FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Peterson, JL Hopkins, LFB Jones, OS Clark, DS AF Peterson, J. L. Hopkins, L. F. Berzak Jones, O. S. Clark, D. S. TI Differential ablator-fuel adiabat tuning in indirect-drive implosions SO PHYSICAL REVIEW E LA English DT Article ID NATIONAL IGNITION FACILITY; INERTIAL CONFINEMENT FUSION; TAYLOR INSTABILITY; HYDRA SIMULATIONS; TARGETS; GAIN; DESIGNS; PICKET; GROWTH AB We propose a design adjustment to the high foot laser pulse [T. R. Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014)] that is predicted to lower the fuel adiabat, increase compression and neutron production, but maintain similar ablation front growth. This is accomplished by lowering the laser power between the first and the second pulses (the "trough") so that the first shock remains strong initially but decays as it transits the ablator and enters the capsule fuel in a process similar to direct-drive "adiabat shaping" [S. E. Bodner et al., Phys. Plasmas 7, 2298 (2000)]. Integrated hohlraum simulations show that hohlraum cooling is sufficient to launch decaying shocks with adequate symmetry control, suggesting that adiabat shaping may be possible with indirect-drive implosions. Initial experiments show the efficacy of this technique. C1 [Peterson, J. L.; Hopkins, L. F. Berzak; Jones, O. S.; Clark, D. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Peterson, JL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM peterson76@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank the entire NIF ICF team and in particular D. Callahan, D. Casey, D. Hinkel, O. Hurricane, O. Landen, J. Milovich, N. Meezan, H. Robey, V. Smalyuk, and R. Tommasini for useful discussions, guidance, and commentary. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 50 TC 12 Z9 12 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR 9 PY 2015 VL 91 IS 3 AR 031101 DI 10.1103/PhysRevE.91.031101 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC8NB UT WOS:000350624300001 PM 25871043 ER PT J AU Wang, WL Kevrekidis, PG AF Wang, Wenlong Kevrekidis, P. G. TI Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds SO PHYSICAL REVIEW E LA English DT Article ID BOSE-EINSTEIN CONDENSATE; LARGE-DENSITY LIMIT; STATISTICAL-MECHANICS; TODA LATTICE; VORTEX RINGS; TURBULENCE; VORTICES; DYNAMICS; SYSTEMS; WAVES AB We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas." As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime. C1 [Wang, Wenlong] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Wang, WL (reprint author), Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. EM wenlong@physics.umass.edu; kevrekid@math.umass.edu FU NSF [DMR-1208046]; US-AFOSR [FA950-12-1-0332]; ERC [IRSES-605096]; US Department of Energy; [NSF-DMS-1312856] FX W.W. acknowledges support from the NSF (Grant No. DMR-1208046). P.G.K. gratefully acknowledges the support of NSF-DMS-1312856, as well as from the US-AFOSR under Grant No. FA950-12-1-0332 and the ERC under FP7, Marie Curie Actions, People, International Research Staff Exchange Scheme (IRSES-605096). P.G.K.'s work at Los Alamos is supported in part by the US Department of Energy. We thank Jon Machta for helpful discussions, especially regarding the Monte Carlo simulations, Dimitri Frantzeskakis for numerous fruitful discussions on the themes of dark and dark-bright solitons, and Evangelos Karamatskos for discussions on the dynamics of multiple dark-bright solitons. NR 64 TC 1 Z9 1 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD MAR 9 PY 2015 VL 91 IS 3 AR 032905 DI 10.1103/PhysRevE.91.032905 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC8NB UT WOS:000350624300007 PM 25871170 ER PT J AU Ade, PAR Aghanim, N Ahmed, Z Aikin, RW Alexander, KD Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barkats, D Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Benton, SJ Bernard, JP Bersanelli, M Bielewicz, P Bischoff, CA Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Brevik, JA Bucher, M Buder, I Bullock, E Burigana, C Butler, RC Buza, V Calabrese, E Cardoso, JF Catalano, A Challinor, A Chary, RR Chiang, HC Christensen, PR Colombo, LPL Combet, C Connors, J Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dowell, CD Duband, L Ducout, A Dunkley, J Dupac, X Dvorkin, C Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Filippini, JP Finelli, F Fliescher, S Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Golwala, SR Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Halpern, M Hansen, FK Hanson, D Harrison, DL Hasselfield, M Helou, G Henrot-Versillee, S Herranz, D Hildebrandt, SR Hilton, GC Hivon, E Hobson, M Holmes, WA Hovest, W Hristov, VV Huffenberger, KM Hui, H Hurier, G Irwin, KD Jaffe, AH Jaffe, TR Jewell, J Jones, WC Juvela, M Karakci, A Karkare, KS Kaufman, JP Keating, BG Kefeli, S Keihanen, E Kernasovskiy, SA Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Kovac, JM Krachmalnicoff, N Kunz, M Kuo, CL Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leitch, EM Leonardi, R Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Lueker, M Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Mason, P Matarrese, S Megerian, KG Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Nguyen, HT Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Brient, R Ogburn, RW Orlando, A Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Pryke, C Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Richter, S Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Schwarz, R Scott, D Seiffert, MD Sheehy, CD Spencer, LD Staniszewski, ZK Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Teply, GP Terenzi, L Thompson, KL Toffolatti, L Tolan, JE Tomasi, M Tristram, M Tucci, M Turner, AD Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Vieregg, AG Villa, F Wade, LA Wandelt, BD Watson, R Weber, AC Wehus, IK White, M White, SDM Willmert, J Wong, CL Yoon, KW Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ahmed, Z. Aikin, R. W. Alexander, K. D. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barkats, D. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Benton, S. J. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bischoff, C. A. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Brevik, J. A. Bucher, M. Buder, I. Bullock, E. Burigana, C. Butler, R. C. Buza, V. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Connors, J. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dowell, C. D. Duband, L. Ducout, A. Dunkley, J. Dupac, X. Dvorkin, C. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Filippini, J. P. Finelli, F. Fliescher, S. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Golwala, S. R. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Halpern, M. Hansen, F. K. Hanson, D. Harrison, D. L. Hasselfield, M. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hilton, G. C. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hristov, V. V. Huffenberger, K. M. Hui, H. Hurier, G. Irwin, K. D. Jaffe, A. H. Jaffe, T. R. Jewell, J. Jones, W. C. Juvela, M. Karakci, A. Karkare, K. S. Kaufman, J. P. Keating, B. G. Kefeli, S. Keihanen, E. Kernasovskiy, S. A. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kovac, J. M. Krachmalnicoff, N. Kunz, M. Kuo, C. L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leitch, E. M. Leonardi, R. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Lueker, M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Mason, P. Matarrese, S. Megerian, K. G. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Nguyen, H. T. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Brient, R. Ogburn, R. W. Orlando, A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Pryke, C. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Richter, S. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Schwarz, R. Scott, D. Seiffert, M. D. Sheehy, C. D. Spencer, L. D. Staniszewski, Z. K. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Teply, G. P. Terenzi, L. Thompson, K. L. Toffolatti, L. Tolan, J. E. Tomasi, M. Tristram, M. Tucci, M. Turner, A. D. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Vieregg, A. G. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Weber, A. C. Wehus, I. K. White, M. White, S. D. M. Willmert, J. Wong, C. L. Yoon, K. W. Yvon, D. Zacchei, A. Zonca, A. CA BICEP KECK Planck Collaborations TI Joint Analysis of BICEP2/Keck Array and Planck Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROBE WMAP OBSERVATIONS; GRAVITY-WAVES; POLARIZATION; ANISOTROPY; EMISSION; SUBMILLIMETER; SPECTRUM; SCALE; DUST AB We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg(2) patch of sky centered on RA 0 h, Dec. -57.5 degrees. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 mu K deg in Q and U at 143 GHz). We detect 150 x 353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies >= 150 GHz to a lensed-Lambda CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r(0.05) < 0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0 sigma significance. C1 [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ahmed, Z.; Irwin, K. D.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Crill, B. P.; Dore, O.; Filippini, J. P.; Golwala, S. R.; Helou, G.; Hildebrandt, S. R.; Hristov, V. V.; Hui, H.; Kefeli, S.; Lueker, M.; Mason, P.; Pearson, T. J.; Rocha, G.; Seiffert, M. D.; Staniszewski, Z. K.; Teply, G. P.] CALTECH, Pasadena, CA 91125 USA. [Alexander, K. D.; Bischoff, C. A.; Buder, I.; Buza, V.; Connors, J.; Dvorkin, C.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Arnaud, M.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, IRFU,CEA DSM CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Barkats, D.] Joint ALMA Observ, Santiago, Chile. [Barreiro, R. B.; Benoit, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander, Spain. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Karakci, A.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,AstroParticule & Cosmol,CNRS IN2P3,CEA lrfu, F-75205 Paris 13, France. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Dowell, C. D.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Megerian, K. G.; Mitra, S.; Nguyen, H. T.; O'Brient, R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Staniszewski, Z. K.; Turner, A. D.; Wade, L. A.; Weber, A. C.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Benabed, K.; Benoit-Levy, A.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Benton, S. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bouchet, F. R.] Univ Paris 04, UPMC, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Bullock, E.; Pryke, C.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Sci & Fis Terra, I-44122 Ferrara, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Calabrese, E.; Dunkley, J.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Labe Phys Subatom & Cosmol, F-38026 Grenoble, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, Paris, France. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Challinor, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Cambridge CB3 0WA, England. [Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ USA. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, IPAG, F-38000 Grenoble, France. [Desert, F. -X.; Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Duband, L.] Serv Basses Temperatures Commiss Energie Atom, F-38054 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Filippini, J. P.; Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Fliescher, S.; Pryke, C.; Schwarz, R.; Sheehy, C. D.; Willmert, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Halpern, M.; Hasselfield, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Hanson, D.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Hilton, G. C.; Irwin, K. D.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Irwin, K. D.; Kuo, C. L.; Ogburn, R. W.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Kaufman, J. P.; Keating, B. G.; Orlando, A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kneissl, R.] ESO Vitacura, European Southern Observ, Santiago 19001, Chile. [Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Lagache, G.] Aix Marseille Univ, CNRS, Lab Astrophys Marseille, F-13388 Marseille, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, FI-00076 Aalto, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, FI-00076 Aalto, Finland. [Leitch, E. M.; Turner, A. D.] Univ Chicago, Chicago, IL 60637 USA. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Novikov, D.; Novikov, I.] Russian Acad Sci, PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Rebolo, R.] CSIC, Madrid, Spain. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Rome, Italy. [Savini, G.] UCL, Opt Sci Lab, London, England. [Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM Brendan.P.Crill@jpl.nasa.gov; pryke@physics.umn.edu RI Valiviita, Jussi/A-9058-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Lattanzi, Massimiliano/D-8120-2011; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; Vielva, Patricio/F-6745-2014; Piacentini, Francesco/E-7234-2010; Stolyarov, Vladislav/C-5656-2017; Yvon, Dominique/D-2280-2015; Toffolatti, Luigi/K-5070-2014; Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Lopez-Caniego, Marcos/M-4695-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Herranz, Diego/K-9143-2014; Novikov, Dmitry/P-1807-2015; Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; bonavera, laura/E-9368-2017; OI Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Lattanzi, Massimiliano/0000-0003-1059-2532; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Toffolatti, Luigi/0000-0003-2645-7386; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Herranz, Diego/0000-0003-4540-1417; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Watson, Robert/0000-0002-5873-0124; Juvela, Mika/0000-0002-5809-4834; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Orlando, Angiola/0000-0001-8004-5054; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Karkare, Kirit/0000-0002-5215-6993; Bouchet, Francois/0000-0002-8051-2924; Barkats, Denis/0000-0002-8971-1954; Villa, Fabrizio/0000-0003-1798-861X; de Bernardis, Paolo/0000-0001-6547-6446; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; bonavera, laura/0000-0001-8039-3876; Alexander, Kate/0000-0002-8297-2473; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Finelli, Fabio/0000-0002-6694-3269; De Zotti, Gianfranco/0000-0003-2868-2595; Sandri, Maura/0000-0003-4806-5375; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Morgante, Gianluca/0000-0001-9234-7412 FU U.S. National Science Foundation [ANT-0742818, ANT-1044978, ANT-0742592, ANT-1110087]; JPL Research and Technology Development Fund from the NASA [06-ARPA206-0040, 10-SAT10-0017]; National Science Foundation [ANT-1145172, ANT-1145143, ANT-1145248]; Keck Foundation (Caltech); ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX BICEP2 was supported by the U.S. National Science Foundation under Grants No. ANT-0742818 and No. ANT-1044978 (Caltech and Harvard) and No. ANT-0742592 and No. ANT-1110087 (Chicago and Minnesota). The development of antenna-coupled detector technology was supported by the JPL Research and Technology Development Fund and Grants No. 06-ARPA206-0040 and No. 10-SAT10-0017 from the NASA APRA and SAT programs. The Keck Array project was supported by the National Science Foundation under Grants No. ANT-1145172 (Harvard), No. ANT-1145143 (Minnesota) and No. ANT-1145248 (Stanford), and from the Keck Foundation (Caltech). We thank the staff of the U.S. Antarctic Program and in particular the South Pole Station without whose help this research would not have been possible. The Planck Collaboration acknowledges the support of the following: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found in Ref. [52]. NR 44 TC 304 Z9 305 U1 7 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 9 PY 2015 VL 114 IS 10 AR 101301 DI 10.1103/PhysRevLett.114.101301 PG 17 WC Physics, Multidisciplinary SC Physics GA CC8ND UT WOS:000350624500002 PM 25815919 ER PT J AU Hall, CC Biedron, SG Edelen, AL Milton, SV Benson, S Douglas, D Li, R Tennant, CD Carlsten, BE AF Hall, C. C. Biedron, S. G. Edelen, A. L. Milton, S. V. Benson, S. Douglas, D. Li, R. Tennant, C. D. Carlsten, B. E. TI Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BUNCH AB In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed. C1 [Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.] Colorado State Univ, Ft Collins, CO 80523 USA. [Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.] Thomas Jefferson Natl Accelerator Lab, Newport News, VA 23606 USA. [Carlsten, B. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hall, CC (reprint author), Colorado State Univ, Ft Collins, CO 80523 USA. EM chris.hall@colostate.edu OI Carlsten, Bruce/0000-0001-5619-907X FU Office of Naval Research; High-Energy Laser Joint Technology Office FX We thank J. Lewellen for proofreading of this manuscript and for his insightful comments on this work. We also thank P. Evtushenko for his invaluable assistance during the machine measurements. This work was funded by the Office of Naval Research and the High-Energy Laser Joint Technology Office. NR 15 TC 2 Z9 2 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 9 PY 2015 VL 18 IS 3 AR 030706 DI 10.1103/PhysRevSTAB.18.030706 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CC8NI UT WOS:000350625000003 ER PT J AU Hao, SJ Cui, LS Guo, FM Liu, YN Shi, XB Jiang, DQ Brown, DE Ren, Y AF Hao, Shijie Cui, Lishan Guo, Fangmin Liu, Yinong Shi, Xiaobin Jiang, Daqiang Brown, Dennis E. Ren, Yang TI Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect SO SCIENTIFIC REPORTS LA English DT Article ID SHAPE-MEMORY ALLOYS; SUPERELASTIC NITI; STRAIN; MICROSTRUCTURE; NANOCOMPOSITES; DEFORMATION; HYSTERESIS; MECHANISMS; NANOTUBES; MODULUS AB Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm(3) that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components. C1 [Hao, Shijie; Cui, Lishan; Guo, Fangmin; Shi, Xiaobin; Jiang, Daqiang] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Liu, Yinong] Univ Western Australia, Sch Mech & Chem Engn, Crawley, WA 6009, Australia. [Brown, Dennis E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Ren, Yang] Argonne Natl Lab, X Ray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. RP Cui, LS (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. EM lishancui63@126.com; ren@aps.anl.gov RI Liu, Yinong/G-6637-2011; Jiang, Daqiang /G-5511-2014 OI Liu, Yinong/0000-0002-8784-8543; FU key National Natural Science Foundation of China (NSFC) [51231008]; National 973 program of China [2012CB619403]; NSFC [51471187, 11474362]; Beijing Natural Science Foundation [2152026]; Science Foundation of China University of Petroleum, Beijing [2462013YJRC005]; Key Project of Chinese Ministry of Education [313055]; US Department of Energy, Office of Science, and Office of Basic Energy Science [DE-AC02-06CH11357] FX This work was supported by the key National Natural Science Foundation of China (NSFC) (51231008), the National 973 program of China (2012CB619403), the NSFC (51471187 and 11474362), Beijing Natural Science Foundation (2152026), the Science Foundation of China University of Petroleum, Beijing (2462013YJRC005) and the Key Project of Chinese Ministry of Education (313055). The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Science under Contract No. DE-AC02-06CH11357. NR 31 TC 2 Z9 2 U1 6 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 9 PY 2015 VL 5 AR 8892 DI 10.1038/srep08892 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC7ME UT WOS:000350551100001 PM 25749549 ER PT J AU Zhang, PJ Lo, A Huang, YR Huang, G Liang, GZ Mott, J Karpen, GH Blakely, EA Bissell, MJ Barcellos-Hoff, MH Snijders, AM Mao, JH AF Zhang, Pengju Lo, Alvin Huang, Yurong Huang, Ge Liang, Guozhou Mott, Joni Karpen, Gary H. Blakely, Eleanor A. Bissell, Mina J. Barcellos-Hoff, Mary Helen Snijders, Antoine M. Mao, Jian-Hua TI Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment SO SCIENTIFIC REPORTS LA English DT Article ID LOW-DOSE RADIATION; IONIZING-RADIATION; BRANCHING MORPHOGENESIS; CANCER; MICE; MOUSE; CARCINOGENESIS; BIOLOGY; BETA; TUMORIGENESIS AB The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53(-/-) BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genes involved in cytokines, including TGF beta 1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53(-/-) fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFb1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures. C1 [Zhang, Pengju; Lo, Alvin; Huang, Yurong; Huang, Ge; Liang, Guozhou; Mott, Joni; Karpen, Gary H.; Blakely, Eleanor A.; Bissell, Mina J.; Snijders, Antoine M.; Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Barcellos-Hoff, Mary Helen] NYU, Sch Med, New York, NY 10016 USA. RP Mao, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM JHMao@lbl.gov OI Barcellos-Hoff, Mary Helen/0000-0002-5994-9558 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Drs. Allan Balmain and Joe W Gray for initial scientific support, and Dr. David H. Nguyen and Ms. Shraddha A. Ravani for initial technical support. This work was supported by Low Dose SFA Program of the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 5 Z9 6 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 9 PY 2015 VL 5 AR 8919 DI 10.1038/srep08919 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC7MM UT WOS:000350551900002 PM 25747469 ER PT J AU Boswell, RW Takahashi, K Charles, C Kaganovich, ID AF Boswell, Rod W. Takahashi, Kazunori Charles, Christine Kaganovich, Igor D. TI Non-local electron energy probability function in a plasma expanding along a magnetic nozzle SO FRONTIERS IN PHYSICS LA English DT Article DE low-temperature plasmas; plasma expansion; electron energy probability function; non-local effect ID DISCHARGE AB Electron energy probability functions (eepfs) have been measured along the axis of a low pressure plasma expanding in a magnetic nozzle. The eepf at the maximum magnetic field of the nozzle shows a depleted tail commencing at an energy corresponding to the measured potential drop in the magnetic nozzle. The eepfs measured along the axis demonstrate that the sum of potential and kinetic energies of the electrons is conserved thus confirming the validity of non-local approach to kinetics of the electron dynamics of a low-pressure plasma expanding in a magnetic nozzle. C1 [Boswell, Rod W.; Charles, Christine] Australian Natl Univ, Res Sch Phys & Engn, Space Plasma Power & Prop Lab, Bldg 60,Mills Rd, Canberra, ACT 2601, Australia. [Takahashi, Kazunori] Tohoku Univ, Dept Elect Engn, Sendai, Miyagi, Japan. [Kaganovich, Igor D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Boswell, RW (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Space Plasma Power & Prop Lab, Bldg 60,Mills Rd, Canberra, ACT 2601, Australia. EM rod.boswell@anu.edu.au NR 14 TC 7 Z9 7 U1 4 U2 4 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA EPFL SCIENCE PARK, BLDG D, LAUSANNE, 1015, SWITZERLAND SN 2296-424X J9 FRONT PHYS JI Front. Physics PD MAR 9 PY 2015 VL 3 AR 14 DI 10.3389/fphy.2015.00014 PG 5 WC Physics, Multidisciplinary SC Physics GA EB2FC UT WOS:000387172200001 ER PT J AU Nguyen, MC Zhao, X Wang, CZ Ho, KM AF Manh Cuong Nguyen Zhao, Xin Wang, Cai-Zhuang Ho, Kai-Ming TI Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; PHASE AB The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5-7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5-7 at atomistic and nano scales. The alnico 5-7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (similar to 2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on alpha-site and Ni and Co on beta-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. A small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5-7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. The results from our Monte Carlo simulations are consistent with available experimental results. (C) 2015 AIP Publishing LLC. C1 [Manh Cuong Nguyen] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Nguyen, MC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM mcnguyen@ameslab.gov RI Nguyen, Manh Cuong/G-2783-2015; OI Nguyen, Manh Cuong/0000-0001-8027-9029; Zhao, Xin/0000-0002-3580-512X FU U.S. Department of Energy-Energy Efficiency and Renewable Energy, Vehicles Technology Office, PEEM program; Iowa State University [DE-AC02-07CH11358] FX The U.S. Department of Energy-Energy Efficiency and Renewable Energy, Vehicles Technology Office, PEEM program supported the research at the Ames Laboratory, which is operated for the DOE by Iowa State University under Contract No. DE-AC02-07CH11358. We also acknowledge the computing resources supports at Oak Ridge Leadership Computing Facility (OLCF) via INCITE project. NR 21 TC 1 Z9 1 U1 4 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 7 PY 2015 VL 117 IS 9 AR 093905 DI 10.1063/1.4914036 PG 8 WC Physics, Applied SC Physics GA CD5NI UT WOS:000351134400011 ER PT J AU Moseley, MW Allerman, AA Crawford, MH Wierer, JJ Smith, ML Armstrong, AM AF Moseley, Michael W. Allerman, Andrew A. Crawford, Mary H. Wierer, Jonathan J., Jr. Smith, Michael L. Armstrong, Andrew M. TI Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; REVERSE-BIAS LEAKAGE; VAPOR-PHASE EPITAXY; UV LEDS; THREADING DISLOCATIONS; WATER DISINFECTION; GAN FILMS; NM ALGAN; SAPPHIRE; ORIGIN AB Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the forward-bias IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-n junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the forward-bias IV characteristics of the leaky DUV-LED is achieved. (C) 2015 AIP Publishing LLC. C1 [Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J., Jr.; Smith, Michael L.; Armstrong, Andrew M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moseley, MW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 36 TC 4 Z9 4 U1 7 U2 66 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 7 PY 2015 VL 117 IS 9 AR 095301 DI 10.1063/1.4908543 PG 7 WC Physics, Applied SC Physics GA CD5NI UT WOS:000351134400036 ER PT J AU Miliordos, E Xantheas, SS AF Miliordos, Evangelos Xantheas, Satins S. TI On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; CONFIGURATION-INTERACTION CALCULATIONS; CONSISTENT BASIS-SETS; WAVE-FUNCTIONS; BENCHMARK CALCULATIONS; SYSTEMATIC SEQUENCES; DIATOMIC HYDRIDES; ATOMS; ARGON AB We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for D-e = -16.1 +/- 0.1 kcal/mol and for D-0 = -14.3 +/- 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 +/- 0.12 kcal/mol. (c) 2015 AIP Publishing LLC. C1 [Miliordos, Evangelos; Xantheas, Satins S.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Div Phys Sci, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Professor Ernest Davidson and Dr. Edoardo Apra of PNNL for many helpful discussions and a critical review of the manuscript. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. A portion of this research was performed using the Molecular Science Computing Facility (MSCF) in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 59 TC 6 Z9 6 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2015 VL 142 IS 9 AR 094311 DI 10.1063/1.4913766 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD3JH UT WOS:000350973900036 PM 25747085 ER PT J AU Rossi, TP Lehtola, S Sakko, A Puska, MJ Nieminen, RM AF Rossi, Tuomas P. Lehtola, Susi Sakko, Arto Puska, Martti J. Nieminen, Risto M. TI Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; QUANTUM PLASMON RESONANCES; OPTICAL-PROPERTIES; CORRELATION-ENERGY; ELECTRONIC-STRUCTURE; EXCITATION-SPECTRA; PROTECTED GOLD; SILVER; CLUSTERS; TIME AB We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond. (c) 2015 AIP Publishing LLC. C1 [Rossi, Tuomas P.; Lehtola, Susi; Sakko, Arto; Puska, Martti J.; Nieminen, Risto M.] Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, Sch Sci, FI-00076 Aalto, Finland. [Lehtola, Susi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Nieminen, Risto M.] Aalto Univ, Deans Off, Sch Sci, FI-00076 Aalto, Finland. RP Rossi, TP (reprint author), Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, Sch Sci, POB 11100, FI-00076 Aalto, Finland. EM tuomas.rossi@alumni.aalto.fi; susi.lehtola@alumni.helsinki.fi RI Lehtola, Susi/H-1828-2013; Nieminen, Risto/I-5573-2012; Puska, Martti/E-7362-2012 OI Lehtola, Susi/0000-0001-6296-8103; Nieminen, Risto/0000-0002-1032-2711; Puska, Martti/0000-0002-8419-3289 FU Vilho, Yrjo, and Kalle Vaisala Foundation; Magnus Ehrnrooth Foundation; Academy of Finland through its Centres of Excellence Programme [251748]; Academy of Finland through its FiDiPro Programme [263294] FX We thank Ask H. Larsen for fruitful discussions. T.P.R. and S.L. acknowledge financial support from the Vilho, Yrjo, and Kalle Vaisala Foundation. S.L. also acknowledges the Magnus Ehrnrooth Foundation for financial support. We thank the Academy of Finland for support through its Centres of Excellence Programme (2012-2017) under Project No. 251748 and through its FiDiPro Programme under Project No. 263294. We acknowledge the computational resources provided by the Aalto Science-IT project and CSC-IT Center for Science, Ltd. (Espoo, Finland). NR 91 TC 3 Z9 3 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2015 VL 142 IS 9 AR 094114 DI 10.1063/1.4913739 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD3JH UT WOS:000350973900019 PM 25747068 ER PT J AU Small, DW Sundstrom, EJ Head-Gordon, M AF Small, David W. Sundstrom, Eric J. Head-Gordon, Martin TI A simple way to test for collinearity in spin symmetry broken wave functions: General theory and application to generalized Hartree Fock SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NONCOLLINEAR MAGNETISM; CONVERGENCE ACCELERATION; NONORTHOGONAL GEMINALS; MODEL CHEMISTRY; PHOTOSYSTEM-II; MEAN-FIELD; MOLECULES; SYSTEMS; FRUSTRATION; ORBITALS AB We introduce a necessary and sufficient condition for an arbitrary wavefunction to be collinear, i.e., its spin is quantized along some axis. It may be used to obtain a cheap and simple computational procedure to test for collinearity in electronic structure theory calculations. We adapt the procedure for Generalized Hartree Fock (GHF), and use it to study two dissociation pathways in CO2. For these dissociation processes, the GHF wave functions transform from low-spin Unrestricted Hartree Fock (UHF) type states to noncollinear GHF states and on to high-spin UHF type states, phenomena that are succinctly illustrated by the constituents of the collinearity test. This complements earlier GHF work on this molecule. (C) 2015 AIP Publishing LLC. C1 [Small, David W.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Small, DW (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. FU Office of Science, Office of Basic Energy Sciences, of the (U.S.) Department of Energy [DE-AC02-05CH11231] FX Part of this work was supported by the Office of Science, Office of Basic Energy Sciences, of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. M.H.-G. is a part-owner of Q-CHEM, Inc. NR 64 TC 2 Z9 2 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2015 VL 142 IS 9 AR 094112 DI 10.1063/1.4913740 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD3JH UT WOS:000350973900017 PM 25747066 ER PT J AU Yu, JG Bai, XM El-Azab, A Allen, TR AF Yu, Jianguo Bai, Xian-Ming El-Azab, Anter Allen, Todd R. TI Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID KINETIC MONTE-CARLO; INTERATOMIC POTENTIALS; SELF-DIFFUSION; UO2; SIMULATION; OXIDATION; ALGORITHM; OXIDES AB Oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation, and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo method has been used to investigate the kinetics of oxygen transport in UO2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable off-stoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO2-x, oxygen transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that di-interstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence, and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing an explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry. (C) 2015 AIP Publishing LLC. C1 [Yu, Jianguo; Bai, Xian-Ming; Allen, Todd R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [El-Azab, Anter] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Allen, Todd R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Yu, JG (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM jianguo.yu@inl.gov RI Yu, Jianguo/C-3424-2013; Bai, Xianming/E-2376-2017; OI Yu, Jianguo/0000-0001-5604-8132; Bai, Xianming/0000-0002-4609-6576; Allen, Todd/0000-0002-2372-7259 FU U.S. Government under DOE under the Energy Frontier Research Center (Office of Science, Office of Basic Energy Science) [DE-AC07-051D14517, FWP 1356] FX The authors acknowledge the High Performance Computing Group at Idaho National Laboratory for the use of computing resources. This work was co-authored by a contractor of the U.S. Government under DOE Contract No. DE-AC07-051D14517, under the Energy Frontier Research Center (Office of Science, Office of Basic Energy Science, FWP 1356). NR 38 TC 3 Z9 3 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2015 VL 142 IS 9 AR 094705 DI 10.1063/1.4914137 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD3JH UT WOS:000350973900048 PM 25747097 ER PT J AU Li, JJ Biggin, MD AF Li, Jingyi Jessica Biggin, Mark D. TI Statistics requantitates the central dogma SO SCIENCE LA English DT Editorial Material ID PROTEIN; EXPRESSION; MICRORNAS; IMPACT; CELLS C1 [Li, Jingyi Jessica] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA. [Li, Jingyi Jessica] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA. [Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Li, JJ (reprint author), Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA. EM jli@stat.ucla.edu; mdbiggin@lbl.gov NR 14 TC 35 Z9 35 U1 7 U2 22 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAR 6 PY 2015 VL 347 IS 6226 BP 1066 EP 1067 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4WB UT WOS:000350354200018 PM 25745146 ER PT J AU Lowe, AR Tang, JH Yassif, J Graf, M Huang, WYC Groves, JT Weis, K Liphardt, JT AF Lowe, Alan R. Tang, Jeffrey H. Yassif, Jaime Graf, Michael Huang, William Y. C. Groves, Jay T. Weis, Karsten Liphardt, Jan T. TI Importin-beta modulates the permeability of the nuclear pore complex in a Ran-dependent manner SO ELIFE LA English DT Article ID PROTEIN IMPORT; NUCLEOPORIN NUP153; FLUORESCENT-PROBES; MAMMALIAN-CELLS; NUCLEOCYTOPLASMIC TRANSPORT; KINETIC-ANALYSIS; EGG EXTRACTS; SINGLE; BINDING; TRANSLOCATION AB Soluble karyopherins of the importin-beta (imp beta) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether imp beta or RanGTP regulate the permeability of the NPC itself has been unknown. In this study, we identify a stable pool of imp beta at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. imp beta, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that imp beta is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified imp beta or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the imp beta eNup153 complexes but not those of TRN1.Nup153. We propose that imp beta and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability. C1 [Lowe, Alan R.] UCL, Inst Struct & Mol Biol, London, England. [Lowe, Alan R.] Birkbeck Coll, London, England. [Lowe, Alan R.] UCL, London Ctr Nanotechnol, London, England. [Lowe, Alan R.; Tang, Jeffrey H.; Yassif, Jaime; Liphardt, Jan T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lowe, Alan R.; Tang, Jeffrey H.; Yassif, Jaime; Groves, Jay T.; Liphardt, Jan T.] Univ Calif Berkeley, QB3, Berkeley, CA 94720 USA. [Lowe, Alan R.; Tang, Jeffrey H.; Yassif, Jaime; Groves, Jay T.; Liphardt, Jan T.] Univ Calif Berkeley, Bay Area Phys Sci, Ctr Oncol, Berkeley, CA 94720 USA. [Tang, Jeffrey H.; Liphardt, Jan T.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. [Tang, Jeffrey H.; Weis, Karsten; Liphardt, Jan T.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Tang, Jeffrey H.; Weis, Karsten] Eidgenoss Tech Hsch Zurich, Inst Biochem, Zurich, Switzerland. [Tang, Jeffrey H.; Yassif, Jaime; Groves, Jay T.; Liphardt, Jan T.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Graf, Michael] Ecole Polytech Fed Lausanne, Sect Life Sci & Technol, Lausanne, Switzerland. [Huang, William Y. C.; Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. [Groves, Jay T.; Liphardt, Jan T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Lowe, AR (reprint author), UCL, Inst Struct & Mol Biol, London, England. EM a.lowe@ucl.ac.uk; karsten.weis@bc.biol.ethz.ch; jan.liphardt@stanford.edu RI Weis, Karsten/F-5719-2011; OI Weis, Karsten/0000-0001-7224-925X; Graf, Michael/0000-0001-6201-7471 FU National Institute of General Medical Sciences (NIGMS) [R01GM077856, R01GM058065]; National Cancer Institute (NCI) [U54CA143836]; National Institutes of Health (NIH) [R01GM077856, R01GM058065, U54CA143836, PO1AI091580]; National Institute of Allergy and Infectious Diseases (NIAID) [PO1AI091580] FX National Institute of General Medical Sciences (NIGMS) R01GM077856 Jan T Liphardt; National Institute of General Medical Sciences (NIGMS) R01GM058065 Karsten Weis; National Cancer Institute (NCI) U54CA143836 Jay T Groves, Jan T Liphardt; National Institutes of Health (NIH) U54CA143836 Jay T Groves, Jan T Liphardt; National Institute of Allergy and Infectious Diseases (NIAID) PO1AI091580 Jay T Groves; National Institutes of Health (NIH) R01GM077856 Jan T Liphardt; National Institutes of Health (NIH) R01GM058065 Karsten Weis; National Institutes of Health (NIH) PO1AI091580 Jay T Groves NR 67 TC 19 Z9 19 U1 7 U2 19 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD MAR 6 PY 2015 VL 4 AR e04052 DI 10.7554/eLife.04052 PG 24 WC Biology SC Life Sciences & Biomedicine - Other Topics GA CE5IE UT WOS:000351864100002 ER PT J AU Jahangir-Moghadam, M Ahmadi-Majlan, K Shen, X Droubay, T Bowden, M Chrysler, M Su, D Chambers, SA Ngai, JH AF Jahangir-Moghadam, Mohammadreza Ahmadi-Majlan, Kamyar Shen, Xuan Droubay, Timothy Bowden, Mark Chrysler, Matthew Su, Dong Chambers, Scott A. Ngai, Joseph H. TI Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface SO ADVANCED MATERIALS INTERFACES LA English DT Article ID ATOMIC LAYER DEPOSITION; SRTIO3/SI(001) HETEROJUNCTIONS; PRECISE DETERMINATION; SILICON; DIELECTRICS; BATIO3; SRTIO3; GE; DISCONTINUITIES; INTEGRATION AB The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to electrically coupling crystalline oxides with semiconductors to realize functional behavior is to control the manner in which their bands align at interfaces. Here, principles of band-gap engineering traditionally used at heterojunctions between conventional semiconductors are applied to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO3 and Ge, in which the band-gap of the former is enhanced with Zr content x. Structural and electrical characterization of SrZrxTi1-xO3-Ge heterojunctions for x = 0.2 to 0.75 are presented and it is demonstrated that the band offset can be tuned from type-II to type-I, with the latter being verified using photoemission measurements. The type-I band offset provides a platform to integrate the dielectric, ferroelectric, and ferromagnetic functionalities of oxides with semiconducting devices. C1 [Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Chrysler, Matthew; Ngai, Joseph H.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Jahangir-Moghadam, Mohammadreza] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA. [Ahmadi-Majlan, Kamyar] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 76019 USA. [Shen, Xuan; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ngai, JH (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM jngai@uta.edu RI Droubay, Tim/D-5395-2016; Su, Dong/A-8233-2013 OI Droubay, Tim/0000-0002-8821-0322; Su, Dong/0000-0002-1921-6683 FU University of Texas at Arlington; China Scholarship Council; Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences [DEAC02-98CH10886]; U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122] FX M.J.M. and K.A.M contributed equally to this work. This work was supported by the University of Texas at Arlington. X.S. thanks the China Scholarship Council and Brookhaven National Laboratory for support. The STEM characterization performed at the Center for Functional Nanomaterials at BNL was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886. The band offset measurements and the reciprocal space mapping were performed at PNNL and supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award 10122. The PNNL work was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. NR 39 TC 8 Z9 8 U1 7 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD MAR 6 PY 2015 VL 2 IS 4 AR 1400497 DI 10.1002/admi.201400497 PG 7 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CD0IZ UT WOS:000350756300003 ER PT J AU Li, P Abraimov, D Polyanskii, A Kametani, F Larbalestier, D AF Li, Pei Abraimov, Dmytro Polyanskii, Anatolii Kametani, Fumitake Larbalestier, David TI Study of grain boundary transparency in (Yb1-xCax)Ba2Cu3O bicrystal thin films over a wide temperature, field, and field orientation range SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTORS; OXYGEN TRACER DIFFUSION; PULSED-LASER DEPOSITION; TRANSPORT-PROPERTIES; MAGNETIC-FIELD; YBCO FILMS; YBA2CU3O7-DELTA; CALCIUM; ENHANCEMENT; DEFECTS AB The residual low-angle grain boundary (GB) network is still the most important current-limiting mechanism operating in biaxially textured rare-earth barium-copper-oxide (REBCO) coated conductors. While Ca doping is well established to improve supercurrent flow across low-angle GBs in weak fields at high temperatures, Ca doping also depresses T-c, making it so far impractical for high-temperature applications of REBCO coated conductors. On the other hand, high-field-magnet applications of REBCO require low temperatures. Here we systematically evaluate the effectiveness of Ca doping in improving the GB transparency, r(GB) = J(c)(GB)/J(c)(grain), of low-angle Yb1-xCaxBaCuO [001] tilt bicrystal films down to 10 K and with magnetic fields perpendicular and parallel to the film surfaces, while varying the Ca and oxygen doping level. Using low-temperature scanning laser microscopy and magneto-optical imaging, we found r(GB) to strongly depend on the angle between magnetic field and the GB plane and clearly identified regimes in which J(c)(GB) can exceed J(c)(grain) (r(GB) > 1) where the GB pinning is optimized by the field being parallel to the GB dislocations. However, even in this favorable situation, we found that r(GB) became much smaller at lower temperatures. Calculations of the GB Ca segregation profile predict that the high-J(c) channels between the GB dislocation cores are almost Ca free. It may be therefore that the positive effects of Ca doping seen by many authors near T-c are partly a consequence of the higher T-c of these Ca-free channels. C1 [Li, Pei; Abraimov, Dmytro; Polyanskii, Anatolii; Kametani, Fumitake; Larbalestier, David] Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. RP Li, P (reprint author), Fermilab Natl Accelerator Lab, Tech Div, POB 500, Batavia, IL 60510 USA. RI Larbalestier, David/B-2277-2008 OI Larbalestier, David/0000-0001-7098-7208 FU National Science Foundation [DMR-1157490] FX This work is performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490. We are also grateful to Dr. Alexander Gurevich of Old Dominion University for very useful discussions of his strain and charge segregation model in the initial stages of planning this experiment. NR 39 TC 1 Z9 1 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR 6 PY 2015 VL 91 IS 10 AR 104504 DI 10.1103/PhysRevB.91.104504 PG 10 WC Physics, Condensed Matter SC Physics GA CD7OS UT WOS:000351280700001 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, AB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, A Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Suster, C Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero Y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Suster, C. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Simultaneous measurements of the t(t)over-bar, W+W-, and Z/gamma* -> tau tau production cross-sections in pp collisions at root s=7 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; LHC AB Simultaneous measurements of the t (t) over bar, W+W-, and Z/gamma* -> tau tau production cross-sections using an integrated luminosity of 4.6 fb(-1) of pp collisions at root s = 7 TeV collected by the ATLAS detector at the LHC are presented. Events are selected with two high transverse momentum leptons consisting of an oppositely charged electron and muon pair. The three processes are separated using the distributions of the missing transverse momentum of events with zero and greater than zero jet multiplicities. Measurements of the fiducial cross-section are presented along with results that quantify for the first time the underlying correlations in the predicted and measured cross-sections due to proton parton distribution functions. These results indicate that the correlated next-to-leading-order predictions for t (t) over bar and Z/gamma* -> tau tau underestimate the data, while those at next-to-next-to-leading-order generally describe the data well. The full cross-sections are measured to be sigma(t (t) over bar) = 181.2 +/- 2.8(-9.5)(+9.7) +/- 3.3 +/- 3.3 pb, sigma(W+W-) = 53.3 +/- 2.7(-8.0)(+7.3) +/- 1.0 +/- 0.5 pb, and sigma(Z/gamma* -> tau tau) = 1174 +/- 24(-87)(+72) +/- 21 +/- 9 pb, where the cited uncertainties are due to statistics, systematic effects, luminosity and the LHC beam energy measurement, respectively. The W+W- measurement includes the small contribution from Higgs boson decays, H -> W+W-. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz De Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero Y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; Della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys Werner Heisenberg Inst, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, S.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, M.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commiss Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hsu, C.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Suster, C.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, E.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, S.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules, IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Montreal, PQ, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] Inst Catalana Rec & Estud Avancats, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] SISSA, Sch Adv Int Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Nucl & Particle Phys, Budapest, Hungary. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Li, Liang/O-1107-2015; Garcia, Jose /H-6339-2015; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Mitsou, Vasiliki/D-1967-2009; Carquin, Edson/G-5221-2015; Livan, Michele/D-7531-2012; Brooks, William/C-8636-2013; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Moraes, Arthur/F-6478-2010; Di Domenico, Antonio/G-6301-2011; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Boyko, Igor/J-3659-2013; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Solfaroli Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Suster, Carl/L-3714-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Mashinistov, Ruslan/M-8356-2015; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015 OI Li, Liang/0000-0001-6411-6107; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Mitsou, Vasiliki/0000-0002-1533-8886; Carquin, Edson/0000-0002-7863-1166; Livan, Michele/0000-0002-5877-0062; Brooks, William/0000-0001-6161-3570; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Moraes, Arthur/0000-0002-5157-5686; Di Domenico, Antonio/0000-0001-8078-2759; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Boyko, Igor/0000-0002-3355-4662; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Suster, Carl/0000-0001-7021-9380; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM; Russian Federation; JINR, Serbia; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 59 TC 3 Z9 3 U1 8 U2 71 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 6 PY 2015 VL 91 IS 5 AR 052005 DI 10.1103/PhysRevD.91.052005 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD7PN UT WOS:000351283000001 ER PT J AU Stanton, LG Murillo, MS AF Stanton, L. G. Murillo, M. S. TI Unified description of linear screening in dense plasmas SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; STOPPING POWER; SYSTEMS; TEMPERATURES; EQUATION; POINT AB Electron screening of ions is among the most fundamental properties of plasmas, determining the effective ionic interactions that impact all properties of a plasma. With the development of new experimental facilities that probe high-energy-density physics regimes ranging from warm dense matter to hot dense matter, a unified framework for describing dense plasma screening has become essential. Such a unified framework is presented here based on finite-temperature orbital-free density functional theory, including gradient corrections and exchange-correlation effects. We find a new analytic pair potential for the ion-ion interaction that incorporates moderate electronic coupling, quantum degeneracy, gradient corrections to the free energy, and finite temperatures. This potential can be used in large-scale "classical" molecular dynamics simulations, as well as in simpler theoretical models (e.g., integral equations and Monte Carlo), with no additional computational complexity. The new potential theoretically connects limits of Debye-Huckel-Yukawa, Lindhard, Thomas-Fermi, and Bohmian quantum hydrodynamics descriptions. Based on this new potential, we predict ionic static structure factors that can be validated using x-ray Thomson scattering data. C1 [Stanton, L. G.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Murillo, M. S.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA. RP Stanton, LG (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM liam@llnl.gov; murillo@lanl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 35 TC 22 Z9 22 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR 6 PY 2015 VL 91 IS 3 AR 033104 DI 10.1103/PhysRevE.91.033104 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CD7PW UT WOS:000351284000008 PM 25871221 ER PT J AU Lonardoni, D Lovato, A Gandolfi, S Pederiva, F AF Lonardoni, Diego Lovato, Alessandro Gandolfi, Stefano Pederiva, Francesco TI Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; NEUTRON-STARS; LAMBDA-HYPERNUCLEI; BINDING-ENERGIES; MAXIMUM MASS; MATTER; NUCLEI; PULSAR; CORES; BREAKING AB The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the grounds for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and. particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars. C1 [Lonardoni, Diego; Lovato, Alessandro] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. [Gandolfi, Stefano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pederiva, Francesco] Univ Trento, Dept Phys, I-38123 Trento, Italy. [Pederiva, Francesco] INFN TIFPA, I-38123 Trento, Italy. RP Lonardoni, D (reprint author), Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. OI Lovato, Alessandro/0000-0002-2194-4954; Gandolfi, Stefano/0000-0002-0430-9035 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the NUCLEI SciDAC grant; Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; DOE [DE-AC02-05CH11231]; Los Alamos LDRD grant; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank J. Carlson, S. C. Pieper, S. Reddy, A. W. Steiner, W. Weise, and R. B. Wiringa for stimulating discussions. The work of D. L. and S. G. was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the NUCLEI SciDAC grant and A. L. by the Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The work of S. G. was also supported by DOE under Contract No. DE-AC02-05CH11231, and by a Los Alamos LDRD grant. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 63 TC 43 Z9 43 U1 4 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 6 PY 2015 VL 114 IS 9 AR 092301 DI 10.1103/PhysRevLett.114.092301 PG 5 WC Physics, Multidisciplinary SC Physics GA CD7RM UT WOS:000351288800005 PM 25793808 ER PT J AU Chen, XD Khajeh, JA Ju, JH Gupta, YK Stanley, CB Do, C Heller, WT Aggarwal, AK Callaway, DJE Bu, ZM AF Chen, Xiaodong Khajeh, Jahan Ali Ju, Jeong Ho Gupta, Yogesh K. Stanley, Christopher B. Do, Changwoo Heller, William T. Aggarwal, Aneel K. Callaway, David J. E. Bu, Zimei TI Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID X-RAY-SCATTERING; TRANSMEMBRANE CONDUCTANCE REGULATOR; SCAFFOLDING PROTEIN NHERF1; BREAST-CANCER CELLS; N-TERMINAL DOMAIN; ERM PROTEINS; BIOLOGICAL MACROMOLECULES; PROSPECTIVE IDENTIFICATION; SEDIMENTATION EQUILIBRIUM; CYTOPLASMIC DOMAIN AB The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI12), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the fulllength Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-('D44-Ezrin complexes. C1 [Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Callaway, David J. E.; Bu, Zimei] CUNY, Dept Chem & Biochem, New York, NY 10031 USA. [Chen, Xiaodong] Jiangxi Univ Tradit Chinese Med, Sch Pharm, Nanchang 330004, Jiangxi, Peoples R China. [Gupta, Yogesh K.; Aggarwal, Aneel K.] Icahn Sch Med Mt Sinai, Dept Struct & Chem Biol, New York, NY 10029 USA. [Stanley, Christopher B.; Do, Changwoo; Heller, William T.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Bu, ZM (reprint author), CUNY, Dept Chem, 160 Convent Ave, New York, NY 10031 USA. EM zbu@ccny.cuny.edu RI Gupta, Yogesh/B-6949-2009; Do, Changwoo/A-9670-2011; OI Gupta, Yogesh/0000-0001-6372-5007; Do, Changwoo/0000-0001-8358-8417; Stanley, Christopher/0000-0002-4226-7710 FU National Institutes of Health [R01HL086496]; National Center for Research Resources [2G12 RR003060]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported, in whole or in part, by National Institutes of Health Grants R01HL086496 (to Z. B.) and 2G12 RR003060 from the National Center for Research Resources (to City College of New York). This work was also supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 74 TC 4 Z9 4 U1 6 U2 16 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD MAR 6 PY 2015 VL 290 IS 10 BP 6639 EP 6652 DI 10.1074/jbc.M114.589523 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CD0AO UT WOS:000350732500065 PM 25572402 ER PT J AU Stratakis, D Palmer, RB AF Stratakis, Diktys Palmer, Robert B. TI Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical study SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID PARTICLES; RING AB A muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by several orders of magnitude. In this study, we describe a novel rectilinear cooling scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we detail its basic features. Then, we establish the theoretical framework to predict and evaluate the performance of ionization cooling channels and discuss its application to our specific case. Finally, we present the first end-to-end simulation of 6D cooling for a muon collider and show a notable reduction of the 6D emittance by 5 orders of magnitude. We find good agreement between simulation and theory. C1 [Stratakis, Diktys; Palmer, Robert B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stratakis, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886] FX The authors are grateful to Y. Bao, J. S. Berg, F. Borgnolutti, D. Bowring, X. Ding, D. Grote, S. Khan, T. Luo, H. K. Sayed, K. Yonehara, C. Yoshikawa, and H. Witte for many useful discussions. This work is supported by the U.S. Department of Energy, Contract No. DE-AC02-98CH10886. NR 40 TC 1 Z9 1 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 6 PY 2015 VL 18 IS 3 AR 031003 DI 10.1103/PhysRevSTAB.18.031003 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CD7SJ UT WOS:000351291600002 ER PT J AU Binosi, D Chang, L Papavassiliou, J Roberts, CD AF Binosi, Daniele Chang, Lei Papavassiliou, Joannis Roberts, Craig D. TI Bridging a gap between continuum-QCD and ab initio predictions of hadron observables SO PHYSICS LETTERS B LA English DT Article DE Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies ID DYSON-SCHWINGER EQUATIONS; CHIRAL-SYMMETRY BREAKING; QUANTUM CHROMODYNAMICS; LADDER APPROXIMATION; CONFINEMENT; TEMPERATURE; PHYSICS; THEOREM; MASS AB Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties. (C) 2015 Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy. [Binosi, Daniele] Fdn Bruno Kessler, I-38123 Villazzano, TN, Italy. [Chang, Lei] Univ Adelaide, Sch Chem & Phys, CSSM, Adelaide, SA 5005, Australia. [Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain. [Papavassiliou, Joannis] Univ Valencia, IFIC, E-46100 Valencia, Spain. [Papavassiliou, Joannis] CSIC, E-46100 Valencia, Spain. [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cdroberts@anl.gov OI Binosi, Daniele/0000-0003-1742-4689 FU University of Adelaide; Australian Research Council [FL0992247]; Spanish MEYC [FPA2011-23596]; Generalitat Valenciana grant [PrometeoII/2014/066]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank A.C. Aguilar, I.C. Cloet, B. El-Bennich, M.R. Pennington, M. Pitschmann, J. Rodriguez-Quintero, J. Segovia, P.C. Tandy and A.W. Thomas for valuable discussions and suggestions. DB, JP and CDR are grateful for the chance to participate in the workshops "DSEs in Modern Physics and Mathematics", ECT*, Villazzano, Trento, Italy, and "Connecting Nuclear Physics and Elementary Particle Interactions: Building Bridges at the Spanish Frontier", Punta Umbria, Spain, during which this work was conceived and begun. This research was supported by: University of Adelaide and Australian Research Council through grant no. FL0992247; Spanish MEYC grant no. FPA2011-23596; Generalitat Valenciana grant "PrometeoII/2014/066"; and U.S. Department of Energy, Office of Science, Office of Nuclear Physics, contract no. DE-AC02-06CH11357. NR 73 TC 44 Z9 44 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 6 PY 2015 VL 742 BP 183 EP 188 DI 10.1016/j.physletb.2015.01.031 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC7NV UT WOS:000350555900026 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Rougny, R De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Martins, TR Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Plestina, R Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Heister, A Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, R Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Biasotto, M Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Fanzago, F Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M PinnaAngioni, GL Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Ershov, A Gribushin, A Klyukhin, V Kodolova, O Korotkikh, V Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Vardanyan, I Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maetre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Vlimant, JR Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Verwilligen, P Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Rougny, R. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Martins Junior, M. Correa Dos Reis Martins, T. Mora Herrera, C. Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Plestina, R. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Heister, A. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gorner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Biasotto, M. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Fanzago, F. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. PinnaAngioni, G. L. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Da Cruz E Silva, C. Beirao Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Korotkikh, V. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Vardanyan, I. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maetre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schafer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. St. John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Verwilligen, P. Vuosalo, C. Woods, N. CA CMS Collaboration TI Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies SO PHYSICS LETTERS B LA English DT Article DE CMS; Ridge; Long-range; Correlations; Flow; High-multiplicity ID ANGULAR-CORRELATIONS; ROOT-S(NN)=5.02 TEV; NUCLEAR COLLISIONS; FLOW; COLLABORATION; MULTIPLICITY; DEPENDENCE; SIDE AB Measurements of two-particle angular correlations between an identified strange hadron (K-S(0) or A/(A) over bar) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb(-1), were collected at a nucleon-nucleon center-of-mass energy (root s(NN)) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at root s(NN) = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order (v(2)) and third-order (v(3)) anisotropy harmonics of K-S(0) and A/(A) over bar particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb events, a clear particle species dependence of v(2) and v(3) is observed. For p(T) < 2 GeV, the v(2) and v(3) values of K-S(0) particles are larger than those of A/(A) over bar particles at the same p(T). This splitting effect between two particle species is found to be stronger in pPb than in PbPb collisions in the same multiplicity range. When divided by the number of constituent quarks and compared at the same transverse kinetic energy per quark, both v(2) and v(3) for K-S(0) particles are observed to be consistent with those for A/(A) over bar particles at the 10% level in pPb collisions. This consistency extends over a wide range of particle transverse kinetic energy and event multiplicities. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Martins Junior, M. Correa; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Qian, S. J.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, CNRS IN2P3, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] CNRS IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gorner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys INPP, Aghia Paraskevi, Greece. [Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Firenze, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Biasotto, M.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Aleksandrov, A.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; PinnaAngioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; PinnaAngioni, G. L.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Da Cruz E Silva, C. Beirao; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maetre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, Inst Fis Cantabria IFCA, CSIC, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bianchi, G.; Bachmair, F.; Baeni, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ NTU, Taipei, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, D.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Malik, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI USA. Vienna Univ Technol, A-1040 Vienna, Austria. [Genchev, V.; Boudoul, G.; Contardo, D.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Giordano, F.; Gori, V.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Argiro, S.; Casasso, S.; Obertino, M. M.; Schizzi, A.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, CNRS IN2P3, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. Univ Estadual Campinas, Campinas, SP, Brazil. [Plestina, R.; Bernet, C.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Hempel, M.; Lohmann, W.; Marfin, I.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, H-4012 Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. Univ Michoacana, Morelia, Michoacan, Mexico. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Gamsizkan, H.] Anadolu Univ, Eskisehir, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ocalan, K.] Necmettin Erbakan Univ, Konya, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Sguazzoni, Giacomo/J-4620-2015; Popov, Andrey/E-1052-2012; Ligabue, Franco/F-3432-2014; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ogul, Hasan/S-7951-2016; Cavallo, Nicola/F-8913-2012; Montanari, Alessandro/J-2420-2012; Manganote, Edmilson/K-8251-2013; Lokhtin, Igor/D-7004-2012; Bernardes, Cesar Augusto/D-2408-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Petrushanko, Sergey/D-6880-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Horani, Hafeez /L-2414-2015; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; OI Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Barbieri, Richard/0000-0002-7945-005X; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Androsov, Konstantin/0000-0003-2694-6542; Sguazzoni, Giacomo/0000-0002-0791-3350; Popov, Andrey/0000-0002-1207-0984; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Margaroli, Fabrizio/0000-0002-3869-0153; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Tosi, Nicolo/0000-0002-0474-0247; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Marzocchi, Badder/0000-0001-6687-6214; Baarmand, Marc/0000-0002-9792-8619; Montanari, Alessandro/0000-0003-2748-6373; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Jacob, Jeson/0000-0001-6895-5493; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Grassi, Marco/0000-0003-2422-6736; ORTONA, Giacomo/0000-0001-8411-2971; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Ulrich, Ralf/0000-0002-2535-402X FU BMWFW; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MES (Bulgaria); CERN; CAS; MOST; NSFC (China); COLCIENCIAS (Colombia); MSES; CSF (Croatia); RPF (Cyprus); MoER; ERC IUT; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NIH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Republic of Korea); LAS (Lithuania); MOE; UM (Malaysia); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Dubna); MON; RosAtom; RAS; RFBR (Russia); MESTD (Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter; IPST; STAR; NSTDA (Thailand); TUBITAK; TAEK (Turkey); NASU; SFFR (Ukraine); STFC (United Kingdom); DOE; NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of Foundation For Polish Science; European Union; Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR (Italy) [20108T4XTM]; EU-ESF; Greek NSRF; Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation For Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 56 TC 27 Z9 27 U1 13 U2 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 6 PY 2015 VL 742 BP 200 EP 224 DI 10.1016/j.physletb.2015.01.034 PG 25 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC7NV UT WOS:000350555900029 ER PT J AU Agakishiev, G Arnold, O Belver, D Belyaev, A Berger-Chen, JC Blanco, A Bohmer, M Boyard, JL Cabanelas, P Chernenko, S Dybczak, A Epple, E Fabbietti, L Fateev, O Finocchiaro, P Fonte, P Friese, J Frohlich, I Galatyuk, T Garzon, JA Gernhauser, R Gobel, K Golubeva, M Gonzalez-Diaz, D Guber, F Gumberidze, M Heinz, T Hennino, T Holzmann, R Ierusalimov, A Iori, I Ivashkin, A Jurkovic, M Kampfer, B Karavicheva, T Koenig, I Koenig, W Kolb, BW Kornakov, G Kotte, R Krasa, A Krizek, F Krucken, R Kuc, H Kuhn, W Kugler, A Kunz, T Kurepin, A Ladygin, V Lalik, R Lapidus, K Lebedev, A Lopes, L Lorenz, M Maier, L Mangiarotti, A Markert, J Metag, V Michel, J Muntzh, C Muenzer, R Naumann, L Pachmayer, YC Palka, M Parpottas, Y Pechenov, V Pechenova, O Pietraszko, J Przygoda, W Ramstein, B Reshetin, A Rustamov, A Sadovsky, A Salabura, P Schmah, A Schwab, E Siebenson, J Sobolev, YG Spataro, S Spruck, B Strobele, H Stroth, J Sturm, C Tarantola, A Teilab, K Tlusty, P Traxler, M Tsertos, H Vasiliev, T Wagner, V Weber, M Wendisch, C Wuestenfeld, J Yurevich, S Zanevsky, Y Sarantsev, AV AF Agakishiev, G. Arnold, O. Belver, D. Belyaev, A. Berger-Chen, J. C. Blanco, A. Boehmer, M. Boyard, J. L. Cabanelas, P. Chernenko, S. Dybczak, A. Epple, E. Fabbietti, L. Fateev, O. Finocchiaro, P. Fonte, P. Friese, J. Froehlich, I. Galatyuk, T. Garzon, J. A. Gernhaeuser, R. Goebel, K. Golubeva, M. Gonzalez-Diaz, D. Guber, F. Gumberidze, M. Heinz, T. Hennino, T. Holzmann, R. Ierusalimov, A. Iori, I. Ivashkin, A. Jurkovic, M. Kaempfer, B. Karavicheva, T. Koenig, I. Koenig, W. Kolb, B. W. Kornakov, G. Kotte, R. Krasa, A. Krizek, F. Kruecken, R. Kuc, H. Kuehn, W. Kugler, A. Kunz, T. Kurepin, A. Ladygin, V. Lalik, R. Lapidus, K. Lebedev, A. Lopes, L. Lorenz, M. Maier, L. Mangiarotti, A. Markert, J. Metag, V. Michel, J. Muentzh, C. Muenzer, R. Naumann, L. Pachmayer, Y. C. Palka, M. Parpottas, Y. Pechenov, V. Pechenova, O. Pietraszko, J. Przygoda, W. Ramstein, B. Reshetin, A. Rustamov, A. Sadovsky, A. Salabura, P. Schmah, A. Schwab, E. Siebenson, J. Sobolev, Yu. G. Spataro, S. Spruck, B. Stroebele, H. Stroth, J. Sturm, C. Tarantola, A. Teilab, K. Tlusty, P. Traxler, M. Tsertos, H. Vasiliev, T. Wagner, V. Weber, M. Wendisch, C. Wuestenfeld, J. Yurevich, S. Zanevsky, Y. Sarantsev, A. V. CA HADES Collaboration TI Partial wave analysis of the reaction p(3.5 GeV) + p -> pK(+) Lambda to search for the "ppK(-)" bound state SO PHYSICS LETTERS B LA English DT Article DE Kaonic nuclei; Anti-kaon-nucleon physics; ppK(-); Low energy QCD; Partial wave analysis ID OPERATOR EXPANSION METHOD; BOUND-STATES; (K)OVER-BARN INTERACTIONS; HYPERON PRODUCTION; BEAM MOMENTUM; LAMBDA-P; SEARCH; MODEL; AMPLITUDES; COLLISIONS AB Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5 GeV) + p -> pK(+) Lambda. This reaction might contain information about the kaonic cluster "ppK(-)" (with quantum numbers J(P)=0(-) and total isospin I=1/2) via its decay into p Lambda. Due to interference effects in our coherent description of the data, a hypothetical (K) over bar NN(or, specifically "ppK-") cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like p Lambda. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a (K) over bar NN cluster. At a confidence level of CLs=95% such a cluster cannot-contribute more than 2-12% to the total cross section with a pK(+) Lambda final state, which translates into a production cross-section between 0.7 mu b and 4.2 mu b, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy. [Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. [Dybczak, A.; Gumberidze, M.; Kuc, H.; Palka, M.; Przygoda, W.; Salabura, P.] Jagiellonian Univ Cracow, Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B. W.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Stroth, J.; Sturm, C.; Traxler, M.; Yurevich, S.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Galatyuk, T.; Gonzalez-Diaz, D.; Kornakov, G.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. [Kaempfer, B.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J.] Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Ierusalimov, A.; Ladygin, V.; Vasiliev, T.; Zanevsky, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Muentzh, C.; Pachmayer, Y. C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Stroth, J.; Tarantola, A.; Teilab, K.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Arnold, O.; Berger-Chen, J. C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Muenzer, R.] Excellence Cluster Origin & Struct Universe, D-85748 Garching, Germany. [Arnold, O.; Berger-Chen, J. C.; Boehmer, M.; Epple, E.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Kunz, T.; Lalik, R.; Lapidus, K.; Maier, L.; Muenzer, R.; Siebenson, J.; Weber, M.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Kuehn, W.; Metag, V.; Spruck, B.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Iori, I.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Lebedev, A.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Parpottas, Y.; Tsertos, H.] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus. [Boyard, J. L.; Hennino, T.; Kuc, H.; Ramstein, B.] Univ Paris 11, Inst Phys Nucl UMR 8608, CNRS IN2P3, F-91406 Orsay, France. [Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu. G.; Tlusty, P.; Wagner, V.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Belver, D.; Cabanelas, P.; Garzon, J. A.] Univ Santiago de Compostela, LabCAF F Fis, Santiago De Compostela 15706, Spain. [Schmah, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fonte, P.] ISEC Coimbra, Coimbra, Portugal. [Galatyuk, T.; Gumberidze, M.] EMMI, ExtreMe Matter Inst, D-64291 Darmstadt, Germany. [Kaempfer, B.; Wendisch, C.] Tech Univ Dresden, D-01062 Dresden, Germany. [Iori, I.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Parpottas, Y.] Frederick Univ, CY-1036 Nicosia, Cyprus. [Spataro, S.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Spataro, S.] Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Sarantsev, A. V.] Petersburg Nucl Phys Inst, Gatchina, Russia. RP Epple, E (reprint author), Excellence Cluster Origin & Struct Universe, D-85748 Garching, Germany. EM eliane.epple@ph.tum.de; laura.fabbietti@ph.tum.de RI Guber, Fedor/I-4271-2013; Gonzalez Diaz, Diego/K-7265-2014; Cabanelas, Pablo/B-2034-2016; Gobel, Kathrin/B-8531-2016; Kurepin, Alexey/H-4852-2013; Kruecken, Reiner/A-1640-2013; Fonte, Paulo/B-1842-2008; Krizek, Filip/G-8967-2014; Wagner, Vladimir/G-5650-2014; Mangiarotti, Alessio/I-1072-2012; Blanco, Alberto/L-2520-2014 OI Guber, Fedor/0000-0001-8790-3218; Gonzalez Diaz, Diego/0000-0002-6809-5996; Cabanelas, Pablo/0000-0002-5416-4647; Gobel, Kathrin/0000-0003-2832-8465; Kurepin, Alexey/0000-0002-1851-4136; Kruecken, Reiner/0000-0002-2755-8042; Fonte, Paulo/0000-0002-2275-9099; Mangiarotti, Alessio/0000-0001-7837-6057; FU LIP Coimbra, NCN Poland [PTDC/FIS/113339/2009, 2013/10/M/ST2/00042]; Helmholtz Alliance [HA216/EMMI, VH-NG-823, 283286, 05P12CRGHE]; HIC for FAIR (LOEWE), GSI F&E Goethe-University, Frankfurt [VH-NG-330]; BMBF [06MT7180, 05P12RGGHM]; Giessen [UCY/3411-23100]; University Cyprus [CNRS/IN2P3]; IPN Orsay, Orsay [MSMT LG 12007]; AS CR [M100481202]; GACR [13-06759S]; NPI AS CR, Rez EU [HP3-283286] FX The authors kindly thank F. Beaujean for the discussion on statistical analysis. The HADES Collaboration gratefully acknowledges the support by the grants: PTDC/FIS/113339/2009 LIP Coimbra, NCN Poland, 2013/10/M/ST2/00042, Helmholtz Alliance HA216/EMMI GSI Darmstadt, VH-NG-823, Helmholtz Alliance HA216/EMMI TU Darmstadt, 283286, 05P12CRGHE HZDR Dresden, Helmholtz Alliance HA216/EMMI, HIC for FAIR (LOEWE), GSI F&E Goethe-University, Frankfurt VH-NG-330, BMBF 06MT7180 TU Munchen, Garching BMBF: 05P12RGGHM JLU Giessen, Giessen UCY/3411-23100, University Cyprus CNRS/IN2P3, IPN Orsay, Orsay MSMT LG 12007, AS CR M100481202, GACR 13-06759S NPI AS CR, Rez EU Contract No. HP3-283286. NR 58 TC 22 Z9 22 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 6 PY 2015 VL 742 BP 242 EP 248 DI 10.1016/j.physletb.2015.01.032 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC7NV UT WOS:000350555900033 ER PT J AU Yan, L Ollitrault, JY Poskanzer, AM AF Yan, Li Ollitrault, Jean-Yves Poskanzer, Arthur M. TI Azimuthal anisotropy distributions in high-energy collisions SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; ELLIPTIC FLOW; NUCLEAR COLLISIONS; COLLECTIVE FLOW; FLUCTUATIONS; ECCENTRICITIES; MULTIPLICITY; DEPENDENCE; PPB AB Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. Along-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of eta/s similar or equal to 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of eta/s is robust against non-linear effects. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Yan, Li; Ollitrault, Jean-Yves] CNRS, IPhT, Inst Phys Theor Saclay, URA2306, F-91191 Gif Sur Yvette, France. [Poskanzer, Arthur M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ollitrault, JY (reprint author), CNRS, IPhT, Inst Phys Theor Saclay, URA2306, F-91191 Gif Sur Yvette, France. EM jean-yves.ollitrault@cea.fr FU European Research Council [ERC-AD-267258]; Office of Nuclear Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank M. Luzum and S. Voloshin for extensive discussions and suggestions. In particular, we thank S. Voloshin for useful comments on the manuscript. J.Y.O. thanks the MIT LNS for hospitality. L.Y. is funded by the European Research Council under the Advanced Investigator Grant ERC-AD-267258. A.M.P. was supported by the Director, Office of Nuclear Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 59 TC 11 Z9 11 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 6 PY 2015 VL 742 BP 290 EP 295 DI 10.1016/j.physletb.2015.01.039 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC7NV UT WOS:000350555900041 ER PT J AU Adolph, C Akhunzyanov, R Alexeev, MG Alexeev, GD Amoroso, A Andrieux, V Anosov, V Austregesilo, A Badelek, B Balestra, F Barth, J Baum, G Beck, R Bedfer, Y Berlin, A Bernhard, J Bicker, K Bielert, ER Bieling, J Birsa, R Bisplinghoff, J Bodlak, M Boer, M Bordalo, P Bradamante, F Braun, C Bressan, A Buchele, M Burtin, E Capozza, L Chiosso, M Chung, SU Cicuttin, A Crespo, ML Curiel, Q Dalla Torre, S Dasgupta, SS Dasgupta, S Denisov, OY Donskov, SV Doshita, N Duic, V Dunnweber, W Dziewiecki, M Efremov, A Elia, C Eversheim, PD Eyrich, W Faessler, M Ferrero, A Filin, A Finger, M Finger, M Fischer, H Franco, C von Hohenesche, ND Friedrich, JM Frolov, V Gautheron, F Gavrichtchouk, OP Gerassimov, S Geyer, R Gnesi, I Gobbo, B Goertz, S Gorzellik, M Grabmuller, S Grasso, A Grube, B Grussenmeyer, T Guskov, A Haas, F von Harrach, D Hahne, D Hashimoto, R Heinsius, FH Herrmann, F Hinterberger, F Hoppner, C Horikawa, N d'Hose, N Huber, S Ishimoto, S Ivanov, A Ivanshin, Y Iwata, T Jahn, R Jary, V Jasinski, P Jorg, P Joosten, R Kabuss, E Ketzer, B Khaustov, GV Khokhlov, YA Kisselev, Y Klein, F Klimaszewski, K Koivuniemi, JH Kolosov, VN Kondo, K Konigsmann, K Konorov, I Konstantinov, VF Kotzinian, AM Kouznetsov, O Kramer, M Kroumchtein, ZV Kuchinski, N Kunne, F Kurek, K Kurjata, RP Lednev, AA Lehmann, A Levillain, M Levorato, S Lichtenstadt, J Maggiora, A Magnon, A Makke, N Mallot, GK Marchand, C Martin, A Marzec, J Matousek, J Matsuda, H Matsuda, T Meshcheryakov, G Meyer, W Michigami, T Mikhailov, YV Miyachi, Y Nagaytsev, A Nagel, T Nerling, F Neubert, S Neyret, D Nikolaenko, VI Novy, J Nowak, WD Nunes, AS Olshevsky, AG Orlov, I Ostrick, M Panknin, R Panzieri, D Parsamyan, B Paul, S Peshekhonov, DV Platchkov, S Pochodzalla, J Polyakov, VA Pretz, J Quaresma, M Quintans, C Ramos, S Regali, C Reicherz, G Rocco, E Rossiyskaya, NS Ryabchikov, DI Rychter, A Samoylenko, VD Sandacz, A Sarkar, S Savin, IA Sbrizzai, G Schiavon, P Schill, C Schluter, T Schmidt, K Schmieden, H Schonning, K Schopferer, S Schott, M Shevchenko, OY Silva, L Sinha, L Sirtl, S Slunecka, M Sosio, S Sozzi, F Srnka, A Steiger, L Stolarski, M Sulc, M Sulej, R Suzuki, H Szabelski, A Szameitat, T Sznajder, P Takekawa, S ter Wolbeek, J Tessaro, S Tessarotto, F Thibaud, F Uhl, S Uman, I Virius, M Wang, L Weisrock, T Wilfert, M Windmolders, R Wollny, H Zaremba, K Zavertyaev, M Zemlyanichkina, E Ziembicki, M Zink, A AF Adolph, C. Akhunzyanov, R. Alexeev, M. G. Alexeev, G. D. Amoroso, A. Andrieux, V. Anosov, V. Austregesilo, A. Badelek, B. Balestra, F. Barth, J. Baum, G. Beck, R. Bedfer, Y. Berlin, A. Bernhard, J. Bicker, K. Bielert, E. R. Bieling, J. Birsa, R. Bisplinghoff, J. Bodlak, M. Boer, M. Bordalo, P. Bradamante, F. Braun, C. Bressan, A. Buechele, M. Burtin, E. Capozza, L. Chiosso, M. Chung, S. U. Cicuttin, A. Crespo, M. L. Curiel, Q. Dalla Torre, S. Dasgupta, S. S. Dasgupta, S. Denisov, O. Yu. Donskov, S. V. Doshita, N. Duic, V. Duennweber, W. Dziewiecki, M. Efremov, A. Elia, C. Eversheim, P. D. Eyrich, W. Faessler, M. Ferrero, A. Filin, A. Finger, M. Finger, M., Jr. Fischer, H. Franco, C. von Hohenesche, N. du Fresne Friedrich, J. M. Frolov, V. Gautheron, F. Gavrichtchouk, O. P. Gerassimov, S. Geyer, R. Gnesi, I. Gobbo, B. Goertz, S. Gorzellik, M. Grabmueller, S. Grasso, A. Grube, B. Grussenmeyer, T. Guskov, A. Haas, F. von Harrach, D. Hahne, D. Hashimoto, R. Heinsius, F. H. Herrmann, F. Hinterberger, F. Hoeppner, Ch. Horikawa, N. d'Hose, N. Huber, S. Ishimoto, S. Ivanov, A. Ivanshin, Yu. Iwata, T. Jahn, R. Jary, V. Jasinski, P. Joerg, P. Joosten, R. Kabuss, E. Ketzer, B. Khaustov, G. V. Khokhlov, Yu. A. Kisselev, Yu. Klein, F. Klimaszewski, K. Koivuniemi, J. H. Kolosov, V. N. Kondo, K. Koenigsmann, K. Konorov, I. Konstantinov, V. F. Kotzinian, A. M. Kouznetsov, O. Kraemer, M. Kroumchtein, Z. V. Kuchinski, N. Kunne, F. Kurek, K. Kurjata, R. P. Lednev, A. A. Lehmann, A. Levillain, M. Levorato, S. Lichtenstadt, J. Maggiora, A. Magnon, A. Makke, N. Mallot, G. K. Marchand, C. Martin, A. Marzec, J. Matousek, J. Matsuda, H. Matsuda, T. Meshcheryakov, G. Meyer, W. Michigami, T. Mikhailov, Yu. V. Miyachi, Y. Nagaytsev, A. Nagel, T. Nerling, F. Neubert, S. Neyret, D. Nikolaenko, V. I. Novy, J. Nowak, W. -D. Nunes, A. S. Olshevsky, A. G. Orlov, I. Ostrick, M. Panknin, R. Panzieri, D. Parsamyan, B. Paul, S. Peshekhonov, D. V. Platchkov, S. Pochodzalla, J. Polyakov, V. A. Pretz, J. Quaresma, M. Quintans, C. Ramos, S. Regali, C. Reicherz, G. Rocco, E. Rossiyskaya, N. S. Ryabchikov, D. I. Rychter, A. Samoylenko, V. D. Sandacz, A. Sarkar, S. Savin, I. A. Sbrizzai, G. Schiavon, P. Schill, C. Schlueter, T. Schmidt, K. Schmieden, H. Schoenning, K. Schopferer, S. Schott, M. Shevchenko, O. Yu. Silva, L. Sinha, L. Sirtl, S. Slunecka, M. Sosio, S. Sozzi, F. Srnka, A. Steiger, L. Stolarski, M. Sulc, M. Sulej, R. Suzuki, H. Szabelski, A. Szameitat, T. Sznajder, P. Takekawa, S. ter Wolbeek, J. Tessaro, S. Tessarotto, F. Thibaud, F. Uhl, S. Uman, I. Virius, M. Wang, L. Weisrock, T. Wilfert, M. Windmolders, R. Wollny, H. Zaremba, K. Zavertyaev, M. Zemlyanichkina, E. Ziembicki, M. Zink, A. TI Search for exclusive photoproduction of Z(c)(+/-) (3900) at COMPASS SO PHYSICS LETTERS B LA English DT Article DE COMPASS; Z(c)(3900); Photoproduction; Tetraquark AB A search for the exclusive production of the Z(c)(+/-)(3900) hadron by virtual photons has been performed in the channel Z(c)(+/-)(3900). J/Psi pi(+/-). The data cover the range from 7GeV to 19GeV in the centre-of- mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z(c)(+/-)(3900)-> J/Psi pi(+/-)) x sigma(gamma N) -> Z(c)(+/-)(3900) N/sigma gamma N -> J/Psi N 3.7 x10(-3) has been established at the confidence level of90%. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Baum, G.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Berlin, A.; Gautheron, F.; Koivuniemi, J. H.; Meyer, W.; Reicherz, G.; Wang, L.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Beck, R.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.; Jahn, R.; Joosten, R.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Barth, J.; Bieling, J.; Goertz, S.; Hahne, D.; Klein, F.; Panknin, R.; Pretz, J.; Schmieden, H.; Windmolders, R.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Srnka, A.] AS CR, Inst Sci Instruments, Brno 61264, Czech Republic. [Dasgupta, S. S.; Sarkar, S.; Sinha, L.] Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India. [Akhunzyanov, R.; Alexeev, G. D.; Anosov, V.; Efremov, A.; Gavrichtchouk, O. P.; Guskov, A.; Ivanov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.; Kroumchtein, Z. V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A. G.; Orlov, I.; Peshekhonov, D. V.; Rossiyskaya, N. S.; Savin, I. A.; Shevchenko, O. Yu.; Slunecka, M.; Zemlyanichkina, E.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.] Univ Erlangen Nurnberg, Inst Phys, D-91054 Erlangen, Germany. [Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F. H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Nowak, W. -D.; Schopferer, S.; Sirtl, S.; Szameitat, T.; ter Wolbeek, J.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Austregesilo, A.; Bicker, K.; Bielert, E. R.; von Hohenesche, N. du Fresne; Frolov, V.; Mallot, G. K.; Rocco, E.; Schoenning, K.; Schott, M.] CERN, CH-1211 Geneva 23, Switzerland. [Sulc, M.] Tech Univ Liberec, Liberec 46117, Czech Republic. [Bordalo, P.; Franco, C.; Nunes, A. S.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Schill, C.; Schmidt, K.; Silva, L.; Stolarski, M.] LIP, P-1000149 Lisbon, Portugal. [Bernhard, J.; von Hohenesche, N. du Fresne; von Harrach, D.; Jasinski, P.; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Gerassimov, S.; Konorov, I.; Zavertyaev, M.] PN Lebedev Phys Inst, Moscow 119991, Russia. [Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I.] Univ Munich, Dept Phys, D-80799 Munich, Germany. [Austregesilo, A.; Bicker, K.; Chung, S. U.; Friedrich, J. M.; Gerassimov, S.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, Ch.; Huber, S.; Ketzer, B.; Konorov, I.; Kraemer, M.; Nagel, T.; Neubert, S.; Paul, S.; Uhl, S.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Horikawa, N.] Nagoya Univ, Nagoya, Aichi 464, Japan. [Bodlak, M.; Finger, M.; Finger, M., Jr.; Matousek, J.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic. [Jary, V.; Novy, J.; Virius, M.] Czech Tech Univ, Prague 16636, Czech Republic. [Donskov, S. V.; Filin, A.; Khaustov, G. V.; Khokhlov, Yu. A.; Kolosov, V. N.; Konstantinov, V. F.; Lednev, A. A.; Mikhailov, Yu. V.; Nikolaenko, V. I.; Polyakov, V. A.; Ryabchikov, D. I.; Samoylenko, V. D.] Natl Res Ctr, Kurchatov Inst, State Sci Ctr, Inst High Energy Phys, Protvino 142281, Russia. [Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Curiel, Q.; Ferrero, A.; d'Hose, N.; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Thibaud, F.; Wollny, H.] CEA IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. [Lichtenstadt, J.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Birsa, R.; Bradamante, F.; Bressan, A.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S.; Elia, C.; Gobbo, B.; Levorato, S.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy. [Cicuttin, A.; Crespo, M. L.] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy. [Alexeev, M. G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Parsamyan, B.; Sosio, S.; Takekawa, S.] Univ Turin, Dept Phys, I-10125 Turin, Italy. [Panzieri, D.] Univ Piemonte Orientale, I-15100 Alessandria, Italy. [Amoroso, A.; Balestra, F.; Chiosso, M.; Denisov, O. Yu.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Maggiora, A.; Panzieri, D.; Parsamyan, B.; Sosio, S.; Takekawa, S.] Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy. [Klimaszewski, K.; Kurek, K.; Sandacz, A.; Sulej, R.; Szabelski, A.; Sznajder, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Badelek, B.] Warsaw Univ, Fac Phys, PL-00681 Warsaw, Poland. [Dziewiecki, M.; Kurjata, R. P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.] Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland. [Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H.] Yamagata Univ, Yamagata 9928510, Japan. [Bordalo, P.; Ramos, S.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal. [Chung, S. U.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Chung, S. U.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Horikawa, N.; Suzuki, H.] Chubu Univ, Kasugai, Aichi 4878501, Japan. [Ishimoto, S.] KEK, Tsukuba, Ibaraki 3050801, Japan. [Khokhlov, Yu. A.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. RP Bressan, A (reprint author), Univ Trieste, Dept Phys, I-34127 Trieste, Italy. EM Andrea.Bressan@cern.ch; Alexey.Guskov@cern.ch; Fabienne.Kunne@cern.ch RI Srnka, A/E-2441-2012; Friedrich, Jan/B-9024-2013; Paul, Stephan/K-9237-2016; Silva, Luis/M-4435-2016; Dasgupta, Shuddha Shankar/O-6118-2016; Steiger, Lukas/H-3061-2014; Martin, Anna/I-9381-2012; Koivuniemi, Jaakko/L-2959-2015; Zavertyaev, Mikhail/M-6844-2015; Gerassimov, Sergei/M-8779-2015; Olshevskiy, Alexander/I-1580-2016; Kurjata, Robert/I-5112-2016; Paul, Stephan/F-7596-2015 OI Stolarski, Marcin/0000-0003-0276-8059; Franco, Celso/0000-0003-2729-4064; Jary, Vladimir/0000-0003-4718-4444; Bordalo, Paula/0000-0002-3651-6370; Nunes, Ana Sofia/0000-0001-8361-622X; Friedrich, Jan/0000-0001-9298-7882; Paul, Stephan/0000-0002-8813-0437; Silva, Luis/0000-0003-0044-3736; Steiger, Lukas/0000-0001-9772-9444; Martin, Anna/0000-0002-1333-0143; Koivuniemi, Jaakko/0000-0002-6817-5267; Olshevskiy, Alexander/0000-0002-8902-1793; Kurjata, Robert/0000-0001-8547-910X; Paul, Stephan/0000-0002-8813-0437 FU CERN management FX We gratefully acknowledge the support of the CERN management and staff as well as the skills and efforts of the technicians of the collaborating institutions. NR 17 TC 10 Z9 10 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 6 PY 2015 VL 742 BP 330 EP 334 DI 10.1016/j.physletb.2015.01.042 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC7NV UT WOS:000350555900048 ER PT J AU Kanazawa, K Metz, A Pitonyak, D Schlegel, M AF Kanazawa, K. Metz, A. Pitonyak, D. Schlegel, M. TI Longitudinal-transverse double-spin asymmetries in single-inclusive leptoproduction of hadrons SO PHYSICS LETTERS B LA English DT Article ID DEEP-INELASTIC-SCATTERING; ODD PARTON DISTRIBUTIONS; PROTON-PROTON COLLISIONS; DIRECT PHOTON PRODUCTION; PION-PRODUCTION; ANALYZING POWER; FRAGMENTATION; ELECTROPRODUCTION; TARGET; QUARKS AB We analyze the longitudinal-transverse double-spin asymmetry in lepton-nucleon collisions where a single hadron is detected in the final state, i.e (l) over right arrowN up arrow -> hX. This is a subleading-twist observable in collinear factorization, and we look at twist-3 effects in both the transversely polarized nucleon and the unpolarized outgoing hadron. Results are anticipated for this asymmetry from both HERMES and Jefferson Lab Hall A, and it could be measured as well at COMPASS and a future Electron-Ion Collider. We also perform a numerical study of the distribution term, which, when compared to upcoming experimental results, could allow one to learn about the "worm-gear"-type function (g) over tilde (x) as well as assess the role of quark-gluon-quark correlations in the initial-state nucleon and twist-3 effects in the fragmenting unpolarized hadron. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Kanazawa, K.; Metz, A.] Temple Univ, Dept Phys, SERC, Philadelphia, PA 19122 USA. [Pitonyak, D.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Schlegel, M.] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. RP Pitonyak, D (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM dpitonyak@quark.phy.bnl.gov FU National Science Foundation [PHY-1205942]; RIKEN BNL Research Center FX A.M. would like to thank D. Flay, Z.-E. Meziani, and M. Posik for discussions about the preliminary data on ALT from JLab, and D.P. appreciates a useful conversation with X. Jiang on this data as well. This work has been supported by the National Science Foundation under Contract No. PHY-1205942 (K.K. and A.M.), and the RIKEN BNL Research Center (D.P.). NR 94 TC 11 Z9 11 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 6 PY 2015 VL 742 BP 340 EP 346 DI 10.1016/j.physletb.2015.02.005 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC7NV UT WOS:000350555900050 ER PT J AU Yue, JL Zhou, YN Shi, SQ Shadike, Z Huang, XQ Luo, J Yang, ZZ Li, H Gu, L Yang, XQ Fu, ZW AF Yue, Ji-Li Zhou, Yong-Ning Shi, Si-Qi Shadike, Zulipiya Huang, Xuan-Qi Luo, Jun Yang, Zhen-Zhong Li, Hong Gu, Lin Yang, Xiao-Qing Fu, Zheng-Wen TI Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe-2(MoO4)(3) SO SCIENTIFIC REPORTS LA English DT Article ID SODIUM-ION BATTERIES; LITHIUM INSERTION; ENERGY-STORAGE; PHASE-DIAGRAM; AB-INITIO; INTERCALATION; LIFEPO4; FE2(MOO4)3; MECHANISM; LIXFEPO4 AB The key factors governing the single-phase or multi-phase structural change behaviors during the intercalation/deintercalation of guest ions have not been well studied and understood yet. Through systematic studies of orthorhombic Fe-2(MoO4)(3) electrode, two distinct guest ion occupation paths, namely discrete one for Li and pseudo-continuous one for Na, as well as their relationship with single-phase and two-phase modes for Na+ and Li+, respectively during the intercalation/deintercalation process have been demonstrated. For the first time, the direct atomic-scale observation of biphasic domains (discrete occupation) in partially lithiated Fe-2(MoO4)(3) and the one by one Na occupation (pseudo-continuous occupation) at 8d sites in partially sodiated Fe-2(MoO4)(3) are obtained during the discharge processes of Li/Fe-2(MoO4)(3) and Fe-2(MoO4)(3) cells respectively. Our combined experimental and theoretical studies bring the new insights for the research and development of intercalation compounds as electrode materials for secondary batteries. C1 [Yue, Ji-Li; Shadike, Zulipiya; Huang, Xuan-Qi; Fu, Zheng-Wen] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysts & Innovat Mat, Shanghai 200433, Peoples R China. [Yue, Ji-Li; Shadike, Zulipiya; Huang, Xuan-Qi; Fu, Zheng-Wen] Fudan Univ, Laser Chem Inst, Shanghai 200433, Peoples R China. [Zhou, Yong-Ning; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Shi, Si-Qi; Luo, Jun] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China. [Yang, Zhen-Zhong; Li, Hong; Gu, Lin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RP Shi, SQ (reprint author), Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China. EM sqshi@shu.edu.cn; l.gu@aphy.iphy.ac.cn; zwfu@fudan.edu.cn RI Gu, Lin/D-9631-2011; Shi, Siqi/E-1245-2011; Li, Hong/C-4643-2008; Fu, Zheng-wen/I-5880-2016; Yang, Zhenzhong/O-2344-2014 OI Gu, Lin/0000-0002-7504-031X; Li, Hong/0000-0002-8659-086X; Yang, Zhenzhong/0000-0002-7226-7973 FU National Nature Science Foundation of China [U1430104, 51372228]; 973 Program of China [2011CB933300]; ScienceAMP; Technology Commission of Shanghai Municipality [08DZ2270500, 11JC 1400500]; Shanghai Pujiang Program [14PJ1403900]; U.S. Department of Energy, Office of Vehicle Technologies [DEAC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was financially supported by the National Nature Science Foundation of China (Grant Nos. U1430104 and 51372228), 973 Program (Grant No. 2011CB933300) of China, and Science& Technology Commission of Shanghai Municipality (Grant Nos. 08DZ2270500 and 11JC 1400500), and Shanghai Pujiang Program (Grant No. 14PJ1403900). The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract No. DEAC02-98CH10886. Use of the National Synchrotron Light Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. All the computations were performed on the high performance computing platform of Shanghai University. NR 33 TC 11 Z9 11 U1 14 U2 116 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 6 PY 2015 VL 5 AR 8810 DI 10.1038/srep08810 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC6KL UT WOS:000350473700004 PM 25744589 ER PT J AU VanderLinden, RT Hemmis, CW Schmitt, B Ndoja, A Whitby, FG Robinson, H Cohen, RE Yao, TT Hill, CP AF VanderLinden, Ryan T. Hemmis, Casey W. Schmitt, Benjamin Ndoja, Ada Whitby, Frank G. Robinson, Howard Cohen, Robert E. Yao, Tingting Hill, Christopher P. TI Structural Basis for the Activation and Inhibition of the UCH37 Deubiquitylase SO MOLECULAR CELL LA English DT Article ID DEUBIQUITINATING ENZYME; 26S PROTEASOME; CRYSTAL-STRUCTURE; CANCER-THERAPY; UBIQUITIN; COMPLEX; DEGRADATION; SPECIFICITY; MECHANISM; SUBSTRATE AB The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to the proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop. In contrast, NFRKB inhibits UCH37 by blocking the ubiquitin-binding site and by disrupting the enzyme active site. These findings reveal remarkable commonality in mechanisms of recruitment, yet very different mechanisms of regulating enzyme activity, and provide a foundation for understanding the roles of UCH37 in the unrelated proteasome and INO80 complexes. C1 [VanderLinden, Ryan T.; Hemmis, Casey W.; Whitby, Frank G.; Hill, Christopher P.] Univ Utah Sch Med, Dept Biochem, Salt Lake City, UT 84112 USA. [Schmitt, Benjamin; Ndoja, Ada; Cohen, Robert E.; Yao, Tingting] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Yao, TT (reprint author), Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA. EM tingting.yao@colostate.edu; chris@biochem.utah.edu FU National Center for Research Resources (NCRR) [P41RR012408]; Department of Energy (DOE) Office of Biological and Environmental Research; NIH, National Institute of General Medical Sciences (NIGMS) [P41GM103393]; NCRR [P41RR001209]; DOE Office of Basic Energy Sciences (SSRL) [DE-AC02-76SF00515]; NIH [R01 GM059135, P50 GM082545, R01 GM098401, R01 GM097452]; National Cancer Institute [P30CA042014] FX We thank Heidi L. Schubert and Debra M. Eckert for expert technical advice and helpful comments on the manuscript and Katherine Ferrell and Binita Shakya for technical assistance. Portions of this research were performed at the National Synchrotron Light Source (NSLS) and the Stanford Synchrotron Radiation Lightsource (SSRL). The NSLS is funded by the National Center for Research Resources (NCRR) (P41RR012408). The SSRL Structural Molecular Biology Program is supported by the Department of Energy (DOE) Office of Biological and Environmental Research and by the NIH, National Institute of General Medical Sciences (NIGMS) (including P41GM103393), and the NCRR (P41RR001209). Use of the NSLS and SSRL is supported by the DOE Office of Basic Energy Sciences (SSRL Contract No. DE-AC02-76SF00515). NSLS operations are also supported by the NIH. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS, NCRR, or NIH. This work was supported by NIH grants R01 GM059135 and P50 GM082545 to C.P.H., R01 GM098401 to T.Y., and R01 GM097452 to R.E.C. Mass spectrometry validation of purified proteins was performed by the University of Utah Mass Spectrometry and Proteomics Core Facility, which is supported by P30CA042014 from the National Cancer Institute. NR 52 TC 20 Z9 20 U1 6 U2 18 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD MAR 5 PY 2015 VL 57 IS 5 BP 901 EP 911 DI 10.1016/j.molcel.2015.01.016 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CE3GO UT WOS:000351714900014 PM 25702872 ER PT J AU Takeshita, TY Dunning, TH AF Takeshita, Tyler Y. Dunning, Thom H., Jr. TI Generalized Valence Bond Description of Chalcogen-Nitrogen Compounds. I. NS, F(NS), and H(NS) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT 25th Austin Symposium on Molecular Structure and Dynamics CY MAR, 2014 CL Dallas, TX ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; INFRARED SPECTROSCOPIC EVIDENCE; P-BLOCK ELEMENTS; COUPLED-CLUSTER; NITROSYL FLUORIDE; WAVE-FUNCTIONS; MICROWAVE-SPECTRUM; TRANSITION-STATES; THIAZYL FLUORIDE AB The electronic structures of the ground states (X-2 Pi) of NS and those (X(1)A') of F(NS) and H(NS), where X(NS) collectively refers to the XNS and NSX isomers, were analyzed within the framework of generalized valence bond theory. The ground state of NS has a recoupled pair pi bond, which has a profound effect on its reactivity. For example, the lowest-energy isomer of F(NS) is N-SF, which has a recoupled pair bond dyad with N-SF and NS-F bonds lengths and strengths similar to their covalent counterparts in NS and SF. The ground state of NSH, on the other hand, is only weakly bound with a NS-H bond energy 40.20 kcal/mol smaller than that in SH and a N-SH bond energy 40.20 kcal/mol less than that in NS. At its equilibrium geometry, the NSH molecule is best viewed as derived from the N(D-2) + SH(X-2 Pi) separated fragments, with the weak NS-H bond resulting from unfavorable interactions between the SH bond pair and the nitrogen lone pair. Addition of F/H atoms to the nitrogen atom in NS disrupts the NS recoupled pair bond, which weakens both the FN-S/HN-S and F-NS/H-NS bonds. In contrast to the formation of recoupled pair s bonds, formation of the recoupled pair p bond in NS is expressed as a change in the spin-coupling coefficients, rather than an interchange of the orbitals. C1 [Takeshita, Tyler Y.; Dunning, Thom H., Jr.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. RP Dunning, TH (reprint author), Univ Washington, Pacific NW Natl Lab, NIAC, Sieg Hall,Room 127,3960 Benton Lane NE, Seattle, WA 98195 USA. EM takeshi1@illinois.edu; thdjr@uw.edu FU National Center for Supercomputing Applications; Distinguished Chair for Research Excellence in Chemistry at the University of Illinois at Urbana-Champaign FX Support for this work was provided by the National Center for Supercomputing Applications and the Distinguished Chair for Research Excellence in Chemistry at the University of Illinois at Urbana-Champaign. NR 56 TC 7 Z9 7 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 5 PY 2015 VL 119 IS 9 BP 1446 EP 1455 DI 10.1021/jp508391r PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD1NE UT WOS:000350840800002 PM 25628034 ER PT J AU Takeshita, TY Dunning, TH AF Takeshita, Tyler Y. Dunning, Thom H., Jr. TI Generalized Valence Bond Description of Chalcogen-Nitrogen Compounds. II. NO, F(NO), and H(NO) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT 25th Austin Symposium on Molecular Structure and Dynamics CY MAR, 2014 CL Dallas, TX ID CONFIGURATION-INTERACTION CALCULATIONS; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS; THIAZYL; THIONITROSO; INSIGHTS; ISOMERS AB The electronic structure of the ground state of NO and those of F(NO) and H(NO), that is, the XNO and NOX isomers with X = F, H, were analyzed within the framework of generalized valence bond theory. In distinct contrast to the ground state of NS, it was found that the two-center, three-electron pi interaction in NO(X-2 Pi) is composed of a lone pair on O and a singly occupied orbital on N. Thus, F and H addition to NO preferentially leads to FNO and HNO. Somewhat surprisingly, the NO-F and NOH isomers were found to be weakly bound, although for different reasons. The NOF state has a very unusual through-pair interaction with a NO-F bond length 0.444 angstrom longer than its covalent counterpart in OF(X-2 Pi), while NOH arises from the N(D-2) + OH(X-2 Pi) separated atom limit, similar to what we found for NSH. C1 [Takeshita, Tyler Y.; Dunning, Thom H., Jr.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. RP Dunning, TH (reprint author), Univ Washington, Pacific NW Natl Lab, NIAC, Sieg Hall,Room 127,3960 Benton Lane NE, Seattle, WA 98195 USA. EM takeshi1@illinois.edu; thdjr@uw.edu FU National Center for Supercomputing Applications; Distinguished Chair for Research Excellence in Chemistry at the University of Illinois at Urbana-Champaign FX Support for this work was provided by the National Center for Supercomputing Applications and the Distinguished Chair for Research Excellence in Chemistry at the University of Illinois at Urbana-Champaign. NR 29 TC 6 Z9 6 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 5 PY 2015 VL 119 IS 9 BP 1456 EP 1463 DI 10.1021/jp508392j PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD1NE UT WOS:000350840800003 PM 25627935 ER PT J AU Abbott, LJ Tucker, AK Stevens, MJ AF Abbott, Lauren J. Tucker, Ashley K. Stevens, Mark J. TI Single Chain Structure of a Poly(N-isopropylacrylamide) Surfactant in Water SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CRITICAL SOLUTION TEMPERATURE; MOLECULAR-DYNAMICS SIMULATION; TRANSFER RADICAL POLYMERIZATION; LINEAR CONSTRAINT SOLVER; VOLUME PHASE-TRANSITION; N-ISOPROPYLACRYLAMIDE; AQUEOUS-SOLUTIONS; CONFORMATIONAL TRANSITIONS; GLOBULE TRANSITION; THERMAL RESPONSE AB We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems. C1 [Abbott, Lauren J.; Tucker, Ashley K.; Stevens, Mark J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM msteve@sandia.gov OI Abbott, Lauren/0000-0003-3523-9380 FU U.S. Department of Energy's National Nuclear Security Administration [DE-A-C04-94AL85000]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-A-C04-94AL85000. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 64 TC 5 Z9 5 U1 9 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 5 PY 2015 VL 119 IS 9 BP 3837 EP 3845 DI 10.1021/jp511398q PG 9 WC Chemistry, Physical SC Chemistry GA CD1NC UT WOS:000350840600025 PM 25666289 ER PT J AU Zhang, M El-Roz, M Frei, H Mendoza-Cortes, JL Head-Gordon, M Lacy, DC Peters, JC AF Zhang, M. El-Roz, M. Frei, H. Mendoza-Cortes, J. L. Head-Gordon, M. Lacy, David C. Peters, Jonas C. TI Visible Light Sensitized CO2 Activation by the Tetraaza [(CoN4H)-N-II(MeCN)](2+) Complex Investigated by FT-IR Spectroscopy and DFT Calculations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON-DIOXIDE ACTIVATION; HYDROGEN EVOLUTION; COBALT COMPLEXES; CHARGE-TRANSFER; REDUCTION; WATER; PHOTOREDUCTION; PHOTOCHEMISTRY; PHOTOPHYSICS; MACROCYCLES AB In situ FT-IR measurements and electronic structure calculations are reported for the reduction of CO2 catalyzed by the macrocyclic complex [(CoN4H)-N-II](2+) (N4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(17),2,11,13,15-pentaene). Beginning from the [(CoN4H)-N-II](2+) resting state of the complex in wet acetonitrile solution, two different visible light sensitizers with substantially different reducing power are employed to access reduced states. Accessing reduced states of the complex with a [Ru(bpy)(3)](2+) sensitizer yields an infrared band at 1670 cm(-1) attributed to carboxylate, which is also observed for an authentic sample of the one-electron reduced complex [CoN4H(MeCN)](+) in CO2 saturated acetonitrile solution. The results are interpreted based on calculations using the pure BP86 functional that correctly reproduces experimental geometries. Continuum solvation effects are also included. The calculations show that Co is reduced to CoI in the first reduction, which is consistent with experimental d-d spectra of square Co(I) macrocycle complexes. The energy of the CO2 adduct of the one-electron reduced catalyst complex is essentially the same as for [CoN4H(MeCN)](+), which implies that only a fraction of the latter forms an adduct with CO2. By contrast, the calculations indicate a crucial role for redox noninnocence of the macrocyclic ligand in the doubly reduced state, [CoI(N4H) (-center dot)], and show that [CoI(N4H) (-center dot)] binds partially reduced CO2 fairly strongly. Experimentally accessing [CoI(N4H) (-center dot)] with an Ir(bpy)(3) sensitizer with greater reducing power closes the catalytic cycle as FT-IR spectroscopy shows CO production. Use of isotopically substituted (CO2)-O-18 also shows clear evidence for O-18-substituted byproducts from CO2 reduction to CO. C1 [Zhang, M.; El-Roz, M.; Frei, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhang, M.; El-Roz, M.; Frei, H.; Mendoza-Cortes, J. L.; Head-Gordon, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Mendoza-Cortes, J. L.; Head-Gordon, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Lacy, David C.; Peters, Jonas C.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Lacy, David C.; Peters, Jonas C.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hmfrei@lbl.gov; mhead-gordon@cchem.berkeley.edu; jpeters@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; European Regional Development Fund Franco-British INTERREG IVA [E3C3, 4274]; National Institute of Health [F32GM106726] FX This material is based on work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. M.E.-R. acknowledges the European Regional Development Fund Franco-British INTERREG IVA (Project E3C3, ref. 4274) for financial support, and Prof. Frederic Thibault-Starzyk for insightful discussions. D.C.L. would like to acknowledge the National Institute of Health (Award Number F32GM106726). NR 39 TC 10 Z9 10 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2015 VL 119 IS 9 BP 4645 EP 4654 DI 10.1021/jp5127738 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CD1ND UT WOS:000350840700022 ER PT J AU Teprovich, JA Zhang, JX Colon-Mercado, H Cuevas, F Peters, B Greenway, S Zidan, R Latroche, M AF Teprovich, Joseph A., Jr. Zhang, Junxian Colon-Mercado, Hector Cuevas, Fermin Peters, Brent Greenway, Scott Zidan, Ragaiy Latroche, Michel TI Li-Driven Electrochemical Conversion Reaction of AIH(3), LiAIlH(4), and NaAlH4 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; NEGATIVE ELECTRODE; ALUMINUM-HYDRIDE; ANODE; DECOMPOSITION; ALANATES; MG2FEH6; SYSTEM; MG AB The conversion reaction of AlH3, LiAlH4, and NaAlH4 complex hydrides with lithium has been examined electrochemically. All compounds undergo a conversion reaction in which one equivalent of LiH is formed for each equivalent of hydrogen contained in the hydride material. Decomposition of the hydrides follows different paths depending on the nature of the alkali metal but leads in all cases to pure metallic aluminum. Such very fine and reactive Al particles are able to readily form an alloy with Li at a lower potential. Alternatively, thermal decomposition of alane has been used to produce highly porous aluminum able to react with lithium to form the AlLi alloy directly. Constant current charge/discharge cycling, cyclic voltammetry, and in-operando XRD were utilized to characterize the performance of these materials and to interpret the reaction paths depending of the complex hydride compositions. C1 [Teprovich, Joseph A., Jr.; Colon-Mercado, Hector; Peters, Brent; Zidan, Ragaiy] Savannah River Natl Lab, Clean Energy Directorate, Aiken, SC 29808 USA. [Zhang, Junxian; Cuevas, Fermin; Latroche, Michel] ICMPE CNRS UPEC, Inst Chim & Mat Paris Est, UMR 7182, F-94320 Thiais, France. [Greenway, Scott] Greenway Energy LLC, Aiken, SC 29808 USA. RP Latroche, M (reprint author), ICMPE CNRS UPEC, Inst Chim & Mat Paris Est, UMR 7182, 2-8 Rue Henri Dunant, F-94320 Thiais, France. EM latroche@icmpe.cnrs.fr RI CUEVAS, Fermin/L-6262-2014; LATROCHE, MICHEL/L-6254-2014 OI CUEVAS, Fermin/0000-0002-9055-5880; LATROCHE, MICHEL/0000-0002-8677-8280 FU U.S. DOE Vehicle Technologies Program FX J.A.T, H.C-M., B.P., and R.Z. would like to thank the U.S. DOE Vehicle Technologies Program for Funding. We would also like to thank Mr. Joseph Wheeler (SRNL) for his assistance with the laboratory operations. NR 35 TC 9 Z9 9 U1 9 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2015 VL 119 IS 9 BP 4666 EP 4674 DI 10.1021/jp5129595 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CD1ND UT WOS:000350840700024 ER PT J AU Bellucci, F Lee, SS Kubicki, JD Bandura, A Zhang, Z Wesolowski, DJ Fenter, P AF Bellucci, Francesco Lee, Sang Soo Kubicki, James D. Bandura, Andrei Zhang, Zhan Wesolowski, David J. Fenter, Paul TI Rb+ Adsorption at the Quartz(101)-Aqueous Interface: Comparison of Resonant Anomalous X-ray Reflectivity with ab Initio Calculations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID QUARTZ DISSOLUTION; ELECTROLYTE-SOLUTIONS; SILICA DISSOLUTION; WATER-ADSORPTION; SURFACE-CHARGE; ZERO CHARGE; KINETICS; PH; DENSITY; MECHANISMS AB Adsorption of Rb+ to the quartz(101)-aqueous interface at room temperature was studied with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 +/- 0.1 angstrom above the quartz surface and a second layer at 4.8 +/- 0.1 angstrom and 3.9 +/- 0.8 angstrom for the water and RbCl solutions, respectively. The adsorbed Rb+ distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights of 1.8 +/- 0.1 and 6.4 +/- 1.0 angstrom, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb+ between these two conditions. At pH 7, the lowest energy structure shows that Rb+ adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. The surface charge estimated on the basis of the measured total Rb+ coverage was -0.11 C/m(2), in good agreement with the range of the surface charge magnitudes reported in the literature. C1 [Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Kubicki, James D.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Bandura, Andrei] St Petersburg State Univ, Dept Quantum Chem, St Petersburg 199034, Russia. [Zhang, Zhan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fenter@anl.gov RI Bandura, Andrei/I-2702-2013; Zhang, Zhan/A-9830-2008; Kubicki, James/I-1843-2012 OI Bandura, Andrei/0000-0003-2816-0578; Zhang, Zhan/0000-0002-7618-6134; Kubicki, James/0000-0002-9277-9044 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. The X-ray data were collected at beamlines 6-ID-B and 33-ID-D, Advanced Photon Source. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357 to UChicago Argonne, LLC as operator of Argonne National Laboratory. NR 55 TC 3 Z9 3 U1 11 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2015 VL 119 IS 9 BP 4778 EP 4788 DI 10.1021/jp510139t PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CD1ND UT WOS:000350840700037 ER PT J AU Xiong, SM Isaacs, EB Li, Y AF Xiong, Shangmin Isaacs, Eric B. Li, Yan TI Adsorption Characteristics and Size/Shape Dependence of Pt Clusters on the CdS Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; PLATINUM CLUSTERS; NANOPARTICLES; SHAPE; SIZE AB Motivated by recent reports on the enhanced photocatalytic activities of CdS detorated with subnanometer- and nanometer-sited noble metal clusters, we carried Out first-principles density functional theory cakulations to study the structure and electronic properties of Pt clusters supported on CdS surfaces. A systematie investigation of unsupported 2D bilayer and 3D Pt clusters up to 1.5 mu yielded similar trends on their structural, energetic, and electronic properties as functions of the cluster size. Detailed adsorption Studies of a single Pt atom) a 2D pt(19) cluster and 3D Pt-38 cluster on the nonpolar CdS(10 (1) over bar0) surface revealed that both the cluster size/shape arid the adsorption configuration have considerable influence oh the surface structure, adsorption strength) and other interface characteristics Strong bonding interactions occur at the cluster/semiconductor interface, leading to severe structural deformation of the substrate and the adsorbed clusters, as well as modification-of the electronic structure. In addition, significant charge redistribution occurs at the interface and results in a shift of the local Surface potential. Our work highlights the importance of explicitly treating the interface with realistic structural models to obtain an accurate picture of the, structural and electronic interactions at the interface and understand the observed enhancement in photo catalytic activities. C1 [Xiong, Shangmin] SUNY Stony Brook, Mat Sci & Engn Dept, Stony Brook, NY 11794 USA. [Li, Yan] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Isaacs, Eric B.] Columbia Univ, Appl Phys & Appl Math Dept, New York, NY 10027 USA. RP Li, Y (reprint author), Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. EM ynli@bnl.gov RI Isaacs, Eric/H-6682-2013 OI Isaacs, Eric/0000-0002-0195-0353 FU Stony Brook University; Brookhaven National Laboratory [37298]; U.S. Department of Energy Computational Science Graduate Fellowship [DE-FG02-97ER25308]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX S.X. was supported through a SEED grant between Stony Brook University and Brookhaven National Laboratory (Award No. 37298). E.B.I. was supported by the U.S. Department of Energy Computational Science Graduate Fellowship (Contract No. DE-FG02-97ER25308). The calculations were performed at NERSC and the Center for Functional Nanomaterials, BNL, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank Prof. Orlov and Qiyuan Wu from Stony Brook University for useful discussions. NR 38 TC 2 Z9 2 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2015 VL 119 IS 9 BP 4834 EP 4842 DI 10.1021/jp5117646 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CD1ND UT WOS:000350840700043 ER PT J AU Gruenewald, M Schirra, LK Winget, P Kozlik, M Ndione, PF Sigdel, AK Berry, JJ Forker, R Bredas, JL Fritz, T Monti, OLA AF Gruenewald, Marco Schirra, Laura K. Winget, Paul Kozlik, Michael Ndione, Paul F. Sigdel, Ajaya K. Berry, Joseph J. Forker, Roman Bredas, Jean-Luc Fritz, Torsten Monti, Oliver L. A. TI Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ENERGY-LEVEL ALIGNMENT; ULTRA-THIN LAYERS; ELECTRONIC-STRUCTURE; ZINC-OXIDE; METAL-OXIDES; SOLAR-CELLS; MOLECULES; PTCDA; STATES; HETEROJUNCTION AB We investigate the prototypical hybrid interface formed between PTCDA and, conductive n-doped ZnO films by means of complementary optical and electronic spectroscopic techniques. We demonstrate that shallow donors in the vicinity of the ZnO surface cause an integer charge transfer to PTCDA, which is clearly restricted to the first monolayer. By means of DFT calculations, we show that the experimental signatures of the anionic PTCDA species can be understood in terms of Strong hybridization with localized states (the shallow donors) in the substrate and charge back-donation; resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron-transport level but requires rather an atomistic understanding of the interfacial interactions. The study reveals that defect sites and dopants can have a significant influence on the specifics of interfacial coupling and thus on carrier injection or extraction. C1 [Gruenewald, Marco; Kozlik, Michael; Forker, Roman; Fritz, Torsten] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany. [Schirra, Laura K.; Monti, Oliver L. A.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Winget, Paul; Bredas, Jean-Luc] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Winget, Paul; Bredas, Jean-Luc] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Ndione, Paul F.; Sigdel, Ajaya K.; Berry, Joseph J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bredas, Jean-Luc] KAUST, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia. RP Bredas, JL (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM jean-luc.bredas@kaust.edu.sa; torsten.fritz@uni-jena.de; monti@u.arizona.edu RI Ndione, Paul/O-6152-2015; OI Ndione, Paul/0000-0003-4444-2938; Gruenewald, Marco/0000-0003-1545-7831; Forker, Roman/0000-0003-0969-9180; Fritz, Torsten/0000-0001-6904-1909; Bredas, Jean-Luc /0000-0001-7278-4471 FU Deutsche Forschungsgemeinschaft [FR875/9-3]; Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001084]; NSF CRIF [CHE0946869]; Georgia Institute of Technology FX M.G., M.K., R.F, and T.F. acknowledge financial support by the Deutsche Forschungsgemeinschaft through grant no. FR875/9-3. This work was also supported as part of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001084 (P.W., L.KS., P.F.N., A.K.S., D.S.G., J.J.B., J.S., H.K, B.K., J.L.B, and O.L.A.M.). The computations reported here were performed at the Georgia Tech Center for Computational Molecular Science and Technology, funded through a NSF CRIF award (Grant No. CHE0946869), and by the Georgia Institute of Technology. NR 50 TC 15 Z9 15 U1 3 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2015 VL 119 IS 9 BP 4865 EP 4873 DI 10.1021/jp512153b PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CD1ND UT WOS:000350840700047 ER PT J AU Taz, H Ruther, R Malasi, A Yadavali, S Carr, C Nanda, J Kalyanaraman, R AF Taz, Humaira Ruther, Rose Malasi, Abhinav Yadavali, Sagar Carr, Connor Nanda, Jagjit Kalyanaraman, Ramki TI In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SEMICONDUCTOR; NANOPARTICLES; CU; GROWTH; AG AB Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor the in situ kinetics of early stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red-shifted rapidly due to random deposition of CdS on the substrate but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition of CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface-enhanced Raman scattering (SERS) from the CdS/Ag NP regions. The ex situ SERS effect supported the LSPR shift, suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase. C1 [Taz, Humaira; Nanda, Jagjit; Kalyanaraman, Ramki] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Ruther, Rose; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Malasi, Abhinav; Yadavali, Sagar; Nanda, Jagjit; Kalyanaraman, Ramki] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Carr, Connor; Kalyanaraman, Ramki] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37916 USA. RP Nanda, J (reprint author), Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. EM nandaj@ornl.gov; ramki@utk.edu RI Malasi, Abhinav/J-6025-2015; Ruther, Rose/I-9207-2016 OI Ruther, Rose/0000-0002-1391-902X FU TN-SCORE Grant [NSF-EPS-1004083]; ARMY [W911NF-13-1-0428]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2013-284] FX This work was supported by TN-SCORE Grant NSF-EPS-1004083, while A. Malasi was supported by grant ARMY W911NF-13-1-0428. J.N. and R.E.R. acknowledge support from the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. R.K. and H.T. also acknowledge CNMS2013-284 at the Center for Nanophase Materials Science, which is sponsored at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy for SEM characterization. NR 35 TC 3 Z9 3 U1 4 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 5 PY 2015 VL 119 IS 9 BP 5033 EP 5039 DI 10.1021/jp512738b PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CD1ND UT WOS:000350840700065 ER PT J AU Leon, DR Ytterberg, AJ Boontheung, P Kim, U Loo, JA Gunsalus, RP Loo, RRO AF Leon, Deborah R. Ytterberg, A. Jimmy Boontheung, Pinmanee Kim, Unmi Loo, Joseph A. Gunsalus, Robert P. Loo, Rachel R. Ogorzalek TI Mining proteonnic data to expose protein modifications in Methanosarcina mazei strain Go1 SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE S-layers; archaeal surface proteins; Methanosarcina mazei; prokaryotic glycosylation; membrane proteins; concanavalin A ID COENZYME-M-METHYLTRANSFERASE; N-TERMINAL PEPTIDES; ELECTRON-CAPTURE DISSOCIATION; TANDEM MASS-SPECTROMETRY; METHANOGENIC ARCHAEA; POSTTRANSLATIONAL MODIFICATIONS; ESCHERICHIA-COLI; CONCANAVALIN-A; CYSTEINE RESIDUES; SIGNAL PEPTIDES AB Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to "mine" information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Go1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei Slayer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified. C1 [Leon, Deborah R.; Ytterberg, A. Jimmy; Boontheung, Pinmanee; Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Kim, Unmi; Gunsalus, Robert P.] Univ Calif Los Angeles, Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Loo, Joseph A.; Loo, Rachel R. Ogorzalek] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA. [Loo, Joseph A.; Gunsalus, Robert P.; Loo, Rachel R. Ogorzalek] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Gunsalus, RP (reprint author), Univ Calif Los Angeles, Microbiol Immunol & Mol Genet, 1602 Mol Sci Bldg, Los Angeles, CA 90095 USA. EM robg@microbio.ucla.edu; rloo@mednet.ucla.edu RI Ytterberg, Anders/E-1773-2016 OI Ytterberg, Anders/0000-0002-1485-2314 FU Department of Energy Biosciences Division grant [DE-FG02-08ER64689]; UCLA-DOE Institute of Genomics and Proteomics [DE-FC03-02ER6342]; Ruth L. Kirschstein National Research Service Award [GM007185]; National Institutes of Health [R01 GM085402] FX This research was supported by the Department of Energy Biosciences Division grant award DE-FG02-08ER64689 to RPG, by the UCLA-DOE Institute of Genomics and Proteomics (DE-FC03-02ER6342) to JL and RPG, by the Ruth L. Kirschstein National Research Service Award (Grant GM007185) to DL and by the National Institutes of Health (R01 GM085402) to ROL and JL. NR 95 TC 2 Z9 2 U1 2 U2 10 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD MAR 5 PY 2015 VL 6 AR 149 DI 10.3389/fmicb.2015.00149 PG 16 WC Microbiology SC Microbiology GA CC9OJ UT WOS:000350699800001 PM 25798134 ER PT J AU Kahn, Y Krnjaic, G Thaler, J Toups, M AF Kahn, Yonatan Krnjaic, Gordan Thaler, Jesse Toups, Matthew TI DAE delta ALUS and dark matter detection SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINOS; SEARCH AB Among laboratory probes of dark matter, fixed-target neutrino experiments are particularly well suited to search for light weakly coupled dark sectors. In this paper, we show that the DAE delta ALUS source setup-an 800 MeV proton beam impinging on a target of graphite and copper-can improve the present LSND bound on dark photon models by an order of magnitude over much of the accessible parameter space for light dark matter when paired with a suitable neutrino detector such as LENA. Interestingly, both DAE delta ALUS and LSND are sensitive to dark matter produced from off-shell dark photons. We show for the first time that LSND can be competitive with searches for visible dark photon decays and that fixed-target experiments have sensitivity to a much larger range of heavy dark photon masses than previously thought. We review the mechanism for dark matter production and detection through a dark photon mediator, discuss the beam-off and beam-on backgrounds, and present the sensitivity in dark photon kinetic mixing for both the DAE delta ALUS/LENA setup and LSND in both the on- and off-shell regimes. C1 [Kahn, Yonatan; Thaler, Jesse] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Krnjaic, Gordan] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Toups, Matthew] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Toups, Matthew] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Kahn, Y (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. EM ykahn@mit.edu; gkrnjaic@perimeterinstitute.ca; jthaler@mit.edu; mtoups@mit.edu FU NSF [PHY-1066293, PHY-1205175]; Government of Canada through Industry Canada; Province of Ontario; U.S. DOE [DE-SC00012567]; NSF Graduate Research Fellowship; DOE Early Career research Program [DE-FG02-11ER-41741]; Sloan Research Fellowship from the Alfred P. Sloan Foundation FX We thank Adam Anderson, Brian Batell, Janet Conrad, Rouven Essig, Joseph Formaggio, Eder Izaguirre, Patrick de Nieverville, Maxim Pospelov, Philip Schuster, Joshua Spitz, and Natalia Toro for many helpful conversations. G.K. thanks the Aspen Center for Physics, supported by NSF Grant No. PHY-1066293, and the CERN theory group for hospitality while portions of this work were completed. The Perimeter Institute for Theoretical Physics is supported by the Government of Canada through Industry Canada and by the Province of Ontario. Y.K. and J.T. are supported by the U.S. DOE under Grant No. DE-SC00012567. Y.K. is also supported by an NSF Graduate Research Fellowship. J.T. is also supported by the DOE Early Career research Program No. DE-FG02-11ER-41741 and by a Sloan Research Fellowship from the Alfred P. Sloan Foundation. M.T. is supported by the NSF under Grant No. PHY-1205175. NR 111 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 5 PY 2015 VL 91 IS 5 AR 055006 DI 10.1103/PhysRevD.91.055006 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD1PU UT WOS:000350847600002 ER PT J AU Gao, F Zhao, GL Wang, Z Bagayoko, D Liu, DJ AF Gao, Feng Zhao, Guang-Lin Wang, Zhou Bagayoko, Diola Liu, Di-Jia TI Catalytic reaction on FeN4/C site of nitrogen functionalized carbon nanotubes as cathode catalyst for hydrogen fuel cells SO CATALYSIS COMMUNICATIONS LA English DT Article DE First-principles calculations; Electrocatalytic reactions; Carbon nanotubes; Catalyst; Fuel cells ID OXYGEN REDUCTION REACTION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELASTIC BAND METHOD; FE-BASED CATALYSTS; ACTIVE-SITES; FE/N/C CATALYSTS; SADDLE-POINTS; BASIS-SET; DENSITY AB We utilized first-principles spin-polarized density functional theory (DFT) calculations to study the electrocatalytic reaction steps on FeN4/C site of carbon nanotubes. O-2 molecule can be adsorbed and partially reduced on FeN4/C site without any activation energy barrier. The partially reduced O-2 further reacts with H+ and e(-) through a direct pathway (DPW) and form two water molecules without any activation energy barrier. Through an indirect pathway (IDPW), there is an activation energy barrier of similar to 0.15 eV for the formation of the first H2O molecule. The formation of the second H2O molecule through IDPW does not have any activation energy barrier. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gao, Feng; Zhao, Guang-Lin; Wang, Zhou; Bagayoko, Diola] Southern Univ & A&M Coll, Dept Phys, Baton Rouge, LA 70813 USA. [Gao, Feng; Zhao, Guang-Lin; Wang, Zhou] Southern Univ & A&M Coll, Nano Catalysts Lab, Baton Rouge, LA 70813 USA. [Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhao, GL (reprint author), Room 128,William James Hall,500 Jesse Stone, Baton Rouge, LA 70813 USA. EM Guang-Lin_Zhao@subr.edu FU National Science Foundation (NSF) LASIGMA Project [EPS-1003897, NSF92010-15-RII-SUBR]; Air Force Office of Scientific Research [FA9550-09-1-0367]; US Dept Intent of Energy, National Nuclear Security Agency (NNSA) [DE-NA0001861] FX The work was funded in part by the National Science Foundation (NSF) LASIGMA Project (EPS-1003897, NSF92010-15-RII-SUBR), Air Force Office of Scientific Research (FA9550-09-1-0367), and the US Dept Intent of Energy, National Nuclear Security Agency (NNSA) (Award No. DE-NA0001861). Computations were performed on Louisiana Optical Network Initiative (LONI) computers. NR 34 TC 0 Z9 0 U1 3 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-7367 EI 1873-3905 J9 CATAL COMMUN JI Catal. Commun. PD MAR 5 PY 2015 VL 62 BP 79 EP 82 DI 10.1016/j.catcom.2015.01.015 PG 4 WC Chemistry, Physical SC Chemistry GA CC1IT UT WOS:000350095100018 ER PT J AU Streubel, R Han, L Im, MY Kronast, F Rossler, UK Radu, F Abrudan, R Lin, G Schmidt, OG Fischer, P Makarov, D AF Streubel, Robert Han, Luyang Im, Mi-Young Kronast, Florian Roessler, Ulrich K. Radu, Florin Abrudan, Radu Lin, Gungun Schmidt, Oliver G. Fischer, Peter Makarov, Denys TI Manipulating Topological States by Imprinting Non-Collinear Spin Textures SO SCIENTIFIC REPORTS LA English DT Article ID MAGNETIC SKYRMIONS; BERRY PHASE; MICROSCOPY; LATTICE; REAL AB Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can be imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence. C1 [Streubel, Robert; Han, Luyang; Lin, Gungun; Schmidt, Oliver G.; Makarov, Denys] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Im, Mi-Young] Daegu Gyeongbuk Inst Sci & Technol, Taegu, South Korea. [Kronast, Florian; Radu, Florin; Abrudan, Radu] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany. [Roessler, Ulrich K.] IFW Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany. [Abrudan, Radu] Ruhr Univ Bochum, Inst Expt Phys Festkorperphys, D-44780 Bochum, Germany. [Schmidt, Oliver G.] Tech Univ Chemnitz, Mat Syst Nanoelect, D-09107 Chemnitz, Germany. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Streubel, R (reprint author), IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. EM r.streubel@ifw-dresden.de; pjfischer@lbl.gov RI Makarov, Denys/G-1025-2011; Streubel, Robert/D-9686-2012; Fischer, Peter/A-3020-2010; Radu, Florin/B-6725-2011; OI Fischer, Peter/0000-0002-9824-9343; Radu, Florin/0000-0003-0284-7937; Abrudan, Radu/0000-0002-9335-4929 FU German Science Foundation (DFG) [MA 5144/1-1]; European Research Council under European Union's Seventh Framework program/ERC [306277]; Future and Emerging Technologies (FET) programme under FET-Open grant [618083]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231]; Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea - Ministry of Education, Science and Technology (MEST) [2012K1A4A3053565]; BMBF [05K10PC2] FX This work is financed via the German Science Foundation (DFG) grant MA 5144/1-1 and the European Research Council under European Union's Seventh Framework program (FP7/2007-2013)/ERC grant agreement n. 306277 and the Future and Emerging Technologies (FET) programme under FET-Open grant number 618083. We thank HZB for the allocation of synchrotron radiation beamtime. M.-Y.I. and P.F. acknowledge support by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 and by Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) (2012K1A4A3053565). The ALICE diffractometer is funded through BMBF Contract No. 05K10PC2. NR 44 TC 9 Z9 9 U1 7 U2 49 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 5 PY 2015 VL 5 AR 8787 DI 10.1038/srep08787 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC6CV UT WOS:000350453200014 PM 25739643 ER PT J AU Cole, JM Lin, TC Edwards, AJ Piltz, RO Depotter, G Clays, K Lee, SC Kwon, OP AF Cole, Jacqueline M. Lin, Tze-Chia Edwards, Alison J. Piltz, Ross O. Depotter, Griet Clays, Koen Lee, Seung-Chul Kwon, O-Pil TI Concerted Mitigation of O center dot center dot center dot H and C(pi)center dot center dot center dot H Interactions Prospects Sixfold Gain in Optical Non linearity of Ionic Stilbazolium Derivatives SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic nonlinear optics; DAST; intermolecular interactions; molecular engineering ID 2ND-ORDER NONLINEAR OPTICS; HYPER-RAYLEIGH SCATTERING; INTERMOLECULAR INTERACTIONS; NEUTRON-DIFFRACTION; 2ND-HARMONIC GENERATION; MOLECULAR-CRYSTALS; ORGANIC SALTS; SUSCEPTIBILITIES; HYPERPOLARIZABILITIES; DENSITY AB DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate) is the most commercially successful organic nonlinear optical (NLO) material for frequency-doubling, integrated optics, and THz wave applications. Its success is predicated on its high optical nonlinearity with concurrent sufficient thermal stability. Many chemical derivatives of DAST have therefore been developed to optimize their properties; yet, to date, none have surpassed the overall superiority of DAST for NLO photonic applications. This is perhaps because DAST is an ionic salt wherein its NLO-active cation is influenced by multiple types of subtle intermolecular forces that are hard to quantify, thus, making difficult the molecular engineering of better functioning DAST derivatives. Here, we establish a model parameter, eta(inter), that isolates the influence of intermolecular interactions on second-order optical nonlinearity in DAST and its derivatives, using second-harmonic generation (SHG) as a qualifier; by systematically mapping intercorrelations of all possible pairs of intermolecular interactions to eta(inter), we uncover a relationship between concerted intermolecular interactions and SHG output. This correlation reveals that a sixfold gain in the intrinsic second-order NLO performance of DAST is possible, by eliminating the identified interactions. This prediction offers the first opportunity to systematically design next-generation DAST-based photonic device nanotechnology to realize such a prospect. C1 [Cole, Jacqueline M.; Lin, Tze-Chia] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Edwards, Alison J.; Piltz, Ross O.] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia. [Depotter, Griet; Clays, Koen] Univ Leuven, Dept Chem, B-3001 Leuven, Belgium. [Lee, Seung-Chul; Kwon, O-Pil] Ajou Univ, Dept Mol Sci & Technol, Suwon 443749, South Korea. RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jmc61@cam.ac.uk; tzechia.lin@gmail.com RI Cole, Jacqueline/C-5991-2008 FU Fulbright Commission; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Taiwanese Government; University of Leuven [GOA/11/003]; Region of Flanders (FWO and Hercules); National Research Foundation (NRF) - Korean Government (the Ministry of Science, ICT and Future Planning); National Research Foundation (NRF) - (Ministry of Education) [NRF-2013R1A2A2A01007232, 2014R1A5A1009799, 2009-0093826] FX J.M.C. thanks the Fulbright Commission for a UK-US Fulbright Scholar Award hosted by Argonne National Laboratory where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. T.-C.L. acknowledges the Taiwanese Government for a Studying Abroad Scholarship. The Bragg Institute, ANSTO, Australia, is acknowledged for access to neutron scattering facilities via program proposal 1236. K.C. and G.D. acknowledge funding from the University of Leuven (GOA/11/003) and the Region of Flanders (FWO and Hercules). O.P.K. and S.C.L. are thankful for the support by the National Research Foundation (NRF) grants funded by the Korean Government (the Ministry of Science, ICT and Future Planning, and the Ministry of Education) (NRF-2013R1A2A2A01007232, 2014R1A5A1009799, and 2009-0093826). NR 33 TC 7 Z9 7 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAR 4 PY 2015 VL 7 IS 8 BP 4693 EP 4698 DI 10.1021/am508213c PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CG1AL UT WOS:000353005300030 PM 25654641 ER PT J AU Phelan, D Rodriguez, EE Gao, J Bing, Y Ye, ZG Huang, Q Wen, JS Xu, GY Stock, C Matsuura, M Gehring, PM AF Phelan, D. Rodriguez, E. E. Gao, J. Bing, Y. Ye, Z-G Huang, Q. Wen, Jinsheng Xu, Guangyong Stock, C. Matsuura, M. Gehring, P. M. TI Phase diagram of the relaxor ferroelectric (1 - x)Pb(Mg1/3Nb2/3)O-3+xPbTiO(3) revisited: a neutron powder diffraction study of the relaxor skin effect SO PHASE TRANSITIONS LA English DT Article; Proceedings Paper CT Int Workshop Relaxor Ferroelectr CY DEC 12-16, 2014 CL Stirin, CZECH REPUBLIC SP Off Naval Res (ONRG) DE phase diagram; morphotropic phase boundary; skin effect; PMN; neutron diffraction; relaxors ID X-RAY-DIFFRACTION; FIELD ISING-MODEL; LONG-RANGE ORDER; 2ND LENGTH SCALE; SINGLE-CRYSTALS; CUBIC PHASE; SCATTERING; TRANSITION; DEPENDENCE; STRAIN AB We revisit the phase diagram of the relaxor ferroelectric PMN- [GRAPHICS] PT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- [GRAPHICS] PT were prepared with nominal compositions of [GRAPHICS] , 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than those in the as-prepared samples. Further, the diffraction patterns for [GRAPHICS] , 0.20, and 0.30 are best refined using the monoclinic [GRAPHICS] space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- [GRAPHICS] PT vanishes on the Ti-rich side of the morphotropic phase boundary. C1 [Phelan, D.; Rodriguez, E. E.; Huang, Q.; Gehring, P. M.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Phelan, D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rodriguez, E. E.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Gao, J.; Bing, Y.; Ye, Z-G] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Wen, Jinsheng] Nanjing Univ, Sch Phys, Nanjing 210008, Jiangsu, Peoples R China. [Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Stock, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Matsuura, M.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. RP Gehring, PM (reprint author), NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM peter.gehring@nist.gov RI Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010; OI Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275; Gehring, Peter/0000-0002-9236-2046 FU United States Office of Naval Research (ONR) [N00014-12-1-1045]; Natural Sciences and Engineering Research Council of Canada (NSERC) [203772]; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division [DE-AC02-06CH11357]; Office of Basic Energy Sciences, US Department of Energy [DE-AC02-98CH10886] FX The work at Simon Fraser University was supported by the United States Office of Naval Research (ONR) [grant number N00014-12-1-1045]; the Natural Sciences and Engineering Research Council of Canada (NSERC) [grant number 203772]. Work in the Materials Science Division at Argonne National Laboratory is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division [grant number DE-AC02-06CH11357]. G. Xu acknowledges support from the Office of Basic Energy Sciences, US Department of Energy [grant number DE-AC02-98CH10886], while C. Stock acknowledges the Carnegie Trust for the Universities of Scotland and the Royal Society. NR 62 TC 6 Z9 6 U1 5 U2 42 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0141-1594 EI 1029-0338 J9 PHASE TRANSIT JI Phase Transit. PD MAR 4 PY 2015 VL 88 IS 3 SI SI BP 283 EP 305 DI 10.1080/01411594.2014.989226 PG 23 WC Crystallography; Physics, Condensed Matter SC Crystallography; Physics GA CC9LK UT WOS:000350691800008 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Bagaturia, I Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Nowak, F Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapanc, N Arcidiacono, R Argiro, S Arncodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Park, S Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Golutvin, I Karjavin, V Konoplyanikov, V Korenkov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Mitsyn, VV Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Tikhonenko, E Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Ershov, A Gribushin, A Kaminskiy, A Kodolova, O Korotkikh, V Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Vardanyan, I Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, G Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, O De Guio, F De Roeck, A De Visscher, S Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Treille, D Tsirou, A Veres, GI Vlimant, JR Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Bahtiyar, H Barlas, E Cankocak, K Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Richardson, C Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Babb, J Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Gray, J Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Woods, N AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Bagaturia, I. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapanc, N. Arcidiacono, R. Argiro, S. Arncodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Park, S. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Golutvin, I. Karjavin, V. Konoplyanikov, V. Korenkov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Mitsyn, V. V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Ershov, A. Gribushin, A. Kaminskiy, A. Kodolova, O. Korotkikh, V. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Vardanyan, I. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, O. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Bahtiyar, H. Barlas, E. Cankocak, K. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Richardson, C. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Babb, J. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Gray, J. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Woods, N. CA CMS Collaboration TI Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Particle and resonance production; Heavy Ions; Heavy-ion collision; proton-proton scattering ID BOSON PRODUCTION; W-BOSON; COLLIDER AB The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at root s(NN) = 2.76TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 mu b(-1), while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb(-1). The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez Moreno, B.; Sanabria, J. C.; Gomez, G.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, Univ Strasbourg, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Bagaturia, I.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.; Potenza, A.; Giordano, D.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.; Potenza, A.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapanc, N.; Arcidiacono, R.; Argiro, S.; Arncodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapanc, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arncodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Safonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Mussgiller, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, O.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Williams, T.; Smith, J. G.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Lucas, C.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Nash, D.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, H.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Moon, C. S.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Sander, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, University, MS 38677 USA. [Malik, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Hare, D.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Masetti, G.; Giordano, F.; Gori, V.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Argiro, S.; Casasso, S.; Obertino, M. M.; Schizzi, A.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, Univ Strasbourg, CNRS,IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Plestina, R.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Finger, M., Jr.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Poehlsen, J.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, H-4012 Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Kaminskiy, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Kaminskiy, A.] Univ Padua, Padua, Italy. [Kaminskiy, A.] Univ Trento Trento, Padua, Italy. [Adzic, P.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ogul, Hasan/S-7951-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Horani, Hafeez /L-2414-2015; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Bernardes, Cesar Augusto/D-2408-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Petrushanko, Sergey/D-6880-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; candelise, vieri/H-2195-2015; Manganote, Edmilson/K-8251-2013; Lokhtin, Igor/D-7004-2012 OI Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; Heath, Helen/0000-0001-6576-9740; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 41 TC 10 Z9 10 U1 10 U2 56 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR 4 PY 2015 IS 3 AR 022 DI 10.1007/JHEP03(2015)022 PG 40 WC Physics, Particles & Fields SC Physics GA CD8RP UT WOS:000351363800005 ER PT J AU Li, FF Burgie, ES Yu, T Heroux, A Schatz, GC Vierstra, RD Orville, AM AF Li, Feifei Burgie, E. Sethe Yu, Tao Heroux, Annie Schatz, George C. Vierstra, Richard D. Orville, Allen M. TI X-ray Radiation Induces Deprotonation of the Bilin Chromophore in Crystalline D. radiodurans Phytochrome SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID STRUCTURAL-CHANGES; RESONANCE RAMAN; BINDING DOMAIN; PHOTOCONVERSION; BACTERIOPHYTOCHROME; SPECTROSCOPY; STATE; CYANOBACTERIOCHROMES; TRANSDUCTION; MYOGLOBIN AB We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. These results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins. C1 [Li, Feifei; Heroux, Annie; Orville, Allen M.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Orville, Allen M.] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. [Burgie, E. Sethe; Vierstra, Richard D.] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. [Yu, Tao; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Li, Feifei] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88011 USA. RP Yu, T (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM tao.yu1@northwestern.edu; vierstra@wisc.edu; amorv@bnl.gov RI Li, Feifei/C-3476-2017 FU NIH/NIGMS [8P41GM103473-16]; DOE/BER [FWP BO-70]; NSF [MCB-1329956]; Ultrafast Initiative of the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences through Argonne National Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Dr. Babak Andi for helpful discussions, and Dr. Maria A. Mroginski for kindly sending the force field parameters. F.L AM., and A.M.O. were supported by NIH/NIGMS grant 8P41GM103473-16, and DOE/BER grant FWP BO-70. E.S.B. and R.D.V. were supported by the NSF grant MCB-1329956. T.Y. and G.C.S. acknowledge support from the Ultrafast Initiative of the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Data were collected at beamlines X26-C and X25 of the National Synchrotron Light Source (NSLS), which was supported under Contract No. DE-AC02-98CH10886 of U.S. Department of Energy Office of Basic Energy Sciences. NR 36 TC 7 Z9 7 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 4 PY 2015 VL 137 IS 8 BP 2792 EP 2795 DI 10.1021/ja510923m PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CC8JO UT WOS:000350614700002 PM 25650486 ER PT J AU Daumann, LJ Tatum, DS Snyder, BER Ni, CB Law, GL Solomon, EI Raymond, KN AF Daumann, Lena J. Tatum, David S. Snyder, Benjamin E. R. Ni, Chengbao Law, Ga-lai Solomon, Edward I. Raymond, Kenneth N. TI New Insights into Structure and Luminescence of Eu-III and Sm-III Complexes of the 3,4,3-L1(1,2-HOPO) Ligand SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LANTHANIDE COMPLEXES; HYDROXYPYRIDINONATE COMPLEXES; THERMODYNAMIC EVALUATION; HIGHLY LUMINESCENT; 3,4,3-LI(1,2-HOPO); DECORPORATION; 5-LIO(ME-3,2-HOPO); CHELATION; STABILITY; IONS AB We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [(ML)-L-III](-) (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with Eu-III as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the EuIII and SmIII complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. C1 [Daumann, Lena J.; Tatum, David S.; Ni, Chengbao; Law, Ga-lai; Raymond, Kenneth N.] Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Daumann, Lena J.; Tatum, David S.; Ni, Chengbao; Law, Ga-lai; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Snyder, Benjamin E. R.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu FU U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; NIH [HL069832, S10-RR027172]; Alexander von Humboldt Foundation; NSF [CHE-1360046, CHE-0233882, CHE-0840505]; Smith & Yoedicke Stanford Graduate Fellowship FX We thank Benjamin Allred, Manuel Sturzbecher-Hoehne, and Jide Xu for helpful discussions. The ligand 3,4,3-LI(1,2-HOPO) that was used for growing X-ray-quality crystals of K[EuL] was a kind donation from Dr. Rebecca Abergel at LBNL and prepared by Ash Stevens, Inc. (Detroit, MI, Lot ML-11-276). This research is supported by U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231 and NIH grant HL069832. L.J.D. is grateful for a scholarship of the Alexander von Humboldt Foundation. E.S. acknowledges support from the NSF (CHE-1360046), and B.E.R.S. acknowledges support from the Munger, Pollock, Reynolds, Robinson, Smith & Yoedicke Stanford Graduate Fellowship. The Small Molecule X-ray Crystallography Facility is supported by NIH Shared Instrumentation Grant S10-RR027172, and the Molecular Graphics and Computation Facility wishes to acknowledge the NSF CHE-0233882 and CHE-0840505 grants. NR 28 TC 16 Z9 16 U1 12 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 4 PY 2015 VL 137 IS 8 BP 2816 EP 2819 DI 10.1021/ja5116524 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CC8JO UT WOS:000350614700008 PM 25607882 ER PT J AU Bisogni, V Wohlfeld, K Nishimoto, S Monney, C Trinckauf, J Zhou, KJ Kraus, R Koepernik, K Sekar, C Strocov, V Buchner, B Schmitt, T van den Brink, J Geck, J AF Bisogni, Valentina Wohlfeld, Krzysztof Nishimoto, Satoshi Monney, Claude Trinckauf, Jan Zhou, Kejin Kraus, Roberto Koepernik, Klaus Sekar, Chinnathambi Strocov, Vladimir Buechner, Bernd Schmitt, Thorsten van den Brink, Jeroen Geck, Jochen TI Orbital Control of Effective Dimensionality: From Spin-Orbital Fractionalization to Confinement in the Anisotropic Ladder System CaCu2O3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SCATTERING; T-J MODEL; SR2CUO3; SEPARATION; SRCUO2 AB Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu2O3, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu2O3 along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons. C1 [Bisogni, Valentina; Wohlfeld, Krzysztof; Nishimoto, Satoshi; Trinckauf, Jan; Kraus, Roberto; Koepernik, Klaus; Sekar, Chinnathambi; Buechner, Bernd; van den Brink, Jeroen; Geck, Jochen] IFW Dresden, D-01069 Dresden, Germany. [Bisogni, Valentina; Monney, Claude; Zhou, Kejin; Strocov, Vladimir; Schmitt, Thorsten] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Bisogni, Valentina] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Wohlfeld, Krzysztof] Stanford Inst Mat & Energy Sci, SLAC Natl Lab, Menlo Pk, CA 94025 USA. [Wohlfeld, Krzysztof] Stanford Univ, Menlo Pk, CA 94025 USA. [Wohlfeld, Krzysztof] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-02093 Warsaw, Poland. [Monney, Claude] Univ Zurich, Dept Phys, CH-8057 Zurich, Switzerland. [Zhou, Kejin] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Sekar, Chinnathambi] Alagappa Univ, Dept Bioelect & Biosensors, Karaikkudi 630003, Tamil Nadu, India. [Buechner, Bernd; van den Brink, Jeroen] Tech Univ Dresden, Dept Phys, D-1062 Dresden, Germany. RP Bisogni, V (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM bisogni@bnl.gov; wohlfeld@stanford.edu RI van den Brink, Jeroen/E-5670-2011; Schmitt, Thorsten/A-7025-2010; Buchner, Bernd/E-2437-2016; Monney, Claude/C-5553-2011; Wohlfeld, Krzysztof/B-4489-2014 OI van den Brink, Jeroen/0000-0001-6594-9610; Buchner, Bernd/0000-0002-3886-2680; Wohlfeld, Krzysztof/0000-0002-6524-8264 FU Swiss National Science Foundation; National Centre of Competence in Research MaNEP; German Science Foundation [200021L_141325, GE 1647/3-1]; Swiss National Science Foundation through the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH); Deutscher Akademischer Austausch Dienst; European Community's Seventh Framework Programme [290605]; Alexander von Humboldt Foundation; Polish National Science Center (NCN) [2012/04/A/ST3/00331]; Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DMSE) [DE-AC02-76SF00515]; Emmy-Noether Program [GE1647/2-1] FX This work was performed at the ADRESS beam line of the Swiss Light Source at the Paul Scherrer Institute, Switzerland. This project was supported by the Swiss National Science Foundation and its National Centre of Competence in Research MaNEP. This research has been funded by the German Science Foundation within the D-A-CH program (SNSF Research Grants No. 200021L_141325 and No. GE 1647/3-1). Further support has been provided by the Swiss National Science Foundation through the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH). V. B. acknowledges financial support from Deutscher Akademischer Austausch Dienst and the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 290605 (PSI-FELLOW/COFUND). K. W. acknowledges support from the Alexander von Humboldt Foundation, from the Polish National Science Center (NCN) under Project No. 2012/04/A/ST3/00331, and by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DMSE) under Contract No. DE-AC02-76SF00515 (Stanford/SIMES). J. G., R. K. and V. B. gratefully acknowledge financial support through the Emmy-Noether Program (Grant No. GE1647/2-1). We are very grateful for insightful discussions with M. Daghofer, S. Kourtis, and L. Hozoi. NR 35 TC 9 Z9 9 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 4 PY 2015 VL 114 IS 9 AR 096402 DI 10.1103/PhysRevLett.114.096402 PG 6 WC Physics, Multidisciplinary SC Physics GA CD3KH UT WOS:000350976700019 PM 25793832 ER PT J AU Perez, FA Borisov, P Johnson, TA Stanescu, TD Trappen, R Holcomb, MB Lederman, D Fitzsimmons, MR Aczel, AA Hong, T AF Perez, Felio A. Borisov, Pavel Johnson, Trent A. Stanescu, Tudor D. Trappen, Robbyn Holcomb, Mikel B. Lederman, David Fitzsimmons, M. R. Aczel, Adam A. Hong, Tao TI Phase Diagram of a Three-Dimensional Antiferromagnet with Random Magnetic Anisotropy SO PHYSICAL REVIEW LETTERS LA English DT Article ID INDUCED GRIFFITHS PHASE; COMPETING SPIN ANISOTROPIES; TRANSITION-METAL COMPOUNDS; NEUTRON-DIFFRACTION; STATISTICAL-MECHANICS; CRITICAL-BEHAVIOR; RANDOM MIXTURE; EXCHANGE BIAS; RANDOM-FIELDS; QUANTUM AB Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of FexNi1-xF2 epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs. C1 [Perez, Felio A.; Borisov, Pavel; Johnson, Trent A.; Stanescu, Tudor D.; Trappen, Robbyn; Holcomb, Mikel B.; Lederman, David] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Aczel, Adam A.; Hong, Tao] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Perez, FA (reprint author), Univ Memphis, Integrated Microscopy Ctr, Memphis, TN 38152 USA. EM david.lederman@mail.wvu.edu RI Hong, Tao/F-8166-2010; Borisov, Pavel/A-6218-2015; Aczel, Adam/A-6247-2016; OI Hong, Tao/0000-0002-0161-8588; Borisov, Pavel/0000-0003-1464-6999; Aczel, Adam/0000-0003-1964-1943; Holcomb, Mikel/0000-0003-2111-3410 FU National Science Foundation [DMR-0903861]; WV Higher Education Policy Commission [RCG HEPC.dsr.12.29]; Shared Research Facilities at WVU; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The support of the National Science Foundation (Grant No. DMR-0903861), the WV Higher Education Policy Commission (RCG HEPC.dsr.12.29), and the Shared Research Facilities at WVU are gratefully acknowledged. Research conducted at ORNL and LANL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 2 Z9 2 U1 7 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 4 PY 2015 VL 114 IS 9 AR 097201 DI 10.1103/PhysRevLett.114.097201 PG 5 WC Physics, Multidisciplinary SC Physics GA CD3KH UT WOS:000350976700025 PM 25793845 ER PT J AU Vaisseau, X Debayle, A Honrubia, JJ Hulin, S Morace, A Nicolai, P Sawada, H Vauzour, B Batani, D Beg, FN Davies, JR Fedosejevs, R Gray, RJ Kemp, GE Kerr, S Li, K Link, A McKenna, P McLean, HS Mo, M Patel, PK Park, J Peebles, J Rhee, YJ Sorokovikova, A Tikhonchuk, VT Volpe, L Wei, M Santos, JJ AF Vaisseau, X. Debayle, A. Honrubia, J. J. Hulin, S. Morace, A. Nicolai, Ph. Sawada, H. Vauzour, B. Batani, D. Beg, F. N. Davies, J. R. Fedosejevs, R. Gray, R. J. Kemp, G. E. Kerr, S. Li, K. Link, A. McKenna, P. McLean, H. S. Mo, M. Patel, P. K. Park, J. Peebles, J. Rhee, Y. J. Sorokovikova, A. Tikhonchuk, V. T. Volpe, L. Wei, M. Santos, J. J. TI Enhanced Relativistic-Electron-Beam Energy Loss in Warm Dense Aluminum SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA; SIMULATION; IGNITION AB Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2 x 10(11) A/cm(2) (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass. C1 [Vaisseau, X.; Hulin, S.; Nicolai, Ph.; Vauzour, B.; Batani, D.; Tikhonchuk, V. T.; Volpe, L.; Santos, J. J.] Univ Bordeaux, CNRS, CEA, CELIA Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France. [Debayle, A.; Honrubia, J. J.] Univ Politecn Madrid, ETSI Aeronaut, Madrid, Spain. [Debayle, A.] CEA, DAM, DIF, F-91297 Arpajon, France. [Debayle, A.] Ecole Normale Super Cachan CMLA, LRC MESO, F-94235 Cachan, France. [Morace, A.; Sawada, H.; Beg, F. N.; Peebles, J.; Sorokovikova, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Davies, J. R.] Univ Rochester, Laser Energet Lab, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Fedosejevs, R.; Kerr, S.; Mo, M.] Univ Alberta, Dept Elect Engn, Edmonton, AB T6G 2G7, Canada. [Gray, R. J.; McKenna, P.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. [Kemp, G. E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Li, K.] Inst Super Tecn, Inst Plasmas & Fusao Nucl, GoLP, P-1049001 Lisbon, Portugal. [Link, A.; McLean, H. S.; Patel, P. K.; Park, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rhee, Y. J.] Korea Atom Energy Res Inst, Taejon 305600, South Korea. [Wei, M.] Gen Atom Co, San Diego, CA 92121 USA. RP Vaisseau, X (reprint author), Univ Bordeaux, CNRS, CEA, CELIA Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France. EM santos.joao@celia.u-bordeaux1.fr RI Patel, Pravesh/E-1400-2011; McKenna, Paul/B-9764-2009; Morace, Alessio/C-1048-2016; Sawada, Hiroshi/Q-8434-2016; OI McKenna, Paul/0000-0001-8061-7091; Morace, Alessio/0000-0001-8795-834X; Sawada, Hiroshi/0000-0002-7972-9894; Kerr, Shaun/0000-0003-4822-564X FU Conseil Regional d'Aquitaine [PETRA 2008 13 04 005]; French National Agency for Research (ANR) [TERRE ANR-2011-BS04-014]; Competitiveness Cluster Alpha - Route des Lasers [TERRE ANR-2011-BS04-014]; European Union's Horizon research and innovation program [633053]; Spanish Ministry of Education and Research [ENE2009-11668]; European Science Foundation SILMI program; GENCI-CINES [2011-056129, 2012-056129]; EPSRC [EP/J003832/1] FX We gratefully acknowledge the support of the Jupiter Laser Facility (LLNL) staff during the experimental run, and Alphanov for the laser cutting of the targets. This work was performed through funding from the Conseil Regional d'Aquitaine, Project PETRA 2008 13 04 005, and both the French National Agency for Research (ANR) and the Competitiveness Cluster Alpha - Route des Lasers, Project TERRE ANR-2011-BS04-014. The work was carried out in the framework of the Investments for the future Programme IdEx Bordeaux LAPHIA (ANR-10-IDEX-03-02) and of the EUROfusion Consortium, and has received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The numerical study was supported by Grant No. ENE2009-11668 of the Spanish Ministry of Education and Research and by the European Science Foundation SILMI program, and used HPC resources from CeSViMa and from GENCI-CINES (Grants No. 2011-056129 and No. 2012-056129). R. J. G. and P. M. were supported by EPSRC (Grant No. EP/J003832/1). NR 33 TC 6 Z9 6 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 4 PY 2015 VL 114 IS 9 AR 095004 DI 10.1103/PhysRevLett.114.095004 PG 6 WC Physics, Multidisciplinary SC Physics GA CD3KH UT WOS:000350976700014 PM 25793822 ER PT J AU Xiao, XC Zhou, WD Kim, YN Ryu, I Gu, M Wang, CM Liu, G Liu, ZY Gao, HJ AF Xiao, Xingcheng Zhou, Weidong Kim, Youngnam Ryu, Ill Gu, Meng Wang, Chongmin Liu, Gao Liu, Zhongyi Gao, Huajian TI Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID NANOSCALE BUILDING-BLOCKS; SI-C COMPOSITE; HIGH-CAPACITY; RECHARGEABLE BATTERIES; AMORPHOUS-SILICON; LITHIUM; ANODES; LITHIATION; NANOWIRES; NANOPARTICLES AB Si is an attractive negative electrode material for lithium ion batteries due to its high specific capacity (approximate to 3600 mAh g(-1)). However, the huge volume swelling and shrinking during cycling, which mimics a breathing effect at the material/electrode/cell level, leads to several coupled issues including fracture of Si particles, unstable solid electrolyte interphase, and low Coulombic efficiency. In this work, the regulation of the breathing effect is reported by using Si-C yolk-shell nanocomposite which has been well-developed by other researchers. The focus is on understanding how the nanoscaled materials design impacts the mechanical and electrochemical response at electrode level. For the first time, it is possible to observe one order of magnitude of reduction on breathing effect at the electrode level during cycling: the electrode thickness variation reduced down to 10%, comparing with 100% in the electrode with Si nanoparticles as active materials. The Si-C yolk-shell nanocomposite electrode exhibits excellent capacity retention and high cycle efficiency. In situ transmission electron microscopy and finite element simulations consistently reveals that the dramatically enhanced performance is associated with the regulated breathing of the Si in the new composite, therefore the suppression of the overall electrode expansion. C1 [Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam; Liu, Zhongyi] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA. [Ryu, Ill; Gao, Huajian] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Xiao, XC (reprint author), Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA. EM xingcheng.xiao@gm.com; Huajian_Gao@brown.edu RI Gu, Meng/B-8258-2013; Gao, Huajian/F-9360-2010 FU Vehicle Technologies Office of the U.S. Department of Energy [DE-AC02-05CH11231, 7056410]; Batteries for Advanced Transportation Technologies (BATT) Program; U.S. Department of Energy through DOE EPSCoR Implementation [DE-SC0007074]; GM/Brown CRL on Computational Materials Science; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research and located at PNNL FX All authors contributed equally to this work. The authors would like to thank Dr. Yue Qi, Dr. Qiangfeng Xiao, Dr. Mei Cai, Dr. Mark Verbrugge at GM R&D for valuable discussions. The authors also acknowledges the support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No 7056410 under the Batteries for Advanced Transportation Technologies (BATT) Program. I.R. and H.G. also acknowledge support by U.S. Department of Energy through DOE EPSCoR Implementation Grant No. DE-SC0007074 and the GM/Brown CRL on Computational Materials Science. M.G. and C.M.W. acknowledge the support of Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), which was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. NR 40 TC 25 Z9 25 U1 17 U2 148 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAR 4 PY 2015 VL 25 IS 9 BP 1426 EP 1433 DI 10.1002/adfm.201403629 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CC7IU UT WOS:000350541700012 ER PT J AU Bagge-Hansen, M Wood, BC Ogitsu, T Willey, TM Tran, IC Wittstock, A Biener, MM Merrill, MD Worsley, MA Otani, M Chuang, CH Prendergast, D Guo, JH Baumann, TF van Buuren, T Biener, J Lee, JRI AF Bagge-Hansen, Michael Wood, Brandon C. Ogitsu, Tadashi Willey, Trevor M. Tran, Ich C. Wittstock, Arne Biener, Monika M. Merrill, Matthew D. Worsley, Marcus A. Otani, Minoru Chuang, Cheng-Hao Prendergast, David Guo, Jinghua Baumann, Theodore F. van Buuren, Tony Biener, Juergen Lee, Jonathan R. I. TI Potential-Induced Electronic Structure Changes in Supercapacitor Electrodes Observed by In Operando Soft X-Ray Spectroscopy SO ADVANCED MATERIALS LA English DT Article ID ABSORPTION FINE-STRUCTURE; ELECTROCHEMICAL CAPACITORS; QUANTUM CAPACITANCE; SUBNANOMETER PORES; UNDULATOR BEAMLINE; CARBON ELECTRODES; LIQUID INTERFACES; IN-SITU; GRAPHENE; GAS AB The dynamic physiochemical response of a functioning graphene-based aerogel supercapacitor is monitored in operando by soft X-ray spectroscopy and interpreted through ab initio atomistic simulations. Unanticipated changes in the electronic structure of the electrode as a function of applied voltage bias indicate structural modifications across multiple length scales via independent pseudocapacitive and electric double layer charge storage channels. C1 [Bagge-Hansen, Michael; Wood, Brandon C.; Ogitsu, Tadashi; Willey, Trevor M.; Tran, Ich C.; Wittstock, Arne; Biener, Monika M.; Merrill, Matthew D.; Worsley, Marcus A.; Baumann, Theodore F.; van Buuren, Tony; Biener, Juergen; Lee, Jonathan R. I.