIES; RADICALS; KINETICS; ALKANES AB Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T-5 < 1700 K, 3 < P-5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques. C1 [Lynch, Patrick T.; Tranter, Robert S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Troy, Tyler P.; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tranter, RS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Tranter@anl.gov RI Ahmed, Musahid/A-8733-2009 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy as part of the Argonne Sandia Consortium on High Pressure Combustion Chemistry [DE-AC02-2006CH11357] FX We thank B. Rude and K.R. Wilson (LBNL) for technical assistance at the Chemical Dynamics beamline (9.0.2). We also thank C. J. Annesley for his assistance at ANL and K.Y. Lam for assistance with the August 2013 experiments. M.A., T.P.T., and the Advanced Light Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. P.T.L. and R.S.T. were supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy, under Contract No. DE-AC02-2006CH11357 as part of the Argonne Sandia Consortium on High Pressure Combustion Chemistry. NR 33 TC 8 Z9 8 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD FEB 17 PY 2015 VL 87 IS 4 BP 2345 EP 2352 DI 10.1021/ac5041633 PG 8 WC Chemistry, Analytical SC Chemistry GA CB7KR UT WOS:000349806200046 PM 25594229 ER PT J AU Geertsema, HJ Schulte, AC Spenkelink, LM McGrath, WJ Morrone, SR Sohn, J Mangel, WF Robinson, A van Oijen, AM AF Geertsema, Hylkje J. Schulte, Aartje C. Spenkelink, Lisanne M. McGrath, William J. Morrone, Seamus R. Sohn, Jungsan Mangel, Walter F. Robinson, Andrew van Oijen, Antoine M. TI Single-Molecule Imaging at High Fluorophore Concentrations by Local Activation of Dye SO BIOPHYSICAL JOURNAL LA English DT Article ID HUMAN ADENOVIRUS PROTEINASE; DNA; PEPTIDE; VIRION; LEVEL; TOOL AB Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore. C1 [Geertsema, Hylkje J.; Schulte, Aartje C.; Spenkelink, Lisanne M.; Robinson, Andrew; van Oijen, Antoine M.] Univ Groningen, Zernike Inst Adv Mat, Groningen, Netherlands. [McGrath, William J.; Mangel, Walter F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Morrone, Seamus R.; Sohn, Jungsan] Johns Hopkins Sch Med, Baltimore, MD USA. RP van Oijen, AM (reprint author), Univ Groningen, Zernike Inst Adv Mat, Groningen, Netherlands. EM a.m.van.oijen@rug.nl OI Robinson, Andrew/0000-0002-3544-0976; van Oijen, Antoine/0000-0002-1794-5161 FU Netherlands Organization for Scientific Research (NWO) [Vici 680-47-607]; European Research Council [ERC Starting 281098]; National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI41599, R21AI113565] FX A.M.v.O. acknowledges funding from the Netherlands Organization for Scientific Research (NWO; Vici 680-47-607) and the European Research Council (ERC Starting 281098). Some of the research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Awards R01AI41599 and R21AI113565 to W.F.M. NR 29 TC 3 Z9 3 U1 1 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 17 PY 2015 VL 108 IS 4 BP 949 EP 956 DI 10.1016/j.bpj.2014.12.019 PG 8 WC Biophysics SC Biophysics GA CB5IJ UT WOS:000349660400021 PM 25692599 ER PT J AU Rajapaksha, A Stanley, CB Todd, BA AF Rajapaksha, Ajith Stanley, Christopher B. Todd, Brian A. TI Effects of Macromolecular Crowding on the Structure of a Protein Complex: A Small-Angle Scattering Study of Superoxide Dismutase SO BIOPHYSICAL JOURNAL LA English DT Article ID NEUTRON-SCATTERING; PREFERENTIAL HYDRATION; OSMOTIC-STRESS; ENVIRONMENTS; CONFORMATION; AGGREGATION; CONFINEMENT; STABILITY; KINETICS; BINDING AB Macromolecular crowding can alter the structure and function of biological macromolecules. We used small-angle scattering to measure the effects of macromolecular crowding on the size of a protein complex, SOD (superoxide dismutase). Crowding was induced using 400 MW PEG (polyethylene glycol),TEG (triethylene glycol), alpha-MG (methyl-alpha-glucoside), and TMAO (trimethylamine n-oxide). Parallel small-angle neutron scattering and small-angle x-ray scattering allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. Small-angle x-ray scattering done in the presence of TEG suggests that for further deformation-beyond a 9% decrease in volume-the resistance to deformation may increase dramatically. C1 [Rajapaksha, Ajith; Todd, Brian A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Stanley, Christopher B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN USA. RP Todd, BA (reprint author), Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. EM batodd@purdue.edu OI Stanley, Christopher/0000-0002-4226-7710 FU National Science Foundation [1006485-DMR]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The research was supported by the National Science Foundation (grant No. 1006485-DMR). A portion of the research performed at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 5 Z9 5 U1 3 U2 31 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 17 PY 2015 VL 108 IS 4 BP 967 EP 974 DI 10.1016/j.bpj.2014.12.046 PG 8 WC Biophysics SC Biophysics GA CB5IJ UT WOS:000349660400023 PM 25692601 ER PT J AU Radtke, G Saul, A Dabkowska, HA Salamon, MB Jaime, M AF Radtke, Guillaume Saul, Andres Dabkowska, Hanna A. Salamon, Myron B. Jaime, Marcelo TI Magnetic nanopantograph in the SrCu2(BO3)(2) Shastry-Sutherland lattice SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE magnetostriction; high magnetic fields; spin-lattice coupling; density functional theory; Shastry-Sutherland ID SPIN SYSTEM SRCU2(BO3)(2); QUANTUM PHASE-TRANSITIONS; DIMER GROUND-STATE; WANNIER FUNCTIONS; BEHAVIOR; PLATEAUS; MODEL AB Magnetic materials having competing, i.e., frustrated, interactions can display magnetism prolific in intricate structures, discrete jumps, plateaus, and exotic spin states with increasing applied magnetic fields. When the associated elastic energy cost is not too expensive, this high potential can be enhanced by the existence of an omnipresent magnetoelastic coupling. Here we report experimental and theoretical evidence of a nonnegligible magnetoelastic coupling in one of these fascinating materials, SrCu2(BO3)(2) (SCBO). First, using pulsed-field transversal and longitudinal magnetostriction measurements we show that its physical dimensions, indeed, mimic closely its unusually rich field-induced magnetism. Second, using density functional-based calculations we find that the driving force behind the magnetoelastic coupling is the CuOCu superexchange angle that, due to the orthogonal Cu2+ dimers acting as pantographs, can shrink significantly (0.44%) with minute (0.01%) variations in the lattice parameters. With this original approach we also find a reduction of similar to 10% in the intradimer exchange integral J, enough to make predictions for the highly magnetized states and the effects of applied pressure on SCBO. C1 [Radtke, Guillaume] Univ Paris 06, Univ Sorbonne, CNRS 7590,UMR 206, Inst Mineral Phys Mat & Cosmochim,Inst Rech Dev,M, F-75005 Paris, France. [Saul, Andres] Aix Marseille Univ, Ctr Interdisciplinaire Nanosci Marseille, CNRS, UMR 7325, F-13288 Marseille 9, France. [Saul, Andres] Massachusetts Inst Technol & MultiScale Mat Sci E, CNRS MIT, Dept Civil & Environm Engn, UMI 3466, Cambridge, MA 02139 USA. [Dabkowska, Hanna A.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Salamon, Myron B.] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Salamon, Myron B.; Jaime, Marcelo] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Saul, A (reprint author), Aix Marseille Univ, Ctr Interdisciplinaire Nanosci Marseille, CNRS, UMR 7325, Campus Luminy, F-13288 Marseille 9, France. EM saul@cinam.univ-mrs.fr RI Jaime, Marcelo/F-3791-2015; Saul, Andres/C-1282-2012 OI Jaime, Marcelo/0000-0001-5360-5220; Saul, Andres/0000-0003-0540-703X FU National Science Foundation (NSF); US Department of Energy (DOE); State of Florida through NSF Cooperative Grant [DMR-1157490]; US DOE Basic Energy Science project "Science at 100 Tesla" FX M.J. acknowledges useful discussions with Prof. B. D. Gaulin, McMaster University and Cristian D. Batista, Los Alamos National Laboratory (LANL). The National High Magnetic Field Laboratory Pulsed-Field Facility is supported by the National Science Foundation (NSF), the US Department of Energy (DOE), and the State of Florida through NSF Cooperative Grant DMR-1157490. Work at LANL was supported by the US DOE Basic Energy Science project "Science at 100 Tesla." This work was granted access to the High Performance Computing resources of Institut du Developpement et des Ressources en Informatique Scientique under the allocations 2014100384 made by Grand Equipement National de Calcul Intensif. NR 40 TC 1 Z9 1 U1 4 U2 25 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 17 PY 2015 VL 112 IS 7 BP 1971 EP 1976 DI 10.1073/pnas.1421414112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB2GV UT WOS:000349446000045 PM 25646467 ER PT J AU Dailey, HA Gerdes, S Dailey, TA Burch, JS Phillips, JD AF Dailey, Harry A. Gerdes, Svetlana Dailey, Tamara A. Burch, Joseph S. Phillips, John D. TI Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE heme synthesis; Gram-positive bacteria; HemQ; coproporphyrin; HemN ID MYCOBACTERIAL TRUNCATED HEMOGLOBINS; BACILLUS-SUBTILIS; CRYSTAL-STRUCTURE; STAPHYLOCOCCUS-AUREUS; III OXIDASE; CHLOROPHYLL BIOSYNTHESIS; STRUCTURAL INSIGHT; ESCHERICHIA-COLI; GENE; ENZYMES AB It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fecoproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens. C1 [Dailey, Harry A.; Dailey, Tamara A.; Burch, Joseph S.] Univ Georgia, Biomed & Hlth Sci Inst, Athens, GA 30602 USA. [Dailey, Harry A.; Dailey, Tamara A.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Dailey, Harry A.; Dailey, Tamara A.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Gerdes, Svetlana] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Phillips, John D.] Univ Utah, Sch Med, Dept Med, Div Hematol, Salt Lake City, UT 84132 USA. RP Dailey, HA (reprint author), Univ Georgia, Biomed & Hlth Sci Inst, Athens, GA 30602 USA. EM hdailey@uga.edu FU NIH [DK096051, DK020503, DK083909] FX We thank W. B. Whitman, I. Hamza, A. Medlock, and J. DuBois for critical review of the manuscript. This work was supported by NIH Grants DK096051 (to H.A.D.) and DK020503 and DK083909 (to J. D. P.). NR 50 TC 22 Z9 22 U1 4 U2 29 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 17 PY 2015 VL 112 IS 7 BP 2210 EP 2215 DI 10.1073/pnas.1416285112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB2GV UT WOS:000349446000086 PM 25646457 ER PT J AU Cerchiari, AE Garbe, JC Jee, NY Todhunter, ME Broaders, KE Peehl, DM Desai, TA LaBarge, MA Thomson, M Gartner, ZJ AF Cerchiari, Alec E. Garbe, James C. Jee, Noel Y. Todhunter, Michael E. Broaders, Kyle E. Peehl, Donna M. Desai, Tejal A. LaBarge, Mark A. Thomson, Matthew Gartner, Zev J. TI A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE heterogeneity; cell sorting; differential adhesion; mammary; prostate ID MAMMARY-GLAND; MYOEPITHELIAL CELLS; HUMAN BREAST; EPITHELIAL MORPHOGENESIS; E-CADHERIN; ADHESION; DIFFERENTIATION; PROGENITORS; REQUIRES; CANCER AB Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer. C1 [Cerchiari, Alec E.; Desai, Tejal A.; Gartner, Zev J.] Univ Calif Berkeley, Univ Calif San Francisco, Grad Program Bioengn, Berkeley, CA 94720 USA. [Cerchiari, Alec E.; Garbe, James C.; Desai, Tejal A.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. [Cerchiari, Alec E.; Jee, Noel Y.; Todhunter, Michael E.; Broaders, Kyle E.; Gartner, Zev J.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Thomson, Matthew; Gartner, Zev J.] Univ Calif San Francisco, Ctr Syst & Synthet Biol, San Francisco, CA 94143 USA. [Garbe, James C.; LaBarge, Mark A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Peehl, Donna M.] Stanford Univ, Sch Med, Palo Alto, CA 94305 USA. RP Gartner, ZJ (reprint author), Univ Calif Berkeley, Univ Calif San Francisco, Grad Program Bioengn, Berkeley, CA 94720 USA. EM zev.gartner@ucsf.edu RI Broaders, Kyle/G-2796-2010 OI Broaders, Kyle/0000-0002-6827-8717 FU National Institutes of Health (NIH) Bay Area Physical Sciences and Oncology Center; Department of Defense Breast Cancer Research Program [W81XWH-10-1-1023, W81XWH-13-1-0221]; NIH common funds [DP5 OD012194-03, DP2 HD080351-01]; Sidney Kimmel Foundation; University of California, San Francisco (UCSF) Program in Breakthrough Biomedical Research; UCSF Center for Systems and Synthetic Biology (National Institute of General Medical Sciences Systems Biology Center Grant) [P50 GM081879]; US Department of Defense through a National Defense Science and Engineering Graduate Fellowship FX The authors thank Dr. Maija Valta for help in preparing primary prostate organoids, Dr. Jennifer Liu and Dr. Alba de Moniz for technical assistance and comments, Dr. Justin Farlow for help with data analysis, and an anonymous reviewer for helpful comments on the manuscript. This work was supported by a seed grant from the National Institutes of Health (NIH) Bay Area Physical Sciences and Oncology Center (to Z.J.G. and M.A.L.); Department of Defense Breast Cancer Research Program Grants W81XWH-10-1-1023 and W81XWH-13-1-0221 (to Z.J.G.); NIH common funds Grants DP5 OD012194-03 (to M.T.) and DP2 HD080351-01 (to Z.J.G.); the Sidney Kimmel Foundation; and the University of California, San Francisco (UCSF) Program in Breakthrough Biomedical Research. Z.J.G. and M.T. are supported by the UCSF Center for Systems and Synthetic Biology (National Institute of General Medical Sciences Systems Biology Center Grant P50 GM081879). A.E.C. was supported by the US Department of Defense through a National Defense Science and Engineering Graduate Fellowship. NR 40 TC 14 Z9 14 U1 5 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 17 PY 2015 VL 112 IS 7 BP 2287 EP 2292 DI 10.1073/pnas.1410776112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB2GV UT WOS:000349446000099 PM 25633040 ER PT J AU Carroll, EC Berlin, S Levitz, J Kienzler, MA Yuan, Z Madsen, D Larsen, DS Isacoff, EY AF Carroll, Elizabeth C. Berlin, Shai Levitz, Joshua Kienzler, Michael A. Yuan, Zhe Madsen, Dorte Larsen, Delmar S. Isacoff, Ehud Y. TI Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE optogenetics; pharmacology; multiphoton; photoswitch; azobenzene ID EXCITATION CROSS-SECTIONS; OPTICAL CONTROL; FLUORESCENT PROTEINS; NEURONAL-ACTIVITY; VISIBLE-LIGHT; ION CHANNELS; MICROSCOPY; LIGLUR; PHOTOISOMERIZATION; CHANNELRHODOPSIN-2 AB Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, L-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, D-MAG0(460). 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca2+-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca2+ imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits. C1 [Carroll, Elizabeth C.; Berlin, Shai; Levitz, Joshua; Kienzler, Michael A.; Yuan, Zhe; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Madsen, Dorte; Larsen, Delmar S.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM ehud@berkeley.edu OI Berlin, shai/0000-0002-5153-4876 FU NIH Nanomedicine Development Center for the Optical Control of Biological Function [PN2EY018241]; NIH Ruth L. Kirschstein National Research Service Award [F32EY022840]; National Science Foundation [CHE-1413739] FX We thank Matthew Banghart for the generous gift of MAQ; Olivier Thoumine, Cherise Stanley, and Grant Kauwe for the low-affinity GluK2 construct (LA-LiGluR); Andreas Reiner for guidance on working with D-MAG0460; Hillel Adesnik for electrophysiology data acquisition software; and Karl Kilborn and Brian Bodenmeister for customizing Slidebook software. Funding was provided by the NIH Nanomedicine Development Center for the Optical Control of Biological Function (PN2EY018241) (to E.Y.I.), NIH Ruth L. Kirschstein National Research Service Award (F32EY022840) (to M.A.K.), and the National Science Foundation (CHE-1413739) (to D.S.L.). NR 60 TC 10 Z9 10 U1 8 U2 57 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 17 PY 2015 VL 112 IS 7 BP E776 EP E785 DI 10.1073/pnas.1416942112 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB2GV UT WOS:000349446000022 PM 25653339 ER PT J AU Li, TW Benyahia, S Dietiker, JF Musser, J Sun, X AF Li, Tingwen Benyahia, Sofiane Dietiker, Jean-Francois Musser, Jordan Sun, Xin TI A 2.5D computational method to simulate cylindrical fluidized beds SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Computational fluid dynamics; Fluidized bed; Two-fluid model; Two-dimensional simulation ID GAS-SOLID FLOWS; DIFFERENT DIAMETERS; CFD SIMULATIONS; PART II; MODEL; HYDRODYNAMICS; RISER; 2D; VALIDATION; PARAMETERS AB In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining the benefits of Cartesian 2D and axisymmetric assumptions. This is done by constructing a computational domain consisting of a central thin plate and two wedges. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore, the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Li, Tingwen; Benyahia, Sofiane; Dietiker, Jean-Francois; Musser, Jordan] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26505 USA. [Dietiker, Jean-Francois] W Virginia Univ, Res Corp, Morgantown, WV 26505 USA. [Sun, Xin] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Li, TW (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM tingwen.li@contr.netl.doe.gov FU U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative (CCSI) through the National Energy Technology Laboratory under the RES [DE-FE0004000] FX This technical effort was performed in support of the U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative (CCSI) through the National Energy Technology Laboratory under the RES contract DE-FE0004000. NR 29 TC 7 Z9 7 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 EI 1873-4405 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD FEB 17 PY 2015 VL 123 BP 236 EP 246 DI 10.1016/j.ces.2014.11.022 PG 11 WC Engineering, Chemical SC Engineering GA AZ1ZR UT WOS:000348034500023 ER PT J AU Musser, J Syamlal, M Shahnam, M Huckaby, D AF Musser, Jordan Syamlal, Madhava Shahnam, Mehrdad Huckaby, David TI Constitutive equation for heat transfer caused by mass transfer SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Heat of reaction; Energy equation closure; Computational fluid dynamics (CFD); Multiphase flow ID FLUIDIZED-BED; COMBUSTION; SIMULATION; DYNAMICS AB This paper presents a constitutive equation for the thermal heat transfer associated by mass transfer, applicable to both Eulerian-Eulerian and Eulerian-Lagrangian multiphase computational fluid dynamic models. The proposed equation was incorporated into the open source multiphase CFD code MFIX (https://mfix.netl.doe.gov) to demonstrate that the numerical predictions match experimental data for the limiting cases of evaporation and condensation. The application of the proposed equation to two cases of a reacting carbon particle yields physically consistent expressions for the heats of reaction. Published by Elsevier Ltd. C1 [Musser, Jordan; Syamlal, Madhava; Shahnam, Mehrdad; Huckaby, David] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Musser, J (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM jordan.musser@netl.doe.gov NR 24 TC 0 Z9 0 U1 4 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 EI 1873-4405 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD FEB 17 PY 2015 VL 123 BP 436 EP 443 DI 10.1016/j.ces.2014.11.036 PG 8 WC Engineering, Chemical SC Engineering GA AZ1ZR UT WOS:000348034500045 ER PT J AU Guo, EJ Roth, R Das, S Herklotz, A Dorr, K AF Guo, E. J. Roth, R. Das, S. Herklotz, A. Doerr, K. TI Strain-induced improvement of retention loss in PbZr0.2Ti0.8O3 films SO APPLIED PHYSICS LETTERS LA English DT Article ID FERROELECTRIC THIN-FILMS; POLARIZATION RETENTION; TOP ELECTRODES; NANOSCALE; CAPACITORS; MEMORIES; DYNAMICS AB The retention behavior of nanoscale domains in PbZr0.2Ti0.8O3 thin films is investigated by in-situ controlling the epitaxial strain arising from a piezoelectric substrate. The retention behavior in our sample shows strong polarity-dependence: Upward-poled domains exhibit excellent stability, whereas downward-poled domains reveal a stretched exponential decay. Reversible release of in-plane compressive strain strongly reduced the retention loss, reflected in an enhancement of the relaxation time by up to one order of magnitude. We tentatively attribute the observed behavior to a strain dependence of the built-in field at the interface to the La0.7Sr0.3MnO3 bottom electrode, with a possible further contribution of strain-dependent screening of the depolarizing field. Our work directly reveals the importance of epitaxial strain for reducing ferroelectric domain relaxation which is detrimental for applications such as nonvolatile memory devices. (C) 2015 AIP Publishing LLC. C1 [Guo, E. J.; Roth, R.; Das, S.; Herklotz, A.; Doerr, K.] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany. [Guo, E. J.; Das, S.; Herklotz, A.; Doerr, K.] IFW Dresden, Inst Metall Mat, D-01069 Dresden, Germany. [Guo, E. J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Herklotz, A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Guo, EJ (reprint author), Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany. EM ejguophysics@gmail.com RI Guo, Er-Jia/F-5229-2012 OI Guo, Er-Jia/0000-0001-5702-225X FU Deutsche Forschungsgemeinschaft (DFG) [SFB 762] FX This work was supported by Deutsche Forschungsgemeinschaft (DFG) under the grant of SFB 762 Functionality of Oxide Interfaces. We express our great thanks to Professor Dietrich Hesse from Max Planck Institute of Microstructure Physics in Halle for helping us to measure the TEM iamges. NR 23 TC 0 Z9 0 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 16 PY 2015 VL 106 IS 7 AR 072904 DI 10.1063/1.4913421 PG 4 WC Physics, Applied SC Physics GA CC3EE UT WOS:000350227300037 ER PT J AU Liu, XR Choudhury, D Cao, YW Middey, S Kareev, M Meyers, D Kim, JW Ryan, P Chakhalian, J AF Liu, Xiaoran Choudhury, D. Cao, Yanwei Middey, S. Kareev, M. Meyers, D. Kim, J. -W. Ryan, P. Chakhalian, J. TI Epitaxial growth of (111)-oriented spinel CoCr2O4/Al2O3 heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID COBALT; OXIDE; CONFIGURATIONS; INTERFACES; FILMS AB High quality (1 1 1)-oriented CoCr2O4/Al2O3 heterostructures were synthesized on the sapphire (0 0 0 1) single crystal substrates by pulsed laser deposition. The structural properties are demonstrated by in-situ reflection high energy electron diffraction, atomic force microscopy, X-ray reflectivity, and X-ray diffraction. X-ray photoemission spectroscopy confirms that the films possess the proper chemical stoichiometry. This work offers a pathway to fabricating spinel type artificial quasi-two-dimensional frustrated lattices by means of geometrical engineering. (C) 2015 AIP Publishing LLC. C1 [Liu, Xiaoran; Choudhury, D.; Cao, Yanwei; Middey, S.; Kareev, M.; Meyers, D.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Kim, J. -W.; Ryan, P.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Liu, XR (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM xxl030@email.uark.edu RI Chakhalian, Jak/F-2274-2015; Middey, Srimanta/D-9580-2013; Choudhury, Debraj/B-3615-2013 OI Middey, Srimanta/0000-0001-5893-0946; FU Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4534]; DOD-ARO [0402-17291]; U.S. DOE [DE-AC0206CH11357] FX The authors deeply acknowledge numerous fruitful discussions with D. Khomskii and G. Fiete. This research at the University of Arkansas is funded in part by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4534 and by the DOD-ARO under Grand No. 0402-17291. Work at the Advanced Photon Source, Argonne, was supported by the U.S. DOE under Grant No. DE-AC0206CH11357. NR 30 TC 3 Z9 3 U1 3 U2 41 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 16 PY 2015 VL 106 IS 7 AR 071603 DI 10.1063/1.4913245 PG 4 WC Physics, Applied SC Physics GA CC3EE UT WOS:000350227300012 ER PT J AU Lv, B Lan, YC Wang, XQ Zhang, Q Hu, YJ Jacobson, AJ Broido, D Chen, G Ren, ZF Chu, CW AF Lv, Bing Lan, Yucheng Wang, Xiqu Zhang, Qian Hu, Yongjie Jacobson, Allan J. Broido, David Chen, Gang Ren, Zhifeng Chu, Ching-Wu TI Experimental study of the proposed super-thermal-conductor: BAs SO APPLIED PHYSICS LETTERS LA English DT Article ID BORON; SCATTERING; VACANCIES; GROWTH AB Recent calculations predict a super-thermal-conductivity of similar to 2000Wm(-1) K-1, comparable to that of diamond, in cubic boron arsenide (BAs) crystals, which may offer inexpensive insulators with super-thermal-conductivity for microelectronic device applications. We have synthesized and characterized single crystals of BAs with a zinc blende cubic structure and lattice parameters of a = 4.7830(7) angstrom. A relatively high thermal conductivity of similar to 2000Wm(-1) K-1 is obtained, close to those of best non-carbon crystal insulators, such as SiC, although still an order of magnitude smaller than the value predicted. Based on our XPS, X-ray single crystal diffraction, and Raman scattering results, steps to achieve the predicted super-thermal conductivity in BAs are proposed. (C) 2015 AIP Publishing LLC. C1 [Lv, Bing; Lan, Yucheng; Zhang, Qian; Ren, Zhifeng; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Jacobson, Allan J.; Ren, Zhifeng; Chu, Ching-Wu] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Wang, Xiqu; Jacobson, Allan J.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Hu, Yongjie; Chen, Gang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Broido, David] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Chu, Ching-Wu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ren, ZF (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. EM zren@uh.edu; cwchu@uh.edu RI Chen, Gang/J-1325-2014 OI Chen, Gang/0000-0002-3968-8530 FU U.S. Air Force Office of Scientific Research [FA9550-09-1-0656]; T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity at the University of Houston; Robert A Welch Foundation [E0024]; Solid State Solar Thermal Energy Conversion Center (S3TEC); Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-SC0001299] FX The work in Houston was supported in part by U.S. Air Force Office of Scientific Research Grant No. FA9550-09-1-0656, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston. B. Lv also acknowledges the New Faculty Award by University of Houston. X.W. and A.J.J. thank the Robert A Welch Foundation (Grant No. E0024) for support. This work is also partly supported by "Solid State Solar Thermal Energy Conversion Center (S3TEC)", an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under award number DE-SC0001299 (D.B. for simulation and G.C. for pump-probe). NR 20 TC 3 Z9 3 U1 8 U2 58 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 16 PY 2015 VL 106 IS 7 AR 074105 DI 10.1063/1.4913441 PG 4 WC Physics, Applied SC Physics GA CC3EE UT WOS:000350227300064 ER PT J AU Zohar, S Choi, Y Love, DM Mansell, R Barnes, CHW Keavney, DJ Rosenberg, RA AF Zohar, S. Choi, Y. Love, D. M. Mansell, R. Barnes, C. H. W. Keavney, D. J. Rosenberg, R. A. TI Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields SO APPLIED PHYSICS LETTERS LA English DT Article ID MICROSCOPY; CO/CR; FILMS AB We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima. (C) 2015 AIP Publishing LLC. C1 [Zohar, S.; Choi, Y.; Keavney, D. J.; Rosenberg, R. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Love, D. M.; Mansell, R.; Barnes, C. H. W.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Zohar, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Mansell, Rhodri/A-1450-2013 OI Mansell, Rhodri/0000-0002-6026-0731 FU European Community under the Seventh Framework Program [247368: 3SPIN]; EPSRC; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX R. M. acknowledges funding from the European Community under the Seventh Framework Program Contract No. 247368: 3SPIN. D.M.L. acknowledges funding from the EPSRC. The work performed at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 18 TC 1 Z9 1 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 16 PY 2015 VL 106 IS 7 AR 072408 DI 10.1063/1.4913359 PG 5 WC Physics, Applied SC Physics GA CC3EE UT WOS:000350227300030 ER PT J AU Zuo, D Liu, RY Wasserman, D Mabon, J He, ZY Liu, S Zhang, YH Kadlec, EA Olson, BV Shaner, EA AF Zuo, Daniel Liu, Runyu Wasserman, Daniel Mabon, James He, Zhao-Yu Liu, Shi Zhang, Yong-Hang Kadlec, Emil A. Olson, Benjamin V. Shaner, Eric A. TI Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors SO APPLIED PHYSICS LETTERS LA English DT Article ID INFRARED DETECTION AB We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures, we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 200 ns, with a vertical diffusivity of 3 x 10(-2) cm(2)/s. We also report on the device's optical response characteristics at 78 K. (C) 2015 AIP Publishing LLC. C1 [Zuo, Daniel; Liu, Runyu; Wasserman, Daniel] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Mabon, James] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [He, Zhao-Yu; Liu, Shi; Zhang, Yong-Hang] Arizona State Univ, Ctr Photon Innovat, Tempe, AZ 85287 USA. [He, Zhao-Yu; Liu, Shi; Zhang, Yong-Hang] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zuo, D (reprint author), Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. EM dzuo@illinois.edu FU Army Research Office Multi-Disciplinary Research Initiative [W911NF-10-1-0524]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was carried out as part of an Army Research Office Multi-Disciplinary Research Initiative under Grant No. W911NF-10-1-0524. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 17 TC 4 Z9 4 U1 6 U2 40 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 16 PY 2015 VL 106 IS 7 AR 071107 DI 10.1063/1.4913312 PG 4 WC Physics, Applied SC Physics GA CC3EE UT WOS:000350227300007 ER PT J AU Schmied, R Fowlkes, JD Winkler, R Rack, PD Plank, H AF Schmied, Roland Fowlkes, Jason D. Winkler, Robert Rack, Phillip D. Plank, Harald TI Fundamental edge broadening effects during focused electron beam induced nanosynthesis SO BEILSTEIN JOURNAL OF NANOTECHNOLOGY LA English DT Article DE focused electron beam induced deposition; nanofabrication; platinum; simulation ID INDUCED DEPOSITION; NANOSCALE; PURIFICATION; RESOLUTION; PLATINUM; NANOSTRUCTURES; SIMULATION; CHEMISTRY; ORIGINS; GROWTH AB The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me-3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. C1 [Schmied, Roland; Winkler, Robert; Plank, Harald] Graz Ctr Electron Microscopy, A-8010 Graz, Austria. [Fowlkes, Jason D.; Rack, Phillip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fowlkes, Jason D.; Rack, Phillip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Plank, Harald] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, A-8010 Graz, Austria. RP Plank, H (reprint author), Graz Ctr Electron Microscopy, A-8010 Graz, Austria. EM harald.plank@felmi-zfe.at OI Rack, Philip/0000-0002-9964-3254 FU COST action CELINA [CM1301]; EUROSTARS project TRIPLE-S [E! 8213]; Center for Nanophase Materials Sciences - DOE Office of Science User Facility FX The authors gratefully acknowledge Prof. Ferdinand Hofer, Prof. Werner Grogger, Prof. Gerald Kothleitner, Prof. Gregor Trimmel and Martina Dienstleder for support. We also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E! 8213). PDR and JDF acknowledge that their contributions (modeling and manuscript preparation) were supported by the Center for Nanophase Materials Sciences which is a DOE Office of Science User Facility. NR 52 TC 4 Z9 4 U1 2 U2 12 PU BEILSTEIN-INSTITUT PI FRANKFURT AM MAIN PA TRAKEHNER STRASSE 7-9, FRANKFURT AM MAIN, 60487, GERMANY SN 2190-4286 J9 BEILSTEIN J NANOTECH JI Beilstein J. Nanotechnol. PD FEB 16 PY 2015 VL 6 BP 462 EP 471 DI 10.3762/bjnano.6.47 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CC2HU UT WOS:000350166900001 PM 25821687 ER PT J AU Huijben, M Liu, YH Boschker, H Lauter, V Egoavil, R Verbeeck, J te Velthuis, SGE Rijnders, G Koster, G AF Huijben, Mark Liu, Yaohua Boschker, Hans Lauter, Valeria Egoavil, Ricardo Verbeeck, Jo te Velthuis, Suzanne G. E. Rijnders, Guus Koster, Gertjan TI Enhanced Local Magnetization by Interface Engineering in Perovskite-Type Correlated Oxide Heterostructures SO ADVANCED MATERIALS INTERFACES LA English DT Article DE epitaxy; interface engineering; magnetism; oxide heterostructures; perovskite ID LAALO3/SRTIO3; REFLECTOMETER; FILMS; ORDER C1 [Huijben, Mark; Boschker, Hans; Rijnders, Guus; Koster, Gertjan] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands. [Huijben, Mark; Boschker, Hans; Rijnders, Guus; Koster, Gertjan] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Liu, Yaohua; te Velthuis, Suzanne G. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Boschker, Hans] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Lauter, Valeria] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Egoavil, Ricardo; Verbeeck, Jo] Univ Antwerp, Electron Microscopy Mat Sci EMAT, B-2020 Antwerp, Belgium. RP Huijben, M (reprint author), Univ Twente, Fac Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands. EM m.huijben@utwente.nl RI Liu, Yaohua/B-2529-2009; te Velthuis, Suzanne/I-6735-2013; Boschker, Hans/N-1834-2015 OI Liu, Yaohua/0000-0002-5867-5065; te Velthuis, Suzanne/0000-0002-1023-8384; Boschker, Hans/0000-0003-3533-9867 FU Dutch Science Foundation (NWO); Dutch Nanotechnology programme NanoNed; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Hercules fund from the Flemish Government; European Research Council; ERC [246791, 278510 VORTEX]; European Union Council [NMP3-LA-2010-246102 IFOX]; Integrated Infrastructure Initiative [312483-ESTEEM2]; Fund for Scientific Research Flanders [G.0044.13N] FX This work is supported by the Dutch Science Foundation (NWO) and the Dutch Nanotechnology programme NanoNed. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division. Part of the research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. H.B. gratefully acknowledges discussions with E. Benckiser. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. The electron microscopy part of the work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791 - COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. Funding from the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX and the contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2 is also acknowledged. The Fund for Scientific Research Flanders is acknowledged for FWO Project No. G.0044.13N. NR 40 TC 4 Z9 4 U1 6 U2 48 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD FEB 16 PY 2015 VL 2 IS 3 AR 1400416 DI 10.1002/admi.201400416 PG 7 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB8XP UT WOS:000349916000001 ER PT J AU Kwon, BS Zhang, W Li, Z Krishnan, KM AF Kwon, Byung Seok Zhang, Wei Li, Zheng Krishnan, Kannan M. TI Direct Release of Sombrero-Shaped Magnetite Nanoparticles via Nanoimprint Lithography SO ADVANCED MATERIALS INTERFACES LA English DT Article DE biocompatible magnetite; magnetic properties; nanoimprint lithography; nanoparticles; sombrero element arrays ID FE3O4 NANOPARTICLES; TEMPERATURE; SENSITIVITY C1 [Kwon, Byung Seok; Li, Zheng; Krishnan, Kannan M.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Zhang, Wei] Argonne Natl Lab, Lemont, IL 60439 USA. RP Krishnan, KM (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM kannanmk@uw.edu RI Zhang, Wei/G-1523-2012 OI Zhang, Wei/0000-0002-5878-3090 FU NSF-DMR [1063489] FX This work was supported by NSF-DMR 1063489. The authors thank Dr. Yufeng Hou and Andrew Lingley for helpful discussions. Nanoimprint work was done at the MFF at the University of Washington. NR 26 TC 2 Z9 2 U1 3 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD FEB 16 PY 2015 VL 2 IS 3 AR 1400511 DI 10.1002/admi.201400511 PG 6 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB8XP UT WOS:000349916000008 ER PT J AU Que, YD Zhang, Y Wang, YL Huang, L Xu, WY Tao, J Wu, LJ Zhu, YM Kim, K Weinl, M Schreck, M Shen, CM Du, SX Liu, YQ Gao, HJ AF Que, Yande Zhang, Yong Wang, Yeliang Huang, Li Xu, Wenyan Tao, Jing Wu, Lijun Zhu, Yimei Kim, Kisslinger Weinl, Michael Schreck, Matthias Shen, Chengmin Du, Shixuan Liu, Yunqi Gao, H. -J. TI Graphene-Silicon Layered Structures on Single-Crystalline Ir(111) Thin Films SO ADVANCED MATERIALS INTERFACES LA English DT Article DE graphene-silicon; intercalation; Ir(111); layered structures; single-crystalline thin films ID EPITAXIAL GRAPHENE; RU(0001) C1 [Que, Yande; Zhang, Yong; Wang, Yeliang; Huang, Li; Xu, Wenyan; Shen, Chengmin; Du, Shixuan; Gao, H. -J.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Que, Yande; Zhang, Yong; Wang, Yeliang; Huang, Li; Xu, Wenyan; Shen, Chengmin; Du, Shixuan; Gao, H. -J.] Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100190, Peoples R China. [Huang, Li; Liu, Yunqi] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China. [Tao, Jing; Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kim, Kisslinger] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Weinl, Michael; Schreck, Matthias] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany. RP Gao, HJ (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM hjgao@iphy.ac.cn RI Du, Shixuan/K-7145-2012; WANG, Yeliang/D-9643-2012; Schreck, Matthias/P-9695-2016; Que, Yande/N-9556-2013 OI Du, Shixuan/0000-0001-9323-1307; Schreck, Matthias/0000-0003-1805-6929; Que, Yande/0000-0002-5267-4985 FU MOST [2013CBA01600, 2011CB932700, 2011CB921702]; NSFC [61390501, 61222112]; Chinese Academy of Sciences in China [1731300500015, XDB07030100]; DOE BES; Materials Sciences and Engineering Division [DE-AC02-98CH10886]; Center for Functional Nanomaterials FX Y.Q., Y.Z., and Y.W. contributed equally to this work. The work was financially supported by grants from MOST (Nos. 2013CBA01600, 2011CB932700, and 2011CB921702), NSFC (Nos. 61390501 and 61222112), and Chinese Academy of Sciences (Nos. 1731300500015 and XDB07030100) in China. The work done at Brookhaven National Laboratory was supported by the DOE BES, by the Materials Sciences and Engineering Division under Contract No. DE-AC02-98CH10886, and through the use of the Center for Functional Nanomaterials. NR 23 TC 3 Z9 3 U1 5 U2 51 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD FEB 16 PY 2015 VL 2 IS 3 AR 1400543 DI 10.1002/admi.201400543 PG 5 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB8XP UT WOS:000349916000011 ER PT J AU Hall, LJ Ruderman, JT Volansky, T AF Hall, Lawrence J. Ruderman, Joshua T. Volansky, Tomer TI A cosmological upper bound on superpartner masses SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Supersymmetric Standard Model ID DARK-MATTER; STANDARD MODEL; GRAVITINO; SUPERSYMMETRY; CONSTRAINTS; DECAY; BOSON; LHC AB If some superpartners were in thermal equilibrium in the early universe, and if the lightest superpartner is a cosmologically stable gravitino, then there is a powerful upper bound on the scale of the superpartner masses. Typically the bound is below tens of TeV, often much lower, and has similar parametrics to the WIMP miracle. C1 [Hall, Lawrence J.; Ruderman, Joshua T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hall, Lawrence J.; Ruderman, Joshua T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Ruderman, Joshua T.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Volansky, Tomer] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Hall, LJ (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. EM ljhall@lbl.gov; ruderman@nyu.edu; tomerv@post.tau.ac.il FU US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0457315, PHY-0855653]; Miller Institute for Basic Research in Science; Israel Science Foundation; US-Israel Binational Science Foundation; EU-FP7 Marie Curie, CIG fellowship FX We thank Csaba Csaki, Maxim Perelstein, and Raman Sundrum for helpful conversations. We also thank the Galileo Galilei Institute for Theoretical Physics for hospitality when this work was initiated. This work was supported in part by the US Department of Energy under Contract DE-AC02-05CH11231 and by the National Science Foundation under grants PHY-0457315 and PHY-0855653. J.T.R. was supported by a fellowship from the Miller Institute for Basic Research in Science. T.V. is supported in part by a grant from the Israel Science Foundation, the US-Israel Binational Science Foundation, and the EU-FP7 Marie Curie, CIG fellowship. NR 42 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 16 PY 2015 IS 2 AR 094 DI 10.1007/JHEP02(2015)094 PG 13 WC Physics, Particles & Fields SC Physics GA CB7TK UT WOS:000349830600003 ER PT J AU Poust, S Phelan, RM Deng, K Katz, L Petzold, CJ Keasling, JD AF Poust, Sean Phelan, Ryan M. Deng, Kai Katz, Leonard Petzold, Christopher J. Keasling, Jay D. TI Divergent Mechanistic Routes for the Formation of gem-Dimethyl Groups in the Biosynthesis of Complex Polyketides SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE biosynthesis; dimethylmalonyl-ACP; methylation; polyketides; transferases ID YERSINIABACTIN SYNTHETASE; MASS-SPECTROMETRY; HYDROLYSIS; SYNTHASES; DOMAINS; MODULE; LOGIC; ACYL AB The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSs are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation. C1 [Poust, Sean; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94270 USA. [Phelan, Ryan M.; Deng, Kai; Petzold, Christopher J.; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Oakland, CA 94608 USA. [Katz, Leonard; Keasling, Jay D.] Synthet Biol Engn Res Ctr, Emeryville, CA 94608 USA. RP Petzold, CJ (reprint author), Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, 5885 Hollis St, Oakland, CA 94608 USA. EM keasling@berkeley.edu FU Joint BioEnergy Institute - Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0540879]; Department of Energy, ARPA-E Electrofuels Program [DE-0000206-1577]; National Science Foundation Graduate Research Fellowship Program [DGE 1106400] FX The authors would like to thank Isu Yoon for assistance with protein purification and Satoshi Yuzawa for helpful discussions. This work was supported by the Joint BioEnergy Institute, which is funded by the Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231), by the National Science Foundation (award No. EEC-0540879 to the Synthetic Biology Research Center), by the Department of Energy, ARPA-E Electrofuels Program (Contract No. DE-0000206-1577), and by the National Science Foundation Graduate Research Fellowship Program (Grant No. DGE 1106400, to SP). NR 20 TC 10 Z9 10 U1 0 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 16 PY 2015 VL 54 IS 8 BP 2370 EP 2373 DI 10.1002/anie.201410124 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CC1KQ UT WOS:000350100000009 PM 25564997 ER PT J AU Goldman, N AF Goldman, Nir TI Multi-center semi-empirical quantum models for carbon under extreme thermodynamic conditions SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TIGHT-BINDING MODEL; DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS SIMULATION; POTENTIAL-ENERGY SURFACE; EXTENDED BASIS-SET; COMPLEX MATERIALS; 3-BODY REPULSION; PHASE; WATER; SYSTEMS AB We report on the development of many-body density functional tight binding (DFTB) models for carbon, which include either explicit or implicit calculation of multi-center terms in the Hamiltonian. We show that all of our methods yield accurate eigenstates and eigenfunctions for both ambient diamond and transitions to molten, metallic states. We then determine a three-body repulsive energy to compute accurate equation of state and structural properties for carbon under these conditions. Our results indicate a straightforward approach by which many-body effects can be included in DFTB, thus extending the method to a wide variety of systems and thermodynamic conditions. (c) 2014 Published by Elsevier B.V. C1 Lawrence Livermore Natl Lab, Div Mat Sci, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ngoldman@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development grant [12-ERD-052] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was funded by Laboratory Directed Research and Development grant # 12-ERD-052. Computations were performed at LLNL using the Aztec, Sierra, and Cab massively parallel computers. NR 78 TC 4 Z9 4 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 16 PY 2015 VL 622 BP 128 EP 136 DI 10.1016/j.cplett.2014.11.037 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB5TJ UT WOS:000349690200024 ER PT J AU Sajna, K Fracaroli, AM Yaghi, OM Tashiro, K AF Sajna, Kappamveettil Fracaroli, Alejandro M. Yaghi, Omar M. Tashiro, Kentaro TI Modular Synthesis of Metal-Organic Complex Arrays Containing Precisely Designed Metal Sequences SO INORGANIC CHEMISTRY LA English DT Article ID ACETYLIDES AB A modular synthetic approach is reported for the synthesis of heterometallic metalorganic complex arrays (MOCAs). Modules of four metal centers containing three different metals copper(II), nickel(II), platinum(II), or ruthenium(II) are prepared using a solid-phase polypeptide synthesis technique and then linked in solution to make MOCAs of eight metal centers as linear, T-branched, and H-branched compounds. The MOCA molecular topologies thus have specific unique linear and branched sequences of metals along the peptide backbone. C1 [Sajna, Kappamveettil; Fracaroli, Alejandro M.; Yaghi, Omar M.; Tashiro, Kentaro] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan. [Fracaroli, Alejandro M.; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA. [Fracaroli, Alejandro M.; Yaghi, Omar M.] Univ Calif Berkeley, Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA. RP Yaghi, OM (reprint author), Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. EM yaghi@berkeley.edu; Tashiro.Kentaro@nims.go.jp OI Yaghi, Omar/0000-0002-5611-3325 FU World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics; MEXT, Japan [24685020]; BASF SE (Ludwigshafen, Germany) FX This work was partly supported by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics and a Grant-in-Aid for Young Scientists (A) (Grant 24685020) from MEXT, Japan, and BASF SE (Ludwigshafen, Germany). NR 6 TC 3 Z9 3 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 16 PY 2015 VL 54 IS 4 BP 1197 EP 1199 DI 10.1021/ic5025372 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CB5GX UT WOS:000349656600005 PM 25602193 ER PT J AU Tian, GX Zhang, ZY Martin, LR Rao, LF AF Tian, Guoxin Zhang, Zhiyong Martin, Leigh R. Rao, Linfeng TI Complexation of Curium(III) with DTPA at 10-70 degrees C: Comparison with Eu(III)-DTPA in Thermodynamics, Luminescence, and Coordination Modes SO INORGANIC CHEMISTRY LA English DT Article ID DIETHYLENETRIAMINEPENTAACETIC ACID; TRIVALENT ACTINIDES; CRYSTAL-STRUCTURES; DONOR LIGANDS; EXTRACTION; CONSTANTS; CM(III); SEPARATIONS; LANTHANIDES; HYDROLYSIS AB Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of the nearly identical chemical properties of these groups. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 degrees C was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy of complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA. C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Zhang, Zhiyong] Stanford Univ, Stanford Res Comp Ctr, Stanford, CA 94305 USA. [Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM LRao@lbl.gov RI Martin, Leigh/P-3167-2016 OI Martin, Leigh/0000-0001-7241-7110 FU Fuel Research and Development Program of Office of Nuclear Energy (NE FCRD); Heavy Element Chemistry Program of the Office of Basic Energy Sciences, Office of Science, the U.S. Department of Energy (DOE) at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Stanford Research Computing Center of Stanford University; DOE NE FCR&D Thermodynamics and Kinetics program under U.S. DOE Idaho Operations Office [DE-AC07-05ID14517] FX The experimental work and the DFT calculations were supported, respectively, by the Fuel Research and Development Program of Office of Nuclear Energy (NE FCR&D) and by the Heavy Element Chemistry Program of the Office of Basic Energy Sciences, Office of Science, the U.S. Department of Energy (DOE), under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Z.Z. acknowledges the computational resources and support from the Stanford Research Computing Center of Stanford University. L.R.M. acknowledges the support from DOE NE FCR&D Thermodynamics and Kinetics program, under U.S. DOE Idaho Operations Office Contract No. DE-AC07-05ID14517 while preparing this manuscript. We are grateful to the anonymous reviewers whose comments have helped to improve the manuscript. NR 43 TC 3 Z9 3 U1 9 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 16 PY 2015 VL 54 IS 4 BP 1232 EP 1239 DI 10.1021/ic5016934 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CB5GX UT WOS:000349656600014 PM 25654313 ER PT J AU Martin-Diaconescu, V Gennari, M Gerey, B Tsui, E Kanady, J Tran, R Pecaut, J Maganas, D Krewald, V Goure, E Duboc, C Yano, J Agapie, T Collomb, MN DeBeer, S AF Martin-Diaconescu, Vlad Gennari, Marcello Gerey, Bertrand Tsui, Emily Kanady, Jacob Tran, Rosalie Pecaut, Jacques Maganas, Dimitrios Krewald, Vera Goure, Eric Duboc, Carole Yano, Junko Agapie, Theodor Collomb, Marie-Noelle DeBeer, Serena TI Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; OXYGEN-EVOLVING COMPLEX; IMPROVED RELAXATION EFFICIENCY; HEPTADENTATE TRIPODAL LIGAND; REDOX-INACTIVE METALS; HIGH-RESOLUTION XANES; EMISSION-SPECTROSCOPY; ELECTRONIC-STRUCTURE; PHOTOSYSTEM-II AB Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodology to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed. C1 [Martin-Diaconescu, Vlad; Maganas, Dimitrios; Krewald, Vera; DeBeer, Serena] Max Planck Inst Chem Energy Convers, D-45470 Mulheim, Germany. [Gennari, Marcello; Gerey, Bertrand; Goure, Eric; Duboc, Carole; Collomb, Marie-Noelle] Univ Grenoble Alpes, DCM, F-38000 Grenoble, France. [Gennari, Marcello; Gerey, Bertrand; Goure, Eric; Duboc, Carole; Collomb, Marie-Noelle] CNRS, DCM, F-38000 Grenoble, France. [Tsui, Emily; Kanady, Jacob; Agapie, Theodor] CALTECH, Dept Chem, Pasadena, CA 91125 USA. [Tran, Rosalie; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Pecaut, Jacques] CEA Grenoble, INAC, SCIB, Lab Reconnaissance Ion & Chim Coordinat LCIB, F-38054 Grenoble 9, France. [DeBeer, Serena] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. RP DeBeer, S (reprint author), Max Planck Inst Chem Energy Convers, Stiftstr 34-36, D-45470 Mulheim, Germany. EM serena.debeer@cec.mpg.de RI Krewald, Vera/H-2369-2015; Martin-Diaconescu, Vlad/I-9349-2012; duboc, carole/E-8455-2014; Maganas, Dimitrios/E-9031-2013; DeBeer, Serena/G-6718-2012; Gennari, Marcello/G-7755-2014 OI Krewald, Vera/0000-0002-4749-4357; Martin-Diaconescu, Vlad/0000-0002-7575-2237; duboc, carole/0000-0002-9415-198X; Maganas, Dimitrios/0000-0002-1550-5162; Gerey, Bertrand/0000-0003-2012-8311; Gennari, Marcello/0000-0001-5205-1123 FU Max Planck Society; Sloan Fellowship; Universite Joseph Fourier of Grenoble; ICMG [FR 2067]; COST [CM1202]; LABEX ARCANE [ANR-11-LABX-0003-01]; French National Research Agency [ANR-09-JCJC-0087, ANR-13-BS07-0015-01]; NIH [R01 GM102687A, F32GM100595]; Dreyfus fellowship; Cottrell fellowship; NSF (GRFP); Sandia National Laboratory; Office of Basic Energy Science (OBES), Division of Chemical Sciences, Geosciences, and Biosciences, DOE [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX V.M.-D., D.M, V.K, and S.D. acknowledge the Max Planck Society for funding. S.D. acknowledges a Sloan Fellowship. B.G. thanks the "Universite Joseph Fourier of Grenoble" for his Ph.D. grant. The Authors acknowledge support from ICMG FR 2067, COST CM1202 program (PERSPECT H2O), LABEX ARCANE (ANR-11-LABX-0003-01), the French National Research Agency (ANR-09-JCJC-0087 (MANGACOM), and ANR-13-BS07-0015-01 (MnCaOEC)) for financial support including M.G.'s and E.G.'s fellowships. We are grateful to the NIH (R01 GM102687A to TA); Dreyfus, Sloan, and Cottrell fellowships (TA); the NSF (GRFP to J.K. and E.T.); and Sandia National Laboratory (fellowship to E.T.) for funding. A portion of the XAS work was supported by NIH Grant F32GM100595 (R.T.), and by the Director of the Office of Basic Energy Science (OBES), Division of Chemical Sciences, Geosciences, and Biosciences, DOE, under contract DE-AC02-05CH11231 (J.Y). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Parts of this research were carried out at the light source DORIS at DESY, a member of the Helmholtz Association (HGF). We would like to thank Dr. Edmund Welter for assistance in using beamline A.1. NR 94 TC 7 Z9 7 U1 13 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 16 PY 2015 VL 54 IS 4 BP 1283 EP 1292 DI 10.1021/ic501991e PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CB5GX UT WOS:000349656600018 PM 25492398 ER PT J AU Yang, CY Li, Y Zhou, B Zhou, YY Zheng, W Tian, Y Van Nostrand, JD Wu, LY He, ZL Zhou, JZ Zheng, TL AF Yang, Caiyun Li, Yi Zhou, Benjamin Zhou, Yanyan Zheng, Wei Tian, Yun Van Nostrand, Joy D. Wu, Liyou He, Zhili Zhou, Jizhong Zheng, Tianling TI Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China SO SCIENTIFIC REPORTS LA English DT Article ID DISSOLVED ORGANIC-MATTER; PHYTOPLANKTON BLOOM; SP-NOV.; MARINE-PHYTOPLANKTON; ALEXANDRIUM-TAMARENSE; DIATOM BLOOM; COCHLODINIUM-POLYKRIKOIDES; CHATTONELLA-ANTIQUA; WATER SYSTEMS; ALGAL BLOOMS AB Although phytoplankton are the major source of marine dissolved organic matter (DOM), their blooms are a global problem that can greatly affect marine ecological systems, especially free-living bacteria, which are the primary DOM degraders. In this study, we analyzed free-living bacterial communities from Xiamen sea during an Akashiwo sanguine bloom using Illumina MiSeq sequencing of 16S rRNA gene amplicons. The bloom was probably stimulated by low salinity and ended after abatement of eutrophication pollution. A total of 658,446 sequence reads and 11,807 OTUs were obtained in both bloom and control samples with Alpha-proteobacteria and Gamma-proteobacteria being the predominant classes detected. The bloom decreased bacterial diversity, increased species evenness, and significantly changed the bacterial community structure. Bacterial communities within the bloom were more homogeneous than those within the control area. The bacteria stimulated by this bloom included the SAR86 and SAR116 clades and the AEGEAN-169 marine group, but a few were suppressed. In addition, many bacteria known to be associated with phytoplankton were detected only in the bloom samples. This study revealed the great influence of an A. sanguinea bloom on free-living bacterial communities, and provided new insights into the relationship between bacteria and A. sanguinea in marine ecosystems. C1 [Yang, Caiyun; Li, Yi; Zhou, Yanyan; Zheng, Wei; Tian, Yun; Zheng, Tianling] Xiamen Univ, Sch Life Sci, State Key Lab Marine Environm Sci, Minist Educ Coastal & Wetland Ecosyst, Xiamen 361005, Peoples R China. [Yang, Caiyun; Li, Yi; Zhou, Yanyan; Zheng, Wei; Tian, Yun; Zheng, Tianling] Xiamen Univ, Sch Life Sci, Key Lab, Minist Educ Coastal & Wetland Ecosyst, Xiamen 361005, Peoples R China. [Zhou, Benjamin] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA. [Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73072 USA. [Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73072 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China. RP Zheng, TL (reprint author), Xiamen Univ, Sch Life Sci, State Key Lab Marine Environm Sci, Minist Educ Coastal & Wetland Ecosyst, Xiamen 361005, Peoples R China. EM jzhou@ou.edu; wshwzh@xmu.edu.cn RI Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 FU Natural Science Foundation of China [41376119, 40930847]; Public Science and Technology Research Funds for Ocean Projects [201305016, 201305022]; Program for Changjiang Scholars and Innovative Research Team in University [41121091] FX The Natural Science Foundation of China (41376119, 40930847), the Public Science and Technology Research Funds for Ocean Projects (201305016, 201305022) and the Program for Changjiang Scholars and Innovative Research Team in University (41121091) are gratefully acknowledged. Professor John Hodgkiss of The University of Hong Kong is thanked for his assistance with English. NR 87 TC 14 Z9 15 U1 7 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 16 PY 2015 VL 5 AR 8476 DI 10.1038/srep08476 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB1AL UT WOS:000349358700015 PM 25684124 ER PT J AU Laskin, J Futrell, JH AF Laskin, Julia Futrell, Jean H. TI New approach for studying slow fragmentation kinetics in FT-ICR: Surface-induced dissociation combined with resonant ejection SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Surface-induced dissociation; RRKM; Resonant ejection; Energy deposition function; FT-ICR; Peptide fragmentation ID INFRARED RADIATIVE DISSOCIATION; TRANSFORM MASS-SPECTROMETRY; COLLISION-INDUCED DISSOCIATION; PEPTIDE RADICAL CATIONS; ENERGY-EXCHANGE LIMIT; GAS-PHASE; PROTONATED PEPTIDES; UNIMOLECULAR DISSOCIATION; MULTIPHOTON DISSOCIATION; VANCOMYCIN ANTIBIOTICS AB We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65-95 eV. The kinetics of peptide fragmentation are probed by varying the delay time between ion activation by collision and short (5 ms) resonant ejection of selected fragment ions at a constant total reaction time of 150 ms. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels. (C) 2014 Elsevier B.V. All rights reserved. C1 [Laskin, Julia; Futrell, Jean H.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division. The research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 66 TC 2 Z9 2 U1 8 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 15 PY 2015 VL 378 SI SI BP 160 EP 168 DI 10.1016/j.ijms.2014.07.029 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG2HH UT WOS:000353095000019 ER PT J AU Lockyear, JF Fournier, M Sims, IR Guillemin, JC Taatjes, CA Osborn, DL Leone, SR AF Lockyear, Jessica F. Fournier, Martin Sims, Ian R. Guillemin, Jean-Claude Taatjes, Craig A. Osborn, David L. Leone, Stephen R. TI Formation of fulvene in the reaction of C2H with 1,3-butadiene SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Combustion chemistry; Astrochemistry; Fulvene; Benzene; Polycyclic aromatic Hydrocarbons; Photoionization ID SET MODEL CHEMISTRY; PRODUCT BRANCHING RATIOS; ETHYNYL RADICAL C2H; AROMATIC-COMPOUNDS; INTERSTELLAR-MEDIUM; PROPARGYL RADICALS; REACTION-MECHANISM; ALLENE CH2=C=CH2; ALIPHATIC FUELS; CROSS-SECTIONS AB Products formed in the reaction of C2H radicals with 1,3-butadiene at 4 Torr and 298 K are probed using photoionization time-of-flight mass spectrometry. The reaction takes place in a slow-flow reactor, and products are ionized by tunable vacuum-ultraviolet light from the Advanced Light Source. The principal reaction channel involves addition of the radical to one of the unsaturated sites of 1,3-butadiene, followed by H-loss to give isomers of C6H6. The photoionization spectrum of the C6H6 product indicates that fulvene is formed with a branching fraction of (57 +/- 30)%. At least one more isomer is formed, which is likely to be one or more of 3,4-dimethylenecyclobut-1-ene, 3-methylene-1-penten-4-yne or 3-methyl-1,2-pentadien-4-yne. An experimental photoionization spectrum of 3,4-dimethylenecyclobut-1-ene and simulated photoionization spectra of 3-methylene-1-penten-4-yne and 3-methyl-1,2-pentadien-4-yne are used to fit the measured data and obtain maximum branching fractions of 74%, 24% and 31%, respectively, for these isomers. An upper limit of 45% is placed on the branching fraction for the sum of benzene and 1,3-hexadien-5-yne. The reactive potential energy surface is also investigated computationally. Minima and first-order saddle-points on several possible reaction pathways to fulvene +H and 3,4-dimethylenecyclobut-1-ene + H products are calculated. Published by Elsevier B.V. C1 [Lockyear, Jessica F.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lockyear, Jessica F.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lockyear, Jessica F.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fournier, Martin; Sims, Ian R.] Univ Rennes 1, Inst Phys Rennes, UMR CNRS UR1 6251, F-35042 Rennes, France. [Fournier, Martin; Taatjes, Craig A.] Ecole Natl Super Chim Rennes, CNRS UMR 6226, CS 50837, F-35708 Rennes 7, France. [Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jess.lockyear@gmail.com; srl@berkeley.edu RI Sims, Ian/F-8989-2014; Dep. Molecular Physics, Team/B-5839-2016; OI Sims, Ian/0000-0001-7870-1585; Guillemin, Jean-Claude/0000-0002-2929-057X; Fournier, Martin/0000-0002-8771-3913 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-ACO3-76SF0098]; France Berkeley Fund; Universite de Rennes 1; France-Berkeley Fund; Centre National d'Etudes Spatiales (CNES); Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences (BES); United States Department of Energy (DOE); Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration [DE-AC04-94AL85000]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; DOE FX S.R.L. and J.F.L. are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-ACO3-76SF0098 at Lawrence Berkeley National Laboratory. M.F. thanks the I.R.S. acknowledges the France Berkeley Fund and the Universite de Rennes 1 and the France-Berkeley Fund for financial support to enable his stay at the Advanced Light Source. I.R.S. acknowledges the Universite de Rennes I. J.-C.G. thanks the Centre National d'Etudes Spatiales (CNES) for financial support. Sandia authors, and the development and maintenance of the multiplexed photoionization mass spectrometry kinetics experiment, were funded by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences (BES), United States Department of Energy (DOE). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration, under contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, BES/DOE, under contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the DOE. NR 65 TC 5 Z9 5 U1 5 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 15 PY 2015 VL 378 SI SI BP 232 EP 245 DI 10.1016/j.ijms.2014.08.025 PG 14 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG2HH UT WOS:000353095000029 ER PT J AU Frelin, O Huang, LL Hasnain, G Jeffryes, JG Ziemak, MJ Rocca, JR Wang, B Rice, J Roje, S Yurgel, SN Gregory, JF Edison, AS Henry, CS de Crecy-Lagard, V Hanson, AD AF Frelin, Oceane Huang, Lili Hasnain, Ghulam Jeffryes, James G. Ziemak, Michael J. Rocca, James R. Wang, Bing Rice, Jennifer Roje, Sanja Yurgel, Svetlana N. Gregory, Jesse F., III Edison, Arthur S. Henry, Christopher S. de Crecy-Lagard, Valerie Hanson, Andrew D. TI A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis SO BIOCHEMICAL JOURNAL LA English DT Article DE Arabidopsis thaliana; Maillard cascade; metabolite damage; Vibrio vulnificus; vitamin B2; Zea mays ID BIFUNCTIONAL DEAMINASE-REDUCTASE; GTP CYCLOHYDROLASE-II; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; SACCHAROMYCES-CEREVISIAE; MAILLARD REACTIONS; SYNTHASE COMPLEX; ENZYME; IDENTIFICATION; PURIFICATION AB Plants and bacteria synthesize the essential human micronutrient riboflavin (vitaminB2) via the same multi-step pathway. The early intermediates of this pathway are notoriously reactive and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. In the present paper, we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA respectively). We present cheminformatic, biochemical, genetic and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multi-enzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites. C1 [Frelin, Oceane; Hasnain, Ghulam; Ziemak, Michael J.; Hanson, Andrew D.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. [Huang, Lili; Gregory, Jesse F., III] Univ Florida, Dept Food Sci & Human Nutr, Gainesville, FL 32611 USA. [Jeffryes, James G.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Jeffryes, James G.; Henry, Christopher S.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Rocca, James R.] Univ Florida, AMRIS Facil, McKnight Brain Inst, Gainesville, FL 32611 USA. [Wang, Bing; Edison, Arthur S.] Univ Florida, Dept Biochem & Mol Biol, Gainesville, FL 32611 USA. [Rice, Jennifer; Roje, Sanja; Yurgel, Svetlana N.] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. [Henry, Christopher S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [de Crecy-Lagard, Valerie] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA. RP Hanson, AD (reprint author), Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. EM adha@ufl.edu OI Gregory, Jesse/0000-0002-9976-2085; Jeffryes, James/0000-0001-9157-2044 FU US National Science Foundation [MCB-1153413, MCB-1153357]; C.V. Griffin Sr. Foundation; NSF National High Magnetic Field Laboratory User Program in the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility in the University of Florida McKnight Brain Institute; Southeast Center for Integrated Metabolomics [NIH 1U24DK097209-01A1]; National Science Foundation [IOS-1025398] FX This work was funded by the US National Science Foundation ([grant numbers MCB-1153413 (to A. D. H.) and MCB-1153357 (to C. S. H.)]; the C.V. Griffin Sr. Foundation; NMR studies were supported by the NSF National High Magnetic Field Laboratory User Program in the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility in the University of Florida McKnight Brain Institute; NMR data analysis and interpretation were supported by the Southeast Center for Integrated Metabolomics [grant number NIH 1U24DK097209-01A1]; and flavin analyses were supported by the National Science Foundation [grant number IOS-1025398]. NR 55 TC 12 Z9 17 U1 1 U2 19 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0264-6021 EI 1470-8728 J9 BIOCHEM J JI Biochem. J. PD FEB 15 PY 2015 VL 466 BP 137 EP 145 DI 10.1042/BJ20141237 PN 1 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CE2XW UT WOS:000351686300014 PM 25431972 ER PT J AU Wang, SJ Liu, XB Gates, S AF Wang, Shaojie Liu, Xiaobing Gates, Steve TI Comparative study of control strategies for hybrid GSHP system in the cooling dominated climate SO ENERGY AND BUILDINGS LA English DT Article DE Hybrid GSHP; Heat rejection; Entering fluid temperature; Control strategy AB The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7 [1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the reduced size well field. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wang, Shaojie] ClimateMaster, Oklahoma City, OK 73179 USA. [Liu, Xiaobing] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Gates, Steve] Jeff Hirsch & Associates, Camarillo, CA USA. RP Wang, SJ (reprint author), ClimateMaster, 7300 SW 44th St, Oklahoma City, OK 73179 USA. EM wsjsxn@gmail.com FU U.S. Department of Energy [DE-EE002799] FX This work is based upon work supported by the U.S. Department of Energy under Award No. DE-EE002799. NR 9 TC 2 Z9 2 U1 3 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 15 PY 2015 VL 89 BP 222 EP 230 DI 10.1016/j.enbuild.2014.12.054 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CC9QT UT WOS:000350706400022 ER PT J AU Elezovic, NR Ercius, P Kovac, J Radmilovic, VR Babic, BM Krstajic, NV AF Elezovic, N. R. Ercius, P. Kovac, J. Radmilovic, V. R. Babic, B. M. Krstajic, N. V. TI Synthesis and characterization of Pt nanocatalyst on Ru0.7Ti0.3O2 support as a cathode for fuel cells application SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Ruthenium oxide based support; Titanium oxide support; Pt nanocatalyst; Oxygen reduction reaction; Acid solution ID OXYGEN REDUCTION REACTION; CARBON; CATALYSTS; ELECTROCATALYSTS; ELECTRODE; ELECTROREDUCTION; DURABILITY; MECHANISM; EVOLUTION; SURFACES AB Ruthenium oxide/titanium oxide, with a Ru:Ti atomic ratio of 7:3 was synthesized by modified sol-gel procedure and used as a support for platinum nanocatalyst for oxygen reduction reaction. The synthesized materials were characterized in terms of morphology, particle size distribution, chemical and phase composition by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high angle annular dark filed scanning transmission electron microscopy (HAADF, STEM) and electron energy loss spectroscopy (EELS). XPS spectra revealed that Ru atoms were in mainly in Ru(4+) oxidation state, the Ti atoms in Ti(4+) oxidation state, whereas the Pt-atoms were in metallic state. TEM analysis proved that platinum nanoparticles nucleated at both oxide species and homogeneous distribution was observed. The average platinum nanoparticle size was 3.05 nm. Electrochemically active surface area of platinum was 32 m(2) g(-1). Kinetics of the oxygen reduction was studied at rotating disc electrode in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The catalytic activities expressed in terms of specific activity (per electrochemically active surface area of platinum) and mass activity (per mass of platinum) were determined and compared to Pt catalyst on carbon support. The high catalytic activity was proven by electrochemical characterization. (C) 2014 Elsevier B.V. All rights reserved. C1 [Elezovic, N. R.] Univ Belgrade, Inst Multidisciplinary Res, Belgrade, Serbia. [Ercius, P.] LBNL Univ Calif, Natl Ctr Electron Microscopy, Berkeley, CA USA. [Kovac, J.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Radmilovic, V. R.; Krstajic, N. V.] Univ Belgrade, Fac Technol & Met, Belgrade 11000, Serbia. [Babic, B. M.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. RP Elezovic, NR (reprint author), Univ Belgrade, Inst Multidisciplinary Res, Kneza Viseslava 1, Belgrade, Serbia. EM nelezovic@tmf.bg.ac.rs FU Ministry of Education, Science and Technological Development Republic of Serbia [172054]; Jozef Stefan Institute, Ljubljana, Slovenia [451-03-3095/2014-09/26]; Office of Science, Office of Basic Energy Sciences, of the US. Department of Energy [DE-AC02-05CH11231]; Serbian Academy of Sciences and Arts FX This work was financially supported by Ministry of Education, Science and Technological Development Republic of Serbia, under Contract No. 172054. We acknowledge the support for XPS measurements from Jozef Stefan Institute, Ljubljana, Slovenia, under bilateral collaboration Project No. 451-03-3095/2014-09/26. Electron microscopy characterization was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US. Department of Energy under Contract No. DE-AC02-05CH11231. V.R. Radmilovic acknowledges supports from the Serbian Academy of Sciences and Arts. NR 38 TC 2 Z9 2 U1 0 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 EI 1873-2569 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD FEB 15 PY 2015 VL 739 BP 164 EP 171 DI 10.1016/j.jelechem.2014.12.033 PG 8 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA CC2QN UT WOS:000350189800021 ER PT J AU Castro, YA Ellis, JT Miller, CD Sims, RC AF Castro, Yessica A. Ellis, Joshua T. Miller, Charles D. Sims, Ronald C. TI Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation SO APPLIED ENERGY LA English DT Article DE Microalgae; Acid hydrolysis; Optimization; ABE; Butanol; Sugars ID CLOSTRIDIUM-SACCHAROPERBUTYLACETONICUM; BIOFUELS; ALGAE; BIODIESEL; ABE AB Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0 to 1.5 M, retention times of 40-120 min, and temperatures from 23 degrees C to 90 degrees C were combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90 degrees C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.54 per kg of butanol. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Castro, Yessica A.; Miller, Charles D.; Sims, Ronald C.] Utah State Univ, Dept Biol Engn, Logan, UT 84322 USA. [Ellis, Joshua T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miller, CD (reprint author), Utah State Univ, Dept Biol Engn, 4105 Old Main Hill, Logan, UT 84322 USA. EM charles.miller@usu.edu FU Utah State University BioEnergy Program; Utah Science Technology and Research (USTAR) initiative; U.S. Department of Energy (DOE) FX The authors thank Dr. Darwin Sorensen for aid in the experimental design, and Ashik Sathish, Bo Zhao, and Oumou Diallo for analytical assistance. We thank the Utah State University BioEnergy Program, the Utah Science Technology and Research (USTAR) initiative, and the U.S. Department of Energy (DOE) for financial support. We also thank the City of Logan Environmental Department for access to the Logan City Wastewater Treatment Facility. This research was conducted as part of the activities of the Sustainable Waste-to-Bioproducts Engineering Center (SWBEC). NR 37 TC 12 Z9 12 U1 5 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 15 PY 2015 VL 140 BP 14 EP 19 DI 10.1016/j.apenergy.2014.11.045 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CB8JN UT WOS:000349875900002 ER PT J AU Mathew, PA Dunn, LN Sohn, MD Mercado, A Custudio, C Walter, T AF Mathew, Paul A. Dunn, Laurel N. Sohn, Michael D. Mercado, Andrea Custudio, Claudine Walter, Travis TI Big-data for building energy performance: Lessons from assembling a very large national database of building energy use SO APPLIED ENERGY LA English DT Article DE Buildings Performance Database; Building performance; Big data; Building data collection; Data-driven decision support ID CONSUMPTION; UNCERTAINTY; INFORMATION; DISCLOSURE AB Building energy data has been used for decades to understand energy flows in buildings and plan for future energy demand. Recent market, technology and policy drivers have resulted in widespread data collection by stakeholders across the buildings industry. Consolidation of independently collected and maintained datasets presents a cost-effective opportunity to build a database of unprecedented size. Applications of the data include peer group analysis to evaluate building performance, and data-driven algorithms that use empirical data to estimate energy savings associated with building retrofits. This paper discusses technical considerations in compiling such a database using the DOE Buildings Performance Database (BPD) as a case study. We gathered data on over 750,000 residential and commercial buildings. We describe the process and challenges of mapping and cleansing data from disparate sources. We analyze the distributions of buildings in the BPD relative to the Commercial Building Energy Consumption Survey (CBECS) and Residential Energy Consumption Survey (RECS), evaluating peer groups of buildings that are well or poorly represented, and discussing how differences in the distributions of the three datasets impact use-cases of the data. Finally, we discuss the usefulness and limitations of the current dataset and the outlook for increasing its size and applications. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Mathew, Paul A.; Dunn, Laurel N.; Sohn, Michael D.; Mercado, Andrea; Custudio, Claudine; Walter, Travis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Mathew, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, One Cyclotron Rd,Mail Stop 90R2000, Berkeley, CA 94720 USA. EM pamathew@lbl.gov FU U.S. Department of Energy (DOE); U.S. DOE [DE-AC02-05CH11231] FX This research was supported in part by the Assistant Secretary for Energy Efficiency and Renewable Energy of the U.S. Department of Energy (DOE), and performed under U.S. DOE Contract No. DE-AC02-05CH11231. In particular, the authors thank Elena Alschuler at the DOE for her support and management of the BPD Project. The authors thank Building Energy Inc. for contributing artwork for Fig. 6. NR 41 TC 10 Z9 10 U1 10 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 15 PY 2015 VL 140 BP 85 EP 93 DI 10.1016/j.apenergy.2014.11.042 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CB8JN UT WOS:000349875900009 ER PT J AU Xu, B Li, PW Chan, C Tumilowicz, E AF Xu, Ben Li, Peiwen Chan, Cholik Tumilowicz, Eric TI General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant SO APPLIED ENERGY LA English DT Article DE Concentrated Solar Power (CSP); Latent heat storage system (LHSS); Phase change material (PCM); General volume sizing strategy; Enthalpy-based 1D transient model ID MOLTEN-SALT THERMOCLINE; LUMPED CAPACITANCE METHOD; ENERGY-STORAGE; HEAT-TRANSFER; PACKED-BED; PERFORMANCE; TANK; SIMULATION; OPERATION; CAPSULES AB With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 h of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Xu, Ben; Li, Peiwen; Chan, Cholik] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. [Tumilowicz, Eric] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Li, PW (reprint author), Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. EM peiwen@email.arizona.edu FU U.S. Department of Energy; National Renewable Energy Laboratory under DOE [DE-FC36-08GO18155] FX The authors are grateful for the support from the U.S. Department of Energy and National Renewable Energy Laboratory under DOE Award: DE-FC36-08GO18155. Thanks are also due to Dr. Dick Solie for his valuable suggestions on the structure and organizing of this paper. NR 48 TC 16 Z9 16 U1 5 U2 40 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 15 PY 2015 VL 140 BP 256 EP 268 DI 10.1016/j.apenergy.2014.11.046 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CB8JN UT WOS:000349875900024 ER PT J AU Marus, LA Engle, JW John, KD Birnbaum, ER Nortier, FM AF Marus, L. A. Engle, J. W. John, K. D. Birnbaum, E. R. Nortier, F. M. TI Experimental and computational techniques for the analysis of proton beam propagation through a target stack SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Proton irradiation; Stacked foil technique; MCNP; TRIM; Energy straggling ID CROSS-SECTIONS; ENERGY; TERBIUM AB Proton beam energy, energy straggling, and intensity in thick stacks of target materials at the Los Alamos Isotope Production Facility were investigated using the foil activation technique and computational simulations. Isotopic yield measurements of irradiated foils from several recent experiments used to determine these quantities were compared with the predictions of MCNP6 and TRIM codes, and with Andersen & Ziegler's semi-empirical formalism. Differences between code predictions and experimental data were examined. Methods for computational simulation of energy propagation agree well with one another and were able to accurately predict the proton beam's energy for a limited range. Predictions were accurate when degrading from an initial energy of 100 MeV down to approximately 50 MeV, but struggled to represent measured data well at lower energies. (C) 2014 Elsevier B.V. All rights reserved. C1 [Marus, L. A.; Engle, J. W.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Marus, LA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lamarus@lanl.gov; jwengle@lanl.gov OI John, Kevin/0000-0002-6181-9330; Nortier, Francois/0000-0002-7549-8101 FU United States Department of Energy, Office of Science - Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics FX We gratefully acknowledge funding for this study provided by the United States Department of Energy, Office of Science via funding from the Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics. Many thanks to the Isotope Production Group, C-IIAC, Rod McCrady, and Heath Watkins in the Accelerator group, AOT, for their guidance and technical ingenuity that made many parts of this study possible. NR 16 TC 2 Z9 2 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD FEB 15 PY 2015 VL 345 BP 48 EP 52 DI 10.1016/j.nimb.2014.12.048 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CC2QX UT WOS:000350190800009 ER PT J AU Ungaro, C Shah, A Kravchenko, I Hensley, DK Gray, SK Gupta, MC AF Ungaro, Craig Shah, Ankit Kravchenko, Ivan Hensley, Dale K. Gray, Stephen K. Gupta, Mool C. TI Optical and infrared properties of glancing angle-deposited nanostructured tungsten films SO OPTICS LETTERS LA English DT Article ID THIN-FILMS; MICROSTRUCTURE; MICROSCOPY; ABSORBERS; COATINGS AB Nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angledeposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500 degrees C with the addition of a protective HfO2 layer. Applications for this structure are explored, including a promising application for solar thermal energy systems. (C) 2015 Optical Society of America C1 [Ungaro, Craig; Shah, Ankit; Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22901 USA. [Kravchenko, Ivan; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Gupta, MC (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22901 USA. EM mgupta@virginia.edu RI Kravchenko, Ivan/K-3022-2015; Hensley, Dale/A-6282-2016 OI Kravchenko, Ivan/0000-0003-4999-5822; Hensley, Dale/0000-0001-8763-7765 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH1135]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank the NASA Langley Professor and NSF IUCRC Programs for their support of this project. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH1135. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 29 TC 0 Z9 0 U1 1 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD FEB 15 PY 2015 VL 40 IS 4 BP 506 EP 509 DI 10.1364/OL.40.000506 PG 4 WC Optics SC Optics GA CB7ZU UT WOS:000349848400018 PM 25680136 ER PT J AU McCloy, JS Riley, BJ Pierce, DA AF McCloy, John S. Riley, Brian J. Pierce, David A. TI Infrared-transparent glass ceramics: An exploratory study SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Glass-ceramic; Infrared-transparent; Chalcogenide; Phase separation; La2S3 ID DIFFERENTIAL THERMAL-ANALYSIS; LANTHANUM-SULFIDE GLASSES; MU-M REGION; CHALCOGENIDE GLASSES; CRYSTALLIZATION BEHAVIOR; 2ND-HARMONIC GENERATION; TRANSMITTING GLASSES; OPTICAL-PROPERTIES; SYSTEM; NUCLEATION AB In this work, the vision and need for a fully ceramized long-wave infrared (LWIR)-transmitting glass ceramic have been articulated. Three sulfide systems were explored including two with La2S3 in hopes of imparting strong bonds from this refractory sulfide, and two containing GeS2 in hopes of widening the glass-forming region. Attempts were made to produce glasses in the Ga2S3-La2S3-(ZnS,CaS) system, the GeS2-La2S3 system, and the GeS2-Ga2S3-CdS system. Water quenching produced glasses of Ga2S3-La2S3-CaS and GeS2-Ga2S3-CdS. Microstructural and thermal analyses were used to explore nucleation and growth in these systems and infrared transmission and mechanical hardness showed potential for LWIR window use. The GeS2-Ga2S3-CdS system showed good LWIR transmission and pre-crystallized hardness superior to chemical vapor deposited ZnS. The Ga2S3-La2S3 glasses did not appear to be viable candidates at this time due to a small temperature window between crystallization and glass transition temperatures and problems with oxygen contamination in the La2S3 source. Suggestions are made for two alternative methods for producing fully ceramized LWIR-transmitting glass ceramics. (C) 2014 Elsevier B.V. All rights reserved. C1 [McCloy, John S.] Washington State Univ, Pullman, WA 99163 USA. [Riley, Brian J.; Pierce, David A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCloy, JS (reprint author), Washington State Univ, Pullman, WA 99163 USA. EM john.mccloy@wsu.edu OI Riley, Brian/0000-0002-7745-6730; McCloy, John/0000-0001-7476-7771 FU Defense Advanced Research Projects Agency [N00014-12-C-0064]; Raytheon [22315]; Battelle Memorial Institute for the DOE [DE-ACO5-76RL01830] FX This work was supported by the Defense Advanced Research Projects Agency (contract N00014-12-C-0064) in collaboration with Raytheon (DISTAR case #22315, approved for public release, distribution unlimited). The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. The authors thank Paul Gassman for the help with the FTIR microscope, Amy Qiao for the help with the transmission measurements, and Tyler Kafentzis for the help with the hardness measurements. We also thank Randy Tustison and Bill Coblenz for the helpful comments and support of this work. This work was conducted in the Non-Oxide Materials Synthesis Laboratory at the Pacific Northwest National Laboratory that is operated by Battelle Memorial Institute for the DOE under contract DE-ACO5-76RL01830. NR 72 TC 1 Z9 1 U1 5 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 15 PY 2015 VL 410 BP 160 EP 173 DI 10.1016/j.jnoncrysol.2014.11.040 PG 14 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA CB6HA UT WOS:000349726900025 ER PT J AU Johnson, S Bergthaler, A Graw, F Flatz, L Bonilla, WV Siegrist, CA Lambert, PH Regoes, RR Pinschewer, DD AF Johnson, Susan Bergthaler, Andreas Graw, Frederik Flatz, Lukas Bonilla, Weldy V. Siegrist, Claire-Anne Lambert, Paul-Henri Regoes, Roland R. Pinschewer, Daniel D. TI Protective Efficacy of Individual CD8(+) T Cell Specificities in Chronic Viral Infection SO JOURNAL OF IMMUNOLOGY LA English DT Article ID LYMPHOCYTIC CHORIOMENINGITIS VIRUS; HEPATITIS-B-VIRUS; MHC-CLASS-I; IMMUNODEFICIENCY-VIRUS; IMMUNE CONTROL; DISEASE PROGRESSION; PD-1 EXPRESSION; HIV; RESPONSES; PERSISTENCE AB Specific CD8(+) T cells (CTLs) play an important role in resolving protracted infection with hepatitis B and C virus in humans and lymphocytic choriomeningitis virus (LCMV) in mice. The contribution of individual CTL specificities to chronic virus control, as well as epitope-specific patterns in timing and persistence of antiviral selection pressure, remain, however, incompletely defined. To monitor and characterize the antiviral efficacy of individual CTL specificities throughout the course of chronic infection, we coinoculated mice with a mixture of wild-type LCMV and genetically engineered CTL epitope-deficient mutant virus. A quantitative longitudinal assessment of viral competition revealed that mice continuously exerted CTL selection pressure on the persisting virus population. The timing of selection pressure characterized individual epitope specificities, and its magnitude varied considerably between individual mice. This longitudinal assessment of " antiviral efficacy" provides a novel parameter to characterize CTL responses in chronic viral infection. It demonstrates remarkable perseverance of all antiviral CTL specificities studied, thus raising hope for therapeutic vaccination in the treatment of persistent viral diseases. C1 [Johnson, Susan; Bergthaler, Andreas; Flatz, Lukas; Bonilla, Weldy V.; Siegrist, Claire-Anne; Lambert, Paul-Henri; Pinschewer, Daniel D.] Univ Geneva, Dept Pathol & Immunol, CH-1211 Geneva 4, Switzerland. [Johnson, Susan; Bonilla, Weldy V.; Siegrist, Claire-Anne; Lambert, Paul-Henri; Pinschewer, Daniel D.] Univ Geneva, WHO, Collaborating Ctr Vaccine Immunol, CH-1211 Geneva 4, Switzerland. [Bergthaler, Andreas] Austrian Acad Sci, CeMM Res Ctr Mol Med, A-1090 Vienna, Austria. [Graw, Frederik] Heidelberg Univ, BioQuant Ctr, Ctr Modeling & Simulat Biosci, D-69120 Heidelberg, Germany. [Graw, Frederik] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Graw, Frederik; Regoes, Roland R.] ETH, Inst Integrat Biol, CH-8092 Zurich, Switzerland. [Flatz, Lukas] Univ Lausanne Hosp, Dept Dermatol, CH-1011 Lausanne, Switzerland. [Bonilla, Weldy V.; Pinschewer, Daniel D.] Univ Basel, Dept Biomed, Div Expt Virol, CH-4009 Basel, Switzerland. RP Pinschewer, DD (reprint author), Univ Basel, Dept Biomed, Div Expt Virol, Haus Peterspl,Peterspl 10, CH-4009 Basel, Switzerland. EM Daniel.Pinschewer@gmx.ch RI Regoes, Roland/A-6538-2008; OI Bergthaler, Andreas/0000-0003-0597-1976 FU National Health and Medical Research Council fellowship [628934]; European Molecular Biology Organization long-term fellowship; Boehringer Ingelheim Fonds Ph.D. scholarship; Roche Research Foundation postdoctoral scholarship; Swiss Foundation for Medical-Biological Stipends; Swiss National Science Foundation [315230-130855, PPOOP3-135442/1, 310030_149340]; Austrian Academy of Sciences; National Institutes of Health [AI028433]; Center for Modeling and Simulation in the Biosciences FX This work was supported by a National Health and Medical Research Council fellowship (628934 to S.J.), a European Molecular Biology Organization long-term fellowship (to A.B.), a Boehringer Ingelheim Fonds Ph.D. scholarship (to A. B.), a Roche Research Foundation postdoctoral scholarship (to A.B.), the Swiss Foundation for Medical-Biological Stipends (to A. B.; a fellowship to L. F.), the Swiss National Science Foundation (Grant 315230-130855 to R.R.R.; Grants PPOOP3-135442/1 and 310030_149340 to D.D.P.), the Austrian Academy of Sciences (to A.B.), the National Institutes of Health (Grant AI028433 to F.G.), and the Center for Modeling and Simulation in the Biosciences (to F.G.). NR 52 TC 6 Z9 6 U1 1 U2 2 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD FEB 15 PY 2015 VL 194 IS 4 BP 1755 EP 1762 DI 10.4049/jimmunol.1401771 PG 8 WC Immunology SC Immunology GA CB2MP UT WOS:000349462000039 PM 25567678 ER PT J AU Zuev, D Vecharynski, E Yang, C Orms, N Krylov, AI AF Zuev, Dmitry Vecharynski, Eugene Yang, Chao Orms, Natalie Krylov, Anna I. TI New Algorithms for Iterative Matrix-Free Eigensolvers in Quantum Chemistry SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE diagonalization algorithms; interior eigenstates; eigensolvers; equation-of-motion; coupled-cluster; excited states; harmonic Ritz problem ID NONSYMMETRIC EIGENVALUE PROBLEMS; COMPLEX ABSORBING POTENTIALS; ELECTRONIC-STRUCTURE; RESONANCE ENERGIES; QR TRANSFORMATION; EXCITATION; STATES; IONIZATION; OPERATORS; WIDTHS AB New algorithms for iterative diagonalization procedures that solve for a small set of eigen-states of a large matrix are described. The performance of the algorithms is illustrated by calculations of low and high-lying ionized and electronically excited states using equation-of-motion coupled-cluster methods with single and double substitutions (EOM-IP-CCSD and EOM-EE-CCSD). We present two algorithms suitable for calculating excited states that are close to a specified energy shift (interior eigenvalues). One solver is based on the Davidson algorithm, a diagonalization procedure commonly used in quantum-chemical calculations. The second is a recently developed solver, called the Generalized Preconditioned Locally Harmonic Residual (GPLHR) method. We also present a modification of the Davidson procedure that allows one to solve for a specific transition. The details of the algorithms, their computational