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Otani, Minoru] Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, Tsukuba, Ibaraki, Japan. [Chuang, Cheng-Hao; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Lee, JRI (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM lee204@llnl.gov RI Tran, Ich/C-9869-2014; Foundry, Molecular/G-9968-2014; Willey, Trevor/A-8778-2011; OI Willey, Trevor/0000-0002-9667-8830; Worsley, Marcus/0000-0002-8012-7727 FU U.S. DoE by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; LDRD Program at LLNL [10-LW-045, 12-ERD-035]; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DoE [DE-AC02-05CH11231]; Japan-U.S. Cooperation Project for Research and Standardization of Clean Energy Technologies; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and funded by the LDRD Program at LLNL under project tracking codes 10-LW-045 and 12-ERD-035. Portions of this research were performed on beamlines 7.0.1.1 and 8.0.1.3 at the Advanced Light Source and the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DoE under Contract DE-AC02-05CH11231. B.C.W., T.O., and M.O. acknowledge support from the Japan-U.S. Cooperation Project for Research and Standardization of Clean Energy Technologies. T.v.B. acknowledges support from the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 49 TC 7 Z9 7 U1 18 U2 148 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD MAR 4 PY 2015 VL 27 IS 9 BP 1512 EP + DI 10.1002/adma.201403680 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CC7IO UT WOS:000350541100003 PM 25503328 ER PT J AU Yeom, C Chen, K Kiriya, D Yu, ZB Cho, G Javey, A AF Yeom, Chiseon Chen, Kevin Kiriya, Daisuke Yu, Zhibin Cho, Gyoujin Javey, Ali TI Large-Area Compliant Tactile Sensors Using Printed Carbon Nanotube Active-Matrix Backplanes SO ADVANCED MATERIALS LA English DT Article ID THIN-FILM TRANSISTORS; ORGANIC TRANSISTORS; ARTIFICIAL SKIN; NANOWIRE ARRAYS; ELECTRONIC SKIN; PLASTIC FOILS; LOW-VOLTAGE; PRESSURE; POLYMER; CIRCUITS AB A 20 x 20 pixel pressure sensor array based on a printed active-matrix single-wall carbon-nanotube thin-film transistor backplane is presented. Using a gravure printing process that is compatible with fully printed large-area roll-to-roll processing, a 97% device yield is obtained on the 400-transistor backplane. As a proof of concept, pressure sensors are integrated to map the applied tactile pressure across the array. C1 [Yeom, Chiseon; Cho, Gyoujin] Sunchon Natl Univ, World Class Univ Program, Sunchon 540742, Jeonnam, South Korea. [Chen, Kevin; Kiriya, Daisuke; Yu, Zhibin; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Chen, Kevin; Kiriya, Daisuke; Yu, Zhibin; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cho, G (reprint author), Sunchon Natl Univ, World Class Univ Program, Sunchon 540742, Jeonnam, South Korea. EM gcho@sunchon.ac.kr; ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013 FU NSF NASCENT Center; World Class University program; BK Plus 21 at Sunchon National University FX C.Y. and K.C. contributed equally to this work. This work was supported by the NSF NASCENT Center. A.J. and G.C. acknowledge support from the World Class University program and BK Plus 21 at Sunchon National University. NR 36 TC 25 Z9 25 U1 11 U2 87 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD MAR 4 PY 2015 VL 27 IS 9 BP 1561 EP + DI 10.1002/adma.201404850 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CC7IO UT WOS:000350541100010 PM 25640804 ER PT J AU Sirica, N Bondino, F Nappini, S Pis, I Poudel, L Christianson, AD Mandrus, D Singh, DJ Mannella, N AF Sirica, N. Bondino, F. Nappini, S. Pis, I. Poudel, L. Christianson, A. D. Mandrus, D. Singh, D. J. Mannella, N. TI Spectroscopic evidence for strong quantum spin fluctuations with itinerant character in YFe2Ge2 SO PHYSICAL REVIEW B LA English DT Article ID IRON PNICTIDES; SUPERCONDUCTIVITY; ANTIFERROMAGNETISM; TEMPERATURE; FE; FERROMAGNETISM; SILICIDES; LUFE2GE2; SYSTEMS; XPS AB We report x-ray absorption and photoemission spectroscopy of the electronic structure in the normal state of metallic YFe2Ge2. The data reveal evidence for large fluctuating spin moments on the Fe sites, as indicated by exchange multiplets appearing in the Fe 3s core-level photoemission spectra, even though the compound does not show magnetic order. The magnitude of the multiplet splitting is comparable to that observed in the normal state of the Fe-pnictide superconductors. This shows a connection between YFe2Ge2 and the Fe-based superconductors even though it contains neither pnictogens nor chalcogens. The implication is that the chemical range of compounds showing at least one of the characteristic magnetic signatures of the Fe-based superconductors is broader than previously thought. C1 [Sirica, N.; Poudel, L.; Christianson, A. D.; Mannella, N.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bondino, F.; Nappini, S.; Pis, I.] IOM CNR, I-34149 Basovizza, TS, Italy. [Pis, I.] Elettra Sincrotrone Trieste SCpA, I-34149 Basovizza, TS, Italy. [Poudel, L.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, D.; Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sirica, N (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM nmannell@utk.edu RI christianson, andrew/A-3277-2016; OI christianson, andrew/0000-0003-3369-5884; Nappini, Silvia/0000-0002-4944-5487; Bondino, Federica/0000-0001-6505-9319 FU National Science Foundation, Division of Material Research [DMR-1151687]; scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE); US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the National Science Foundation, Division of Material Research, Grant No. DMR-1151687 (N.M.). A.D.C. and L.P. are supported by the scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE). D.M. and D.J.S. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 49 TC 7 Z9 7 U1 9 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR 4 PY 2015 VL 91 IS 12 AR 121102 DI 10.1103/PhysRevB.91.121102 PG 5 WC Physics, Condensed Matter SC Physics GA CC8DM UT WOS:000350598300001 ER PT J AU Urciuoli, GM Cusanno, F Marrone, S Acha, A Ambrozewicz, P Aniol, KA Baturin, P Bertin, PY Benaoum, H Blomqvist, KI Boeglin, WU Breuer, H Brindza, P Bydzovsky, P Camsonne, A Chang, CC Chen, JP Choi, S Chudakov, EA Cisbani, E Colilli, S Coman, L Craver, BJ De Cataldo, G de Jager, CW De Leo, R Deur, AP Ferdi, C Feuerbach, RJ Folts, E Fratoni, R Frullani, S Garibaldi, F Gayou, O Giuliani, F Gomez, J Gricia, M Hansen, JO Hayes, D Higinbotham, DW Holmstrom, TK Hyde, CE Ibrahim, HF Iodice, M Jiang, X Kaufman, LJ Kino, K Kross, B Lagamba, L LeRose, JJ Lindgren, RA Lucentini, M Margaziotis, DJ Markowitz, P Meziani, ZE McCormick, K Michaels, RW Millener, DJ Miyoshi, T Moffit, B Monaghan, PA Moteabbed, M Camacho, CM Nanda, S Nappi, E Nelyubin, VV Norum, BE Okasyasu, Y Paschke, KD Perdrisat, CF Piasetzky, E Punjabi, VA Qiang, Y Reimer, PE Reinhold, J Reitz, B Roche, RE Rodriguez, VM Saha, A Santavenere, F Sarty, AJ Segal, J Shahinyan, A Singh, J Sirca, S Snyder, R Solvignon, PH Sotona, M Subedi, R Sulkosky, VA Suzuki, T Ueno, H Ulmer, PE Veneroni, P Voutier, E Wojtsekhowski, BB Zheng, X Zorn, C AF Urciuoli, G. M. Cusanno, F. Marrone, S. Acha, A. Ambrozewicz, P. Aniol, K. A. Baturin, P. Bertin, P. Y. Benaoum, H. Blomqvist, K. I. Boeglin, W. U. Breuer, H. Brindza, P. Bydzovsky, P. Camsonne, A. Chang, C. C. Chen, J. -P. Choi, Seonho Chudakov, E. A. Cisbani, E. Colilli, S. Coman, L. Craver, B. J. De Cataldo, G. de Jager, C. W. De Leo, R. Deur, A. P. Ferdi, C. Feuerbach, R. J. Folts, E. Fratoni, R. Frullani, S. Garibaldi, F. Gayou, O. Giuliani, F. Gomez, J. Gricia, M. Hansen, J. O. Hayes, D. Higinbotham, D. W. Holmstrom, T. K. Hyde, C. E. Ibrahim, H. F. Iodice, M. Jiang, X. Kaufman, L. J. Kino, K. Kross, B. Lagamba, L. LeRose, J. J. Lindgren, R. A. Lucentini, M. Margaziotis, D. J. Markowitz, P. Meziani, Z. E. McCormick, K. Michaels, R. W. Millener, D. J. Miyoshi, T. Moffit, B. Monaghan, P. A. Moteabbed, M. Camacho, C. Munoz Nanda, S. Nappi, E. Nelyubin, V. V. Norum, B. E. Okasyasu, Y. Paschke, K. D. Perdrisat, C. F. Piasetzky, E. Punjabi, V. A. Qiang, Y. Reimer, P. E. Reinhold, J. Reitz, B. Roche, R. E. Rodriguez, V. M. Saha, A. Santavenere, F. Sarty, A. J. Segal, J. Shahinyan, A. Singh, J. Sirca, S. Snyder, R. Solvignon, P. H. Sotona, M. Subedi, R. Sulkosky, V. A. Suzuki, T. Ueno, H. Ulmer, P. E. Veneroni, P. Voutier, E. Wojtsekhowski, B. B. Zheng, X. Zorn, C. CA Jefferson Lab Hall A Collaboration TI Spectroscopy of Li-9(Lambda) by electroproduction SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY SPECTROSCOPY; PROTON RECOIL TELESCOPE; HALL-A SPECTROMETERS; P-SHELL HYPERNUCLEI; JEFFERSON-LAB; LIGHT HYPERNUCLEI; RICH DETECTOR; KAON PHYSICS; JLAB HALL; 1P SHELL AB Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei provides information on the details of the effective hyperon-nucleon interaction. Purpose: To obtain a high-resolution binding-energy spectrum for the Be-9(e, e' K+) Li-9(Lambda) reaction. Method: Electroproduction of the hypernucleus Li-9(Lambda) has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a Be-9 target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a ring imaging Cherenkov detector were added to the Hall A standard equipment. Results: The cross section to low-lying states of Li-9(Lambda) is concentrated within 3 MeV of the ground state and can be fit with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. The Lambda separation energy, B-Lambda, of 8.36 +/- 0.08 (stat.) +/- 0.08 (syst.) MeV was measured, in agreement with an earlier experiment. C1 [Urciuoli, G. M.; Cusanno, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Marrone, S.; De Cataldo, G.; De Leo, R.; Lagamba, L.; Nappi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Marrone, S.; De Cataldo, G.; De Leo, R.; Lagamba, L.; Nappi, E.] Univ Bari, I-70126 Bari, Italy. [Acha, A.; Ambrozewicz, P.; Baturin, P.; Boeglin, W. U.; Coman, L.; Markowitz, P.; Moteabbed, M.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Aniol, K. A.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Bertin, P. Y.; Camsonne, A.; Ferdi, C.; Hyde, C. E.] Univ Clermont Ferrand, IN2P3, F-63177 Aubiere, France. [Benaoum, H.] Univ Sharjah, Dept Appl Phys, Sharjah, U Arab Emirates. [Blomqvist, K. I.] Johannes Gutenberg Univ Mainz, D-55122 Mainz, Germany. [Breuer, H.; Chang, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Brindza, P.; Chen, J. -P.; Chudakov, E. A.; de Jager, C. W.; Feuerbach, R. J.; Folts, E.; Gomez, J.; Hansen, J. O.; Higinbotham, D. W.; Kross, B.; LeRose, J. J.; Michaels, R. W.; Nanda, S.; Reitz, B.; Saha, A.; Segal, J.; Wojtsekhowski, B. B.; Zorn, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Bydzovsky, P.; Sotona, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Choi, Seonho; Meziani, Z. E.; Solvignon, P. H.] Temple Univ, Philadelphia, PA 19122 USA. [Cisbani, E.; Colilli, S.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Veneroni, P.] Ist Nazl Fis Nucl, Sez Roma, Grp Collegato Sanita, I-00161 Rome, Italy. [Cisbani, E.; Colilli, S.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Veneroni, P.] Ist Super Sanita, I-00161 Rome, Italy. [Craver, B. J.; de Jager, C. W.; Deur, A. P.; Lindgren, R. A.; Nelyubin, V. V.; Norum, B. E.; Singh, J.; Snyder, R.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Gayou, O.; Monaghan, P. A.; Qiang, Y.] MIT, Cambridge, MA 02139 USA. [Hayes, D.; Hyde, C. E.; Ibrahim, H. F.; Ulmer, P. E.] Old Dominion Univ, Norfolk, VA 23508 USA. [Holmstrom, T. K.; Moffit, B.; Perdrisat, C. F.; Sulkosky, V. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Ibrahim, H. F.] Cairo Univ, Dept Phys, Giza 12613, Egypt. [Iodice, M.] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy. [Jiang, X.; McCormick, K.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Kaufman, L. J.; Paschke, K. D.] Univ Massachusetts, Amherst, MA 01003 USA. [Kino, K.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Millener, D. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Miyoshi, T.; Okasyasu, Y.; Suzuki, T.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Camacho, C. Munoz] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Piasetzky, E.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Punjabi, V. A.] Norfolk State Univ, Norfolk, VA 23504 USA. [Reimer, P. E.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Roche, R. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Rodriguez, V. M.] Univ Houston, Houston, TX 77204 USA. [Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Subedi, R.] Kent State Univ, Kent, OH 44242 USA. [Ueno, H.] Yamagata Univ, Yamagata 9908560, Japan. [Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, F-38026 Grenoble, France. RP Urciuoli, GM (reprint author), Ist Nazl Fis Nucl, Sez Roma, Piazzale A Moro 2, I-00185 Rome, Italy. RI Bydzovsky, Petr/G-8600-2014; Cisbani, Evaristo/C-9249-2011; OI Cisbani, Evaristo/0000-0002-6774-8473; Hyde, Charles/0000-0001-7282-8120 FU U.S. DOE [DE-AC05-06OR23177]; Grant Agency of the Czech Republic [P203/12/2126] FX We want to remember F. Cusanno, who enthusiastically and greatly contributed to this paper before his untimely death. We acknowledge the Jefferson Lab Physics and Accelerator Division staff for the outstanding efforts that made this work possible. This material is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 by the Italian Istituto Nazionale di Fisica Nucleare, by the Grant Agency of the Czech Republic under Grant No. P203/12/2126, and by the French CEA and CNRS/IN2P3. NR 36 TC 5 Z9 5 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR 4 PY 2015 VL 91 IS 3 AR 034308 DI 10.1103/PhysRevC.91.034308 PG 12 WC Physics, Nuclear SC Physics GA CC8DQ UT WOS:000350598700001 ER PT J AU Liu, J Petri, A Haiman, Z Hui, L Kratochvil, JM May, M AF Liu, Jia Petri, Andrea Haiman, Zoltan Hui, Lam Kratochvil, Jan M. May, Morgan TI Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data SO PHYSICAL REVIEW D LA English DT Article ID COSMIC SHEAR; 3-POINT CORRELATIONS; PRECISION EMULATION; NON-GAUSSIANITY; CLUSTER COUNTS; NUMBER COUNTS; DARK-MATTER; STATISTICS; TELESCOPE; TOMOGRAPHY AB Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg(2) CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models covering broad ranges of the three parameters Omega(m), sigma(8), and w, and replicating the Galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of <= 5%, and compute the likelihood in the three-dimensional parameter space (Omega(m), sigma(8), w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error "banana" in the (Omega(m), sigma(8)) plane reduces by a factor of approximate to 2, compared to using the power spectrum alone. For a flat. cold dark matter model, combining both statistics, we obtain the constraint sigma(8)(Omega(m)/0.27)(0.63) = 0.85(-0.03)(+0.03). C1 [Liu, Jia; Haiman, Zoltan] Columbia Univ, Dept Astron & Astrophys, New York, NY 10027 USA. [Petri, Andrea; Hui, Lam] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Haiman, Zoltan; Hui, Lam] Columbia Univ, Inst Strings Cosmol & Astroparticle Phys, New York, NY 10027 USA. [Kratochvil, Jan M.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [May, Morgan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Liu, J (reprint author), Columbia Univ, Dept Astron & Astrophys, New York, NY 10027 USA. EM jia@astro.columbia.edu; apetri@phys.columbia.edu; zoltan@astro.columbia.edu; lhui@astro.columbia.edu; kratochvilj@ukzn.ac.za; may@bnl.gov OI Liu, Jia/0000-0001-8219-1995 FU State of New York; U.S. Department of Energy [DE-AC02-98CH10886, DE-SC0012704]; NSF [AST-1210877]; Research Opportunities and Approaches to Data Science (ROADS) program at the Institute for Data Sciences and Engineering at Columbia University; [ACI-1053575] FX We thank Ludovic Van Waerbeke and Hendrik Hildebrandt for useful discussions. Simulations for this work were performed at the National Science Foundation (NSF) Extreme Science and Engineering Discovery Environment (XSEDE), supported by Grant No. ACI-1053575, and at the New York Center for Computational Sciences, a cooperative effort between Brookhaven National Laboratory and Stony Brook University, supported in part by the State of New York. This work was supported in part by the U.S. Department of Energy under Contracts No. DE-AC02-98CH10886 and No. DE-SC0012704, and by the NSF Grant No. AST-1210877 (to Z. H.) and by the Research Opportunities and Approaches to Data Science (ROADS) program at the Institute for Data Sciences and Engineering at Columbia University. NR 63 TC 21 Z9 21 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 4 PY 2015 VL 91 IS 6 AR 063507 DI 10.1103/PhysRevD.91.063507 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC8EX UT WOS:000350602000002 ER PT J AU Saito, T Ishikawa, A Yamamoto, H Abdesselam, A Adachi, I Aihara, H Al Said, S Arinstein, K Asner, DM Aushev, T Ayad, R Bakich, AM Bansal, V Bhuyan, B Bobrov, A Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Cervenkov, D Chen, A Cheon, BG Chilikin, K Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Danilov, M Dingfelder, J Dolezal, Z Drasal, Z Drutskoy, A Eidelman, S Farhat, H Fast, JE Ferber, T Gaur, V Gabyshev, N Ganguly, S Garmash, A Getzkow, D Gillard, R Goh, YM Golob, B Haba, J Hara, T Hasenbusch, J Hayasaka, K Hayashii, H He, XH Higuchi, T Horiguchi, T Hou, WS Hyun, HJ Iijima, T Inami, K Itoh, R Iwasaki, Y Jaegle, I Joffe, D Julius, T Kang, KH Kato, E Kawasaki, T Kichimi, H Kiesling, C Kim, DY Kim, HJ Kim, JB Kim, JH Kim, MJ Kim, SH Kim, YJ Kinoshita, K Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kronenbitter, B Kuhr, T Kwon, YJ Lange, JS Lee, IS Li, Y Gioi, LL Libby, J Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moll, A Mori, T Mussa, R Nakano, E Nakao, M Nakazawa, H Nanut, T Natkaniec, Z Nisar, NK Nishida, S Ogawa, S Okuno, S Olsen, SL Oswald, C Pakhlov, P Pakhlova, G Park, CW Park, H Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Ribezl, E Ritter, M Rostomyan, A Ryu, S Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Schwartz, AJ Senyo, K Seon, O Sevior, ME Shebalin, V Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Solovieva, E Staric, M Steder, M Sumiyoshi, T Tamponi, U Tatishvili, G Teramoto, Y Trabelsi, K Uchida, M Uglov, T Unno, Y Uno, S Urquijo, P Ushiroda, Y Usov, Y Van Hulse, C Vanhoefer, P Varner, G Vinokurova, A Vorobyev, V Vossen, A Wagner, MN Wang, CH Wang, P Wang, XL Watanabe, M Watanabe, Y Williams, KM Won, E Yamaoka, J Yashchenko, S Yook, Y Yusa, Y Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Saito, T. Ishikawa, A. Yamamoto, H. Abdesselam, A. Adachi, I. Aihara, H. Al Said, S. Arinstein, K. Asner, D. M. Aushev, T. Ayad, R. Bakich, A. M. Bansal, V. Bhuyan, B. Bobrov, A. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Cervenkov, D. Chen, A. Cheon, B. G. Chilikin, K. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dingfelder, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Eidelman, S. Farhat, H. Fast, J. E. Ferber, T. Gaur, V. Gabyshev, N. Ganguly, S. Garmash, A. Getzkow, D. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hara, T. Hasenbusch, J. Hayasaka, K. Hayashii, H. He, X. H. Higuchi, T. Horiguchi, T. Hou, W. -S. Hyun, H. J. Iijima, T. Inami, K. Itoh, R. Iwasaki, Y. Jaegle, I. Joffe, D. Julius, T. Kang, K. H. Kato, E. Kawasaki, T. Kichimi, H. Kiesling, C. Kim, D. Y. Kim, H. J. Kim, J. B. Kim, J. H. Kim, M. J. Kim, S. H. Kim, Y. J. Kinoshita, K. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kronenbitter, B. Kuhr, T. Kwon, Y. -J. Lange, J. S. Lee, I. S. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Mori, T. Mussa, R. Nakano, E. Nakao, M. Nakazawa, H. Nanut, T. Natkaniec, Z. Nisar, N. K. Nishida, S. Ogawa, S. Okuno, S. Olsen, S. L. Oswald, C. Pakhlov, P. Pakhlova, G. Park, C. W. Park, H. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Ribezl, E. Ritter, M. Rostomyan, A. Ryu, S. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Schwartz, A. J. Senyo, K. Seon, O. Sevior, M. E. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Solovieva, E. Staric, M. Steder, M. Sumiyoshi, T. Tamponi, U. Tatishvili, G. Teramoto, Y. Trabelsi, K. Uchida, M. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Ushiroda, Y. Usov, Y. Van Hulse, C. Vanhoefer, P. Varner, G. Vinokurova, A. Vorobyev, V. Vossen, A. Wagner, M. N. Wang, C. H. Wang, P. Wang, X. L. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yamaoka, J. Yashchenko, S. Yook, Y. Yusa, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA Belle Collaboration TI Measurement of the (B)over-bar -> X-s gamma branching fraction with a sum of exclusive decays SO PHYSICAL REVIEW D LA English DT Article ID BELLE DETECTOR AB We use 772 x 10(6) B (B) over bar meson pairs collected at the gamma(4S) resonance with the Belle detector to measure the branching fraction for (B) over bar -> X-s gamma Our measurement uses a sum-of-exclusives approach in which 38 of the hadronic final states with strangeness equal to +1, denoted by X-s, are reconstructed. The inclusive branching fraction for M-Xs < 2.8 GeV/c(2), which corresponds to a minimum photon energy of 1.9 GeV, is measured to be B(<(B)over bar> -> X-s gamma) = (3.51 +/- 0.17 +/- 0.33) x 10(-4), where the first uncertainty is statistical and the second is systematic. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Dingfelder, J.; Hasenbusch, J.; Oswald, C.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Arinstein, K.; Bobrov, A.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Arinstein, K.; Bobrov, A.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kinoshita, K.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] Deutsch Elekt Synchrotron, D-22607 Hamburg, Germany. [Getzkow, D.; Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uno, S.; Ushiroda, Y.] Grad Univ Adv Studies, Hayama 2400193, Japan. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Kichimi, H.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uno, S.; Ushiroda, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.] Ind Technol Inst Guwahati, Gauhati 781039, Assam, India. [Libby, J.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Vossen, A.] Indiana Univ, Bloomington, IN 47408 USA. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Nanut, T.; Pestotnik, R.; Petric, M.; Ribezl, E.; Santelj, L.; Zupanc, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Kronenbitter, B.; Kuhr, T.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Higuchi, T.] Univ Tokyo, Kavli Inst Phys & Math Univ, WPI, Kashiwa, Chiba 2778583, Japan. [Joffe, D.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Al Said, S.] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kang, K. H.; Kim, H. J.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, Maribor 2000, Slovenia. [Chobanova, V.; Dalseno, J.; Kiesling, C.; Gioi, L. Li; Moll, A.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Aushev, T.; Uglov, T.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Iijima, T.; Inami, K.; Mori, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.; Nakazawa, H.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Shiu, J. -G.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Kawasaki, T.; Miyata, H.; Watanabe, M.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Bansal, V.; Fast, J. E.; Tatishvili, G.; Yamaoka, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Olsen, S. L.; Ryu, S.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdesselam, A.; Al Said, S.; Ayad, R.] Univ Tabuk, Fac Sci, Dept Phys, Tabuk 71451, Saudi Arabia. [Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Saito, T.; Ishikawa, A.; Yamamoto, H.; Horiguchi, T.; Kato, E.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Piilonen, L. E.; Wang, X. L.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Saito, T (reprint author), Tohoku Univ, Sendai, Miyagi 9808578, Japan. RI Solovieva, Elena/B-2449-2014; Faculty of, Sciences, KAU/E-7305-2017; Aihara, Hiroaki/F-3854-2010; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; EPFL, Physics/O-6514-2016; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Cervenkov, Daniel/D-2884-2017 OI Solovieva, Elena/0000-0002-5735-4059; Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Cervenkov, Daniel/0000-0002-1865-741X FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan,; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Austrian Science Fund [P 22742-N16, P 26794-N20]; National Natural Science Foundation of China [10575109, 10775142, 10825524, 10875115, 10935008, 11175187]; Ministry of Education, Youth and Sports of the Czech Republic [LG14034]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; the National Research Foundation of Korea [2011-0029457, 2012-0008143, 2012R1A1A2008330, 2013R1A1A3007772, 2014R1A2A2A01005286]; BRL program under NRF Grants [KRF-20110020333, KRF-2011-0021196]; Center for Korean J-PARC Users [NRF-2013K1A3A7A06056592]; BK21 Plus program; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education and the National Science Center; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); UPV/EHU under program [UFI 11/55]; Swiss National Science Foundation; National Science Council and the Ministry of Education of Taiwan; U.S. Department of Energy and the National Science Foundation; MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"); JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics") FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grants No. P 22742-N16 and No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10825524, No. 10875115, No. 10935008 and No. 11175187; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the National Research Foundation of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2014R1A1A2006456; the BRL program under NRF Grants No. KRF-20110020333, No. KRF-2011-0021196, Center for Korean J-PARC Users, No. NRF-2013K1A3A7A06056592; the BK21 Plus program and the GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics") and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). NR 22 TC 8 Z9 8 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 4 PY 2015 VL 91 IS 5 AR UNSP 052004 DI 10.1103/PhysRevD.91.052004 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC8EP UT WOS:000350601200001 ER PT J AU Wan, JY Bao, WZ Liu, Y Dai, JQ Shen, F Zhou, LH Cai, XH Urban, D Li, YY Jungjohann, K Fuhrer, MS Hu, LB AF Wan, Jiayu Bao, Wenzhong Liu, Yang Dai, Jiaqi Shen, Fei Zhou, Lihui Cai, Xinghan Urban, Daniel Li, Yuanyuan Jungjohann, Katherine Fuhrer, Michael S. Hu, Liangbing TI In Situ Investigations of Li-MoS2 with Planar Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article DE in situ transmission electron microscopy; in situ transport; microbatteries; MoS2 nanoflakes; rapid lithiation ID LITHIUM-ION BATTERIES; TRANSMISSION ELECTRON-MICROSCOPY; ELECTROCHEMICAL LITHIATION; VALLEY POLARIZATION; MOS2 NANOSHEETS; PHASE EVOLUTION; MONOLAYER MOS2; ANODE MATERIAL; GRAPHENE; PHOTOLUMINESCENCE C1 [Wan, Jiayu; Bao, Wenzhong; Dai, Jiaqi; Shen, Fei; Zhou, Lihui; Urban, Daniel; Li, Yuanyuan; Jungjohann, Katherine; Hu, Liangbing] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Bao, Wenzhong; Cai, Xinghan; Fuhrer, Michael S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Liu, Yang; Jungjohann, Katherine] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. [Fuhrer, Michael S.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. RP Fuhrer, MS (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM michael.fuhrer@monash.edu; binghu@umd.edu RI Fuhrer, Michael/E-7634-2010 OI Fuhrer, Michael/0000-0001-6183-2773 FU University of Maryland, College Park; U.S. ONR MURI program; Maryland Nanocenter, Fablab; Maryland Nanocenter, Nisplab; ARC Laureate Fellowship; Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX J.W., W.B., and Y.L. contributed equally to this work. L.H. acknowledges the startup support from University of Maryland, College Park. The work is also supported by the U.S. ONR MURI program. The authors acknowledge the support of the Maryland Nanocenter and its Fablab and its Nisplab. M.S.F. acknowledges support from an ARC Laureate Fellowship. The work was performed in part with the TEM capability supported by the Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 16 Z9 16 U1 18 U2 120 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD MAR 4 PY 2015 VL 5 IS 5 AR 1401742 DI 10.1002/aenm.201401742 PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CD0IP UT WOS:000350754800017 ER PT J AU Wood, SA Almaraz, M Bradford, MA McGuire, KL Naeem, S Neill, C Palm, CA Tully, KL Zhou, J AF Wood, Stephen A. Almaraz, Maya Bradford, Marka A. McGuire, Krista L. Naeem, Shahid Neill, Christopher Palm, Cheryl A. Tully, Katherine L. Zhou, Jizhong TI Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE carbon mineralization; denitrification; fertilization; GeoChip; microbial diversity; smallholder agriculture; tropics ID WESTERN KENYA; COMMUNITY; ECOSYSTEMS; RESPONSES; DRIVERS; LEGUMES; GEOCHIP AB Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. C1 [Wood, Stephen A.; McGuire, Krista L.; Naeem, Shahid] Columbia Univ, Dept Ecol Evolut &Environm Biol, New York, NY 10027 USA. [Wood, Stephen A.; Palm, Cheryl A.; Tully, Katherine L.] Columbia Univ, Inst Earth, Agr and Food Secur Ctr, New York, NY 10027 USA. [Almaraz, Maya; Neill, Christopher] Brown Univ, Dept Ecol Evolut & Biol, Providence, RI 02912 USA. [Bradford, Marka A.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT USA. [McGuire, Krista L.] Columbia Univ Barnard Coll, Dept Biol, New York, NY 10027 USA. [Neill, Christopher] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. [Tully, Katherine L.] Univ Maryland, Dept Plant Sci & Landsscape Architecture, College Pk, MD USA. [Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Mol Biol, Norman, OK USA. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. RP Wood, SA (reprint author), Columbia Univ, Dept Ecol Evolut & Envionm Biol, Schermerhorn Extens, 10th Floor,1200 Amsterdam Ave, New York, NY 10027 USA. EM saw2177@columbia.edu RI Bradford, Mark/G-3850-2012; Wood, Stephen/A-1928-2017; OI Bradford, Mark/0000-0002-2022-8331; Wood, Stephen/0000-0002-9551-8165; Tully, Katherine/0000-0002-6190-2679 FU NSF PIRE [OISE-0968211]; Office of the Vice President for Research at the University of Oklahoma; NSF MacroSystems Biology program [EF-1065844] FX The authors would like to thank Wilson Ondiala, Steve Ogendo, and Anna Wade for help with field and lab work, Peter Groffman for support on lab methods, and Jack Gilbert for metagenomic sequencing. SAW, MA, CN, and CAP were supported by NSF PIRE grant OISE-0968211. GeoChip analysis was supported by the Office of the Vice President for Research at the University of Oklahoma and NSF MacroSystems Biology program EF-1065844 to JZ. Sample processing, sequencing and core amplicon data analysis were performed by the Earth Microbiome Project (www.earthmicrobiome.org); all amplicon and meta-data have been made public through the data portal (www.microbio.me/emp). NR 44 TC 5 Z9 5 U1 6 U2 64 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD MAR 4 PY 2015 VL 6 AR 90 DI 10.3389/fmicb.2015.00090 PG 10 WC Microbiology SC Microbiology GA CC8RR UT WOS:000350636400001 PM 25926815 ER PT J AU Yoo, HK Hyun, SI Moreschini, L Kim, HD Chang, YJ Sohn, CH Jeong, DW Sinn, S Kim, YS Bostwick, A Rotenberg, E Shim, JH Noh, TW AF Yoo, Hyang Keun Hyun, Seung Ill Moreschini, Luca Kim, Hyeong-Do Chang, Young Jun Sohn, Chang Hee Jeong, Da Woon Sinn, Soobin Kim, Yong Su Bostwick, Aaron Rotenberg, Eli Shim, Ji Hoon Noh, Tae Won TI Latent instabilities in metallic LaNiO3 films by strain control of Fermi-surface topology SO SCIENTIFIC REPORTS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; THIN-FILMS; INSULATOR-TRANSITION; RNIO3 R; PHOTOEMISSION; OXIDES; PHASES; GAP AB Strain control is one of the most promising avenues to search for new emergent phenomena in transition-metal-oxide films. Here, we investigate the strain-induced changes of electronic structures in strongly correlated LaNiO3 (LNO) films, using angle-resolved photoemission spectroscopy and the dynamical mean-field theory. The strongly renormalized e(g)-orbital bands are systematically rearranged by misfit strain to change its fermiology. As tensile strain increases, the hole pocket centered at the A point elongates along the kz-axis and seems to become open, thus changing Fermi-surface (FS) topology from three-to quasi-two-dimensional. Concomitantly, the FS shape becomes flattened to enhance FS nesting. A FS superstructure with Q(1) = (1/2,1/2,1/2) appears in all LNO films, while a tensile-strained LNO film has an additional Q(2) = (1/4,1/4,1/4) modulation, indicating that some instabilities are present in metallic LNO films. Charge disproportionation and spin-density-wave fluctuations observed in other nickelates might be their most probable origins. C1 [Yoo, Hyang Keun; Hyun, Seung Ill; Kim, Hyeong-Do; Sohn, Chang Hee; Jeong, Da Woon; Sinn, Soobin; Kim, Yong Su; Noh, Tae Won] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 151747, South Korea. [Yoo, Hyang Keun; Kim, Hyeong-Do; Sohn, Chang Hee; Jeong, Da Woon; Sinn, Soobin; Kim, Yong Su; Noh, Tae Won] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Hyun, Seung Ill; Shim, Ji Hoon] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. [Moreschini, Luca; Chang, Young Jun; Bostwick, Aaron; Rotenberg, Eli] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chang, Young Jun] Univ Seoul, Dept Phys, Seoul 130743, South Korea. [Shim, Ji Hoon] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 790784, South Korea. RP Kim, HD (reprint author), Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 151747, South Korea. EM hdkim6612@snu.ac.kr; yjchang@uos.ac.kr RI Rotenberg, Eli/B-3700-2009 OI Rotenberg, Eli/0000-0002-3979-8844 FU Nano Material Technology Development Program(Green Nano Technology Development Program) through the National Research Foundation of Korea(NRF) - Ministry of Education, Science and Technology [2011-0030146]; Swiss National Science Foundation (SNSF) [PBELP2-125484]; National Research Foundation of Korea [NRF-2014R1A1A1002868]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; [IBS-R009-D1] FX The authors are grateful to D.I. Khomskii for helpful discussion. This work was supported by IBS-R009-D1. J.H.S. was supported by Nano Material Technology Development Program(Green Nano Technology Development Program) through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0030146). L.M. acknowledges support by a grant from the Swiss National Science Foundation (SNSF) (project PBELP2-125484). Y.J.C. acknowledges support from National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The 9C Beamline at PLS is used for this study. NR 46 TC 14 Z9 14 U1 6 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 4 PY 2015 VL 5 AR 8746 DI 10.1038/srep08746 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC5CO UT WOS:000350375900019 PM 25735658 ER PT J AU Zhang, M Charles, R Tong, HM Zhang, L Patel, M Wang, F Rames, MJ Ren, A Rye, KA Qiu, XY Johns, DG Charles, MA Ren, G AF Zhang, Meng Charles, River Tong, Huimin Zhang, Lei Patel, Mili Wang, Francis Rames, Matthew J. Ren, Amy Rye, Kerry-Anne Qiu, Xiayang Johns, Douglas G. Charles, M. Arthur Ren, Gang TI HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation SO SCIENTIFIC REPORTS LA English DT Article ID ESTER TRANSFER PROTEIN; HIGH-DENSITY-LIPOPROTEINS; NEGATIVE-STAINING PROTOCOL; CORONARY-HEART-DISEASE; COARSE-GRAINED MODEL; CHOLESTERYL-ESTER; CRYOELECTRON MICROSCOPY; PHOSPHOLIPID-VESICLES; PLASMA-LIPOPROTEINS; HIGH-RISK AB Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL. C1 [Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Wang, Francis; Rames, Matthew J.; Ren, Amy; Ren, Gang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Patel, Mili; Rye, Kerry-Anne] Univ New S Wales, Ctr Vasc Res, Sydney, NSW 2052, Australia. [Qiu, Xiayang] Pfizer Inc, Groton, CT 06340 USA. [Johns, Douglas G.] Merck Res Labs, Rahway, NJ 07065 USA. [Charles, M. Arthur] Univ Calif San Francisco, Sch Med, San Francisco, CA 94115 USA. RP Ren, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM gren@lbl.gov RI Foundry, Molecular/G-9968-2014; Zhang, Lei/G-6427-2012 OI Zhang, Lei/0000-0002-4880-824X FU National Heart, Lung, And Blood Institute of the National Institutes of Health [R01HL115153]; Merck fund [LKRD105435]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Mr. Dongsheng Lei and Xing Zhang for discussion in MD simulation. This work was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health (no. R01HL115153) and Merck fund (No: LKRD105435). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 9 Z9 9 U1 2 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 4 PY 2015 VL 5 AR 8741 DI 10.1038/srep08741 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC5CO UT WOS:000350375900014 PM 25737239 ER PT J AU Charilaou, M Hellman, F AF Charilaou, M. Hellman, F. TI Surface-induced phenomena in uncompensated collinear antiferromagnets SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE antiferromagnet; surface; order parameter ID NONPERFECT SURFACES; MONTE-CARLO; ISING FILMS; EXTRAORDINARY; TRANSITIONS; ANISOTROPY; PERFECT AB The net spontaneous magnetization of antiferromagnets with modified surfaces was computed using mean-field theory. For ordinary phase transitions the net magnetization of uncompensated AFM is smaller than the surface magnetization and the Neel vector, whereas for extraordinary phase transitions the net magnetization is larger than the surface magnetization and the Neel vector at finite temperature. Moreover, the temperature dependence of these three observable internal parameters changes drastically with the surface properties, i.e. the surface exchange coupling J(S). Based on these findings, contour plots showing different regions of magnetization and Neel vector behavior as functions of temperature and surface exchange strength are proposed. C1 [Charilaou, M.; Hellman, F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Charilaou, M.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Charilaou, M (reprint author), Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland. EM charilaou@mat.ethz.ch OI Charilaou, Michalis/0000-0003-1072-1701 FU DOE BES DMSE [DE-AC02-05CH11231] FX We gratefully acknowledge funding from the magnetism program at LBNL, from DOE BES DMSE Contract DE-AC02-05CH11231. NR 28 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 4 PY 2015 VL 27 IS 8 AR 086001 DI 10.1088/0953-8984/27/8/086001 PG 7 WC Physics, Condensed Matter SC Physics GA CB4NT UT WOS:000349605300015 PM 25654427 ER PT J AU Quirinale, DG Rustan, GE Wilson, SR Kramer, MJ Goldman, AI Mendelev, MI AF Quirinale, D. G. Rustan, G. E. Wilson, S. R. Kramer, M. J. Goldman, A. I. Mendelev, M. I. TI Appearance of metastable B2 phase during solidification of Ni50Zr50 alloy: electrostatic levitation and molecular dynamics simulation studies SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE solidification; x-ray diffraction; molecular dynamics simulation ID CRYSTAL-NUCLEATION; LIQUID; INTERFACE; ANISOTROPY; SPHERES; MELTS AB High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni50Zr50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2-B33 transformation is proposed and investigated through further MD simulations. C1 [Quirinale, D. G.; Rustan, G. E.; Wilson, S. R.; Kramer, M. J.; Goldman, A. I.; Mendelev, M. I.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Quirinale, D. G.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Quirinale, DG (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM mendelev@ameslab.gov FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358]; NSF [DMR1308099] FX This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. GER's efforts were supported by the NSF under Grant DMR1308099. The authors wish to acknowledge the assistance of K F Kelton, Mark Johnson, Chris Pueblo, Matt Blodgett, Adam Voigt, Nick Mauro and Kevin Derendorf during the BESL measurement. NR 24 TC 2 Z9 2 U1 3 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 4 PY 2015 VL 27 IS 8 AR 085004 DI 10.1088/0953-8984/27/8/085004 PG 6 WC Physics, Condensed Matter SC Physics GA CB4NT UT WOS:000349605300007 PM 25650946 ER PT J AU You, JH Lee, JH Okamoto, S Cooper, V Lee, HN AF You, Jeong Ho Lee, Jun Hee Okamoto, Satoshi Cooper, Valentino Lee, Ho Nyung TI Strain effects on the electronic properties in delta-doped oxide superlattices SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE oxide superlattice; LTO/STO heterostructure; electronic reconstruction ID THERMOELECTRIC SEEBECK COEFFICIENT; AUGMENTED-WAVE METHOD; LAALO3/SRTIO3 INTERFACE; SUPERCONDUCTIVITY; COEXISTENCE; GAS AB Strain effects on the electronic properties of (LaTiO3)(1)/(SrTiO3)(N) superlattices were investigated using density functional theory. Under biaxial in-plane strain within the range of -5% <= epsilon(//) <= 5%, the d(xy) orbital electrons are highly localized at the interfaces whereas the d(yz) and d(xz) orbital electrons are more distributed in the SrTiO3 (STO) spacer layers. For STO thickness N >= 3 unit cells (u.c.), the dxy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent on the applied biaxial in-plane strain. As the in-plane strain changes from compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the d(xy) orbital, the d(yz) and d(xz) orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. Since the charge densities in the d(xy) orbital and the d(yz) and d(xz) orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain. C1 [You, Jeong Ho] So Methodist Univ, Dept Mech Engn, Dallas, TX 75275 USA. [Lee, Jun Hee; Okamoto, Satoshi; Cooper, Valentino; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP You, JH (reprint author), So Methodist Univ, Dept Mech Engn, Dallas, TX 75275 USA. EM jyou@smu.edu RI Okamoto, Satoshi/G-5390-2011; Cooper, Valentino /A-2070-2012; Lee, Ho Nyung/K-2820-2012 OI Okamoto, Satoshi/0000-0002-0493-7568; Cooper, Valentino /0000-0001-6714-4410; Lee, Ho Nyung/0000-0002-2180-3975 FU Semiconductor Research Corporation; U S Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division; Office of Science Early Career Research Program FX The research at SMU was supported by the Semiconductor Research Corporation (J H Y). Research at ORNL was sponsored by the U S Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (J H L, S O, V R C, H N L), the Scientific User Facilities Division (J H L) and the Office of Science Early Career Research Program (V R C). NR 40 TC 1 Z9 1 U1 2 U2 44 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAR 4 PY 2015 VL 48 IS 8 AR 085303 DI 10.1088/0022-3727/48/8/085303 PG 6 WC Physics, Applied SC Physics GA CB5NX UT WOS:000349675600007 ER PT J AU Rose, DV Madrid, EA Welch, DR Clark, RE Mostrom, CB Stygar, WA Cuneo, ME AF Rose, D. V. Madrid, E. A. Welch, D. R. Clark, R. E. Mostrom, C. B. Stygar, W. A. Cuneo, M. E. TI Computational analysis of current-loss mechanisms in a post-hole convolute driven by magnetically insulated transmission lines SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID PLASMA; SIMULATION; SYSTEM; DIODES; FLOW AB Numerical simulations of a vacuum post-hole convolute driven by magnetically insulated vacuum transmission lines (MITLs) are used to study current losses due to charged particle emission from the MITL-convolute-system electrodes. This work builds on the results of a previous study [E. A. Madrid et al. Phys. Rev. ST Accel. Beams 16, 120401 (2013)] and adds realistic power pulses, Ohmic heating of anode surfaces, and a model for the formation and evolution of cathode plasmas. The simulations suggest that modestly larger anode-cathode gaps in the MITLs upstream of the convolute result in significantly less current loss. In addition, longer pulse durations lead to somewhat greater current loss due to cathode-plasma expansion. These results can be applied to the design of future MITL-convolute systems for high-current pulsed-power systems. C1 [Rose, D. V.; Madrid, E. A.; Welch, D. R.; Clark, R. E.; Mostrom, C. B.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.; Cuneo, M. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rose, DV (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. EM David.Rose@vosssci.com FU Department of Energy through Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors are extremely grateful for the sustained support of this research by J. L. Porter, D. G. Flicker, M. C. Herrmann, D. O. Jobe, M. L. Keifer, J. S. Lash, K. R. LeChien, M. K. Matzen, L. X. Schneider, and R. F. Schneider. We acknowledge helpful discussions with M. R. Gomez, R. B. Campbell, D. B. Reisman, C. Thoma and J. Gansz. This work is supported by the Department of Energy through Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 37 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 4 PY 2015 VL 18 IS 3 AR 030402 DI 10.1103/PhysRevSTAB.18.030402 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DX9UZ UT WOS:000384743700001 ER PT J AU Goyal, A Phillpot, SR Subramanian, G Andersson, DA Stanek, CR Uberuaga, BP AF Goyal, Anuj Phillpot, Simon R. Subramanian, Gopinath Andersson, David A. Stanek, Chris R. Uberuaga, Blas P. TI Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; THERMAL BARRIER COATINGS; ELASTIC DIPOLE TENSOR; AUGMENTED-WAVE METHOD; POINT-DEFECTS; IONIC-CRYSTALS; SELF-DIFFUSION; MOLECULAR-DYNAMICS; DISLOCATION BIAS; CREEP-BEHAVIOR AB We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800-1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results suggest that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate. C1 [Goyal, Anuj; Phillpot, Simon R.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Subramanian, Gopinath] Univ So Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39402 USA. [Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Goyal, A (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM anuj.goyal@ufl.edu; blas@lanl.gov RI Albe, Karsten/F-1139-2011; OI Phillpot, Simon/0000-0002-7774-6535 FU Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP) [10-2258]; Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program FX A.G. is happy to acknowledge the Materials Science and Technology Division at Los Alamos National Laboratory for hospitality during this project. The work of A.G. and S.R.P. was supported by the Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP) 10-2258. This work is also funded by the Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. NR 89 TC 5 Z9 5 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR 3 PY 2015 VL 91 IS 9 AR 094103 DI 10.1103/PhysRevB.91.094103 PG 13 WC Physics, Condensed Matter SC Physics GA CC6SG UT WOS:000350497800001 ER PT J AU O'Brien, JT Williams, ER Holman, HYN AF O'Brien, Jeremy T. Williams, Evan R. Holman, Hoi-Ying N. TI Ambient Infrared Laser Ablation Mass Spectrometry (AIRLAB-MS) of Live Plant Tissue with Plume Capture by Continuous Flow Solvent Probe SO ANALYTICAL CHEMISTRY LA English DT Article ID DESORPTION ELECTROSPRAY-IONIZATION; ATMOSPHERIC-PRESSURE; LIQUID MICROJUNCTION; SMALL MOLECULES; SINGLE CELLS; LIVING CELLS; TOF-SIMS; SPECTROSCOPY; METABOLITES; PROTEINS AB A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is similar to 50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 x 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant. C1 [O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ecol Dept, Div Earth Sci, Berkeley, CA 94720 USA. [Williams, Evan R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Williams, ER (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ecol Dept, Div Earth Sci, Berkeley, CA 94720 USA. EM erw@berkeley.edu; hyholman@lbl.gov RI Holman, Hoi-Ying/N-8451-2014 OI Holman, Hoi-Ying/0000-0002-7534-2625 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DEAC02-05CH11231]; National Science Foundation [CHE-1306720] FX This work was performed under Berkeley Synchrotron Infrared Structural Biology (BSISB) Program funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contracts DEAC02-05CH11231. Generous financial support was also provided by the National Science Foundation (Grant CHE-1306720). NR 66 TC 7 Z9 7 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD MAR 3 PY 2015 VL 87 IS 5 BP 2631 EP 2638 DI 10.1021/ac503383p PG 8 WC Chemistry, Analytical SC Chemistry GA CC8IM UT WOS:000350611700020 PM 25622206 ER PT J AU Ridoutt, B Fantke, P Pfister, S Bare, J Boulay, AM Cherubini, F Frischknecht, R Hauschild, M Hellweg, S Henderson, A Jolliet, O Levasseur, A Margni, M McKone, T Michelsen, O Canals, LMI Page, G Pant, R Raugei, M Sala, S Saouter, E Verones, F Wiedmann, T AF Ridoutt, Bradley Fantke, Peter Pfister, Stephan Bare, Jane Boulay, Anne-Marie Cherubini, Francesco Frischknecht, Rolf Hauschild, Michael Hellweg, Stefanie Henderson, Andrew Jolliet, Olivier Levasseur, Annie Margni, Manuele McKone, Thomas Michelsen, Ottar Mila i Canals, Llorenc Page, Girija Pant, Rana Raugei, Marco Sala, Serenella Saouter, Erwan Verones, Francesca Wiedmann, Thomas TI Making Sense of the Minefield of Footprint Indicators SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Editorial Material C1 [Ridoutt, Bradley] CSIRO, Clayton, Vic 3169, Australia. [Fantke, Peter; Hauschild, Michael] Tech Univ Denmark, Dept Engn Management, Div Quantitat Sustainabil Assessment, DK-2800 Lyngby, Denmark. [Pfister, Stephan; Hellweg, Stefanie] ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland. [Bare, Jane] US EPA, Sustainable Technol Div, Syst Anal Branch, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Boulay, Anne-Marie; Levasseur, Annie; Margni, Manuele] Ecole Polytech, CIRAIG, Montreal, PQ H3C 3A7, Canada. [Cherubini, Francesco; Verones, Francesca] Norwegian Univ Sci & Technol NTNU, Ind Ecol Programme, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway. [Frischknecht, Rolf] Treeze Ltd, Uster, Switzerland. [Henderson, Andrew] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Div Epidemiol Human Genet & Environm Sci, Houston, TX 77030 USA. [Jolliet, Olivier] Univ Michigan, Sch Publ Hlth, Environm Hlth Sci, Ann Arbor, MI 48109 USA. [McKone, Thomas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McKone, Thomas] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Michelsen, Ottar] Norwegian Univ Sci & Technol NTNU, Div Finance & Property, NO-7491 Trondheim, Norway. [Mila i Canals, Llorenc] UNEP, Div Technol Ind & Econ, F-75009 Paris, France. [Page, Girija] Univ Western Sydney, Sch Sci & Hlth, Penrith, NSW 2751, Australia. [Pant, Rana; Sala, Serenella; Saouter, Erwan] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy. [Raugei, Marco] Oxford Brookes Univ, Dept Mech Engn & Math Sci, Oxford OX33 1HX, England. [Wiedmann, Thomas] UNSW Australia, Sustainabil Assessment Program, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia. RP Ridoutt, B (reprint author), CSIRO, Clayton, Vic 3169, Australia. EM brad.ridoutt@csiro.au RI QSA, DTU/J-4787-2014; Wiedmann, Thomas/C-9158-2011; Pfister, Stephan/B-1317-2011; Hauschild, Michael/G-4335-2011; Ridoutt, Bradley/D-3329-2011; Fantke, Peter/N-2704-2015; Raugei, Marco/N-4737-2015; OI Sala, Serenella/0000-0003-1919-9948; Wiedmann, Thomas/0000-0002-6395-8887; Pfister, Stephan/0000-0001-8984-2041; Ridoutt, Bradley/0000-0001-7352-0427; Fantke, Peter/0000-0001-7148-6982; Raugei, Marco/0000-0001-5026-8556; Hellweg, Stefanie/0000-0001-6376-9878 NR 5 TC 10 Z9 11 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 2601 EP 2603 DI 10.1021/acs.est.5b00163 PG 3 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100008 PM 25675252 ER PT J AU Snow, MS Snyder, DC Clark, SB Kelley, M Delmore, JE AF Snow, Mathew S. Snyder, Darin C. Clark, Sue B. Kelley, Morgan Delmore, James E. TI Cs-137 Activities and Cs-135/Cs-137 Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CESIUM; SITE; CS-137/CS-135; ACCUMULATION; ACCIDENT; TRACER; RIVER; LEAD; TOOL AB Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. Cs-137 distribution patterns, Cs-135/Cs-137 isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that Cs-135/Cs-137 ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest). C1 [Snow, Mathew S.; Clark, Sue B.; Kelley, Morgan] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Snow, MS (reprint author), Washington State Univ, Dept Chem, POB 644630, Pullman, WA 99164 USA. EM mathew.snow@inl.gov RI Snyder, Darin/B-6863-2017 OI Snyder, Darin/0000-0001-8104-4248 FU U.S. Department of Homeland Security [2012-DN-130-NF0001-02]; Battelle Energy Alliance, LLC [DE-AC07-05ID14517]; U.S. Department of Energy FX We thank Jackie Loop from INL for her considerable assistance in acquiring many of the technical documents and reports on the early SDA history critical to this work. We also thank the three anonymous reviewers and the Editor Daniel Giammar for their thoughtful and constructive reviews of this manuscript. This material is based upon work supported in part by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130-NF0001-02, and in part, by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. Views and opinions of the authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. NR 43 TC 10 Z9 10 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 2741 EP 2748 DI 10.1021/es5058852 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100024 PM 25633972 ER PT J AU Tinnacher, RM Begg, JD Mason, H Ranville, J Powell, BA Wong, JC Kersting, AB Zavarin, M AF Tinnacher, Ruth M. Begg, James D. Mason, Harris Ranville, James Powell, Brian A. Wong, Jennifer C. Kersting, Annie B. Zavarin, Mavrik TI Effect of Fulvic Acid Surface Coatings on Plutonium Sorption and Desorption Kinetics on Goethite SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NATURAL ORGANIC-MATTER; SAVANNA RIVER SITE; HUMIC SUBSTANCES; REDOX SPECIATION; OXIDATION-STATE; FAR-FIELD; GROUNDWATER; COMPLEXATION; ADSORPTION; REDUCTION AB The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presence of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu-F-Amineral complexes could enhance colloid-facilitated Pu transport. However, more representative natural conditions need to be investigated to quantify the relevance of these findings. C1 [Tinnacher, Ruth M.; Begg, James D.; Mason, Harris; Kersting, Annie B.; Zavarin, Mavrik] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Tinnacher, Ruth M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Ranville, James] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Powell, Brian A.; Wong, Jennifer C.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29625 USA. RP Tinnacher, RM (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, POB 808, Livermore, CA 94550 USA. EM RMTinnacher@lbl.gov RI Tinnacher, Ruth/I-4845-2015; Mason, Harris/F-7194-2011 OI Mason, Harris/0000-0002-1840-0550 FU Subsurface Biogeochemical Research Program of the U.S. DOE's Office of Biological and Environmental Research [DE-AC52-07NA27344, DE-AC02-05CH11231] FX We thank Dean Heil and Bethany Baker (Colorado School of Mines) for performing TOC and FFF analysis, respectively, as well as four, anonymous reviewers for their useful comments. This work was supported by the Subsurface Biogeochemical Research Program of the U.S. DOE's Office of Biological and Environmental Research, prepared by LLNL (Contract No. DE-AC52-07NA27344) and LBNL (Contract No. DE-AC02-05CH11231). NR 53 TC 10 Z9 10 U1 11 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 2776 EP 2785 DI 10.1021/es505120s PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100028 PM 25607800 ER PT J AU Neumann, A Wu, LL Li, WQ Beard, BL Johnson, CM Rosso, KM Frierdich, AJ Scherer, MM AF Neumann, Anke Wu, Lingling Li, Weiqiang Beard, Brian L. Johnson, Clark M. Rosso, Kevin M. Frierdich, Andrew J. Scherer, Michelle M. TI Atom Exchange between Aqueous Fe(II) and Structural Fe in Clay Minerals SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID IRON ISOTOPE FRACTIONATION; FE(II)-FE(III) ELECTRON-TRANSFER; OXIDATION-REDUCTION MECHANISM; MULTI-DIRECTION APPROACH; OXIDE-WATER INTERFACE; MICROBIAL REDUCTION; DIOCTAHEDRAL SMECTITES; SPECTROSCOPIC EVIDENCE; SOUTHERN-OCEAN; FERROUS IRON AB Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid (Fe-57) and from the solid into the aqueous phase (Fe-56). Over 6 months, we observed a significant decrease in aqueous Fe-57 isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous Fe-56 isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories. C1 [Neumann, Anke; Wu, Lingling; Frierdich, Andrew J.; Scherer, Michelle M.] Univ Iowa, Civil & Environm Engn, Iowa City, IA 52242 USA. [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.; Frierdich, Andrew J.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Rosso, Kevin M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Neumann, A (reprint author), Newcastle Univ, Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM anke.neumann@ncl.ac.uk RI Wu, Lingling/E-4087-2010; Neumann, Anke/L-2227-2015; Frierdich, Andrew/A-1596-2016 OI Wu, Lingling/0000-0002-8211-5754; Neumann, Anke/0000-0002-0472-9056; FU U.S. Department of Energy Office of Biological and Environmental Research's Subsurface Biogeochemical Research (SBR) [DE-SC0006692]; Swiss National Science Foundation [PBEZP2_137292]; German Research Foundation [NE 1715/1-1]; SBR Science Focus Area program at PNNL; National Science Foundation [EAR-PF 1347848] FX Funding for this work was provided from the U.S. Department of Energy Office of Biological and Environmental Research's Subsurface Biogeochemical Research (SBR) Grant No. DE-SC0006692 (M.M.S., B.L.B., C.M.J., and K.M.R.), the Swiss National Science Foundation Grant No. PBEZP2_137292 (A.N.), and the German Research Foundation Grant No. NE 1715/1-1 (A.N.). K.M.R. was also supported by the SBR Science Focus Area program at PNNL. A.J.F. received support from the National Science Foundation under Award No. EAR-PF 1347848. NR 86 TC 8 Z9 8 U1 12 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 2786 EP 2795 DI 10.1021/es504984q PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100029 PM 25671351 ER PT J AU Li, DE Kaplan, DI Chang, HS Seaman, JC Jaffe, PR van Groos, PK Scheckel, KG Segre, CU Chen, N Jiang, DT Newville, M Lanzirotti, A AF Li, Dien Kaplan, Daniel I. Chang, Hyun-Shik Seaman, John C. Jaffe, Peter R. van Groos, Paul Koster Scheckel, Kirk G. Segre, Carlo U. Chen, Ning Jiang, De-Tong Newville, Matthew Lanzirotti, Antonio TI Spectroscopic Evidence of Uranium Immobilization in Acidic Wetlands by Natural Organic Matter and Plant Roots SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; SAVANNA RIVER SITE; IN-SITU; CONTAMINATED SEDIMENTS; HYDROXYAPATITE ADDITION; CHEMICAL SPECIATION; REDUCING CONDITIONS; U(VI) BIOREDUCTION; HUMIC ACIDS; REDUCTION AB Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L-3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at similar to 2.88 angstrom), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands. C1 [Li, Dien; Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Chang, Hyun-Shik; Seaman, John C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jaffe, Peter R.; van Groos, Paul Koster] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Scheckel, Kirk G.] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45224 USA. [Segre, Carlo U.] IIT, Dept Phys, Chicago, IL 60616 USA. [Segre, Carlo U.] IIT, CSRRI, Chicago, IL 60616 USA. [Chen, Ning] Canadian Light Sources Inc, Saskatoon, SK S7N 2V3, Canada. [Jiang, De-Tong] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Newville, Matthew; Lanzirotti, Antonio] Univ Chicago, CARS, Argonne, IL 60439 USA. RP Li, DE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Dien.Li@srs.gov RI Segre, Carlo/B-1548-2009; BM, MRCAT/G-7576-2011; OI Segre, Carlo/0000-0001-7664-1574; Scheckel, Kirk/0000-0001-9326-9241 FU Subsurface Biogeochemistry Research program within the Department of Energy (DOE) Office of Sciences, Biological and Environmental Research; U.S. DOE [DE-AC09-96SR18500]; Savannah River Ecology Laboratory through a DOE [DE-FC09-07SR22506]; DOE [DE-SC0006847]; NSERC Discovery Grant; EPA; DOE Office of Science [DE-AC02-06CH11357]; NSF's Earth Sciences [EAR-0217473]; DOE's Geo-sciences [DE-FG02-94ER14466]; State of Illinois; U.S. DOE Office of Science, Office of Basic Energy Sciences [W-31-109-ENG-38]; NSERC of Canada; NRC of Canada; Canadian Institutes of Health Research; Province of Saskatchewan FX This work was supported by the Subsurface Biogeochemistry Research program within the Department of Energy (DOE) Office of Sciences, Biological and Environmental Research. Work was conducted at Savanah River National Lab under the U.S. DOE Contract DE-AC09-96SR18500. Participation of Drs. J. C. Seaman and H. S. Chang in the current study was supported by the Savannah River Ecology Laboratory through a DOE Financial Assistance Award DE-FC09-07SR22506 to the University of Georgia Research Foundation. Work was conducted at Princeton University under the DOE Contract DE-SC0006847 and at University of Guelph supported by D.T.J.'s NSERC Discovery Grant. Although Environmental Protection Agency (EPA) contributed to this article, the research presented was not directly performed or funded by EPA and was not subjected to EPA's quality system requirements. Consequently, the views, interpretations, and conclusions expressed in this article are solely those of the authors and do not necessarily reflect or represent EPA's views or policies. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. GeoSoilEnviroCARS (13-IDE) was supported by the NSF's Earth Sciences (EAR-0217473), DOE's Geo-sciences (DE-FG02-94ER14466), and the State of Illinois. Use of APS was supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, under contract No. W-31-109-ENG-38. Canadian Light Sources (CLS) was supported by the NSERC of Canada, the NRC of Canada, the Canadian Institutes of Health Research, and the Province of Saskatchewan. NR 56 TC 7 Z9 7 U1 5 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 2823 EP 2832 DI 10.1021/es505369g PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100033 PM 25634067 ER PT J AU Zhang, TY Bain, D Hammack, R Vidic, RD AF Zhang, Tieyuan Bain, Daniel Hammack, Richard Vidic, Radisav D. TI Analysis of Radium-226 in High Salinity Wastewater from Unconventional Gas Extraction by Inductively Coupled Plasma-Mass Spectrometry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ICP-MS; SHALE GAS; ENVIRONMENTAL-SAMPLES; SELECTIVE EXTRACTION; RADIUM; PRECONCENTRATION; PENNSYLVANIA; SUPPRESSION; SEPARATION; EXCHANGE AB Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 +/- 6% for standard mode and 97 +/- 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L. C1 [Zhang, Tieyuan; Vidic, Radisav D.] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA. [Bain, Daniel] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15261 USA. [Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Vidic, RD (reprint author), Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA. EM vidic@pitt.edu OI Vidic, Radisav/0000-0001-7969-6845 FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA) of the NETL [TR 131, 4.605.920.009.812] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this study was performed under Task Release No. TR 131, Project Activity No. 4.605.920.009.812. NR 41 TC 7 Z9 7 U1 8 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 2969 EP 2976 DI 10.1021/es504656q PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100049 PM 25642997 ER PT J AU Ekman, DR Skelton, DM Davis, JM Villeneuve, DL Cavallin, JE Schroeder, A Jensen, KM Ankley, GT Collette, TW AF Ekman, D. R. Skelton, D. M. Davis, J. M. Villeneuve, D. L. Cavallin, J. E. Schroeder, A. Jensen, K. M. Ankley, G. T. Collette, T. W. TI Metabolite Profiling of Fish Skin Mucus: A Novel Approach for Minimally-Invasive Environmental Exposure Monitoring and Surveillance SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BISPHENOL-A; SURFACE MUCUS; PYRIMIDINE METABOLISM; CHEMICAL-ANALYSIS; OXIDATIVE STRESS; RAINBOW-TROUT; VITELLOGENIN; ACID; SEX; AGE AB The application of 'omics tools to biologically based monitoring and surveillance of aquatic environments shows considerable promise for complementing chemical monitoring in ecological risk assessments. However, few of the current approaches offer the ability to sample ecologically relevant species (e.g., fish) in a way that produces minimal impact on the health of the organism(s) under study. In the current study we employ liquid chromatography tandem mass spectrometry (LC-MS/MS) to assess the potential for skin mucus-based metabolomics for minimally invasive sampling of the fathead minnow (FHM; Pimephales promelas). Using this approach we were able to detect 204 distinct metabolites in the FHM skin mucus metabolome representing a large number of metabolite classes. An analysis of the sex specificity of the skin mucus metabolome showed it to be highly sexually dimorphic with 72 of the detected metabolites showing a statistically significant bias with regard to sex. Finally, in a proof-of-concept fashion we report on the use of skin mucus-based metabolomics to assess exposures in male and female fathead minnows to an environmentally relevant concentration of bisphenol A, a nearly ubiquitous environmental contaminant and an established endocrine active chemical. C1 [Ekman, D. R.; Skelton, D. M.; Davis, J. M.; Collette, T. W.] US EPA, Ecosyst Res Div, Athens, GA 30605 USA. [Villeneuve, D. L.; Schroeder, A.; Jensen, K. M.; Ankley, G. T.] US EPA, Midcontinent Ecol Div, Duluth, MN 55804 USA. [Cavallin, J. E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Ekman, DR (reprint author), US EPA, Ecosyst Res Div, 960 Coll Stn Rd, Athens, GA 30605 USA. EM ekman.drew@epa.gov FU Great Lakes National Program Office [DW8992298301]; ORISE Fellowship FX We thank T. Smith, J. Berninger, E. Eid, M. Hughes, M. Kahl, E. Makynen, and K. Stevens for research and technical assistance. J.M.D. was supported by the Great Lakes National Program Office and an appointment to the Postdoctoral Research Program at the National Exposure Research Laboratory, administered by Oak Ridge Institute for Science and Education (ORISE) through interagency agreement (DW8992298301) between U.S. DOE and U.S. EPA. J.E.C. was supported by an ORISE Fellowship. The views expressed in this Article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names, products, or services does not convey, and should not be interpreted as conveying, official EPA approval, endorsement, or recommendation. NR 65 TC 5 Z9 5 U1 7 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 3091 EP 3100 DI 10.1021/es505054r PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100064 PM 25607249 ER PT J AU Abrecht, DG Schwantes, JM AF Abrecht, David G. Schwantes, Jon M. TI Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POWER-PLANT; SOURCE-TERM; ATMOSPHERIC DISPERSION; SYSTEM; THERMODYNAMICS; DEPOSITION; TELLURIUM; CHEMISTRY; PHASE; FUEL AB This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In chi = -alpha ((Delta G(rxn)degrees(T-C))/(RTC)) + beta were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate Delta G(rxn)degrees (TC). These models allowed an estimate of the upper bound for the reactor temperatures of T-C between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products Sr-90, Sn-121m, Pm-147, Ce-144, Eu-152, Eu-154, Eu-155, and Sm-151 through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of Sr-90 and radioactive lanthanides were likely to remain in the damaged reactor cores. C1 [Abrecht, David G.; Schwantes, Jon M.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Schwantes, JM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM jon.schwantes@pnnl.gov FU Pacific Northwest National Laboratory under DOE [DE-AC06-76RLO-1830] FX We would like to acknowledge Drs. Bruce McNamara, Edgar Buck, and Ed Mausolf for their thoughtful reviews and comments. This research was conducted by Pacific Northwest National Laboratory under DOE contract number DE-AC06-76RLO-1830. NR 30 TC 2 Z9 2 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 3 PY 2015 VL 49 IS 5 BP 3158 EP 3166 DI 10.1021/es5053733 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CC8IH UT WOS:000350611100072 PM 25675358 ER PT J AU Tulli, LG Wang, WJ Lindemann, WR Kuzmenko, I Meier, W Vaknin, D Shahgaldian, P AF Tulli, Ludovico G. Wang, Wenjie Lindemann, William R. Kuzmenko, Ivan Meier, Wolfgang Vaknin, David Shahgaldian, Patrick TI Interfacial Binding of Divalent Cations to Calixarene-Based Langmuir Monolayers SO LANGMUIR LA English DT Article ID AIR/WATER INTERFACE; METAL-IONS; COMPLEXATION; SPECTROSCOPY; LIGANDS; ANION; DIFFRACTION; AGENTS; FILMS; ACID AB The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene (1) with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl2, CoCl2, MnCl2, and NiCl2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu2+ ions. The interactions of 1-based monolayers with Co2+ and Cu2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivity (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu2+ than Co2+ ions. In the presence of relatively high concentrations of Cu2+ ions in the subphase (1.4 x 10(-3) M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Both measurements suggest the formation of Cu2+ clusters contiguous to the monolayer of 1. C1 [Tulli, Ludovico G.; Shahgaldian, Patrick] Univ Appl Sci & Arts Northwestern Switzerland, Sch Life Sci, Inst Chem & Bioanalyt, Muttenz, Switzerland. [Wang, Wenjie; Lindemann, William R.; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Wenjie; Lindemann, William R.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kuzmenko, Ivan] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Meier, Wolfgang] Univ Basel, Dept Chem, Basel, Switzerland. RP Shahgaldian, P (reprint author), Univ Appl Sci & Arts Northwestern Switzerland, Sch Life Sci, Inst Chem & Bioanalyt, Muttenz, Switzerland. EM patrick.shahgaldian@fhnw.ch RI Vaknin, David/B-3302-2009; Shahgaldian, Patrick/C-2928-2015 OI Vaknin, David/0000-0002-0899-9248; Lindemann, William/0000-0002-5967-3192; Shahgaldian, Patrick/0000-0002-1743-0387 FU Swiss Nanoscience Institute (SNI, grant NanoMorph); Swiss National Science Foundation (SNSF) [CalixCargo 2]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-07CH11358]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX The financial support from the Swiss Nanoscience Institute (SNI, grant NanoMorph) and the Swiss National Science Foundation (SNSF, grant CalixCargo 2) is gratefully acknowledged. The work at the Ames Laboratory is supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-07CH11358. X-ray diffraction at the Advanced Photon Source is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract DE-AC02-06CH11357. NR 40 TC 2 Z9 2 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 3 PY 2015 VL 31 IS 8 BP 2351 EP 2359 DI 10.1021/acs.langmuir.5b00262 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CC8II UT WOS:000350611300013 PM 25697235 ER PT J AU Huang, B Zhuang, HL Yoon, M Sumpter, BG Wei, SH AF Huang, Bing Zhuang, Houlong L. Yoon, Mina Sumpter, Bobby G. Wei, Su-Huai TI Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; SEMICONDUCTORS; GASE AB The discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several semiconducting silicon phosphide (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x >= 1. Interestingly, some of these compounds, i.e., P-6m2Si(1)P(1) and PmSi1P2, have comparable or even lower formation enthalpies than their known allotropes. The band gaps (E-g) of SixPy compounds can be dramatically tuned in an extremely wide range (0 < E-g < 3 eV) by simply changing the number of layers. Moreover, we find that carrier doping can drive the ground state of C2/mSi(1)P(3) from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics. C1 [Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; Sumpter, Bobby G.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huang, B (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM huangb@ornl.gov; myoon@ornl.gov; Suhuai.Wei@nrel.gov RI Sumpter, Bobby/C-9459-2013; Yoon, Mina/A-1965-2016; Zhuang, Houlong/D-8801-2014 OI Sumpter, Bobby/0000-0001-6341-0355; Yoon, Mina/0000-0002-1317-3301; Zhuang, Houlong/0000-0002-3845-4601 FU Scientific User Facilities Division; Materials Science and Engineering Division; Basic Energy Sciences, US Department of Energy; US Department of Energy [DE-AC36-08GO28308]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The work at ORNL was supported by the Scientific User Facilities Division (B.G.S., M.Y.) and the Materials Science and Engineering Division (B.H., H.L.Z.), Basic Energy Sciences, US Department of Energy. The research at NREL (S.H.W.) was sponsored by the US Department of Energy under Contract No. DE-AC36-08GO28308. Computing resources were provided by the Leadership Computing Facility at Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 3 Z9 4 U1 9 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR 3 PY 2015 VL 91 IS 12 AR 121401 DI 10.1103/PhysRevB.91.121401 PG 5 WC Physics, Condensed Matter SC Physics GA CC6TA UT WOS:000350500100001 ER PT J AU Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakano, Y Nakayama, S Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Tanaka, H Tomura, T Ueno, K Wendell, RA Yokozawa, T Irvine, T Kajita, T Kametani, I Kaneyuki, K Lee, KP McLachlan, T Nishimura, Y Richard, E Okumura, K Labarga, L Fernandez, P Gustafson, J Kearns, E Raaf, JL Stone, JL Sulak, LR Berkman, S Tanaka, HA Tobayama, S Goldhaber, M Carminati, G Kropp, WR Mine, S Weatherly, P Renshaw, A Smy, MB Sobel, HW Takhistov, V Ganezer, KS Hartfiel, BL Hill, J Keig, WE Hong, N Kim, JY Lim, IT Akiri, T Himmel, A Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Bronner, C Hirota, S Huang, K Ieki, K Kikawa, T Minamino, A Murakami, A Nakaya, T Suzuki, K Takahashi, S Tateishi, K Fukuda, Y Choi, K Itow, Y Mitsuka, G Mijakowski, P Hignight, J Imber, J Jung, CK Yanagisawa, C Ishino, H Kibayashi, A Koshio, Y Mori, T Sakuda, M Yamaguchi, R Yano, T Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Suda, Y Totsuka, Y Yokoyama, M Martens, K Marti, L Vagins, MR Martin, JF de Perio, P Konaka, A Wilking, MJ Chen, S Zhang, Y Connolly, K Wilkes, RJ AF Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakano, Y. Nakayama, S. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Tanaka, H. Tomura, T. Ueno, K. Wendell, R. A. Yokozawa, T. Irvine, T. Kajita, T. Kametani, I. Kaneyuki, K. Lee, K. P. McLachlan, T. Nishimura, Y. Richard, E. Okumura, K. Labarga, L. Fernandez, P. Gustafson, J. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Berkman, S. Tanaka, H. A. Tobayama, S. Goldhaber, M. Carminati, G. Kropp, W. R. Mine, S. Weatherly, P. Renshaw, A. Smy, M. B. Sobel, H. W. Takhistov, V. Ganezer, K. S. Hartfiel, B. L. Hill, J. Keig, W. E. Hong, N. Kim, J. Y. Lim, I. T. Akiri, T. Himmel, A. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Bronner, C. Hirota, S. Huang, K. Ieki, K. Kikawa, T. Minamino, A. Murakami, A. Nakaya, T. Suzuki, K. Takahashi, S. Tateishi, K. Fukuda, Y. Choi, K. Itow, Y. Mitsuka, G. Mijakowski, P. Hignight, J. Imber, J. Jung, C. K. Yanagisawa, C. Ishino, H. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Yamaguchi, R. Yano, T. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Suda, Y. Totsuka, Y. Yokoyama, M. Martens, K. Marti, Ll. Vagins, M. R. Martin, J. F. de Perio, P. Konaka, A. Wilking, M. J. Chen, S. Zhang, Y. Connolly, K. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Test of Lorentz invariance with atmospheric neutrinos SO PHYSICAL REVIEW D LA English DT Article ID SUPER-KAMIOKANDE DETECTOR; CPT VIOLATION; STANDARD MODEL; OSCILLATIONS; SEARCH; MATTER AB A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the nonperturbative standard model extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the e mu, mu pi, and e pi sectors, improving the existing limits by up to 7 orders of magnitude and setting limits for the first time in the neutrino mu pi sector of the SME. C1 [Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. [Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Berkman, S.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Hartfiel, B. L.; Hill, J.; Keig, W. E.] Calif State Univ, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Ganezer, K. S.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ishizuka, T.] Fukuoka Inst Technol, Jr Coll, Fukuoka, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Kwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.] Kyoto Univ, Dept Phys, Kyoto, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Mitsuka, G.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.] Okayama Univ, Dept Phys, Okayama, Okayama 7008530, Japan. [Kuno, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Yaizu, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Ganezer, K. S.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778582, Japan. [Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Tacik, R.; Konaka, A.; Wilking, M. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Connolly, K.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mijakowski, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. RP Abe, K (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. RI Yokoyama, Masashi/A-4458-2011; Ishino, Hirokazu/C-1994-2015; Kibayashi, Atsuko/K-7327-2015; Koshio, Yusuke/C-2847-2015; Nakano, Yuuki/S-2684-2016; OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; Raaf, Jennifer/0000-0002-4533-929X FU Japanese Ministry of Education, Culture, Sports, Science and Technology; U.S. Department of Energy; U.S. National Science Foundation; Research Foundation of Korea (BK21); Korean Ministry of Science and Technology; National Science Foundation of China; European Union FP7 [DS laguna-lbno PN-284518, ITN invisibles GA-2011-289442]; National Science and Engineering Research Council (NSERC) of Canada; Scinet and Westgrid consortia of Compute Canada; Research Foundation of Korea (KNRC) FX We would like to thank A. Kostelecky for his advice and support and we are grateful to J. S. Diaz for working closely with us to calculate and implement the Lorentz-violating oscillation probabilities. The authors gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. Super-K has been built and operated from funds provided by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the U.S. Department of Energy, and the U.S. National Science Foundation. This work was partially supported by the Research Foundation of Korea (BK21 and KNRC), the Korean Ministry of Science and Technology, the National Science Foundation of China, the European Union FP7 (DS laguna-lbno PN-284518 and ITN invisibles GA-2011-289442), the National Science and Engineering Research Council (NSERC) of Canada, and the Scinet and Westgrid consortia of Compute Canada. NR 62 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 3 PY 2015 VL 91 IS 5 AR 052003 DI 10.1103/PhysRevD.91.052003 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC6TP UT WOS:000350501900001 ER PT J AU Alves, DSM Fox, PJ Weiner, N AF Alves, Daniele S. M. Fox, Patrick J. Weiner, Neal TI Supersymmetry with a sister Higgs boson SO PHYSICAL REVIEW D LA English DT Article ID ATLAS DETECTOR; PP COLLISIONS; ROOT-S=7 TEV; SCALAR LEPTOQUARKS; SEARCH; MODELS; MASS; BREAKING; LHC AB We consider a simple addition to the minimal supersymmetric Standard Model (MSSM) of a "sister Higgs" (Sigma(d)), a Higgs field that participates in electroweak symmetry breaking but does not give any direct masses to Standard Model matter fields. If this new field carries charge under a new gauge group, G(s), the Higgs mass is naturally much larger than in the MSSM due to a next-to-minimal supersymmetric Standard Model-type interaction, but with Sigma(d) playing the role of H-d. The addition of the sister Higgs allows new R-parity violating operators Sigma dHdE, which are less constrained than a conventional leptonic R-parity violation. Unification motivates the presence of colored G(s)-charged fields, whose production can lead to new b-rich final states and modifications to decays of gluinos, as well as new opportunities for R-parity violation. The presence of additional sister charges allows the possibilities that a lightest sister-charged particle (LSiP) could be stable, although we find the possibility of a LSiP dark matter candidate is generally very constrained. C1 [Alves, Daniele S. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Fox, Patrick J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Weiner, Neal] NYU, Ctr Cosmol & Particle Phys, Dept Phys, New York, NY 10003 USA. RP Alves, DSM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU NSF [0947827]; United States Department of Energy [DE-AC02-07CH11359] FX We thank N. Arkani-Hamed and I. Yavin for the helpful conversations. We thank Natalia Toro for showing us that it takes GUTs to think about conformality. N. W. thanks G. Vukmirovic for her support. N. W. is supported by NSF Grant No. 0947827. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. This work was presented at MCTP Symposium on Higgs Physics, April 16-20, 2012. NR 65 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 3 PY 2015 VL 91 IS 5 AR 055003 DI 10.1103/PhysRevD.91.055003 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC6TP UT WOS:000350501900009 ER PT J AU Cahill-Rowley, M Hewett, JL Ismail, A Rizzo, TG AF Cahill-Rowley, M. Hewett, J. L. Ismail, A. Rizzo, T. G. TI Lessons and prospects from the pMSSM after LHC Run I SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; PARTICLE; PROGRAM; SEARCH; BOSON; MSSM AB We study SUSY signatures at the 7, 8 and 14 TeV LHC employing the 19-parameter, R-parity conserving p(henomenological)MSSM, in the scenario with a neutralino lightest supersymmetric particle (LSP). Our results were obtained via a fast Monte Carlo simulation of the ATLAS SUSY analysis suite. The flexibility of this framework allows us to study a wide variety of SUSY phenomena simultaneously and to probe for weak spots in existing SUSY search analyses. We determine the ranges of the sparticle masses that are either disfavored or allowed after the searches with the 7 and 8 TeV data sets are combined. We find that natural SUSY models with light squarks and gluinos remain viable. We extrapolate to 14 TeV with both 300 fb(-1) and 3 ab(-1) of integrated luminosity and determine the expected sensitivity of the jets + MET and stop searches to the pMSSM parameter space. We find that the high-luminosity LHC will be powerful in probing SUSY with neutralino LSPs and can provide a more definitive statement on the existence of natural supersymmetry. C1 [Cahill-Rowley, M.; Rizzo, T. G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Hewett, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ismail, A.] Univ Illinois, Chicago, IL USA. RP Cahill-Rowley, M (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM mrowley@slac.stanford.edu; hewett@slac.stanford.edu; aismail@anl.gov; rizzo@slac.stanford.edu FU Department of Energy [DE-AC02-06CH11357, DE-AC02-76SF00515, DE-FG02-12ER41811] FX The authors would like to thank Alan Barr, David Cote Joe Lykken, and Brian Petersen for invaluable discussions. We also thank Richard Dubois and Homer Neal for computational support with the SLAC PPA batch farm system. This work was supported by the Department of Energy, Contracts DE-AC02-06CH11357, DE-AC02-76SF00515 and DE-FG02-12ER41811. NR 35 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 3 PY 2015 VL 91 IS 5 AR 055002 DI 10.1103/PhysRevD.91.055002 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC6TP UT WOS:000350501900008 ER PT J AU Zhang, ZS Zhang, TJ Wang, H Ma, C AF Zhang, Zhi-Song Zhang, Tong-Jie Wang, Hao Ma, Cong TI Testing the Copernican principle with the Hubble parameter SO PHYSICAL REVIEW D LA English DT Article ID SOUTH-POLE TELESCOPE; MODELS; CONSTRAINTS; GALAXIES; POWER AB Using the longitudinal expression of Hubble expansion rate for the general Lemitre-Tolman-Bondi (LTB) metric as a function of cosmic time, we examine the scale on which the Copernican principle holds in the context of a void model. By way of performing parameter estimation on the constrained Garcia-Bellido-Haugbolle void model, we show that the Hubble parameter data favors a void with a characteristic radius of 2-3 Gpc. This brings the void model closer, but not yet enough, to harmony with observational indications given by the background kinetic Sunyaev-Zel'dovich effect and the normalization of near-infrared galaxy luminosity function. However, the test of such void models may ultimately lie in the future detection of the discrepancy between longitudinal and transverse expansion rates, a touchstone of inhomogeneous models. With the proliferation of observational Hubble parameter data and future large-scale structure observation, a definitive test could be performed on the question of cosmic homogeneity. Particularly, the spherical LTB void models have been ruled out, but more general nonspherical inhomogeneities still need to be tested by observation. In this paper, we utilize a spherical void model to provide guidelines into how observational tests may be done with more general models in the future. C1 [Zhang, Zhi-Song] Harbin Inst Technol HIT, Sch Astronaut, Dept Aerosp Engn, Harbin 150001, Heilongjiang, Peoples R China. [Zhang, Zhi-Song; Zhang, Tong-Jie; Wang, Hao; Ma, Cong] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Zhang, Tong-Jie] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Zhang, Tong-Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhang, TJ (reprint author), Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. EM tjzhang@bnu.edu.cn FU National Science Foundation of China [11173006]; Ministry of Science and Technology National Basic Science program [973, 2012CB821804] FX We sincerely thank the anonymous referees whose suggestions and objective, judicial assessment greatly helped us improve our manuscript. Tong-Jie Zhang thanks Professor Martin White for his hospitality during visiting Departments of Physics and Astronomy, University of California, Berkeley and Lawrence Berkeley National Laboratory. This work was supported by the National Science Foundation of China (Grant No. 11173006), the Ministry of Science and Technology National Basic Science program (Project No. 973) under Grant No. 2012CB821804. NR 38 TC 1 Z9 1 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 3 PY 2015 VL 91 IS 6 AR 063506 DI 10.1103/PhysRevD.91.063506 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC6TT UT WOS:000350502500004 ER PT J AU Zhang, HQ Amick, J Chakravarti, R Santarriaga, S Schlanger, S McGlone, C Dare, M Nix, JC Scaglione, KM Stuehr, DJ Misra, S Page, RC AF Zhang, Huaqun Amick, Joseph Chakravarti, Ritu Santarriaga, Stephanie Schlanger, Simon McGlone, Cameron Dare, Michelle Nix, Jay C. Scaglione, K. Matthew Stuehr, Dennis J. Misra, Saurav Page, Richard C. TI A Bipartite Interaction between Hsp70 and CHIP Regulates Ubiquitination of Chaperoned Client Proteins SO STRUCTURE LA English DT Article ID NITRIC-OXIDE SYNTHASE; CELLULAR HEME INSERTION; DEPENDENT E3 LIGASE; HEAT-SHOCK-PROTEIN; TPR DOMAIN; CONJUGATING ENZYMES; MOLECULAR-MECHANISM; LYSINE METHYLATION; SUBSTRATE TRANSFER; TRIAGE DECISIONS AB The ubiquitin ligase CHIP plays an important role in cytosolic protein quality control by ubiquitinating proteins chaperoned by Hsp70/Hsc70 and Hsp90, thereby targeting such substrate proteins for degradation. We present a 2.91 angstrom resolution structure of the tetratricopeptide repeat (TPR) domain of CHIP in complex with the a-helical lid subdomain and unstructured tail of Hsc70. Surprisingly, the CHIP-TPR interacts with determinants within both the Hsc70-lid subdomain and the C-terminal PTIEEVD motif of the tail, exhibiting an atypical mode of interaction between chaperones and TPR domains. We demonstrate that the interaction between CHIP and the Hsc70-lid subdomain is required for proper ubiquitination of Hsp70/Hsc70 or Hsp70/Hsc70-bound substrate proteins. Posttranslational modifications of the Hsc70 lid and tail disrupt key contacts with the CHIP-TPR and may regulate CHIP-mediated ubiquitination. Our study shows how CHIP docks onto Hsp70/Hsc70 and defines a bipartite mode of interaction between TPR domains and their binding partners. C1 [Zhang, Huaqun; McGlone, Cameron; Page, Richard C.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. [Amick, Joseph; Schlanger, Simon; Dare, Michelle; Misra, Saurav] Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44195 USA. [Chakravarti, Ritu; Stuehr, Dennis J.] Cleveland Clin, Lerner Res Inst, Dept Pathobiol, Cleveland, OH 44195 USA. [Santarriaga, Stephanie; Scaglione, K. Matthew] Med Coll Wisconsin, Dept Biochem, Milwaukee, WI 53226 USA. [Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Mol Biol Consortium,Beamline 4 2 2, Berkeley, CA 94720 USA. RP Misra, S (reprint author), Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44195 USA. EM misras@ccf.org; pagerc@miamioh.edu OI Misra, Saurav/0000-0002-1385-8554; Page, Richard/0000-0002-3006-3171 FU US NIH [R01-GM080271, R00-NS073936, T32-HL007914]; Burroughs Wellcome Foundation Collaborative Research Travel Grant [1014031]; Miami University; Research and Education Program, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin; US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX The authors acknowledge financial support from the US NIH (R01-GM080271 to S.M., R00-NS073936 to K.M.S. and T32-HL007914 to R.C.P.). R.C.P. was also supported by Burroughs Wellcome Foundation Collaborative Research Travel Grant 1014031 and institutional funds from Miami University. K.M.S. was also funded through the Research and Education Program, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin. The Advanced Light Source is supported by the US Department of Energy under contract number DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. NR 73 TC 13 Z9 13 U1 2 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD MAR 3 PY 2015 VL 23 IS 3 BP 472 EP 482 DI 10.1016/j.str.2015.01.003 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CD2EC UT WOS:000350886100007 PM 25684577 ER PT J AU Chen, L Fang, WZ Kang, QJ Hyman, JD Viswanathan, HS Tao, WQ AF Chen, Li Fang, Wenzhen Kang, Qinjun Hyman, Jeffrey De'Haven Viswanathan, Hari S. Tao, Wen-Quan TI Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect SO PHYSICAL REVIEW E LA English DT Article ID GAS-FLOW; PORE-SCALE; PERMEABILITY; SHALE; SIMULATION; MORPHOLOGY; MUDROCKS; POROSITY AB Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al. [Phys. Rev. E 65, 046308 (2002)]. The second-order Beskok and Karniadakis-Civan's correlation [A. Beskok and G. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999) and F. Civan, Transp. Porous Med. 82, 375 (2010)] is adopted to calculate the apparent permeability based on intrinsic permeability and the Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate the model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicate that Klinkenberg's effect plays a significant role on fluid flow in low-permeability porous media, and it is more pronounced as the Knudsen number increases. Fluid flow in a shale matrix with and without fractures is also studied, and it is found that the fractures greatly enhance the fluid flow and Klinkenberg's effect leads to higher global permeability of the shale matrix. C1 [Chen, Li; Fang, Wenzhen; Tao, Wen-Quan] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China. [Chen, Li; Kang, Qinjun; Hyman, Jeffrey De'Haven; Viswanathan, Hari S.] Los Alamos Natl Lab, Computat Earth Sci Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Hyman, Jeffrey De'Haven] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. RP Kang, QJ (reprint author), Los Alamos Natl Lab, Computat Earth Sci Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM qkang@lanl.gov RI Chen, Li/P-4886-2014; Kang, Qinjun/A-2585-2010; OI Chen, Li/0000-0001-7956-3532; Kang, Qinjun/0000-0002-4754-2240; Hyman, Jeffrey /0000-0002-4224-2847 FU LANL's LDRD Program; Institutional Computing Program; National Nature Science Foundation of China [51406145, 51320105004, 51136004]; National Basic Research Program of China (973 Program) [2013CB228304]; China Postdoctoral Science Foundation [2014M550496]; Center for Nonlinear Studies at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors acknowledge the support of LANL's LDRD Program and Institutional Computing Program. The authors also acknowledge the support of National Nature Science Foundation of China (Grants No. 51406145, No. 51320105004, and No. 51136004), National Basic Research Program of China (973 Program, Grant No. 2013CB228304), and China Postdoctoral Science Foundation (Grant No. 2014M550496). Jeffrey Hyman acknowledges the support of the Center for Nonlinear Studies at Los Alamos National Laboratory, Grant No. DE-AC52-06NA25396. NR 48 TC 21 Z9 22 U1 8 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD MAR 3 PY 2015 VL 91 IS 3 AR 033004 DI 10.1103/PhysRevE.91.033004 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC6UC UT WOS:000350503500007 PM 25871199 ER PT J AU Berry, DW Childs, AM Cleve, R Kothari, R Somma, RD AF Berry, Dominic W. Childs, Andrew M. Cleve, Richard Kothari, Robin Somma, Rolando D. TI Simulating Hamiltonian Dynamics with a Truncated Taylor Series SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPARSE HAMILTONIANS; QUANTUM AB We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations together with a robust form of oblivious amplitude amplification. C1 [Berry, Dominic W.] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Childs, Andrew M.; Cleve, Richard; Kothari, Robin] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Childs, Andrew M.] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada. [Childs, Andrew M.] Univ Maryland, Inst Adv Comp Studies, Dept Comp Sci, College Pk, MD 20910 USA. [Childs, Andrew M.] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20910 USA. [Childs, Andrew M.; Cleve, Richard] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Cleve, Richard; Kothari, Robin] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada. [Kothari, Robin] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Somma, Rolando D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Berry, DW (reprint author), Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. RI Childs, Andrew/B-6329-2009; OI Childs, Andrew/0000-0002-9903-837X; Berry, Dominic/0000-0003-3446-1449 FU ARC [FT100100761]; AFOSR [FA9550-12-1-0057]; ARO grant [W911NF-12-0486]; Industry Canada; NSERC FX We thank Emmanuel Knill, John Preskill, and Nathan Wiebe for discussions. D. W. B. was supported by ARC Grant No. FT100100761. R. S. acknowledges support from AFOSR through Grant No. FA9550-12-1-0057. This work was also supported by ARO grant Contract No. W911NF-12-0486, Industry Canada, and NSERC. NR 23 TC 17 Z9 17 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 3 PY 2015 VL 114 IS 9 AR 090502 DI 10.1103/PhysRevLett.114.090502 PG 5 WC Physics, Multidisciplinary SC Physics GA CC6VA UT WOS:000350505900001 PM 25793789 ER PT J AU Kang, ZB Lashof-Regas, R Ovanesyan, G Saad, P Vitev, I AF Kang, Zhong-Bo Lashof-Regas, Robin Ovanesyan, Grigory Saad, Philip Vitev, Ivan TI Jet Quenching Phenomenology from Soft-Collinear Effective Theory with Glauber Gluons SO PHYSICAL REVIEW LETTERS LA English DT Article ID ABELIAN ENERGY-LOSS; TRANSVERSE-MOMENTUM; SUPPRESSION; COLLISIONS; TEV AB We present the first application of a recently developed effective theory of jet propagation in matter, soft-collinear effective theory with Glauber gluons (SCETG), to inclusive hadron suppression in nucleus-nucleus collisions at RHIC and the LHC. SCETG-based splitting kernels allow us to go beyond the traditional energy loss approximation and unify the treatment of vacuum and medium-induced parton showers. In the soft gluon emission limit, we establish a simple analytic relation between the QCD evolution and energy loss approaches to jet quenching. We quantify the uncertainties associated with the implementation of the in-medim modification of hadron production cross sections and show that the coupling between the jet and the medium can be constrained with better than 10% accuracy. C1 [Kang, Zhong-Bo; Lashof-Regas, Robin; Saad, Philip; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lashof-Regas, Robin; Saad, Philip] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Ovanesyan, Grigory] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. RP Kang, ZB (reprint author), Los Alamos Natl Lab, Div Theoret, MS B283, Los Alamos, NM 87545 USA. RI Kang, Zhongbo/P-3645-2014 FU DOE Office of Science; LDRD program at LANL FX This work is supported by DOE Office of Science and in part by the LDRD program at LANL. NR 24 TC 23 Z9 23 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 3 PY 2015 VL 114 IS 9 AR 092002 DI 10.1103/PhysRevLett.114.092002 PG 5 WC Physics, Multidisciplinary SC Physics GA CC6VA UT WOS:000350505900006 PM 25793803 ER PT J AU Liu, YH Guo, F Daughton, W Li, H Hesse, M AF Liu, Yi-Hsin Guo, Fan Daughton, William Li, Hui Hesse, Michael TI Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAY BURSTS; CURRENT SHEET; GUIDE-FIELD; TEMPERATURE ANISOTROPY; NONTHERMAL PARTICLES; PULSAR WIND; DISSIPATION; MODEL; JETS; SIMULATIONS AB Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma > O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains similar to 0.1 in both the nonrelativistic and relativistic limits. C1 [Liu, Yi-Hsin; Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guo, Fan; Daughton, William; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liu, YH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Guo, Fan/H-1723-2013; Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013; OI NASA MMS, Science Team/0000-0002-9504-5214; Guo, Fan/0000-0003-4315-3755 FU NASA through NPP program; Heliophysics Theory program; MMS mission; DOE through the LDRD program at LANL; DOE/OFES support; CMSO FX Y.-H. Liu thanks for helpful discussions withS. Zenitani, N. Bessho and J. Tenbarge. This work was support by NASA through the NPP program, the Heliophysics Theory program and MMS mission. H. L. and F. G. are supported by the DOE through the LDRD program at LANL and DOE/OFES support to LANL in collaboration with CMSO. Simulations were performed at the National Center for Computational Sciences at ORNL and with LANL institutional computing. NR 52 TC 24 Z9 25 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 3 PY 2015 VL 114 IS 9 AR 095002 DI 10.1103/PhysRevLett.114.095002 PG 5 WC Physics, Multidisciplinary SC Physics GA CC6VA UT WOS:000350505900008 PM 25793820 ER PT J AU Kim, H Ran, S Mun, ED Hodovanets, H Tanatar, MA Prozorov, R Bud'ko, SL Canfield, PC AF Kim, H. Ran, S. Mun, E. D. Hodovanets, H. Tanatar, M. A. Prozorov, R. Bud'ko, S. L. Canfield, P. C. TI Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe2Ge2 SO PHILOSOPHICAL MAGAZINE LA English DT Article DE superconductivity; crystal growth ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SINGLE-CRYSTALS; LA-ND; LUFE2GE2; PLANE; LU AB We investigated the occurrence and nature of superconductivity in single crystals of [GRAPHICS] grown out of Sn flux by employing X-ray diffraction, electrical resistivity and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as [GRAPHICS] , by decanting the crystals from the molten Sn at [GRAPHICS] and/or by annealing at temperatures between 550 and [GRAPHICS] . We found that the samples with RRR [GRAPHICS] 34 showed resistive signatures of superconductivity with the onset of the superconducting transition [GRAPHICS] . RRR values vary between 35 and 65 with, on average, no systematic change in [GRAPHICS] value, indicating that the systematic changes in RRR do not lead to comparable changes in [GRAPHICS] . Specific heat measurements on samples that showed the clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain-stabilized superconductivity associated with small amounts of stressed [GRAPHICS] (perhaps at twin boundaries or dislocations) or is a second crystallographic phase that is present at level below detection capability of conventional powder X-ray techniques. C1 [Kim, H.; Ran, S.; Mun, E. D.; Hodovanets, H.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ran, S.; Hodovanets, H.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kim, H (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM hyunsoo@umd.edu FU AFOSR-MURI [FA9550-09-1-0603]; Ames Laboratory, US DOE [DE-AC02-07CH 11358] FX This work was carried out at the Iowa State University and supported by the AFOSR-MURI [grant number FA9550-09-1-0603] (H.K., E.D.M. and P.C.C.). Part of this work was performed at Ames Laboratory, US DOE, under contract No. DE-AC02-07CH 11358 (S.R., H.H., M.A.T., R.P. and S.L.B.). NR 23 TC 5 Z9 5 U1 6 U2 39 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD MAR 3 PY 2015 VL 95 IS 7 BP 804 EP 818 DI 10.1080/14786435.2015.1004378 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA CC5BC UT WOS:000350371000007 ER PT J AU Venna, SR Carreon, MA AF Venna, Surendar R. Carreon, Moises A. TI Metal organic framework membranes for carbon dioxide separation SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE CO2 separation; Metal organic framework membranes; Natural gas treatment; Flue gas; Hydrogen purification ID MIXED-MATRIX MEMBRANES; MOLECULAR-SIEVE MEMBRANE; CO2 ADSORPTION PROPERTIES; GAS-TRANSPORT PROPERTIES; IN-SITU SYNTHESIS; CO2/CH4 SEPARATION; ZIF-8 MEMBRANES; HYDROGEN SELECTIVITY; ZEOLITE MEMBRANES; SAPO-34 MEMBRANE AB In this paper we review research progress on metal organic framework membranes which have demonstrated ability to separate carbon dioxide from different light gases. More specifically, we focus mainly on CO2/N-2, CO2/CH4, and CO2/H-2, gas separations which are highly relevant compositions in flue gas treatment, natural gas purification, and hydrogen purification, respectively. We also discuss several conventional and novel strategies developed by several research groups for the continuous defect free MOF membrane fabrication. Finally, the advantages of using MOFs in mixed matrix membranes and improvements in gas separation performances with the MOF based mixed matrix membranes are presented. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Venna, Surendar R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Venna, Surendar R.] W Virginia Univ, Res Ctr, Morgantown, WV 26506 USA. [Carreon, Moises A.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. RP Carreon, MA (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM mcarreon@mines.edu FU NSF CAREER award (CBET) [1054 150] FX M.A. Carreon thanks NSF CAREER award (CBET#1054 150) for financial support. NR 150 TC 28 Z9 29 U1 31 U2 289 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 EI 1873-4405 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD MAR 3 PY 2015 VL 124 BP 3 EP 19 DI 10.1016/j.ces.2014.10.007 PG 17 WC Engineering, Chemical SC Engineering GA CB2HF UT WOS:000349447000002 ER PT J AU Goh, TW Xiao, CX Maligal-Ganesh, RV Li, XL Huang, WY AF Goh, Tian Wei Xiao, Chaoxian Maligal-Ganesh, Raghu V. Li, Xinle Huang, Wenyu TI Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE UiO-66; Visible light; Photocatalysis; Heterogeneous; Selective oxidation of alcohol ID ISORETICULAR MOFS; FUNCTIONAL-GROUPS; WATER; MECHANISMS; REDUCTION; STABILITY; CATALYSIS; TIO2 AB A series of mixed-linker zirconium-based metal-organic frameworks (Zr-MOFs) have been synthesized in one-pot reactions. The Zr-MOFs, containing 2-amino-1,4-benzeneclicarboxylate (NH2-BDC) as the primary linker and 2-X-1,4-bezenedicarboxylate (X-BDC, X=H, F, Cl, Br) as a secondary linker, have been used as visible light photocatalysts. The incorporation of multi-functional groups into the catalysts was characterized by PXRD, STEM, NMR, N-2 physisorption, diffuse reflectance FT1R, and diffuse reflectance UV-vis. The effects of different linkers on the photocatalytic property of the Zr-MOFs were evaluated in the oxidation of benzyl alcohol. The photocatalytic oxidation reaction was performed using a 26 W helical bulb as the visible light source, and the temperature of the reaction was kept at 80 degrees C. The Zr-MOF containing mixed NH2-BDC and F-BDC linkers gives five times more conversion in the oxidation of benzyl alcohol compared to the Zr-MOF made of mixed NH2-BDC and H-BDC linkers. We only observed partial oxidation product, benzaldehyde, from the photocatalytic oxidation reaction. (C) 2014 Elsevier Ltd. All rights reserved, C1 [Goh, Tian Wei; Xiao, Chaoxian; Maligal-Ganesh, Raghu V.; Li, Xinle; Huang, Wenyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Goh, Tian Wei; Xiao, Chaoxian; Maligal-Ganesh, Raghu V.; Li, Xinle; Huang, Wenyu] US DOE, Ames Lab, Ames, IA 50011 USA. RP Huang, WY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM whuang@iastate.edu RI li, xinle/B-8285-2016; Goh, Tian Wei/G-3463-2016; Huang, Wenyu/L-3784-2014 OI li, xinle/0000-0001-5747-4029; Goh, Tian Wei/0000-0002-4141-3392; Huang, Wenyu/0000-0003-2327-7259 FU Iowa State University; Ames Laboratory (Royalty Account) startup funds; Iowa State University [DE-AC02-07CH111358] FX This work was supported by the Iowa State University and Ames Laboratory (Royalty Account) startup funds. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH111358. We thank Prof. Gordon J. Miller for the use of PXRD, and Prof. Javier Vela for the use of Solid Diffuse Reflectance Probe, NR 35 TC 22 Z9 22 U1 37 U2 246 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 EI 1873-4405 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD MAR 3 PY 2015 VL 124 BP 45 EP 51 DI 10.1016/j.ces.2014.08.052 PG 7 WC Engineering, Chemical SC Engineering GA CB2HF UT WOS:000349447000006 ER PT J AU Ivashchenko, VI Veprek, S Argon, AS Turchi, PEA Gorb, L Hill, F Leszczynski, J AF Ivashchenko, V. I. Veprek, S. Argon, A. S. Turchi, P. E. A. Gorb, L. Hill, F. Leszczynski, J. TI First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites SO THIN SOLID FILMS LA English DT Article DE Superhard nanocomposites; TiN/SiNx heterostructures; First-principles molecular dynamics; Thermal stability; Stress-strain relations; Ideal strength; Achievable hardness ID STRONGEST SIZE; COATINGS; ORIGIN; NC-TIN/A-SI3N4; MICROSTRUCTURE; NANOSTRUCTURE; DEFORMATION; ENHANCEMENT; IMPURITIES; NITRIDE AB TiN/SiNx heterostructures with one monolayer of the interfacial SiNx have been investigated in the framework of first-principles molecular dynamics calculations in the temperature range of 0 to 1400 K with subsequent static relaxation. The atomic configurations, thermal stability and stress-strain relations have been calculated. Among the heterostructures studied, only the TiN(111)/SiN/TiN(111) and TiN(111)/Si2N3/TiN(111) ones are thermally stable. Upon tensile load, decohesion occurs between the Ti-N bonds adjacent to the SiNx interfacial layer for TiN(001)/SiN/TiN(001) and TiN(111)/Si2N3/TiN(111) heterostructures, and inside the TiN slab for TiN(001)/Si3N4/TiN(001) and TiN(110)/SiN/TiN(110) ones. Upon shear, failure occurs in TiN near the interfaces in all the heterostructures, except for the TiN(001)/Si3N4/TiN(001) one, for which the plastic flow occurs inside the TiN slab. Based on these results we estimate the maximum achievable hardness of nc-TiN/Si3N4 nanocomposites free of impurities to be about 170 GPa. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ivashchenko, V. I.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Veprek, S.] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Argon, A. S.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Turchi, P. E. A.] Lawrence Livermore Natl Lab, L 352, Livermore, CA 94551 USA. [Gorb, L.] Badger Tech Serv LLC, Vicksburg, MS 39180 USA. [Gorb, L.; Hill, F.] US Army, Erdc, Vicksburg, MS 39180 USA. [Leszczynski, J.] Jackson State Univ, Interdisciplinary Ctr Nanotox, Dept Chem & Biochem, Jackson, MS 39217 USA. RP Veprek, S (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany. EM ivash@ipms.kiev.ua; stan.veprek@lrz.tum.de RI Veprek, Stan/C-1248-2008 OI Veprek, Stan/0000-0002-6016-3093 FU STCU [5964]; U.S. Department of Energy by the Lawrence Livermore National Laboratory, Office of Science [DE-AC52-07NA27344]; Summer Institute at Jackson State University; company SHM; Mechanical Engineering Department at MIT FX This work was supported by the STCU contract, No. 5964. The work of P.T. was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory, Office of Science under contract No. DE-AC52-07NA27344. The authors are grateful to the directorate of the Summer Institute at Jackson State University for financial support and the opportunity to perform large-scale calculations. S.V. thanks the company SHM for financial support. A. S. A. acknowledges support from the Mechanical Engineering Department at MIT. Our thanks are due to Dr. Maritza Veprek-Heijman for valuable comments to the manuscript. NR 61 TC 5 Z9 6 U1 2 U2 30 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 2 PY 2015 VL 578 BP 83 EP 92 DI 10.1016/j.tsf.2015.02.013 PG 10 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CE2XX UT WOS:000351686500013 ER PT J AU Varga, T Droubay, TC Bowden, ME Stephens, SA Manandhar, S Shutthanandan, V Colby, RJ Hu, D Shelton, WA Chambers, SA AF Varga, Tamas Droubay, Timothy C. Bowden, Mark E. Stephens, Sean A. Manandhar, Sandeep Shutthanandan, Vaithiyalingam Colby, Robert J. Hu, Dehong Shelton, William A. Chambers, Scott A. TI Strain-dependence of the structure and ferroic properties of epitaxial Ni-1 (-) Ti-x(1) (-) O-y(3) thin films grown on sapphire substrates SO THIN SOLID FILMS LA English DT Article DE Epitaxial strain; Polarization; Ferromagnetism; NiTiO3 ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ILMENITE; TRANSITION; CRYSTAL; FERROELECTRICITY; DISLOCATIONS; TEMPERATURE; DIFFRACTION; NITIO3 AB Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO3 epitaxially on sapphire Al2O3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni1-xTi1-yO3 films of different Ni/Ti ratios and thicknesses were deposited on Al2O3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Neel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by film stoichiometry and thickness. (C) 2015 Elsevier B.V. All rights reserved. C1 [Varga, Tamas; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong] Environm Mol Sci Lab, Richland, WA USA. [Droubay, Timothy C.; Chambers, Scott A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Shelton, William A.] Louisiana State Univ, Baton Rouge, LA 70803 USA. RP Varga, T (reprint author), ExxonMobil Res & Engn Co, Clinton, NJ 08801 USA. EM tamas.varga@pnnl.gov RI Hu, Dehong/B-4650-2010; Droubay, Tim/D-5395-2016; OI Hu, Dehong/0000-0002-3974-2963; Droubay, Tim/0000-0002-8821-0322; Manandhar, Sandeep/0000-0001-8613-5317 FU Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory; U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357.]; EMSL Mission Seed Fund FX This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. T. V. gratefully acknowledges support from the EMSL Mission Seed Fund for early career scientists, and help from Dr. Trudy Bolin and Dr. Tianpin Wu at the Advanced Photon Source for assistance with the XAS data collection. NR 45 TC 0 Z9 0 U1 4 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 2 PY 2015 VL 578 BP 113 EP 123 DI 10.1016/j.tsf.2015.02.016 PG 11 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CE2XX UT WOS:000351686500017 ER PT J AU Barnes, TM Burst, JM Reese, MO Perkins, CL AF Barnes, Teresa M. Burst, James M. Reese, Matthew O. Perkins, Craig L. TI Semi-insulating Sn-Zr-O: Tunable resistance buffer layers SO APPLIED PHYSICS LETTERS LA English DT Article ID FILM SOLAR-CELLS; WORK FUNCTION; THIN-FILMS; TRANSPARENT CONDUCTORS; PERFORMANCE; EFFICIENCY; CDS AB Highly resistive and transparent (HRT) buffer layers are critical components of solar cells and other opto-electronic devices. HRT layers are often undoped transparent conducting oxides. However, these oxides can be too conductive to form an optimal HRT. Here, we present a method to produce HRT layers with tunable electrical resistivity, despite the presence of high concentrations of unintentionally or intentionally added dopants in the film. This method relies on alloying wide-bandgap, high-k dielectric materials (e.g., ZrO2) into the host oxide to tune the resistivity. We demonstrate SnxZr(1-x)O(2):F films with tunable resistivities varying from 0.001 to 10 Omega cm, which are controlled by the Zr mole fraction in the films. Increasing Zr suppresses carriers by expanding the bandgap almost entirely by shifting the valence-band position, which allows the HRT layers to maintain good conduction-band alignment for a low-resistance front contact. (C) 2015 AIP Publishing LLC. C1 [Barnes, Teresa M.; Burst, James M.; Reese, Matthew O.; Perkins, Craig L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Barnes, TM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU U.S. Department of Energy [DE-AC36-08-GO28308]; SunShot Foundational Program to Advance Cell Efficiency (F-PACE) FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 and funded by the SunShot Foundational Program to Advance Cell Efficiency (F-PACE). NR 21 TC 1 Z9 1 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2015 VL 106 IS 9 AR 092106 DI 10.1063/1.4914173 PG 4 WC Physics, Applied SC Physics GA CD4RA UT WOS:000351069900028 ER PT J AU Cheaito, R Hattar, K Gaskins, JT Yadav, AK Duda, JC Beechem, TE Ihlefeld, JF Piekos, ES Baldwin, JK Misra, A Hopkins, PE AF Cheaito, Ramez Hattar, Khalid Gaskins, John T. Yadav, Ajay K. Duda, John C. Beechem, Thomas E. Ihlefeld, Jon F. Piekos, Edward S. Baldwin, Jon K. Misra, Amit Hopkins, Patrick E. TI Thermal flux limited electron Kapitza conductance in copper-niobium multilayers SO APPLIED PHYSICS LETTERS LA English DT Article ID CU-NB; TRANSPORT; CONDUCTIVITY; SUPERLATTICES; FILMS; INTERFACES; SYSTEMS AB We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface. (C) 2015 AIP Publishing LLC. C1 [Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Yadav, Ajay K.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Baldwin, Jon K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Misra, Amit] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Cheaito, R (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM phopkins@virginia.edu RI Misra, Amit/H-1087-2012; Yadav, Ajay/I-6337-2016 OI Yadav, Ajay/0000-0001-5088-6506 FU AFOSR Young Investigator Program [FA9550-13-1-0067]; National Science Foundation [CBET-1339436]; Laboratory Directed Research and Development program at Sandia National Laboratories; Lockheed Martin Corporation FX Authors would like to acknowledge Ramamoorthy Ramesh for assistance with TDTR transducer characterization. This work was performed in part at the Center for Atomic, Molecular, and Optical Science (CAMOS) at the University of Virginia. P.E.H. recognizes support from the AFOSR Young Investigator Program (FA9550-13-1-0067). We are appreciative of funding through the National Science Foundation (CBET-1339436) and the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National. NR 31 TC 2 Z9 2 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2015 VL 106 IS 9 AR 093114 DI 10.1063/1.4913420 PG 5 WC Physics, Applied SC Physics GA CD4RA UT WOS:000351069900059 ER PT J AU Comes, RB Smolin, SY Kaspar, TC Gao, R Apgar, BA Martin, LW Bowden, ME Baxter, JB Chambers, SA AF Comes, Ryan B. Smolin, Sergey Y. Kaspar, Tiffany C. Gao, Ran Apgar, Brent A. Martin, Lane W. Bowden, Mark E. Baxter, Jason B. Chambers, Scott A. TI Visible light carrier generation in co-doped epitaxial titanate films SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; REFRACTIVE-INDEX; THIN-FILMS; SRTIO3; OXIDES; FERROELECTRICITY; ENHANCEMENT; ABSORPTION; DEVICES AB Perovskite titanates such as SrTiO3 (STO) exhibit a wide range of important functional properties, including ferroelectricity and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications; however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr, we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to 2.4-2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO. (C) 2015 AIP Publishing LLC. C1 [Comes, Ryan B.; Kaspar, Tiffany C.; Chambers, Scott A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Smolin, Sergey Y.; Baxter, Jason B.] Drexel Univ, Dept Chem & Biol Engn, Philadelphia, PA 19104 USA. [Gao, Ran; Apgar, Brent A.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Apgar, Brent A.] Univ Illinois, Dept Mat Sci & Engn, Champaign, IL 61801 USA. [Martin, Lane W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bowden, Mark E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Comes, RB (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. EM ryan.comes@pnnl.gov RI Martin, Lane/H-2409-2011; Comes, Ryan/A-1957-2013; OI Martin, Lane/0000-0003-1889-2513; Comes, Ryan/0000-0002-5304-6921; Smolin, Sergey/0000-0003-3646-4520; Baxter, Jason/0000-0001-8702-3915 FU Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory [PNNL LDRD PN13100/2581]; PNNL by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122]; Department of Energy's Office of Biological and Environmental Research; National Science Foundation [ECCS-1201957, DMR-1124696]; NSF MRI [DMR-0922929]; Air Force Office of Scientific Research [FA9550-12-1-0471]; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER); Japanese Ministry of Education, Culture, Sport, Science and Technology FX The authors would like to thank Professor Steve May for helpful discussions and for providing single crystal substrates for transient reflectance calibration. R.B.C. was supported by the Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD PN13100/2581). S.A.C, T.C.K., and M.E.B. were supported at PNNL by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award No. 10122. The PNNL work was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Drexel work was supported by the National Science Foundation through award ECCS-1201957 using an ultrafast spectrometer that was acquired with funds from NSF MRI award DMR-0922929. R.G. acknowledges support from the Air Force Office of Scientific Research under grant FA9550-12-1-0471. B.A.A. acknowledges support from the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sport, Science and Technology. L.W.M. acknowledges support from the National Science Foundation under Grant DMR-1124696. NR 31 TC 6 Z9 6 U1 6 U2 73 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2015 VL 106 IS 9 AR 092901 DI 10.1063/1.4913930 PG 5 WC Physics, Applied SC Physics GA CD4RA UT WOS:000351069900039 ER PT J AU Munkhbaatar, P Marton, Z Tsermaa, B Choi, WS Seo, SSA Kim, JS Nakagawa, N Hwang, HY Lee, HN Myung-Whun, K AF Munkhbaatar, Purevdorj Marton, Zsolt Tsermaa, Baatarchuluun Choi, Woo Seok Seo, Sung S. Ambrose Kim, Jin Seung Nakagawa, Naoyuki Hwang, Harold Y. Lee, Ho Nyung Myung-Whun, Kim TI Room temperature optical anisotropy of a LaMnO3 thin-film induced by ultra-short pulse laser SO APPLIED PHYSICS LETTERS LA English DT Article ID DYNAMICS AB We observed ultra-short laser pulse-induced transient optical anisotropy in a LaMnO3 thin film. The anisotropy was induced by laser pulse irradiation with a fluence of less than 0.1 mJ/cm(2) at room temperature. The transmittance and reflectance showed strong dependence on the polarization states of the pulses. For parallel and perpendicular polarization states, there exists a difference of approximately 0.2% for transmittance and 0.05% for reflectance at 0.3 ps after the irradiation with a pump pulse, respectively. The theoretical values for optical transmittance and reflectance with an assumption of an orbital ordering of 3d e(g) electrons in Mn3+ ions showed good agreement with the experimental results, demonstrating that the transient optical anisotropy in LaMnO3 thin film is due to the photo-induced symmetry-breaking of orbital ordering in excited states. (C) 2015 AIP Publishing LLC. C1 [Munkhbaatar, Purevdorj; Kim, Jin Seung; Myung-Whun, Kim] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea. [Munkhbaatar, Purevdorj; Kim, Jin Seung; Myung-Whun, Kim] Chonbuk Natl Univ, IPIT, Jeonju 561756, South Korea. [Marton, Zsolt; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Tsermaa, Baatarchuluun] Natl Univ Mongolia, Dept Geophys, Ulaanbaatar 210646, Mongol Peo Rep. [Choi, Woo Seok] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Seo, Sung S. Ambrose] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Nakagawa, Naoyuki] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan. [Hwang, Harold Y.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Myung-Whun, K (reprint author), Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea. EM mwkim@chonbuk.ac.kr RI Choi, Woo Seok/G-8783-2014; Seo, Sung Seok/B-6964-2008; Lee, Ho Nyung/K-2820-2012; OI Seo, Sung Seok/0000-0002-7055-5314; Lee, Ho Nyung/0000-0002-2180-3975; Marton, Zsolt/0000-0001-5704-7561 FU National Research Foundation of Korea [2012R1A1A4A01010025, 220-2011-1-C00016, 2014R1A2A2A01006478]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX The authors acknowledge J. G. Connell (University of Kentucky) for valuable comments. This study was supported by the National Research Foundation of Korea (Grant Nos. 2012R1A1A4A01010025, 220-2011-1-C00016, and 2014R1A2A2A01006478), and the work done at Oak Ridge National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. NR 19 TC 1 Z9 1 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2015 VL 106 IS 9 AR 092907 DI 10.1063/1.4914094 PG 4 WC Physics, Applied SC Physics GA CD4RA UT WOS:000351069900045 ER PT J AU Ting, M dos Reis, R Jaquez, M Dubon, OD Mao, SS Yu, KM Walukiewicz, W AF Ting, M. dos Reis, R. Jaquez, M. Dubon, O. D. Mao, S. S. Yu, K. M. Walukiewicz, W. TI Electronic band structure of ZnO-rich highly mismatched ZnO1-xTex alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID SEMICONDUCTORS AB We synthesized ZnO1-xTex alloys with Te composition x < 0.23 by using pulsed laser deposition. Alloys with x < 0.06 are crystalline with a columnar growth structure while samples with higher Te content are polycrystalline with random grain orientation. Electron microscopy images show a random distribution of Te atoms with no observable clustering. We found that the incorporation of a small concentration of Te (x similar to 0.003) redshifts the ZnO optical absorption edge by more than 1 eV. The minimum band gap obtained in this work is 1.8 eV for x = 0.23. The optical properties of the alloys are explained by the modification of the valence band of ZnO, due to the anticrossing interactions of the localized Te states with the ZnO valence band extended states. Hence, the observed large band gap reduction is primarily originating from the upward shift of the valence band edge. We show that the optical data can be explained by the band anticrossing model with the localized level of Te located at 0.95 eV above the ZnO valence band and the band anticrossing coupling constant of 1.35 eV. These parameters allow the prediction of the compositional dependence of the band gap as well as the conduction and the valence band offsets in the full composition range of ZnO1-xTex alloys. (C) 2015 AIP Publishing LLC. C1 [Ting, M.; Jaquez, M.; Dubon, O. D.; Yu, K. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ting, M.; Jaquez, M.; Mao, S. S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [dos Reis, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Dubon, O. D.] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. [Yu, K. M.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Ting, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI dos Reis, Roberto/E-9486-2012; OI dos Reis, Roberto/0000-0002-6011-6078; Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and National Center for Electron Microscopy/LBNL [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and National Center for Electron Microscopy/LBNL, under Contract No. DE-AC02-05CH11231. NR 15 TC 4 Z9 4 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2015 VL 106 IS 9 AR 092101 DI 10.1063/1.4913840 PG 5 WC Physics, Applied SC Physics GA CD4RA UT WOS:000351069900023 ER PT J AU Vasudevan, RK Belianinov, A Gianfrancesco, AG Baddorf, AP Tselev, A Kalinin, SV Jesse, S AF Vasudevan, Rama K. Belianinov, Alex Gianfrancesco, Anthony G. Baddorf, Arthur P. Tselev, Alexander Kalinin, Sergei V. Jesse, S. TI Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity SO APPLIED PHYSICS LETTERS LA English DT Article ID SURFACE; FILMS; FERROELECTRICS; INTERFERENCE AB Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 (LCMO) films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis and Independent Component Analysis of the Sliding FFT dataset reveal the distinct changes in crystallography, step edges, and boundaries between the multiple sub-lattices. The implications for the LCMO system are discussed. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present. (C) 2015 AIP Publishing LLC. C1 [Vasudevan, Rama K.; Belianinov, Alex; Baddorf, Arthur P.; Tselev, Alexander; Kalinin, Sergei V.; Jesse, S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vasudevan, Rama K.; Belianinov, Alex; Baddorf, Arthur P.; Tselev, Alexander; Kalinin, Sergei V.; Jesse, S.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. [Gianfrancesco, Anthony G.; Kalinin, Sergei V.] Univ Tennessee, UT ORNL Bredesen Ctr, Knoxville, TN 37996 USA. RP Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM rvv@ornl.gov RI Tselev, Alexander/L-8579-2015; Vasudevan, Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016; OI Tselev, Alexander/0000-0002-0098-6696; Vasudevan, Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382; Belianinov, Alex/0000-0002-3975-4112 FU Division of Materials Sciences and Engineering, BES, DOE; Center for Nanophase Materials Sciences; UT/ORNL Bredesen Center for Interdisciplinary Research and Graduate Education FX We gratefully acknowledge R. Archibald (ORNL) for fruitful discussions. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE (R.K.V., A.T., and S.V.K.). This research was conducted at and partially supported by (A.B. and S.J.) the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. A.G. acknowledges fellowship support from the UT/ORNL Bredesen Center for Interdisciplinary Research and Graduate Education. NR 28 TC 9 Z9 9 U1 7 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 2 PY 2015 VL 106 IS 9 AR 091601 DI 10.1063/1.4914016 PG 5 WC Physics, Applied SC Physics GA CD4RA UT WOS:000351069900011 ER PT J AU Cao, BF Neuefeind, JC Adzic, RR Khalifah, PG AF Cao, Bingfei Neuefeind, Joerg C. Adzic, Radoslav R. Khalifah, Peter G. TI Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts: Structural and Electrochemical Studies SO INORGANIC CHEMISTRY LA English DT Article ID METAL ELECTROCATALYSTS; FUEL-CELLS; MON AB Monometallic (delta-MoN, Mo5N6, and Mo2N) and bimetallic molybdenum nitrides (Co0.6Mo1.4N2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (gamma-Mo2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co0.6Mo1.4N2), resulting in a modest onset potential of 0.713 V versus reversible hydrogen electrode (RHE). Co0.6Mo1.4N2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. The revised monometallic hexagonal nitride structures all share many common features with the Co0.6Mo1.4N2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for delta-MoN). C1 [Cao, Bingfei; Khalifah, Peter G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Cao, Bingfei; Adzic, Radoslav R.; Khalifah, Peter G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. [Neuefeind, Joerg C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Khalifah, PG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM kpete@bnl.gov RI Neuefeind, Joerg/D-9990-2015 OI Neuefeind, Joerg/0000-0002-0563-1544 FU National Science Foundation [DMR-0955646]; American Chemical Society Petroleum Research Fund; BNL LDRD [10-0012] FX Primary funding was provided by the National Science Foundation under the CAREER award DMR-0955646. Acknowledgment is also made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. Additional support was also provided through BNL LDRD 10-0012. NR 19 TC 19 Z9 19 U1 16 U2 137 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD MAR 2 PY 2015 VL 54 IS 5 BP 2128 EP 2136 DI 10.1021/ic5024778 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CC5IF UT WOS:000350391600010 PM 25664974 ER PT J AU Maurice, R Renault, E Gong, Y Rutkowski, PX Gibson, JK AF Maurice, Remi Renault, Eric Gong, Yu Rutkowski, Philip X. Gibson, John K. TI Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO3(NO3)(2)(-) ? SO INORGANIC CHEMISTRY LA English DT Article ID OXIDATION-STATES; BASIS-SETS; COORDINATION-COMPLEXES; ELECTRONIC-STRUCTURES; WEAK FERROMAGNETISM; ACTINIDE OXIDES; METAL; LANTHANIDE; PUO22+; URANYL AB Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated in a quadrupole ion trap and subjected to collision-induced dissociation (CID). CID of complexes of the general formula PuOx(NO3)(y) resulted in the elimination of NO2 to produce PuOx+1(NO3)(y-1)(-), which in most cases corresponds to an increase in the oxidation state of plutonium. Plutonyl species, PuVO2(NO3)(2) and PuVIO2(NO3)(3), were produced from PuIII(NO3)(4) and PuIV(NO3)(5)(-) , respectively, by the elimination of two NO2 molecules. CID of (PuO2)-O-VI(NO3)(3)(-) resulted in NO2 elimination to yield PuO3(NO3)(2)(-) , in which the oxidation state of plutonium could be VII, a known oxidation state in condensed phase but not yet in the gas phase. Density functional theory confirmed the nature of (PuO2)-O-V(NO3)(2)(-) and (PuO2)-O-VI(NO3)(3)(-) as plutonyl(V/VI) cores coordinated by bidentate equatorial nitrate ligands. The computed structure of PuO3(NO3)(2)(-) is essentially a plutonyl(VI) core, PuVIO2 (2+) , coordinated in the equatorial plane by two nitrate ligands and one radical oxygen atom. The computations indicate that in the ground spinorbit free state of PuO3(NO3)(2)(-) , the unpaired electron of the oxygen atom is antiferromagnetically coupled to the spin-triplet state of the plutonyl core. The results indicate that Pu(VII) is not a readily accessible oxidation state in the gas phase, despite that it is stable in solution and solids, but rather that a Pu(VI)-O. bonding configuration is favored, in which an oxygen radical is involved. C1 [Maurice, Remi] Univ Nantes, SUBATECH, IN2P3, UMR 6457,CNRS,EMN Nantes, F-44307 Nantes 3, France. [Renault, Eric] Univ Nantes, CEISAM, CNRS, UMR 6230, F-44322 Nantes 3, France. [Gong, Yu; Rutkowski, Philip X.; Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Maurice, R (reprint author), Univ Nantes, SUBATECH, IN2P3, UMR 6457,CNRS,EMN Nantes, 4 Rue Alfred Kastler,BP 20722, F-44307 Nantes 3, France. EM remi.maurice@subatech.in2p3.fr; jkgibson@lbl.gov OI Renault, Eric/0000-0001-5525-812X FU U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry at LBNL [DE-AC02-05CH11231] FX The work of Y.G., P.X.R, and J.K.G. was fully supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry, at LBNL under Contract No. DE-AC02-05CH11231. NR 54 TC 7 Z9 7 U1 12 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD MAR 2 PY 2015 VL 54 IS 5 BP 2367 EP 2373 DI 10.1021/ic502969w PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CC5IF UT WOS:000350391600035 PM 25695878 ER PT J AU Mishra, V AF Mishra, Vivek TI Effect of disorder on superconductivity in the presence of spin-density wave order SO PHYSICAL REVIEW B LA English DT Article ID IRON PNICTIDES; IMPURITIES AB The majority of unconventional superconductors has close proximity to a magnetic phase. In many cases, the magnetic phase coexists with superconductivity in some fraction of the phase diagram. The response of these two competing phases to disorder can be used as a tool to gain a better understanding of these complex systems. Here I consider the effect of disorder on a multiband superconductor appropriate for the ferro-pnictide superconductors. I consider both interband and intraband scattering for a two-band model consisting of a hole pocket and an electron pocket. The scattering from pointlike impurities is treated within the self-consistent Born approximation. I calculate the effect of disorder on the transition temperature to the superconducting state. The influence of impurity scattering on the low-energy excitation spectrum in the superconducting state is also studied for different kinds of gap structures. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Mishra, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science [DE-AC0298CH1088] FX I thank Alexei Koshelev and Maxime Leroux for useful discussions. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, under Award No. DE-AC0298CH1088. NR 31 TC 4 Z9 4 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR 2 PY 2015 VL 91 IS 10 AR 104501 DI 10.1103/PhysRevB.91.104501 PG 8 WC Physics, Condensed Matter SC Physics GA CD3QO UT WOS:000350994600003 ER PT J AU Shang, T Chen, YH Ronning, F Cornell, N Thompson, JD Zakhidov, A Salamon, MB Yuan, HQ AF Shang, T. Chen, Y. H. Ronning, F. Cornell, N. Thompson, J. D. Zakhidov, A. Salamon, M. B. Yuan, H. Q. TI Magnetocrystalline anisotropic effect in GdCo1-xFexAsO (x=0,0.05) SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB From a systematic study of the electrical resistivity rho(T, H), magnetic susceptibility chi(T, H), isothermal magnetization M(H), and the specific heat C(T, H), a temperature-magnetic field (T - H) phase diagram has been established for GdCo1-xFexAsO (x = 0 and 0.05) polycrystalline compounds. GdCoAsO undergoes two long-range magnetic transitions: ferromagnetic (FM) transition of Co 3d electrons (T-Co(C)) and antiferromagnetic (AFM) transition of Gd 4f electrons (T-N(Gd)). For the Fe-doped sample (x = 0.05), an extra magnetic reorientation transition takes place below T-N(Gd), which is likely associated with Co moments. The two magnetic species of Gd and Co are coupled antiferromagnetically to give rise to ferrimagnetic (FIM) behavior in the magnetic susceptibility. Upon decreasing the temperature (T < T-N(Co)), the magnetocrystalline anisotropy breaks up the FM order of Co by aligning the moments with the local easy axes of the various grains, leading to a spin reorientation transition at T-R(Co). By applying a magnetic field, T-R(Co) monotonically decreases to lower temperatures, while the T-N(Gd) is relatively robust against the external field. On the other hand, the applied magnetic field pulls the magnetization of grains from the local easy direction to the field direction via a first-order reorientation transition, with the transition field (H-M) increasing upon cooling the temperature. C1 [Shang, T.; Chen, Y. H.; Yuan, H. Q.] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Zhejiang, Peoples R China. [Shang, T.; Chen, Y. H.; Yuan, H. Q.] Zhejiang Univ, Dept Phys, Hangzhou 310058, Zhejiang, Peoples R China. [Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cornell, N.; Zakhidov, A.; Salamon, M. B.] Univ Texas Dallas, UTD NanoTech Inst, Richardson, TX 75083 USA. [Yuan, H. Q.] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. RP Shang, T (reprint author), Chinese Acad Sci, Key Lab Magnet Mat & Devices, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China. EM hqyuan@zju.edu.cn OI Ronning, Filip/0000-0002-2679-7957 FU National Basic Research Program of China [2011CBA00103]; National Natural Science Foundation of China [11174245]; Fundamental Research Funds for the Central Universities; US DOE; AFOSR [FA 9550-09-1-0384] FX We acknowledge the fruitful discussions with Marcelo Jaime. Work at Zhejiang University is supported by the National Basic Research Program of China (Grant No. 2011CBA00103), the National Natural Science Foundation of China (Grant No. 11174245), and the Fundamental Research Funds for the Central Universities. Work at Los Alamos National Lab was performed under the auspices of the US DOE. Work at The University of Texas at Dallas is supported by the AFOSR Project No. FA 9550-09-1-0384 on novel nanostructured superconductors. NR 34 TC 0 Z9 0 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR 2 PY 2015 VL 91 IS 12 AR 125106 DI 10.1103/PhysRevB.91.125106 PG 7 WC Physics, Condensed Matter SC Physics GA CD3QW UT WOS:000350995800007 ER PT J AU Ekeberg, T Svenda, M Abergel, C Maia, FRNC Seltzer, V Claverie, JM Hantke, M Jonsson, O Nettelblad, C van der Schot, G Liang, M DePonte, DP Barty, A Seibert, MM Iwan, B Andersson, I Loh, ND Martin, AV Chapman, H Bostedt, C Bozek, JD Ferguson, KR Krzywinski, J Epp, SW Rolles, D Rudenko, A Hartmann, R Kimmel, N Hajdu, J AF Ekeberg, Tomas E Svenda, Martin Abergel, Chantal Maia, Filipe R. N. C. Seltzer, Virginie Claverie, Jean-Michel Hantke, Max Joensson, Olof Nettelblad, Carl van der Schot, Gijs Liang, Mengning DePonte, Daniel P. Barty, Anton Seibert, M. Marvin Iwan, Bianca Andersson, Inger Loh, N. Duane Martin, Andrew V. Chapman, Henry Bostedt, Christoph Bozek, John D. Ferguson, Ken R. Krzywinski, Jacek Epp, Sascha W. Rolles, Daniel Rudenko, Artem Hartmann, Robert Kimmel, Nils Hajdu, Janos TI Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFRACTION MICROSCOPY; CRYOMICROSCOPY; PROTEIN; PULSES AB We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods. C1 [Ekeberg, Tomas E; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max; Joensson, Olof; Nettelblad, Carl; van der Schot, Gijs; Seibert, M. Marvin; Iwan, Bianca; Andersson, Inger; Hajdu, Janos] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Abergel, Chantal; Seltzer, Virginie; Claverie, Jean-Michel] Aix Marseille Univ, Inst Microbiol Mediterranee, CNRS, Genom & Struct IGS,UMR 7256, F-13288 Marseille 9, France. [Maia, Filipe R. N. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA. [Liang, Mengning; DePonte, Daniel P.; Barty, Anton; Chapman, Henry] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Seibert, M. Marvin; Bostedt, Christoph; Bozek, John D.; Ferguson, Ken R.; Krzywinski, Jacek] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Iwan, Bianca] CEA Saclay, Attophys Grp, F-91191 Gif Sur Yvette, France. [Loh, N. Duane] Natl Univ Singapore, Ctr BioImaging Sci, Singapore 117546, Singapore. [Martin, Andrew V.] Univ Melbourne, Parkville, Vic 3010, Australia. [Chapman, Henry] Univ Hamburg, D-22607 Hamburg, Germany. [Epp, Sascha W.; Rolles, Daniel] Ctr Free Elect Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. [Rolles, Daniel; Rudenko, Artem] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. [Hartmann, Robert] PNSensor GmbH, D-80803 Munich, Germany. [Kimmel, Nils] Max Planck Inst Halbleiterlabor, D-81739 Munich, Germany. [Kimmel, Nils] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Hajdu, Janos] European XFEL, D-22761 Hamburg, Germany. RP Ekeberg, T (reprint author), Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, Husargatan 3,Box 596, SE-75124 Uppsala, Sweden. EM ekeberg@xray.bmc.uu.se RI Rudenko, Artem/C-7412-2009; Barty, Anton/K-5137-2014; Nettelblad, Carl/C-5138-2013; Loh, Duane/I-7371-2013; Chapman, Henry/G-2153-2010; Bozek, John/E-9260-2010; OI Rudenko, Artem/0000-0002-9154-8463; Barty, Anton/0000-0003-4751-2727; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Nettelblad, Carl/0000-0003-0458-6902; Loh, Duane/0000-0002-8886-510X; Chapman, Henry/0000-0002-4655-1743; Bozek, John/0000-0001-7486-7238; MARTIN, ANDREW/0000-0003-3704-1829; Epp, Sascha/0000-0001-6366-9113; Claverie, jean-michel/0000-0003-1424-0315 FU Swedish Research Council; Knut and Alice Wallenberg Foundation; European Research Council; Rontgen-Angstrom Cluster; Stiftelsen Olle Engkvist Byggmastare; Max Planck Society FX This work was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council, the Rontgen-Angstrom Cluster, and Stiftelsen Olle Engkvist Byggmastare. Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We thank Professor Ilme Schlichting for her help with data collection. We are grateful to the scientific and technical staff of the LCLS for support. We are indebted to the CAMP Collaboration for giving us access to their experimental setup and for supporting the experiment at the LCLS. We also acknowledge the Max Planck Society for funding the development and operation of the CAMP instrument, which benefitted many users at the LCLS. We thank the Institut de Biologie Structurale in Grenoble for electron microscopy. NR 25 TC 44 Z9 46 U1 9 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 2 PY 2015 VL 114 IS 9 AR 098102 DI 10.1103/PhysRevLett.114.098102 PG 6 WC Physics, Multidisciplinary SC Physics GA CD3SG UT WOS:000351000300010 PM 25793853 ER PT J AU Sha, SJ Ghosh, PM Lee, SE Corbetta-Rastelli, C Jagust, WJ Kornak, J Rankin, KP Grinberg, LT Vinters, HV Mendez, MF Dickson, DW Seeley, WW Gorno-Tempini, M Kramer, J Miller, BL Boxer, AL Rabinovici, GD AF Sha, Sharon J. Ghosh, Pia M. Lee, Suzee E. Corbetta-Rastelli, Chiara Jagust, Willian J. Kornak, John Rankin, Katherine P. Grinberg, Lea T. Vinters, Harry V. Mendez, Mario F. Dickson, Dennis W. Seeley, William W. Gorno-Tempini, Marilu Kramer, Joel Miller, Bruce L. Boxer, Adam L. Rabinovici, Gil D. TI Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography SO ALZHEIMERS RESEARCH & THERAPY LA English DT Article ID PITTSBURGH COMPOUND-B; ALZHEIMERS-DISEASE; PATHOLOGICAL HETEROGENEITY; FRONTOTEMPORAL DEMENTIA; DIFFERENTIAL-DIAGNOSIS; DEGENERATION SYNDROME; BRAIN ATROPHY; FDG-PET; PATTERNS; DEPOSITION AB Introduction: Group comparisons demonstrate greater visuospatial and memory deficits and temporoparietal- predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer's disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG- PET) for predicting amyloid deposition (as a surrogate of Alzheimer's disease neuropathology) in patients presenting with CBS. Methods: In total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG- PET were classified based on the predominant atrophy/ hypometabolism pattern (frontal or temporoparietal). Results: A total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra- rater reliability (Cohen's kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra- rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD). Conclusions: Splitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal- predominant neuroimaging patterns are sensitive but not specific for AD. C1 [Sha, Sharon J.] Stanford Univ, Med Ctr, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. [Ghosh, Pia M.; Lee, Suzee E.; Corbetta-Rastelli, Chiara; Jagust, Willian J.; Rankin, Katherine P.; Grinberg, Lea T.; Seeley, William W.; Gorno-Tempini, Marilu; Kramer, Joel; Miller, Bruce L.; Boxer, Adam L.; Rabinovici, Gil D.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Ghosh, Pia M.; Corbetta-Rastelli, Chiara; Jagust, Willian J.; Rabinovici, Gil D.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Jagust, Willian J.; Rabinovici, Gil D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kornak, John] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA. [Dickson, Dennis W.] Mayo Clin, Dept Lab Med & Pathol, Jacksonville, FL 32224 USA. [Vinters, Harry V.; Mendez, Mario F.] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA. [Vinters, Harry V.] Univ Calif Los Angeles, Dept Pathol & Lab Med, Los Angeles, CA 90024 USA. RP Sha, SJ (reprint author), Stanford Univ, Med Ctr, Dept Neurol & Neurol Sci, 300 Pasteur Dr,Rm A343, Stanford, CA 94305 USA. EM ssha1@stanford.edu OI grinberg, lea/0000-0002-6809-0618 FU NIA NIH HHS [K23 AG039414, P01 AG019724, R01 AG038791, P50 AG023501, P01 AG017586, R01 AG027859, T32 AG023481]; NINDS NIH HHS [R01 NS050915, U54 NS092089] NR 39 TC 5 Z9 6 U1 1 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1758-9193 J9 ALZHEIMERS RES THER JI Alzheimers Res. Ther. PD MAR 2 PY 2015 VL 7 AR 8 DI 10.1186/s13195-014-0093-y PG 12 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA CD8KL UT WOS:000351343600001 PM 25733984 ER PT J AU Shih, PM AF Shih, Patrick M. TI Cyanobacterial Evolution: Fresh Insight into Ancient Questions SO CURRENT BIOLOGY LA English DT Editorial Material ID ATMOSPHERIC OXYGEN; EUKARYOTES; LIFE; ANIMALS; ATPASE; ORIGIN; RISE; TREE AB The invention of oxygenic photosynthesis by cyanobacteria 2.4 billion years ago forever transformed Earth. This biogeochemical shift set into motion the evolution of subsequent microbial metabolisms and lifestyles. A new study provides a novel approach in piecing together evidence for how this evolutionary transition may have occurred. C1 [Shih, Patrick M.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Shih, Patrick M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Shih, PM (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM pmshih@lbl.gov NR 15 TC 2 Z9 2 U1 1 U2 27 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0960-9822 EI 1879-0445 J9 CURR BIOL JI Curr. Biol. PD MAR 2 PY 2015 VL 25 IS 5 BP R192 EP R193 DI 10.1016/j.cub.2014.12.046 PG 2 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CC9RP UT WOS:000350708800008 PM 25734266 ER PT J AU Olsen, RJ AF Olsen, Raina J. TI High-temperature supersolid of He-4 in a one-dimensional periodic potential SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATION; OPTICAL LATTICES; CARBON NANOTUBES; ATOMS; HELIUM; GAS; LIQUID-HE-4; SUPERFLUID; GRAPHITE; PHASE AB The search for robust experimental proof of supersolidity has encountered many complicating factors, such as temperature-dependent changes in the mechanical properties of solid He-4 which mimic the signature of superfluid flow. As a result, the physical existence and true nature of this unique state of matter are still under debate. Here we consider He-4 stabilized by a one-dimensional periodic potential whose lattice spacing is similar to the length scale of the He-4-He-4 interaction. We use the Bogoliubov transformation to calculate the excitation spectrum, finding that when interactions between nearest or next-nearest neighbors are strongly attractive, there is a finite positive gap in energy between the delocalized ground state and the lowest energy excitations, which is significantly larger than the both the lambda temperature and the melting temperature. Not only does this make the system stable against phase separation of particles and vacancies, but it also means that it should be possible to observe a supersolid at a high-enough temperature that superfluidity in bulk liquid He-4 or changes in the mechanical properties of bulk solid He-4 do not obscure it. The properties of experimentally achievable materials which could support this type of supersolid are also discussed. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Olsen, RJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM olsenrj@ornl.gov FU U.S. Department of Energy Energy Efficiency and Renewable Energy (DOE-EERE); U.S. Department of Energy [DE-AC05-00OR22725] FX This work was partially supported by the U.S. Department of Energy Energy Efficiency and Renewable Energy (DOE-EERE) Postdoctoral Research Awards under the EERE Fuel Cell Technologies Program, administered by ORISE for the DOE. ORISE is managed by ORAU (DEAC05-06OR23100). We thank J. Morris, G. Siopsis, and C. Wexler for helpful discussions. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. NR 43 TC 0 Z9 0 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD MAR 2 PY 2015 VL 91 IS 3 AR 033602 DI 10.1103/PhysRevA.91.033602 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CD3QI UT WOS:000350993900004 ER PT J AU Gardim, FG Noronha-Hostler, J Luzum, M Grassi, F AF Gardim, Fernando G. Noronha-Hostler, Jacquelyn Luzum, Matthew Grassi, Frederique TI Effects of viscosity on the mapping of initial to final state in heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; BULK VISCOSITY; ELLIPTIC-FLOW; PB COLLISIONS; TEV; SPECTRA AB We investigate the correlation between various aspects of the initial geometry of heavy ion collisions at the BNL Relativistic Heavy Ion Collider energies and the final anisotropic flow, using v-USPhydro, a 2 + 1 event-by-event viscous relativistic hydrodynamical model. We test the extent of which shear and bulk viscosity affect the prediction of the final flow harmonics, v(n), from the initial eccentricities, epsilon(n). We investigate in detail the flow harmonics v(1) through v(5) where we find that v(1), v(4), and v(5) are dependent on more complicated aspects of the initial geometry that are especially important for the description of peripheral collisions, including a nonlinear dependence on eccentricities as well as a dependence on shorter-scale features of the initial density. Furthermore, we compare our results to previous results from NeXSPheRIO, a 3 + 1 relativistic ideal hydrodynamical model that has a nonzero initial flow contribution, and find that the combined contribution from 3 + 1 dynamics and nonzero, fluctuating initial flow decreases the predictive ability of the initial eccentricities, in particular for very peripheral collisions, but also disproportionately in central collisions. C1 [Gardim, Fernando G.] Univ Fed Alfenas, Inst Ciencia & Tecnol, BR-37715400 Pocos De Caldas, MG, Brazil. [Noronha-Hostler, Jacquelyn] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Noronha-Hostler, Jacquelyn; Grassi, Frederique] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil. [Luzum, Matthew] McGill Univ, Montreal, PQ H3A 2TS, Canada. [Luzum, Matthew] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Luzum, Matthew] Univ Santiago de Compostela, Dept Fis Particulas, E-15706 Santiago De Compostela, Spain. [Luzum, Matthew] Univ Santiago de Compostela, IGFAE, E-15706 Santiago De Compostela, Spain. RP Gardim, FG (reprint author), Univ Fed Alfenas, Inst Ciencia & Tecnol, Cidade Univ, BR-37715400 Pocos De Caldas, MG, Brazil. RI Luzum, Matthew/C-4986-2015; Gardim, Fernando/N-4365-2013; Grassi, Frederique/E-6374-2013 OI Luzum, Matthew/0000-0002-0367-7055; Gardim, Fernando/0000-0002-4838-1469; FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) e NAP-QCD/Universidade de Sao Paulo, in Brazil; Office of Nuclear Physics in the US Department of Energy's Office of Science [DE-AC02-05CH11231]; Marie Curie Intra-European Fellowship [FP7-PEOPLE-2013-IEF-626212]; US-DOE Nuclear Science [DE-FG02-93ER40764] FX This work was supported in part by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) e NAP-QCD/Universidade de Sao Paulo, in Brazil. M.L. was supported by the Office of Nuclear Physics in the US Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231 and by a Marie Curie Intra-European Fellowship for Career Development Grant, FP7-PEOPLE-2013-IEF-626212. J.N.H. acknowledges support from the US-DOE Nuclear Science Grant No. DE-FG02-93ER40764. NR 51 TC 17 Z9 17 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR 2 PY 2015 VL 91 IS 3 AR 034902 DI 10.1103/PhysRevC.91.034902 PG 11 WC Physics, Nuclear SC Physics GA CD3RS UT WOS:000350998600007 ER PT J AU Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Ives, J Izmaylov, AO Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kudenko, YG Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Poutissou, R Redlinger, G Sato, T Sekiguchi, T Shaikhiev, AT Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Wang, Z Wei, HY Yershov, NV Yoshimura, Y Yoshioka, T AF Artamonov, A. V. Bassalleck, B. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I-H. Christidi, I. -A. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Hu, J. Ives, J. Izmaylov, A. O. Jaffe, D. E. Kabe, S. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kudenko, Yu. G. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Poutissou, R. Redlinger, G. Sato, T. Sekiguchi, T. Shaikhiev, A. T. Shinkawa, T. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Wang, Zhe Wei, Hanyu Yershov, N. V. Yoshimura, Y. Yoshioka, T. CA E949 Collaboration TI Search for heavy neutrinos in K+ -> mu(+)nu(H) decays SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER; LEPTONS; BEAM; PARTICLES; MASSES; LIMITS; TESTS; VMSM AB Evidence of a heavy neutrino, nu(H), in the K+ -> mu(+)nu(H) decays was sought using the E949 experimental data with an exposure of 1.70 x 10(12) stopped kaons. With the major background from the radiative K+ -> mu(+)nu(mu)gamma decay understood and suppressed, upper limits (90% C.L.) on the neutrino mixing matrix element between the muon and heavy neutrinos, vertical bar U-mu H vertical bar(2), were set at the level of 10(-7) to 10(-9) for the heavy neutrino mass region 175 to 300 MeV/c(2). C1 [Artamonov, A. V.; Landsberg, L. G.; Obraztsov, V. F.; Patalakha, D. I.; Vavilov, D. V.] Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bhuyan, B.; Chiang, I-H.; Diwan, M. V.; Frank, J. S.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.; Wang, Zhe] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blackmore, E. W.; Chen, S.; Hu, J.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bryman, D. A.; Ives, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Izmaylov, A. O.; Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Shaikhiev, A. T.; Yershov, N. V.] RAS, Inst Nucl Res, Moscow 117312, Russia. [Kabe, S.; Kobayashi, M.; Komatsubara, T. K.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kitching, P.] Univ Alberta, Ctr Subat Res, Edmonton, AB T6G 2N5, Canada. [Kudenko, Yu. G.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Kudenko, Yu. G.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia. [Miyajima, M.; Tamagawa, Y.] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] OsakaUniversity, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Nucl Phys Lab, Toyonaka, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Yokosuka, Kanagawa 2398686, Japan. RP Artamonov, AV (reprint author), Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. RI Khabibullin, Marat/O-1076-2013; Wei, Hanyu/D-7291-2017 OI Wei, Hanyu/0000-0003-1973-4912 FU Russian Science Foundation [14-12-00560]; U.S. Department of Energy; Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics; Natural Sciences and Engineering Research Council; National Research Council of Canada; National Natural Science Foundation of China; Tsinghua University Initiative Scientific Research Program FX This research was supported in part by Grant No. 14-12-00560 of the Russian Science Foundation, the U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics and under Grant-in-Aids for Scientific Research, the Natural Sciences and Engineering Research Council and the National Research Council of Canada, National Natural Science Foundation of China, and the Tsinghua University Initiative Scientific Research Program. NR 42 TC 13 Z9 13 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2015 VL 91 IS 5 AR 052001 DI 10.1103/PhysRevD.91.052001 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD3RT UT WOS:000350998700004 ER PT J AU Bala, A Bhardwaj, V Trabelsi, K Singh, JB Abdesselam, A Adachi, I Aihara, H Arinstein, K Asner, DM Aulchenko, V Aushev, T Ayad, R Aziz, T Bahinipati, S Bakich, AM Bansal, V Barberio, E Bhuyan, B Bobrov, A Bonvicini, G Bozek, A Bracko, M Browder, TE Cervenkov, D Chen, A Cheon, BG Chistov, R Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Dingfelder, J Dolezal, Z Drutskoy, A Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Frost, O Gaur, V Gabyshev, N Garmash, A Getzkow, D Goh, YM Golob, B Grzymkowska, O Haba, J Hara, T Hayashii, H He, XH Heller, A Horiguchi, T Hou, WS Huschle, M Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Jaegle, I Joffe, D Kang, KH Kato, E Kawasaki, T Kiesling, C Kim, DY Kim, JB Kim, JH Kim, KT Kim, MJ Kim, SH Kim, YJ Kinoshita, K Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kuhr, T Kumar, R Kuzmin, A Kwon, YJ Lange, JS Lee, IS Li, Y Gioi, LL Libby, J Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyake, H Miyata, H Mizuk, R Mohanty, GB Mohanty, S Moll, A Moon, HK Mussa, R Nakano, E Nakao, M Natkaniec, Z Nayak, M Nisar, NK Nishida, S Ogawa, S Okuno, S Olsen, SL Pakhlov, P Pakhlova, G Park, CW Park, H Pestotnik, R Petric, M Piilonen, LE Ribezl, E Ritter, M Sakai, Y Sandilya, S Santelj, L Sanuki, T Savinov, V Schneider, O Schnell, G Schwanda, C Senyo, K Seon, O Sevior, ME Shebalin, V Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Sokolov, A Solovieva, E Staric, M Steder, M Sumihama, M Sumiyoshi, T Tanida, K Tatishvili, G Teramoto, Y Thorne, F Trusov, V Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Vanhoefer, P Varner, G Vinokurova, A Vorobyev, V Wagner, MN Wang, CH Wang, XL Watanabe, Y Williams, KM Won, E Yamamoto, H Yamashita, Y Yashchenko, S Yuan, CZ Zhang, ZP Zhilich, V Zhulanov, V Ziegler, M Zupanc, A AF Bala, A. Bhardwaj, V. Trabelsi, K. Singh, J. B. Abdesselam, A. Adachi, I. Aihara, H. Arinstein, K. Asner, D. M. Aulchenko, V. Aushev, T. Ayad, R. Aziz, T. Bahinipati, S. Bakich, A. M. Bansal, V. Barberio, E. Bhuyan, B. Bobrov, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Cervenkov, D. Chen, A. Cheon, B. G. Chistov, R. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Dingfelder, J. Dolezal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Frost, O. Gaur, V. Gabyshev, N. Garmash, A. Getzkow, D. Goh, Y. M. Golob, B. Grzymkowska, O. Haba, J. Hara, T. Hayashii, H. He, X. H. Heller, A. Horiguchi, T. Hou, W. -S. Huschle, M. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Jaegle, I. Joffe, D. Kang, K. H. Kato, E. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kinoshita, K. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kuhr, T. Kumar, R. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, I. S. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyake, H. Miyata, H. Mizuk, R. Mohanty, G. B. Mohanty, S. Moll, A. Moon, H. K. Mussa, R. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nisar, N. K. Nishida, S. Ogawa, S. Okuno, S. Olsen, S. L. Pakhlov, P. Pakhlova, G. Park, C. W. Park, H. Pestotnik, R. Petric, M. Piilonen, L. E. Ribezl, E. Ritter, M. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Seon, O. Sevior, M. E. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Sokolov, A. Solovieva, E. Staric, M. Steder, M. Sumihama, M. Sumiyoshi, T. Tanida, K. Tatishvili, G. Teramoto, Y. Thorne, F. Trusov, V. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Vanhoefer, P. Varner, G. Vinokurova, A. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, X. L. Watanabe, Y. Williams, K. M. Won, E. Yamamoto, H. Yamashita, Y. Yashchenko, S. Yuan, C. Z. Zhang, Z. P. Zhilich, V. Zhulanov, V. Ziegler, M. Zupanc, A. CA Belle Collaboration TI Observation of X(3872) in B -> X(3872)K pi decays SO PHYSICAL REVIEW D LA English DT Article ID PHOTOS MONTE-CARLO AB We report the first observation of B-0 -> X(3872)(K+pi(-)) and evidence for B+ -> X(3872)(K-0 pi(+)). We measure the product of branching fractions for the former to be B(B-0 -> X(3872)(K+pi(-)) x B(X(3872) -> J/psi pi(+)pi(-)) = (7.9 +/- 1.3(stat) +/- 0.4(syst) x 10(-6) and find that B-0 -> X(3872)K*(892)(0) does not dominate the B-0 -> X(3872)K+pi(-) decay mode. We also measure B(B+ -> X(3872)(K-0 pi(+))) x B(X(3872) -> J/psi pi(+)pi(-)) = (10.6 +/- 3.0(stat) +/- 0.9(syst) x 10(-6). This study is based on the full data sample of 711 fb(-1) (772 x 10(6)B (B) over bar pairs) collected at the Upsilon(4S) resonance with the Belle detector at the KEKB collider. C1 [Schnell, G.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Dingfelder, J.] Univ Bonn, D-53115 Bonn, Germany. [Arinstein, K.; Aulchenko, V.; Bobrov, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Arinstein, K.; Aulchenko, V.; Bobrov, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 12116, Czech Republic. [Kinoshita, K.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Frost, O.; Steder, M.; Yashchenko, S.] Deutsch Elekt Synchrotron, D-22607 Hamburg, Germany. [Getzkow, D.; Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Trabelsi, K.; Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Miyake, H.; Nakao, M.; Nishida, S.; Sakai, Y.; Uehara, S.; Uno, S.] Grad Univ Adv Studies, Hayama 2400193, Kanagawa, Japan. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Trabelsi, K.; Adachi, I.; Haba, J.; Itoh, R.; Iwasaki, Y.; Miyake, H.; Nakao, M.; Nishida, S.; Sakai, Y.; Santelj, L.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain. [Bahinipati, S.] Ind Technol Inst, Bhubaneswar 751007, Orissa, India. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Yuan, C. Z.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.; Thorne, F.] Inst High Energy Phys, A-1050 Vienna, Austria. [Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chistov, R.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Ribezl, E.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Heller, A.; Huschle, M.; Kuhr, T.; Trusov, V.; Ziegler, M.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Joffe, D.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Moon, H. K.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Kang, K. H.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Bracko, M.; Korpar, S.] Univ Maribor, Maribor 2000, Slovenia. [Chobanova, V.; Dalseno, J.; Kiesling, C.; Gioi, L. Li; Moll, A.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barberio, E.; Sevior, M. E.; Urquijo, P.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Aushev, T.; Uglov, T.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Iijima, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Shiu, J. -G.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Grzymkowska, O.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Bansal, V.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Kumar, R.] Punjab Agr Univ, Ludhiana 141004, Punjab, India. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Olsen, S. L.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdesselam, A.; Ayad, R.] Univ Tabuk, Fac Sci, Dept Phys, Tabuk 71451, Saudi Arabia. [Aziz, T.; Gaur, V.; Mohanty, G. B.; Mohanty, S.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Horiguchi, T.; Ishikawa, A.; Kato, E.; Sanuki, T.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Mohanty, S.] Utkal Univ, Bhubaneswar 751004, Orissa, India. [Li, Y.; Liventsev, D.; Piilonen, L. E.; Wang, X. L.