scaling, and memory requirements are described. The new algorithms are implemented within the EOM-CC suite of methods in the Q-Chem electronic structure program. (c) 2014 Wiley Periodicals, Inc. C1 [Zuev, Dmitry; Orms, Natalie; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Vecharynski, Eugene; Yang, Chao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Krylov, AI (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM krylov@usc.edu FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (Scientific Discovery through Advanced Computing (SciDAC) program) FX Contract grant sponsor: U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (Scientific Discovery through Advanced Computing (SciDAC) program). NR 47 TC 6 Z9 6 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD FEB 15 PY 2015 VL 36 IS 5 BP 273 EP 284 DI 10.1002/jcc.23800 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA AZ9XT UT WOS:000348568400001 PM 25470492 ER PT J AU Lehtola, S AF Lehtola, Susi TI Automatic Algorithms for Completeness-Optimization of Gaussian Basis Sets SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE completeness-optimization; Gaussian; coupled cluster; magnetic shielding; total energy; basis set; general contraction; segmented contraction ID CONSISTENT BASIS-SETS; CORRELATED MOLECULAR CALCULATIONS; MAGNETIC SHIELDING CONSTANTS; POLARIZED BASIS-SETS; COUPLED-CLUSTER CALCULATIONS; DENSITY-FUNCTIONAL METHODS; ELECTRIC PROPERTIES; WAVE-FUNCTIONS; FUNCTION MINIMIZATION; ATOMS ALUMINUM AB We present the generic, object-oriented C++ implementation of the completeness-optimization approach (Manninen and Vaara, J. Comput. Chem. 2006, 27, 434) in the freely available ERKALE program, and recommend the addition of basis set stability scans to the completeness-optimization procedure. The design of the algorithms is independent of the studied property, the used level of theory, as well as of the role of the optimized basis set: the procedure can be used to form auxiliary basis sets in a similar fashion. This implementation can easily be interfaced with various computer programs for the actual calculation of molecular properties for the optimization, and the calculations can be trivially parallelized. Routines for general and segmented contraction of the generated basis sets are also included. The algorithms are demonstrated for two properties of the argon atomthe total energy and the nuclear magnetic shielding constantand they will be used in upcoming work for generation of cost-efficient basis sets for various properties. (c) 2014 Wiley Periodicals, Inc. C1 [Lehtola, Susi] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Lehtola, Susi] COMP Ctr Excellence, Dept Appl Phys, FI-00076 Aalto, Finland. RP Lehtola, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM susi.lehtola@alumni.helsinki.fi RI Lehtola, Susi/H-1828-2013 OI Lehtola, Susi/0000-0001-6296-8103 FU Vilho, Yrjo, and Kalle Vaisala Foundation; Magnus Ehrnrooth Foundation; University of Helsinki [490064]; Academy of Finland [251748, 263294, 1259526, 1260204] FX Contract grant sponsors: Vilho, Yrjo, and Kalle Vaisala Foundation and Magnus Ehrnrooth Foundation; Contract grant sponsor: University of Helsinki; Contract grant number: 490064; Contract grant sponsor: Academy of Finland; Contract grant numbers: 251748; 263294; 1259526; 1260204 NR 85 TC 1 Z9 1 U1 3 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD FEB 15 PY 2015 VL 36 IS 5 BP 335 EP 347 DI 10.1002/jcc.23802 PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA AZ9XT UT WOS:000348568400006 PM 25487276 ER PT J AU Kang, CJ Kim, J Kim, K Kang, J Denlinger, JD Il Min, B AF Kang, Chang-Jong Kim, Junwon Kim, Kyoo Kang, Jeongsoo Denlinger, Jonathan D. Il Min, Byung TI Band Symmetries of Mixed-Valence Topological Insulator: SmB6 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article AB We have investigated the band structure and the band symmetry of mixed-valence insulator SmB6 systematically within the density functional theory (DFT). To describe the strong correlation effect of 4 f-electrons in SmB6 effectively within the DFT level, we have devised a scheme to adjust the spin-orbit coupling (SOC) strength of Sm 4f electron artificially, which is verified to be a valid approximation by comparison with the band structure from the dynamical mean-field theory (DMFT). We have analyzed the symmetries and characters of Sm 4f and 5d bands near the Fermi level (E-F) in terms of the non-relativistic real cubic bases as well as the relativistic complex bases incorporating the SOC and the cubic crystal field. Based on the full band symmetry analysis, the ground state of SmB6 is found to be in the Gamma(7) multiplet state, and Sm 5d band that hybridizes with Sm 4f band near E-F has the e(g) symmetry. Further, we have found that the semi-core band located at similar to 15 eV below E-F has the mixed parity and thereby affects the parity eigenvalues of the special k-points considerably. We have discussed the possible surface states and topological class of SmB6, based on the bulk parity tables. C1 [Kang, Chang-Jong; Kim, Junwon; Kim, Kyoo; Il Min, Byung] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, Gyeongbuk, South Korea. [Kang, Jeongsoo] Catholic Univ Korea, Dept Phys, Puchon 420743, Gyeonggi, South Korea. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kang, CJ (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, Gyeongbuk, South Korea. FU NRF [2009-0079947, 2014R1A1A2056546]; KISTI supercomputing center [KSC-2013-C3-010]; U.S. DOE [DE-AC02-05CH11231] FX This work was supported by the NRF (No. 2009-0079947) and the KISTI supercomputing center (No. KSC-2013-C3-010). J.S.K. acknowledges support by the NRF (No. 2014R1A1A2056546). J.D.D. is supported by the U.S. DOE (No. DE-AC02-05CH11231). Helpful discussions with J. W. Allen and K. Sun are greatly appreciated. NR 30 TC 10 Z9 10 U1 2 U2 32 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD FEB 15 PY 2015 VL 84 IS 2 AR 024722 DI 10.7566/JPSJ.84.024722 PG 7 WC Physics, Multidisciplinary SC Physics GA CA4WB UT WOS:000348906300034 ER PT J AU Bai, XM Zhang, YF Tonks, MR AF Bai, Xian-Ming Zhang, Yongfeng Tonks, Michael R. TI Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations SO ACTA MATERIALIA LA English DT Article DE Grain boundary migration; Thermal gradient driving force; Molecular dynamics; Oxides ID INTERATOMIC POTENTIALS; URANIUM-DIOXIDE; THERMOPHYSICAL PROPERTIES; ATOMISTIC SIMULATIONS; UO2; MOBILITY; CONDUCTIVITY; RESISTANCE; KINETICS; MODELS AB Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal-gradient-driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient, and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates owing to their different intrinsic mobilities. The extracted mobilities from the thermal-gradient-driven simulations are compared with those calculated from two other well-established methods, and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.] Idaho Natl Lab, Fuels Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. RP Bai, XM (reprint author), Idaho Natl Lab, Fuels Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. EM Xianming.Bai@inl.gov RI Bai, Xianming/E-2376-2017 OI Bai, Xianming/0000-0002-4609-6576 FU U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program; Center of Materials Science for Nuclear Fuels; Energy Frontier Research Center - US Department of Energy, Office of Basic Energy Sciences (FWP) [1356]; US Government under the Department of Energy [DE-AC07-05ID14517] FX This work is supported by the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The method of creating grain boundary structures of UO2 were developed under the support of The Center of Materials Science for Nuclear Fuels, an Energy Frontier Research Center funded by US Department of Energy, Office of Basic Energy Sciences (FWP# 1356). This manuscript was authored by a contractor (Battelle Energy Alliance, LLC) of the US Government under the Department of Energy Contract No DE-AC07-05ID14517. Accordingly, the U.S. Government retains and the publisher, by accepting the paper for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 52 TC 4 Z9 5 U1 1 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 95 EP 106 DI 10.1016/j.actamat.2014.11.019 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800010 ER PT J AU Xi, LL Qiu, YT Zheng, S Shi, X Yang, J Chen, LD Singh, DJ Yang, JH Zhang, WQ AF Xi, Lili Qiu, Yuting Zheng, Shan Shi, Xun Yang, Jiong Chen, Lidong Singh, David J. Yang, Jihui Zhang, Wenqing TI Complex doping of group 13 elements In and Ga in caged skutterudite CoSb3 SO ACTA MATERIALIA LA English DT Article DE Defect; Thermoelectric; Ab initio calculations; Skutterudites ID CONTAINING THERMOELECTRIC SKUTTERUDITES; FILLED SKUTTERUDITES; COMPOUND DEFECTS; PERFORMANCE; BARIUM AB The complex doping behavior of Ga and In in CoSb3 has been investigated using ab initio total-energy calculations and thermodynamics. The formation energies of void filling, Sb substitution and complex dual-site occupancy defects with different charge states, and their dependence on chemical potentials of species, were studied. Results show that Ga predominantly forms dual-site 2Ga(VF)-Ga-Sb defects and substitutes for Sb only at very high Fermi levels or electron concentrations. In, on the other hand, can play multiple roles in skutterudites, including filling in the crystalline voids, substituting for Sb atoms or forming dual-site occupancy, among which the fully charge-compensated dual-site defects (2In(VF)-In-Sb and 4In(VF)-2In(Sb)) are dominant. The equilibrium concentration ratio of impurities at void-filling sites to those at Sb-substitution sites for Ga-doped CoSb3 is very close to be 2:1, while this value markedly deviates from 2:1 for In-doped CoSb3. The 2:1 ratio of Ga doping in CoSb3 leads to low electron concentration (similar to 2 x 10(19) cm(-3)) and makes the doped system a semiconductor. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Xi, Lili; Qiu, Yuting; Zheng, Shan; Shi, Xun; Chen, Lidong; Zhang, Wenqing] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. [Yang, Jiong; Yang, Jihui] Univ Washington, Mat Sci & Engn Dept, Seattle, WA 98195 USA. [Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yang, JH (reprint author), Univ Washington, Mat Sci & Engn Dept, Seattle, WA 98195 USA. EM jihuiy@uw.edu; wqzhang@mail.sic.ac.cn RI Yang, Jiong/K-6330-2014; Yang, Jihui/A-3109-2009; shi, xun/B-4499-2009; Zhang, Wenqing/K-1236-2012; Chen, Lidong/F-2705-2010 OI Yang, Jiong/0000-0002-5862-5981; shi, xun/0000-0002-3806-0303; FU National Basic Research Program (973-program) of China [2013CB632501]; NSFC (National Natural Science Foundation of China) [11204333, 11234012, 51121064]; Department of Energy, Basic Energy Science through the S3TEC Energy Frontier Research Center FX This work is partially supported by National Basic Research Program (973-program) of China under Project No. 2013CB632501, and NSFC (National Natural Science Foundation of China) Grants (11204333, 11234012, 51121064). Work at ORNL was supported by the Department of Energy, Basic Energy Science through the S3TEC Energy Frontier Research Center. NR 39 TC 9 Z9 9 U1 12 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 112 EP 121 DI 10.1016/j.actamat.2014.11.022 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800012 ER PT J AU Tallman, DJ Hoffman, EN Caspi, EN Garcia-Diaz, BL Kohse, G Sindelar, RL Barsoum, MW AF Tallman, Darin J. Hoffman, Elizabeth N. Caspi, El'ad N. Garcia-Diaz, Brenda L. Kohse, Gordon Sindelar, Robert L. Barsoum, Michel W. TI Effect of neutron irradiation on select MAX phases SO ACTA MATERIALIA LA English DT Article DE Ti2AlC; Ti3SiC2; Ti3AlC2; Neutron irradiation; Rietveld refinement ID TEMPERATURE-RANGE; ION IRRADIATION; HEAVY-IONS; TI3SIC2; TI3ALC2; OXIDATION; NUCLEAR; TI2ALC; DAMAGE; CONDUCTIVITY AB Herein we report on the effect of neutron irradiation - of up to 0.1 displacements per atom at 360(20)degrees C or 695(25)degrees C - on polycrystalline samples of Ti3AlC2, Ti2AlC, Ti3SiC2 and Ti2AlN. Rietveld refinement of X-ray diffraction patterns of the irradiated samples showed irradiation-enhanced dissociation into TiC of the Ti3AlC2 and Ti3SiC2 phases, most prominently in the former. Ti2AlN also showed an increase in TiN content, as well as Ti4AlN3 after irradiation. In contrast, Ti2AlC was quite stable under these irradiation conditions. Dislocation loops are seen to form in Ti2AlC and Ti3AlC2 after irradiation at 360(20)degrees C. The room temperature electrical resistivity of all samples increased by an order of magnitude after irradiation at 360(20)degrees C, but only by 25% after 695(25)degrees C, providing evidence for the MAX phases' dynamic recovery at temperatures as low at 695(25)degrees C. Based on these preliminary results, it appears that Ti2AlC and Ti3SiC2 are the more promising materials for high-temperature nuclear applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tallman, Darin J.; Caspi, El'ad N.; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Hoffman, Elizabeth N.; Garcia-Diaz, Brenda L.; Sindelar, Robert L.] Savannah River Natl Lab, Savannah, SC 29808 USA. [Kohse, Gordon] MIT, Nucl Reactor Lab, Cambridge, MA 02139 USA. RP Tallman, DJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM darintallman@gmail.com FU Department of Energy's Nuclear Energy University Program (DOE-NEUP) FX This work is funded by the Department of Energy's Nuclear Energy University Program (DOE-NEUP). The authors would like to thank Dr. David Carpenter of MIT for his assistance with irradiations and fluence calculations for the irradiated samples. The authors would also like to thank Mike Tosten, Gregg Creech, and David Missimer of SRNL for their help with characterizing the irradiated samples. NR 43 TC 25 Z9 25 U1 9 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 132 EP 143 DI 10.1016/j.actamat.2014.10.068 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800014 ER PT J AU Kumar, A Wang, J Tome, CN AF Kumar, Anil Wang, Jian Tome, Carlos N. TI First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals SO ACTA MATERIALIA LA English DT Article DE First principles; Twin boundary; Solubility; Hexagonal metals ID CYCLIC TENSION-COMPRESSION; CLOSE-PACKED CRYSTALS; AZ61A MAGNESIUM ALLOY; AUGMENTED-WAVE METHOD; HCP METALS; BASAL SLIP; DEFORMATION; SIMULATION; DISLOCATIONS; TRANSMISSION AB Twinning-associated boundaries (TB), {1 0 (1) over bar n} coherent twin boundaries (CTB) and the coherent basal-prismatic (CBP) boundary in six hexagonal metals (Cd, Zn, Mg, Zr, Ti and Be) are studied using first-principles density function theory, with the focus on the structural character of TB and the solute's solubility at TB. Regarding the structure and energy of TB, the formation of TB is associated with the creation of an excess volume. All six metals show positive excess volume associated with (1 0 (1) over bar 1) and (1 0 (1) over bar 3) CTB, but the excess volume associated with (1 0 (1) over bar 2) CTB and CBP can be positive or negative, depending on the metal. The (1 0 (1) over bar 2) CTB has higher excess energy than (1 0 (1) over bar 1) and (1 0 (1) over bar 3) CTB for metals with c/a < root 8/3, but lower for metals with c/a > root 8/3. More interestingly, CBP has lower excess energy than (1 0 (1) over bar 2) CTB for all metals. This is consistent with the recent finding concerning the pure-shuffle nucleation mechanism of (1 0 (1) over bar 2) twins. To understand solubility at TB, the solubility of solute atoms in Mg, Ti and Zr is calculated for solute positions in bulk, (1 0 (1) over bar 2) CTB and CBP boundaries. In general, solute atoms have better solubility at CTB and CBP than in bulk. Interestingly, the solubility of solute atoms changes linearly with normal strain at CBP, increasing with normal strain for solute atoms with a greater metallic radius than the matrix, and decreasing with normal strain for solute atoms with a smaller metallic radius than the matrix. This suggests that the distribution of solute atoms in bulk, CTB and CPB boundaries varies with stress state and, in turn, affects the mobility of TB. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Kumar, Anil; Wang, Jian; Tome, Carlos N.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. RP Tome, CN (reprint author), Los Alamos Natl Lab, MST 8, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Tome, Carlos/D-5058-2013; Kumar, Anil /H-4345-2016; Kumar, Anil/A-9834-2013; Wang, Jian/F-2669-2012 OI Kumar, Anil/0000-0002-4901-8987; Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [FWP 06SCPE401] FX This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, FWP 06SCPE401 and Lobo supercomputer access at Los Alamos National Laboratory. NR 59 TC 15 Z9 15 U1 16 U2 69 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 144 EP 154 DI 10.1016/j.actamat.2014.11.015 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800015 ER PT J AU Calhoun, CA Garlea, E Mulay, RP Sisneros, TA Agnew, SR AF Calhoun, C. A. Garlea, E. Mulay, R. P. Sisneros, T. A. Agnew, S. R. TI Investigation of the effect of thermal residual stresses on deformation of alpha-uranium through neutron diffraction measurements and crystal plasticity modeling SO ACTA MATERIALIA LA English DT Article DE Uranium; Texture; Twinning; Neutron diffraction; Residual stress ID POLYCRYSTAL PLASTICITY; TEXTURE EVOLUTION; STRAIN; TEMPERATURE; REFINEMENT; MAGNESIUM; SLIP AB The strong thermoelastic-plastic anisotropy of single crystal, orthorhombic alpha-uranium leads to the generation of significant thermal residual stresses (TRSs) after cooling from the processing temperatures of polycrystals. The present study shows the effect that these TRSs have upon subsequent room temperature deformation after aging. In situ neutron diffraction strain experiments performed on specimens machined from a clock-rolled plate, combined with ex situ texture measurements and elastoplastic self-consistent polycrystalline plasticity modeling, provides the necessary information to quantify the relative strengths and activities of the various deformation mechanisms known to operate within a-uranium. The results demonstrate that the activation of hard slip modes is necessary in order to generate macroscopic flow at the stress levels observed experimentally. Although the thermal residual stresses do not drastically affect the "bulk" response, inclusion of the TRSs drastically improve the agreement between predicted and experimentally measured internal strain evolution and strongly alter the predicted slip and twinning mode activities. As such, modeling efforts to discern the roles of the various mechanisms must account for the presence of thermal residual stress. In agreement with prior crystal plasticity modeling efforts, the crystallographic texture and polarity of twinning mechanisms explain the tension compression strength asymmetry observed in the material (i.e. significantly more of the soft {1 3 0} twinning mode is observed to occur during compression along the prior plate RD than tension along the same direction). (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Calhoun, C. A.; Mulay, R. P.; Agnew, S. R.] Univ Virginia, Charlottesville, VA 22904 USA. [Sisneros, T. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Calhoun, CA (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM cac2cz@virginia.edu FU Y-12 National Security Complex's Plant Directed Research and Development program; agency of the United States Government [DE NA0001942] FX The authors would like to thank Laurent Capolungo, Marko Knezevic, Bjorn Clausen and Rodney McCabe for helpful discussions about twinning in a-uranium. Funding for this research was provided by the Y-12 National Security Complex's Plant Directed Research and Development program. This work of authorship and those incorporated herein were prepared by Consolidated Nuclear Security, LLC (CNS) Pantex Plant/Y-12 National Security Complex as accounts of work sponsored by an agency of the United States Government under contract DE NA0001942. Neither the United States Government nor any agency thereof, nor CNS, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof, or by CNS. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor thereof, or by CNS. This document has been authored by CNS LLC, a contractor of the U.S. Government under contract DE NA0001942, or a subcontractor thereof. Accordingly, the U.S. Government retains a paid up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 32 TC 6 Z9 6 U1 6 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 168 EP 179 DI 10.1016/j.actamat.2014.11.007 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800017 ER PT J AU Wu, W Liaw, PK An, K AF Wu, Wei Liaw, Peter K. An, Ke TI Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction SO ACTA MATERIALIA LA English DT Article DE Magnesium alloy; Cyclic loading; Deformation mechanisms; Neutron diffraction; Twinning ID TWINNING-DETWINNING BEHAVIOR; FATIGUE BEHAVIOR; MG-3AL-1ZN ALLOY; STRAIN RATIO; AZ31B; MG; EVOLUTION; VULCAN; AL; DIFFRACTOMETER AB In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustion of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. The deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Wu, Wei; An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP An, K (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. EM kean@ornl.gov RI An, Ke/G-5226-2011; OI An, Ke/0000-0002-6093-429X; Wu, Wei/0000-0002-8596-9253 FU US Department of Energy, Basic Energy Sciences, Scientific User Facilities Division; Columbus McKinnon Corporation; Laboratory Directed Research and Development (LDRD) project of ORNL; US National Science Foundation [DMR-0909037, CMMI-0900271, CMMI-1100080]; DOE, Office of Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855, DE-FE-001194] FX The neutron work was carried out at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL), supported by the US Department of Energy, Basic Energy Sciences, Scientific User Facilities Division. W.W. is supported by Columbus McKinnon Corporation and a Laboratory Directed Research and Development (LDRD) project of ORNL. P.K.L. very much appreciates the financial support from the US National Science Foundation (DMR-0909037, CMMI-0900271 and CMMI-1100080) with C. Huber, C. V. Cooper, D. Finotello, A. Ardell and E. Taleff as contract monitors, and DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855 and DE-FE-001194), with Mr V. Cedro and S. Markovich as program managers. NR 65 TC 10 Z9 10 U1 5 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 343 EP 353 DI 10.1016/j.actamat.2014.11.030 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800034 ER PT J AU El Kadiri, H Barrett, CD Wang, J Tome, CN AF El Kadiri, Haitham Barrett, Christopher D. Wang, Jian Tome, Carlos N. TI Why are {10(1)over-bar2} twins profuse in magnesium? SO ACTA MATERIALIA LA English DT Article DE Twin mobility; Slip-twin interaction; Hexagonal ID CLOSE-PACKED METALS; HCP METALS; TWINNING DISLOCATIONS; DISCLINATION CONCEPT; COMPUTER-SIMULATION; MECHANICAL FORCES; SLIP DISLOCATIONS; DEFORMATION TWINS; GRAIN-BOUNDARY; CRYSTALS AB We show that {10 (1) over bar2} twinning in magnesium acts as an effective sink of basal dislocations without loss of mobility. The lattice dislocation decomposes into the b(0/0)(BP) dislocation recently identified by the present authors, and a residual dislocation. The b(0/0)(BP) dislocation in turn spontaneously decomposes into a Burgers vector content of the basal-prismatic facet related disclination dipole, f(0)(BP), plus an associated number of twinning disconnections. The residual dislocation lies on the basal-prismatic facet and thus remains glissile should the twin boundary move forward or recede back. Importantly, the basal-prismatic facet absorbs any twinning disconnection gliding on one side of the twin boundary and releases another one to other side, thereby enabling the twin boundary to progress through a forest of basal dislocations with no apparent decrease in mobility or loss of coherency. This mechanism explains why {10 (1) over bar2} twinning is profuse in hexagonal close-packed metals as slip induces the interfacial atomic structure to change favorably for twin propagation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [El Kadiri, Haitham; Barrett, Christopher D.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [El Kadiri, Haitham; Barrett, Christopher D.] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Wang, Jian; Tome, Carlos N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP El Kadiri, H (reprint author), Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. EM elkadiri@me.msstate.edu RI Tome, Carlos/D-5058-2013; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU National Science Foundation [CMMI-1235009]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [FWP 06SCPE401] FX The authors are very grateful to Professor Surya R. Kalidindi, who triggered this work after a fruitful and stimulating discussion with H.E. The authors also would like to recognize the National Science Foundation which supported this work under the DMREF (Designing Materials to Revolutionize and Engineer our Future) program with the award number: CMMI-1235009.J.W. and C.T. thank the support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, FWP 06SCPE401. NR 45 TC 18 Z9 18 U1 3 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2015 VL 85 BP 354 EP 361 DI 10.1016/j.actamat.2014.11.033 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA5OD UT WOS:000348956800035 ER PT J AU Blanchard, M Dauphas, N Hu, MY Roskosz, M Alp, EE Golden, DC Sio, CK Tissot, FLH Zhao, J Gao, L Morris, RV Fornace, M Floris, A Lazzeri, M Balan, E AF Blanchard, M. Dauphas, N. Hu, M. Y. Roskosz, M. Alp, E. E. Golden, D. C. Sio, C. K. Tissot, F. L. H. Zhao, J. Gao, L. Morris, R. V. Fornace, M. Floris, A. Lazzeri, M. Balan, E. TI Reduced partition function ratios of iron and oxygen in goethite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NUCLEAR RESONANT SCATTERING; ISOTOPE FRACTIONATION FACTORS; DENSITY-OF-STATES; MOSSBAUER-SPECTROSCOPY; SYNCHROTRON-RADIATION; CRYSTAL-STRUCTURE; AQUEOUS FE(II); EQUILIBRIUM; HEMATITE; WATER AB First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (beta-factors). The calculated iron phonon density of states (pDOS), force constant and beta-factor are compared with reevaluated experimental beta-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data are analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mossbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mossbauer spectroscopy may also contribute to the discrepancy (e. g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar beta-factors, which suggests almost no fractionation between the two minerals at equilibrium. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Blanchard, M.; Lazzeri, M.; Balan, E.] Univ Paris 06, Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, Museum Natl Hist Nat,UMR CNRS 7590,IRD UMR 206, F-75005 Paris, France. [Dauphas, N.; Sio, C. K.; Tissot, F. L. H.; Fornace, M.] Univ Chicago, Dept Geophys Sci, Origins Lab, Chicago, IL 60637 USA. [Dauphas, N.; Sio, C. K.; Tissot, F. L. H.; Fornace, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hu, M. Y.; Alp, E. E.; Zhao, J.; Gao, L.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Roskosz, M.] Univ Lille 1, Unite Mat & Transformat, CNRS UMR 8207, F-59655 Villeneuve Dascq, France. [Golden, D. C.] Engn & Sci Contract Grp Hamilton Sundstrand, Houston, TX USA. [Morris, R. V.] NASA, Johnson Space Ctr, Houston, TX USA. [Floris, A.] Kings Coll London, Dept Phys, London WC2R 2LS, England. RP Blanchard, M (reprint author), Univ Paris 06, Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, Museum Natl Hist Nat,UMR CNRS 7590,IRD UMR 206, 4 Pl Jussieu, F-75005 Paris, France. EM marc.blanchard@impmc.upmc.fr RI Blanchard, Marc/A-8698-2013; Floris, Andrea/L-5389-2013; BALAN, Etienne/B-1149-2013; Floris, Andrea /D-7081-2013; Lazzeri, Michele/N-7615-2016 OI Floris, Andrea/0000-0002-3160-6676; Floris, Andrea /0000-0002-3160-6676; Lazzeri, Michele/0000-0002-6644-6617 FU GENCI-IDRIS [2014-i2014041519]; French National Research Agency (ANR, project "CrIMin") [11-JS56-001]; French National Research Agency (ANR, project "FrIHIDDA") [2011JS56 004 01]; NSF [EAR 1144429]; NASA [NNX12AH60G]; U.S. DOE [DE-AC02-06CH11357] FX L. Paulatto is acknowledged for his technical support to the computational work. This work was performed using HPC resources from GENCI-IDRIS (Grant 2014-i2014041519). This work has been supported by the French National Research Agency (ANR, projects 11-JS56-001 "CrIMin" and 2011JS56 004 01 "FrIHIDDA"), grants from NSF (EAR 1144429) and NASA (NNX12AH60G). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 53 TC 6 Z9 6 U1 4 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2015 VL 151 BP 19 EP 33 DI 10.1016/j.gca.2014.12.006 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ9DK UT WOS:000348511600002 ER PT J AU Gin, S Jollivet, P Fournier, M Berthon, C Wang, ZY Mitroshkov, A Zhu, ZH Ryan, JV AF Gin, Stephane Jollivet, Patrick Fournier, Maxime Berthon, Claude Wang, Zhaoying Mitroshkov, Alexandre Zhu, Zihua Ryan, Joseph V. TI The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NUCLEAR-WASTE GLASSES; LONG-TERM BEHAVIOR; HYDRAULICALLY UNSATURATED CONDITIONS; BOROSILICATE GLASS; DISSOLUTION RATE; SON68 GLASS; AQUEOUS ALTERATION; NMR-SPECTROSCOPY; PHASE-FORMATION; SURFACE-LAYERS AB International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 degrees C in a solution initially saturated with respect to amorphous (SiO2)-Si-29. The pH(90 degrees C), was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gin, Stephane; Jollivet, Patrick; Fournier, Maxime] CEA, DEN, DTCD, SECM, F-30207 Bagnols Sur Ceze, France. [Berthon, Claude] CEA, DEN, DRCP, SMCS, F-30207 Bagnols Sur Ceze, France. [Wang, Zhaoying; Zhu, Zihua] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA. [Mitroshkov, Alexandre; Ryan, Joseph V.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Gin, S (reprint author), CEA, DEN, DTCD, SECM, F-30207 Bagnols Sur Ceze, France. EM stephane.gin@cea.fr RI Zhu, Zihua/K-7652-2012; BERTHON, Claude/B-1349-2016; OI BERTHON, Claude/0000-0002-7881-7817; Fournier, Maxime/0000-0001-9394-4059 FU CEA; Areva; Department of Energy's Office of Biological and Environmental Research FX Authors are grateful to Jessica Vincent, Celine Marcou, Mylene Aragon, Jean-Pierre Mestre and Jean-Louis Chouchan from CEA for analytical and technical assistance. The authors wish also to acknowledge Dr. James Neeway and Dr. Denis Strachan and the three reviewers for their helpful comments. This work was financially supported by CEA and Areva. A portion of the research was performed at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). NR 73 TC 23 Z9 24 U1 10 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2015 VL 151 BP 68 EP 85 DI 10.1016/j.gca.2014.12.009 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ9DK UT WOS:000348511600005 ER PT J AU Balboni, E Morrison, JM Wang, ZM Engelhard, MH Burns, PC AF Balboni, Enrica Morrison, Jessica M. Wang, Zheming Engelhard, Mark H. Burns, Peter C. TI Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ACTINIDE ENVIRONMENTAL CHEMISTRY; SPENT NUCLEAR-FUEL; STRUCTURAL HIERARCHY; SILICA-GEL; CALCITE; NEPTUNIUM; COPRECIPITATION; COMPLEXES; SITE; LUMINESCENCE AB The neptunyl Np(V)O-2(+) and uranyl U(VI)O-2(2+) ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is co-precipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low-temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factors that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals. Calcite (CaCO3), aragonite (CaCO3), gypsum (CaSO4 center dot 2H2O), strontianite (SrCO3), cerussite (PbCO3), celestine (SrSO4), and anglesite (PbSO4) were synthesized from aqueous solutions containing either 400-1000 ppm of U(VI) or Np(V) relative to the divalent cation present in the system. The synthetic products were investigated by inductively coupled plasma mass spectrometry, luminescence and time resolved luminescence spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Amongst the carbonate minerals, calcite significantly favors Np(V) incorporation over U(VI). U(VI) and Np(V) are incorporated in aragonite and strontianite in similar amounts, whereas cerussite did not incorporate either U(VI) or Np(V) under the synthesis conditions. The sulfate minerals weakly interact with the actinyl ions, relative to the carbonate minerals. Incorporation of U(VI) and Np(V) in celestine was observed at the level of a few tens of ppm; anglesite and gypsum did not incorporate detectable U(VI) or Np(V). Luminescence spectra of the uranyl incorporated in aragonite and strontianite are consistent with a uranyl unit coordinated by three bidentate CO32- groups. The time-resolved spectra of calcite indicate multiple coordination environments about the uranyl unit, with the spectra of the longer-lived components displaying similarities with uranyl-incorporated aragonite. The luminescence spectrum of uranyl-bearing celestine is consistent with a uranyl unit coordinated by monodentate sulfate groups. Anglesite synthesized in the presence of uranyl shows no luminescence, whereas the spectra of gypsum and cerussite suggest uranyl surface adsorption or precipitation of secondary uranyl minerals on the mineral surfaces. Our findings indicate that geometrical constraints of the Np(V) and U(VI) species in solution, together with the crystallographic steric constraints of the host material, affect preferential uptake in the mineral structures studied. Calcium and strontium appear to be favorable incorporation sites for both U(VI) and Np(V) in aragonite and strontianite. In calcite, Np(V) incorporation is strongly favored over U(VI), whereas in gypsum incorporation of neither actinyl ion occurs. Substitution of actinyl ions was also not observed for lead, in either the carbonate or sulfate minerals studied. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Balboni, Enrica; Morrison, Jessica M.; Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Wang, Zheming; Engelhard, Mark H.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Burns, PC (reprint author), 301 Stinson Hall Remick, Notre Dame, IN 46556 USA. EM pburns@nd.edu RI Wang, Zheming/E-8244-2010; OI Wang, Zheming/0000-0002-1986-4357; Engelhard, Mark/0000-0002-5543-0812; Burns, Peter/0000-0002-2319-9628 FU United States Department of Energy, Office of Biological AMP; Environmental Research, Subsurface Geochemical Research Program [DOE-DE-SC0004245]; U.S. Department of Energy's Office of Biological and Environmental Research FX This research was funded by the United States Department of Energy, Office of Biological & Environmental Research, Subsurface Geochemical Research Program, grant DOE-DE-SC0004245. This work was performed in part at the William R. Wiley Environmental Science Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for the Department of Energy by Battelle. NR 44 TC 5 Z9 5 U1 18 U2 82 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2015 VL 151 BP 133 EP 149 DI 10.1016/j.gca.2014.10.027 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AZ9DK UT WOS:000348511600009 ER PT J AU Henderson, IM Paxton, WF AF Henderson, Ian M. Paxton, Walter F. TI Control of Mechanically Activated Polymersome Fusion: Factors Affecting Fusion SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE amphiphiles; biomimetic; fusion; poly(ethylene oxide); self-assembly; stimuli-sensitive polymers; vesicles ID POLY(ETHYLENE OXIDE) SOLUTIONS; HOFMEISTER SERIES; MEMBRANE-FUSION; VESICLES; CALCIUM; DELIVERY; SALT; MACROMOLECULES; AGGREGATION; COPOLYMERS AB Previously, it was found that extruded (200 nm) polymer vesicles are capable of fusion into giant polymersomes using agitation in the presence of salt. In this study, several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and (iii) variation of the salt and its concentration are investigated. To accomplish these goals dynamic light scattering is used in conjunction with fluorescence microscopy, which provides insight into vesicles above the practical limit for DLS characterization. Increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Likewise, increasing the frequency of agitation increases the efficiency of fusion, although ultimately the size of vesicle that could be produced is limited due to the high shear involved. Finally, salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentrations. (c) 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 297-303 C1 [Henderson, Ian M.; Paxton, Walter F.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Paxton, WF (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM wfpaxto@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 1 Z9 1 U1 2 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0488 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD FEB 15 PY 2015 VL 53 IS 4 BP 297 EP 303 DI 10.1002/polb.23650 PG 7 WC Polymer Science SC Polymer Science GA AY8DT UT WOS:000347785400008 ER PT J AU Wu, YL Chen, GD Zhu, YZ Yin, WJ Yan, YF Al-Jassim, M Pennycook, SJ AF Wu, Yelong Chen, Guangde Zhu, Youzhang Yin, Wan-Jian Yan, Yanfa Al-Jassim, Mowafak Pennycook, Stephen J. TI LDA plus U/GGA plus U calculations of structural and electronic properties of CdTe: Dependence on the effective U parameter SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE CdTe; LDA plus U/GGA plus U; Structural property; Electronic property ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELASTIC-CONSTANTS; SINGLE-CRYSTAL; X-RAY; SEMICONDUCTORS; SPECTRA; APPROXIMATION; INSULATORS; TELLURIDE AB We present a detailed assessment of the structural and electronic properties of CdTe calculated by density functional theory (DFT) with on-site Coulomb self-interaction potentials (LDA+U/GGA+U) on the Cd 4d band. We systematically calculate the lattice constants, bulk moduli, elastic constants, band structure, and density of states as a function of the U value, and compare the results with those calculated by using standard LDA/GGA and the hybrid functional (HSE06). Our study gives a more accurate account of the strong localization effect of Cd 4d electrons onto the overall electronic structure, in particular to the nature of localized Cd 4d derived bands and delocalized Te 5s derived bands and the coupling between them. We find that the s-d coupling is significant, which is underestimated within conventional DFT calculations (showing a single s-like peak, in disagreement with the experiments). LDA+U removes this discrepancy by shifting down the Cd-4d band closer to the Te-5s band, enhancing the s-d coupling, and leading to the appearance of two s-like peaks, which perfectly explains the so-called low intensity "shoulder" on the high-energy side of the Cd-4d peak in experimental spectra. Moreover, our results indicate LDA+U reveals an much more acceptable agreement with experiment at a adequate U than HSE06 does. A well balanced choice of U within LDA+U scheme is proposed to be at 7 eV. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wu, Yelong; Chen, Guangde] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Shaanxi, Peoples R China. [Wu, Yelong; Yin, Wan-Jian; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Zhu, Youzhang] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China. [Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Pennycook, Stephen J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zhu, YZ (reprint author), Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China. EM yelongwu@mail.xjtu.edu.cn; yzh_zhu@mail.xjtu.edu.cn RI Wu, Yelong/G-1100-2010; Yin, Wanjian/F-6738-2013 OI Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [11074200, 61176079]; Shaanxi Natural Science Fund [2013JM1020]; Shaanxi Postdoctoral Sustentation Fund; Ohio Research Scholar Program (ORSP); U.S. Department of Energy [DE-AC36-08GO28308] FX Y. Wu and G. Chen gratefully acknowledge the financial support of the China National Natural Science Fund (Grant Nos. 11074200 and 61176079). Y. Zhu acknowledges the support from Shaanxi Natural Science Fund (Grant No. 2013JM1020) and Shaanxi Postdoctoral Sustentation Fund. Y. Yan acknowledges the support from the Ohio Research Scholar Program (ORSP). The work at NREL is supported by the U.S. Department of Energy under Grant No. DE-AC36-08GO28308. NR 41 TC 1 Z9 1 U1 5 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB 15 PY 2015 VL 98 BP 18 EP 23 DI 10.1016/j.commatsci.2014.10.051 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA AX1WC UT WOS:000346733000004 ER PT J AU Deng, HX Huang, B Wei, SH AF Deng, Hui-Xiong Huang, Bing Wei, Su-Huai TI Stable interface structures of heterovalent semiconductor superlattices: The case of (GaSb)(n)(ZnTe)(n) SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Heterovalent superlattices; III-V/II-VI interfaces; Monte Carlo simulation ID INITIO MOLECULAR-DYNAMICS; LASER-DIODES; HETEROSTRUCTURES; METALS; SI3ALP AB Using first-principles total energy calculation and Monte Carlo simulation, as well as lattice harmonic expansion, we have revealed the chemical trends of the stable atomic configurations at the interface of lattice-matched heterovalent superlattices. Using (GaSb)(n)(ZnTe)(n) superlattices as an example, we find that the interfacial energy depends not only on the bond energy but also on the Coulomb energy derived from the donor and acceptor wrong bonds. At short-period limit (n = 1), the abrupt [111] interface has the lowest energy even though it is polar, whereas for the long-period superlattices, the nonpolar [110] interface has the lowest energy. This finding provides a general guidance on growing stable lattice-matched heterovalent superlattices for optoelectronic device applications. (C) 2014 Elsevier B.V. All rights reserved. C1 [Deng, Hui-Xiong] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Huang, Bing; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Deng, HX (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM hxdeng@semi.ac.cn; swei@nrel.gov FU National Basic Research Program of China (973 Program) [G2009CB929300]; National Natural Science Foundation of China [61121491, 11104264]; U.S. Department of Energy [DE-AC36-08GO28308] FX The work at Institute of Semiconductors, Chinese Academy of Sciences was supported by the National Basic Research Program of China (973 Program) Grant Nos. G2009CB929300, and the National Natural Science Foundation of China under Grants No. 61121491, and 11104264. The work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 35 TC 2 Z9 2 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB 15 PY 2015 VL 98 BP 340 EP 344 DI 10.1016/j.commatsci.2014.11.008 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA AX1WC UT WOS:000346733000046 ER PT J AU Du, MH AF Du, M. H. TI Chemical stability and Ce doping of LiMgAlF6 neutron scintillator SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Neutron scintillator; LiMgAlF6 ID CRYSTAL-GROWTH; DOPED LICAALF6; SINGLE-CRYSTALS; ENERGY-TRANSFER; OPTICAL-PROPERTIES; CERIUM FLUORIDE; LISRALF6; EU; PURE AB Density functional calculations are performed to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. The formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (> 1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6. (C) 2014 Elsevier B.V. All rights reserved. C1 [Du, M. H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Du, M. H.