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. RP Bala, A (reprint author), Panjab Univ, Chandigarh 160014, India. RI Aihara, Hiroaki/F-3854-2010; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; EPFL, Physics/O-6514-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Cervenkov, Daniel/D-2884-2017; Solovieva, Elena/B-2449-2014; OI Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Cervenkov, Daniel/0000-0002-1865-741X; Solovieva, Elena/0000-0002-5735-4059; Yuan, Chang-Zheng/0000-0002-1652-6686 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16, P 26794-N20]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 11175187, 11475187]; Ministry of Education, Youth and Sports of the Czech Republic [LG14034]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea [2011-0029457, 2012-0008143, 2012R1A1A2008330, 2013R1A1A3007772, 2014R1A2A2A01005286, 2014R1A2A2A0100 2734, 2014R1A1A2006456]; Basic Research Lab program under NRF Grant [KRF-2011-0020333, KRF-2011-0021196]; Center for Korean J-PARC Users [NRF-2013K1A3A7A06056592]; Brain Korea 21-Plus program; Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Foundation for Basic Research; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); Euskal Herriko Unibertsitatea (UPV/EHU) (Spain) [UFI 11/55]; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT; JSPS FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grants No. P 22742-N16 and No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, and No. 11475187; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A0100 2734, No. 2014R1A1A2006456; the Basic Research Lab program under NRF Grant No. KRF-2011-0020333, No. KRF-2011-0021196, Center for Korean J-PARC Users, No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program and the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics") and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). NR 30 TC 6 Z9 6 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2015 VL 91 IS 5 AR 051101 DI 10.1103/PhysRevD.91.051101 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD3RT UT WOS:000350998700001 ER PT J AU Carlson, E Hooper, D Linden, T AF Carlson, Eric Hooper, Dan Linden, Tim TI Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies SO PHYSICAL REVIEW D LA English DT Article ID LARGE-AREA TELESCOPE; FERMI-LAT; SIGNAL AB The Fermi-LAT Collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95 sigma local excess (p-value = 0.003), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS > 8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2 sigma(p-value = 0.027). We argue that these TS > 8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and star-forming galaxies, and show that multiwavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking regions of the sky that lie within 1 degrees of sources contained in the BZCAT or CRATES catalogs reduce the fraction of blank sky locations with TS > 8.7 by more than a factor of 2. Taking such multiwavelength information into account can enable experiments such as Fermi to better characterize their backgrounds and increase their sensitivity to dark matter in dwarf galaxies, the most important of which remain largely uncontaminated by unresolved point sources. We also note that for the range of dark matter masses and annihilation cross sections currently being tested by studies of dwarf spheroidal galaxies, simulations predict that Fermi should be able to detect a significant number of dark matter subhalos. These subhalos constitute a population of subthreshold gamma-ray point sources and represent an irreducible background for searches for dark matter annihilation in dwarf galaxies. C1 [Carlson, Eric] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Linden, Tim] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Carlson, E (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. FU National Aeronautics and Space Administration [PF3-140110]; NASA NESSF [NNX13AO63H] FX We thank Keith Bechtol and Alex Drlica-Wagner for helpful comments. T.L. is supported by the National Aeronautics and Space Administration through Einstein Postdoctoral Award No. PF3-140110. E.C. is supported by NASA NESSF Grant No. NNX13AO63H. NR 39 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2015 VL 91 IS 6 AR 061302 DI 10.1103/PhysRevD.91.061302 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD3RW UT WOS:000350999100002 ER PT J AU Hand, N Leauthaud, A Das, S Sherwin, BD Addison, GE Bond, JR Calabrese, E Charbonnier, A Devlin, MJ Dunkley, J Erben, T Hajian, A Halpern, M Harnois-Deraps, J Heymans, C Hildebrandt, H Hincks, AD Kneib, JP Kosowsky, A Makler, M Miller, L Moodley, K Moraes, B Niemack, MD Page, LA Partridge, B Sehgal, N Shan, HY Sievers, JL Spergel, DN Staggs, ST Switzer, ER Taylor, JE Van Waerbeke, L Welker, C Wollack, EJ AF Hand, Nick Leauthaud, Alexie Das, Sudeep Sherwin, Blake D. Addison, Graeme E. Bond, J. Richard Calabrese, Erminia Charbonnier, Aldee Devlin, Mark J. Dunkley, Joanna Erben, Thomas Hajian, Amir Halpern, Mark Harnois-Deraps, Joachim Heymans, Catherine Hildebrandt, Hendrik Hincks, Adam D. Kneib, Jean-Paul Kosowsky, Arthur Makler, Martin Miller, Lance Moodley, Kavilan Moraes, Bruno Niemack, Michael D. Page, Lyman A. Partridge, Bruce Sehgal, Neelima Shan, Huanyuan Sievers, Jonathan L. Spergel, David N. Staggs, Suzanne T. Switzer, Eric R. Taylor, James E. Van Waerbeke, Ludovic Welker, Charlotte Wollack, Edward J. TI First measurement of the cross-correlation of CMB lensing and galaxy lensing SO PHYSICAL REVIEW D LA English DT Article ID ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; POWER SPECTRUM; COSMIC SHEAR; CFHTLS-WIDE; WEAK; MODEL; ALIGNMENTS; MATTER; BIAS AB We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 sigma, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts similar to 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements. C1 [Hand, Nick] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Leauthaud, Alexie] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778582, Japan. [Das, Sudeep] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Das, Sudeep; Sherwin, Blake D.] Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Addison, Graeme E.; Halpern, Mark; Harnois-Deraps, Joachim; Hincks, Adam D.; Van Waerbeke, Ludovic] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Bond, J. Richard; Hajian, Amir; Harnois-Deraps, Joachim; Sievers, Jonathan L.; Switzer, Eric R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Calabrese, Erminia; Dunkley, Joanna] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Charbonnier, Aldee] Univ Fed Rio de Janeiro, Observat Valongo, BR-20080090 Rio De Janeiro, RJ, Brazil. [Charbonnier, Aldee; Makler, Martin; Moraes, Bruno] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Devlin, Mark J.] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Erben, Thomas; Hildebrandt, Hendrik] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Harnois-Deraps, Joachim] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Heymans, Catherine] Univ Edinburgh, Inst Astron, Royal Observ, Scottish Univ Phys Alliance, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kneib, Jean-Paul; Shan, Huanyuan] Ecole Polytech Fed Lausanne, Lab Astrophys LASTRO, Observat Sauverny, CH-1290 Versoix, Switzerland. [Kneib, Jean-Paul] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Miller, Lance] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Moodley, Kavilan; Sievers, Jonathan L.] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Moraes, Bruno] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Moraes, Bruno] CAPES Fdn, Minist Educ Brazil, BR-70040020 Brasilia, DF, Brazil. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Page, Lyman A.; Sievers, Jonathan L.; Staggs, Suzanne T.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Switzer, Eric R.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taylor, James E.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Welker, Charlotte] Inst Astrophys, F-75014 Paris, France. [Welker, Charlotte] Univ Paris 06, F-75005 Paris, France. RP Hand, N (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM nhand@berkeley.edu RI Kneib, Jean-Paul/A-7919-2015; Shan, Huanyuan/G-3353-2015; Makler, Martin/G-2639-2012; Wollack, Edward/D-4467-2012; EPFL, Physics/O-6514-2016; OI Kneib, Jean-Paul/0000-0002-4616-4989; Shan, Huanyuan/0000-0001-8534-837X; Makler, Martin/0000-0003-2206-2651; Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074 FU U.S. National Science Foundation [AST-0408698, AST-0965625, PHY-0855887, PHY-1214379]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under the Compute Canada; Government of Ontario; Ontario Research Fund: Research Excellence; University of Toronto; ICRA/CBPF/MCTI; FINEP; FAPERJ; Laboratorio Interinstitucional de e-Astronomia (LIneA); National Science Foundation [DGE-1106400]; Berkeley Fellowship for Graduate Study; Deutsche Forschungsgemeinschaft [ER 327/3-1]; Transregional Collaborative Research Centre TR 33 "The Dark Universe"; CAPES Foundation [12174-13-0]; European Research Council under the EC [240185]; Marie-Curie International Incoming Fellowship [FP7-PEOPLE-2012-IIF/327561]; Swiss National Science Foundation (SNSF); NSFC of China [11103011]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Marie Curie IOF [252760]; CITA National Fellowship; DFG [Hi 1495/2-1]; ERC; CNRS; NSF [1066293] FX We thank the CFHTLenS team for their pipeline development and verification upon which much of this survey pipeline was built. We also thank Jeff Newman and Peter Freeman for helpful conversations about statistical analysis. This work was supported by the U.S. National Science Foundation through Grants No. AST-0408698 and No. AST-0965625 for the ACT project, as well as Grants No. PHY-0855887 and No. PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund: Research Excellence, and the University of Toronto. This work was based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The Brazilian partnership on CFHT is managed by the Laboratorio Nacional de Astrofisica (LNA). This work made use of the CHE cluster, managed and funded by ICRA/CBPF/MCTI, with financial support from FINEP and FAPERJ. We thank the support of the Laboratorio Interinstitucional de e-Astronomia (LIneA). N. H. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400 and the Berkeley Fellowship for Graduate Study. T. E. is supported by the Deutsche Forschungsgemeinschaft through Project No. ER 327/3-1 and by the Transregional Collaborative Research Centre TR 33 "The Dark Universe." B. M. acknowledges financial support from the CAPES Foundation Grant No. 12174-13-0. C. H. acknowledges support from the European Research Council under the EC FP7 Grant No. 240185. H. Y. S. acknowledges the support from Marie-Curie International Incoming Fellowship (FP7-PEOPLE-2012-IIF/327561), Swiss National Science Foundation (SNSF) and NSFC of China under Grant No. 11103011. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. H. H. is supported by the Marie Curie IOF 252760, by a CITA National Fellowship, and the DFG Grant No. Hi 1495/2-1. J. P. K. acknowledges support from the ERC advanced grant LIDA and from CNRS. We acknowledge support from NSF Grant No. 1066293 and thank the Aspen Center for Physics for hospitality during the writing of this paper. NR 56 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2015 VL 91 IS 6 AR 062001 DI 10.1103/PhysRevD.91.062001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD3RW UT WOS:000350999100004 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Dey, B Gary, JW Long, O Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Vazquez, WP Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Adametz, A Uwer, U Lacker, HM Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Sciolla, G Cheaib, R Patel, PM Robertson, SH Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Simard, M Taras, P De Nardo, G Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S Vasseur, G Aston, D Bard, DJ Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Lindemann, D Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wisniewski, WJ Wulsin, HW Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Albert, J Banerjee, S Beaulieu, A Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Dey, B. Gary, J. W. Long, O. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Roehrken, M. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Adametz, A. Uwer, U. Lacker, H. M. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. Vasseur, G. Aston, D. Bard, D. J. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Lindemann, D. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Wulsin, H. W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Albert, J. Banerjee, Sw. Beaulieu, A. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBar Collaboration TI Dalitz plot analyses of B-0 -> (D-DK+)-K-0 and B+-> (D)over-bar(-)D(0)K(+) decays SO PHYSICAL REVIEW D LA English DT Article ID BABAR DETECTOR; MESONS AB We present Dalitz plot analyses for the decays of B mesons to (D-DK+)-K-0 and (D) over bar (DK+)-D-0-K-0. We report the observation of the D*(s1)(2700)(+) resonance in these two channels and obtain measurements of the mass M(D*(s1)(2700)(+)) = 2699(-7)(+14) MeV/c(2) and of the width Gamma(D*(s1)(2700)(+)) = 127(-19)(+24) MeV, including statistical and systematic uncertainties. In addition, we observe an enhancement in the (DK+)-K-0 invariant mass around 2350-2500 MeV/c(2) in both decays B-0 -> (D-DK+)-K-0 and B+ -> (D) over bar (DK+)-D-0-K-0, which we are not able to interpret. The results are based on 429 fb(-1) of data containing 471 x 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Labe Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roehrken, M.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calabrese, R.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Ind Inst Technol Guwahati, Gauhati 781039, Assam, India. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Neri, N.; Palombo, F.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Paris 06, Univ Paris 07, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Pacetti, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Lynch, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.] Univ Turin, Dipartmento Fis, I-10125 Turin, Italy. [Vitale, L.; Villanueva-Perez, P.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, Labe Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Oyanguren, Arantza/K-6454-2014; Monge, Maria Roberta/G-9127-2012; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Patrignani, Claudia/C-5223-2009; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Kolomensky, Yury/I-3510-2015; Martinez Vidal, F*/L-7563-2014; Forti, Francesco/H-3035-2011 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Oyanguren, Arantza/0000-0002-8240-7300; Monge, Maria Roberta/0000-0003-1633-3195; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Patrignani, Claudia/0000-0002-5882-1747; White, Ryan/0000-0003-3589-5900; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Kolomensky, Yury/0000-0001-8496-9975; Martinez Vidal, F*/0000-0001-6841-6035; Forti, Francesco/0000-0001-6535-7965 FU U.S. Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Economia y Competitividad (Spain); Science and Technology Facilities Council (United Kingdom); Binational Science Foundation (U.S.-Israel); Marie-Curie IEF program (European Union); A. P. Sloan Foundation (USA) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad (Spain), the Science and Technology Facilities Council (United Kingdom), and the Binational Science Foundation (U.S.-Israel). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA). NR 32 TC 13 Z9 13 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2015 VL 91 IS 5 AR 052002 DI 10.1103/PhysRevD.91.052002 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD3RT UT WOS:000350998700005 ER PT J AU Wu, B Iwashita, T Egami, T AF Wu, Bin Iwashita, Takuya Egami, Takeshi TI Anisotropic stress correlations in two-dimensional liquids SO PHYSICAL REVIEW E LA English DT Article ID AMORPHOUS SOLIDS; 2 DIMENSIONS; COMPUTER-SIMULATION; REARRANGEMENTS; SHEAR; MODEL; FLOW; DYNAMICS; GLASS AB In this paper we demonstrate the presence of anisotropic stress correlations in the simulated two-dimensional liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic-level stresses in liquids without external shear has not been explored. We observed the apparent anisotropicity with well-defined symmetry which can be explained in terms of the elastic continuum theory by Eshelby. In addition, we found that the shear stress correlation is screened compared to the prediction by the elastic continuum theory, and the screening length depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The success of the Eshelby theory to explain the anisotropy of the stress correlations justifies the idea that the mismatch between the atom and its nearest neighbor cage produces the atomic-level stress as well as the long-range stress fields. C1 [Wu, Bin; Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Iwashita, Takuya; Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Egami, T (reprint author), Univ Tennessee, Dept Phys & Astron, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. EM egami@utk.edu RI Iwashita, Takuya/D-2724-2009 FU U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors thank J. S. Langer, J. R. Morris, and J. Bellissard for useful discussions. This research has been supported by the U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 47 TC 11 Z9 11 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR 2 PY 2015 VL 91 IS 3 AR 032301 DI 10.1103/PhysRevE.91.032301 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CD3SC UT WOS:000350999800008 PM 25871104 ER PT J AU VanDevender, JP Pointon, TD Seidel, DB Struve, KW Jennings, C Oliver, BV Schneider, LX AF VanDevender, J. Pace Pointon, Timothy D. Seidel, David B. Struve, Kenneth W. Jennings, Christopher Oliver, Bryan V. Schneider, Larry X. TI Requirements for self-magnetically insulated transmission lines SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID IN-CELL SIMULATIONS; ELECTRON-BEAM DIODE; B ION DIODE; FLOW THEORY; POWER-FLOW; PLASMA; VACUUM; LOSSES; SYSTEM; FIELD AB Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closure and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses. C1 [VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [VanDevender, J. Pace] VanDevender Enterprises, Albuquerque, NM 87109 USA. RP VanDevender, JP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pace@vandevender.com FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We gratefully acknowledge both reviewers for their useful critical reviews, which led to a much better contribution. NR 71 TC 0 Z9 0 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 2 PY 2015 VL 18 IS 3 AR 030401 DI 10.1103/PhysRevSTAB.18.030401 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CD3SJ UT WOS:000351000700001 ER PT J AU Ramos, T Dedesko, S Siegel, JA Gilbert, JA Stephens, B AF Ramos, Tiffanie Dedesko, Sandra Siegel, Jeffrey A. Gilbert, Jack A. Stephens, Brent TI Spatial and Temporal Variations in Indoor Environmental Conditions, Human Occupancy, and Operational Characteristics in a New Hospital Building SO PLOS ONE LA English DT Article ID RESISTANT STAPHYLOCOCCUS-AUREUS; RELATIVE-HUMIDITY; AIRBORNE SURVIVAL; THERMAL COMFORT; AIR-QUALITY; SURFACES; TEMPERATURE; BACTERIA; ROOMS; ACQUISITION AB The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogate measures for human occupancy and activity in the patient rooms using both indoor air CO2 concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of similar to 8x10(6) data points. Indoor temperature, illuminance, and human occupancy/ activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections. C1 [Ramos, Tiffanie; Stephens, Brent] IIT, Dept Civil Architectural & Environm Engn, Chicago, IL 60616 USA. [Dedesko, Sandra; Siegel, Jeffrey A.] Univ Toronto, Dept Civil Engn, Toronto, ON, Canada. [Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Stephens, B (reprint author), IIT, Dept Civil Architectural & Environm Engn, Chicago, IL 60616 USA. EM brent@iit.edu FU Alfred P. Sloan Foundation's program on the Microbiology of the Built Environment [2012-10-04]; Starr-Fieldhouse Research Fellowship FX This work was funded by a grant from the Alfred P. Sloan Foundation's program on the Microbiology of the Built Environment (Grant No. 2012-10-04): http://www.sloan.org/major-programareas/basic-research/microbiology-of-t he-builtenvironment/. Tiffanie Ramos was also supported by a Starr-Fieldhouse Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 56 TC 12 Z9 12 U1 14 U2 38 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 2 PY 2015 VL 10 IS 3 AR e0118207 DI 10.1371/journal.pone.0118207 PG 24 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC9JF UT WOS:000350684900019 PM 25729898 ER PT J AU Wang, D Bratlie, KM AF Wang, Daniel Bratlie, Kaitlin M. TI Influence of Polymer Chemistry on Cytokine Secretion from Polarized Macrophages SO ACS BIOMATERIALS SCIENCE & ENGINEERING LA English DT Article DE macrophage phenotypes; cytokines; TNF-alpha; IL-I0; polymer properties ID TUMOR-ASSOCIATED MACROPHAGES; TNF-ALPHA; IN-VITRO; ALTERNATIVE ACTIVATION; IMMUNE-RESPONSES; NECROSIS-FACTOR; SURFACE; BIOMATERIAL; CANCER; VIVO AB Of central importance to tissue engineering and drug delivery is identifying polymer parameters that increase or decrease specific cytokines in response to biomaterials. In this study, we have interrogated the effects of material descriptors and material.characteristics on pro-inflammatory, pro-angiogenic, and naive macrophages using polymeric particles (similar to 600 nm), functionalized with 13 different moieties. We characterized tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) secretion for the three macrophage populations and used the quantitative structure-activity relationship method (QSAR) to accurately predict cytokine secretion for the different macrophage phenotypes. The findings presented here demonstrate that altering cellular responses to polymers can be achieved through exploiting material parameters. For pro-inflammatory macrophages, polarity and the ability to hydrogen bond appear to significantly impact TNF-alpha secretion while charge impacted pro-angiogenic macrophages. Naive cells were impacted by charge in a similar manner as the proangiogenic cells; however, hydrophilicity also increased TNF-alpha secretion in these cells. For IL-10 secretion, hydrogen bonding was very negatively correlated with pro-inflammatory cells, whereas it was positively correlated with pro-angiogenic cells. C1 [Wang, Daniel; Bratlie, Kaitlin M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Ames Natl Lab, Ames, IA 50011 USA. RP Bratlie, KM (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM kbratlie@iastate.edu FU National Science Foundation [CBET 1227867]; Roy J. Carver Charitable Trust [13-4265]; NSF ARI-R2 [CMMI-0963224] FX This work was supported by the National Science Foundation under Grant CBET 1227867 and the Roy J. Carver Charitable Trust Grant 13-4265. The authors also acknowledge support from NSF ARI-R2 (CMMI-0963224) for funding the renovation of the research laboratories used for these studies. NR 55 TC 4 Z9 4 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2373-9878 J9 ACS BIOMATER SCI ENG JI ACS Biomater. Sci. Eng. PD MAR PY 2015 VL 1 IS 3 BP 166 EP 174 DI 10.1021/ab5001063 PG 9 WC Materials Science, Biomaterials SC Materials Science GA DC6RL UT WOS:000369347200005 ER PT J AU Lam, PS Pan, J AF Lam, Poh-Sang Pan, Jwo TI Fracture Mechanics Approach to Estimate Fatigue Lives of Welded Lap-Shear Specimens SO CMC-COMPUTERS MATERIALS & CONTINUA LA English DT Article DE Kinked crack; stress intensity factor; lap-shear; weld; fatigue life; Paris law ID STRESS INTENSITY FACTORS; ANALYSES SGBEM-FEM; SPOT WELDS; STRUCTURAL STRESS; JOINTS AB A full range of stress intensity factor solutions for a kinked crack with finite length is developed as a function of weld width and the sheet thickness. When used with the main crack solutions (global stress intensity factors) in terms of the applied load and the specimen geometric parameters, the fatigue lives of the kinked crack can be estimated for the laser-welded lap-shear specimens. The predicted curve for the load range-fatigue life passes through the cluster of experimental data and is in good agreement. A classical solution associated with an infinitesimal kink is also employed. However, its life prediction tends to overestimate the actual fatigue life. In addition, the traditional fatigue life estimation based on structural stress is performed for completeness. This non-fracture mechanics approach only agrees well with the experimental data under high cyclic load conditions. C1 [Lam, Poh-Sang] Savannah River Natl Lab, Mat Sci & Technol, Aiken, SC USA. [Pan, Jwo] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Lam, PS (reprint author), Savannah River Natl Lab, Mat Sci & Technol, Aiken, SC USA. FU U.S. Department of Energy [DEAC09- 08SR22470] FX This manuscript has been authored by Savannah River Nuclear Solutions, LLC under Contract No. DEAC09- 08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 19 TC 0 Z9 0 U1 1 U2 4 PU TECH SCIENCE PRESS PI NORCROSS PA 6825 JIMMY CARTER BLVD, STE 1850, NORCROSS, GA 30071 USA SN 1546-2218 EI 1546-2226 J9 CMC-COMPUT MATER CON JI CMC-Comput. Mat. Contin. PD MAR PY 2015 VL 46 IS 1 BP 1 EP 16 PG 16 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Materials Science; Mathematics GA DC2KH UT WOS:000369045100001 ER PT J AU Khemka, B Friese, R Pasricha, S Maciejewski, AA Siegel, HJ Koenig, GA Powers, S Hilton, M Rambharos, R Poole, S AF Khemka, Bhavesh Friese, Ryan Pasricha, Sudeep Maciejewski, Anthony A. Siegel, Howard Jay Koenig, Gregory A. Powers, Sarah Hilton, Marcia Rambharos, Rajendra Poole, Steve TI Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system SO SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS LA English DT Article DE High performance computing system; Energy-constrained computing; Heterogeneous distributed computing; Energy-aware resource management ID INDEPENDENT TASKS; ENVIRONMENT; HEURISTICS AB The need for greater performance in high performance computing systems combined with rising costs of electricity to power these systems motivates the need for energy-efficient resource management. Driven by the requirements of the Extreme Scale Systems Center at Oak Ridge National Laboratory, we address the problem of scheduling dynamically-arriving tasks to machines in an oversubscribed and energy constrained heterogeneous distributed computing environment. Our goal is to maximize total "utility" earned by the system, where the utility of a task is defined by a monotonically-decreasing function that represents the value of completing that task at different times. To address this problem, we design four energy-aware resource allocation heuristics and compare their performance to heuristics from the literature. For our given energy-constrained environment, we also design an energy filtering technique that helps some heuristics regulate their energy consumption by allowing tasks to only consume up to an estimated fair-share of energy. Extensive sensitivity analyses of the heuristics in environments with different levels of heterogeneity show that heuristics with the ability to balance both energy consumption and utility exhibit the best performance because they save energy for use by future tasks. (C) 2014 Elsevier Inc. All rights reserved. C1 [Khemka, Bhavesh; Friese, Ryan; Pasricha, Sudeep; Maciejewski, Anthony A.; Siegel, Howard Jay] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Pasricha, Sudeep; Siegel, Howard Jay] Colorado State Univ, Dept Comp Sci, Ft Collins, CO 80523 USA. [Koenig, Gregory A.; Powers, Sarah; Poole, Steve] Oak Ridge Natl Lab, One Bethel Valley Rd,POB 2008,MS-6164, Oak Ridge, TN 37831 USA. [Hilton, Marcia; Rambharos, Rajendra; Poole, Steve] US Dept Def, Washington, DC 20001 USA. RP Khemka, B (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM Bhavesh.Khemka@colostate.edu; Ryan.Friese@colostate.edu; Sudeep@colostate.edu; AAM@colostate.edu; HJ@colostate.edu; Koenig@ornl.gov; PowersSS@ornl.gov; mmskizig@verizon.net; Jendra.Rambharos@gmail.com; swpoole@gmail.com FU National Science Foundation; NSF [CCF-1302693, CCF-1252500, CNS-0923386] FX This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, supported by the Extreme Scale Systems Center at ORNL, which is supported by the Department of Defense. Additional support was provided by a National Science Foundation Graduate Research Fellowship, and by NSF Grants CCF-1302693 and CCF-1252500. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This research also used the CSU ISTeC Cray System supported by NSF Grant CNS-0923386. The authors thank Mark Oxley and Eric Jonardi for their valuable comments. A preliminary version of portions of this material appeared in [34]. This work builds upon the workshop paper with the design of three new heuristics (i.e., the weighted heuristics) for the energy-constrained environment that perform better than their corresponding conference counterparts (i.e., the non-weighted heuristics). We analyze why the weighting technique outperforms the filtering technique even though they both regulate the energy consumption and hit the energy constraint close to the end of the day. We also design a method to create ETCs of lower and higher Task Machine Affinity than the example environment, i.e., different degrees of heterogeneity. We perform extensive heuristic parameter tuning tests and analyze the performance of all the heuristics in the example, low, and high TMA environments. NR 32 TC 9 Z9 9 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-5379 EI 2210-5387 J9 SUSTAIN COMPUT-INFOR JI Sust. Comput. PD MAR PY 2015 VL 5 BP 14 EP 30 DI 10.1016/j.suscom.2014.08.001 PG 17 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems SC Computer Science GA DB6CN UT WOS:000368600800002 ER PT J AU McDermott, SD AF McDermott, Samuel D. TI Lining up the Galactic Center gamma-ray excess SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Dark matter; Galactic Center excess; Photon line; Indirect detection; Collider production ID DARK-MATTER; FERMI; EMISSION AB Dark matter particles annihilating into Standard Model fermions may be able to explain the recent observation of a gamma-ray excess in the direction of the Galactic Center. Recently, a hidden photon model has been proposed to explain this signal. Supplementing this model with a dipole moment operator and a small dark sector mass splitting allows a large cross section to a photon line while avoiding direct detection and other constraints. Comparing the line and continuum cross sections, we find that the line is suppressed only by the relative scales and couplings. Given current constraints on this ratio, a line discovery in the near future could point to a new scale Lambda similar to O(1 TeV), where we would expect to discover new charged particles. Moreover, such a line would also imply that dark matter can be visible in near-future direct detection experiments. (FERMILAB-PUB-14-205-A-T) (C) 2015 Elsevier B.V. All rights reserved. C1 [McDermott, Samuel D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [McDermott, Samuel D.] Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. RP McDermott, SD (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM samuel.mcdermott@stonybrook.edu NR 58 TC 7 Z9 7 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD MAR-JUN PY 2015 VL 7-8 BP 12 EP 15 DI 10.1016/j.dark.2015.05.001 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ5RH UT WOS:000367159200003 ER PT J AU Bauer, D Buckley, J Cahill-Rowley, M Cotta, R Drlica-Wagner, A Feng, JL Funk, S Hewett, J Hooper, D Ismail, A Kaplinghat, M Kusenko, A Matchev, K McKinsey, D Rizzo, T Shepherd, W Tait, TMP Wijangco, AM Wood, M AF Bauer, Daniel Buckley, James Cahill-Rowley, Matthew Cotta, Randel Drlica-Wagner, Alex Feng, Jonathan L. Funk, Stefan Hewett, JoAnne Hooper, Dan Ismail, Ahmed Kaplinghat, Manoj Kusenko, Alexander Matchev, Konstantin McKinsey, Daniel Rizzo, Tom Shepherd, William Tait, Tim M. P. Wijangco, Alexander M. Wood, Matthew CA Snowmass 2013 Cosmic Frontier TI Dark matter in the coming decade: Complementary paths to discovery and beyond SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Dark matter; Indirect detection; Direct detection; Colliders; Astroparticle ID PARTICLE PHYSICS; OBSERVATIONAL EVIDENCE; X-RAY; UNIVERSE; MASS; CONSTRAINTS; CANDIDATES; COSMOLOGY AB In this report we summarize the many dark matter searches currently being pursued through four complementary approaches: direct detection, indirect detection, collider experiments, and astrophysical probes. The essential features of broad classes of experiments are described, each with their own strengths and weaknesses. The complementarity of the different dark matter searches is discussed qualitatively and illustrated quantitatively in two simple theoretical frameworks. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program drawing from all four approaches. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bauer, Daniel; Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Buckley, James] Washington Univ, St Louis, MO 63130 USA. [Cahill-Rowley, Matthew; Drlica-Wagner, Alex; Funk, Stefan; Hewett, JoAnne; Ismail, Ahmed; Rizzo, Tom; Wood, Matthew] SLAC, Menlo Pk, CA USA. [Cotta, Randel; Feng, Jonathan L.; Kaplinghat, Manoj; Tait, Tim M. P.; Wijangco, Alexander M.] Univ Calif Irvine, Irvine, CA 92717 USA. [Kusenko, Alexander] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Matchev, Konstantin] Univ Florida, Gainesville, FL 32611 USA. [McKinsey, Daniel] Yale Univ, New Haven, CT 06520 USA. [Shepherd, William] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. RP Feng, JL (reprint author), Univ Calif Irvine, Irvine, CA 92717 USA. EM jlf@uci.edu; mkapling@uci.edu; matchev@phys.ufl.edu; ttait@uci.edu RI Funk, Stefan/B-7629-2015; OI Funk, Stefan/0000-0002-2012-0080; Shepherd, William/0000-0002-3506-8895 NR 63 TC 9 Z9 9 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD MAR-JUN PY 2015 VL 7-8 BP 16 EP 23 DI 10.1016/j.dark.2015.04.001 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ5RH UT WOS:000367159200004 ER PT J AU Brown, D AF Brown, David CA Mu2e Collaboration TI The Mu2e Experiment: Searching for Moon to Electron Conversion SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 13th International Workshop on Tau Lepton Physics (Tau) CY SEP 15-19, 2014 CL RWTH Aachen Univ, Aachen, GERMANY HO RWTH Aachen Univ DE Muon Electron Conversion Charged Lepton Flavor Violation AB The Mu2e experiment proposes to measure the rate of muon to electron conversion in the field of a nucleus with a sensitivity of 6 x 10(-17), a four-orders of magnitude improvement over existing limits. Mu2e will use a series of three solenoids to collect, transport, stop, and analyze muons produced by a pulsed proton beam from the Fermilab booster. Fewer than 10(-10) of the delivered protons will be produced outside a 200 nsec wide primary pulse, reducing the beam background to a negligible level. A precision, low-mass straw tube tracker will measure electron momenta with a precision of 10(-3), allowing clean separation of the conversion signal from Decay In Orbit electrons, the principle experimental background. Extensive coverage of multi-layer scintillation counters will detect 99.99% of the cosmic muons which could generate fake signals. A crystal calorimeter will provide particle ID to further reduce backgrounds. The Mu2e schedule is technically limited, with commissioning beginning in 2021. Planned accelerator improvements after 2023 will provide 10x higher luminosity, allowing 10x improved sensitivity after minimal detector upgrades. C1 [Mu2e Collaboration] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM DAVE_BROWN@LBL.GOV NR 5 TC 1 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD MAR PY 2015 VL 260 BP 151 EP 154 DI 10.1016/j.nuclphysbps.2015.02.032 PG 4 GA CN8PA UT WOS:000358701900031 ER PT J AU Chen, HT AF Chen, Hou-Tong TI Semiconductor activated terahertz metamaterials SO FRONTIERS OF OPTOELECTRONICS LA English DT Review DE terahertz; metamaterials; semiconductor; modulation ID SPLIT-RING-RESONATORS; PHASE DISCONTINUITIES; MAGNETIC RESPONSE; NEGATIVE INDEX; REFRACTION; BAND; ABSORBER; BROAD; TRANSMISSION; REGIME AB Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result in unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response. C1 [Chen, Hou-Tong] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM chenht@lanl.gov OI Chen, Hou-Tong/0000-0003-2014-7571 NR 105 TC 2 Z9 3 U1 6 U2 23 PU HIGHER EDUCATION PRESS PI BEIJING PA NO 4 DEWAI DAJIE, BEIJING 100120, PEOPLES R CHINA SN 1674-4128 EI 1674-4594 J9 FRONT OPTOELECTRON JI Front. Optoelectron. PD MAR PY 2015 VL 8 IS 1 SI SI BP 27 EP 43 DI 10.1007/s12200-014-0436-0 PG 17 WC Engineering, Electrical & Electronic SC Engineering GA CZ0PH UT WOS:000366807700003 ER PT J AU Lincoln, D AF Lincoln, Don TI The LHC's Next Big Mystery SO PHYSICS TEACHER LA English DT Article ID CONNECTION; BREAKING C1 [Lincoln, Don] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lincoln, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM lincoln@fnal.gov NR 9 TC 1 Z9 1 U1 2 U2 3 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0031-921X J9 PHYS TEACH JI Phys. Teach. PD MAR PY 2015 VL 53 IS 3 BP 140 EP 144 DI 10.1119/1.4908080 PG 5 WC Physics, Multidisciplinary SC Physics GA CX5YZ UT WOS:000365779700003 ER PT J AU Misra, S Fisher, MW Backhaus, S Bent, R Chertkov, M Pan, F AF Misra, Sidhant Fisher, Michael W. Backhaus, Scott Bent, Russell Chertkov, Michael Pan, Feng TI Optimal Compression in Natural Gas Networks: A Geometric Programming Approach SO IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS LA English DT Article DE Dynamic programming; geometric programming; natural gas network; optimal compression AB Natural gas transmission pipelines are complex systems whose flow characteristics are governed by challenging nonlinear physical behavior. These pipelines extend over hundreds and even thousands of miles. Gas is typically injected into the system at a constant rate, and a series of compressors is distributed along the pipeline to boost the gas pressure to maintain system pressure and throughput. These compressors consume a portion of the gas, and one goal of the operator is to control the compressor operation to minimize this consumption while satisfying pressure constraints at the gas load points. The optimization of these operations is computationally challenging. Many pipelines simply rely on the intuition and prior experience of operators to make these decisions. Here, we present a new geometric programming approach for optimizing compressor operation in natural gas pipelines. Using models of real natural gas pipelines, we show that the geometric programming algorithm consistently outperforms approaches that mimic the existing state of practice. C1 [Misra, Sidhant; Fisher, Michael W.; Pan, Feng] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87544 USA. [Misra, Sidhant] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Fisher, Michael W.] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48105 USA. [Backhaus, Scott] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87544 USA. [Bent, Russell; Pan, Feng] Los Alamos Natl Lab, DSA Div, Los Alamos, NM 87544 USA. RP Misra, S (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87544 USA. RI Chertkov, Michael/O-8828-2015; OI Backhaus, Scott/0000-0002-0344-6791; Chertkov, Michael/0000-0002-6758-515X; Bent, Russell/0000-0002-7300-151X NR 22 TC 10 Z9 12 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2325-5870 EI 2372-2533 J9 IEEE TRANS CONTROL N JI IEEE Trans. Control Netw. Syst. PD MAR PY 2015 VL 2 IS 1 BP 47 EP 56 DI 10.1109/TCNS.2014.2367360 PG 10 WC Computer Science, Information Systems SC Computer Science GA CW6CJ UT WOS:000365084700005 ER PT J AU Raja, SN Basu, S Limaye, AM Anderson, TJ Hyland, CM Lin, LW Alivisatos, AP Ritchie, RO AF Raja, Shilpa N. Basu, Sandip Limaye, Aditya M. Anderson, Turner J. Hyland, Christina M. Lin, Liwei Alivisatos, A. Paul Ritchie, Robert O. TI Strain-dependent dynamic mechanical properties of Keylar to failure: Structural correlations and comparisons to other polymers SO MATERIALS TODAY COMMUNICATIONS LA English DT Article DE Kevlar; Aramid; Polymer; Dynamic mechanical analysis; Structure property relationship ID KEVLAR FIBERS; DEFORMATION; SILK AB The processing of Kevlar to certain strengths by hot-drawing can benefit by quantitative understanding of the correlation between structural and mechanical properties during the pre-drawing process. Here, we use a novel continuous dynamic analysis (CDA) to monitor the evolution in storage modulus and loss factor of Kevlar 49 fibers as a function of strain via a quasi-static tensile test. Unlike traditional dynamic mechanical analysis, CDA allows the tracking of strain-dependent mechanical properties until failure. The obtained dynamic viscoelastic properties of Kevlar 49 are correlated with structural data obtained from synchrotron radiation analysis and with Raman scattering frequencies. Rate-dependent stress-strain results from Kevlar are compared to Nomex, spider silk, polyester and rubber, and provide insight into how the mechanical properties of Kevlar originate from its characteristic structural features. We find that as the storage modulus of Kevlar is essentially equal to the Young's modulus, the measured quantitative relationships between storage modulus and strain can provide insights into the tuning of the mechanical properties of aramid materials for specific applications. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Raja, Shilpa N.; Alivisatos, A. Paul; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Raja, Shilpa N.; Alivisatos, A. Paul; Ritchie, Robert O.] Univ Calif Berkeley, Dep Mat Sci & Engn, Berkeley, CA 94720 USA. [Basu, Sandip] Agilent Technol, Chandler, AZ 85226 USA. [Limaye, Aditya M.; Hyland, Christina M.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Anderson, Turner J.; Lin, Liwei; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Alivisatos , Paul /N-8863-2015 OI Ritchie, Robert/0000-0002-0501-6998; Alivisatos , Paul /0000-0001-6895-9048 NR 13 TC 5 Z9 5 U1 5 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-4928 J9 MATER TODAY COMMUN JI Mater. Today Commun. PD MAR PY 2015 VL 2 BP E33 EP E37 DI 10.1016/j.mtcomm.2014.11.002 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA CW1FO UT WOS:000364735200005 ER PT J AU Finney, LA Jin, QL AF Finney, Lydia A. Jin, Qiaoling TI Preparing Adherent Cells for X-ray Fluorescence Imaging by Chemical Fixation SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 97; X-ray; fluorescence; imaging; metals; chemical biology; microscopy; synchrotron ID CRYOELECTRON TOMOGRAPHY; MICROSCOPY REVEALS; MICROPROBE; COPPER; NANOPARTICLES; BIOLOGY; SENSOR; ZINC AB X-ray fluorescence imaging allows us to non-destructively measure the spatial distribution and concentration of multiple elements simultaneously over large or small sample areas. It has been applied in many areas of science, including materials science, geoscience, studying works of cultural heritage, and in chemical biology. In the case of chemical biology, for example, visualizing the metal distributions within cells allows us to study both naturally-occurring metal ions in the cells, as well as exogenously-introduced metals such as drugs and nanoparticles. Due to the fully hydrated nature of nearly all biological samples, cryo-fixation followed by imaging under cryogenic temperature represents the ideal imaging modality currently available. However, under the circumstances that such a combination is not easily accessible or practical, aldehyde based chemical fixation remains useful and sometimes inevitable. This article describes in as much detail as possible in the preparation of adherent mammalian cells by chemical fixation for X-ray fluorescent imaging. C1 [Finney, Lydia A.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Jin, Qiaoling] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Finney, LA (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM Ifinney@aps.anl.gov RI Jin, Qiaoling/D-2303-2016 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, beamlines 2-ID-E and 8-BM-B, at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 48 TC 0 Z9 0 U1 1 U2 6 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD MAR PY 2015 IS 97 AR e52370 DI 10.3791/52370 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR7MM UT WOS:000361534300020 ER PT J AU Norred, SE Caveney, PM Retterer, ST Boreyko, JB Fowlkes, JD Collier, CP Simpson, ML AF Norred, Sarah Elizabeth Caveney, Patrick M. Retterer, Scott T. Boreyko, Jonathan B. Fowlkes, Jason D. Collier, Charles Patrick Simpson, Michael L. TI Sealable Femtoliter Chamber Arrays for Cell-free Biology SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Bioengineering; Issue 97; Cell-free; synthetic biology; microfluidics; noise biology; soft lithography; femtoliter volumes ID STOCHASTIC GENE-EXPRESSION; PROTEIN-SYNTHESIS; ESCHERICHIA-COLI; ARTIFICIAL CELLS; SINGLE-CELL; NOISE; CIRCUITS; NETWORKS; LITHOGRAPHY; FREQUENCY AB Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g., global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) device contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Here we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques used in cellular systems to characterize CFPS gene circuits and their interactions with the cell-free environment. C1 [Norred, Sarah Elizabeth; Caveney, Patrick M.; Retterer, Scott T.; Boreyko, Jonathan B.; Simpson, Michael L.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Norred, Sarah Elizabeth; Caveney, Patrick M.; Retterer, Scott T.; Boreyko, Jonathan B.; Fowlkes, Jason D.; Collier, Charles Patrick; Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Fowlkes, Jason D.; Simpson, Michael L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Simpson, ML (reprint author), Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. EM simpsonML1@ornl.gov RI Retterer, Scott/A-5256-2011; Simpson, Michael/A-8410-2011; Collier, Charles/C-9206-2016 OI Retterer, Scott/0000-0001-8534-1979; Simpson, Michael/0000-0002-3933-3457; Collier, Charles/0000-0002-8198-793X FU Center for Nanophase Materials Sciences - Scientific User Facilities Division, Office of Science, U.S. Department of Energy; Bredesen Center Fellowships at the University of Tennessee, Knoxville FX We thank Dr. Mitch Doktycz, Dr. Jennifer Morrel-Falvey, Dr. Amber Bible, and Dr. Brandon Razooky for helpful advice and conversations, and acknowledge Dr. Sukanya Iyer for constructing the Pet3a-EGFP plasmid used in the gene expression tests. We acknowledge support from the Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Science, U.S. Department of Energy. SEN and PMC acknowledge support from Bredesen Center Fellowships at the University of Tennessee, Knoxville. This research was performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 50 TC 1 Z9 1 U1 2 U2 10 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD MAR PY 2015 IS 97 AR e52616 DI 10.3791/52616 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR7MM UT WOS:000361534300057 ER PT J AU Ramchandran, D Wang, P Dien, B Liu, W Cotta, MA Singh, V AF Ramchandran, Divya Wang, Ping Dien, Bruce Liu, Wei Cotta, Michael A. Singh, Vijay TI Improvement of Dry-Fractionation Ethanol Fermentation by Partial Germ Supplementation SO CEREAL CHEMISTRY LA English DT Article ID STARCH HYDROLYZING ENZYME; GRIND CORN PROCESSES AB Ethanol fermentation of dry-fractionated grits (corn endosperm pieces) containing different levels of germ was studied with the dry-grind process. Partial removal of the germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry-milling plant were mixed with different amounts of germ (2, 5, 7, and 10% germ of the total sample) and compared with control grits (0% germ). Fermentation rates of germ-supplemented grits (2, 5, 7, and 10% germ) were faster than control grits (0% germ). Addition of 2% germ was sufficient to achieve a high ethanol concentration (19.06% v/v) compared with control grits (18.18% v/v). Fermentation of dry-fractionated grits (92, 95, and 97% grits) obtained from a commercial facility was also compared with ground whole corn (control). Fermentation rates were slower and final ethanol concentrations were lower for commercial grits than the control sample. However, in a final experiment, commercial grits were subjected to raw starch hydrolyzing (RSH) enzyme, resulting in higher ethanol concentrations (20.22, 19.90, and 19.49% v/v for 92, 95, and 97% grits, respectively) compared with the whole corn control (18.64% v/v). Therefore, high ethanol concentrations can be achieved with dry-fractionated grits provided the inclusion of a certain amount of germ and the use of RSH enzyme for controlled starch hydrolysis. C1 [Ramchandran, Divya; Liu, Wei; Singh, Vijay] Univ Illinois, Agr & Biol Engn, Urbana, IL 61801 USA. [Wang, Ping] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Dien, Bruce; Cotta, Michael A.] USDA, Natl Ctr Agr Utilizat Res, Agr Res Serv, Peoria, IL 61604 USA. RP Singh, V (reprint author), Univ Illinois, Agr & Biol Engn, 1304 Penn Ave, Urbana, IL 61801 USA. EM vsingh@illinois.edu OI Dien, Bruce/0000-0003-3863-6664 FU Gevo, Inc. FX We thank Patricia O'Bryan for her excellent technical help in conducting fermentations. We are grateful to Jim Hettenhaus and Robert Wooley for organizing this study and their valuable guidance. We also thank Gevo, Inc., for their partial financial support. NR 12 TC 0 Z9 0 U1 0 U2 1 PU AACC INTERNATIONAL PI ST PAUL PA 3340 PILOT KNOB RD, ST PAUL, MN 55121-2097 USA SN 0009-0352 EI 1943-3638 J9 CEREAL CHEM JI Cereal Chem. PD MAR-APR PY 2015 VL 92 IS 2 BP 218 EP 223 DI 10.1094/CCHEM-08-14-0177-R PG 6 WC Chemistry, Applied; Food Science & Technology SC Chemistry; Food Science & Technology GA CK3CO UT WOS:000356093700013 ER PT J AU Catlett, C Ghani, R AF Catlett, Charlie Ghani, Rayid TI Big Data for Social Good SO BIG DATA LA English DT Editorial Material C1 [Catlett, Charlie] Argonne Natl Lab, Lemont, IL USA. [Catlett, Charlie; Ghani, Rayid] Univ Chicago, Chicago, IL 60637 USA. RP Catlett, C (reprint author), Univ Chicago, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM cec@uchicago.edu; rayid@uchicago.edu NR 0 TC 0 Z9 0 U1 1 U2 3 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2167-6461 EI 2167-647X J9 BIG DATA JI Big Data PD MAR 1 PY 2015 VL 3 IS 1 BP 1 EP 2 DI 10.1089/big.2015.1530 PG 2 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CJ5WK UT WOS:000355563100001 PM 27442841 ER PT J AU Jewett, A Garg, A Meyer, K Wagner, LD Krauskopf, K Brown, KA Pan, JJ Massoud, O Smith, BD Rein, DB AF Jewett, Amy Garg, Arika Meyer, Katherine Wagner, Laura Danielle Krauskopf, Katherine Brown, Kimberly A. Pan, Jen-Jung Massoud, Omar Smith, Bryce D. Rein, David B. TI Hepatitis C Virus Testing Perspectives Among Primary Care Physicians in Four Large Primary Care Settings SO HEALTH PROMOTION PRACTICE LA English DT Article DE delivery of health care; guidelines; hepatitis; screening ID UNITED-STATES; IDENTIFICATION; MANAGEMENT; INFECTION; PREVALENCE; DIAGNOSIS; MORTALITY; CLINICS; MODEL AB Background. In 1998, the Centers for Disease Control and Prevention (CDC) published Recommendations for Prevention and Control of Hepatitis C Virus (HCV) Infection and HCV-Related Chronic Disease, recommending HCV testing for populations most likely to be infected with HCV. However, the implementation of risk-based screening has not been widely adopted in health care settings, and 45% to 85% of infected U.S. adults remain unidentified. Objectives. To develop a better understanding of why CDC's 1998 recommendations have had limited success in identifying persons with HCV infection and provide information about how CDC's 2012 Recommendations for the Identification of Chronic Hepatitis C Virus Infection Among Persons Born During 1945-1965 may be implemented more effectively. Design. Qualitative data were collected and analyzed from a multidisciplinary team as part of the Birth Cohort Evaluation to Advance Screening and Testing for Hepatitis C project. Respondents. Nineteen providers were asked open-ended questions to identify current perspectives, practices, facilitators, and barriers to HCV screening and testing. Providers were affiliated with Henry Ford Hospital, Mount Sinai Hospital, the University of Alabama, and the University of Texas Health Science Center. Results. Respondents reported the complexity of the 1998 recommendations, and numerous indicated risk factors were major barriers to effective implementation. Other hindrances to hepatitis C testing included physician discomfort in asking questions about socially undesirable behaviors and physician uncertainty about patient insurance coverage. Conclusion. Implementation of the CDC's 2012 recommendations could be more successful than the 1998 recommendations due to their relative simplicity; however, effective strategies need to be used for dissemination and implementation for full success. C1 [Jewett, Amy] Oak Ridge Inst Sci & Educ, Clinton, TN USA. [Garg, Arika; Meyer, Katherine; Rein, David B.] Univ Chicago, NORC, Chicago, IL 60637 USA. [Wagner, Laura Danielle] RTI Int, Waltham, MA USA. [Krauskopf, Katherine] Icahn Sch Med Mt Sinai, New York, NY 10029 USA. [Brown, Kimberly A.] Henry Ford Hosp, Detroit, MI 48202 USA. [Pan, Jen-Jung] Univ Texas Hlth Sci Ctr Houston, Houston, TX 77030 USA. [Massoud, Omar] Univ Alabama Birmingham, Birmingham, AL USA. [Smith, Bryce D.] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. RP Smith, BD (reprint author), Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd,MS G 37, Atlanta, GA 30333 USA. EM bsmith6@cdc.gov NR 26 TC 6 Z9 6 U1 0 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1524-8399 EI 1552-6372 J9 HEALTH PROMOT PRACT JI Health Promot. Pract. PD MAR PY 2015 VL 16 IS 2 BP 256 EP 263 DI 10.1177/1524839914532291 PG 8 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA CL9LK UT WOS:000357299900014 PM 24776636 ER PT J AU Miller, JM Onar, OC Chinthavali, M AF Miller, John M. Onar, Omer C. Chinthavali, Madhu TI Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE EV charging; inductive power transfer; wireless power transfer ID TRANSFER SYSTEMS; MAGNETOPLATED WIRE; FREQUENCY; DESIGN AB Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory's WPT apparatus. This paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path. C1 [Miller, John M.; Onar, Omer C.; Chinthavali, Madhu] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Power Elect & Elect Machinery Grp, Energy & Transportat Sci Div, Oak Ridge, TN 37932 USA. RP Miller, JM (reprint author), Oak Ridge Natl Lab, Natl Transportat Res Ctr, Power Elect & Elect Machinery Grp, Energy & Transportat Sci Div, Oak Ridge, TN 37932 USA. EM jmmiller35@aol.com; onaroc@ornl.gov; chinthavalim@ornl.gov RI Nunes, Joao Ricardo/I-8440-2016 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by Oak Ridge National Laboratory, operated by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (energy.gov/downloads/doe-public-access-plan). Recommended for publication by Associate Editor Chris Mi and Chun Rim. NR 53 TC 20 Z9 22 U1 5 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD MAR PY 2015 VL 3 IS 1 SI SI BP 147 EP 162 DI 10.1109/JESTPE.2014.2382569 PG 16 WC Engineering, Electrical & Electronic SC Engineering GA CN7IU UT WOS:000358608700013 ER PT J AU Abba, A Bedeschi, F Citterio, M Caponio, F Cusimano, A Geraci, A Marino, P Morello, MJ Neri, N Punzi, G Piucci, A Ristori, L Spinella, F Stracka, S Tonelli, D AF Abba, A. Bedeschi, F. Citterio, M. Caponio, F. Cusimano, A. Geraci, A. Marino, P. Morello, M. J. Neri, N. Punzi, G. Piucci, A. Ristori, L. Spinella, F. Stracka, S. Tonelli, D. TI The artificial retina processor for track reconstruction at the LHC crossing rate SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY MAY 14-16, 2014 CL Univ Penn, Philadelphia, PA HO Univ Penn DE Pattern recognition, cluster finding, calibration and fitting methods; Data reduction methods; Trigger concepts and systems (hardware and software); Digital electronic circuits ID RECEPTIVE FIELDS; VISUAL-CORTEX AB We present results of an R&D study for a specialized processor capable of precisely reconstructing, in pixel detectors, hundreds of charged-particle tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature, and describe in detail an efficient hardware implementation in high-speed, high-bandwidth FPGA devices. This is the first detailed demonstration of reconstruction of offline-quality tracks at 40 MHz and makes the device suitable for processing Large Hadron Collider events at the full crossing frequency. C1 [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Politecn Milan, I-20133 Milan, Italy. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ristori, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Tonelli, D.] CERN, CH-1211 Geneva 23, Switzerland. RP Tonelli, D (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM diego.tonelli@cern.ch RI Marino, Pietro/N-7030-2015; Stracka, Simone/M-3931-2015 OI Marino, Pietro/0000-0003-0554-3066; Stracka, Simone/0000-0003-0013-4714 NR 22 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR C03018 DI 10.1088/1748-0221/10/03/C03018 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500018 ER PT J AU Abba, A Bedeschi, F Citterio, M Caponio, F Cusimano, A Geraci, A Marino, P Morello, MJ Neri, N Punzi, G Piucci, A Ristori, L Spinella, F Stracka, S Tonelli, D AF Abba, A. Bedeschi, F. Citterio, M. Caponio, F. Cusimano, A. Geraci, A. Marino, P. Morello, M. J. Neri, N. Punzi, G. Piucci, A. Ristori, L. Spinella, F. Stracka, S. Tonelli, D. TI Simulation and performance of an artificial retina for 40 MHz track reconstruction SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY MAY 14-16, 2014 CL Univ Penn, Philadelphia, PA HO Univ Penn DE Pattern recognition, cluster finding, calibration and fitting methods; Trigger algorithms ID VISUAL-CORTEX AB We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm. C1 [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Politecn Milan, I-20133 Milan, Italy. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bedeschi, F.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.] Univ Pisa, I-56127 Pisa, Italy. [Bedeschi, F.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Stracka, S.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Marino, P.; Morello, M. J.; Stracka, S.] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Ristori, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Tonelli, D.] CERN, Geneva, Switzerland. RP Marino, P (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. EM pietro.marino@pi.infn.it RI Marino, Pietro/N-7030-2015; Stracka, Simone/M-3931-2015 OI Marino, Pietro/0000-0003-0554-3066; Stracka, Simone/0000-0003-0013-4714 NR 13 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR C03008 DI 10.1088/1748-0221/10/03/C03008 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500008 ER PT J AU Alves, R Andringa, S Bradbury, S Carvalho, J Chauhan, D Clark, K Coulter, I Descamps, F Falk, E Gurriana, L Kraus, C Lefeuvre, G Maio, A Maneira, J Mottram, M Peeters, S Rose, J Seabra, L Sinclair, J Skensved, P Waterfield, J White, R Wilson, JR AF Alves, R. Andringa, S. Bradbury, S. Carvalho, J. Chauhan, D. Clark, K. Coulter, I. Descamps, F. Falk, E. Gurriana, L. Kraus, C. Lefeuvre, G. Maio, A. Maneira, J. Mottram, M. Peeters, S. Rose, J. Seabra, L. Sinclair, J. Skensved, P. Waterfield, J. White, R. Wilson, J. R. TI The calibration system for the photomultiplier array the SNO plus experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Photon detectors for UV; visible and IR photons (vacuum) (photomultipliers, HPDs, others); Large detector systems for particle and astroparticle physics; Neutrino detectors; Double-beta decay detectors AB A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements. C1 [Alves, R.; Carvalho, J.] Univ Coimbra, Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. [Alves, R.; Carvalho, J.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Andringa, S.; Chauhan, D.; Gurriana, L.; Maio, A.; Maneira, J.; Seabra, L.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal. [Bradbury, S.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Chauhan, D.; Kraus, C.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Clark, K.; Falk, E.; Lefeuvre, G.; Mottram, M.; Peeters, S.; Sinclair, J.; Waterfield, J.; White, R.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Coulter, I.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Descamps, F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Maio, A.; Maneira, J.] Univ Lisbon, Fac Ciencias, Dept Fis, P-1749016 Lisbon, Portugal. [Maio, A.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Rose, J.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Skensved, P.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Wilson, J. R.] Univ London, Sch Phys & Astron, London E1 4NS, England. RP Maneira, J (reprint author), Univ Coimbra, Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. EM maneira@lip.it RI Carvalho, Joao/M-4060-2013; Maneira, Jose/D-8486-2011 OI Carvalho, Joao/0000-0002-3015-7821; Maneira, Jose/0000-0002-3222-2738 FU European Union FEDER funds through the COMPETE program; European Union FEDER funds through FCT (Fundacao para a Ciencia e a Tecnologia) [PTDC/FIS/115281/2009]; Science and Technology Facilities Council (STFC), United Kingdom [ST/J001007/1, ST/K001329/1]; national funds from Portugal; European Union's Seventh Framework Programme FP7 under the European Research Council (ERC) [278310]; Marie Curie grant [PIEF-GA-2009-253701]; University of Leeds; Canada Foundation for Innovation; Natural Sciences and Engineering Research Council of Canada; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0010407]; National Science Foundation [NSF-PHY-1242509]; California, Berkeley FX This research was supported in part by: national funds from Portugal and by European Union FEDER funds through the COMPETE program, through FCT (Fundacao para a Ciencia e a Tecnologia) with the project grant PTDC/FIS/115281/2009; the Science and Technology Facilities Council (STFC), United Kingdom, through grants ST/J001007/1 and ST/K001329/1, the European Union's Seventh Framework Programme FP7/2007-2013, under the European Research Council (ERC) grant agreement 278310 and the Marie Curie grant agreement PIEF-GA-2009-253701; the University of Leeds; the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada. This material is based upon work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC0010407; the National Science Foundation under Grant No. NSF-PHY-1242509; and the of California, Berkeley. NR 20 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR P03002 DI 10.1088/1748-0221/10/03/P03002 PG 33 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500052 ER PT J AU Chase, B Pasquinelli, R Cullerton, E Varghese, P AF Chase, B. Pasquinelli, R. Cullerton, E. Varghese, P. TI Precision vector control of a superconducting RF cavity driven by an injection locked magnetron SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Hardware and accelerator control systems; Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators) ID HIGH-POWER; PHASE-LOCKING; OSCILLATORS; PERFORMANCE; FREQUENCY AB The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated. C1 [Chase, B.; Pasquinelli, R.; Cullerton, E.; Varghese, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Chase, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM chase@fnal.gov FU Fermi Research Alliance LLC. [DE-AC02-07CH11359]; U.S. DOE FX Work supported by Fermi Research Alliance LLC. Under DE-AC02-07CH11359 with U.S. DOE. NR 13 TC 1 Z9 1 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR P03007 DI 10.1088/1748-0221/10/03/P03007 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500057 ER PT J AU Contin, G Anderssen, E Greiner, L Schambach, J Silber, J Stezelberger, T Sun, X Szelezniak, M Vu, C Wiemana, H Woodmansee, S AF Contin, G. Anderssen, E. Greiner, L. Schambach, J. Silber, J. Stezelberger, T. Sun, X. Szelezniak, M. Vu, C. Wiemana, H. Woodmansee, S. TI The MAPS based PXL vertex detector for the STAR experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 16th International Workshop on Radiation Imaging Detectors CY JUN 22-26, 2014 CL Trieste, ITALY DE Detector design and construction technologies and materials; Particle tracking detectors (Solid-state detectors) AB The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 mm) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16m(2). Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 mm pixel pitch, providing a sensitive area of similar to 3.8cm(2). The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 mu s readout time and 170mW/cm(2) power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical C1 [Contin, G.; Anderssen, E.; Greiner, L.; Silber, J.; Stezelberger, T.; Vu, C.; Wiemana, H.; Woodmansee, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schambach, J.] Univ Texas Austin, Austin, TX 78712 USA. [Sun, X.] CCNU, Wuhan, Peoples R China. [Szelezniak, M.] IPHC, Strasbourg, France. RP Contin, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gcontin@lbl.gov NR 7 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR C03026 DI 10.1088/1748-0221/10/03/C03026 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500026 ER PT J AU Liu, J Backhaus, M Barbero, M Bates, R Blue, A Bompard, F Breugnon, P Buttar, C Capeans, M Clemens, JC Feigl, S Ferrere, D Fougeron, D Garcia-Sciveres, M George, M Godiot-Basolo, S Gonella, L Gonzalez-Sevilla, S Grosse-Knetter, J Hemperek, T Hugging, F Hynds, D Iacobucci, G Kreidl, C Kruger, H La Rosa, A Miucci, A Muenstermann, D Nessi, M Obermann, T Pangaud, P Peric, I Pernegger, H Quadt, A Rieger, J Ristic, B Rozanov, A Weingarten, J Wermes, N AF Liu, J. Backhaus, M. Barbero, M. Bates, R. Blue, A. Bompard, F. Breugnon, P. Buttar, C. Capeans, M. Clemens, J. C. Feigl, S. Ferrere, D. Fougeron, D. Garcia-Sciveres, M. George, M. Godiot-Basolo, S. Gonella, L. Gonzalez-Sevilla, S. Grosse-Knetter, J. Hemperek, T. Huegging, F. Hynds, D. Iacobucci, G. Kreidl, C. Krueger, H. La Rosa, A. Miucci, A. Muenstermann, D. Nessi, M. Obermann, T. Pangaud, P. Peric, I. Pernegger, H. Quadt, A. Rieger, J. Ristic, B. Rozanov, A. Weingarten, J. Wermes, N. CA HV CMOS Collaboration TI HV/HR-CMOS sensors for the ATLAS upgrade - concepts and test chip results SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 16th International Workshop on Radiation Imaging Detectors CY JUN 22-26, 2014 CL Trieste, ITALY DE Solid state detectors; Radiation-hard detectors; Particle tracking detectors (Solid-state detectors) AB In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5 x 10(34) cm(-2) s(-1), more than twice the expected Phase I. The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given. C1 [Liu, J.; Barbero, M.; Bompard, F.; Breugnon, P.; Clemens, J. C.; Fougeron, D.; Godiot-Basolo, S.; Pangaud, P.; Rozanov, A.] Ctr Phys Particules Marseille, Marseille, France. [Liu, J.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.] CERN, Geneva, Switzerland. [Backhaus, M.; Gonella, L.; Hemperek, T.; Huegging, F.; Krueger, H.; Obermann, T.] Univ Bonn, Inst Phys, Bonn, Germany. [Bates, R.; Blue, A.; Buttar, C.; Hynds, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Rosa, A.; Miucci, A.; Muenstermann, D.] Univ Geneva, Geneva, Switzerland. [Garcia-Sciveres, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.] Univ Goettingen, Inst Phys, Gottingen, Germany. [Kreidl, C.; Peric, I.] Heidelberg Univ, Inst Comp Sci, D-68131 Mannheim, Germany. RP Liu, J (reprint author), Ctr Phys Particules Marseille, 163 Ave Luminy, Marseille, France. EM jian@cppm.in2p3.fr RI Blue, Andrew/C-9882-2016 OI Blue, Andrew/0000-0002-7716-5626 NR 5 TC 3 Z9 3 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR C03033 DI 10.1088/1748-0221/10/03/C03033 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500033 ER PT J AU Serra, L Sorel, M Alvarez, V Borges, FIG Camargo, M Carcel, S Cebrian, S Cervera, A Conde, CAN Dafni, T Diaz, J Esteve, R Fernandes, LMP Ferrario, P Ferreira, AL Freitas, EDC Gehman, VM Goldschmidt, A Gomez-Cadenas, JJ Gonzalez-Diaz, D Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Irastorza, IG Labarga, L Laing, A Liubarsky, I Lopez-March, N Lorca, D Losada, M Luzon, G Mari, A Martin-Albo, J Martinez-Lema, G Martinez, A Miller, T Monrabal, F Monserrate, M Monteiro, CMB Mora, FJ Moutinho, LM Vidal, JM Nebot-Guinot, M Nygren, D Oliveira, CAB Perez, J Aparicio, JLP Querol, M Renner, J Ripoll, L Rodriguez, A Rodriguez, J Santos, FP dos Santos, JMF Shuman, D Simon, A Sofka, C Toledo, JF Torrent, J Tsamalaidze, Z Veloso, JFCA Villar, JA Webb, R White, JT Yahlali, N AF Serra, L. Sorel, M. Alvarez, V. Borges, F. I. G. Camargo, M. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Diaz, J. Esteve, R. Fernandes, L. M. P. Ferrario, P. Ferreira, A. L. Freitas, E. D. C. Gehman, V. M. Goldschmidt, A. Gomez-Cadenas, J. J. Gonzalez-Diaz, D. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Irastorza, I. G. Labarga, L. Laing, A. Liubarsky, I. Lopez-March, N. Lorca, D. Losada, M. Luzon, G. Mari, A. Martin-Albo, J. Martinez-Lema, G. Martinez, A. Miller, T. Monrabal, F. Monserrate, M. Monteiro, C. M. B. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Nebot-Guinot, M. Nygren, D. Oliveira, C. A. B. Perez, J. Perez Aparicio, J. L. Querol, M. Renner, J. Ripoll, L. Rodriguez, A. Rodriguez, J. Santos, F. P. dos Santos, J. M. F. Shuman, D. Simon, A. Sofka, C. Toledo, J. F. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Villar, J. A. Webb, R. White, J. T. Yahlali, N. CA NEXT Collaboration TI An improved measurement of electron-ion recombination in high-pressure xenon gas SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers; Ionization and excitation processes ID MONTE-CARLO-SIMULATION; LIQUID XENON; ALPHA-PARTICLES; COUNTING GASES; ENERGY; DRIFT; LUMINESCENCE; IONIZATION; ARGON; RAYS AB We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electronion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561 +/- 0.045, translating into an average energy to produce a primary scintillation photon of W-ex = (39.2 +/- 3.2) eV. C1 [Serra, L.; Sorel, M.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain. [Serra, L.; Sorel, M.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.] Univ Valencia, Valencia 46980, Spain. [Borges, F. I. G.; Conde, C. A. N.; Santos, F. P.] Univ Coimbra, LIP, P-3004516 Coimbra, Portugal. [Borges, F. I. G.; Conde, C. A. N.; Santos, F. P.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Cebrian, S.; Dafni, T.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Esteve, R.; Mari, A.; Mora, F. J.; Toledo, J. F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain. [Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, LIBPhys, P-3004516 Coimbra, Portugal. [Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat i3N, P-3810193 Aveiro, Portugal. [Gehman, V. M.; Goldschmidt, A.; Miller, T.; Oliveira, C. A. B.; Shuman, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hernando Morata, J. A.; Martinez-Lema, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela 15782, Spain. [Labarga, L.; Perez, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Nygren, D.] Univ Texas Arlington, Arlington, TX 76019 USA. [Perez Aparicio, J. L.] Univ Politecn Valencia, Dept Mecan Med Continuos & Teor Estruct, Valencia 46071, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona 17071, Spain. [Sofka, C.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna 141980, Russia. RP Serra, L (reprint author), CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain. EM luis.serra@ific.uv.es RI Dafni, Theopisti/J-9646-2012; Monrabal, Francesc/A-5880-2015; Perez Aparicio, Jose Luis/H-7053-2015; Diaz, Jose/B-3454-2012; AMADE Research Group, AMADE/B-6537-2014; Gonzalez Diaz, Diego/K-7265-2014; Fernandes, Luis/E-2372-2011; Villar, Jose Angel/K-6630-2014; veloso, joao/J-4478-2013; Moutinho, Luis/J-6021-2013; Irastorza, Igor/B-2085-2012; Lopez March, Neus/P-4411-2014; OI dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Dafni, Theopisti/0000-0002-8921-910X; Freitas, Elisabete/0000-0001-8235-3229; Monrabal, Francesc/0000-0002-4047-5620; Munoz Vidal, Javier/0000-0002-9649-2251; Toledo Alarcon, Jose Francisco/0000-0002-9782-4510; Santos, Filomena/0000-0002-0214-4185; Martin-Albo, Justo/0000-0002-7318-1469; Perez Aparicio, Jose Luis/0000-0003-2884-6991; Diaz, Jose/0000-0002-7239-223X; AMADE Research Group, AMADE/0000-0002-5778-3291; Gonzalez Diaz, Diego/0000-0002-6809-5996; Fernandes, Luis/0000-0002-7061-8768; Villar, Jose Angel/0000-0003-0228-7589; Monteiro, Cristina Maria Bernardes/0000-0002-1912-2804; Moutinho, Luis/0000-0001-9074-4449; Irastorza, Igor/0000-0003-1163-1687; Lopez March, Neus/0000-0001-6586-0675; Veloso, Joao/0000-0002-7107-7203 FU European Research Council [339787-NEXT]; Ministerio de Economia y Competitividad of Spain under CONSOLIDER-Ingenio [CSD2008-0037, FPA2009-13697-C04, FIS2012-37947-C04]; Office of Science, Office of Basic Energy Sciences, of US Department of Energy [DE-AC02-05CH11231]; FEDER through program COMPETE [PTDC/FIS/103860/2008]; Portuguese FCT FX This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008. NR 38 TC 2 Z9 2 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR P03025 DI 10.1088/1748-0221/10/03/P03025 PG 21 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500075 ER PT J AU Xia, W Zhang, T Gui, P Hoff, J Liu, T AF Xia, W. Zhang, T. Gui, P. Hoff, J. Liu, T. TI Thermal Analysis for the proto-VIPRAM00 chip SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 22-26, 2014 CL Aix en Provence, FRANCE DE Models and simulations; Simulation methods and programs; Cryogenics and thermal models AB Thermal analysis has been essential in designing reliable ICs. This becomes even more critical when multiple thin dies are stacked together to form a 3D integration. This paper presents our work on thermal modeling, analysis, and simulations on the first 2D prototype of Vertically Integrated PRAM (proto-VIPRAM00) chip. We proposed a sub-circuit-block level thermal simulation approach using Fourier heat flow model, where one CAM cell in proto-VIPRAM00 is used as a unit heat source. This approach significantly reduces the simulation time and computing resources while providing efficient and accurate thermal/temperature simulations in both 2D and 3D IC scenarios. C1 [Xia, W.; Zhang, T.; Gui, P.] So Methodist Univ, Dallas, TX 75275 USA. [Hoff, J.; Liu, T.] Fermilab Natl Accelerator Lab, Batavia, IL USA. RP Gui, P (reprint author), So Methodist Univ, Dallas, TX 75275 USA. EM pgui@smu.edu NR 11 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2015 VL 10 AR C03015 DI 10.1088/1748-0221/10/03/C03015 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CM8IZ UT WOS:000357944500015 ER PT J AU Dauter, Z AF Dauter, Zbigniew TI Solving coiled-coil protein structures SO IUCRJ LA English DT Editorial Material DE molecular replacement; ab initio modeling; coiled-coil proteins ID MOLECULAR REPLACEMENT; CRYSTAL-STRUCTURES; AMPLE C1 NCI, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov NR 14 TC 2 Z9 2 U1 0 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD MAR PY 2015 VL 2 BP 164 EP 165 DI 10.1107/S2052252515003486 PN 2 PG 2 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CL3QW UT WOS:000356866400005 PM 25866652 ER PT J AU Zheng, Z Guo, B Christov, IC Celia, MA Stone, HA AF Zheng, Zhong Guo, Bo Christov, Ivan C. Celia, Michael A. Stone, Howard A. TI Flow regimes for fluid injection into a confined porous medium SO JOURNAL OF FLUID MECHANICS LA English DT Article DE geophysical and geological flows; gravity currents; porous media ID VISCOUS GRAVITY CURRENTS; DISPLACEMENT FLOWS; INCLINED PLANE; CO2 MIGRATION; PART 1.; SIMILARITY; CAPILLARY; AQUIFER; LAYERS; SLOPE AB We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection-diffusion equation is derived to describe the time evolution of the fluid-fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection-diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated. The flow behaviour is summarized in a diagram with five distinct dynamical regimes: a nonlinear diffusion regime, a transition regime, a travelling wave regime, an equal-viscosity regime, and a rarefaction regime. C1 [Zheng, Zhong; Christov, Ivan C.; Stone, Howard A.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Guo, Bo; Celia, Michael A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Christov, Ivan C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Christov, Ivan C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Stone, HA (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM hastone@princeton.edu RI Christov, Ivan/B-9418-2008; Guo, Bo/B-7289-2016; Guo, Bo/M-1996-2016 OI Christov, Ivan/0000-0001-8531-0531; Guo, Bo/0000-0002-8825-7331 FU Princeton Carbon Mitigation Initiative; National Science Foundation (NSF) [DMS-1104047]; LANL/LDRD Program through a Feynman Distinguished Fellowship (at Los Alamos National Laboratory); US Department of Energy [DE-AC52-06NA25396]; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We thank the Princeton Carbon Mitigation Initiative for support of this research. We acknowledge the anonymous reviewers for helpful comments. We also thank T. Al-Housseiny, H. Huppert, C. Li, O. Pak, R. Socolow, and P. Tsai for helpful conversations. I.C.C. was supported by the National Science Foundation (NSF) under grant no. DMS-1104047 (at Princeton University) and by the LANL/LDRD Program through a Feynman Distinguished Fellowship (at Los Alamos National Laboratory). LANL is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no. DE-AC52-06NA25396. NR 38 TC 8 Z9 8 U1 2 U2 12 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD MAR PY 2015 VL 767 BP 881 EP 909 DI 10.1017/jfm.2015.68 PG 29 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CL5MY UT WOS:000357005200007 ER PT J AU Ferrari, L Wu, CH Lepage, D Zhang, X Liu, ZW AF Ferrari, Lorenzo Wu, Chihhui Lepage, Dominic Zhang, Xiang Liu, Zhaowei TI Hyperbolic metamaterials and their applications SO PROGRESS IN QUANTUM ELECTRONICS LA English DT Review DE Hyperbolic metamaterial; Anisotropy; Plasmonics ID NEGATIVE-INDEX METAMATERIALS; SURFACE-PLASMON POLARITONS; DEEP-SUBWAVELENGTH SCALE; SPONTANEOUS EMISSION; DIFFRACTION LIMIT; NEAR-FIELD; OPTICAL HYPERLENS; WAVE-GUIDES; TRANSFORMATION OPTICS; GRAPHENE PLASMONICS AB This review aims at providing a comprehensive and updated picture of the field of hyperbolic metamaterials, from the foundations to the most recent progresses and future perspectives. The topics discussed embrace theoretical aspects, practical realization and key challenges for applications such as imaging, spontaneous emission engineering, thermal, active and tunable hyperbolic media. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ferrari, Lorenzo; Liu, Zhaowei] Univ Calif San Diego, Mat Sci & Engn, La Jolla, CA 92093 USA. [Wu, Chihhui; Zhang, Xiang] Univ Calif Berkeley, NSF, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Wu, Chihhui; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lepage, Dominic; Liu, Zhaowei] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Liu, Zhaowei] Univ Calif San Diego, Ctr Magnet Recording Res, La Jolla, CA 92093 USA. RP Liu, ZW (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM zhaowei@ucsd.edu RI Liu, Zhaowei/A-8521-2010 FU Office of Naval Research (ONR) Young Investigator Award [N00014-13-1-0535]; Defense Advanced Research Projects Agency (DARPA) Young Faculty Award [D13AP00054]; National Science Foundation-Civil, Mechanical and Manufacturing Innovation (NSF-CMMI) [1120795]; Multidisciplinary University Research Initiative from the Air Force Office of Scientific Research (AFOSR MURI) [FA9550-12-1-0488] FX The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Award (Grant no. N00014-13-1-0535), the Defense Advanced Research Projects Agency (DARPA) Young Faculty Award (Grant no. D13AP00054), the National Science Foundation-Civil, Mechanical and Manufacturing Innovation (NSF-CMMI) (Grant no. 1120795). This project was partially supported by a Multidisciplinary University Research Initiative from the Air Force Office of Scientific Research (AFOSR MURI Award no. FA9550-12-1-0488). NR 183 TC 49 Z9 50 U1 40 U2 154 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6727 J9 PROG QUANT ELECTRON JI Prog. Quantum Electron. PD MAR PY 2015 VL 40 BP 1 EP 40 DI 10.1016/j.pquantelec.2014.10.001 PG 38 WC Engineering, Electrical & Electronic SC Engineering GA CL4EC UT WOS:000356904400001 ER PT J AU Bhattacharya, A Gandhi, R Gupta, A AF Bhattacharya, A. Gandhi, R. Gupta, A. TI The direct detection of boosted dark matter at high energies and PeV events at IceCube SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; neutrino detectors; ultra high energy photons and neutrinos ID COSMIC-RAYS; GAMMA-RAY; NEUTRINOS; GALAXIES; CLUSTERS AB We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle chi, created via the decay of a significantly more massive and long-lived non-thermal relic phi, which forms the bulk of DM. If chi interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC. C1 [Bhattacharya, A.] Univ Arizona, Dept Phys, Tucson, AZ 85704 USA. [Gandhi, R.; Gupta, A.] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India. [Gandhi, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Bhattacharya, A (reprint author), Univ Arizona, Dept Phys, 1118 E Fourth St, Tucson, AZ 85704 USA. EM atrib@email.arizona.edu; nubarnu@gmail.com; aritra@hri.res.in FU Fermi lab; CETUP (Center for Theoretical Underground Physics and Related Areas); XII Plan DAE Neutrino Physics and Astrophysics Grant; US Department of Energy [DE-FG02-04ER41298, DE- FG02-13ER41976] FX The authors would like to thank Nathan Whitehorn for his patient answering of many questions on the IC data and Arindam Chatterjee and Satyanarayan Mukhopadhyay for useful discussions related to this work. AB is grateful to Tyce De Young for very insightful discussions and suggestions. RG thanks Alejandro Ibarra for very useful discussions. RG also acknowledges support from Fermi lab via an Intensity Frontier Fellowship and thanks CETUP (Center for Theoretical Underground Physics and Related Areas) for partial support and hospitality during the 2014 Summer program. RG and AG acknowledge support from a XII Plan DAE Neutrino Physics and Astrophysics Grant. AG is also deeply appreciative of help from Mehedi Masud and Titas Chanda related to some of the relevant computational work. This work was supported in part by the US Department of Energy contracts DE-FG02-04ER41298 and DE- FG02-13ER41976 for AB. NR 63 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2015 IS 3 AR 027 DI 10.1088/1475-7516/2015/03/027 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ6VR UT WOS:000355633800027 ER PT J AU Calore, F Cholis, I Weniger, C AF Calore, Francesca Cholis, Ilias Weniger, Christoph TI Background model systematics for the Fermi GeV excess SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE gamma ray theory; cosmic ray theory; dark matter experiments ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; MICROWAVE-ANISOTROPY-PROBE; STARBURST GALAXIES M82; GALACTIC-CENTER REGION; STAR-FORMING GALAXIES; HIGH-ENERGY EMISSION; DARK-MATTER; SUPERNOVA REMNANT; MILKY-WAY AB The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2 degrees 25 PyMinuit,25 IPython [111] and HEALPix [60]. This work has been supported by the US Department of Energy. F.C. acknowledges support from the European Research Council through the ERC starting grant WIMPs Kairos, P.I. G. Bertone. NR 144 TC 116 Z9 116 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2015 IS 3 AR 038 DI 10.1088/1475-7516/2015/03/038 PG 66 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ6VR UT WOS:000355633800038 ER PT J AU Hooper, D Linden, T Mertsch, P AF Hooper, Dan Linden, Tim Mertsch, Philipp TI What does the PAMELA antiproton spectrum tell us about dark matter? SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter experiments; cosmic ray theory ID COSMIC-RAY PROPAGATION; ENERGY-SPECTRA; NUCLEI; ANNIHILATION; CONSTRAINTS; PARAMETERS; GALAXY; TRANSPORT; MODELS; BE-10 AB Measurements of the cosmic ray antiproton spectrum can be used to search for contributions from annihilating dark matter and to constrain the dark matter annihilation cross section. Depending on the assumptions made regarding cosmic ray propagation in the Galaxy, such constraints can be quite stringent. We revisit this topic, utilizing a set of propagation models fit to the cosmic ray boron, carbon, oxygen and beryllium data. We derive upper limits on the dark matter annihilation cross section and find that when the cosmic ray propagation parameters are treated as nuisance parameters (as we argue is appropriate), the resulting limits are significantly less stringent than have been previously reported. We also note (as have several previous groups) that simple GALPROP-like diffusion-reacceleration models predict a spectrum of cosmic ray antiprotons that is in good agreement with PAMELA's observations above similar to 5 GeV, but that significantly underpredict the flux at lower energies. Although the complexity of modeling cosmic ray propagation at GeV-scale energies makes it difficult to determine the origin of this discrepancy, we consider the possibility that the excess antiprotons are the result of annihilating dark matter. Suggestively, we find that this excess is best fit for m(DM) similar to 35 GeV and sigma v similar to 10(-6) cm(3)/s (to b (b) over bar), in good agreement with the mass and cross section previously shown to be required to generate the gamma-ray excess observed from the Galactic Center. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Linden, Tim] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Mertsch, Philipp] Stanford Univ, Kavli Insitute Particle Astrophys & Cosmol, Menlo Pk, CA USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM dhooper@fnal.gov; trlinden@uchicago.edu; pmertsch@stanford.edu OI Mertsch, Philipp/0000-0002-2197-3421 FU US Department of Energy; National Aeronautics and Space Administration [PF3-140110]; DOE [DE-AC02-76SF00515]; KIPAC Kavli grant by the Kavli Foundation FX We would like to thank Ilias Cholis for many very helpful comments and discussions. As we were completing this study, ref. [31] appeared on the LANL arXiv, which addresses some of same questions as discussed here. This work has been supported by the US Department of Energy. TL is supported by the National Aeronautics and Space Administration through Einstein Postdoctoral Fellowship Award Number PF3-140110. PM is supported by DOE Contract No. DE-AC02-76SF00515 and a KIPAC Kavli grant made possible by the Kavli Foundation. NR 65 TC 23 Z9 23 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2015 IS 3 AR 021 DI 10.1088/1475-7516/2015/03/021 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ6VR UT WOS:000355633800021 ER PT J AU Liu, J Hosseinpour, PM Luo, S Heiman, D Menon, L Arena, DA Lewis, LH AF Liu, Jing Hosseinpour, Pegah M. Luo, Si Heiman, Don Menon, Latika Arena, Dario A. Lewis, Laura H. TI TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID X-RAY-ABSORPTION; SENSITIZED SOLAR-CELLS; PHOTOELECTROCHEMICAL RESPONSE; TITANIA NANOTUBES; HYDROGEN; ANATASE; SPECTROSCOPY; SPECTRA; OXIDES; FILMS AB To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO2 nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O-2 (oxidizing), Ar (inert), and H-2 (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 degrees C all as-anodized amorphous TiO2 nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (similar to 5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO2 nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H-2-annealed nanotubes than with the Ar- and O-2-annealed nanotube samples. This enhanced photocatalytic response of the H-2-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications. (C) 2014 American Vacuum Society. C1 [Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H.] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. [Luo, Si] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Luo, Si] SUNY Stony Brook, Dept Chem, Stony Brook, NY USA. [Heiman, Don; Menon, Latika] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Arena, Dario A.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Liu, J (reprint author), Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. EM lhlewis@neu.edu RI Liu, Jing/E-7184-2016 FU National Science Foundation [DMR-0906608, DMR-0908767, DMR-0907007]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research supported by the National Science Foundation under Grants No. DMR-0906608, DMR-0908767, and DMR-0907007. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 57 TC 3 Z9 3 U1 1 U2 22 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR PY 2015 VL 33 IS 2 AR 021202 DI 10.1116/1.4902350 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CJ8GZ UT WOS:000355739500011 ER PT J AU Meysing, DM Wolden, CA Griffith, MM Mahabaduge, H Pankow, J Reese, MO Burst, JM Rance, WL Barnes, TM AF Meysing, Daniel M. Wolden, Colin A. Griffith, Michelle M. Mahabaduge, Hasitha Pankow, Joel Reese, Matthew O. Burst, James M. Rance, William L. Barnes, Teresa M. TI Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID THIN-FILMS; EFFICIENCY; LAYERS; DEPOSITION; SPECTROSCOPY; TEMPERATURE; CONTACT AB Oxygenated cadmium sulfide (CdS:O) is commonly used as the n-type window layer in high-performance CdTe heterojunction solar cells. This layer is deposited by reactive sputtering, but the optimal amount of oxygen in the sputtering ambient is highly dependent on the specific system and process employed. In this work, the intrinsic properties of CdS:O were measured as a function of the oxygen content (0%-10%) in the sputtering ambient and correlated to device performance with the goal of better defining optimal CdS:O properties for CdTe solar cells. Optimal performance was found using CdS:O films that contained similar to 40 at. % oxygen as measured by Rutherford back-scattering spectrometry. X-ray photoelectron spectroscopy confirmed these results and showed that oxygen is incorporated primarily as oxygenated sulfur compounds (SOx). Device efficiency improved from 10.5% using CdS to >14% with CdS:O due largely to increases in short-circuit current density as well as a modest improvement in open-circuit voltage. The transparency of the CdS:O films was well correlated with observed improvements in blue quantum efficiency with increasing oxygen content. The optical bandgap of as-deposited CdS:O was identified as a simple metric for process optimization and transfer, with 2.8 eV being ideal for the device architecture employed. (C) 2014 American Vacuum Society. C1 [Meysing, Daniel M.; Wolden, Colin A.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Griffith, Michelle M.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Mahabaduge, Hasitha; Pankow, Joel; Reese, Matthew O.; Burst, James M.; Rance, William L.; Barnes, Teresa M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Meysing, DM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, 1613 Illinois St, Golden, CO 80401 USA. EM dmeysing@mines.edu FU U.S. Department of Energy SunShot Foundational Program to Advance Cell Efficiency (F-PACE) [DE-AC36-08-GO28308] FX The authors would like to acknowledge Robert White and John Perkins for RBS measurement and analysis assistance; Craig Perkins for XPS analysis assistance; and Ana Kanevce, Timothy Gessert, and Wyatt Metzger for valuable discussion. This work was funded by the U.S. Department of Energy SunShot Foundational Program to Advance Cell Efficiency (F-PACE) under Contract No. DE-AC36-08-GO28308. NR 37 TC 16 Z9 16 U1 3 U2 35 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR PY 2015 VL 33 IS 2 AR 021203 DI 10.1116/1.4903214 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CJ8GZ UT WOS:000355739500012 ER PT J AU Wang, YH Comes, RB Kittiwatanakul, S Wolf, SA Lu, JW AF Wang, Yuhan Comes, Ryan B. Kittiwatanakul, Salinporn Wolf, Stuart A. Lu, Jiwei TI Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID NEUTRON-DIFFRACTION; COULOMB GAP; NBO2; CONDUCTIVITY; TRANSPORT; OXIDES; RAMAN AB Epitaxial NbO2 thin films were synthesized on Al2O3 (0001) substrates via reactive bias target ion beam deposition. X-ray diffraction and Raman spectra were used to confirm the tetragonal phase of pure NbO2. Through XPS, it was found that there was a similar to 1.3 nm thick Nb2O5 layer on the surface and the bulk of the thin film was NbO2. The epitaxial relationship between the NbO2 film and the substrate was determined. Electrical transport measurement was measured up to 400 K, and the conduction mechanism was discussed. (C) 2015 American Vacuum Society. C1 [Wang, Yuhan; Kittiwatanakul, Salinporn; Wolf, Stuart A.; Lu, Jiwei] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Comes, Ryan B.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Wolf, Stuart A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Wang, YH (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM yw9ep@virginia.edu OI Comes, Ryan/0000-0002-5304-6921 FU Linus Pauling Distinguished Postdoctoral Fellowship at Pacific Northwest National Laboratory [PNNL LDRD PN13100/2581]; Department of Energy's Office of Biological and Environmental Research FX R.B.C. was supported by the Linus Pauling Distinguished Postdoctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD PN13100/2581). The PNNL work was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 33 TC 5 Z9 5 U1 3 U2 14 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR PY 2015 VL 33 IS 2 AR 021516 DI 10.1116/1.4906143 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CJ8GZ UT WOS:000355739500053 ER PT J AU Yogodzinski, GM Brown, ST Kelemen, PB Vervoort, JD Portnyagin, M Sims, KWW Hoernle, K Jicha, BR Werner, R AF Yogodzinski, Gene M. Brown, Shaun T. Kelemen, Peter B. Vervoort, Jeff D. Portnyagin, Maxim Sims, Kenneth W. W. Hoernle, Kaj Jicha, Brian R. Werner, Reinhard TI The Role of Subducted Basalt in the Source of Island Arc Magmas: Evidence from Seafloor Lavas of the Western Aleutians SO JOURNAL OF PETROLOGY LA English DT Article DE island arc; isotope; trace element; major element; calc-alkaline; subduction; magnesian andesite; mantle; adakite ID EAST PACIFIC RISE; CALC-ALKALINE DIFFERENTIATION; TRACE-ELEMENT CHARACTERISTICS; ND ISOTOPIC COMPOSITION; MIDOCEAN RIDGE BASALT; MEXICAN VOLCANIC BELT; HIGH-ALUMINA BASALTS; MG-NUMBER ANDESITES; U-SERIES ISOTOPES; CONTINENTAL-CRUST AB Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175.9 degrees E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50-70% SiO2. Most samples have Mg-numbers [Mg# = Mg/(Mg+Fe)] greater than 0.60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0.67 (+/- 0.02, n=99, 1SD), and have Sr concentrations (423 +/- 29 ppm, n=99) and La/Yb ratios (4.5 +/- 0.4, n=29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg#=0.61 +/- 0.1, n=31; Sr=882 +/- 333 ppm, n=31; La/Yb=9.1 +/- 0.9, n=16). None of the geochemically enriched basalts or basaltic andesites has low Y (<15 ppm) or Yb (<1.5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (>1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y=50-350, La/Yb=8-35, Dy/Yb=2.0-3.5) with low relative abundances of Nb and Ta (La/Ta > 100), consistent with an enhanced role for residual or cumulate garnet+rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with epsilon(Nd)=9.1 +/- 0.3 (n=31) and epsilon(Hf)=14.5 +/- 0.6 (n=27). Lead isotopes are variable and decrease with increasing SiO2 from basalts with Pb-206/(204) Pb=18.51 +/- 0.05 (n=11) to dacites and rhyodacites with Pb-206/Pb-204=18.43 +/- 0.04 (n=18). Western seafloor lavas form a steep trend in Pb-207/Pb-204-Pb-206/Pb-204 space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have Pb-206/Pb-204 > 18.6 and Pb-207/Pb-204 > 15.52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet+rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36-50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg#basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc. C1 [Yogodzinski, Gene M.; Brown, Shaun T.] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. [Brown, Shaun T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kelemen, Peter B.] Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, Palisades, NY 10964 USA. [Vervoort, Jeff D.] Washington State Univ, Sch Environm, Pullman, WA 99163 USA. [Portnyagin, Maxim; Hoernle, Kaj; Werner, Reinhard] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany. [Sims, Kenneth W. W.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Jicha, Brian R.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. RP Yogodzinski, GM (reprint author), Univ S Carolina, Dept Earth & Ocean Sci, 701 Sumter St,EWSC617, Columbia, SC 29208 USA. EM gyogodzin@geol.sc.edu RI Brown, Shaun/E-9398-2015 OI Brown, Shaun/0000-0002-2159-6718 FU National Science Foundation [EAR-0230261, EAR-0510671, EAR-0230145, EAR-0509922, EAR-0236481, OCE-0242585, OCE-0728077, OCE-0242233, OCE-0533226, OCE-1144759, EAR-0727013, EAR-0961359, EAR-0742368]; German Ministry for Education and Research [SO201 Leg1b, 3B] FX This work was supported by National Science Foundation grants EAR-0230261 to J.D.V.; EAR-0510671 to K.W.W.S.; EAR-0230145, EAR-0509922, EAR-0236481, OCE-0242585 and OCE-0728077 to G.M.Y.; and OCE-0242233, OCE-0533226, OCE-1144759, EAR-0727013, EAR-0961359 and EAR-0742368 to P.B.K. This work was also supported by the German Ministry for Education and Research grants Sonne cruise SO201 Leg1b and KALMAR B subproject 3B to K.A.H. NR 196 TC 10 Z9 10 U1 3 U2 25 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-3530 EI 1460-2415 J9 J PETROL JI J. Petrol. PD MAR PY 2015 VL 56 IS 3 BP 441 EP 492 DI 10.1093/petrology/egv006 PG 52 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CJ1GV UT WOS:000355232900001 ER PT J AU Liang, YT Wu, LY Clark, IM Xue, K Yang, YF Van Nostrand, JD Deng, Y He, ZL McGrath, S Storkey, J Hirsch, PR Sun, B Zhou, JZ AF Liang, Yuting Wu, Liyou Clark, Ian M. Xue, Kai Yang, Yunfeng Van Nostrand, Joy D. Deng, Ye He, Zhili McGrath, Steve Storkey, Jonathan Hirsch, Penny R. Sun, Bo Zhou, Jizhong TI Over 150 Years of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity SO MBIO LA English DT Article ID AMMONIA-OXIDIZING BACTERIA; SPECIES-AREA RELATIONSHIPS; PARK GRASS EXPERIMENT; NITROGEN-FERTILIZATION; COMMUNITY STRUCTURE; PLANT BIODIVERSITY; N FERTILIZATION; BETA-DIVERSITY; TAXA-AREA; SOIL AB Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receiving nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. These results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. IMPORTANCE Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. By identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, this study makes fundamental contributions to predictive understanding of microbial biogeography. C1 [Liang, Yuting; Sun, Bo] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing, Jiangsu, Peoples R China. [Liang, Yuting; Yang, Yunfeng; Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Liang, Yuting; Wu, Liyou; Xue, Kai; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom & Microbiol & Plant Biol, Norman, OK 73019 USA. [Clark, Ian M.; McGrath, Steve; Storkey, Jonathan; Hirsch, Penny R.] Rothamsted Res, Harpenden, Herts, England. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. EM jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016; Clark, Ian/I-1249-2016; Hirsch, Penny/B-5135-2008; OI Van Nostrand, Joy/0000-0001-9548-6450; Clark, Ian/0000-0002-1589-5420; Hirsch, Penny/0000-0002-5909-1934; ?, ?/0000-0002-7584-0632 FU National Natural Scientific Foundation of China [41430856, 41371256]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010100, XDB15010200]; United Kingdom Biotechnology and Biological Sciences Research Council; U.S. National Science Foundation (NSF) MacroSystems Biology program under NSF [EF-1065844]; United States Department of Agriculture through NSF-USDA Microbial Observatories Program [2007-35319-18305]; State Key Joint Laboratory of Environment Simulation and Pollution Control; Foundation for Distinguished Young Talents in State Key Laboratory of Soil and Sustainable Agriculture [Y412010008] FX This research was supported by National Natural Scientific Foundation of China (grants 41430856 and 41371256), Strategic Priority Research Program of the Chinese Academy of Sciences (grants XDB15010100 and XDB15010200), an Underwood Fellowship from the United Kingdom Biotechnology and Biological Sciences Research Council to L.W., the U.S. National Science Foundation (NSF) MacroSystems Biology program under contract NSF EF-1065844, the United States Department of Agriculture (project 2007-35319-18305) through NSF-USDA Microbial Observatories Program, the State Key Joint Laboratory of Environment Simulation and Pollution Control, and Foundation for Distinguished Young Talents in State Key Laboratory of Soil and Sustainable Agriculture (grant Y412010008). NR 64 TC 3 Z9 3 U1 15 U2 79 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD MAR-APR PY 2015 VL 6 IS 2 AR e00240-15 DI 10.1128/mBio.00240-15 PG 9 WC Microbiology SC Microbiology GA CJ2KE UT WOS:000355312400053 ER PT J AU Malvankar, NS Vargas, M Nevin, K Tremblay, PL Evans-Lutterodt, K Nykypanchuk, D Martz, E Tuominen, MT Lovley, DR AF Malvankar, Nikhil S. Vargas, Madeline Nevin, Kelly Tremblay, Pier-Luc Evans-Lutterodt, Kenneth Nykypanchuk, Dmytro Martz, Eric Tuominen, Mark T. Lovley, Derek R. TI Structural Basis for Metallic-Like Conductivity in Microbial Nanowires SO MBIO LA English DT Article ID INTERSPECIES ELECTRON-TRANSFER; SULFURREDUCENS FUEL-CELLS; IV PILUS STRUCTURE; GEOBACTER-SULFURREDUCENS; X-RAY; PROTEIN CRYSTALS; CARBON-DIOXIDE; TRANSPORT; BIOFILMS; CRYSTALLOGRAPHY AB Direct measurement of multiple physical properties of Geobacter sulfurreducens pili have demonstrated that they possess metallic-like conductivity, but several studies have suggested that metallic-like conductivity is unlikely based on the structures of the G. sulfurreducens pilus predicted from homology models. In order to further evaluate this discrepancy, pili were examined with synchrotron X-ray microdiffraction and rocking-curve X-ray diffraction. Both techniques revealed a periodic 3.2-angstrom spacing in conductive, wild-type G. sulfurreducens pili that was missing in the nonconductive pili of strain Aro5, which lack key aromatic acids required for conductivity. The intensity of the 3.2-angstrom peak increased 100-fold when the pH was shifted from 10.5 to 2, corresponding with a previously reported 100-fold increase in pilus conductivity with this pH change. These results suggest a clear structure-function correlation for metallic-like conductivity that can be attributed to overlapping pi-orbitals of aromatic amino acids. A homology model of the G. sulfurreducens pilus was constructed with a Pseudomonas aeruginosa pilus model as a template as an alternative to previous models, which were based on a Neisseria gonorrhoeae pilus structure. This alternative model predicted that aromatic amino acids in G. sulfurreducens pili are packed within 3 to 4 angstrom, consistent with the experimental results. Thus, the predictions of homology modeling are highly sensitive to assumptions inherent in the model construction. The experimental results reported here further support the concept that the pili of G. sulfurreducens represent a novel class of electronically functional proteins in which aromatic amino acids promote long-distance electron transport. IMPORTANCE The mechanism for long-range electron transport along the conductive pili of Geobacter sulfurreducens is of interest because these "microbial nanowires" are important in biogeochemical cycling as well as applications in bioenergy and bioelectronics. Although proteins are typically insulators, G. sulfurreducens pilus proteins possess metallic-like conductivity. The studies reported here provide important structural insights into the mechanism of the metallic-like conductivity of G. sulfurreducens pili. This information is expected to be useful in the design of novel bioelectronic materials. C1 [Malvankar, Nikhil S.; Tuominen, Mark T.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Malvankar, Nikhil S.; Vargas, Madeline; Nevin, Kelly; Tremblay, Pier-Luc; Martz, Eric; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Vargas, Madeline] Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. [Evans-Lutterodt, Kenneth] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Nykypanchuk, Dmytro] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Lovley, DR (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. EM dlovley@microbio.umass.edu RI Tuominen, Mark/A-6129-2012; OI Martz, Eric/0000-0003-4679-6967 FU Office of Naval Research [N00014-12-1-0229, N00014-13-1-0550]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Burroughs Wellcome Fund FX This research was supported by the Office of Naval Research (grant no. N00014-12-1-0229 and N00014-13-1-0550). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Nikhil S. Malvankar holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. NR 51 TC 19 Z9 20 U1 12 U2 76 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD MAR-APR PY 2015 VL 6 IS 2 AR e00084-15 DI 10.1128/mBio.00084-15 PG 10 WC Microbiology SC Microbiology GA CJ2KE UT WOS:000355312400057 PM 25736881 ER PT J AU Miquel, S Leclerc, M Martin, R Chain, F Lenoir, M Raguideau, S Hudault, S Bridonneau, C Northen, T Bowen, B Bermudez-Humaran, LG Sokol, H Thomas, M Langella, P AF Miquel, Sylvie Leclerc, Marion Martin, Rebeca Chain, Florian Lenoir, Marion Raguideau, Sebastien Hudault, Sylvie Bridonneau, Chantal Northen, Trent Bowen, Benjamin Bermudez-Humaran, Luis G. Sokol, Harry Thomas, Muriel Langella, Philippe TI Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii SO MBIO LA English DT Article ID INFLAMMATORY-BOWEL-DISEASE; BUTYRATE-PRODUCING BACTERIA; HUMAN LARGE-INTESTINE; CROHNS-DISEASE; ALPHA PRODUCTION; BARRIER FUNCTION; FECAL FLORA; COLITIS; MICROBIOTA; ACID AB Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (alpha-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood. IMPORTANCE Inflammatory bowel diseases (IBD) are characterized by low proportions of F. prausnitzii in the gut microbiome. This commensal bacterium exhibits anti-inflammatory effects through still unknown mechanisms. Stable monoassociated rodents are actually not a reproducible model to decipher F. prausnitzii protective effects. We propose a new gnotobiotic rodent model providing mechanistic clues. In this model, F. prausnitzii exhibits protective effects against an acute colitis and a protective metabolic profile is linked to its presence along the digestive tract. We identified a molecule, salicylic acid, directly involved in the protective effect of F. prausnitzii. Targeting its metabolic pathways could be an attractive therapeutic strategy in IBD. C1 [Miquel, Sylvie; Martin, Rebeca; Chain, Florian; Lenoir, Marion; Hudault, Sylvie; Bridonneau, Chantal; Bermudez-Humaran, Luis G.; Sokol, Harry; Thomas, Muriel; Langella, Philippe] INRA, Commensal & Probiot Host Interact Lab, UMR Micalis 1319, Jouy En Josas, France. [Miquel, Sylvie; Leclerc, Marion; Martin, Rebeca; Chain, Florian; Lenoir, Marion; Raguideau, Sebastien; Hudault, Sylvie; Bridonneau, Chantal; Bermudez-Humaran, Luis G.; Sokol, Harry; Thomas, Muriel; Langella, Philippe] AgroParisTech, UMR Micalis 1319, Jouy En Josas, France. [Sokol, Harry] Univ Paris 06, INSERM, AVENIR Team Gut Microbiota & Immun, ERL,U1057,UMR 7203,Fac Med, Paris, France. [Sokol, Harry] Hop St Antoine, AP HP, Serv Gastroenterol, F-75571 Paris, France. [Leclerc, Marion; Raguideau, Sebastien; Northen, Trent; Bowen, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Langella, P (reprint author), INRA, Commensal & Probiot Host Interact Lab, UMR Micalis 1319, Jouy En Josas, France. EM philippe.langella@jouy.inra.fr RI Martin, Rebeca/F-3785-2015 OI Martin, Rebeca/0000-0002-5980-4113 FU Vitagora Competitive Cluster; French FUI (Fond Unique Interministeriel) [F1010012D]; FEDER (Fonds Europeen de Developpement Regional) [34606]; Burgundy Region; Conseil General 21; Grand Dijon; Merck Medication Familiale (Dijon, France); Biovitis (Saint Etienne de Chomeil, France) FX This study was a part of the FPARIS collaborative project selected and supported by the Vitagora Competitive Cluster and funded by the French FUI (Fond Unique Interministeriel; FUI no. F1010012D), the FEDER (Fonds Europeen de Developpement Regional; Bourgogne no. 34606), the Burgundy Region, the Conseil General 21, and the Grand Dijon. This work was also supported by Merck Medication Familiale (Dijon, France) and Biovitis (Saint Etienne de Chomeil, France). R.M. and S.M. received a salary from the same grants. NR 57 TC 13 Z9 13 U1 6 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD MAR-APR PY 2015 VL 6 IS 2 AR e00300-15 DI 10.1128/mBio.00300-15 PG 10 WC Microbiology SC Microbiology GA CJ2KE UT WOS:000355312400063 ER PT J AU Spero, MA Aylward, FO Currie, CR Donohue, TJ AF Spero, Melanie A. Aylward, Frank O. Currie, Cameron R. Donohue, Timothy J. TI Phylogenomic Analysis and Predicted Physiological Role of the Proton-Translocating NADH: Quinone Oxidoreductase (Complex I) Across Bacteria SO MBIO LA English DT Article ID FLAVOPROTEIN DISULFIDE REDUCTASES; STREPTOCOCCUS-FAECALIS 10C1; TRICARBOXYLIC-ACID CYCLE; COMPLETE GENOME SEQUENCE; SULFUR CLUSTER N7; ESCHERICHIA-COLI; UBIQUINONE OXIDOREDUCTASE; RHODOBACTER-CAPSULATUS; ELECTRON-TRANSFER; OXYGEN AVAILABILITY AB The proton-translocating NADH: quinone oxidoreductase (complex I) is a multisubunit integral membrane enzyme found in the respiratory chains of both bacteria and eukaryotic organelles. Although much research has focused on the enzyme's central role in the mitochondrial respiratory chain, comparatively little is known about its role in the diverse energetic lifestyles of different bacteria. Here, we used a phylogenomic approach to better understand the distribution of complex I across bacteria, the evolution of this enzyme, and its potential roles in shaping the physiology of different bacterial groups. By surveying 970 representative bacterial genomes, we predict complex I to be present in similar to 50% of bacteria. While this includes bacteria with a wide range of energetic schemes, the presence of complex I is associated with specific lifestyles, including aerobic respiration and specific types of phototrophy (bacteria with only a type II reaction center). A phylogeny of bacterial complex I revealed five main clades of enzymes whose evolution is largely congruent with the evolution of the bacterial groups that encode complex I. A notable exception includes the gammaproteobacteria, whose members encode one of two distantly related complex I enzymes predicted to participate in different types of respiratory chains (aerobic versus anaerobic). Comparative genomic analyses suggest a broad role for complex I in reoxidizing NADH produced from various catabolic reactions, including the tricarboxylic acid (TCA) cycle and fatty acid beta-oxidation. Together, these findings suggest diverse roles for complex I across bacteria and highlight the importance of this enzyme in shaping diverse physiologies across the bacterial domain. IMPORTANCE Living systems use conserved energy currencies, including a proton motive force (PMF), NADH, and ATP. The respiratory chain enzyme, complex I, connects these energy currencies by using NADH produced during nutrient breakdown to generate a PMF, which is subsequently used for ATP synthesis. Our goal is to better understand the role of complex I in bacteria, whose energetic diversity allows us to view its function in a range of biological contexts. We analyzed sequenced bacterial genomes to predict the presence, evolution, and function of complex I in bacteria. We identified five main classes of bacterial complex I and predict that different classes participate in different types of respiratory chains (aerobic and anaerobic). We also predict that complex I helps maintain a cellular redox state by reoxidizing NADH produced from central metabolism. Our findings suggest diverse roles for complex I in bacterial physiology, highlighting the need for future laboratory-based studies. C1 [Spero, Melanie A.; Aylward, Frank O.; Currie, Cameron R.; Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Spero, Melanie A.; Aylward, Frank O.; Currie, Cameron R.; Donohue, Timothy J.] Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Donohue, TJ (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM tdonohue@bact.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU Department of Energy Office of Science's Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; NIGMS [T32 GM08349] FX This work was supported by the Department of Energy Office of Science's Great Lakes Bioenergy Research Center, grant DE-FC02-07ER64494. M.A.S. was supported by a traineeship from the NIGMS Biotechnology Training Program, grant T32 GM08349. NR 77 TC 8 Z9 8 U1 3 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD MAR-APR PY 2015 VL 6 IS 2 AR e00389-15 DI 10.1128/mBio.00389-15 PG 14 WC Microbiology SC Microbiology GA CJ2KE UT WOS:000355312400088 ER PT J AU Zarraonaindia, I Owens, SM Weisenhorn, P West, K Hampton-Marcell, J Lax, S Bokulich, NA Mills, DA Martin, G Taghavi, S van der Lelie, D Gilbert, JA AF Zarraonaindia, Iratxe Owens, Sarah M. Weisenhorn, Pamela West, Kristin Hampton-Marcell, Jarrad Lax, Simon Bokulich, Nicholas A. Mills, David A. Martin, Gilles Taghavi, Safiyh van der Lelie, Daniel Gilbert, Jack A. TI The Soil Microbiome Influences Grapevine-Associated Microbiota SO MBIO LA English DT Article ID GROWTH-PROMOTING RHIZOBACTERIA; ARABIDOPSIS-THALIANA; ENDOPHYTIC COLONIZATION; PSEUDOMONAS-VIRIDIFLAVA; BACTERIAL MICROBIOTA; PLANT GENOTYPE; WINE GRAPES; DIVERSITY; PHYLLOSPHERE; COMMUNITIES AB Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C: N ratio, and changes in leaf-and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e. g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. IMPORTANCE Vine-associated bacterial communities may play specific roles in the productivity and disease resistance of their host plant. Also, the bacterial communities on grapes have the potential to influence the organoleptic properties of the wine, contributing to a regional terroir. Understanding that factors that influence these bacteria may provide insights into management practices to shape and craft individual wine properties. We show that soil serves as a key source of vine-associated bacteria and that edaphic factors and vineyard-specific properties can influence the native grapevine microbiome preharvest. C1 [Zarraonaindia, Iratxe; Owens, Sarah M.; Hampton-Marcell, Jarrad; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Zarraonaindia, Iratxe] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain. [Owens, Sarah M.; Weisenhorn, Pamela] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [West, Kristin; Taghavi, Safiyh; van der Lelie, Daniel] FMC Corp, Ctr Excellence Agr Biosolut, Res Triangle Pk, NC USA. [Hampton-Marcell, Jarrad; Lax, Simon; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Bokulich, Nicholas A.; Mills, David A.] Univ Calif Davis, Dept Viticulture & Enol, Foods Hlth Inst, Davis, CA 95616 USA. [Bokulich, Nicholas A.; Mills, David A.] Univ Calif Davis, Dept Food Sci & Technol, Foods Hlth Inst, Davis, CA 95616 USA. [Martin, Gilles] Sparkling Pointe, Southold, NY USA. [Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310003, Zhejiang, Peoples R China. RP Gilbert, JA (reprint author), Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gilbertjack@anl.gov FU Earth Microbiome Project; FMC Center for Agricultural and Environmental Biotechnology; Education, Universities and Investigation Department of the Basque government; U.S Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Earth Microbiome Project, the FMC Center for Agricultural and Environmental Biotechnology, and a postdoctoral research grant (DKR program) to I.Z. from the Education, Universities and Investigation Department of the Basque government. This work was supported in part by the U.S Department of Energy under contract DE-AC02-06CH11357 and was completed with resources provided by the University of Chicago Research Computing Center. NR 54 TC 56 Z9 56 U1 41 U2 167 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD MAR-APR PY 2015 VL 6 IS 2 AR e02527-14 DI 10.1128/mBio.02527-14 PG 10 WC Microbiology SC Microbiology GA CJ2KE UT WOS:000355312400102 ER PT J AU Kwak, WJ Chen, ZH Yoon, CS Lee, JK Amine, K Sun, YK AF Kwak, Won-Jin Chen, Zonghai Yoon, Chong Seung Lee, Joong-Kee Amine, Khalil Sun, Yang-Kook TI Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries SO NANO ENERGY LA English DT Article DE Na-air battery; Porous carbon material; Discharge product morphology; Size-confinement; Carbonate-based electrolyte ID NONAQUEOUS LI-O-2 BATTERIES; SUPEROXIDE NAO2 BATTERY; NA-O-2 BATTERIES; LITHIUM; ELECTROLYTE; NANOCOMPOSITES; PERFORMANCE; CARBONATE; CAPACITY; CHARGE AB To alleviate the high polarization and short cycle lifetime of rechargeable Na-air batteries, ordered mesoporous carbon (OMC) was synthesized and evaluated as a nanostructured conductive matrix to host low-conductivity products generated during the discharge of Na-air batteries. The OMC had high specific surface area (1544 m(2)/g) and a narrow pore size (2.7 nm), with the voltage polarization of 1.5 V, lower than that of the commonly used Super P carbon black (-1.8 V). Although the carbonate-based electrolyte was decomposed to produce Na2CO3, the OMC cathode allowed reversible formation and decomposition of Na2CO3 and exhibited stable cycling behavior with low polarization for 20 cycles with a delivered capacity of 500 mAh/g at the current density of 100 mA/g. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kwak, Won-Jin; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Yoon, Chong Seung] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea. [Lee, Joong-Kee] Korea Inst Sci & Technol, Green City Technol Inst, Ctr Energy Convergence Res, Seoul 136791, South Korea. RP Sun, YK (reprint author), Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr OI Sun, Yang-Kook/0000-0002-0117-0170 FU Human Resources Development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government Ministry of Trade, Industry and Energy [20124010203310]; Global Frontier R&D Program on Center for Hybrid Interface Materials (HIM) - Ministry of Science, ICT & Future Planning [2013M3A6B1078875]; Office of Basic Energy Science of the U.S. Department of Energy FX This work at Hanyang University was supported by the Human Resources Development program (No. 20124010203310) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy and also supported by the Global Frontier R&D Program (2013M3A6B1078875) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning. Support is gratefully acknowledged from David Howell (Team Lead), Tien Duong, and Peter Faguy of the Vehicle Technologies Program, Hybrid and Electric Systems, of the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy. The authors acknowledge the use of the Advanced Photon Source (APS) of Argonne National Laboratory, which is supported by the Office of Basic Energy Science of the U.S. Department of Energy. NR 32 TC 19 Z9 19 U1 8 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAR PY 2015 VL 12 BP 123 EP 130 DI 10.1016/j.nanoen.2014.11.057 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CI5BI UT WOS:000354767500015 ER PT J AU Ling, M Xu, YN Zhao, H Gu, XX Qiu, JX Li, S Wu, MY Song, XY Yan, C Liu, G Zhang, SQ AF Ling, Min Xu, Yanan Zhao, Hui Gu, Xingxing Qiu, Jingxia Li, Sheng Wu, Mingyan Song, Xiangyun Yan, Cheng Liu, Gao Zhang, Shanqing TI Dual-functional gum arabic binder for silicon anodes in lithium ion batteries SO NANO ENERGY LA English DT Article DE Fibers reinforcement; High capacity silicon electrodes; Water-based binders; Lithium-ion batteries ID NEGATIVE ELECTRODES; LOW-COST; PERFORMANCE; CONCRETE; POLYMER; PARTICLES; STRENGTH; COMPOSITES; GENERATION; CHALLENGES AB Si has attracted enormous research and manufacturing attention as an anode material for lithium ion batteries (LIBs) because of its high specific capacity. The lack of a low cost and effective mechanism to prevent the pulverization of Si electrodes during the lithiation/delithiation process has been a major barrier in the mass production of Si anodes. Naturally abundant gum arabic (GA), composed of polysaccharides and glycoproteins, is applied as a dual-function binder to address this dilemma. Firstly, the hydroxyl groups of the polysaccharide in GA are crucial in ensuring strong binding to Si. Secondly, similar to the function of fiber in fiber-reinforced concrete (FRC), the long chain glycoproteins provide further mechanical tolerance to dramatic volume expansion by Si nanoparticles. The resultant Si anodes present an outstanding capacity of ca. 2000 mAh/g at a 1 C rate and 1000 mAh/g at 2 C rate, respectively, throughout 500 cycles. Excellent long-term stability is demonstrated by the maintenance of 1000 mAh/g specific capacity at 1 C rate for over 1000 cycles. This low cost, naturally abundant and environmentally benign polymer is a promising binder for LIBs in the future. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ling, Min; Gu, Xingxing; Qiu, Jingxia; Li, Sheng; Zhang, Shanqing] Griffith Univ, Ctr Clean Environm & Energy, Environm Futures Res Inst, Southport, Qld 4222, Australia. [Ling, Min; Gu, Xingxing; Qiu, Jingxia; Li, Sheng; Zhang, Shanqing] Griffith Univ, Griffith Sch Environm, Southport, Qld 4222, Australia. [Ling, Min; Zhao, Hui; Wu, Mingyan; Song, Xiangyun; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Xu, Yanan; Yan, Cheng] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia. RP Liu, G (reprint author), Griffith Univ, Ctr Clean Environm & Energy, Environm Futures Res Inst, Gold Coast Campus, Southport, Qld 4222, Australia. EM gliu@ibl.gov; s.zhang@griffith.edu.au RI Li, Sheng/H-6569-2015; Foundry, Molecular/G-9968-2014; Zhang, Shanqing/C-2590-2008; OI Li, Sheng/0000-0003-1645-6865; Zhao, Huijun/0000-0002-3028-0459 FU Australia Research Council; Office of Vehicle Technologies of the U.S. Department of Energy (U.S. DOE) [DE-AC02-05CH 11231] FX This work is funded by the Australia Research Council and the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. Department of Energy (U.S. DOE) under contract no. DE-AC02-05CH 11231 under the Batteries for Advanced Transportation Technologies (BATT) Program. Electron microscopy experiments are conducted at the National Centre for Electron Microscopy (NCEM) located at Lawrence Berkeley National Laboratory (LBNL). NR 50 TC 25 Z9 26 U1 23 U2 118 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAR PY 2015 VL 12 BP 178 EP 185 DI 10.1016/j.nanoen.2014.12.011 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CI5BI UT WOS:000354767500021 ER PT J AU Venkatesan, S Chen, JH Ngo, EC Dubey, A Khatiwada, D Zhang, C Qiao, QQ AF Venkatesan, Swaminathan Chen, Jihua Ngo, Evan C. Dubey, Ashish Khatiwada, Devendra Zhang, Cheng Qiao, Qiquan TI Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells SO NANO ENERGY LA English DT Article DE Polymer solar cells; Bimolecular recumbination; Domain crystallinity; Domain purity; Domain interface sharpness ID ORGANIC PHOTOVOLTAICS; MORPHOLOGY EVOLUTION; PHASE-SEPARATION; PERFORMANCE; MISCIBILITY; EFFICIENCY; BLENDS; P3HT/PCBM; SIZE; CRYSTALLIZATION AB Inverted bulk heterojunction solar cells were fabricated using poly(3-hexylthiophene) (P3HT) blended with two different fullerene derivatives namely phenyl-C61-butyric acid methyl ester (PC60BM) and indene-C-60 bis-adduct (IC(60)BA). The effects of annealing temperatures on the morphology, optical and structural properties were studied and correlated to differences in photovoltaic device performance. It was observed that annealing temperature significantly improved the performance of P3HT:IC(60)BA solar cells while P3HT:PC60BM cells showed relatively less improvement. The performance improvement is attributed to the extent of fullerene mixing with polymer domains. Energy filtered transmission electron microscopy (EFTEM) and x-ray diffraction (XRD) results showed that ICBA mixes with disordered P3HT much more readily than PC60BM which leads to lower short circuit current density and fill factor for P3HT:IC(60)BA cells annealed below 120 degrees C. Annealing above 120 degrees C improves the crystallinity of P3HT in case of P3HT:IC(60)BA whereas in P3HT:PC60BM films, annealing above 80 degrees C leads to negligible change in crystallinity. Crystallization of P3HT also leads to higher domain purity as seen EFTEM. Further it is seen that cells processed with additive nitrobenzene (NB) showed enhanced short circuit current density and power conversion efficiency regardless of the fullerene derivative used. Addition of NB led to nanoscale phase separation between purer polymer and fullerene domains. Kelvin probe force microscopy (KPFM) images showed that enhanced domain purity in additive casted films led to a sharper interface between polymer and fullerene. Enhanced domain purity and interfacial sharpness led to lower bimolecular recombination and higher mobility and charge carrier lifetime in NB modified devices. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Venkatesan, Swaminathan; Ngo, Evan C.; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan] S Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, Cheng] S Dakota State Univ, Dept Chem & Biochem, Brookings, SD 57007 USA. RP Qiao, QQ (reprint author), S Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA. EM qiquan.qiao@sdstate.edu RI Chen, Jihua/F-1417-2011; Venkatesan, Swaminathan/D-8809-2014; OI Chen, Jihua/0000-0001-6879-5936; Venkatesan, Swaminathan/0000-0003-2213-0255; Zhang, Cheng/0000-0001-8206-5171 FU NASA EPSCoR [NNX13AD31A]; NSF [ECCS-0950731, 1229577]; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy FX We acknowledge the support from NASA EPSCoR (NNX13AD31A), NSF CAREER (ECCS-0950731), and NSF MRI (grant no. 1229577). TEM experiments were conducted at the Center for Nanophase Materials Sciences, which was sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. NR 42 TC 14 Z9 14 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAR PY 2015 VL 12 BP 457 EP 467 DI 10.1016/j.nanoen.2014.12.027 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CI5BI UT WOS:000354767500049 ER PT J AU Liu, J Lu, PJ Liang, S Liu, J Wang, W Lei, M Tang, S Yang, Q AF Liu, Jun Lu, Pei-Jie Liang, Shuquan Liu, Jun Wang, Wenjun Lei, Ming Tang, Shasha Yang, Qian TI Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties SO NANO ENERGY LA English DT Article DE Graphene-like; Lithium-containing ternary oxides; Layer-by-layer; Sandwich-like rianostructures; Lithium ion batteries ID ELECTROCHEMICAL ENERGY-STORAGE; ANODE MATERIAL; STRUCTURAL-PROPERTIES; HOLLOW NANOSPHERES; CATHODE MATERIAL; GRAPHENE OXIDE; HIGH-CAPACITY; BATTERIES; PERFORMANCE; NANOSHEETS AB Two-dimensional (2D) "graphene-like" inorganic materials, because of the short lithium ion diffusion path and unique 2D carrier pathways, become a new research focus of the lithium storages. Some "graphene-like" binary compounds, such as, MnO2, MoS2 and VO2 ultrathin nanosheets, have been synthesized by the peeling method, which also exhibit enhanced lithium storage performances. However, it still remains a great challenge to synthesize widely-used lithium-containing ternary oxides with "graphene-like" nanostructures, because the lithium-containing ternary oxides, unlike ternary layered double hydroxides (LDH), are very hard to be directly peeled. Herein, we successfully synthesized ultrathin Li3VO4 nanoribbons with a thickness of about 3 nm by transformation from ultrathin V2O5 xH(2)O nanoribbons, moreover, we achieved the preparation of ultrathin Li3VO4 nanoribbon@graphene sandwich-like nanostructures (LVO/G) through the layer-by-layer assembly method. The unique sandwich-like nanostructures shows not only a high specific reversible capacitance (up to 452.5 mA h g(-1) after 200 cycles) but also an excellent cycling performance (with more than 299.2 mA h g(-1) of the capacity at 10C after 1000 cycles) as well as very high rate capability. Such template strategy, using "graphene-like" binary inorganic nanosheets as templates to synthesize lithium-containing ternary oxide nanosheets, may be extended to prepare other ternary oxides with "graphene-like" nanostructures. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Liu, Jun; Lu, Pei-Jie; Liang, Shuquan; Tang, Shasha; Yang, Qian] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99354 USA. [Wang, Wenjun] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Lei, Ming] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China. RP Liu, J (reprint author), Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China. EM liujun4982004@csu.edu.cn RI Lei, Ming /D-8847-2013 FU National Natural Science Foundation of China [51202297, 51472271, 51002189]; Program for New Century Excellent Talents in University [NCET-12 0554]; National Basic Research Program of China (973 Program) [2013CB932901]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE by Battelle [DE AC05-76RL01830] FX This work is partly supported by the National Natural Science Foundation of China (Grant nos. 51202297, 51472271 and 51002189), Program for New Century Excellent Talents in University (NCET-12 0554), the National Basic Research Program of China (973 Program) Grant no. 2013CB932901 and 2011 Program. Jun Liu would like to acknowledge the support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152 for understanding the graphene structure. PNNL is a multi-program national laboratory operated for DOE by Battelle under Contract DE AC05-76RL01830. NR 70 TC 48 Z9 48 U1 33 U2 190 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAR PY 2015 VL 12 BP 709 EP 724 DI 10.1016/j.nanoen.2014.12.019 PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CI5BI UT WOS:000354767500075 ER PT J AU Wu, F Qian, J Chen, RJ Zhao, T Xu, R Ye, YS Li, WH Li, L Lu, J Amine, K AF Wu, Feng Qian, Ji Chen, Renjie Zhao, Teng Xu, Rui Ye, Yusheng Li, Wenhui Li, Li Lu, Jun Amine, Khalil TI Sulfur cathode based on layered carbon matrix for high-performance Li-S batteries SO NANO ENERGY LA English DT Article DE Lithium-sulfur battery; Cathode; Graphene sheet; Mutti-walled carbon; nanotube; Carbon matrix ID RECHARGEABLE LITHIUM BATTERIES; POROUS CARBON; ENCAPSULATING SULFUR; GRAPHENE OXIDE; SPECTROSCOPY; ARCHITECTURE; NANOSHEETS; REDUCTION; FRAMEWORK; ELECTRODE AB A novel carbon/sulfur composite has been fabricated by means of thermal and hydro-thermal treatments to serve as the cathode in Li -S batteries. The carbon matrix consists of graphene nanosheet (GS) and multiwalled carbon nanotube (MWCNT). The "GS/MWCNT@S" composite allows for infiltration of electrolyte into the cathode, assists in entrapment of polysulfide intermediates, and accommodates some of the stress and volume expansion that occurs during charge discharge processes. In addition, the uniform distribution of sulfur in the conductive carbon matrix promotes utilization of the active materials. A Li-S cell containing the GS/MWCNT@S cathode delivered a capacity of 1290.8 mAh/g and exhibited stable specific capacities up to 612.1 mAh/g after 200 cycles at 0.1 C. These results demonstrate that this cathode material is a promising candidate for rechargeable lithium batteries with high energy density. (C) 2015 Published by Elsevier Ltd. C1 [Wu, Feng; Qian, Ji; Chen, Renjie; Zhao, Teng; Ye, Yusheng; Li, Wenhui; Li, Li] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. [Wu, Feng; Chen, Renjie; Li, Li] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China. [Xu, Rui; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Chen, RJ (reprint author), Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. EM chenrj@bit.edu.cn; junlu@anl.gov; amine@anl.gov RI Qian, Ji/C-3134-2017; OI Qian, Ji/0000-0001-5788-1302; Yusheng, Ye/0000-0001-9832-2478; Zhao, Teng/0000-0002-2398-2495 FU National Natural Science Foundation of China [21373028]; National 863 Program [2011AA11A256]; New Century Educational Talents Plan of Chinese Education Ministry [NCET-12-0050]; Beijing Novel Program [Z121103002512029]; Ford University Research Program (URP) project; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was supported by the National Natural Science Foundation of China (21373028); National 863 Program (2011AA11A256); New Century Educational Talents Plan of Chinese Education Ministry (NCET-12-0050); Beijing Novel Program (Z121103002512029); Ford University Research Program (URP) project. This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357, with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 48 TC 15 Z9 15 U1 17 U2 98 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAR PY 2015 VL 12 BP 742 EP 749 DI 10.1016/j.nanoen.2014.12.042 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CI5BI UT WOS:000354767500078 ER PT J AU Shao, YY Rajput, NN Hu, JZ Hu, M Liu, TB Wei, ZH Gu, M Deng, XC Xu, SC Han, KS Wang, JL Nie, ZM Li, GS Zavadil, KR Xiao, J Wang, CM Henderson, WA Zhang, JG Wang, Y Mueller, KT Persson, K Liu, J AF Shao, Yuyan Rajput, Nay Nidhi Hu, Jianzhi Hu, Mary Liu, Tianbiao Wei, Zhehao Gu, Meng Deng, Xuchu Xu, Suochang Han, Kee Sung Wang, Jiulin Nie, Zimin Li, Guosheng Zavadil, Kevin R. Xiao, Jie Wang, Chongmin Henderson, Wesley A. Zhang, Ji-Guang Wang, Yong Mueller, Karl T. Persson, Kristin Liu, Jun TI Nanocomposite polymer electrolyte for rechargeable magnesium batteries SO NANO ENERGY LA English DT Article DE Energy storage; Battery; Nanocomposite; Polymer electrolyte; Magnesium; Rechargeable ID WIDE ELECTROCHEMICAL WINDOWS; REVERSIBLE MAGNESIUM; IONIC-CONDUCTIVITY; MG BATTERIES; POLY(ETHYLENE OXIDE); STRUCTURAL-ANALYSIS; LITHIUM BATTERIES; CATHODE MATERIAL; COBALT SILICATE; CHEVREL PHASES AB Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/ dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)(2) and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)(2) and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems. Published by Elsevier Ltd. C1 [Shao, Yuyan; Hu, Jianzhi; Hu, Mary; Liu, Tianbiao; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Xiao, Jie; Wang, Chongmin; Henderson, Wesley A.; Zhang, Ji-Guang; Wang, Yong; Mueller, Karl T.; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rajput, Nay Nidhi; Persson, Kristin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wei, Zhehao; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Zavadil, Kevin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mueller, Karl T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. RP Persson, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM kapersson@lbl.gov; jun.liu@pnnl.gov RI Liu, Tianbiao/A-3390-2011; Shao, Yuyan/A-9911-2008; Hu, Jian Zhi/F-7126-2012; Wei, Zhehao/L-2801-2013; Wang, Jiulin/G-2694-2010; Gu, Meng/B-8258-2013; OI Shao, Yuyan/0000-0001-5735-2670; Wei, Zhehao/0000-0002-9670-4752; Han, Kee Sung/0000-0002-3535-1818 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; DOE [DE-AC05-76RLO1830]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) FX This work was primarily supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Contract no. DE-AC02-06CH11357. The materials characterizations (NMR, IR, SEM, XRD, etc.) were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 94 TC 12 Z9 12 U1 34 U2 173 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD MAR PY 2015 VL 12 BP 750 EP 759 DI 10.1016/j.nanoen.2014.12.028 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CI5BI UT WOS:000354767500079 ER PT J AU Tainer, JA AF Tainer, John A. TI Dynamic structures in DNA damage responses & cancer SO PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY LA English DT Editorial Material ID STRAND-BREAK REPAIR; MISMATCH REPAIR; PROTEIN MIMICRY; MRE11 NUCLEASE; CONFORMATIONS; RECOGNITION; COMPLEX; CRYSTALLOGRAPHY; GLYCOSYLASE; SCATTERING C1 [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jatainer@gmail.com FU NCI NIH HHS [CA117638, P01 CA092584, R01 CA117638]; NIGMS NIH HHS [R01 GM105404, R01-GM105404] NR 62 TC 1 Z9 1 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6107 J9 PROG BIOPHYS MOL BIO JI Prog. Biophys. Mol. Biol. PD MAR PY 2015 VL 117 IS 2-3 BP 129 EP 133 DI 10.1016/j.pbiomolbio.2015.04.003 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CI8MH UT WOS:000355025900001 PM 25934179 ER PT J AU Schmidt, W Schulz, J Iapichino, L Vazza, F Almgren, AS AF Schmidt, W. Schulz, J. Iapichino, L. Vazza, F. Almgren, A. S. TI Influence of adaptive mesh refinement and the hydro solver on shear-induced mass stripping in a minor-merger scenario SO ASTRONOMY AND COMPUTING LA English DT Article DE Intracluster medium; Hydrodynamics; Instabilities; Turbulence; Adaptive mesh refinement ID GALAXY CLUSTERS; COLD FRONTS; INTRACLUSTER MEDIUM; MAGNETIC-FIELDS; TURBULENT FLOWS; GAS MOTIONS; COOL-CORE; SIMULATIONS; SHOCK; HYDRODYNAMICS AB We compare two different codes for simulations of cosmological structure formation to investigate the sensitivity of hydrodynamical instabilities to numerics, in particular, the hydro solver and the application of adaptive mesh refinement (AMR). As a simple test problem, we consider an initially spherical gas cloud in a wind, which is an idealized model for the merger of a subcluster or galaxy with a big cluster. Based on an entropy criterion, we calculate the mass stripping from the subcluster as a function of time. Moreover, the turbulent velocity field is analyzed with a multi-scale filtering technique. We find remarkable differences between the commonly used PPM solver with directional splitting in the ENZO code and an unsplit variant of PPM in the NYX code, which demonstrates that different codes can converge to systematically different solutions even when using uniform grids. For the test case of an unbound cloud, AMR simulations reproduce uniform-grid results for the mass stripping quite well, although the flow realizations can differ substantially. If the cloud is bound by a static gravitational potential, however, we find strong sensitivity to spurious fluctuations which are induced at the cutoff radius of the potential and amplified by the bow shock. This gives rise to substantial deviations between uniform-grid and AMR runs performed with ENZO, while the mass stripping in NYX simulations of the subcluster is nearly independent of numerical resolution and AMR. Although many factors related to numerics are involved, our study indicates that unsplit solvers with advanced flux limiters help to reduce grid effects and to keep numerical noise under control, which is important for hydrodynamical instabilities and turbulent flows. (C) 2014 Elsevier B.V. All rights reserved. C1 [Schmidt, W.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Schulz, J.] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany. [Iapichino, L.] Leibniz Rechenzentrum Bayer Akad Wissensch, D-85748 Garching, Germany. [Iapichino, L.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Vazza, F.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Almgren, A. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Schmidt, W (reprint author), Univ Gottingen, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM schmidt@astro.physik.uni-goettingen.de; schulz@math.uni-goettingen.de; luigi.iapichino@lrz.de; franco.vazza@hs.uni-hamburg.de; asalmgren@lbl.gov OI vazza, franco/0000-0002-2821-7928 FU SciDAC Program; Applied Mathematics Program of the US Department of Energy [DE-AC02-05CH11231]; Juelich Supercomputing Centre (JSC) [HH222]; Deutsche Forschungsgemeinschaft [FOR1254]; Hannover [nip00020] FX We thank the referees, whose suggestions turned this article into substantially more elaborate study than what we had originally in mind. We are grateful to Peter Nugent and others in the Computational Cosmology Center and the Center for Computational Sciences and Engineering for supporting the development of NYX. The Enzo code is the product of a collaborative effort of scientists at many universities and US national laboratories. Moreover, we acknowledge the yt toolkit by Turk et al. (2011) that was used for the analysis and visualization of the data. We thank Jens Niemeyer for initiating this study. Our simulations and postprocessing were performed with the HLRN II facilities in Hannover under project ID nip00020 and with SuperMUC at the Leibniz Supercomputing Centre in Garching under project pr95he. The work at LBNL was supported by the SciDAC Program and the Applied Mathematics Program of the US Department of Energy under Contract No. DE-AC02-05CH11231. F.V. acknowledges the computational resources at the Juelich Supercomputing Centre (JSC), under project HH222, and support from the grant FOR1254 from the Deutsche Forschungsgemeinschaft. NR 54 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD MAR PY 2015 VL 9 BP 49 EP 63 DI 10.1016/j.ascom.2014.11.003 PG 15 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VT UT WOS:000354902600006 ER PT J AU Zhu, CM Ganguly, A Baskin, TI McClosky, DD Anderson, CT Foster, C Meunier, KA Okamoto, R Berg, H Dixit, R AF Zhu, Chuanmei Ganguly, Anindya Baskin, Tobias I. McClosky, Daniel D. Anderson, Charles T. Foster, Cliff Meunier, Kristoffer A. Okamoto, Ruth Berg, Howard Dixit, Ram TI The Fragile Fiber1 Kinesin Contributes to Cortical Microtubule-Mediated Trafficking of Cell Wall Components SO PLANT PHYSIOLOGY LA English DT Article ID CELLULOSE SYNTHASE COMPLEXES; PLASMA-MEMBRANE; FUNCTIONAL ASSOCIATION; ARABIDOPSIS; PROTEIN; GROWTH; ELONGATION; MICROFIBRILS; DEPOSITION; MECHANISM AB The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in fra1-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion. C1 [Zhu, Chuanmei; Ganguly, Anindya; Dixit, Ram] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Okamoto, Ruth] Washington Univ, Dept Mech Engn, St Louis, MO 63130 USA. [Baskin, Tobias I.] Univ Massachusetts, Dept Biol, Amherst, MA 01003 USA. [McClosky, Daniel D.; Anderson, Charles T.] Penn State Univ, Dept Biol, University Pk, PA 16802 USA. [McClosky, Daniel D.; Anderson, Charles T.] Penn State Univ, Ctr Lignocellulose Struct & Format, University Pk, PA 16802 USA. [Foster, Cliff; Meunier, Kristoffer A.] Great Lakes Bioenergy Res Ctr, E Lansing, MI 48823 USA. [Berg, Howard] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA. RP Dixit, R (reprint author), Washington Univ, Dept Biol, St Louis, MO 63130 USA. EM ramdixit@wustl.edu RI Berg, R. Howard/M-2839-2013; OI Berg, R. Howard/0000-0001-5081-2769; Dixit, Ram/0000-0001-7881-2859 FU Washington University (Monsanto/Norman Borlaug Corporate Fellowship); Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG-03ER15421]; Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001090]; National Science Foundation [MCB-1121287] FX This work was supported by Washington University (Monsanto/Norman Borlaug Corporate Fellowship to C.Z.); the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (grant no. DE-FG-03ER15421 to the laboratory of T.I.B for scanning electron microscopy experiments of the cell wall); the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (award no. DE-SC0001090 to the laboratory of C.T.A. for Fuc-labeling experiments); and the National Science Foundation (grant no. MCB-1121287 to R.D.). NR 52 TC 12 Z9 14 U1 8 U2 30 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD MAR PY 2015 VL 167 IS 3 BP 780 EP + DI 10.1104/pp.114.251462 PG 29 WC Plant Sciences SC Plant Sciences GA CI0GC UT WOS:000354413900015 PM 25646318 ER PT J AU Dell'Angela, M Anniyev, T Beye, M Coffee, R Fohlisch, A Gladh, J Kaya, S Katayama, T Krupin, O Nilsson, A Nordlund, D Schlotter, WF Sellberg, JA Sorgenfrei, F Turner, JJ Ostrom, H Ogasawara, H Wolf, M Wurth, W AF Dell'Angela, M. Anniyev, T. Beye, M. Coffee, R. Foehlisch, A. Gladh, J. Kaya, S. Katayama, T. Krupin, O. Nilsson, A. Nordlund, D. Schlotter, W. F. Sellberg, J. A. Sorgenfrei, F. Turner, J. J. Ostrom, H. Ogasawara, H. Wolf, M. Wurth, W. TI Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer SO STRUCTURAL DYNAMICS LA English DT Article ID FREE-ELECTRON LASER; METAL-SURFACES; SOURCE DRIVEN; WATER WINDOW; SPECTROSCOPY; OPERATION AB Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. (C) 2015 Author(s). C1 [Dell'Angela, M.; Sorgenfrei, F.; Wurth, W.] Univ Hamburg, Dept Phys, D-22607 Hamburg, Germany. [Dell'Angela, M.; Sorgenfrei, F.; Wurth, W.] Univ Hamburg, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Dell'Angela, M.] Elettra Sincrotrone Trieste SCpA, I-34149 Trieste, Italy. [Anniyev, T.; Beye, M.; Kaya, S.; Katayama, T.; Nilsson, A.; Sellberg, J. A.; Ogasawara, H.] SUNCAT Ctr Interface Sci & Catalysis, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Beye, M.; Foehlisch, A.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, D-12489 Berlin, Germany. [Coffee, R.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Foehlisch, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Gladh, J.; Nilsson, A.; Sellberg, J. A.; Ostrom, H.] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Krupin, O.; Schlotter, W. F.; Turner, J. J.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Krupin, O.] European XFEL GmbH, D-22761 Hamburg, Germany. [Nilsson, A.; Nordlund, D.; Ogasawara, H.] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Wolf, M.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. RP Dell'Angela, M (reprint author), Univ Hamburg, Dept Phys, D-22607 Hamburg, Germany. EM martina.dellangela@elettra.eu RI Beye, Martin/F-1165-2011; Kaya, Sarp/C-4001-2008; Ogasawara, Hirohito/D-2105-2009; Nilsson, Anders/E-1943-2011; Nordlund, Dennis/A-8902-2008; Wolf, Martin/Q-3548-2016; Sellberg, Jonas/C-6506-2009; OI Beye, Martin/0000-0002-3924-2993; Alexander, Fohlisch/0000-0003-4126-8233; Kaya, Sarp/0000-0002-2591-5843; Ogasawara, Hirohito/0000-0001-5338-1079; Nilsson, Anders/0000-0003-1968-8696; Nordlund, Dennis/0000-0001-9524-6908; Sellberg, Jonas/0000-0003-2793-5052; Dell'Angela, Martina/0000-0003-1228-2458 FU LCLS; Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL); University of Hamburg through the BMBF priority program [FSP 301]; Center for Free Electron Laser Science (CFEL); BMBF priority program [FSP 301 FLASH]; VolkswagenStiftung FX Portions of this research were carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory, and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL), University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL). M.D., F.S., and W.W. acknowledge support from the BMBF priority program FSP 301 FLASH. M.B. was supported from the VolkswagenStiftung. NR 37 TC 11 Z9 11 U1 6 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD MAR PY 2015 VL 2 IS 2 AR 025101 DI 10.1063/1.4914892 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CI8CC UT WOS:000354994100009 PM 26798795 ER PT J AU Giacomin, AJ Gilbert, PH Schmalzer, AM AF Giacomin, A. J. Gilbert, P. H. Schmalzer, A. M. TI Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow SO STRUCTURAL DYNAMICS LA English DT Article ID NEWTONIAN VISCOELASTIC PROPERTIES; PLANE-POLYGONAL POLYMER; COMPLEX VISCOSITY; FLUID INERTIA; MACROMOLECULES; KIRKWOOD; STRESS AB In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number lambda omega is zero and the Weissenberg number lambda(gamma) over dot(0) is above unity), (ii) nonlinear viscoelasticity (where both lambda omega and lambda(gamma) over dot(0) exceed unity), and (iii) linear viscoelasticity (where lambda omega exceeds unity and where lambda(gamma) over dot(0) approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion. (C) 2015 Author(s). C1 [Giacomin, A. J.; Gilbert, P. H.] Queens Univ, Dept Chem Engn, Polymers Res Grp, Kingston, ON K7L 3N6, Canada. [Giacomin, A. J.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Schmalzer, A. M.] Los Alamos Natl Lab, Chem Diagnost & Engn, Los Alamos, NM 87544 USA. RP Giacomin, AJ (reprint author), Queens Univ, Dept Chem Engn, Polymers Res Grp, Kingston, ON K7L 3N6, Canada. EM giacomin@queensu.ca FU Faculty of Applied Science and Engineering of Queen's University at Kingston; Canada Research Chairs program of the Government of Canada of the Tier 1 Canada Research Chair in Rheology FX A. J. Giacomin is indebted to the Faculty of Applied Science and Engineering of Queen's University at Kingston, for its support through a Research Initiation Grant (RIG). This research was undertaken, in part, thanks to funding from the Canada Research Chairs program of the Government of Canada of the Tier 1 Canada Research Chair in Rheology. NR 47 TC 5 Z9 5 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD MAR PY 2015 VL 2 IS 2 AR 024101 DI 10.1063/1.4914411 PG 21 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CI8CC UT WOS:000354994100003 PM 26798789 ER PT J AU Miaja-Avila, L O'Neil, GC Uhlig, J Cromer, CL Dowell, ML Jimenez, R Hoover, AS Silverman, KL Ullom, JN AF Miaja-Avila, L. O'Neil, G. C. Uhlig, J. Cromer, C. L. Dowell, M. L. Jimenez, R. Hoover, A. S. Silverman, K. L. Ullom, J. N. TI Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy SO STRUCTURAL DYNAMICS LA English DT Article ID FOCUSING OPTICS; PULSES; DIFFRACTION; GENERATION; TARGET; FERRIOXALATE; DRIVEN; YIELD; EXAFS AB We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 mu m FWHM x-ray spot size, containing similar to 10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. (C) 2015 Author(s). C1 [Miaja-Avila, L.; O'Neil, G. C.; Cromer, C. L.; Dowell, M. L.; Silverman, K. L.; Ullom, J. N.] NIST, Boulder, CO 80305 USA. [Uhlig, J.] Lund Univ, Dept Chem Phys, Lund, Sweden. [Jimenez, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Hoover, A. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Miaja-Avila, L (reprint author), NIST, Boulder, CO 80305 USA. FU NIST Innovations in Measurement Science Program; Knut and Alice Wallenberg Foundation FX This work was supported by the NIST Innovations in Measurement Science Program. J. Uhlig gratefully acknowledges the continued funding from the Knut and Alice Wallenberg Foundation. NR 45 TC 9 Z9 9 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD MAR PY 2015 VL 2 IS 2 AR 024301 DI 10.1063/1.4913585 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CI8CC UT WOS:000354994100006 PM 26798792 ER PT J AU Hartmann, H McDowell, NG Trumbore, S AF Hartmann, Henrik McDowell, Nate G. Trumbore, Susan TI Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2 SO TREE PHYSIOLOGY LA English DT Article DE carbohydrates; carbon starvation; carbon storage control; stress physiology; tree mortality ID TEMPERATE FOREST TREES; FREE AMINO-ACIDS; NONSTRUCTURAL CARBON; VEGETATION MORTALITY; SCOTS PINE; DYNAMICS; PLANTS; GROWTH; LIMITATION; SEEDLINGS AB Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling (C-13) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. C-13 data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. C1 [Hartmann, Henrik; Trumbore, Susan] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Hartmann, H (reprint author), Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany. EM hhart@bgc-jena.mpg.de RI Hartmann, Henrik/C-5632-2015 OI Hartmann, Henrik/0000-0002-9926-5484 FU DFG [HA 6400/1-1]; US Department of Energy, Office of Science; EU Euforrino grant FX The work has been supported by a DFG grant to H.H. (HA 6400/1-1) and the US Department of Energy, Office of Science and an EU Euforrino grant to N.G.M. NR 53 TC 12 Z9 13 U1 14 U2 56 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X EI 1758-4469 J9 TREE PHYSIOL JI Tree Physiol. PD MAR PY 2015 VL 35 IS 3 BP 243 EP 252 DI 10.1093/treephys/tpv019 PG 10 WC Forestry SC Forestry GA CI5EX UT WOS:000354777500003 PM 25769339 ER PT J AU Vimmerstedt, LJ Bush, BW Hsu, DD Inman, D Peterson, SO AF Vimmerstedt, Laura J. Bush, Brian W. Hsu, Dave D. Inman, Daniel Peterson, Steven O. TI Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biomass; biofuel; renewable fuels standard; system dynamics; learning; policy ID SUPPLY CHAIN MANAGEMENT; CHALLENGES; FUTURE AB The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive - it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operating costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by John Wiley & Sons, Ltd on behalf of Society of Chemical Industry. C1 [Vimmerstedt, Laura J.; Bush, Brian W.; Inman, Daniel] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [Hsu, Dave D.] Kilpatrick Townsend & Stockton LLP, Denver, CO USA. [Peterson, Steven O.] Lexidyne LLC, West Lebanon, NH USA. RP Vimmerstedt, LJ (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. EM laura.vimmerstedt@nrel.gov OI Bush, Brian/0000-0003-2864-7028 NR 37 TC 0 Z9 0 U1 4 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAR-APR PY 2015 VL 9 IS 2 BP 158 EP 176 DI 10.1002/bbb.1515 PG 19 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CH4YC UT WOS:000354038900014 ER PT J AU Dale, VH Parish, ES Kline, KL AF Dale, Virginia H. Parish, Esther S. Kline, Keith L. TI Risks to global biodiversity from fossil-fuel production exceed those from biofuel production SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biodiversity; bioenergy; biofuel; cellulosic ethanol; fossil fuel; ecosystem services; land management ID LAND-USE; BOREAL FOREST; ENERGY CROPS; BIOENERGY; SUSTAINABILITY; OPPORTUNITIES; CONSERVATION; SWITCHGRASS; PERSPECTIVE; AGRICULTURE AB Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and a higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario. Published in 2014 by John Wiley & Sons, Ltd C1 [Dale, Virginia H.] Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Oak Ridge, TN 37831 USA. [Parish, Esther S.; Kline, Keith L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Environm Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov OI Kline, Keith/0000-0003-2294-1170; Parish, Esther/0000-0001-9264-6295 FU US Department of Energy (DOE) under the Bioenergy Technologies Office; DOE [DE-AC05-00OR22725] FX This research was supported by the US Department of Energy (DOE) under the Bioenergy Technologies Office. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. R. Efroymson and anonymous reviewers provided helpful comments on earlier versions of this paper. N. Butt and B. Hawthorne provided the global species richness data files presented in their paper (cited above). S. Kang shared his data on global locations where a perennial crop is potentially viable for biomass production. L. Eaton and M. Langholtz provided valuable assistance in analyzing USA biomass projections. M.V. Galdos of Bioetanol Brasil supplied the ZAE Cana data. NR 73 TC 2 Z9 2 U1 10 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAR-APR PY 2015 VL 9 IS 2 BP 177 EP 189 DI 10.1002/bbb.1528 PG 13 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CH4YC UT WOS:000354038900015 ER PT J AU Dima, O Morreel, K Vanholme, B Kim, H Ralph, J Boerjan, W AF Dima, Oana Morreel, Kris Vanholme, Bartel Kim, Hoon Ralph, John Boerjan, Wout TI Small Glycosylated Lignin Oligomers Are Stored in Arabidopsis Leaf Vacuoles SO PLANT CELL LA English DT Article ID CELL-WALL LIGNIFICATION; ELECTROSPRAY ION-TRAP; MASS-SPECTROMETRY; POPLAR XYLEM; STRUCTURAL-CHARACTERIZATION; BETA-GLUCOSIDASE; LODGEPOLE PINE; BIOSYNTHESIS; PROTEINS; ACCUMULATION AB Lignin is an aromatic polymer derived from the combinatorial coupling of monolignol radicals in the cell wall. Recently, various glycosylated lignin oligomers have been revealed in Arabidopsis thaliana. Given that monolignol oxidation and monolignol radical coupling are known to occur in the apoplast, and glycosylation in the cytoplasm, it raises questions about the subcellular localization of glycosylated lignin oligomer biosynthesis and their storage. By metabolite profiling of Arabidopsis leaf vacuoles, we show that the leaf vacuole stores a large number of these small glycosylated lignin oligomers. Their structural variety and the incorporation of alternative monomers, as observed in Arabidopsis mutants with altered monolignol biosynthesis, indicate that they are all formed by combinatorial radical coupling. In contrast to the common believe that combinatorial coupling is restricted to the apoplast, we hypothesized that the aglycones of these compounds are made within the cell. To investigate this, leaf protoplast cultures were cofed with C-13(6)-labeled coniferyl alcohol and a C-13(4)-labeled dimer of coniferyl alcohol. Metabolite profiling of the cofed protoplasts provided strong support for the occurrence of intracellular monolignol coupling. We therefore propose a metabolic pathway involving intracellular combinatorial coupling of monolignol radicals, followed by oligomer glycosylation and vacuolar import, which shares characteristics with both lignin and lignan biosynthesis. C1 [Dima, Oana; Morreel, Kris; Vanholme, Bartel; Boerjan, Wout] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Dima, Oana; Morreel, Kris; Vanholme, Bartel; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Biochem, Wisconsin Energy Inst, Madison, WI 53726 USA. [Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Wisconsin Energy Inst, Madison, WI 53726 USA. [Kim, Hoon; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Boerjan, W (reprint author), VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM wout.boerjan@psb.vib-ugent.be OI Boerjan, Wout/0000-0003-1495-510X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Hercules Program of Ghent University [AUGE/014] FX We thank Frank Van Breusegem and Pavel Kerchev for critical reading of the article. We thank Annick Bleys for help preparing the article. J.R. and H.K. were funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). We thank Stanford University's Global Climate and Energy Projects "Towards New Degradable Lignin Types" and "Efficient Biomass Conversion: Delineating the Best Lignin Monomer-Substitutes." We also acknowledge the Hercules Program of Ghent University for the Synapt Q-Tof (AUGE/014); the Bijzonder Onderzoeksfonds-Zware Apparatuur of Ghent University for the Fourier transform ion cyclotron resonance mass spectrometer (174PZA05); and the Multidisciplinary Research Partnership "Biotechnology for a Sustainable Economy" (01MRB510W) of Ghent University. NR 79 TC 11 Z9 12 U1 11 U2 57 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD MAR PY 2015 VL 27 IS 3 BP 695 EP 710 DI 10.1105/tpc.114.134643 PG 16 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA CI3IB UT WOS:000354640200018 PM 25700483 ER PT J AU Weijer, W Maltrud, ME Homoky, WB Polzin, KL Maas, LRM AF Weijer, Wilbert Maltrud, Mathew E. Homoky, William B. Polzin, Kurt L. Maas, Leo R. M. TI Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled? SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE Zapiola Rise; Zapiola anticyclone; Argentine Basin; sedimentation ID SOUTH-ATLANTIC-OCEAN; BRAZIL-MALVINAS CONFLUENCE; SEA-SURFACE TEMPERATURE; SOUTHWESTERN ATLANTIC; DEEP-SEA; TOPOGRAPHY INTERACTIONS; SATELLITE ALTIMETRY; BOUNDARY CURRENTS; CIRCULATION; MODEL AB In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years, with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise. C1 [Weijer, Wilbert] Los Alamos Natl Lab, Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Maltrud, Mathew E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Homoky, William B.] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England. [Polzin, Kurt L.] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA. [Maas, Leo R. M.] Royal Netherlands Inst Sea Res, Dept Phys Oceanog, Den Burg, Netherlands. RP Weijer, W (reprint author), Los Alamos Natl Lab, Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM wilbert@lanl.gov RI Weijer, Wilbert/A-7909-2010; Maas, Leo/H-5398-2016 OI Maas, Leo/0000-0003-1523-7548 FU Regional and Global Climate Modeling Program of the US Department of Energy Office of Science; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This research was supported by the Regional and Global Climate Modeling Program of the US Department of Energy Office of Science (WW). Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We thank Wilford Gardner and Mary Jo Richardson (TAMU) for their constructive comments; as well as Juan Saenz (LANL) and Geoff Vallis (University of Exeter) for stimulating discussions. Two anonymous reviewers are thanked for constructive comments. The simulation data is archived at the Los Alamos National Laboratory, and is available upon request from the lead author (wilbert@lanl.gov). NR 82 TC 0 Z9 0 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR PY 2015 VL 120 IS 3 BP 2096 EP 2111 DI 10.1002/2014JC010573 PG 16 WC Oceanography SC Oceanography GA CH3BG UT WOS:000353900000034 ER PT J AU Zhao, P Murshed, MM Huq, A Grossmann, HK Madler, L Alekseev, EV Gesing, TM AF Zhao, Pei Murshed, M. Mangir Huq, Ashfia Grossmann, Henrike K. Maedler, Lutz Alekseev, Evgeny V. Gesing, Thorsten M. TI Nanoscale building blocks in a novel lithium arsenotungsten bronze: Synthesis and characterization SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Inorganic compound; Crystal structure; X-ray and neutron diffraction; Vibrational spectroscopy; UV-vis spectroscopy; Thermal analysis ID TUNGSTEN BRONZES; CRYSTAL-STRUCTURE; SUPERCONDUCTIVITY; RB AB We report on a novel compound Li3AsW7O26 obtained by solid-state reaction and characterized by diffraction and spectroscopic methods. The bronze-type compound crystallizes in the orthorhombic space group Pbca with a=724.38(3) pm, b=1008.15(4) pm, c=4906.16(17) pm and Z=8. The structure is built up by chains of WO6 octahedra interconnected by AsO4 tetrahedra and WO6 octahedra forming a polyhedral arrangement as seen in intergrowth tungsten bronzes. The X-ray single crystal structure refinement allows solving the complex arsenotungstate framework. The powder neutron diffraction data analysis locates the lithium atoms. Thermal analysis showed that Li3AsW7O26 is stable up to its melting at 1135(3) K followed by a decomposition at 1182(5) K. The Kubelka-Munk treatment of the UV-vis spectrum revealed a wide band gap in the range of 2.84-3.40 eV depending on the presumed electron transition type. (C) 2015 Elsevier Inc. All rights reserved. C1 [Zhao, Pei; Murshed, M. Mangir; Gesing, Thorsten M.] Univ Bremen, Chem Kristallog Fester Stoffe, D-28359 Bremen, Germany. [Huq, Ashfia] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Grossmann, Henrike K.; Maedler, Lutz] Univ Bremen, Dept Prod Engn, Fdn Inst Mat Sci IWT, D-28359 Bremen, Germany. [Alekseev, Evgeny V.] Forschungszentrum Julich, Inst Energy & Climate Res IEK 6, D-52428 Julich, Germany. [Alekseev, Evgeny V.] Rhein Westfal TH Aachen, Inst Kristallog, D-52066 Aachen, Germany. RP Murshed, MM (reprint author), Univ Bremen, Chem Kristallog Fester Stoffe, Leobener Str, D-28359 Bremen, Germany. EM murshed@uni-bremen.de RI Huq, Ashfia/J-8772-2013; Madler, Lutz/F-2982-2013; OI Huq, Ashfia/0000-0002-8445-9649; Madler, Lutz/0000-0002-7073-0733; Alekseev, Evgeny/0000-0002-4919-5211 FU China Scholarship Council; Helmholtz Association [VH-NG-815]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Deutsche Forschungsgemeinschaft (DFG) [GE1981/3-1, GE1981/3-2]; Priority Program SPP 1613 [MA3333/6-1] FX PZ thanks China Scholarship Council to carry out this work through a fellowship. EVA gratefully acknowledges the Helmholtz Association for funding within VH-NG-815 project. The research at Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. TMG gratefully thanks the Deutsche Forschungsgemeinschaft (DFG) for the financial support in the Heisenberg program (nos. GE1981/3-1 and GE1981/3-2) and HKG and LM for the financial support under the Priority Program SPP 1613 (MA3333/6-1). NR 24 TC 0 Z9 0 U1 0 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD MAR PY 2015 VL 226 BP 81 EP 87 DI 10.1016/j.jssc.2015.02.009 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA CH6NE UT WOS:000354152500012 ER PT J AU Durack, PJ AF Durack, Paul J. TI Ocean Salinity and the Global Water Cycle SO OCEANOGRAPHY LA English DT Article ID NORTH-ATLANTIC; PACIFIC-OCEAN; HYDROLOGICAL CYCLE; WORLD OCEAN; PRECIPITATION; TRENDS; TEMPERATURE; CLIMATE; CMIP5; INTENSIFICATION AB Alterations to the global water cycle are of concern as Earth's climate changes. Although policymakers are mainly interested in changes to terrestrial rainfall-where, when, and how much it's going to rain-the largest component of the global water cycle operates over the ocean where nearly all of Earth's free water resides. Approximately 80% of Earth's surface freshwater fluxes occur over the ocean; its surface salinity responds to changing evaporation and precipitation patterns by displaying salty or fresh anomalies. The salinity field integrates sporadic surface fluxes over time, and after accounting for ocean circulation and mixing, salinity changes resulting from long-term alterations to surface evaporation and precipitation are evident. Thus, ocean salinity measurements can provide insights into water-cycle operation and its long-term change. Although poor observational coverage and an incomplete view of the interaction of all water-cycle components limits our understanding, climate models are beginning to provide insights that are complementing observations. This new information suggests that the global water cycle is rapidly intensifying. C1 Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Durack, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. EM pauldurack@llnl.gov RI Durack, Paul/A-8758-2010 OI Durack, Paul/0000-0003-2835-1438 FU US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program [DE-AC52-07NA27344] FX This paper is a contribution to the US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under contract DE-AC52-07NA27344. The author thanks J. Durack of the University of California, San Francisco, and the three guest editors (R. Schmitt, F. Bryan, and E. Lindstrom) for helpful comments with early drafts of this manuscript. The sources of observed data used in this study are acknowledged: T. Boyer (B05), S. Hosoda (H09), S. Good (EN4), and the International Argo Program and the national programs that contribute to it. The efforts of the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, is acknowledged, and considerable thanks goes to the climate modeling groups for producing and making available their model output. For CMIP, the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The DW10 data presented in this study can be downloaded from the CSIRO Ocean Change website at www.cmar.csiro.au/oceanchange. LLNL Release # LLNL-JRNL-665262. NR 79 TC 12 Z9 12 U1 2 U2 42 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD MAR PY 2015 VL 28 IS 1 SI SI BP 20 EP 31 DI 10.5670/oceanog.2015.03 PG 12 WC Oceanography SC Oceanography GA CH0QE UT WOS:000353726500002 ER PT J AU Wu, XC Ju, WM Zhou, YL He, MZ Law, BE Black, TA Margolis, HA Cescatti, A Gu, LH Montagnani, L Noormets, A Griffis, TJ Pilegaard, K Varlagin, A Valentini, R Blanken, PD Wang, SQ Wang, HM Han, SJ Yan, JH Li, YN Zhou, BB Liu, YB AF Wu, Xiaocui Ju, Weimin Zhou, Yanlian He, Mingzhu Law, Beverly E. Black, T. Andrew Margolis, Hank A. Cescatti, Alessandro Gu, Lianhong Montagnani, Leonardo Noormets, Asko Griffis, Timothy J. Pilegaard, Kim Varlagin, Andrej Valentini, Riccardo Blanken, Peter D. Wang, Shaoqiang Wang, Huimin Han, Shijie Yan, Junhua Li, Yingnian Zhou, Bingbing Liu, Yibo TI Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales SO REMOTE SENSING LA English DT Article ID GROSS PRIMARY PRODUCTION; NET ECOSYSTEM EXCHANGE; CARBON-DIOXIDE EXCHANGE; WATER-VAPOR EXCHANGE; RADIATION-USE EFFICIENCY; IN-SITU MEASUREMENTS; PINE MIXED FOREST; PRIMARY PRODUCTIVITY; INTERANNUAL VARIABILITY; FLUX MEASUREMENTS AB The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale. C1 [Wu, Xiaocui; Ju, Weimin] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China. [Wu, Xiaocui; Ju, Weimin] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China. [Zhou, Yanlian; Zhou, Bingbing] Nanjing Univ, Sch Geog, Nanjing 210023, Jiangsu, Peoples R China. [Zhou, Yanlian; Zhou, Bingbing] Nanjing Univ, Sch Oceanog Sci, Nanjing 210023, Jiangsu, Peoples R China. [He, Mingzhu] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Law, Beverly E.] Oregon State Univ, Coll Forestry, Corvallis, OR 97331 USA. [Black, T. Andrew] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Margolis, Hank A.] Univ Laval, Ctr Etud Foret, Quebec City, PQ G1V 0A6, Canada. [Cescatti, Alessandro] Commiss European Communities, Inst Environm & Sustainabil, Joint Res Ctr, I-20127 Ispra, Italy. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Montagnani, Leonardo] Autonomous Prov Bolzano, Forest Serv, I-39100 Bolzano, Italy. [Montagnani, Leonardo] Free Univ Bolzano, Fac Sci & Technol, I-39100 Bolzano, Italy. [Noormets, Asko] N Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA. [Griffis, Timothy J.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. [Pilegaard, Kim] Tech Univ Denmark, Dept Chem & Biochem Engn, DK-2800 Lyngby, Denmark. [Varlagin, Andrej] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia. [Valentini, Riccardo] Univ Tuscia, Dept Innovat Biol Arofood & Forest Syst, I-01100 Viterbo, Italy. [Blanken, Peter D.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Wang, Shaoqiang; Wang, Huimin] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China. [Han, Shijie] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China. [Yan, Junhua] Chinese Acad Sci, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China. [Li, Yingnian] Chinese Acad Sci, Northwest Inst Plateau Biol, Xining 810008, Peoples R China. [Liu, Yibo] Nanjing Univ Informat Sci & Technol, Coll Appl Meteorol, Jiangsu Key Lab Agr Meteorol, Nanjing 210044, Jiangsu, Peoples R China. RP Ju, WM (reprint author), Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China. EM Xiaocui.Wu.1005@gmail.com; juweimin@nju.edu.cn; Zhouyl@nju.edu.cn; Mingzhu.he@ntsg.umt.edu; bev.law@oregonstate.edu; andrew.black@ubc.ca; Hank.Margolis@sbf.ulaval.ca; alessandro.cescatti@jrc.ec.europa.eu; lianhong-gu@ornl.gov; leonar@inwind.it; asko_noormets@ncsu.edu; tgriffis@umn.edu; kipi@risoe.dtu.dk; varlagin@sevin.ru; rik@unitus.it; Blanken@Colorado.EDU; sqwang@igsnrr.ac.cn; wanghm@igsnrr.ac.cn; hansj@iae.ac.cn; jhyan@scib.ac.cn; ynli@nwipb.cas.cn; zbb_nju@163.com; Yiboliu2012@163.com RI Griffis, Timothy/A-5707-2011; Montagnani, Leonardo/F-1837-2016; Gu, Lianhong/H-8241-2014; Law, Beverly/G-3882-2010; OI Montagnani, Leonardo/0000-0003-2957-9071; Gu, Lianhong/0000-0001-5756-8738; Law, Beverly/0000-0002-1605-1203; Noormets, Asko/0000-0003-2221-2111; Liu, Yibo/0000-0002-4345-0138; Pilegaard, Kim/0000-0002-5169-5717; Varlagin, Andrej/0000-0002-2549-5236 FU Chinese Academy of Sciences for Strategic Priority Research Program [XDA05050602-1]; National Basic Research Program of China [2010CB950702]; National Natural Science Foundation of China [41371070]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program) [DE-FG02-04ER63917, DE-FG02-04ER63911]; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval and Environment Canada; US Department of Energy FX This work was supported by Chinese Academy of Sciences for Strategic Priority Research Program (No. XDA05050602-1), National Basic Research Program of China (2010CB950702), National Natural Science Foundation of China (41371070), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).; This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We honestly thank all PIs of flux sites for providing the data for us. We appreciate the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment Canada and US Department of Energy and the database development and technical support from Bekeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California - Berkeley, University of Virginia. NR 121 TC 4 Z9 4 U1 3 U2 43 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAR PY 2015 VL 7 IS 3 BP 2238 EP 2278 DI 10.3390/rs70302238 PG 41 WC Remote Sensing SC Remote Sensing GA CH0BZ UT WOS:000353685200001 ER PT J AU Chatterjee, S Hora, SC Rosoff, H AF Chatterjee, Samrat Hora, Stephen C. Rosoff, Heather TI Portfolio Analysis of Layered Security Measures SO RISK ANALYSIS LA English DT Article DE Expert elicitation; homeland security; portfolio decision analysis; probabilistic risk assessment; systems analysis; terrorism risk ID PHARMACEUTICAL-INDUSTRY; TERRORISM; RISKS AB Layered defenses are necessary for protecting the public from terrorist attacks. Designing a system of such defensive measures requires consideration of the interaction of these countermeasures. In this article, we present an analysis of a layered security system within the lower Manhattan area. It shows how portfolios of security measures can be evaluated through portfolio decision analysis. Consideration is given to the total benefits and costs of the system. Portfolio diagrams are created that help communicate alternatives among stakeholders who have differing views on the tradeoffs between security and economic activity. C1 [Chatterjee, Samrat] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hora, Stephen C.; Rosoff, Heather] Univ So Calif, Natl Ctr Risk & Econ Anal Terrorism Events, Los Angeles, CA 90089 USA. RP Hora, SC (reprint author), Univ So Calif, Natl Ctr Risk & Econ Anal Terrorism Events, Los Angeles, CA 90089 USA. EM hora@usc.edu FU U.S. Department of Homeland Security through National Center for Risk and Economic Analysis of Terrorism Events (CREATE) [2010-ST-061-RE0001] FX This research was supported by the U.S. Department of Homeland Security through the National Center for Risk and Economic Analysis of Terrorism Events (CREATE) under Cooperative Agreement No. 2010-ST-061-RE0001. However, any opinions, findings, and conclusions or recommendations in this document are those of the authors and do not necessarily reflect views of the U.S. Department of Homeland Security, the University of Southern California, or the Pacific Northwest National Laboratory. NR 27 TC 1 Z9 1 U1 3 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD MAR PY 2015 VL 35 IS 3 BP 459 EP 475 DI 10.1111/risa.12303 PG 17 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA CH3ZZ UT WOS:000353971300012 PM 25487829 ER PT J AU Gandolfi, S AF Gandolfi, S. TI MICROSCOPIC CALCULATIONS OF NUCLEAR AND NEUTRON MATTER, SYMMETRY ENERGY AND NEUTRON STARS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND ID EQUATION-OF-STATE; MONTE-CARLO CALCULATIONS; FORCES AB We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. We also show preliminary results of the equation of state of nuclear matter. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Gandolfi, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Gandolfi, Stefano/0000-0002-0430-9035 FU U.S. Department of Energy, Office of Nuclear Physics; NUCLEI SciDAC program; LANL LDRD program; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The author would like to thank Joel Lynn for critical comments on the manuscript. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, by the NUCLEI SciDAC program and by the LANL LDRD program. Computational resources have been provided by Los Alamos Open Supercomputing. This research used also resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 0 Z9 0 U1 0 U2 2 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 359 EP 367 DI 10.5506/APhysPolB.46.359 PG 9 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500002 ER PT J AU Stetcu, I AF Stetcu, Ionel TI NUCLEAR STRUCTURE AND DYNAMICS WITH DENSITY FUNCTIONAL THEORY SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND AB The superfluid local density approximation (SLDA) is widely used to compute ground-state properties of heavy nuclei. In the same framework, the time-dependent (TD) SLDA can provide information about the excited states and can be used to investigate phenomena involving large amplitude collective motion such as nuclear reactions. Hence, the TDSLDA represents an alternative to the more traditional approaches to nuclear reactions, in which the static and dynamic properties are usually decoupled. In this consistent framework, I briefly discuss the main characteristics of the Coulomb excitation of a U-238 nucleus by a relativistic projectile. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Stetcu, I (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program FX I thank A. Bulgac, C.A. Bertulani, P. Magierski, and K.J. Roche for a successful collaboration that has generated results presented in this contribution. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program. NR 11 TC 0 Z9 0 U1 0 U2 0 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 391 EP 394 DI 10.5506/APhysPolB.46.391 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500005 ER PT J AU Paul, ES Rees, JM Hampson, P Riley, MA Simpson, J Ayangeakaa, AD Baron, JS Carpenter, MP Chiara, CJ Garg, U Hartley, DJ Hoffman, CR Janssens, RVF Kondev, FG Lauritsen, T Mason, PJR Matta, J Miller, SL Nolan, PJ Ollier, J Petri, M Radford, DC Revill, JP Wang, X Zhu, S Ragnarsson, I AF Paul, E. S. Rees, J. M. Hampson, P. Riley, M. A. Simpson, J. Ayangeakaa, A. D. Baron, J. S. Carpenter, M. P. Chiara, C. J. Garg, U. Hartley, D. J. Hoffman, C. R. Janssens, R. V. F. Kondev, F. G. Lauritsen, T. Mason, P. J. R. Matta, J. Miller, S. L. Nolan, P. J. Ollier, J. Petri, M. Radford, D. C. Revill, J. P. Wang, X. Zhu, S. Ragnarsson, I. TI RECENT RESULTS AT ULTRAHIGH SPIN: TERMINATING STATES AND BEYOND IN MASS 160 RARE-EARTH NUCLEI SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND ID COLLECTIVE STRUCTURES; QUADRUPOLE-MOMENTS; BAND TERMINATIONS; ER-158; SPECTROSCOPY; HO-157 AB A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the Gd-146 closed core. Results are presented here for such non-collective oblate (gamma = 60 degrees) terminating states in odd-Z Ho-155, odd-odd Ho-156, and even-even Er-156, where they are compared with neighbouring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65 (h) over bar, is reviewed. C1 [Paul, E. S.; Rees, J. M.; Hampson, P.; Nolan, P. J.; Revill, J. P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Riley, M. A.; Baron, J. S.; Miller, S. L.; Wang, X.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Simpson, J.; Mason, P. J. R.; Ollier, J.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Ayangeakaa, A. D.; Garg, U.; Matta, J.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Carpenter, M. P.; Chiara, C. J.; Hoffman, C. R.; Janssens, R. V. F.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hartley, D. J.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Petri, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Radford, D. C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. RP Paul, ES (reprint author), Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. RI Ayangeakaa, Akaa/F-3683-2015; Carpenter, Michael/E-4287-2015; Petri, Marina/H-4630-2016; Hoffman, Calem/H-4325-2016 OI Ayangeakaa, Akaa/0000-0003-1679-3175; Carpenter, Michael/0000-0002-3237-5734; Petri, Marina/0000-0002-3740-6106; Matta, James/0000-0002-0244-8445; Hoffman, Calem/0000-0001-7141-9827 FU United Kingdom Science and Technology Facilities Council; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-94ER40834, DE-FG02-96ER40983, DE-AC02-06CH11357, DE-AC02-05CH11231]; National Science Foundation [PHY-756474, PHY-1203100, PHY-0754674]; State of Florida; Swedish Research Council FX This material is based upon work supported by the United Kingdom Science and Technology Facilities Council in addition to the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under award numbers DE-FG02-94ER40834 (UMD) and DE-FG02-96ER40983 (UTK), and under contract numbers DE-AC02-06CH11357 (ANL) and DE-AC02-05CH11231 (LBL), and by the National Science Foundation under contracts PHY-756474 (FSU), PHY-1203100 (USNA), and PHY-0754674 (UND). This research used resources of ANL's ATLAS facility, which is a D.O.E. Office of Science User Facility. Support was also provided by the State of Florida and the Swedish Research Council. NR 25 TC 0 Z9 0 U1 0 U2 7 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 487 EP 496 DI 10.5506/APhysPolB.46.487 PG 10 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500020 ER PT J AU Larsen, AC Goriely, S Bernstein, LA Bleuel, DL Bracco, A Brown, BA Camera, F Eriksen, TK Frauendorf, S Giacoppo, F Guttormsen, M Gorgen, A Harissopulos, S Leoni, S Liddick, SN Naqvi, F Nyhus, HT Rose, SJ Renstrom, T Schwengner, R Siem, S Spyrou, A Tveten, GM Voinov, AV Wiedeking, M AF Larsen, A. C. Goriely, S. Bernstein, L. A. Bleuel, D. L. Bracco, A. Brown, B. A. Camera, F. Eriksen, T. K. Frauendorf, S. Giacoppo, F. Guttormsen, M. Gorgen, A. Harissopulos, S. Leoni, S. Liddick, S. N. Naqvi, F. Nyhus, H. T. Rose, S. J. Renstrom, T. Schwengner, R. Siem, S. Spyrou, A. Tveten, G. M. Voinov, A. V. Wiedeking, M. TI UPBEND AND M1 SCISSORS MODE IN NEUTRON-RICH NUCLEI -CONSEQUENCES FOR r-PROCESS (n, gamma) REACTION RATES SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND AB An enhanced probability for low-energy gamma-emission (upbend, E-gamma < 3 MeV) at high excitation energies has been observed for several light and medium-mass nuclei close to the valley of stability. Also the M1 scissors mode seen in deformed nuclei increases the gamma-decay probability for low-energy gamma-rays (E-gamma approximate to 2 -3 MeV). These phenomena, if present in neutron-rich nuclei, have the potential to increase radiative neutron-capture rates relevant for the r-process. The experimental and theoretical status of the upbend is discussed, and preliminary calculations of (n, gamma) reaction rates for neutron-rich, mid-mass nuclei including the scissors mode are shown. C1 [Larsen, A. C.; Eriksen, T. K.; Giacoppo, F.; Guttormsen, M.; Gorgen, A.; Nyhus, H. T.; Rose, S. J.; Renstrom, T.; Siem, S.; Tveten, G. M.] Univ Oslo, Dept Phys, Oslo, Norway. [Goriely, S.] ULB, Inst Astron & Astrophys, Brussels, Belgium. [Bernstein, L. A.; Bleuel, D. L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bernstein, L. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bracco, A.; Camera, F.; Leoni, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Bracco, A.; Camera, F.; Leoni, S.] Univ Milan, Dipartimento Fis, Milan, Italy. [Brown, B. A.; Liddick, S. N.; Naqvi, F.; Spyrou, A.] Michigan State Univ, NSCL, E Lansing, MI 48824 USA. [Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Harissopulos, S.] NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. [Schwengner, R.] Helmholtz Zentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Voinov, A. V.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Wiedeking, M.] iThemba LABS, Somerset West, South Africa. RP Larsen, AC (reprint author), Univ Oslo, Dept Phys, Oslo, Norway. RI Harissopulos, Sotirios/G-9541-2011; Larsen, Ann-Cecilie/C-8742-2014; OI Harissopulos, Sotirios/0000-0003-4022-7595; Larsen, Ann-Cecilie/0000-0002-2188-3709; Tveten, Gry Merete/0000-0002-6942-8254; Gorgen, Andreas/0000-0003-1916-9941; Camera, Franco/0000-0003-1731-4834 NR 20 TC 0 Z9 0 U1 1 U2 11 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 509 EP 512 DI 10.5506/APhysPolB.46.509 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500023 ER PT J AU Jones, KL Ahn, S Allmond, JM Ayres, A Bardayan, DW Baugher, T Bazin, D Berryman, JS Bey, A Bingham, C Cartegni, L Cerizza, G Chae, KY Cizewski, JA Gade, A Galindo-Uribarri, A Garcia-Ruiz, RF Grzywacz, R Howard, ME Kozub, RL Liang, JF Manning, B Matos, M McDaniel, S Miller, D Nesaraja, CD O'Malley, PD Padgett, S Padilla-Rodal, E Pain, SD Pittman, ST Radford, DC Ratkiewicz, A Schmitt, KT Shore, A Smith, MS Stracener, DW Stroberg, SR Tostevin, J Varner, RL Weisshaar, D Wimmer, K Winkler, R AF Jones, K. L. Ahn, S. Allmond, J. M. Ayres, A. Bardayan, D. W. Baugher, T. Bazin, D. Berryman, J. S. Bey, A. Bingham, C. Cartegni, L. Cerizza, G. Chae, K. Y. Cizewski, J. A. Gade, A. Galindo-Uribarri, A. Garcia-Ruiz, R. F. Grzywacz, R. Howard, M. E. Kozub, R. L. Liang, J. F. Manning, B. Matos, M. McDaniel, S. Miller, D. Nesaraja, C. D. O'Malley, P. D. Padgett, S. Padilla-Rodal, E. Pain, S. D. Pittman, S. T. Radford, D. C. Ratkiewicz, A. Schmitt, K. T. Shore, A. Smith, M. S. Stracener, D. W. Stroberg, S. R. Tostevin, J. Varner, R. L. Weisshaar, D. Wimmer, K. Winkler, R. TI RECENT DIRECT REACTION EXPERIMENTAL STUDIES WITH RADIOACTIVE TIN BEAMS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND ID EXOTIC NUCLEI; SPECTROSCOPY; GAMMASPHERE; FACILITY; STATES; ARRAY AB Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,Sn-108. In both cases, measurements of gamma rays in coincidence with charged particles proved to be invaluable. C1 [Jones, K. L.; Ahn, S.; Ayres, A.; Bey, A.; Bingham, C.; Cartegni, L.; Cerizza, G.; Grzywacz, R.; Miller, D.; Padgett, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ahn, S.; Baugher, T.; Bazin, D.; Berryman, J. S.; Gade, A.; McDaniel, S.; Ratkiewicz, A.; Shore, A.; Stroberg, S. R.; Weisshaar, D.; Wimmer, K.; Winkler, R.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Ahn, S.; Baugher, T.; Bazin, D.; Berryman, J. S.; Gade, A.; McDaniel, S.; Ratkiewicz, A.; Shore, A.; Stroberg, S. R.; Weisshaar, D.; Wimmer, K.; Winkler, R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Allmond, J. M.; Bardayan, D. W.; Bingham, C.; Chae, K. Y.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Pittman, S. T.; Radford, D. C.; Schmitt, K. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Bardayan, D. W.; O'Malley, P. D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Baugher, T.; Cizewski, J. A.; Howard, M. E.; Manning, B.; O'Malley, P. D.; Ratkiewicz, A.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Chae, K. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Garcia-Ruiz, R. F.] Katholieke Univ Leuven, Inst Kernen Stralingsfys, B-3001 Louvain, Belgium. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matos, M.; Pittman, S. T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Matos, M.] IAEA, Div Phys & Chem Sci, A-1400 Vienna, Austria. [Miller, D.] TRIUMF, Vancouver, BC V6T 2A3C, Canada. [Padgett, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Padilla-Rodal, E.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Tostevin, J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48858 USA. RP Jones, KL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Nesaraja, Caroline/0000-0001-5571-8341 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-96ER40983, DE-SC0001174, DE-FG02-96ER40955, DE-AC05-00OR22725, DE-FG02-96ER40978]; U.S. Department of Energy, National Nuclear Security Administration Stewardship Science Academic Alliance Program [DE-FG52-08NA28552, DE-NA0002132]; National Science Foundation [PHY-1067806, PHY-1102511, PHY-0722822]; United Kingdom Science and Technology Facilities Council (STFC) [ST/J000051/1] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract numbers DE-FG02-96ER40983 (UT), DE-SC0001174(UT), DE-FG02-96ER40955 (TTU), DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40978 (LSU), the U.S. Department of Energy, National Nuclear Security Administration Stewardship Science Academic Alliance Program under contracts DE-FG52-08NA28552 and DE-NA0002132 (Rutgers) and by the National Science Foundation under grant PHY-1067806 (Rutgers), PHY-1102511 and PHY-0722822 (NSCL), and the United Kingdom Science and Technology Facilities Council (STFC) under Grant No. ST/J000051/1. This research was conducted partly at the Oak Ridge National Laboratory Holifield Radioactive Ion Beam Facility, a D.O.E. Office of Science User Facility. NR 30 TC 2 Z9 2 U1 0 U2 13 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 537 EP 546 DI 10.5506/APhysPolB.46.537 PG 10 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500028 ER PT J AU Sadhukhan, J Mazurek, K Dobaczewski, J Nazarewicz, W Sheikh, JA Baran, A AF Sadhukhan, J. Mazurek, K. Dobaczewski, J. Nazarewicz, W. Sheikh, J. A. Baran, A. TI MULTIDIMENSIONAL SKYRME-DENSITY-FUNCTIONAL STUDY OF THE SPONTANEOUS FISSION OF U-238 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND AB We determined the spontaneous fission lifetime of U-238 by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q(20) (elongation) and Q(30) (left-right asymmetry), we also considered the pairing-fluctuation parameter lambda(2) as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov approach. The pairing-fluctuation parameter lambda(2) allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime. C1 [Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; Sheikh, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sadhukhan, J.; Mazurek, K.; Nazarewicz, W.; Sheikh, J. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Sadhukhan, J.] Ctr Variable Energy Cyclotron, Phys Grp, Kolkata 700064, India. [Mazurek, K.] PAN, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-02093 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Nazarewicz, W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, W.] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA. [Baran, A.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. RP Sadhukhan, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-96ER40963, DE-SC0008499]; NNSA's Stewardship Science Academic Alliance Program [DE-FG52-09NA29461]; Polish National Science Center [2012/07/B/ST2/03907]; Academy of Finland; University of Jyvaskyla FX This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Nos. DE-FG02-96ER40963 (University of Tennessee) and DE-SC0008499 (NUCLEI SciDAC Collaboration); by the NNSA's Stewardship Science Academic Alliance Program under Award No. DE-FG52-09NA29461; by the Polish National Science Center under Contract No. 2012/07/B/ST2/03907; and by the Academy of Finland and University of Jyvaskyla within the FIDIPRO programme. NR 9 TC 1 Z9 1 U1 1 U2 7 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 575 EP 578 DI 10.5506/APhysPolB.46.575 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500034 ER PT J AU Shand, CM Wilson, E Podolyak, Z Grawe, H Brown, BA Fornal, B Janssens, RVF Bowry, M Bunce, M Carpenter, MP Carroll, RJ Chiara, CJ Cieplicka-Orynczak, N Deo, AY Dracoulis, GD Hoffman, CR Kempley, RS Kondev, FG Lane, GJ Lauritsen, T Lotay, G Reed, MW Regan, PH Rodriguez-Triguero, C Seweryniak, D Szpak, B Walker, PM Zhu, S AF Shand, C. M. Wilson, E. Podolyak, Zs. Grawe, H. Brown, B. A. Fornal, B. Janssens, R. V. F. Bowry, M. Bunce, M. Carpenter, M. P. Carroll, R. J. Chiara, C. J. Cieplicka-Orynczak, N. Deo, A. Y. Dracoulis, G. D. Hoffman, C. R. Kempley, R. S. Kondev, F. G. Lane, G. J. Lauritsen, T. Lotay, G. Reed, M. W. Regan, P. H. Rodriguez-Triguero, C. Seweryniak, D. Szpak, B. Walker, P. M. Zhu, S. TI STRUCTURE OF Pb-207 POPULATED IN Pb-208+Pb-208 DEEP-INELASTIC COLLISIONS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND AB The yrast structure of Pb-207 above the 13/2(+) isomeric state has been investigated in deep-inelastic collisions of Pb-208 and Pb-208 at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of Pb-207 is presented up to similar to 6 MeV, built using coincidence and gamma-ray intensity analyses. Spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations. C1 [Shand, C. M.; Wilson, E.; Podolyak, Zs.; Bowry, M.; Bunce, M.; Carroll, R. J.; Kempley, R. S.; Lotay, G.; Reed, M. W.; Regan, P. H.; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Grawe, H.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany. [Brown, B. A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Brown, B. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Fornal, B.; Cieplicka-Orynczak, N.; Szpak, B.] Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Hoffman, C. R.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Deo, A. Y.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Dracoulis, G. D.; Lane, G. J.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lotay, G.; Regan, P. H.] Natl Phys Lab, Teddington TW11 0LW, Middx, England. [Rodriguez-Triguero, C.] Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4GL, E Sussex, England. RP Shand, CM (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RI Carpenter, Michael/E-4287-2015; Lane, Gregory/A-7570-2011; Hoffman, Calem/H-4325-2016; OI Carpenter, Michael/0000-0002-3237-5734; Lane, Gregory/0000-0003-2244-182X; Hoffman, Calem/0000-0001-7141-9827; Wilson, Emma/0000-0003-2695-9853 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Science and Technology Facilities Council (STFC), UK FX This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and the Science and Technology Facilities Council (STFC), UK. The contributions of the Argonne National Laboratory technical staff are gratefully acknowledged. NR 4 TC 0 Z9 0 U1 2 U2 6 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 619 EP 622 DI 10.5506/APhysPolB.46.619 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500041 ER PT J AU Iskra, LW Broda, R Janssens, RVF Wrzesinski, J Chiara, CJ Carpenter, MP Fornal, B Hoteling, N Kondev, FG Krolas, W Lauritsen, T Pawlat, T Seweryniak, D Stefanescu, I Walters, WB Zhu, S AF Iskra, L. W. Broda, R. Janssens, R. V. F. Wrzesinski, J. Chiara, C. J. Carpenter, M. P. Fornal, B. Hoteling, N. Kondev, F. G. Krolas, W. Lauritsen, T. Pawlat, T. Seweryniak, D. Stefanescu, I. Walters, W. B. Zhu, S. TI E2 TRANSITION PROBABILITIES FOR DECAYS OF ISOMERS OBSERVED IN NEUTRON-RICH ODD Sn ISOTOPES SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND ID HEAVY-ION COLLISIONS; YRAST ISOMERS; NUCLEI AB High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following Ca-48 + Pb-208, Ca-48 + U-238, and Ni-64 + U-238 reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd Sn119-125 isotopes. Particular attention was paid to the occurrence of 19/2(+) and 23/2(+) isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B (E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B (E2) amplitudes for the seniority nu = 2 and 3, 10(+) and 27/2(-) isomers in even-and odd-Sn isotopes, respectively. C1 [Iskra, L. W.; Broda, R.; Wrzesinski, J.; Fornal, B.; Krolas, W.; Pawlat, T.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Janssens, R. V. F.; Chiara, C. J.; Carpenter, M. P.; Hoteling, N.; Lauritsen, T.; Seweryniak, D.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Hoteling, N.; Stefanescu, I.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Iskra, LW (reprint author), Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU Polish National Science Center [UMO-2012/07/N/ST2/02861]; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834]; Marian Smoluchowski Krakow Research Consortium Matter-Energy-Future as a Leading National Center (KNOW) FX This work was supported by the Polish National Science Center, Projects No. UMO-2012/07/N/ST2/02861, the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL) and Grant No. DE-FG02-94ER40834 (UM), as well as by the Marian Smoluchowski Krakow Research Consortium Matter-Energy-Future as a Leading National Center (KNOW). NR 11 TC 1 Z9 1 U1 0 U2 0 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 651 EP 655 DI 10.5506/APhysPolB.46.651 PG 5 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500046 ER PT J AU Staszczak, A Wong, CY AF Staszczak, A. Wong, Cheuk-Yin TI PARTICLE-HOLE NATURE OF THE LIGHT HIGH-SPIN TOROIDAL ISOMERS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND ID NUCLEI AB Nuclei under non-collective rotation with a large angular momentum above some threshold can assume a toroidal shape. In our previous work, we showed by using cranked Skyrme-Hartree-Fock approach that even-even, N = Z, high-K, toroidal isomeric states may have general occurrences for light nuclei with 28 <= A <= 52. We present here some additional results and systematics on the particle-hole nature of these high-spin toroidal isomers. C1 [Staszczak, A.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Staszczak, A (reprint author), Marie Curie Sklodowska Univ, Inst Phys, Pl Marii Curie Sklodowskiej 1, PL-20031 Lublin, Poland. FU Division of Nuclear Physics, U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported in part by the Division of Nuclear Physics, U.S. Department of Energy, Contract No. DE-AC05-00OR22725. NR 7 TC 1 Z9 1 U1 0 U2 3 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 675 EP 681 DI 10.5506/APhysPolB.46.675 PG 7 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500049 ER PT J AU Carroll, RJ Page, RD Joss, DT Uusitalo, J Darby, IG Andgren, K Cederwall, B Eeckhaudt, S Grahn, T Gray-Jones, C Greenlees, PT Hadinia, B Jones, PM Julin, R Juutinen, S Leino, M Leppanen, AP Nyman, M O'Donnell, D Pakarinen, J Rahkila, P Sandzelius, M Saren, J Scholey, C Seweryniak, D Simpson, J AF Carroll, R. J. Page, R. D. Joss, D. T. Uusitalo, J. Darby, I. G. Andgren, K. Cederwall, B. Eeckhaudt, S. Grahn, T. Gray-Jones, C. Greenlees, P. T. Hadinia, B. Jones, P. M. Julin, R. Juutinen, S. Leino, M. Leppanen, A. -P. Nyman, M. O'Donnell, D. Pakarinen, J. Rahkila, P. Sandzelius, M. Saren, J. Scholey, C. Seweryniak, D. Simpson, J. TI COMPETING DECAY MODES OF A HIGH-SPIN ISOMER IN THE PROTON-UNBOUND NUCLEUS Ta-158 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND ID TOTAL DATA READOUT AB An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus Ta-158. This state was observed to decay by both alpha and gamma decay modes. The large spin change required to decay via gamma-ray emission incurs a lifetime long enough for ff decay to compete. The alpha decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) mu s and changes the spin by 11 (h) over bar. In this paper, additional evidence supporting the assignment of this ff decay to the high-spin isomer in Ta-158 will be presented. C1 [Carroll, R. J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Carroll, R. J.; Page, R. D.; Joss, D. T.; Darby, I. G.; Gray-Jones, C.; O'Donnell, D.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Uusitalo, J.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppanen, A. -P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Saren, J.; Scholey, C.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Andgren, K.; Cederwall, B.; Hadinia, B.] Royal Inst Technol, Dept Phys, S-10691 Stockholm, Sweden. [Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Simpson, J.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Carroll, RJ (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RI O'Donnell, David/J-7786-2013; Scholey, Catherine/G-2720-2014 OI O'Donnell, David/0000-0002-4710-3803; Scholey, Catherine/0000-0002-8743-6071 FU UK Science and Technology Facilities Council; Academy of Finland under the Finnish Centre of Excellence Programme [213503]; EURONS (European Commission) [RII3-CT-2004-506065]; U.S. Department of Energy, Office of Nuclear Physics [DEAC02-06CH11357]; Academy of Finland [131665, 111965, 209430] FX This work has been supported through the UK Science and Technology Facilities Council, the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Nuclear and Accelerator Based Physics contract 213503), EURONS (European Commission contract No. RII3-CT-2004-506065) and the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DEAC02-06CH11357. The UK/France (STFC/IN2P3) Loan Pool and GAMMAPOOL network are acknowledged for the EUROGAM detectors of JUROGAM. T.G., P.T.G. and C.S. acknowledge the support of the Academy of Finland, contract numbers 131665, 111965 and 209430, respectively. NR 8 TC 1 Z9 1 U1 0 U2 13 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 695 EP 698 DI 10.5506/APhysPolB.46.695 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500052 ER PT J AU Orrigo, SEA Rubio, B Fujita, Y Blank, B Gelletly, W Agramunt, J Algora, A Ascher, P Bilgier, B Caceres, L Cakirli, RB Fujita, H Ganioglu, E Gerbaux, M Giovinazzo, J Grevy, S Kamalou, O Kozer, HC Kucuk, L Kurtukian-Nieto, T Molina, F Popescu, L Rogers, AM Susoy, G Stodel, C Suzuki, T Tamii, A Thomas, JC AF Orrigo, S. E. A. Rubio, B. Fujita, Y. Blank, B. Gelletly, W. Agramunt, J. Algora, A. Ascher, P. Bilgier, B. Caceres, L. Cakirli, R. B. Fujita, H. Ganioglu, E. Gerbaux, M. Giovinazzo, J. Grevy, S. Kamalou, O. Kozer, H. C. Kucuk, L. Kurtukian-Nieto, T. Molina, F. Popescu, L. Rogers, A. M. Susoy, G. Stodel, C. Suzuki, T. Tamii, A. Thomas, J. C. TI beta-DELAYED gamma-PROTON DECAY IN Zn-56: ANALYSIS OF THE CHARGED-PARTICLE SPECTRUM SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND AB A study of the beta decay of the proton-rich T-z = 2 nucleus Zn-56 has been reported in a recent publication. A rare and exotic decay mode, beta-delayed gamma-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focussing on the charged particle spectrum. C1 [Orrigo, S. E. A.; Rubio, B.; Agramunt, J.; Algora, A.; Molina, F.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain. [Fujita, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Blank, B.; Ascher, P.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Kurtukian-Nieto, T.] Univ Bordeaux 1, CNRS IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Gelletly, W.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Algora, A.] Hungarian Acad Sci, Inst Nucl Res, H-4026 Debrecen, Hungary. [Cakirli, R. B.; Ganioglu, E.; Kozer, H. C.; Kucuk, L.; Susoy, G.] Istanbul Univ, Dept Phys, TR-34134 Istanbul, Turkey. [Caceres, L.; Kamalou, O.; Stodel, C.; Thomas, J. C.] Grand Accelerateur Natl Ions Lourds, F-1407 Caen, France. [Fujita, H.; Suzuki, T.; Tamii, A.] Osaka Univ, Nucl Phys Res Ctr, Ibaraki, Osaka 5670047, Japan. [Molina, F.] Comis Chilena Energia Nucl, Santiago, Chile. [Popescu, L.] CEN SCK, B-2400 Mol, Belgium. [Rogers, A. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Orrigo, SEA (reprint author), Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain. RI Popescu, Lucia/F-9964-2011; Algora, Alejandro/E-2960-2015; Molina, Francisco/D-5319-2014 OI Popescu, Lucia/0000-0003-1678-4260; Algora, Alejandro/0000-0002-5199-1794; Molina, Francisco/0000-0002-9459-1336 FU Spanish MICINN [FPA2008-06419-C02-01, FPA2011-24553]; CPAN Consolider-Ingenio Programme [CSD2007-00042]; MEXT, Japan [18540270, 22540310]; JSPS; CSIC; Istanbul University [5808]; UK Science and Technology Facilities Council (STFC) [ST/F012012/1]; Region of Aquitaine; Alexander von Humboldt foundation; Max-Planck-Partner Group FX This work was supported by the Spanish MICINN grants FPA2008-06419-C02-01, FPA2011-24553; CPAN Consolider-Ingenio 2010 Programme CSD2007-00042; MEXT, Japan 18540270 and 22540310; Japan-Spain collaboration program of JSPS and CSIC; Istanbul University Scientific Research Projects, No. 5808; UK Science and Technology Facilities Council (STFC) Grant No. ST/F012012/1; Region of Aquitaine. R.B.C. acknowledges support from the Alexander von Humboldt foundation and the Max-Planck-Partner Group. We acknowledge the EXOGAM collaboration for the use of their clover detectors. NR 1 TC 1 Z9 1 U1 2 U2 26 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 709 EP 712 DI 10.5506/APhysPolB.46.709 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500055 ER PT J AU Mazzocchi, C Korgul, A Rykaczewski, KP Grzywacz, R Baczyk, P Bingham, CR Brewer, NT Gross, CJ Jost, C Karny, M Madurga, M Mendez, AJ Miernik, K Miller, D Padgett, S Paulauskas, SV Stracener, DW Wolinska-Cichocka, M AF Mazzocchi, C. Korgul, A. Rykaczewski, K. P. Grzywacz, R. Baczyk, P. Bingham, C. R. Brewer, N. T. Gross, C. J. Jost, C. Karny, M. Madurga, M. Mendez, A. J., II Miernik, K. Miller, D. Padgett, S. Paulauskas, S. V. Stracener, D. W. Wolinska-Cichocka, M. TI BETA DECAY OF THE MOST NEUTRON-RICH ISOTOPES CLOSE TO Ni-78 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Zakopane Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 31-SEP 07, 2014 CL Zakopane, POLAND AB In an experiment at the HRIBF, Oak Ridge National Laboratory, USA, we have investigated excited states in Se-86 populated in the beta-decay of As-86. Several new transitions were identified. Preliminary results are presented. C1 [Mazzocchi, C.; Korgul, A.; Baczyk, P.; Karny, M.; Miernik, K.] Univ Warsaw, Fac Phys, Warsaw, Poland. [Rykaczewski, K. P.; Grzywacz, R.; Bingham, C. R.; Gross, C. J.; Mendez, A. J., II; Miernik, K.; Stracener, D. W.; Wolinska-Cichocka, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Grzywacz, R.; Bingham, C. R.; Jost, C.; Madurga, M.; Miller, D.; Padgett, S.; Paulauskas, S. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Brewer, N. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Karny, M.; Wolinska-Cichocka, M.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Wolinska-Cichocka, M.] Univ Warsaw, Heavy Ion Lab, Warsaw, Poland. RP Mazzocchi, C (reprint author), Univ Warsaw, Fac Phys, Warsaw, Poland. RI Miller, David/B-5372-2012 OI Miller, David/0000-0002-0426-974X FU Office of Nuclear Physics, U.S. Department of Energy; US DOE [DE-AC05-00OR22725, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG05-88ER40407]; National Nuclear Security Administration [DEFC03-03NA00143]; National Science Centre of the Polish Ministry of Science and Higher Education [2011/01/B/ST2/02476] FX We wish to acknowledge the Holifield Radioactive Ion Beam Facility (HRIBF) staff for their assistance with the experiments and providing excellent quality neutron-rich radioactive beams. This research is sponsored by the Office of Nuclear Physics, U.S. Department of Energy and supported under US DOE grants DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40983 (UTK), DE-AC05-06OR23100 (ORAU), and DE-FG05-88ER40407 (Vanderbilt); National Nuclear Security Administration Grant No. DEFC03-03NA00143 and the National Science Centre of the Polish Ministry of Science and Higher Education, Grant No. 2011/01/B/ST2/02476. NR 9 TC 3 Z9 3 U1 0 U2 8 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2015 VL 46 IS 3 BP 713 EP 716 DI 10.5506/APhysPolB.46.713 PG 4 WC Physics, Multidisciplinary SC Physics GA CG8NR UT WOS:000353565500056 ER PT J AU Popp, MP Searcy, SS Sokhansanj, S Smartt, J Cahill, N AF Popp, M. P. Searcy, S. S. Sokhansanj, S. Smartt, J. Cahill, N. TI INFLUENCE OF WEATHER ON THE PREDICTED MOISTURE CONTENT OF FIELD CHOPPED ENERGY SORGHUM AND SWITCHGRASS SO APPLIED ENGINEERING IN AGRICULTURE LA English DT Article DE Drying delays; Energy sorghum; Harvest progress; In-field storage; Logistics; Moisture content; Switchgrass ID BIOMASS SUPPLY ANALYSIS; ETHANOL-PRODUCTION; CORN STOVER; LOGISTICS; HARVEST; COST; BIOREFINERY; MODEL; DELIVERY; STORAGE AB To determine the effects of weather on harvested moisture content (MC) of switchgrass (Panicum virgatum) and energy sorghum (Sorghum bicolor), tracking of harvest progress on individual fields in the Integrated Biomass Supply and Logistics (IBSAL) model was modified to allow: i) rewetting of swathed material in the drying formulae; and ii) field queuing rules based on equipment availability and weather. Estimated crop yield and initial MC by harvest date, as observed in field trials, along with the modeling of different delays between mowing and harvest allowed estimation of harvested MC, annual tonnage processed and associated processing cost differences by crop and location over 10 years. Extending the hours of annual equipment use had minor implications on cost of production. Energy sorghum proved difficult to dry in the field. Its higher yield, leading to shorter supply distance to the plant, may justify harvesting of energy sorghum early in the season with drier weather. Later harvest for lower-yielding switchgrass offers MC advantages. C1 [Popp, M. P.; Smartt, J.; Cahill, N.] Univ Arkansas, Dept Agr Econ & Agribusiness, Fayetteville, AR 72701 USA. [Searcy, S. S.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. [Sokhansanj, S.] Univ British Columbia, Dept Chem & Biol Engn, Oak Ridge, TN USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Distinguished Res & Dev Staff, Oak Ridge, TN USA. RP Popp, MP (reprint author), Univ Arkansas, Dept Agr Econ & Agribusiness, 217 Agr Bldg, Fayetteville, AR 72701 USA. EM mpopp@uark.edu FU South Central Sun Grant Integrated Award FX Research funding for this analysis was provided by a 2007 South Central Sun Grant Integrated Award. We also acknowledge the careful review and testing of the drying model by doctoral candidates Mahmoud Ebadian (University of British Columbia) and Heung Jo An (Texas A&M University) and crop data sharing by Dr. C. West (University of Arkansas), J. Douglas (USDA NRCS, Fort Worth, Tex.) and Dr. W. Rooney (Texas A&M University). NR 30 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0883-8542 EI 1943-7838 J9 APPL ENG AGRIC JI Appl. Eng. Agric. PD MAR PY 2015 VL 31 IS 2 BP 179 EP 191 PG 13 WC Agricultural Engineering SC Agriculture GA CG9WR UT WOS:000353671300002 ER PT J AU Roth, N Kasen, D AF Roth, Nathaniel Kasen, Daniel TI MONTE CARLO RADIATION-HYDRODYNAMICS WITH IMPLICIT METHODS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE hydrodynamics; line: profiles; methods: numerical; radiation: dynamics; radiative transfer ID FLUX-LIMITED DIFFUSION; 2-COMPONENT ACCRETION FLOW; STAR-FORMATION; MAGNETOHYDRODYNAMIC SIMULATIONS; SOLAR GRANULATION; EDDINGTON TENSOR; MHD SIMULATIONS; GODUNOV METHOD; BLACK-HOLE; TIME AB We explore the application of Monte Carlo transport methods to solving coupled radiation-hydrodynamics (RHD) problems. We use a time-dependent, frequency-dependent, three-dimensional radiation transport code that is special relativistic and includes some detailed microphysical interactions such as resonant line scattering. We couple the transport code to two different one-dimensional (non-relativistic) hydrodynamics solvers: a spherical Lagrangian scheme and a Eulerian Godunov solver. The gas-radiation energy coupling is treated implicitly, allowing us to take hydrodynamical time-steps that are much longer than the radiative cooling time. We validate the code and assess its performance using a suite of radiation hydrodynamical test problems, including ones in the radiation energy dominated regime. We also develop techniques that reduce the noise of the Monte Carlo estimated radiation force by using the spatial divergence of the radiation pressure tensor. The results suggest that Monte Carlo techniques hold promise for simulating the multi-dimensional RHD of astrophysical systems. C1 [Roth, Nathaniel; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Roth, N (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM nathaniel.roth@berkeley.edu OI Roth, Nathaniel/0000-0002-6485-2259 FU Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) [DE-AC05-06OR23100]; Department of Energy Office of Nuclear Physics Early Career Award [DE-SC0008067]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC05-00OR22725] FX Throughout the work, N.R. was supported by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.; D.K. is supported by a Department of Energy Office of Nuclear Physics Early Career Award (DE-SC0008067).; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 95 TC 10 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2015 VL 217 IS 1 AR 9 DI 10.1088/0067-0049/217/1/9 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7EY UT WOS:000353466600009 ER PT J AU Wood, R Wyant, M Bretherton, CS Remillard, J Kollias, P Fletcher, J Stemmler, J de Szoeke, S Yuter, S Miller, M Mechem, D Tselioudis, G Chiu, JC Mann, JAL O'Connor, EJ Hogan, RJ Dong, XQ Miller, M Ghate, V Jefferson, A Min, QL Minnis, P Palikonda, R Albrecht, B Luke, E Hannay, C Lin, YL AF Wood, Robert Wyant, Matthew Bretherton, Christopher S. Remillard, Jasmine Kollias, Pavlos Fletcher, Jennifer Stemmler, Jayson de Szoeke, Simone Yuter, Sandra Miller, Matthew Mechem, David Tselioudis, Georgrge Chiu, J. Christine Mann, Julian A. L. O'Connor, Ewan J. Hogan, Robin J. Dong, Xiquan Miller, Markrk Ghate, Virendra Jefferson, Anne Min, Qilong Minnis, Patrickck Palikonda, Rabindra Albrecht, Bruce Luke, Ed Hannay, Cecile Lin, Yanluan TI CLOUDS, AEROSOLS, AND PRECIPITATION IN THE MARINE BOUNDARY LAYER An ARM Mobile Facility Deployment SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID FREE TROPOSPHERE; MICROPHYSICAL PROPERTIES; DROPLET CONCENTRATION; STRATOCUMULUS CLOUDS; CONDENSATION NUCLEI; DRIZZLE PARAMETERS; SOUTHEAST PACIFIC; DOPPLER RADAR; CLIMATOLOGY; AZORES C1 [Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Fletcher, Jennifer; Stemmler, Jayson] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Remillard, Jasmine; Tselioudis, Georgrge] Columbia Univ, New York, NY USA. [Kollias, Pavlos] McGill Univ, Montreal, PQ, Canada. [de Szoeke, Simone] Oregon State Univ, Corvallis, OR 97331 USA. [Yuter, Sandra; Miller, Matthew] N Carolina State Univ, Raleigh, NC 27695 USA. [Mechem, David] Univ Kansas, Lawrence, KS 66045 USA. [O'Connor, Ewan J.; Hogan, Robin J.] Univ Reading, Reading, Berks, England. [O'Connor, Ewan J.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Dong, Xiquan] Univ N Dakota, Grand Forks, ND 58201 USA. [Miller, Markrk] Rutgers State Univ, New Brunswick, NJ 08903 USA. [Ghate, Virendra] Argonne Natl Lab, Lemont, IL USA. [Jefferson, Anne] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Min, Qilong] SUNY Albany, Albany, NY 12222 USA. [Minnis, Patrickck] NASA Langley Res Ctr, Hampton, VA USA. [Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA. [Albrecht, Bruce] Univ Miami, Coral Gables, FL 33124 USA. [Luke, Ed] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hannay, Cecile] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Lin, Yanluan] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. RP Wood, R (reprint author), Univ Washington, Dept Atmospher Sci, POB 351640, Seattle, WA 98195 USA. EM wood.jcli@ametsoc.org RI Yuter, Sandra/E-8808-2015; Chiu, Christine/E-5649-2013; Wood, Robert/A-2989-2008; lin, yanluan/A-6333-2015; Hogan, Robin/M-6549-2016; OI Yuter, Sandra/0000-0002-3222-053X; Chiu, Christine/0000-0002-8951-6913; Wood, Robert/0000-0002-1401-3828; Hogan, Robin/0000-0002-3180-5157; Stemmler, Jayson/0000-0002-2983-3941; Dong, Xiquan/0000-0002-3359-6117 FU DOE, Office of Science, Office of Biological and Environmental Research Environmental Science Division; DOE [DE-SC0006865MOD0002, DE-SC0008468, DE-SC0006736, DE-SC0000991, DESC0006712, DE-SC0007233, DE-SC0006701] FX The CAP-MBL deployment of the ARM Mobile Facility was supported by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement Program (ARM) Climate Research Facility and the DOE Atmospheric Sciences Program. We are indebted to the scientists and staff who made this work possible by taking and quality controlling the measurements. Data were obtained from the ARM archive, sponsored by DOE, Office of Science, Office of Biological and Environmental Research Environmental Science Division. This work was supported by DOE Grants DE-SC0006865MOD0002 (PI Robert Wood), DE-SC0008468 (PI Xiquan Dong), DE-SC0006736 (PI David Mechem), DE-SC0000991 (PI Patrick Minnis), DESC0006712 (PI George Tselioudis), DE-SC0007233 (PI Christine Chiu), and DE-SC0006701 (PI Sandra Yuter). The CloudSat data were distributed by the CloudSat Data Processing Center at Colorado State University. MODIS data were obtained from the NASA Goddard Land Processes data archive. VOCALS data were obtained from the Earth Observation Laboratory (EOL) at the National Center for Atmospheric Research. The HYSPLIT IV model was obtained from the NOAA/Air Resources Laboratory. Data from the Aerosol Robotic Network (AERONET) were obtained from the web download tool hosted by NASA Goddard Space Flight Center. NR 64 TC 17 Z9 17 U1 1 U2 40 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAR PY 2015 VL 96 IS 3 BP 419 EP 439 DI 10.1175/BAMS-D-13-00180.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG9RT UT WOS:000353657200007 ER PT J AU Schneider, KP Lightner, E Fuller, JC AF Schneider, Kevin P. Lightner, Eric Fuller, Jason C. TI Estimating System-Wide Impacts of Smart Grid Demonstrations SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Distribution system analysis; power system modeling; power system expansion planning; smart grid ID CONSERVATION VOLTAGE REDUCTION; CVR AB Quantifying the impact of new technologies on a single distribution feeder is a tractable analysis problem. But the analysis of a single distribution feeder does not provide insight into the complexities and variations of a system-wide deployment. The inability to extrapolate system-wide impacts hinders the deployment of many promising new technologies. This paper presents a three-stage method of extrapolating technological impacts, either simulated or from a field demonstration, from a limited number of distribution feeders to the entire system. The size of the system can vary from the service territory of a single utility, to a region, or to an entire country. The paper will include an example analysis using the United States Department of Energy funded Smart Grid Investment Grant projects, extrapolating their benefits to a national level, and an example of a regionalized deployment of Volt-VAR optimization for peak demand reduction. Both of the example analyses utilize the presented three-stage extrapolation method. C1 [Schneider, Kevin P.] Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA. [Lightner, Eric] US DOE, Washington, DC 20585 USA. [Fuller, Jason C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schneider, KP (reprint author), Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA. EM kevin.schneider@pnnl.gov; eric.Lightner@hq.doe.gov; jason.fuller@pnnl.gov RI Fuller, Jason/C-9951-2014 OI Fuller, Jason/0000-0002-0462-0093 FU U.S. Department of Energy [DE-AC05-76RL01830] FX The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Paper no. TPWRS-00275-2014. NR 26 TC 0 Z9 0 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAR PY 2015 VL 30 IS 2 BP 980 EP 988 DI 10.1109/TPWRS.2014.2331855 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CG9MQ UT WOS:000353640300037 ER PT J AU Ding, Y Kang, CQ Wang, JH Chen, YH Hobbs, BF AF Ding, Yi Kang, Chongqing Wang, Jianhui Chen, Yihsu Hobbs, Benjamin F. TI Foreword for the Special Section on Power System Planning and Operation Towards a Low-Carbon Economy SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Editorial Material C1 [Ding, Yi] Zhejiang Univ, Coll Elect Engn, Hangzhou, Zhejiang, Peoples R China. [Kang, Chongqing] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA. [Chen, Yihsu] Univ Calif, Merced, CA USA. [Hobbs, Benjamin F.] Johns Hopkins Univ, Baltimore, MD USA. RP Ding, Y (reprint author), Zhejiang Univ, Coll Elect Engn, Hangzhou, Zhejiang, Peoples R China. EM yiding@zju.edu.cn; cqkang@tsinghua.edu.cn; jianhui.wang@anl.gov; ychen26@ucmerced.edu; bhobbs@jhu.edu RI Kang, Chongqing/A-6601-2016 OI Kang, Chongqing/0000-0003-2296-8250 NR 8 TC 0 Z9 0 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAR PY 2015 VL 30 IS 2 BP 1015 EP 1016 DI 10.1109/TPWRS.2015.2393392 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA CG9MQ UT WOS:000353640300041 ER PT J AU Wan, H Rasch, PJ Taylor, MA Jablonowski, C AF Wan, Hui Rasch, Philip J. Taylor, Mark A. Jablonowski, Christiane TI Short-term time step convergence in a climate model SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE climate model; time integration; convergence; numerical error ID COMMUNITY ATMOSPHERE MODEL; STRATIFORM CLOUD MICROPHYSICS; TRUNCATION ERROR GROWTH; NUMERICAL CONVERGENCE; ENSEMBLE DESIGN; DYNAMICAL CORE; SINGLE-COLUMN; VERSION 3; SENSITIVITY; SIMULATIONS AB This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral-element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process-coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid-scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full-physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4-considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid-scale physical parameterizations, the stratiform cloud schemes are associated with the largest time-stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time-stepping errors and identify the related model sensitivities. C1 [Wan, Hui; Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Taylor, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jablonowski, Christiane] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Wan, H (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Hui.Wan@pnnl.gov RI Jablonowski, Christiane/I-9068-2012; Wan, Hui/J-4701-2013 OI Jablonowski, Christiane/0000-0003-0407-0092; FU Linus Pauling Distinguished Postdoctoral Fellowship of the Pacific Northwest National Laboratory (PNNL); PNNL Laboratory Directed Research and Development Program; U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE Office of Science as part of the Scientific Discovery through Advanced Computing (SciDAC) Program; DOE Office of Biological and Environmental Research, "Climate Science for a Sustainable Energy Future" [11-014996]; DOE Office of Science SciDAC award [DE-SC0006684]; Office of Science of DOE [DE-AC05-00OR22725]; DOE's ASCR Leadership Computing Challenge (ALCC) program, Aerosol Clouds and Precipitation Scientific Focus Area of the DOE Earth System Modeling Program FX The authors thank Balwinder Singh, Heng Xiao, Kai Zhang, Jin-ho Yoon, Minghuai Wang, and Po-Lun Ma for valuable discussions. The two anonymous reviewers are thanked for their comments and suggestions. H. Wan acknowledges support from the Linus Pauling Distinguished Postdoctoral Fellowship of the Pacific Northwest National Laboratory (PNNL) and the PNNL Laboratory Directed Research and Development Program. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy (DOE) under contract DE-AC05-76RL01830. P. J. Rasch was supported by the DOE Office of Science as part of the Scientific Discovery through Advanced Computing (SciDAC) Program. M. A. Taylor was supported by the DOE Office of Biological and Environmental Research, work package 11-014996, "Climate Science for a Sustainable Energy Future". C. Jablonowski was supported by the DOE Office of Science SciDAC award DE-SC0006684. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of DOE under contract DE-AC05-00OR22725. The allocation was awarded under DOE's ASCR Leadership Computing Challenge (ALCC) program in support of the Aerosol Clouds and Precipitation Scientific Focus Area of the DOE Earth System Modeling Program. Data discussed in the paper are available upon request from the corresponding author. NR 49 TC 6 Z9 6 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD MAR PY 2015 VL 7 IS 1 BP 215 EP 225 DI 10.1002/2014MS000368 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH3XF UT WOS:000353963600011 ER PT J AU Nazarenko, L Schmidt, GA Miller, RL Tausnev, N Kelley, M Ruedy, R Russell, GL Aleinov, I Bauer, M Bauer, S Bleck, R Canuto, V Cheng, Y Clune, TL Del Genio, AD Faluvegi, G Hansen, JE Healy, RJ Kiang, NY Koch, D Lacis, AA LeGrande, AN Lerner, J Lo, KK Menon, S Oinas, V Perlwitz, J Puma, MJ Rind, D Romanou, A Sato, M Shindell, DT Sun, S Tsigaridis, K Unger, N Voulgarakis, A Yao, MS Zhang, JL AF Nazarenko, L. Schmidt, G. A. Miller, R. L. Tausnev, N. Kelley, M. Ruedy, R. Russell, G. L. Aleinov, I. Bauer, M. Bauer, S. Bleck, R. Canuto, V. Cheng, Y. Clune, T. L. Del Genio, A. D. Faluvegi, G. Hansen, J. E. Healy, R. J. Kiang, N. Y. Koch, D. Lacis, A. A. LeGrande, A. N. Lerner, J. Lo, K. K. Menon, S. Oinas, V. Perlwitz, J. Puma, M. J. Rind, D. Romanou, A. Sato, M. Shindell, D. T. Sun, S. Tsigaridis, K. Unger, N. Voulgarakis, A. Yao, M. -S. Zhang, Jinlun TI Future climate change under RCP emission scenarios with GISS ModelE2 SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE climate model; future scenarios ID ARCTIC SEA-ICE; CHANGE EVENT; OCEAN MODEL; LEVEL RISE; SIMULATIONS; SENSITIVITY; CMIP5; PARAMETERIZATION; STABILIZATION; CONSTRAINTS AB We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101-2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmospheric version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5 degrees C relative to 1850-1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 degrees C threshold at the end of the 21st century. For RCP8.5, the range is 3.5-4.5 degrees C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO2, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the E2-R climate model produces a complete shutdown of deep water formation in the North Atlantic. C1 [Nazarenko, L.; Aleinov, I.; Bauer, S.; Bleck, R.; Canuto, V.; Cheng, Y.; Faluvegi, G.; Healy, R. J.; Koch, D.; Lerner, J.; Puma, M. J.; Sato, M.; Shindell, D. T.; Tsigaridis, K.; Voulgarakis, A.; Yao, M. -S.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. [Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G. L.; Aleinov, I.; Bauer, M.; Bauer, S.; Cheng, Y.; Del Genio, A. D.; Faluvegi, G.; Hansen, J. E.; Healy, R. J.; Kiang, N. Y.; Lacis, A. A.; LeGrande, A. N.; Lerner, J.; Lo, K. K.; Oinas, V.; Perlwitz, J.; Puma, M. J.; Rind, D.; Romanou, A.; Sato, M.; Sun, S.; Tsigaridis, K.; Voulgarakis, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tausnev, N.; Kelley, M.; Ruedy, R.; Lo, K. K.; Oinas, V.; Sun, S.; Yao, M. -S.] Trinnovim LLC, New York, NY USA. [Bauer, M.; Bleck, R.; Perlwitz, J.; Romanou, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Clune, T. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Menon, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Unger, N.] Yale Univ, New Haven, CT USA. [Voulgarakis, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. [Zhang, Jinlun] Univ Washington, Seattle, WA 98195 USA. RP Nazarenko, L (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. EM larissa.s.nazarenko@nasa.gov RI Schmidt, Gavin/D-4427-2012; Healy, Richard/J-9214-2015; Sun, Shan/H-2318-2015; Shindell, Drew/D-4636-2012; Unger, Nadine/M-9360-2015; Miller, Ron/E-1902-2012 OI Schmidt, Gavin/0000-0002-2258-0486; Healy, Richard/0000-0002-5098-8921; FU NASA Modeling, Analysis and Prediction (MAP) Program; NASA Modeling, Analysis, and Prediction (MAP) Program; National Science Foundation; National Oceanic and Atmospheric Administration; Department of Energy FX We acknowledge funding from the NASA Modeling, Analysis and Prediction (MAP) Program. CMIP5 simulations with the GISS ModelE2 were made possible by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Development of ModelE2 was supported by the NASA Modeling, Analysis, and Prediction (MAP) Program with additional support from the National Science Foundation, the National Oceanic and Atmospheric Administration, and the Department of Energy. We thank Ellen Salmon and the NCCS staff for hosting and providing convenient access to the model output. Model output analyzed in this study is available from the Earth System Grid Federation (http://cmip-pcmdi.llnl.gov/cmip5/). We also thank three anonymous reviewers for helping improve the clarity and salience of the paper. NR 75 TC 7 Z9 7 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD MAR PY 2015 VL 7 IS 1 BP 244 EP 267 DI 10.1002/2014MS000403 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH3XF UT WOS:000353963600013 ER PT J AU Edman, JP Romps, DM AF Edman, Jacob P. Romps, David M. TI Self-consistency tests of large-scale dynamics parameterizations for single-column modeling SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE single-column modeling; WPG; WTG; large-scale dynamics; convection; gravity waves ID CLOUD-RESOLVING MODEL; TEMPERATURE-GRADIENT APPROXIMATION; RADIATIVE-CONVECTIVE EQUILIBRIUM; GRAVITY-WAVES; AGGREGATION; SIMULATIONS; INSTABILITY; ENSEMBLE; PRECIPITATION; CIRCULATIONS AB Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, but WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance. C1 [Edman, Jacob P.; Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Edman, Jacob P.; Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Edman, JP (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jedman@berkeley.edu RI Romps, David/F-8285-2011 FU U.S. Department of Energy's Earth System Modeling an Office of Science, Office of Biological and Environmental Research program [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship [DGE 1106400]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy's Earth System Modeling an Office of Science, Office of Biological and Environmental Research program under contract DE-AC02-05CH11231, as well as the National Science Foundation Graduate Research Fellowship under grant DGE 1106400. Numerical simulations were performed on the Lawrencium cluster provided by the IT Division at the Lawrence Berkeley National Laboratory and the Hopper cluster provided by the National Energy Research Scientific Computing Center, both of which are supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. Simulation results and forcing data from SGP and TWP-ICE used in this paper, as well as Python code for the vertical mode decomposition, are available from Jacob Edman (jedman@berkeley.edu) upon request. We also thank two anonymous reviewers for their helpful comments. NR 41 TC 4 Z9 4 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD MAR PY 2015 VL 7 IS 1 BP 320 EP 334 DI 10.1002/2014MS000378 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH3XF UT WOS:000353963600016 ER PT J AU Eckert, J Gourdon, O Jacob, DE Meral, C Monteiro, PJM Vogel, SC Wirth, R Wenk, HR AF Eckert, Juergen Gourdon, Olivier Jacob, Dorrit E. Meral, Cagla Monteiro, Paulo J. M. Vogel, Sven C. Wirth, Richard Wenk, Hans-Rudolf TI Ordering of water in opals with different microstructures SO EUROPEAN JOURNAL OF MINERALOGY LA English DT Article DE opal; water; TEM; inelastic neutron scattering; neutron diffraction; FTIR ID INELASTIC NEUTRON-SCATTERING; X-RAY-DIFFRACTION; MICROCRYSTALLINE OPALS; VIBRATIONAL-SPECTRA; SILANOL GROUPS; ICE; SILICA; DYNAMICS; SPECTROMETER; CRYSTALLINE AB Opal has long fascinated scientists. It is one of the few minerals with an amorphous structure, and yet, compared to silica glass, it is highly organized on the mesoscale. By means of inelastic neutron scattering (INS), we could document that in four samples of opal at low temperature an ice-like structure of water is present, with details depending on microstructural characteristics. While FTIR spectra for all samples are nearly identical and thus not very informative, INS shows clear differences, highlighting the significance of microstructures. Neutron diffraction at 100 K on one of the opal samples provides evidence for crystalline cubic ice. C1 [Eckert, Juergen] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. [Eckert, Juergen; Gourdon, Olivier; Vogel, Sven C.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. [Jacob, Dorrit E.] Macquarie Univ, Dept Earth & Planetary Sci, N Ryde, NSW 2109, Australia. [Meral, Cagla; Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Meral, Cagla] Middle E Tech Univ, TR-06800 Ankara, Turkey. [Wirth, Richard] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Jacob, Dorrit/F-8617-2010; OI Jacob, Dorrit/0000-0003-4744-6627; Vogel, Sven C./0000-0003-2049-0361 FU Department of Energy's Office of Basic Energy Science; NSF [EAR-1343908]; DOE-BES [DE-FG02-05ER15637] FX We acknowledge access to FDS and HIPPO at the Lujan Neutron Scattering Center of Los Alamos and POWGEN at SNS. We appreciate help by instrument scientists Luke Daemen (with FDS) and Ashfia Huq (with POWGEN). The Los Alamos Neutron Science Center and the Spa nation Neutron Source are funded by the Department of Energy's Office of Basic Energy Science. This publication was based on work supported in part by Grants from NSF (EAR-1343908) and DOE-BES (DE-FG02-05ER15637). We acknowledge comments from three reviewers that helped us improve the manuscript. NR 57 TC 1 Z9 1 U1 3 U2 13 PU E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG PI STUTTGART PA NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY SN 0935-1221 EI 1617-4011 J9 EUR J MINERAL JI Eur. J. Mineral. PD MAR-APR PY 2015 VL 27 IS 2 BP 203 EP 213 DI 10.1127/ejm/2015/0027-2428 PG 11 WC Mineralogy SC Mineralogy GA CG5ED UT WOS:000353313000006 ER PT J AU Floudas, D Held, BW Riley, R Nagy, LG Koehler, G Ransdell, AS Younus, H Chow, J Chiniquy, J Lipzen, A Tritt, A Sun, H Haridas, S LaButti, K Ohm, RA Kues, U Blanchette, RA Grigoriev, IV Minto, RE Hibbett, DS AF Floudas, Dimitrios Held, Benjamin W. Riley, Robert Nagy, Laszlo G. Koehler, Gage Ransdell, Anthony S. Younus, Hina Chow, Julianna Chiniquy, Jennifer Lipzen, Anna Tritt, Andrew Sun, Hui Haridas, Sajeet LaButti, Kurt Ohm, Robin A. Kuees, Ursula Blanchette, Robert A. Grigoriev, Igor V. Minto, Robert E. Hibbett, David S. TI Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Wood decay; White rot; Brown rot; Reconciliation; Pseudogenes; Genome sequencing ID LEAF-LITTER DECOMPOSITION; BROWN-ROT BASIDIOMYCETE; WHITE-ROT; PHANEROCHAETE-CHRYSOSPORIUM; SCHIZOPHYLLUM-COMMUNE; FUNGAL GENOMES; GLOEOPHYLLUM-TRABEUM; TRAMETES-VERSICOLOR; LIGNIN DEGRADATION; DEGRADING ENZYMES AB Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. (C) 2015 Elsevier Inc. All rights reserved. C1 [Floudas, Dimitrios; Nagy, Laszlo G.; Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Held, Benjamin W.; Blanchette, Robert A.] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA. [Riley, Robert; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A.; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Koehler, Gage; Ransdell, Anthony S.; Younus, Hina; Minto, Robert E.] Indiana Univ Purdue Univ, Dept Chem & Chem Biol, Indianapolis, IN 46202 USA. [Kuees, Ursula] Univ Gottingen, Inst Forest Bot, D-37077 Gottingen, Germany. [Floudas, Dimitrios] MEMEG, S-22362 Lund, Sweden. [Nagy, Laszlo G.] Hungarian Acad Sci, Inst Biochem, Biol Res Ctr, H-6726 Szeged, Hungary. [Ohm, Robin A.] Univ Utrecht, Microbiol, NL-3584 CH Utrecht, Netherlands. RP Floudas, D (reprint author), Clark Univ, Dept Biol, 950 Main St, Worcester, MA 01610 USA. EM dimitrios.floudas@biol.lu.se; bheld@umn.edu; RWRiley@lbl.gov; cortinarius2000@gmail.com; gagek@iupui.edu; aransdel@gmail.com; hinayounus@rediffmail.com; JChow@lbl.gov; JLChiniquy@lbl.gov; ALipzen@lbl.gov; AJTritt@lbl.gov; HSun@lbl.gov; SHaridas@lbl.gov; klabutti@lbl.gov; R.A.Ohm@uu.nl; ukuees@gwdg.de; robertb@umn.edu; IVGrigoriev@lbl.gov; rminto@iupui.edu; dhibbett@clarku.edu RI Ohm, Robin/I-6689-2016; OI Younus, Hina/0000-0003-3066-1312; Kues, Ursula/0000-0001-9180-4079 FU PolyPEET project, Taxonomy and Evolution of the Polyporales (Basidiomycota, Fungi) under the NSF [DEB-0933081]; Open Tree of Life project under the NSF [DEB-1208719]; National Institutes of Health [7R15 GM069493]; National Science Foundation [MCB 0919938 REM]; Center for Membrane Biosciences, IUPUI; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the PolyPEET project, Taxonomy and Evolution of the Polyporales (Basidiomycota, Fungi) under the NSF award DEB-0933081 (DSH) and the Open Tree of Life project under the NSF award DEB-1208719 (DSH). It was also partially supported by the National Institutes of Health (7R15 GM069493 REM), National Science Foundation (MCB 0919938 REM), and the Center for Membrane Biosciences, IUPUI. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. We thank Francis Martin for kindly providing permission to use data of the unpublished genomes of G. luxurians, H. sublateritium, and P. crispa. The alignments of sequence data for the organismal phylogeny have been deposited at TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2: S16800). All data related to the species phylogeny or the wood decay gene families phylogenies have also been deposited at Dryad (doi:10.5061/dryad.71tg4). Assemblies and annotations of the reported genomes of F. hepatica ATCC 64428 and C. torrendii FP15055 ss-10 are available from the JGI fungal portal MycoCosm (http://jgi.doe.gov/fungi) and from DDBJ/EMBL/GenBank under the following accessions: JYFI00000000, JYFH00000000. NR 122 TC 26 Z9 26 U1 10 U2 49 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 EI 1096-0937 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAR PY 2015 VL 76 BP 78 EP 92 DI 10.1016/j.fgb.2015.02.002 PG 15 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA CG7ZU UT WOS:000353527200009 PM 25683379 ER PT J AU Hartley, NJ Belancourt, P Chapman, DA Doppner, T Drake, RP Gericke, DO Glenzer, SH Khaghani, D LePape, S Ma, T Neumayer, P Pak, A Peters, L Richardson, S Vorberger, J White, TG Gregori, G AF Hartley, N. J. Belancourt, P. Chapman, D. A. Doeppner, T. Drake, R. P. Gericke, D. O. Glenzer, S. H. Khaghani, D. LePape, S. Ma, T. Neumayer, P. Pak, A. Peters, L. Richardson, S. Vorberger, J. White, T. G. Gregori, G. TI Electron-ion temperature equilibration in warm dense tantalum SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Electron-ion equilibration; Temperature relaxation; Warm dense matter ID RELAXATION; PLASMA; IRON; WAVE AB We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. However, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hartley, N. J.; Peters, L.; Gregori, G.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Belancourt, P.; Drake, R. P.] Univ Michigan, Atmospher, Ocean, Space Sci, Ann Arbor, MI 48103 USA. [Chapman, D. A.; Richardson, S.] AWE Plc, Dept Plasma Phys, Reading RG7 4PR, Berks, England. [Chapman, D. A.; Gericke, D. O.] Univ Warwick, Dept Phys, CFSA, Coventry CV4 7AL, W Midlands, England. [Doeppner, T.; LePape, S.; Ma, T.; Pak, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Glenzer, S. H.] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Khaghani, D.; Neumayer, P.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst, D-64291 Darmstadt, Germany. [Vorberger, J.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [White, T. G.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RP Hartley, NJ (reprint author), Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England. EM nicholas.hartley@physics.ox.ac.uk RI lepape, sebastien/J-3010-2015; Vorberger, Jan/D-9162-2015; Drake, R Paul/I-9218-2012 OI Drake, R Paul/0000-0002-5450-9844 FU EPSRC [EP/G007187/1]; Science and Technology Facilities Council of the United Kingdom; AWE Plc FX This work was supported in parts by EPSRC grant EP/G007187/1 and by the Science and Technology Facilities Council of the United Kingdom.; Additional support from AWE Plc is also acknowledged. NR 42 TC 4 Z9 4 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2015 VL 14 BP 1 EP 5 DI 10.1016/j.hedp.2014.10.003 PG 5 WC Physics, Fluids & Plasmas SC Physics GA CG5KY UT WOS:000353331800001 ER PT J AU Colgan, J Kilcrease, DP Magee, NH Abdallah, J Sherrill, ME Fontes, CJ Hakel, P Zhang, HL AF Colgan, J. Kilcrease, D. P. Magee, N. H., Jr. Abdallah, J., Jr. Sherrill, M. E. Fontes, C. J. Hakel, P. Zhang, H. L. TI Light element opacities of astrophysical interest from ATOMIC SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Opacities; ATOMIC ID ROSSELAND MEAN OPACITY; COMPLEX ASTEROSEISMOLOGY; ABSORPTION-MEASUREMENTS; STELLAR ENVELOPES; HOT; IRON; CONSTRAINTS; ALUMINUM; PLASMA; STATE AB We report on our continued work to produce a new set of local-thermodynamic-equilibrium (LTE) opacity tables using the Los Alamos ATOMIC code. OPLIB tables for the 30 elements from H through Zn are almost complete and are expected to be available in 2015. In this paper we present some examples of our new opacities from ATOMIC. We provide comparisons of our opacities with a series of opacity measurements that were performed on Fe and Al some years ago. We also present opacities at conditions of interest to stellar modeling and compare and contrast the opacity of various transition metals with OP calculations that are commonly used in astrophysical modeling. (C) 2015 Elsevier B.V. All rights reserved. C1 [Colgan, J.; Kilcrease, D. P.; Magee, N. H., Jr.; Abdallah, J., Jr.; Sherrill, M. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fontes, C. J.; Hakel, P.; Zhang, H. L.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcolgan@lanl.gov OI Hakel, Peter/0000-0002-7936-4231; Kilcrease, David/0000-0002-2319-5934 FU U.S. Department of Energy [DE-AC52-06NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 32 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2015 VL 14 BP 33 EP 37 DI 10.1016/j.hedp.2015.02.006 PG 5 WC Physics, Fluids & Plasmas SC Physics GA CG5KY UT WOS:000353331800006 ER PT J AU Wilson, BG Iglesias, CA Chen, MH AF Wilson, Brian G. Iglesias, Carlos A. Chen, Mau H. TI Partially resolved super transition array method SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Plasma spectroscopy; Transition arrays; Opacity; Emissivity; Configuration interaction; Intermediate coupling ID FRACTIONAL PARENTAGE COEFFICIENTS; ATOMIC SPECTRA; CONFIGURATION-INTERACTION; ENERGY-LEVELS; F-SHELL; MODEL; PLASMAS; WIDTHS; DISTRIBUTIONS; ELECTRONS AB The partially resolved transition array model for radiative transitions between ordinary electronic configurations is extended to the super configuration approach. The specific application incorporates intermediate coupling effects into transition arrays to describe the transition from LS to JJ coupling without the ad hoc approximations introduced in past formulations. More generally, the extended concept permits stepwise refinement of the super transition array method towards the line-by-line limit in ordinary configurations. Thus, the formalism forms a framework for a hybrid scheme to combine detailed line accounting and statistical methods. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wilson, Brian G.; Iglesias, Carlos A.; Chen, Mau H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wilson, BG (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM wilson9@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 28 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2015 VL 14 BP 67 EP 73 DI 10.1016/j.hedp.2015.02.007 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CG5KY UT WOS:000353331800012 ER PT J AU Fu, R James, TL Woodhouse, M AF Fu, Ran James, Ted L. Woodhouse, Michael TI Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Industrial economics; manufacturing competitiveness; photovoltaics; polysilicon cost and price ID SOLAR GRADE SILICON AB Several economic metrics are presented for polysilicon in the solar photovoltaics (PV) industry. The overall level of market competition through exploration of the Herfindahl-Hirschman index and consolidation for the current polysilicon industry is quantified. In addition, for several international manufacturing locations, the most recent results in bottoms-up manufacturing cost and price modeling are shown for Siemens hydrochlorination (solar-grade), Siemens hyperpure, and fluidized bed reactor production of polysilicon. Finally, the entry barrier, which is defined as the upfront capital requirements to become a competitively sized facility, is quantified for today's polysilicon industry. C1 [Fu, Ran; James, Ted L.; Woodhouse, Michael] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Fu, R (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. EM Ran.Fu@nrel.gov; Ted.James@nrel.gov; Michael.Woodhouse@nrel.gov NR 58 TC 10 Z9 10 U1 2 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD MAR PY 2015 VL 5 IS 2 BP 515 EP 524 DI 10.1109/JPHOTOV.2014.2388076 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CG7YW UT WOS:000353524800007 ER PT J AU Lave, M Hayes, W Pohl, A Hansen, CW AF Lave, Matthew Hayes, William Pohl, Andrew Hansen, Clifford W. TI Evaluation of Global Horizontal Irradiance to Plane-of-Array Irradiance Models at Locations Across the United States SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Irradiance; photovoltaic (PV) systems; plane-of-array irradiance; solar energy; solar radiation ID SOLAR-RADIATION; DIFFUSE FRACTION; INCLINED SURFACES; VALIDATION AB We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. When only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model. C1 [Lave, Matthew] Sandia Natl Labs, Livermore, CA 94550 USA. [Hayes, William] First Solar Inc, San Francisco, CA 94105 USA. [Pohl, Andrew; Hansen, Clifford W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lave, M (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mlave@sandia.gov; william.hayes@firstsolar.com; appohl@sandia.gov; cwhanse@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 21 TC 6 Z9 6 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD MAR PY 2015 VL 5 IS 2 BP 597 EP 606 DI 10.1109/JPHOTOV.2015.2392938 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CG7YW UT WOS:000353524800019 ER PT J AU Deceglie, MG Silverman, TJ Emery, K Dirnberger, D Schmid, A Barkaszi, S Riedel, N Pratt, L Doshi, S Tamizhmani, G Marion, B Kurtz, SR AF Deceglie, Michael G. Silverman, Timothy J. Emery, Keith Dirnberger, Daniela Schmid, Alexandra Barkaszi, Stephen Riedel, Nicholas Pratt, Larry Doshi, Samantha Tamizhmani, Govindasamy Marion, Bill Kurtz, Sarah R. TI Validated Method for Repeatable Power Measurement of CIGS Modules Exhibiting Light-Induced Metastabilities SO IEEE Journal of Photovoltaics LA English DT Article DE Characterization; copper indium gallium diselenide (CIGS); light soak; metastability; photovoltaic; transient ID SOLAR-CELLS; VOLTAGE; CDTE AB We report on the validation of a stabilization procedure designed to minimize variations in repeated power measurements at standard test conditions caused by transient light-induced metastabilities in copper indium gallium diselenide (CIGS) modules. Such metastable effects frustrate the repeatable and accurate measurement of a module's performance in the electrical state to which it stabilizes under normal operation outdoors. The procedure studied here is based on a light exposure followed by forward electrical bias as the module cools to the measurement temperature. The procedure was tested in a lab-to-lab intercomparison involving five different labs. Results show that the procedure is effective in yielding repeatable measurements and that the variations due to metastabilities are of roughly the same magnitude as those associated with variations in illumination conditions between different flash simulators. We also find that temperature-corrected measurements made immediately upon completion of the light exposure are less repeatable than those made after the module has cooled to 25 degrees C under bias. C1 [Deceglie, Michael G.; Silverman, Timothy J.; Emery, Keith; Marion, Bill; Kurtz, Sarah R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dirnberger, Daniela; Schmid, Alexandra] Fraunhofer Inst Solar Energy Syst, Fraunhofer ISE, D-79110 Freiburg, Germany. [Barkaszi, Stephen] Florida Solar Energy Ctr, Cocoa, FL 32922 USA. [Riedel, Nicholas; Pratt, Larry] CFV Solar Test Lab, Albuquerque, NM 87106 USA. [Doshi, Samantha; Tamizhmani, Govindasamy] TUV Rheinland PTL, Tempe, AZ 85282 USA. RP Deceglie, MG (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM michael.deceglie@nrel.gov; timothy.silverman@nrel.gov; keith.emery@nrel.gov; daniela.dirnberger@ise.fraunhofer.de; Alexandra.Schmid@ise.fraunhofer.de; barkaszi@fsec.ucf.edu; Nick.Riedel@cfvsolar.com; pratt@cfvsolar.com; sdoshi@us.tuv.com; gtamizhmani@us.tuv.com; bill.marion@nrel.gov; Sarah.Kurtz@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 20 TC 1 Z9 1 U1 3 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD MAR PY 2015 VL 5 IS 2 BP 607 EP 612 DI 10.1109/JPHOTOV.2014.2376056 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CG7YW UT WOS:000353524800020 ER PT J AU Bezrukov, F Shaposhnikov, M AF Bezrukov, F. Shaposhnikov, M. TI Why should we care about the top quark Yukawa coupling? SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID HIGGS-BOSON MASSES; STANDARD MODEL; ELECTROWEAK VACUUM; DARK-MATTER; 3 LOOPS; STABILITY; BOUNDS; PHYSICS; CONSTRAINTS; DEPENDENCE AB In the cosmological context, for the Standard Model to be valid up to the scale of inflation, the top quark Yukawa coupling y (t) should not exceed the critical value y (t) (crit) , coinciding with good precision (about 0.2aEuro degrees) with the requirement of the stability of the electroweak vacuum. So, the exact measurements of y (t) may give an insight on the possible existence and the energy scale of new physics above 100 GeV, which is extremely sensitive to y (t) . We overview the most recent theoretical computations of and the experimental measurements of y (t) (crit) and the experimental measurements of y (t) . Within the theoretical and experimental uncertainties in y (t) , the required scale of new physics varies from 10(7) GeV to the Planck scale, urging for precise determination of the top quark Yukawa coupling. C1 [Bezrukov, F.] CERN, CH-1211 Geneva 23, Switzerland. [Bezrukov, F.