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU U.S. DOE Office of Nonproliferation Research and Development [NA22] FX The author is grateful for helpful discussion with David J. Singh. The work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22. NR 42 TC 0 Z9 0 U1 4 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 15 PY 2015 VL 622 BP 925 EP 928 DI 10.1016/j.jallcom.2014.11.022 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AU6ZE UT WOS:000345749500142 ER PT J AU Yang, DL Hubbard, KM Henderson, KC Labouriau, A AF Yang, Dali Hubbard, Kevin M. Henderson, Kevin C. Labouriau, Andrea TI Thermal and Chemical Stabilization of Ethylene/Vinyl Acetate/Vinyl Alcohol (EVA-OH) Terpolymers Under Nitroplasticizer Environments SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE ageing; degradation; EVA-OH; hydrolysis; plasticizer; thermogravimetric analysis (TGA) ID POLY(ESTER URETHANE) ELASTOMER; DEGRADATION AB In this study, we compare the aging behaviors of cross-linked ethylene/vinyl acetate/vinyl alcohol terpolymers, also referred to as EVA-OH, when they are either immersed in nitroplasticizer (NP) liquid or exposed to NP vapor at different temperatures. While thermogravimetric analysis and differential scanning calorimetry are used to probe the thermal stability of aged NP and polymers, Fourier transform infrared, gel permeation chromatography, ultra-violet/vis, and nuclear magnetic resonance are used to probe their structural changes over the aging process. The study confirms that NP degrades through CAN cleavage, and releases HONO molecules at a slightly elevated temperature (<75 degrees C). As these molecules accumulate in the vapor phase, they react among themselves to create an acidic environment. Therefore, these chemical constituents in the NP vapor significantly accelerate the hydrolysis of EVA-OH polymer. When the hydrolysis occurs in both vinyl acetate and urethane groups and the scission at the cross-linker progresses, EVA-OH becomes vulnerable to further degradation in the NP vapor environment. Through the comprehensive characterization, the possible degradation mechanisms of the terpolymers are proposed. (C) 2014 Wiley Periodicals, Inc. C1 [Yang, Dali; Hubbard, Kevin M.; Henderson, Kevin C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Labouriau, Andrea] Los Alamos Natl Lab, Div Chem Chem Diagnost & Engn, Los Alamos, NM 87545 USA. RP Yang, DL (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM dyang@lanl.gov OI Labouriau, Andrea/0000-0001-8033-9132 FU US Department of Energy's National Nuclear Security Administration [DE-AC5206NA25396] FX We thank Bruce Orler for the TGA and DSC measurements. We thank Dr. Cindy Welch, Rulian Wu, and Robert Gilbertson for the discussion on the possible reaction mechanisms. We thank John Barton (KCP) for helping with the EVA-OH material production. This work is funded by the US Department of Energy's National Nuclear Security Administration under contract DE-AC5206NA25396. NR 37 TC 0 Z9 0 U1 1 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8995 EI 1097-4628 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD FEB 15 PY 2015 VL 132 IS 7 AR 41450 DI 10.1002/app.41450 PG 17 WC Polymer Science SC Polymer Science GA AT9BE UT WOS:000345221800005 ER PT J AU Dean, MPM AF Dean, M. P. M. TI Insights into the high temperature superconducting cuprates from resonant inelastic X-ray scattering SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Resonant inelastic X-ray scattering; Cuprates; Magnetism; Superconductivity; Pseudogap ID HIGH-T-C; COPPER-OXIDE SUPERCONDUCTORS; 2-MAGNON RAMAN-SCATTERING; SPIN EXCITATIONS; MAGNETIC EXCITATIONS; LIGHT-SCATTERING; STRIPE CORRELATIONS; NEUTRON-SCATTERING; FLUCTUATIONS; DYNAMICS AB Recent improvements in instrumentation have established resonant inelastic X-ray scattering (RlX5) as a valuable new probe of the magnetic excitations in the cuprates. This paper introduces RlX5, focusing on the Cu L3 resonance, and reviews recent experiments using this technique. These are discussed in light of other experimental probes such as inelastic neutron scattering and Raman scattering. The success of these studies has motivated the development of several new RIXS spectrometers at synchrotrons around the world that promise, among other improvements, 5-10 times better energy resolution. We finish by outlining several key areas which hold promise for further important discoveries in this emerging field. (C) 2014 Elsevier B.V. All rights reserved, C1 [Dean, M. P. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Dean, MPM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM mdean@bnl.gov RI Dean, Mark/B-4541-2011 OI Dean, Mark/0000-0001-5139-3543 FU Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. DOE, Office of Basic Energy Sciences; Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy [DEAC02-98CH10886] FX The author would like to thank all those who he has collaborated with in RIXS studies in recent years especially his fellow Brookhaven scientists John Hill and Ivan Bozovic. Special mention is also due to Lucio Braicovich, Valentina Bisogni, Jeroen van den Brink, Nick Brookes, Sorin Chiuzbaian, Greta Dellea, Joe Dvorak, Giacomo Ghiringhelli, Henri Alloul, Mathieu Le Tacon, Yuan Li, Andrew James, Ignace Jarrige, Robert Konik, Thorsten Schmitt, Ross Springell, Andrew Walters and Kcjin Zhou. This work is supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Basic Energy Sciences and by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy under Award No. DEAC02-98CH10886. The use of the ADRESS beamline at the Swiss Light Source and the ID08 beamline at the European Synchrotron Radiation Facility is gratefully acknowledged. NR 131 TC 20 Z9 20 U1 4 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB 15 PY 2015 VL 376 BP 3 EP 13 DI 10.1016/j.jmmm.2014.03.057 PG 11 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA AT4YT UT WOS:000344950300002 ER PT J AU Cawkwell, MJ Niklasson, AMN Dattelbaum, DM AF Cawkwell, M. J. Niklasson, Anders M. N. Dattelbaum, Dana M. TI Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TIGHT-BINDING METHOD; WAVES; HYDROCARBONS; NITROMETHANE AB The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories. (C) 2015 AIP Publishing LLC. C1 [Cawkwell, M. J.; Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dattelbaum, Dana M.] Los Alamos Natl Lab, Weapons Expt Div, Los Alamos, NM 87545 USA. RP Cawkwell, MJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cawkwell@lanl.gov OI Cawkwell, Marc/0000-0002-8919-3368 FU Laboratory Directed Research and Development program at Los Alamos National Laboratory [20110012DR] FX M.J.C. thanks Kyle Ramos for useful discussions. This work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory under Project No. 20110012DR. Computational resources were provided by the Los Alamos National Laboratory Institutional Computing program, which is supported by the U.S. Department of Energy National Nuclear Security Administration. NR 59 TC 3 Z9 3 U1 3 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2015 VL 142 IS 6 AR 064512 DI 10.1063/1.4907909 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB7ZH UT WOS:000349847000049 PM 25681928 ER PT J AU Shukla, A Bogdanov, B AF Shukla, Anil Bogdanov, Bogdan TI Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SET MODEL CHEMISTRY; GAS-PHASE; CHARGED DROPLETS; PROTON AFFINITIES; SERINE OCTAMERS; WATER-MOLECULES; LASER-ABLATION; TOTAL ENERGIES; ACID CLUSTERS; DISSOCIATION AB Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N-2). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi)(n)Li+, (HCOOLi)(n)Li-m(m+), (HCOOLi)(n)HCOO-, and (HCOOLi)(n)(HCOO)(m)(m-). Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)(3)Li+ being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi)(2)) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)(3)Li+ as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability. (C) 2015 AIP Publishing LLC. C1 [Shukla, Anil] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Biol Sci Div, Richland, WA 99354 USA. [Bogdanov, Bogdan] Perkin Elmer, San Jose Technol Ctr, San Jose, CA 95134 USA. RP Shukla, A (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Biol Sci Div, Richland, WA 99354 USA. EM Anil.Shukla@pnnl.gov FU Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory in Richland, Washington; DOE [DE-AC05-76RLO-1830] FX We greatly appreciate the use of mass spectrometry facilities in the Environmental Molecular Sciences Laboratory and the Integraive Omics group at the Pacific Northwest National Laboratory and computational facilities at the University of the Pacific, Stockton, CA. A.S. would like to thank Ron Moore and Robby Robinson for availing these facilities at PNNL and Tom Fillmore for his help with the triple quadrupole mass spectrometer. We would also like to thank Professor Jianhua Ren and Dr. James A. Laramee for their critical comments and many helpful suggestions on the paper. The experimental mass spectrometry work was performed at and partially supported by the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory in Richland, Washington and operated by Battelle for the DOE under Contract No. DE-AC05-76RLO-1830. NR 75 TC 1 Z9 1 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2015 VL 142 IS 6 AR 064304 DI 10.1063/1.4907366 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB7ZH UT WOS:000349847000024 PM 25681903 ER PT J AU Wilkins, DM Manolopoulos, DE Dang, LX AF Wilkins, David M. Manolopoulos, David E. Dang, Liem X. TI Nuclear quantum effects in water exchange around lithium and fluoride ions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELASTIC NEUTRON-SCATTERING; POLYMER MOLECULAR-DYNAMICS; PRESSURE NMR KINETICS; POLARIZABLE FORCE-FIELD; CHEMICAL-REACTION RATES; AQUEOUS-SOLUTIONS; HYDROGEN-BOND; VARIABLE-PRESSURE; MD SIMULATIONS; ALKALI-METAL AB We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. (C) 2015 AIP Publishing LLC. C1 [Wilkins, David M.; Manolopoulos, David E.] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England. [Dang, Liem X.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 93352 USA. RP Wilkins, DM (reprint author), Univ Oxford, Phys & Theoret Chem Lab, S Parks Rd, Oxford OX1 3QZ, England. FU Oxford University Clarendon Fund; St. Edmund Hall; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX We would like to thank Anne Wilkins and Josh More for critical reading of the manuscript and helpful comments. D.M.W. acknowledges funding from the Oxford University Clarendon Fund and St. Edmund Hall, and computer time on the University of Oxford Advanced Research Computing (ARC) facility and the IRIDIS High Performance Computing facility. L.X.D. acknowledges funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NR 83 TC 7 Z9 7 U1 7 U2 33 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2015 VL 142 IS 6 AR 064509 DI 10.1063/1.4907554 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB7ZH UT WOS:000349847000046 PM 25681925 ER PT J AU Lereu, AL Lemarchand, F Zerrad, M Yazdanpanah, M Passian, A AF Lereu, A. L. Lemarchand, F. Zerrad, M. Yazdanpanah, M. Passian, A. TI Optical properties and plasmonic response of silver-gallium nanostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; SURFACE-PLASMONS; THIN-FILMS; MODULATION; MICROSCOPY; NANOSCALE; ALLOYS; SEMICONDUCTORS; DIELECTRICS; MOLECULES AB Silver and gallium form an alloy Ag2Ga via a room temperature spontaneous self-assembly that exhibits remarkable mechanical and electrical properties suitable for nanoscale measurements. However, whether photon excitation of plasmons in this emerging nanomaterial is retained or not has not been established. Here, we present a thin film formation of Ag2Ga via a spreading-reactive process of liquid Ga on an Ag film and a characterization of its dielectric function epsilon(E) = epsilon(1)(E) + i epsilon(2)(E) in the photon energy range 1.42 eV <= E < 4.2 eV. It is observed that while the plasmon damping increases, near an energy of 2.25 eV, the real part of epsilon exhibits a crossing with respect to that of Ag. Furthermore, the impact of new plasmon supporting materials is discussed and in order to enable further applications in plasmonics, the possibility of photon excitation of surface plasmons in Ag2Ga is studied. (C) 2015 AIP Publishing LLC. C1 [Lereu, A. L.; Passian, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lereu, A. L.; Lemarchand, F.; Zerrad, M.] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel,UMR 7249, F-13013 Marseille, France. [Yazdanpanah, M.] NaugaNeedles LLC, Louisville, KY 40299 USA. [Passian, A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Passian, A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Passian, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI Lereu, Aude/P-6414-2016; Zerrad, Myriam/A-8739-2017 OI Lereu, Aude/0000-0001-7390-7832; Zerrad, Myriam/0000-0001-8365-3848 FU laboratory directed research and development fund at Oak Ridge National Laboratory (ORNL); NaugaNeedles LLC; Centre National de la Recherche Scientifique (CNRS); U.S. DOE [DE-AC05-00OR22725] FX This research was supported in part by the laboratory directed research and development fund at Oak Ridge National Laboratory (ORNL), and in part by NaugaNeedles LLC, and the Centre National de la Recherche Scientifique (CNRS). The authors would like to thank CNRS researchers Dr. A. Charrier, Dr. J.-Y. Hoarau, and Dr. A. Ranguis for their help with XPS and AFM characterization. Use of the facilities in ElectroOptics Research Institute and Nanotechnology Center of the University of Louisville is acknowledged for images b-d in Fig. 1. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. NR 51 TC 1 Z9 1 U1 3 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2015 VL 117 IS 6 AR 063110 DI 10.1063/1.4906950 PG 8 WC Physics, Applied SC Physics GA CB7ZA UT WOS:000349846300010 ER PT J AU Liang, LY Li, Q Hu, JM Lee, S Gerdes, K Chen, LQ AF Liang, Linyun Li, Qun Hu, Jiamian Lee, Shiwoo Gerdes, Kirk Chen, Long-Qing TI Phase field modeling of microstructure evolution of electrocatalyst-infiltrated solid oxide fuel cell cathodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LANTHANUM STRONTIUM MANGANITE; STABILIZED ZIRCONIA; LSCF CATHODE; ELECTRODES; PERFORMANCE; SIMULATION; NANOPARTICLES; ENHANCEMENT AB A phase field model is developed to examine microstructural evolution of an infiltrated solid oxide fuel cell cathode. It is employed to generate the three-phase backbone microstructures and morphology of infiltrate nano-particles [La1-xSrxMnO3 (LSM)]. Two-phase Y2O3+ZrO2 and LSM backbones composed of 0.5-1 mu m particles are first generated and then seeded with infiltrate, and evolution is compared for starting infiltrate particle diameters of 5 nm and 10 nm. The computed lifetime triple phase boundary (3PB) density of the infiltrated cathode is then compared to the cathode backbone. Results indicate that initial coarsening of infiltrate nano-particles is the primary evolution process, and infiltrate coarsening is the majority contributor to 3PB reduction. However, at all times, the infiltrated cathode possesses significantly greater 3PB length than even the uncoarsened backbone. Infiltrate particle size effects indicate that the smaller particle size produces greater 3PB length for the same infiltration amount, consistent with intuition. A maximum 3PB enhancement is reached when increasing infiltrate particle loading, and the maximum enhancement depends on infiltrate particle size. It is found that architectural degradation modes will insignificantly affect the lifetime performance of infiltrated cathodes. This work suggests that lifetime optimized particle size/loading combinations are identifiable, and can be precise if additional fundamental data become available. (C) 2015 AIP Publishing LLC. C1 [Liang, Linyun; Li, Qun; Hu, Jiamian; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Lee, Shiwoo; Gerdes, Kirk] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Liang, LY (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM lyliang39@gmail.com FU National Energy Technology Laboratory's on-going research in the area of cathode modeling in Solid Oxide Fuel Cells under the URS [0004000.3.621.054.001.211.000.007] FX We would like to thank the financial support the National Energy Technology Laboratory's on-going research in the area of cathode modeling in Solid Oxide Fuel Cells under the URS Contract No. 0004000.3.621.054.001.211.000.007. NR 41 TC 2 Z9 2 U1 5 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2015 VL 117 IS 6 AR 065105 DI 10.1063/1.4908281 PG 7 WC Physics, Applied SC Physics GA CB7ZA UT WOS:000349846300060 ER PT J AU Ng, J Raitses, Y AF Ng, J. Raitses, Y. TI Self-organisation processes in the carbon arc for nanosynthesis SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CATHODE DEPOSIT; NANOTUBES; DISCHARGE; TEMPERATURES; GRAPHITE; GROWTH; PLASMA AB The atmospheric pressure carbon arc in inert gases such as helium is an important method for the production of nanomaterials. It has recently been shown that the formation of the carbon deposit on the cathode from gaseous carbon plays a crucial role in the operation of the arc, reaching the high temperatures necessary for thermionic emission to take place even with low melting point cathodes. Based on observed ablation and deposition rates, we explore the implications of deposit formation on the energy balance at the cathode surface and show how the operation of the arc is self-organised process. Our results suggest that the arc can operate in two different ablation-deposition regimes, one of which has an important contribution from latent heat to the cathode energy balance. This regime is characterised by the enhanced ablation rate, which may be favourable for high yield synthesis of nanomaterials. The second regime has a small and approximately constant ablation rate with a negligible contribution from latent heat. (C) 2015 Author(s). C1 [Ng, J.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ng, J (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX We would like to thank Mr. Alex Merzhevskiy, Mr. Enrique Merino for technical support, Dr. Travis Gray for assisting with infrared measurements, Dr. Andrei Khodak, Dr. Michael Keidar, Dr. Igor Kaganovich, Mr. Emre Turkoz and Mr. Yao-Wen Yeh for fruitful discussions. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 31 TC 5 Z9 5 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2015 VL 117 IS 6 AR 063303 DI 10.1063/1.4906784 PG 6 WC Physics, Applied SC Physics GA CB7ZA UT WOS:000349846300013 ER PT J AU Misture, ST Stach, EA Huey, BD Peterson, VK AF Misture, Scott T. Stach, Eric A. Huey, Bryan D. Peterson, Vanessa K. TI IN-SITU AND OPERANDO CHARACTERISATION OF MATERIALS Introduction SO JOURNAL OF MATERIALS RESEARCH LA English DT Editorial Material C1 [Misture, Scott T.] Alfred Univ, Alfred, NY 14802 USA. [Stach, Eric A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Huey, Bryan D.] Univ Connecticut, Storrs, CT USA. [Peterson, Vanessa K.] Australian Nucl Sci & Technol Org, Lucas Heights, Australia. RP Misture, ST (reprint author), Alfred Univ, Alfred, NY 14802 USA. RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 NR 0 TC 0 Z9 0 U1 4 U2 16 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD FEB 14 PY 2015 VL 30 IS 3 BP 325 EP 325 DI 10.1557/jmr.2015.15 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA CB9TO UT WOS:000349976100001 ER PT J AU Wang, CM AF Wang, Chong-Min TI In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view SO JOURNAL OF MATERIALS RESEARCH LA English DT Review DE in situ TEM; energy storage; rechargeable battery; lithium-ion battery ID LITHIUM-ION BATTERIES; ENERGY-LOSS SPECTROSCOPY; ELECTROCHEMICAL LITHIATION; ATOMIC-SCALE; SHAPE CHANGES; SILICON NANOPARTICLES; RADIATION-DAMAGE; PHASE-TRANSITION; SNO2 NANOWIRES; CRYSTAL-GROWTH AB Since the advent of the transmission electron microscope (TEM), continuing efforts have been made to image material under native and reaction environments that typically involve liquids, gases, and external stimuli. With the advances of aberration-corrected TEM for improving the imaging resolution, steady progress has been made on developing methodologies that allow imaging under dynamic operating conditions, or in situ TEM imaging. The success of in situ TEM imaging is closely associated with advances in microfabrication techniques that enable manipulation of nanoscale objects around the objective lens of the TEM. This study summarizes and highlights recent progress involving in situ TEM studies of energy storage materials, especially rechargeable batteries. The study is organized to cover both the in situ TEM techniques and the scientific discoveries made possible by in situ TEM imaging. C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM Chongmin.Wang@pnnl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231, 6951379]; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research and located at PNNL FX The author would like to thank Meng Gu for his contribution to part of the in situ TEM studies. Most of the in situ work was carried out with support of the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE), Contract No. DE-AC02-05CH11231, Subcontract No. 6951379, under the Batteries for Advanced Transportation Technologies (BATT) Program and from the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) under the Laboratory Directed Research and Development Program. The work was performed at EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is multi-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RL01830. The author thanks the help of Norman Salmon and Daan Hein Alsem of Hummingbird Scientific for developing the liquid electrochemical holder that makes part of the work possible. NR 131 TC 16 Z9 16 U1 20 U2 132 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD FEB 14 PY 2015 VL 30 IS 3 BP 326 EP 339 DI 10.1557/jmr.2014.281 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA CB9TO UT WOS:000349976100002 ER PT J AU Paxton, WA Akdogan, EK Savkliyildiz, I Choksi, AU Silver, SX Tsakalakos, T Zhong, Z AF Paxton, William A. Akdogan, E. Koray Savkliyildiz, Ilyas Choksi, Ankur U. Silver, Scott X. Tsakalakos, Thomas Zhong, Zhong TI Asynchronous stoichiometric response in lithium iron phosphate batteries SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID X-RAY-DIFFRACTION; ABSORPTION SPECTROSCOPY; SYNCHROTRON-RADIATION; ELECTRODE MATERIALS; ION BATTERIES; LIFEPO4; OLIVINES; CATHODE; CHARGE; TRANSFORMATION AB Operando energy-dispersive x-ray diffraction (EDXRD) was carried out on a newly formed 8 Ah lithium iron phosphate (LiFePO4) battery with the goal of elucidating the origin of asynchronous phase transformation commonly seen with in situ x-ray diffraction studies. The high-energy photons at the NSLS X17B1 beamline allow for penetration into a fully assembled battery and therefore negate any need for a specially designed in situ cell which often uses modified current collectors to minimize x-ray attenuation. Spatially-and-temporally resolved phase-mapping was conducted with a semiquantitative reference intensity ratio (RIR) analysis to estimate the relative abundance of the delithiated phase. The data show an asynchronous response in the stoichiometry versus the electrochemical profile and suggest limited diffusion in the electrode toward the end of discharge. Our results confirm that the asynchronous electrode response is not just limited to specially designed cells but occurs in fully assembled cells alike. We attribute this behavior to be a consequence of performing a local measurement over a wide-area heterogeneous reaction. C1 [Paxton, William A.; Akdogan, E. Koray; Savkliyildiz, Ilyas; Choksi, Ankur U.; Silver, Scott X.; Tsakalakos, Thomas] Rutgers State Univ, Piscataway, NJ 08854 USA. [Zhong, Zhong] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Paxton, WA (reprint author), Rutgers State Univ, Piscataway, NJ 08854 USA. EM will.paxton@rutgers.edu OI Paxton, William/0000-0001-5899-9038 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 33 TC 1 Z9 1 U1 4 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD FEB 14 PY 2015 VL 30 IS 3 BP 417 EP 423 DI 10.1557/jmr.2014.321 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA CB9TO UT WOS:000349976100010 ER PT J AU Shinde, A Guevarra, D Haber, JA Jin, J Gregoire, JM AF Shinde, Aniketa Guevarra, Dan Haber, Joel A. Jin, Jian Gregoire, John M. TI Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID OXYGEN EVOLUTION REACTION; IRIDIUM OXIDE-FILMS; WATER OXIDATION; COMBINATORIAL DISCOVERY; NICKEL-OXIDE; METAL-OXIDES; THIN-FILMS; CATALYSTS; IRON; ELECTRODES AB Many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce, La, and Fe were prepared by a high throughput inkjet printing technique. The catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. The measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments. C1 [Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; Gregoire, John M.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. RP Gregoire, JM (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM gregoire@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This manuscript is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). The authors thank Ryan R.J. Jones for assistance with preparation of graphics. NR 44 TC 7 Z9 7 U1 4 U2 31 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD FEB 14 PY 2015 VL 30 IS 3 BP 442 EP 450 DI 10.1557/jmr.2014.296 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA CB9TO UT WOS:000349976100013 ER PT J AU Csanak, G Inal, MK Fontes, CJ Kilcrease, DP AF Csanak, G. Inal, M. K. Fontes, C. J. Kilcrease, D. P. TI The creation, destruction and transfer of multipole moments in electron-ion three-body recombination SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE three-body recombination; multipole moments; electron-ion collisions; magnetic sublevels ID N-PARTICLE SCATTERING; MAGNETIC-FIELDS; STORAGE-RINGS AB We use the wave-packet propagation scheme of Goldberger and Watson to define multipole moment creation, destruction, and transfer rates for the three-body recombination (TBR) of electrons with ions. We first assume short-range interaction potentials and then consider Coulomb interactions, for which we use Dollard's theory of multichannel scattering. We present the multipole moment rate coefficients in terms of the TBR amplitudes. Finally, we discuss time-reversal invariance and the reciprocity relations, both for the short-range case and for the Coulomb-interaction case, and show that the multipole moment rate coefficients can be expressed in terms of electron-impact ionization amplitudes. C1 [Csanak, G.; Kilcrease, D. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Inal, M. K.] Univ Tlemcen, Fac Sci, Dept Phys, Tilimsen 13000, Algeria. [Fontes, C. J.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Csanak, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cjf@lanl.gov OI Kilcrease, David/0000-0002-2319-5934 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory; Algerian Ministry of Higher Education and Research [CNEPRU-D02020110022]; [DE-AC52-06NA25396] FX We thank David Cartwright, Peter Hakel and Verne Jacobs for reading this manuscript and providing useful comments that improved its clarity. This work was carried out in part under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory and supported by contract no DE-AC52-06NA25396. One of us (MKI) gratefully acknowledges support from the Algerian Ministry of Higher Education and Research (CNEPRU-D02020110022). NR 44 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD FEB 14 PY 2015 VL 48 IS 3 AR 035001 DI 10.1088/0953-4075/48/3/035001 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AZ8EX UT WOS:000348448800001 ER PT J AU Craig, N Knapen, S Longhi, P AF Craig, Nathaniel Knapen, Simon Longhi, Pietro TI Neutral Naturalness from Orbifold Higgs Models SO PHYSICAL REVIEW LETTERS LA English DT Article ID LARGE-N LIMIT; FIELD-THEORIES; GAUGE-THEORIES; PP COLLISIONS; SEARCH; BOSON; LHC AB We present a general class of natural theories in which the Higgs boson is a pseudo- Goldstone boson in an orbifolded gauge theory. The symmetry protecting the Higgs boson at low energies is an accidental global symmetry of the quadratic action, rather than a full continuous symmetry. The lightest degrees of freedom protecting the weak scale carry no standard model (SM) quantum numbers and interact with visible matter principally through the Higgs portal. This opens the door to the systematic study of "neutral naturalness": natural theories with SM- neutral states that are as yet untested by the LHC. C1 [Craig, Nathaniel] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Craig, Nathaniel; Knapen, Simon; Longhi, Pietro] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Knapen, Simon] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Knapen, Simon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Craig, N (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM ncraig@physics.ucsb.edu; smknapen@lbl.gov; longhi@physics.rutgers.edu FU DOE [SC0010008, ARRA-SC0003883, DE-SC0007897]; Aspen Center for Physics; NSF [1066293]; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Aria Basirnia, Zackaria Chacko, Tony Gherghetta, Roni Harnik, Kiel Howe, Andrey Katz, Yasunori Nomura, Duccio Pappadopulo, Michele Papucci, Stuart Raby, Michael Ratz, Martin Schmaltz, Raman Sundrum, and especially Matt Strassler for useful conversations. This work was supported in part by DOE Grants No. SC0010008, No. ARRA-SC0003883, and No. DE-SC0007897. N. C. acknowledges support from the Aspen Center for Physics and NSF Grant No. 1066293 where this work was partially completed. This manuscript has been authored by an author (S. K.) at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. NR 21 TC 27 Z9 27 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 13 PY 2015 VL 114 IS 6 AR 061803 DI 10.1103/PhysRevLett.114.061803 PG 5 WC Physics, Multidisciplinary SC Physics GA CD6NR UT WOS:000351206500003 PM 25723206 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Rougny, R De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda , WL Alves, GA Brito, L Martins, MC Martins, TDR Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DDJ Martins, CDO De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, S Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Plestina, R Romeo, F Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Heister, A Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Sharma, A Silvestris, L Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Castilla-Valdez, H De La Cruz-Burelo, E La Cruz, IHD Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDCE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Loureno, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J John, JS Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCDLB Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Vlimant, JR Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Krohn, M Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Verwilligen, P Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Rougny, R. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Martins Junior, M. Correa Martins, T. Dos Reis Herrera, C. Mora Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Malbouisson, H. Figueiredo, D. Matos Mundim, L. Nogima, H. Da Silva, W. L. Prado Santaolalla, J. Santoro, A. Sznajder, A. Manganote, E. J. Tonelli Pereira, A. Vilela Bernardes, C. A. Dogra, S. Tomei, T. R. Fernandez Perez Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Heister, A. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kunsken, A. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Castilla-Valdez, H. De La Cruz-Burelo, E. La Cruz, I. Heredia-de Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Silva, C. Beirao Da Cruz E. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Iglesias, L. Lloret Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Llatas, M. Chamizo Colino, N. De La Cruz, B. Peris, A. Delgado Vazquez, D. Domnguez Del Valle, A. Escalante Bedoya, C. Fernandez Ramos, J. P. Fernandez Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. De Martino, E. Navarro Yzquierdo, A. Perez-Calero Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Campderros, J. Duarte Fernandez, M. Gomez, G. Graziano, A. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Loureno, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. John, J. St. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Vlimant, J. R. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Verwilligen, P. Vuosalo, C. Woods, N. CA CMS Collaboration TI Search for Displaced Supersymmetry in Events with an Electron and a Muon with Large Impact Parameters SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROTON-PROTON COLLISIONS; OF-MASS ENERGIES; ROOT-S=7 TEV; ATLAS DETECTOR; PP COLLISIONS; E(+)E(-) COLLISIONS; BREAKING TOPOLOGIES; HEAVY-PARTICLES; VERTICES AB A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at root s = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Martins Junior, M. Correa; Martins, T. Dos Reis; Herrera, C. Mora; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Tomei, T. R. Fernandez Perez; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Maggi, M.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] Ctr Calcul Inst Natl Phys Nucl & Particules, CNRS IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, Univ Lyon, Inst Phys Nucl Lyon, CNRS IN2P3, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] RWTH Aachen Univ I, Inst Phys, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] RWTH Aachen Univ III, Phys Inst A, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kunsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] RWTH Aachen Univ III, Phys Inst B, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Cipriano, P. M. Ribeiro; Roland, B.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.] Univ Ioannina, GR-45110 Ioannina, Greece. [Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res, ATOMKI, H-4001 Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Fabozzi, F.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Chhibra, S. S.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] Ctr Invest & Estud Avanzados, IPN, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Silva, C. Beirao Da Cruz E.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Iglesias, L. Lloret; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Vazquez, D. Domnguez; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; De Martino, E. Navarro; Yzquierdo, A. Perez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Loureno, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chatterjee, R. M.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hall, G.; Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08542 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR 00681 USA. [Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Schnetzer, S.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.] Rockefeller Univ, New York, NY 10021 USA. [Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA 22904 USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI 48202 USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Giordano, F.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Casasso, S.; Obertino, M. M.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Manganote, E. J. Tonelli] Univ Estadual Campinas, Campinas, SP, Brazil. [Plestina, R.; Bernet, C.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Finger, M., Jr.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.; Tsamalaidze, Z.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Hempel, M.; Lohmann, W.; Marfin, I.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res, ATOMKI, H-4001 Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Phys, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [La Cruz, I. Heredia-de] Univ Michoacana, Morelia, Michoacan, Mexico. [Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Gamsizkan, H.] Anadolu Univ, Eskisehir, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ocalan, K.] Necmettin Erbakan Univ, Konya, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Lokhtin, Igor/D-7004-2012; Manganote, Edmilson/K-8251-2013; Bernardes, Cesar Augusto/D-2408-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Petrushanko, Sergey/D-6880-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; candelise, vieri/H-2195-2015; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Popov, Andrey/E-1052-2012; Ligabue, Franco/F-3432-2014; OI Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Jacob, Jeson/0000-0001-6895-5493; ORTONA, Giacomo/0000-0001-8411-2971; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Ulrich, Ralf/0000-0002-2535-402X; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Malik, Sudhir/0000-0002-6356-2655; Staiano, Amedeo/0000-0003-1803-624X; Tonelli, Guido Emilio/0000-0003-2606-9156; Abbiendi, Giovanni/0000-0003-4499-7562; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Androsov, Konstantin/0000-0003-2694-6542; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Popov, Andrey/0000-0002-1207-0984; Kasemann, Matthias/0000-0002-0429-2448; Barbieri, Richard/0000-0002-7945-005X; Landsberg, Greg/0000-0002-4184-9380; Blekman, Freya/0000-0002-7366-7098; Tosi, Nicolo/0000-0002-0474-0247; Marzocchi, Badder/0000-0001-6687-6214; Costa, Salvatore/0000-0001-9919-0569; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Margaroli, Fabrizio/0000-0002-3869-0153; Tricomi, Alessia Rita/0000-0002-5071-5501; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396 FU BMWFW; FWF (Austria); FNRS; FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China)COLCIENCIAS (Colombia) FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.). NR 51 TC 3 Z9 3 U1 12 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 13 PY 2015 VL 114 IS 6 AR 061801 DI 10.1103/PhysRevLett.114.061801 PG 15 WC Physics, Multidisciplinary SC Physics GA CD6NR UT WOS:000351206500002 ER PT J AU Wang, Z Li, SS Wang, LW AF Wang, Zhi Li, Shu-Shen Wang, Lin-Wang TI Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material SO PHYSICAL REVIEW LETTERS LA English DT Article AB We have developed an efficient real-time time-dependent density functional theory (TDDFT) method that can increase the effective time step from <1 as in traditional methods to 0.1-0.5 fs. With this algorithm, the TDDFT simulation can have comparable speed to the Born-Oppenheimer (BO) ab initio molecular dynamics (MD). As an application, we simulated the process of an energetic Cl particle colliding onto a monolayer of MoSe2. Our simulations show a significant energy transfer from the kinetic energy of the Cl particle to the electronic energy of MoSe2, and the result of TDDFT is very different from that of BO-MD simulations. C1 [Wang, Zhi; Li, Shu-Shen] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Wang, Zhi; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Wang, Z (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. FU Office of Science, Office of Basic Energy Science, Materials Science and Engineering Division, of the U.S. Department of Energy, through the Material Theory program in the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; China Scholarship Council [201304910244] FX This work is supported by the Director, Office of Science, Office of Basic Energy Science, Materials Science and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Material Theory program in the Lawrence Berkeley National Laboratory. Z. W. is supported by the China Scholarship Council (ID:201304910244). This work uses the resource of National Energy Research Scientific Computing center (NERSC). NR 36 TC 5 Z9 5 U1 9 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 13 PY 2015 VL 114 IS 6 AR 063004 DI 10.1103/PhysRevLett.114.063004 PG 5 WC Physics, Multidisciplinary SC Physics GA CD6NR UT WOS:000351206500006 PM 25723218 ER PT J AU Miller, TL Arrala, M Smallwood, CL Zhang, W Hafiz, H Barbiellini, B Kurashima, K Adachi, T Koike, Y Eisaki, H Lindroos, M Bansil, A Lee, DH Lanzara, A AF Miller, Tristan L. Arrala, Minna Smallwood, Christopher L. Zhang, Wentao Hafiz, Hasnain Barbiellini, Bernardo Kurashima, Koshi Adachi, Tadashi Koike, Yoji Eisaki, Hiroshi Lindroos, Matti Bansil, Arun Lee, Dung-Hai Lanzara, Alessandra TI Resolving unoccupied electronic states with laser ARPES in bismuth-based cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID ULTRAVIOLET PHOTOEMISSION; REFLECTION; ENERGY; TRANSMISSION; SPECTRA; RU(001); SURFACE AB Angle-resolved photoemission spectroscopy (ARPES) is typically used to study only the occupied electronic band structure of a material. Here we use laser-based ARPES to observe a feature in bismuth-based superconductors that, in contrast, is related to the unoccupied states. Specifically, we observe a dispersive suppression of intensity cutting across the valence band, which, when compared with relativistic one-step calculations, can be traced to two final-state gaps in the bands 6 eV above the Fermi level. This finding opens up possibilities to bring the ultrahigh momentum resolution of existing laser-ARPES instruments to the unoccupied electron states. For cases where the final-state gap is not the object of study, we find that its effects can be made to vanish under certain experimental conditions. C1 [Miller, Tristan L.; Smallwood, Christopher L.; Zhang, Wentao; Lanzara, Alessandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Miller, Tristan L.; Smallwood, Christopher L.; Zhang, Wentao; Lanzara, Alessandra] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Arrala, Minna; Lindroos, Matti] Tampere Univ Technol, Dept Phys, FIN-33101 Tampere, Finland. [Hafiz, Hasnain; Barbiellini, Bernardo; Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Kurashima, Koshi; Koike, Yoji] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. [Adachi, Tadashi] Sophia Univ, Dept Engn & Appl Sci, Tokyo 1028554, Japan. [Eisaki, Hiroshi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058568, Japan. RP Miller, TL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alanzara@lbl.gov RI ZHANG, Wentao/B-3626-2011; Barbiellini, Bernardo/K-3619-2015; Smallwood, Christopher/D-4925-2011 OI Barbiellini, Bernardo/0000-0002-3309-1362; Smallwood, Christopher/0000-0002-4103-8748 FU Lawrence Berkeley National Laboratory's program on Quantum Materials - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; DOE [DE-AC02-05CH11231, DE-FG02-07ER46352] FX The angle-resolved photoemission spectroscopy part of this work was supported by Lawrence Berkeley National Laboratory's program on Quantum Materials, funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. The work at Northeastern University (NU) was supported by the DOE Grant No. DE-FG02-07ER46352, and benefited from NU's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. The computational part of this work benefited from grid computing software provided by Techila Technologies Ltd. NR 32 TC 1 Z9 1 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 13 PY 2015 VL 91 IS 8 AR 085109 DI 10.1103/PhysRevB.91.085109 PG 5 WC Physics, Condensed Matter SC Physics GA CD6MN UT WOS:000351203300001 ER PT J AU Moyer, JA Lee, S Schiffer, P Martin, LW AF Moyer, J. A. Lee, S. Schiffer, P. Martin, L. W. TI Magnetically disordered phase in epitaxial iron-deficient Fe3O4 thin films SO PHYSICAL REVIEW B LA English DT Article ID VERWEY TRANSITION-TEMPERATURE; MOLECULAR-BEAM EPITAXY; TUNNEL-JUNCTIONS; OXIDE; MAGNETORESISTANCE; GAMMA-FE2O3(001); NANOSTRUCTURES; MAGNETIZATION; FE3-DELTA-O4; ANISOTROPY AB We report on the transport and magnetic properties of iron-deficient Fe3O4 (Fe3-delta O4) thin films grown with pulsed-laser deposition, where the stoichiometry and amount of cation vacancies are precisely controlled through changes in the oxygen partial pressure during growth. As the stoichiometry evolves from Fe3O4 to gamma-Fe2O3, three distinct structural and magnetic regimes emerge: a Fe3O4-like regime, a gamma-Fe2O3-like regime, and a transition regime. While reflection high-energy electron diffraction measurements reveal that films in all three regimes grow epitaxially cube-on-cube on MgO substrates, the transition-regime films are characterized by an absence of long-range, out-of-plane ordering in the film. Selected area electron diffraction measurements reveal the transition-regime films are well ordered on a local level, but not throughout the entire film. The structural disorder of the transition-regime films does not manifest itself in the transport properties, where a systematic change in resistivity, due primarily to variations in the Fe2+:Fe3+ cation ratio, occurs continuously throughout all three regimes. Large differences are observed, however, in the magnetic properties of the transition-regime films, which are reminiscent of magnetically disordered systems. We attribute this unique magnetically disordered state to magnetic frustration arising at the boundaries between the different locally ordered regions. C1 [Moyer, J. A.; Schiffer, P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Moyer, J. A.; Lee, S.; Schiffer, P.; Martin, L. W.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Lee, S.; Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Martin, L. W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Martin, L. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moyer, JA (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. EM moyerja@illinois.edu RI Martin, Lane/H-2409-2011 OI Martin, Lane/0000-0003-1889-2513 FU Air Force Office of Scientific Research [FA9550-12-1-0471]; National Science Foundation [DMR-1451219]; Army Research Office [W911NF-14-1-0104] FX We acknowledge support from the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0471, National Science Foundation under Grant No. DMR-1451219, and the Army Research Office under Grant No. W911NF-14-1-0104. The work presented here was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 68 TC 5 Z9 5 U1 5 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 13 PY 2015 VL 91 IS 6 AR 064413 DI 10.1103/PhysRevB.91.064413 PG 10 WC Physics, Condensed Matter SC Physics GA CD6MJ UT WOS:000351202900001 ER EF