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Bezrukov, F.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Shaposhnikov, M.] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland. RP Bezrukov, F (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM fedor.bezrukov@uconn.edu; mikhail.shaposhnikov@epfl.ch RI EPFL, Physics/O-6514-2016; OI Bezrukov, Fedor/0000-0003-3601-1003 FU Swiss National Science Foundation FX The work of M. S. is supported in part by the Swiss National Science Foundation. F. B. would like to thank CERN, where this paper was writ on, for hospitality. We thank Abdelhak Djouadi, Stefano Frixione, and Andrey Pikelner for many helpful discussions related to this paper. NR 63 TC 18 Z9 18 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 EI 1090-6509 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD MAR PY 2015 VL 120 IS 3 SI SI BP 335 EP 343 DI 10.1134/S1063776115030152 PG 9 WC Physics, Multidisciplinary SC Physics GA CF7CE UT WOS:000352712900001 ER PT J AU McLerran, L AF McLerran, L. TI The electroweak axion, dark energy, inflation and baryonic matter SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID Q-BALLS; QUANTUM FLUCTUATIONS; UNIVERSE SCENARIO; NUMBER VIOLATION; CP CONSERVATION; PERTURBATIONS; INSTANTONS; THERMALIZATION; COSMOLOGY; SYMMETRY AB In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B - L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry. C1 [McLerran, L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, L.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [McLerran, L.] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP McLerran, L (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM mclerran@mac.com FU DOE [DE-AC02-98CH10886] FX We thank Rob Pisarski and Hooman Davioudasl for the enlightening discussions. The research of L. McLerran is supported under DOE Contract no. DE-AC02-98CH10886. This work was completed while L. McLerran was visiting the Theoretical Physics Institute at the University of Heidelberg as the Jensen Professor of Theoretical Physics. NR 38 TC 1 Z9 1 U1 3 U2 6 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 EI 1090-6509 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD MAR PY 2015 VL 120 IS 3 SI SI BP 376 EP 379 DI 10.1134/S1063776115030103 PG 4 WC Physics, Multidisciplinary SC Physics GA CF7CE UT WOS:000352712900005 ER PT J AU Mangold, N Forni, O Dromart, G Stack, K Wiens, RC Gasnault, O Sumner, DY Nachon, M Meslin, PY Anderson, RB Barraclough, B Bell, JF Berger, G Blaney, DL Bridges, JC Calef, F Clark, B Clegg, SM Cousin, A Edgar, L Edgett, K Ehlmann, B Fabre, C Fisk, M Grotzinger, J Gupta, S Herkenhoff, KE Hurowitz, J Johnson, JR Kah, LC Lanza, N Lasue, J Le Mouelic, S Leveille, R Lewin, E Malin, M McLennan, S Maurice, S Melikechi, N Mezzacappa, A Milliken, R Newsom, H Ollila, A Rowland, SK Sautter, V Schmidt, M Schroder, S d'Uston, C Vaniman, D Williams, R AF Mangold, N. Forni, O. Dromart, G. Stack, K. Wiens, R. C. Gasnault, O. Sumner, D. Y. Nachon, M. Meslin, P. -Y. Anderson, R. B. Barraclough, B. Bell, J. F., III Berger, G. Blaney, D. L. Bridges, J. C. Calef, F. Clark, B. Clegg, S. M. Cousin, A. Edgar, L. Edgett, K. Ehlmann, B. Fabre, C. Fisk, M. Grotzinger, J. Gupta, S. Herkenhoff, K. E. Hurowitz, J. Johnson, J. R. Kah, L. C. Lanza, N. Lasue, J. Le Mouelic, S. Leveille, R. Lewin, E. Malin, M. McLennan, S. Maurice, S. Melikechi, N. Mezzacappa, A. Milliken, R. Newsom, H. Ollila, A. Rowland, S. K. Sautter, V. Schmidt, M. Schroeder, S. d'Uston, C. Vaniman, D. Williams, R. TI Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; Gale crater; sediments; ChemCam; LIBS ID GALE CRATER; INSTRUMENT SUITE; ORIGIN; SYSTEM; CHEMISTRY; ROCKNEST; UNIT AB The Yellowknife Bay formation represents a similar to 5m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (similar to 1m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains. C1 [Mangold, N.; Nachon, M.; Le Mouelic, S.] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, Nantes, France. [Forni, O.; Gasnault, O.; Meslin, P. -Y.; Berger, G.; Lasue, J.; Maurice, S.; Schroeder, S.; d'Uston, C.] Univ Toulouse, CNRS, UPS OMP, Inst Rech Astrophys & Planetol, Toulouse, France. [Dromart, G.] Univ Lyon, Lab Geol Lyon, Lyon, France. [Stack, K.; Barraclough, B.; Ehlmann, B.; Grotzinger, J.] CALTECH, Pasadena, CA 91125 USA. [Wiens, R. C.; Clegg, S. M.; Cousin, A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sumner, D. Y.] Univ Calif Davis, Earth & Planetary Sci, Davis, CA 95616 USA. [Anderson, R. B.; Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Bell, J. F., III; Edgar, L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Blaney, D. L.; Calef, F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Clark, B.] Space Sci Inst, Boulder, CO USA. [Edgett, K.; Malin, M.] Malin Space Sci Syst, San Diego, CA USA. [Fabre, C.] Univ Lorraine, GeoRessources, Nancy, France. [Fisk, M.] Oragon State Univ, Earth Ocean & Atmospher Sci, Corvallis, OR USA. [Gupta, S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. [Hurowitz, J.; McLennan, S.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Kah, L. C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Lanza, N.; Newsom, H.; Ollila, A.] Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Leveille, R.] Canadian Space Agcy, St Hubert, PQ, Canada. [Lewin, E.] Univ Grenoble 1, ISTerre, Grenoble, France. [Melikechi, N.; Mezzacappa, A.] Delaware State Univ, Appl Opt Ctr, Delaware, OH USA. [Milliken, R.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Rowland, S. K.] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Sautter, V.] Museum Natl Hist Nat, F-75231 Paris, France. [Schmidt, M.] Brock Univ, Dept Earth Sci, St Catharines, ON L2S 3A1, Canada. [Vaniman, D.; Williams, R.] Planetary Sci Inst, Tucson, AZ USA. RP Mangold, N (reprint author), Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, Nantes, France. EM nicolas.mangold@univ-nantes.fr RI Johnson, Jeffrey/F-3972-2015; BERGER, Gilles/F-7118-2016; LEWIN, Eric/F-1451-2017; OI Edgett, Kenneth/0000-0001-7197-5751; Clegg, Sam/0000-0002-0338-0948 FU French Space Agency, Centre National d'Etudes Spatiales (CNES); INSU/CNRS; OSUNA (Observatoire des Sciences de l'Univers de Nantes Atlantique) FX We acknowledge the helpful reviews of anonymous reviewers. Support for development and operation of the ChemCam instrument was supported in France by funds from the French Space Agency, Centre National d'Etudes Spatiales (CNES). Support was also received from INSU/CNRS and from OSUNA (Observatoire des Sciences de l'Univers de Nantes Atlantique). Support for development and operation in the U.S. was provided by NASA to the Mars Exploration Program and specifically to the MSL Team. Imaging and chemical data presented here are available in the NASA Planetary Data System (PDS) http://pds-geosciences.wustl.edu/missions/msl. We are grateful to the MSL engineering and management teams (and especially the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA) for making the mission and this scientific investigation possible and to science team members who contributed to mission operations. NR 61 TC 14 Z9 14 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 452 EP 482 DI 10.1002/2014JE004681 PG 31 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100007 ER PT J AU Freissinet, C Glavin, DP Mahaffy, PR Miller, KE Eigenbrode, JL Summons, RE Brunner, AE Buch, A Szopa, C Archer, PD Franz, HB Atreya, SK Brinckerhoff, WB Cabane, M Coll, P Conrad, PG Des Marais, DJ Dworkin, JP Fairen, AG Francois, P Grotzinger, JP Kashyap, S ten Kate, IL Leshin, LA Malespin, CA Martin, MG Martin-Torres, FJ McAdam, AC Ming, DW Navarro-Gonzalez, R Pavlov, AA Prats, BD Squyres, SW Steele, A Stern, JC Sumner, DY Sutter, B Zorzano, MP AF Freissinet, C. Glavin, D. P. Mahaffy, P. R. Miller, K. E. Eigenbrode, J. L. Summons, R. E. Brunner, A. E. Buch, A. Szopa, C. Archer, P. D., Jr. Franz, H. B. Atreya, S. K. Brinckerhoff, W. B. Cabane, M. Coll, P. Conrad, P. G. Des Marais, D. J. Dworkin, J. P. Fairen, A. G. Francois, P. Grotzinger, J. P. Kashyap, S. ten Kate, I. L. Leshin, L. A. Malespin, C. A. Martin, M. G. Martin-Torres, F. J. McAdam, A. C. Ming, D. W. Navarro-Gonzalez, R. Pavlov, A. A. Prats, B. D. Squyres, S. W. Steele, A. Stern, J. C. Sumner, D. Y. Sutter, B. Zorzano, M. -P. CA MSL Sci Team TI Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE organic molecules; chlorobenzene; MSL; Mars; SAM; oxychlorine ID ROCKNEST AEOLIAN DEPOSIT; PERCHLORATE; ABUNDANCES; PYROLYSIS; SAMPLES; ORIGIN AB The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C-2 to C-4 dichloroalkanes (up to 70ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. C1 [Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Eigenbrode, J. L.; Brunner, A. E.; Franz, H. B.; Brinckerhoff, W. B.; Conrad, P. G.; Dworkin, J. P.; Kashyap, S.; Malespin, C. A.; Martin, M. G.; McAdam, A. C.; Pavlov, A. A.; Prats, B. D.; Stern, J. C.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Freissinet, C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN USA. [Miller, K. E.; Summons, R. E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Brunner, A. E.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, College Pk, MD 20742 USA. [Buch, A.] Ecole Cent Paris, Lab Genie Proc & Mat, Chatenay Malabry, France. [Franz, H. B.; Kashyap, S.] Univ Maryland, Ctr Res & Explorat Space Sci Technol, Baltimore, MD USA. [Szopa, C.; Cabane, M.] Univ Versailles St Quentin En Yvelines, Univ Paris 06, Observat Spati, Milieux,Lab Atmospheres, Paris, France. [Szopa, C.; Cabane, M.] CNRS, Paris, France. [Archer, P. D., Jr.; Sutter, B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Franz, H. B.; Kashyap, S.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21228 USA. [Atreya, S. K.; Francois, P.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Coll, P.] Univ Paris 07, Univ Paris Est Creteil, Lab Interuniv Syst Atmospher, Creteil, France. [Coll, P.] Hop Henri Mondor, CNRS, F-94010 Creteil, France. [Des Marais, D. J.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Fairen, A. G.; Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Fairen, A. G.] INTA CSIC, Ctr Astrobiol, Madrid, Spain. [Grotzinger, J. P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [ten Kate, I. L.] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands. [Leshin, L. A.] Rensselaer Polytech Inst, Dept Earth & Environm Sci, Troy, NY USA. [Leshin, L. A.] Rensselaer Polytech Inst, Sch Sci, Troy, NY USA. [Malespin, C. A.] Univ Space Res Assoc, Goddard Earth Sci & Technol & Res, Columbia, MD USA. [Martin, M. G.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Martin-Torres, F. J.] Inst Andaluz Ciencias Tierra CSIC UGR, Granada, Spain. [Martin-Torres, F. J.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden. [Ming, D. W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. [Navarro-Gonzalez, R.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Steele, A.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Sumner, D. Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Zorzano, M. -P.] Ctr Astrobiol INTA CSIC, Madrid, Spain. RP Freissinet, C (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM caroline.freissinet@nasa.gov; paul.r.mahaffy@nasa.gov RI Gonzalez, Rafael/D-1748-2009; Martin-Torres, Francisco Javier/G-6329-2015; Rodriguez-Manfredi, Jose/L-8001-2014; Zorzano, Maria-Paz/C-5784-2015; Glavin, Daniel/D-6194-2012; szopa, cyril/C-6865-2015; Ramos, Miguel/K-2230-2014; Zorzano, Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012 OI Kashyap, Srishti/0000-0003-4950-9636; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Zorzano, Maria-Paz/0000-0002-4492-9650; Glavin, Daniel/0000-0001-7779-7765; szopa, cyril/0000-0002-0090-4056; Ramos, Miguel/0000-0003-3648-6818; Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin, Jason/0000-0002-3961-8997 FU French Space Agency (CNES); MSL Participating Scientist Program FX This work could not have been conducted without the continuous support of the SAM and MSL operations, engineering, and scientific teams. NASA provided support for the development and operation of SAM. SAM-GC was supported by funds from the French Space Agency (CNES). C.F. acknowledges the NPP program. C.F., D.P.G., K.E.M., J.L.E., R.E.S., J.P.D., and M.G.M. acknowledge support from the MSL Participating Scientist Program. Data from these SAM experiments are archived in the Planetary Data System (pds.nasa.gov). NR 35 TC 48 Z9 48 U1 25 U2 103 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 495 EP 514 DI 10.1002/2014JE004737 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100009 ER PT J AU Jaret, SJ Woerner, WR Phillips, BL Ehm, L Nekvasil, H Wright, SP Glotch, TD AF Jaret, Steven J. Woerner, William R. Phillips, Brian L. Ehm, Lars Nekvasil, Hanna Wright, Shawn P. Glotch, Timothy D. TI Maskelynite formation via solid-state transformation: Evidence of infrared and X-ray anisotropy SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Impact crater; shock metamorphism; maskelynite; shocked feldspar ID DIAPLECTIC LABRADORITE GLASS; NUCLEAR-MAGNETIC-RESONANCE; MANICOUAGAN IMPACT CRATER; RAMAN-SPECTROSCOPY; PLAGIOCLASE FELDSPARS; CRYSTALLINE ROCKS; NMR-SPECTROSCOPY; SHOCK; DEFORMATION; SPECTRA AB We present the results of a combined study of shocked labradorite from the Lonar crater, India, using optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differencespreservation of original preimpact igneous zoning, anisotropy at infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range orderwhich are all consistent with a solid-state transformation from plagioclase to maskelynite. C1 [Jaret, Steven J.; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Ehm, Lars] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Ehm, Lars] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Wright, Shawn P.] Auburn Univ, Dept Geosci, Auburn, AL 36849 USA. [Wright, Shawn P.] Planetary Sci Inst, Tucson, AZ USA. RP Jaret, SJ (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM Steven.jaret@stonybrook.edu FU NASA Earth and Space Science Fellowship; NASA MFR [NNX13AG82G]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy (DOE) office of Basic Energy Sciences [BES DE-FG02-09ER46650]; COMPRES; Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 11-57758]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; NASA PGG [NNX14AP52G] FX S.J.J. is supported by a NASA Earth and Space Science Fellowship and the RIS4E team of the Solar System Exploration Research Virtual Institute (PI T. Glotch). This is SSERVI publication SERVII-2014-245. All data in this paper will be archived and made available on the Stony Brook University Vibrational Spectroscopy Laboratory's website: http://aram.ess.sunysb.edu/tglotch. We thank Don H. Lindsley (SBU) for assistance with fused glass synthesis and support for this through NASA MFR grant NNX13AG82G to H.N. We also thank Christopher Vidito (Rutgers) for assistance with the electron microprobe. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886. The X-ray total scattering experiments were supported by the U.S. Department of Energy (DOE) office of Basic Energy Sciences grant BES DE-FG02-09ER46650. The operation of the beamline X17B3 is partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative agreement EAR 11-57758. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. S.P.W. was supported by NASA PG&G award NNX14AP52G. This manuscript was greatly improved through conversations and discussion with Jessica Arnold, Christian Koeberl, and Jeffery Johnson. NR 76 TC 8 Z9 8 U1 6 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 570 EP 587 DI 10.1002/2014JE004764 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100012 ER PT J AU Riviere, J Shokouhi, P Guyer, RA Johnson, PA AF Riviere, Jacques Shokouhi, Parisa Guyer, Robert A. Johnson, Paul A. TI A set of measures for the systematic classification of the nonlinear elastic behavior of disparate rocks SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE nonlinear elasticity; dynamic acoustoelastic testing (DAET); nonlinear resonance ultrasound spectroscopy (NURS); rocks; damage; nondestructive evaluation ID DISCERN MATERIAL DAMAGE; WAVE-PROPAGATION; BEREA SANDSTONE; NEWS TECHNIQUES; STRAIN; SPECTROSCOPY; HYSTERESIS; SCATTERING; FRICTION; CONCRETE AB Dynamic acoustoelastic testing is performed on a set of six rock samples (four sandstones, one soapstone, and one granite). From these studies at 20 strain levels 10(-7)z, V, and Dst index are available from Goddard Space Flight Center Space Physics Data Facility at the OMNIWeb data website (http://omniweb.gsfc.nasa.gov/html/ow_data.html). We thank the reviewers for their helpful comments. This work was supported by National Science Foundation grants ATM-0827903 and AGS-1264146 to Augsburg College. NR 54 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR PY 2015 VL 120 IS 3 BP 2052 EP 2060 DI 10.1002/2014JA020337 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG4EY UT WOS:000353237600038 ER PT J AU O'Brien, TP Claudepierre, SG Looper, MD Blake, JB Fennell, JF Clemmons, JH Roeder, JL Kanekal, SG Manweiler, JW Mitchell, DG Gkioulidou, M Lanzerotti, LJ Spence, HE Reeves, GD Baker, DN AF O'Brien, T. P. Claudepierre, S. G. Looper, M. D. Blake, J. B. Fennell, J. F. Clemmons, J. H. Roeder, J. L. Kanekal, S. G. Manweiler, J. W. Mitchell, D. G. Gkioulidou, M. Lanzerotti, L. J. Spence, H. E. Reeves, G. D. Baker, D. N. TI On the use of drift echoes to characterize on-orbit sensor discrepancies SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE drift echoes; sensor calibration; radiation belts ID RADIATION; ELECTRONS AB We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel's drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen Probes mission. Drift echoes are only easily observed at high energies (100skeV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo technique has provided a significant clue in resolving substantial flux discrepancies between two instruments measuring fluxes near 2MeV. C1 [O'Brien, T. P.; Claudepierre, S. G.; Looper, M. D.; Blake, J. B.; Fennell, J. F.; Clemmons, J. H.; Roeder, J. L.] Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Manweiler, J. W.] Fundamental Technol LLC, Lawrence, KS USA. [Mitchell, D. G.; Gkioulidou, M.] Johns Hopkins Univ, Appl Phys Lab, Space Dept, Laurel, MD USA. [Lanzerotti, L. J.] New Jersey Inst Technol, Dept Phys, Ctr Solar Terr Res, Newark, NJ 07102 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM USA. [Baker, D. N.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. RP O'Brien, TP (reprint author), Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA. EM paul.obrien@aero.org RI Gkioulidou, Matina/G-9009-2015; Reeves, Geoffrey/E-8101-2011; OI Gkioulidou, Matina/0000-0001-9979-2164; Reeves, Geoffrey/0000-0002-7985-8098; Clemmons, James/0000-0002-5298-5222 FU University of New Hampshire [10-068]; NASA by JHU/APL [967399]; JHU/APL under NASA [967399, NAS5-01072, 937836] FX The MagEIS portion of this work was funded by contract 10-068 from the University of New Hampshire, derived from NASA Van Allen Probes mission funding via RBSP-ECT funding provided by JHU/APL contract 967399. The REPT work was supported by JHU/APL contract 967399 under NASA's prime contract NAS5-01072. Both MagEIS and REPT analyses were supported by the ECT Science Operations Center at Los Alamos National Lab. The RBSPICE instrument was supported by JHU/APL subcontract 937836 to the New Jersey Institute of Technology under NASA prime contract NAS5-01072. The authors also acknowledge useful discussions with our colleagues at The Aerospace Corporation, The Laboratory for Atmospheric and Space Physics at University of Colorado, Boulder, the New Jersey Institute of Technology, and Fundamental Technologies, LLC. ECT data used in the paper are available from www.rbsp-ect.lanl.gov or from the author (paul.obrien@aero.org). RBSPICE data are available from rbspice.ftecs.com. NR 16 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR PY 2015 VL 120 IS 3 BP 2076 EP 2087 DI 10.1002/2014JA020859 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG4EY UT WOS:000353237600040 ER PT J AU McBride, J Zhao, XP Munro, N Jicha, G Smith, C Jiang, Y AF McBride, Joseph Zhao, Xiaopeng Munro, Nancy Jicha, Gregory Smith, Charles Jiang, Yang TI Discrimination of Mild Cognitive Impairment and Alzheimer's Disease Using Transfer Entropy Measures of Scalp EEG SO JOURNAL OF HEALTHCARE ENGINEERING LA English DT Article DE early Alzheimer's disease; mild cognitive impairment; EEG-based diagnosis; transfer entropy ID RESTING EEG; INFORMATION; SYNCHRONIZATION; CONNECTIVITY; COHERENCE AB Mild cognitive impairment (MCI) is a neurological condition related to early stages of dementia including Alzheimer's disease (AD). This study investigates the potential of measures of transfer entropy in scalp EEG for effectively discriminating between normal aging, MCI, and AD participants. Resting EEG records from 48 age-matched participants (mean age 75.7 years)-15 normal controls, 16 MCI, and 17 early AD-are examined. The mean temporal delays corresponding to peaks in inter-regional transfer entropy are computed and used as features to discriminate between the three groups of participants. Three-way classification schemes based on binary support vector machine models demonstrate overall discrimination accuracies of 91.7-93.8%, depending on the protocol condition. These results demonstrate the potential for EEG transfer entropy measures as biomarkers in identifying early MCI and AD. Moreover, the analyses based on short data segments (two minutes) render the method practical for a primary care setting. C1 [McBride, Joseph; Zhao, Xiaopeng] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Munro, Nancy] Oak Ridge Nation Lab, Oak Ridge, TN USA. [Jicha, Gregory; Smith, Charles; Jiang, Yang] Univ Kentucky, Coll Med, Sanders Brown Ctr Aging, Lexington, KY USA. [Jicha, Gregory; Smith, Charles] Univ Kentucky, Coll Med, Dept Neurol, Lexington, KY USA. [Jiang, Yang] Univ Kentucky, Coll Med, Dept Behav Sci, Lexington, KY 40536 USA. RP Zhao, XP (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA. EM xzhao9@utk.edu; nbmunroconsulting@comcast.net; gajich2@email.uky.edu; csmith@mri.uky.edu; yjiang@uky.edu RI Zhao, Xiaopeng/A-4419-2008 OI Zhao, Xiaopeng/0000-0003-1207-5379 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; NSF [CMMI-0845753, CMMI-1234155]; NIH [NIH P30 AG028383, NIH AG00986, NIH NCRR UL1RR033173]; US Department of Energy [DE-AC05-00OR22725] FX This research was sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725; by the NSF under grant numbers CMMI-0845753 and CMMI-1234155; and in part by the NIH under grants NIH P30 AG028383 to UK Sanders-Brown Center on Aging, NIH AG00986 to YJ, and NIH NCRR UL1RR033173 to UK Center for Clinical and Translational Science. The contributions to this paper by N. B. Munro were prepared while acting in her own independent capacities and not on behalf of UT-Battelle, LLC, or its affiliates or successors, or Oak Ridge National Laboratory, or the US Department of Energy. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. NR 36 TC 3 Z9 3 U1 3 U2 9 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 2040-2295 J9 J HEALTHC ENG JI J. Healthc. Eng. PD MAR PY 2015 VL 6 IS 1 BP 55 EP 70 PG 16 WC Health Care Sciences & Services SC Health Care Sciences & Services GA CG2YB UT WOS:000353140700004 PM 25708377 ER PT J AU Vugrin, ED Verzi, SJ Finley, PD Turnquist, MA Griffin, AR Ricci, KA Wyte-Lake, T AF Vugrin, Eric D. Verzi, Stephen J. Finley, Patrick D. Turnquist, Mark A. Griffin, Anne R. Ricci, Karen A. Wyte-Lake, Tamar TI Modeling Hospitals' Adaptive Capacity during a Loss of Infrastructure Services SO JOURNAL OF HEALTHCARE ENGINEERING LA English DT Article DE hospital; evacuation; resilience; infrastructure disruption; modeling ID SEISMIC RESILIENCE; HURRICANE-KATRINA; EVACUATION; DISASTER; SYSTEMS AB Resilience in hospitals - their ability to withstand, adapt to, and rapidly recover from disruptive events - is vital to their role as part of national critical infrastructure. This paper presents a model to provide planning guidance to decision makers about how to make hospitals more resilient against possible disruption scenarios. This model represents a hospital's adaptive capacities that are leveraged to care for patients during loss of infrastructure services (power, water, etc.). The model is an optimization that reallocates and substitutes resources to keep patients in a high care state or allocates resources to allow evacuation if necessary. An illustrative example demonstrates how the model might be used in practice. C1 [Vugrin, Eric D.; Verzi, Stephen J.; Finley, Patrick D.] Sandia Natl Labs, Energy Nonproliferat & High Consequence Secur Div, Albuquerque, NM 87185 USA. [Turnquist, Mark A.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Griffin, Anne R.; Ricci, Karen A.; Wyte-Lake, Tamar] US Vet Adm, Vet Emergency Management Evaluat Ctr, North Hills, CA USA. RP Vugrin, ED (reprint author), Sandia Natl Labs, Resilience & Regulatory Effects Dept, POB 5800,MS 1138, Albuquerque, NM 87185 USA. EM edvugri@sandia.gov; sjverzi@sandia.gov; pdfinle@sandia.gov; mark.turnquist@cornell.edu; anne.griffin@sandia.gov; Karen.ricci@va.gov; tamar.wyte@va.gov FU Veterans Health Administration of the US Department of Veterans Affairs; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the Veterans Health Administration of the US Department of Veterans Affairs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 2 Z9 2 U1 3 U2 6 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 2040-2295 J9 J HEALTHC ENG JI J. Healthc. Eng. PD MAR PY 2015 VL 6 IS 1 BP 85 EP 120 PG 36 WC Health Care Sciences & Services SC Health Care Sciences & Services GA CG2YB UT WOS:000353140700006 PM 25708379 ER PT J AU Brandt, T Neumann, D AF Brandt, Tobias Neumann, Dirk TI Chasing Lemmings: Modeling IT-Induced Misperceptions About the Strategic Situation as a Reason for Flash Crashes SO JOURNAL OF MANAGEMENT INFORMATION SYSTEMS LA English DT Article DE flash crash; game theory; impact of IT; hypergames ID FLOW TOXICITY; INFORMATION; HYPERGAMES; LIQUIDITY; GAMES AB Flash crashes, perceived as sharp drops in market prices that rebound shortly after, have turned the public eye toward the vulnerability of information technology-based stock trading. In this paper, we explain flash crashes as the result of actions made by rational agents. We argue that the advancement of information technology (IT), which has long been associated with competitive advantages, may cause ambiguities with respect to the game form that give rise to a hypergame. We employ hypergame theory to demonstrate that a market crash constitutes an equilibrium state if players misperceive the true game. Once the ambiguity is resolved, prices readjust to the appropriate level, creating the characteristic flash-crash effect. By analyzing the interaction with herd behavior, we find that flash crashes may be an unavoidable systemic problem of modern financial markets. C1 [Brandt, Tobias] Univ Freiburg, Dept Econ & Behav Sci, Freiburg, Germany. [Brandt, Tobias] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Neumann, Dirk] Univ Freiburg, Dept Econ & Behav Sci, Informat Syst, Freiburg, Germany. RP Brandt, T (reprint author), Univ Freiburg, Dept Econ & Behav Sci, Freiburg, Germany. FU Foundation of German Business (sdw) FX Tobias Brandt was supported in this research by a doctoral fellowship granted by the Foundation of German Business (sdw). Furthermore, the authors thank Robert Briggs and Jay Nunamaker, as well as two anonymous reviewers for their excellent work and the valuable comments on our initial submission to the special issue. We also want to extend our gratitude to Roger Maull and Cathy Mulligan, who chaired the minitrack on New Economic Models of the Digital Economy at the Hawaii International Conference on Systems Sciences (HICSS) 2014, where an earlier version of this paper was presented, as well as the reviewers and conference participants at HICSS for valuable feedback. NR 32 TC 0 Z9 0 U1 9 U2 14 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 0742-1222 EI 1557-928X J9 J MANAGE INFORM SYST JI J. Manage. Inform. Syst. PD SPR PY 2015 VL 31 IS 4 BP 88 EP 108 DI 10.1080/07421222.2014.1001258 PG 21 WC Computer Science, Information Systems; Information Science & Library Science; Management SC Computer Science; Information Science & Library Science; Business & Economics GA CG2ZP UT WOS:000353145800005 ER PT J AU Avakian, H Matevosyan, H Pasquini, B Schweitzer, P AF Avakian, H. Matevosyan, H. Pasquini, B. Schweitzer, P. TI Studying the information content of TMDs using Monte Carlo generators SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE 3D nucleon structure; transverse momentum distributions; parton models; azimuthal asymmetries in SIDIS ID DEPENDENT PARTON DISTRIBUTIONS; COLLINS FRAGMENTATION FUNCTION; DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; TRANSVERSE-MOMENTUM DISTRIBUTION; SINGLE-SPIN ASYMMETRIES; DRELL-YAN PROCESS; SIVERS FUNCTION; QUARK DISTRIBUTIONS; PION ELECTROPRODUCTION AB Theoretical advances in studies of the nucleon structure have been spurred by recent measurements of spin and/or azimuthal asymmetries worldwide. One of the main challenges still remaining is the extraction of the parton distribution functions, generalized to describe transverse momentum and spatial distributions of partons from these observables with no or minimal model dependence. In this review we present the latest developments in the field with emphasis on requirements for Monte Carlo event generators, indispensable for studies of the complex 3D nucleon structure, and discuss examples of possible applications. C1 [Avakian, H.] Jefferson Lab, Newport News, VA 23606 USA. [Matevosyan, H.] Univ Adelaide, Sch Chem & Phys, CoEPP, Adelaide, SA 5005, Australia. [Matevosyan, H.] Univ Adelaide, Sch Chem & Phys, CSSM, Adelaide, SA 5005, Australia. [Pasquini, B.] Univ Pavia, Dept Phys, I-27100 Pavia, Italy. [Pasquini, B.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Schweitzer, P.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RP Avakian, H (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM avakian@jlab.org; hrayr.matevosyan@adelaide.edu.au; barbara.pasquini@pv.infn.it; peter.schweitzer@phys.uconn.edu FU DOE [DE-AC05-06OR23177]; European Community [283286]; Australian Research Council [FL0992247, CE110001004]; US National Science Foundation [1406298] FX We thank E Aschenauer for helpful comments and corrections, and I Akushevich for clarifying certain aspects of radiative corrections. The authors are indebted to the participants of the INT workshop INT-14-55W 'Studies of 3D Structure of Nucleon' [45] for stimulating discussions which inspired parts of this brief review. This work was partially supported by DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab; the European Community Joint Research Activity 'Study of Strongly Interacting Matter' (acronym HadronPhysics3, Grant Agreement No. 283286) under the Seventh Framework Programme of the European Community; the Australian Research Council through Grants FL0992247 (AWT) and No. CE110001004 (CoEPP), and the US National Science Foundation under Contract No. 1406298. NR 188 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034015 DI 10.1088/0954-3899/42/3/034015 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200016 ER PT J AU Beane, SR Detmold, W Orginos, K Savage, MJ AF Beane, Silas R. Detmold, William Orginos, Kostas Savage, Martin J. TI Uncertainty quantification in lattice QCD calculations for nuclear physics SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE lattice QCD; nuclear physics; uncertainties ID QUANTUM-FIELD THEORIES; HYBRID MONTE-CARLO; GAUGE-THEORIES; NUMERICAL-SIMULATION; CONTINUUM-LIMIT; FINITE-VOLUME; PERTURBATION-THEORY; MOLECULAR-DYNAMICS; SCATTERING MATRIX; CHIRAL FERMIONS AB The numerical technique of lattice quantum chromodynamics (LQCD) holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. We review the sources of uncertainty inherent in LQCD calculations for nuclear physics, and discuss how each is quantified in current efforts. C1 [Beane, Silas R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Savage, Martin J.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ Washington, Dept Phys, Box 351560, Seattle, WA 98195 USA. EM silas@uw.edu; wdetmold@mit.edu; kostas@jlab.org; mjs5@uw.edu OI Detmold, William/0000-0002-0400-8363 NR 140 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034022 DI 10.1088/0954-3899/42/3/034022 PG 31 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200023 ER PT J AU Brown, DA Herman, M Hoblit, S McCutchan, EA Nobre, GPA Pritychenko, B Sonzogni, AA AF Brown, D. A. Herman, M. Hoblit, S. McCutchan, E. A. Nobre, G. P. A. Pritychenko, B. Sonzogni, A. A. TI Uncertainty quantification in the Nuclear Data Program SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE nuclear data; uncertainty quantification; nuclear reactions; nuclear structure ID CROSS-SECTIONS; BETA-DECAY; KALMAN FILTER; EMPIRE CODE; COVARIANCES; SCIENCE; COLLABORATION; ENDF/B-VII.1; CALIBRATION; JENDL-4.0 AB The US Nuclear Data Program is charged with collecting, analyzing and archiving information critical to basic nuclear research and to the development of nuclear technologies. Users of nuclear data require detailed uncertainty information for a variety of reasons. In this paper, we review some of the main aspects of the generation and use of uncertainty information, linking to structure, astrophysics, and reaction data. C1 [Brown, D. A.; Herman, M.; Hoblit, S.; McCutchan, E. A.; Nobre, G. P. A.; Pritychenko, B.; Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Brown, DA (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM mccutchan@bnl.gov FU DOE Office of Nuclear Physics [DE-AC02-98CH10946] FX We are grateful to V Zerkin (IAEA) and JK Tuli (BNL) for useful discussions. Work supported by the DOE Office of Nuclear Physics under Contract No. DE-AC02-98CH10946. NR 61 TC 0 Z9 0 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034020 DI 10.1088/0954-3899/42/3/034020 PG 26 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200021 ER PT J AU Ekstrom, A Carlsson, BD Wendt, KA Forssen, C Jensen, MH Machleidt, R Wild, SM AF Ekstrom, A. Carlsson, B. D. Wendt, K. A. Forssen, C. Jensen, M. Hjorth Machleidt, R. Wild, S. M. TI Statistical uncertainties of a chiral interaction at next-to-next-to leading order SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE numerical optimization; nucleon-nucleon interactions; uncertainty quantification; error propagation ID PROTON ANALYZING POWER; NEUTRON-PROTON; NUCLEAR-FORCES; CROSS-SECTION; DEUTERON; SCATTERING; ENERGY; POLARIZATION; SHIFT AB We have quantified the statistical uncertainties of the low-energy coupling-constants (LECs) of an optimized nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order. In addition, we have propagated the impact of the uncertainties of the LECs to two-nucleon scattering phase shifts, effective range parameters, and deuteron observables. C1 [Ekstrom, A.; Carlsson, B. D.; Jensen, M. Hjorth] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Ekstrom, A.; Carlsson, B. D.; Jensen, M. Hjorth] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Carlsson, B. D.; Forssen, C.] Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. [Wendt, K. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Wendt, K. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Jensen, M. Hjorth] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI USA. [Jensen, M. Hjorth] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA. [Machleidt, R.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Wild, S. M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Ekstrom, A (reprint author), Univ Oslo, Dept Phys, N-0316 Oslo, Norway. EM ekstrom@utk.edu RI Forssen, Christian/C-6093-2008; Wild, Stefan/P-4907-2016; OI Forssen, Christian/0000-0003-3458-0480; Wild, Stefan/0000-0002-6099-2772; Karlsson, Boris/0000-0003-0901-5797 FU Research Council of Norway [ISP-Fysikk/216699]; Office of Nuclear Physics, US Department of Energy (Oak Ridge National Laboratory) (University of Idaho) [DE-FG02-03ER41270, DE-FG02-96ER40963, DE-AC02-06CH11357, DE-SC0008499]; European Research Council under European Community's Seventh Framework Programme (FP7)/ERC [240603] FX This work was supported by the Research Council of Norway under contract ISP-Fysikk/216699; by the Office of Nuclear Physics, US Department of Energy (Oak Ridge National Laboratory), under grant nos. DE-FG02-03ER41270 (University of Idaho), DE-FG02-96ER40963 (University of Tennessee), DE-AC02-06CH11357 (Argonne), and DE-SC0008499 (NUCLEI SciDAC collaboration); and by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 240603. This research used computational resources of the Notur project in Norway and the National Supercomputer Centre (NSC) at Linkoping University provided by the Swedish National Infrastructure for Computing (SNIC). NR 34 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034003 DI 10.1088/0954-3899/42/3/034003 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200004 ER PT J AU Furnstahl, RJ Hagen, G Papenbrock, T Wendt, KA AF Furnstahl, R. J. Hagen, G. Papenbrock, T. Wendt, K. A. TI Infrared extrapolations for atomic nuclei SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE nuclear structure; extrapolations; infrared properties ID COUPLED-CLUSTER THEORY; CORE-SHELL-MODEL; PHYSICS AB Harmonic oscillator model-space truncations introduce systematic errors to the calculation of binding energies and other observables. We identify the relevant infrared (IR) scaling variable and give values for this nucleus-dependent quantity. We consider isotopes of oxygen computed with the coupled-cluster method from chiral nucleon-nucleon interactions at next-to-next-to-leading order and show that the IR component of the error is sufficiently understood to permit controlled extrapolations. By employing oscillator spaces with relatively large frequencies, well above the energy minimum, the ultraviolet corrections can be suppressed while IR extrapolations over tens of MeVs are accurate for ground-state energies. However, robust uncertainty quantification for extrapolated quantities that fully accounts for systematic errors is not yet developed. C1 [Furnstahl, R. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hagen, G.; Papenbrock, T.; Wendt, K. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.; Papenbrock, T.; Wendt, K. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Furnstahl, RJ (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM furnstahl.1@osu.edu; hageng@ornl.gov; tpapenbr@utk.edu; kwendt2@utk.edu OI Furnstahl, Richard/0000-0002-3483-333X; Papenbrock, Thomas/0000-0001-8733-2849 NR 33 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034032 DI 10.1088/0954-3899/42/3/034032 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200033 ER PT J AU Higdon, D McDonnell, JD Schunck, N Sarich, J Wild, SM AF Higdon, Dave McDonnell, Jordan D. Schunck, Nicolas Sarich, Jason Wild, Stefan M. TI A Bayesian approach for parameter estimation and prediction using a computationally intensive model SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE parameter estimation; prediction uncertainty; Gaussian process; Bayesian; Markov chain Monte Carlo ID COMPUTER-MODELS; CALIBRATION AB Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model eta(theta), where theta denotes the uncertain, best input setting. Hence the statistical model is of the form y = eta(theta) + c, where epsilon accounts for measurement, and possibly other, error sources. When nonlinearity is present in eta(center dot), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model eta(center dot). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. C1 [Higdon, Dave] Los Alamos Natl Lab, Stat Sci, Los Alamos, NM 87545 USA. [McDonnell, Jordan D.; Schunck, Nicolas] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Sarich, Jason; Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Higdon, D (reprint author), Los Alamos Natl Lab, Stat Sci, POB 1663, Los Alamos, NM 87545 USA. EM dhigdon@lanl.gov RI Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Schunck, Nicolas/0000-0002-9203-6849 FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research SciDAC program; Livermore Computing Resource Center at Lawrence Livermore National Laboratory; Laboratory Computing Resource Center at Argonne National Laboratory; National Center for Computational Sciences (NCCS) and National Institute for Computational Sciences (NICS) at Oak Ridge National Laboratory FX This material was based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research SciDAC program. Computational resources were provided through an INCITE award 'Computational Nuclear Structure' by the National Center for Computational Sciences (NCCS) and National Institute for Computational Sciences (NICS) at Oak Ridge National Laboratory, through an award by the Livermore Computing Resource Center at Lawrence Livermore National Laboratory, and through an award by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 27 TC 5 Z9 5 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034009 DI 10.1088/0954-3899/42/3/034009 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200010 ER PT J AU Ireland, DG Nazarewicz, W AF Ireland, D. G. Nazarewicz, W. TI Enhancing the interaction between nuclear experiment and theory through information and statistics Preface SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Editorial Material C1 [Ireland, D. G.] Univ Glasgow, SUPA, Sch Phys, Glasgow G12 8QQ, Lanark, Scotland. [Ireland, D. G.] Univ Glasgow, Sch Astron, Glasgow G12 8QQ, Lanark, Scotland. [Nazarewicz, W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, W.] Michigan State Univ, FRIB NSCL, E Lansing, MI 48824 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, Fac Phys, PL-00325 Warsaw, Poland. RP Ireland, DG (reprint author), Univ Glasgow, SUPA, Sch Phys, Glasgow G12 8QQ, Lanark, Scotland. RI Ireland, David/E-8618-2010 OI Ireland, David/0000-0001-7713-7011 FU Science and Technology Facilities Council [ST/J000175/1] NR 0 TC 10 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 030301 DI 10.1088/0954-3899/42/3/030301 PG 3 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200001 ER PT J AU Orginos, K Richards, D AF Orginos, Kostas Richards, David TI Improved methods for the study of hadronic physics from lattice QCD SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE lattice QCD; hadronic; nuclear ID RIGHT-HAND SIDES; LINEAR-SYSTEMS; EIGENVALUES; LANCZOS; GMRES AB The solution of quantum chromodynamics (QCD) on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this paper, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD. C1 [Orginos, Kostas; Richards, David] Jefferson Lab, Newport News, VA 23606 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Orginos, K (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM kostas@jlab.org; dgr@jlab.org FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177]; US Department of Energy [DE-FD02-04ER41302] FX This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. In addition, KO was supported by the US Department of Energy through Grant Number DE-FD02-04ER41302. NR 43 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034011 DI 10.1088/0954-3899/42/3/034011 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200012 ER PT J AU Schunck, N McDonnell, JD Sarich, J Wild, SM Higdon, D AF Schunck, Nicolas McDonnell, Jordan D. Sarich, Jason Wild, Stefan M. Higdon, Dave TI Error analysis in nuclear density functional theory SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE nuclear structure; uncertainty quantification; density functional theory; high performance computing; energy functional; Bayesian statistics; covariance ID MEAN-FIELD THEORY; SPHERICAL NUCLEI; EQUATIONS; PROGRAM; FISSION; MODELS AB Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the Universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner. C1 [Schunck, Nicolas; McDonnell, Jordan D.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Sarich, Jason; Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Higdon, Dave] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schunck, N (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. EM schunck1@llnl.gov RI Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Schunck, Nicolas/0000-0002-9203-6849 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; SciDAC activity within the US Department of Energy, Office of Science, Advanced Scientific Computing Research [DE-AC02-06CH11357]; Livermore Computing Resource Center at Lawrence Livermore National Laboratory; Laboratory Computing Resource Center at Argonne National Laboratory; National Center for Computational Sciences (NCCS); National Institute for Computational Sciences (NICS) at Oak Ridge National Laboratory FX This work was partly performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. It was supported by the SciDAC activity within the US Department of Energy, Office of Science, Advanced Scientific Computing Research under contract number DE-AC02-06CH11357. Computational resources were provided through an INCITE award 'Computational Nuclear Structure' by the National Center for Computational Sciences (NCCS) and National Institute for Computational Sciences (NICS) at Oak Ridge National Laboratory, through an award by the Livermore Computing Resource Center at Lawrence Livermore National Laboratory, and through an award by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 57 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034024 DI 10.1088/0954-3899/42/3/034024 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200025 ER PT J AU Talou, P Kawano, T Chadwick, MB Neudecker, D Rising, ME AF Talou, Patrick Kawano, Toshihiko Chadwick, Mark B. Neudecker, Denise Rising, Michael E. TI Uncertainties in nuclear fission data SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE nuclear fission; uncertainty quantification; fission cross section; fission fragment yields; prompt fission neutrons and gamma rays; beta-delayed neutrons and gamma rays ID PRODUCT YIELDS; NEUTRON-SPECTRUM; CROSS-SECTIONS; ENERGY; PU-239; CF-252; QUANTIFICATION; DISTRIBUTIONS; ENDF/B-VII.1; PROPAGATION AB We review the current status of our knowledge of nuclear fission data, and quantify uncertainties related to each fission observable whenever possible. We also discuss the roles that theory and experiment play in reducing those uncertainties, contributing to the improvement of our fundamental understanding of the nuclear fission process as well as of evaluated nuclear data libraries used in nuclear applications. C1 [Talou, Patrick; Kawano, Toshihiko; Chadwick, Mark B.; Neudecker, Denise; Rising, Michael E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Talou, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM talou@lanl.gov FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX One of the authors (PT) would like to thank Dr W Nazarewicz for his initial invitation to write this article, as well as the co-organizers-Dr A Andreyev, Dr G W Bertsch, Dr W Loveland and Dr W Nazarewicz, of the INT-13-3 Program on 'Quantitative Large Amplitude Shape Dynamics: Fission and Heavy-Ion Fusion', 23 Sep.-15 Nov., 2013, Institute for Nuclear Theory, Seattle, during which the idea for this article was first proposed and for enlightening conversations about the nuclear fission process. This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 79 TC 1 Z9 1 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034025 DI 10.1088/0954-3899/42/3/034025 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200026 ER PT J AU Wild, SM Sarich, J Schunck, N AF Wild, Stefan M. Sarich, Jason Schunck, Nicolas TI Derivative-free optimization for parameter estimation in computational nuclear physics SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE numerical optimization; parameter estimation; density functional theory; sensitivity analysis ID NEUTRON-STAR DENSITIES; SKYRME PARAMETRIZATION; SUBNUCLEAR AB We consider optimization problems that arise when estimating a set of unknown parameters from experimental data, particularly in the context of nuclear density functional theory. We examine the cost of not having derivatives of these functionals with respect to the parameters. We show that the POUNDERS code for local derivative-free optimization obtains consistent solutions on a variety of computationally expensive energy density functional calibration problems. We also provide a primer on the operation of the POUNDERS software in the Toolkit for advanced optimization. C1 [Wild, Stefan M.; Sarich, Jason] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Schunck, Nicolas] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. RP Wild, SM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wild@anl.gov RI Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Schunck, Nicolas/0000-0002-9203-6849 FU SciDAC activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Nuclear Physics programs [DE-AC02-06CH11357, DE-AC52-07NA27344] FX This work was supported by the SciDAC activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Nuclear Physics programs under contract numbers DE-AC02-06CH11357 (Argonne) and DE-AC52-07NA27344 (Lawrence Livermore). We gratefully acknowledge high-performance computing resources operated by the Laboratory Computing Resource Center at Argonne. NR 31 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2015 VL 42 IS 3 AR 034031 DI 10.1088/0954-3899/42/3/034031 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG5AG UT WOS:000353300200032 ER PT J AU Storlie, CB Lane, WA Ryan, EM Gattiker, JR Higdon, DM AF Storlie, Curtis B. Lane, William A. Ryan, Emily M. Gattiker, James R. Higdon, David M. TI Calibration of Computational Models With Categorical Parameters and Correlated Outputs via Bayesian Smoothing Spline ANOVA SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION LA English DT Article DE Categorical inputs; Emulator; Inverse problem; Model calibration; Multiple outputs; Uncertainty quantification ID IMMERSED HORIZONTAL TUBES; BUBBLING FLUIDIZED-BED; NUMERICAL-SIMULATION; QUANTITATIVE FACTORS; SENSITIVITY-ANALYSIS; COMPUTER-MODELS; HEAT-TRANSFER; UNCERTAINTY; VALIDATION; BEHAVIOR AB It has become commonplace to use complex computer models to predict outcomes in regions where data do not exist. Typically these models need to be calibrated and validated using some experimental data, which often consists of multiple correlated outcomes. In addition, some of the model parameters may be categorical in nature, such as a pointer variable to alternate models (or submodels) for some of the physics of the system. Here, we present a general approach for calibration in such situations where an emulator of the computationally demanding models and a discrepancy term from the model to reality are represented within a Bayesian smoothing spline (BSS) ANOVA framework. The BSS-ANOVA framework has several advantages over the traditional Gaussian process, including ease of handling categorical inputs and correlated outputs, and improved computational efficiency. Finally, this framework is then applied to the problem that motivated its design; a calibration of a computational fluid dynamics (CFD) model of a bubbling fluidized which is used as an absorber in a CO2 capture system. Supplementary materials for this article are available online. C1 [Storlie, Curtis B.; Gattiker, James R.; Higdon, David M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Lane, William A.; Ryan, Emily M.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. RP Storlie, CB (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM storlie@lanl.gov; lanew@bu.edu; ryanem@bu.edu; gatt@lanl.gov; higdon@lanl.gov RI Ryan, Emily/I-8183-2015 OI Ryan, Emily/0000-0001-6111-3269 NR 41 TC 2 Z9 2 U1 1 U2 9 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0162-1459 EI 1537-274X J9 J AM STAT ASSOC JI J. Am. Stat. Assoc. PD MAR PY 2015 VL 110 IS 509 BP 68 EP 82 DI 10.1080/01621459.2014.979993 PG 15 WC Statistics & Probability SC Mathematics GA CG7HS UT WOS:000353474200007 ER PT J AU McCreath, S Lewicki, JP Liggat, JJ Lithgow, C McCulloch, L Miller, K Witkowski, A AF McCreath, S. Lewicki, J. P. Liggat, J. J. Lithgow, C. McCulloch, L. Miller, K. Witkowski, A. TI The thermo-oxidative degradation of poly(4-methylstyrene) and its relationship to flammability SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Thermo-oxidation; Thermogravimetry; Pyrolysis combustion flow-calorimetry; Cross-linking ID FRIEDEL-CRAFTS CHEMISTRY; THERMAL-DEGRADATION; POLYSTYRENE DEGRADATION; BROMINATED POLYSTYRENE; HALOGENATED POLYMERS; FIRE RETARDANCY; CROSS-LINKING; COMBUSTION; STABILITY; BEHAVIOR AB Polystyrene and poly(4-methylstyrene) have very similar chemical structures with the only differences being the para methyl group of poly(4-methylstyrene). This methyl group is susceptible to oxidation at elevated temperatures. Here we demonstrate that it is possible to introduce oxidative cross-links to poly(4-methylstyrene), via the para methyl group, by thermal oxidative treatment at 230 degrees C, 250 degrees C and 270 degrees C in the absence of catalyst, leading to a material with markedly modified thermal degradation chemistry. Thermal gravimetric analysis and differential scanning calorimetry were used to characterise and compare untreated and post-oxidised materials and established that as the temperature of pretreatment was increased, the subsequent thermal stability of the material increased. FTIR, NMR and microanalysis indicated that after the thermal oxidative pre-treatment ether cross-links are present alongside new oxygen containing functional groups such as aldehydes, carboxylic acids and hydroxyl groups. Finally, data obtained from pyrolysis combustion flow calorimetry confirmed that as the number of oxidative cross-links increase, a reduction in the polymer's flammability as assessed by heat release data is observed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [McCreath, S.; Liggat, J. J.; Lithgow, C.; McCulloch, L.; Miller, K.] Univ Strathclyde, Dept Pure & Appl Chem, WestCHEM, Glasgow, Lanark, Scotland. [Lewicki, J. P.] Lawrence Livermore Natl Lab, Div Chem Sci, Forens & Assessments Support, Livermore, CA USA. [Witkowski, A.] Univ Cent Lancashire, Sch Forens & Invest Sci, Preston PR1 2HE, Lancs, England. RP Liggat, JJ (reprint author), Univ Strathclyde, Dept Pure & Appl Chem, WestCHEM, Glasgow, Lanark, Scotland. EM j.j.liggat@strath.ac.uk OI Liggat, John/0000-0003-4460-5178 NR 30 TC 0 Z9 0 U1 3 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 EI 1873-2321 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD MAR PY 2015 VL 113 SI SI BP 144 EP 153 DI 10.1016/j.polymdegradstab.2015.01.013 PG 10 WC Polymer Science SC Polymer Science GA CG2AU UT WOS:000353078100016 ER PT J AU Fthenakis, V AF Fthenakis, Vasilis TI Considering the Total Cost of Electricity From Sunlight and the Alternatives SO PROCEEDINGS OF THE IEEE LA English DT Editorial Material ID PHOTOVOLTAICS; ENERGY C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fthenakis, Vasilis] Columbia Univ, New York, NY 10027 USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 8 TC 2 Z9 2 U1 2 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD MAR PY 2015 VL 103 IS 3 SI SI BP 283 EP 286 DI 10.1109/JPROC.2015.2399052 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA CG2QH UT WOS:000353119000001 ER PT J AU Deshpande, A AF Deshpande, Abhay TI Understanding the composition of nucleon spin with the PHENIX detector at RHIC SO Progress of Theoretical and Experimental Physics LA English DT Article ID LAMBDA-0 HYPERON POLARIZATION; VECTOR BOSON PRODUCTION; PARTON DISTRIBUTIONS; INCLUSIVE PRODUCTION; PROTON-SCATTERING; ASYMMETRIES; COLLISIONS; QCD; MOMENTUM; PHYSICS AB The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has just finished 14 years of operation. A significant fraction of these operating years were with polarized proton collisions at 62.4, 200, and 500 GeV center of mass, investigating various aspects of nucleon spin through longitudinal and transversely polarized collisions. These data have helped to address some of the most puzzling and fundamental questions in quantum chromodynamics including: what fraction of the nucleon's spin originates in the gluon's helicity contribution?, how polarized are the sea quarks?, and what if any, is the evidence for transverse motion of quarks in polarized protons? These questions have been addressed by the PHENIX detector collaboration. We present in this review highlights of the PHENIX results and discuss their impact. C1 [Deshpande, Abhay] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Deshpande, Abhay] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Deshpande, A (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM abhay.deshpande@stonybrook.edu FU RIKEN-BNL Research Center; RIKEN/Japan; US DoE, Office of Nuclear Science FX The author is immensely grateful to the PHENIX Collaboration for the fruitful scientific collaboration. The author gratefully acknowledges the support of the RIKEN-BNL Research Center and RIKEN/Japan for the spin physics program at RHIC in collaboration with the US DoE, Office of Nuclear Science. Last but not the least, the author is enormously grateful for the patience of the editors of PTEP for allowing an overly generous extension of the submission of this write-up. NR 61 TC 0 Z9 0 U1 1 U2 3 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD MAR PY 2015 IS 3 AR 03A107 DI 10.1093/ptep/ptv019 PG 23 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA CG7YO UT WOS:000353524000019 ER PT J AU Morrison, D Nagle, JL AF Morrison, David Nagle, James L. TI PHENIX: Beyond 15 years of discovery SO Progress of Theoretical and Experimental Physics LA English DT Article ID ANGULAR-CORRELATIONS; LONG-RANGE; COLLISIONS; FLOW; SIDE AB The PHENIX experiment at BNL's Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark-gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physics via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery. C1 [Morrison, David] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Nagle, James L.] Univ Colorado, Boulder, CO 80309 USA. RP Morrison, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM dave@bnl.gov FU Department of Energy [DE-FG02-00ER41152, DE-AC02-98CH10886] FX We gratefully acknowledge all the members over the last 20 years of the PHENIX collaboration, support from C-AD, Brookhaven National Laboratory, and the US Department of Energy. J.L.N. acknowledges support from the Department of Energy grant DE-FG02-00ER41152 and D.P.M. acknowledges support from the Department of Energy grant DE-AC02-98CH10886. NR 32 TC 0 Z9 0 U1 1 U2 2 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD MAR PY 2015 IS 3 AR 03A108 DI 10.1093/ptep/ptu098 PG 10 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA CG7YO UT WOS:000353524000006 ER PT J AU Muller, B AF Mueller, Berndt TI PHENIX and the quest for the quark-gluon plasma SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID HEAVY-ION COLLISIONS; MATTER; CHARM; LHC; QCD AB I review some of the remarkable contributions of PHENIX to the discovery and exploration of the perfectly liquid quark-gluon plasma at RHIC. C1 [Mueller, Berndt] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Mueller, Berndt] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Muller, B (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. EM bmueller@bnl.gov NR 39 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD MAR PY 2015 IS 3 AR 03A103 DI 10.1093/ptep/ptu137 PG 12 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA CG7YO UT WOS:000353524000007 ER PT J AU Ozaki, S Roser, T AF Ozaki, Satoshi Roser, Thomas TI Relativistic Heavy Ion Collider, its construction and upgrade SO Progress of Theoretical and Experimental Physics LA English DT Article ID QUARK-GLUON PLASMA; COLLABORATION; COLLISIONS AB The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a colliding beam research facility that is capable of colliding heavy ion beams as heavy as gold initially and uranium recently at a beam energy of 100 GeV/nucleon for ultra-high-energy nuclear physics research. It is also capable of colliding polarized proton beams up to a beam energy of 250 GeV for the spin-physics program. The construction of this facility was completed in initial configuration in 1999, and highly productive experimental programs have been in progress to date. This article describes the construction and initial configuration and performance of the facility, and upgrades of the collider in recent years as well as the variance of the operations mode developed in response to the evolving physics interests. These improvements include a more sophisticated arrangement to improve the proton beam polarization, introduction of a new heavy ion source based on the Electron Beam Ions Source technology, introduction of stochastic cooling of the beams to enhance the collision luminosity, and collisions of heavy ion beams at a beam energy significantly lower than the nominal injection energy. C1 [Ozaki, Satoshi; Roser, Thomas] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ozaki, S (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM ozaki@bnl.gov FU US DOE, Nuclear Physics Division; RIKEN Laboratory of Japan; U.S. Department of Energy [DE. AC02-98C H10886] FX The authors would like to take this opportunity to commend the members of the RHIC team, both BNL staff and collaborators, who have been involved in the design, construction, commissioning, improvement, and operation of the RHIC collider facility for their outstanding work. On behalf of the RHIC team, we express our gratitude to our funding agency, the US DOE, in particular the Nuclear Physics Division. Last, but not least, we thank RIKEN Laboratory of Japan for their support and contributions to the addition of the spin physics capability at RHIC. This work was performed under the auspices of the U.S. Department of Energy under contract no. DE. AC02-98C H10886. NR 11 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD MAR PY 2015 IS 3 AR 03A102 DI 10.1093/ptep/ptu093 PG 11 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA CG7YO UT WOS:000353524000005 ER PT J AU Qiu, JW AF Qiu, Jian-Wei TI Proton structure and the PHENIX experiment SO Progress of Theoretical and Experimental Physics LA English DT Article ID DEEP-INELASTIC-SCATTERING; TRANSVERSE-SPIN ASYMMETRIES; POLARIZED PARTON DISTRIBUTIONS; QUANTUM CHROMODYNAMICS; SPLITTING FUNCTIONS; DRELL-YAN; QCD; LHC; PHENOMENOLOGY; G1 AB We briefly summarize the important and critical roles that the PHENIX experiment has played in determining the proton's internal structure in terms of quarks and gluons, and their dynamics. Some pioneering measurements by the PHENIX experiment on the motion and polarization of quarks and gluons, as well as their correlations inside a fast-moving proton, are presented. Some future opportunities and potentials of the PHENIX experiment are also discussed. C1 [Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Qiu, Jian-Wei] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Qiu, JW (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM jqiu@bnl.gov FU US Department of Energy [DE-AC02-98CH10886]; National Science Foundation [PHY-0969739, PHY-1316617] FX We thank Abhay Deshpande for helpful discussions concerning PHENIX measurements. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-98CH10886, and the National Science Foundation under Grants No. PHY-0969739 and No. PHY-1316617. NR 80 TC 0 Z9 0 U1 0 U2 2 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD MAR PY 2015 IS 3 AR 03A106 DI 10.1093/ptep/ptv016 PG 17 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA CG7YO UT WOS:000353524000016 ER PT J AU Mullins, DR AF Mullins, David R. TI The surface chemistry of cerium oxide SO SURFACE SCIENCE REPORTS LA English DT Review DE Ceria; Thin films; Scanning tunneling microscopy; Temperature programmed desorption; Photoelectron spectroscopy; Chemisorption ID DENSITY-FUNCTIONAL THEORY; X-RAY PHOTOELECTRON; CEO2(111) THIN-FILMS; GAS SHIFT REACTION; TEMPERATURE-PROGRAMMED DESORPTION; SCANNING-TUNNELING-MICROSCOPY; SELECTIVE EPITAXIAL-GROWTH; CHEMICAL-VAPOR-DEPOSITION; INVERSE MODEL CATALYST; REDUCED CEO2 SURFACES AB This review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water gas shift reaction. Ceria's acid base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. Most surface science studies have been conducted on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined. (C) 2014 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008,MS 6201, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX I wish to thank Peter Albrecht for his invaluable assistance in conducting the literature review for this report. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 340 TC 74 Z9 75 U1 69 U2 321 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-5729 EI 1879-274X J9 SURF SCI REP JI Surf. Sci. Rep. PD MAR PY 2015 VL 70 IS 1 BP 42 EP 85 DI 10.1016/j.surfrep.2014.12.001 PG 44 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA CG8ZG UT WOS:000353603600002 ER PT J AU Soltanian, MR Ritzi, RW Huang, CC Dai, ZX AF Soltanian, Mohamad Reza Ritzi, Robert W. Huang, Chao Cheng Dai, Zhenxue TI Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 1. Time-dependent effective retardation factor SO WATER RESOURCES RESEARCH LA English DT Article DE sorbing solutes; hierarchical stratal architecture; transition probability; Lagrangian-based model ID HETEROGENEOUS POROUS-MEDIA; NATURAL GRADIENT EXPERIMENT; KINETICALLY SORBING SOLUTE; SAND AQUIFER; HYDRAULIC CONDUCTIVITY; STOCHASTIC-ANALYSIS; CARBONACEOUS MATTER; SPATIAL CORRELATION; ORGANIC-CHEMICALS; SORPTION AB This series of papers addresses the transport of reactive solutes in groundwater. In part 1, the time-dependent effective retardation factor, R approximate to eff(t), of reactive solutes undergoing equilibrium sorption is linked to hierarchical stratal architecture using a Lagrangian-based transport model. The model is based on hierarchical expressions of the spatial covariance of the log distribution coefficient, =ln?(Kd), and the spatial cross covariance between and the log permeability, Y=ln?(k). The spatial correlation structure in these covariance expressions is the probability of transitioning across strata types of different scales, and they are parameterized by independent and quantifiable physical attributes of sedimentary architecture including univariate statistics for Y, , and the proportions and lengths of facies. Nothing is assumed about Y- point correlation; it is allowed to differ by facies type. The duration of the time-dependent change in R approximate to eff(t) is a function of the effective ranges of the cross-transition probability structures (i.e., the ranges of indicator correlation structures) for each scale of stratal architecture. The plume velocity and the effective retardation stabilize at a large-time limit after the plume centroid has traveled a distance that encompasses the effective ranges of these cross-transition probability structures. The well-documented perchloroethene (PCE) tracer test at the Borden research site is used to illustrate the model. The model gives a viable explanation for the observed PCE plume deceleration, and thus the observed R approximate to(t) can be explained by the process of linear equilibrium sorption and the heterogeneity in k and K-d. In part 2 [Soltanian et al., ], reactive plume dispersion, as quantified by the particle displacement variance is linked to stratal architecture using a Lagrangian-based transport model. C1 [Soltanian, Mohamad Reza; Ritzi, Robert W.] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Huang, Chao Cheng] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA. [Dai, Zhenxue] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Ritzi, RW (reprint author), Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. EM robert.ritzi@wright.edu RI Soltanian Pereshkafti, Mohamad Reza/C-1316-2014; OI Dai, Zhenxue/0000-0002-0805-7621 FU College of Science and Mathematics, Wright State University FX The model codes, parameters, and results from this study are freely available upon request from the corresponding author. The model parameters are statistics previously published in Ritzi et al. [2013]. The reader is referred to that article for acknowledgments relevant to the original source data. Furthermore, the reader is referred to Allen-King et al. [2015, Supporting Information] for a larger, published data set. The first author was supported on a fellowship from the College of Science and Mathematics, Wright State University. NR 53 TC 4 Z9 4 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR PY 2015 VL 51 IS 3 BP 1586 EP 1600 DI 10.1002/2014WR016353 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CG3DU UT WOS:000353158800012 ER PT J AU Soltanian, MR Ritzi, RW Huang, CC Dai, ZX AF Soltanian, Mohamad Reza Ritzi, Robert W. Huang, Chao Cheng Dai, Zhenxue TI Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance SO WATER RESOURCES RESEARCH LA English DT Article DE sorbing solutes; hierarchical stratal architecture; transition probability; Lagrangian-based model ID HETEROGENEOUS POROUS-MEDIA; NATURAL GRADIENT EXPERIMENT; HYDRAULIC CONDUCTIVITY; SAND AQUIFER; BORDEN AQUIFER; SPATIAL VARIABILITY; CARBONACEOUS MATTER; STOCHASTIC-ANALYSIS; MINERAL FACIES; SORPTION AB This series of papers addresses the transport of sorbing solutes in groundwater. In part 2, plume dispersion, as quantified by the particle displacement variance, X11R(t), is linked to hierarchical sedimentary architecture using a Lagrangian-based transport model. This allows for a fundamental understanding of how dispersion arises from the hierarchical architecture of sedimentary facies, and allows for a quantitative decomposition of dispersion into facies-related contributions at different scales within the hierarchy. As in part 1, the plume behavior is assumed to be controlled by linear-equilibrium sorption and the heterogeneity in both the log permeability, Y=ln?(k), and the log distribution coefficient, =ln?(Kd). Heterogeneity in Y and arises from sedimentary processes and is structured by the consequent sedimentary architecture. Our goal is to understand the basic science of the dispersion process at this very fundamental level. The spatial auto and cross covariances for the relevant attributes are linear sums of terms corresponding to the probability of transitioning across stratal facies types defined at different scales. Unlike previous studies that used empirical relationships for the spatial covariances, here the model parameters are developed from independent measurements of physically quantifiable attributes of the stratal architecture (i.e., proportions and lengths of facies types, and univariate statistics for Y and ). Nothing is assumed about Y- point correlation; it is allowed to differ by facies type. However, it is assumed that Y and variance is small but meaningful, and that pore-scale dispersion is negligible. The time-dependent spreading rate is a function of the effective ranges of the cross-transition probability structures (i.e., the ranges of indicator correlation structures) for each relevant scale of stratal hierarchy. As in part 1, the well-documented perchloroethene (PCE) tracer test at the Borden research site is used to illustrate the model. The model was parameterized with univariate statistics for Y, of (PCE), and proportions and lengths of lithologic facies types defined at two scales within a two-level hierarchical classification, as given by Ritzi et al. (). The model gives a viable explanation for the observed PCE plume dispersion, and thus X11R(t) can be explained by the process of linear equilibrium sorption and the heterogeneity in k and Kd. The results quantitatively show that the k- Kd cross correlation, though small, and varied by facies type, can significantly impact the particle displacement variance. Furthermore, by quantitatively decomposing the dispersion into facies-related contributions, we gain the fundamental insight that that the time-dependent rate of spreading is mostly defined by the cross-transition probability correlation structure imparted by the proportions and sizes of the larger-scale facies types. C1 [Soltanian, Mohamad Reza; Ritzi, Robert W.] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Huang, Chao Cheng] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA. [Dai, Zhenxue] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Ritzi, RW (reprint author), Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. EM robert.ritzi@wright.edu RI Soltanian Pereshkafti, Mohamad Reza/C-1316-2014; OI Dai, Zhenxue/0000-0002-0805-7621 FU College of Science and Mathematics, Wright State University FX The model codes, parameters, and results from this study are freely available upon request from the corresponding author. The model parameters are statistics previously published in Ritzi et al. [2013]. The reader is referred to that article for acknowledgments relevant to the original source data. Furthermore, the reader is referred to Allen-King et al. [2015, Supporting Information] for a larger, published data set. The first author was supported on a fellowship from the College of Science and Mathematics, Wright State University. NR 51 TC 5 Z9 5 U1 3 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR PY 2015 VL 51 IS 3 BP 1601 EP 1618 DI 10.1002/2014WR016354 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CG3DU UT WOS:000353158800013 ER PT J AU Agartan, E Trevisan, L Cihan, A Birkholzer, J Zhou, QL Illangasekare, TH AF Agartan, Elif Trevisan, Luca Cihan, Abdullah Birkholzer, Jens Zhou, Quanlin Illangasekare, Tissa H. TI Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2 SO WATER RESOURCES RESEARCH LA English DT Article DE Small-scale experimental analysis; convective mixing; geologic heterogeneity; low-permeability zones; stable trapping of dissolved CO2 ID VARIABLE-DENSITY FLOW; DEEP SALINE AQUIFERS; CARBON-DIOXIDE; POROUS-MEDIA; NATURAL-CONVECTION; SOLUTE TRANSPORT; CLIMATE-CHANGE; DRIVEN FLOW; STORAGE; ONSET AB Dissolution trapping is one of the primary mechanisms that enhance the storage security of supercritical carbon dioxide (scCO(2)) in saline geologic formations. When scCO(2) dissolves in formation brine produces an aqueous solution that is denser than formation brine, which leads to convective mixing driven by gravitational instabilities. Convective mixing can enhance the dissolution of CO2 and thus it can contribute to stable trapping of dissolved CO2. However, in the presence of geologic heterogeneities, diffusive mixing may also contribute to dissolution trapping. The effects of heterogeneity on mixing and its contribution to stable trapping are not well understood. The goal of this experimental study is to investigate the effects of geologic heterogeneity on mixing and stable trapping of dissolved CO2. Homogeneous and heterogeneous media experiments were conducted in a two-dimensional test tank with various packing configurations using surrogates for scCO(2) (water) and brine (propylene glycol) under ambient pressure and temperature conditions. The results show that the density-driven flow in heterogeneous formations may not always cause significant convective mixing especially in layered systems containing low-permeability zones. In homogeneous formations, density-driven fingering enhances both storage in the deeper parts of the formation and contact between the host rock and dissolved CO2 for the potential mineralization. On the other hand, for layered systems, dissolved CO2 becomes immobilized in low-permeability zones with low-diffusion rates, which reduces the risk of leakage through any fault or fracture. Both cases contribute to the permanence of the dissolved plume in the formation. C1 [Agartan, Elif; Trevisan, Luca; Illangasekare, Tissa H.] Colorado Sch Mines, Ctr Expt Study Environm Subsurface Proc CESEP, Dept Civil & Environm Engn, Golden, CO 80401 USA. [Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Agartan, E (reprint author), Colorado Sch Mines, Ctr Expt Study Environm Subsurface Proc CESEP, Dept Civil & Environm Engn, Golden, CO 80401 USA. EM elif.agartan@gmail.com RI Birkholzer, Jens/C-6783-2011; Zhou, Quanlin/B-2455-2009; Cihan, Abdullah/D-3704-2015; OI Birkholzer, Jens/0000-0002-7989-1912; Zhou, Quanlin/0000-0001-6780-7536; Trevisan, Luca/0000-0002-7172-5020 FU National Science Foundation [EAR-1045282]; Department of Energy through National Energy Technology Laboratory [DE-FE0004630] FX This research is funded by National Science Foundation grant EAR-1045282 and Department of Energy grant DE-FE0004630 through National Energy Technology Laboratory. For access to the data included in this paper for research purposes, please contact the corresponding author. NR 68 TC 9 Z9 9 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR PY 2015 VL 51 IS 3 BP 1635 EP 1648 DI 10.1002/2014WR015778 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CG3DU UT WOS:000353158800015 ER PT J AU Ibragimov, RN Guang, L AF Ibragimov, Ranis N. Guang, Lin TI Splitting phenomenon of a higher-order shallow water theory associated with a longitudinal planetary waves SO DYNAMICS OF ATMOSPHERES AND OCEANS LA English DT Article DE Planetary waves; Shallow water; Approximation ID SPHERICAL-SHELL; TROPOSPHERE; EQUATIONS; FLOWS AB The Cauchy-Poisson free boundary problem associated with a nonstationary motion of a perfect incompressible fluid circulating around the equatorial plane of a planet is considered. It is shown that the corresponding theory of a higher-order shallow approximation admits two functionally independent systems, while the classical problem for the flat bottom admits only one system. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ibragimov, Ranis N.] GE Global Res, Appl Stat Lab, Niskayuna, NY 12309 USA. [Ibragimov, Ranis N.; Guang, Lin] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. RP Ibragimov, RN (reprint author), GE Global Res, Appl Stat Lab, 1 Res Circle, Niskayuna, NY 12309 USA. EM ibrranis@gmail.com FU U.S. Department of Energy's Visiting Faculty Program FX This research was supported in part by an appointment to the U.S. Department of Energy's Visiting Faculty Program. NR 39 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0265 EI 1872-6879 J9 DYNAM ATMOS OCEANS JI Dyn. Atmos. Oceans PD MAR PY 2015 VL 69 BP 1 EP 11 DI 10.1016/j.dynatmoce.2014.10.003 PG 11 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography GA CG1BX UT WOS:000353009100001 ER PT J AU Paglieroni, DW Chambers, DH Mast, JE Bond, SW Beer, NR AF Paglieroni, David W. Chambers, David H. Mast, Jeffrey E. Bond, Steven W. Beer, N. Reginald TI Imaging Modes for Ground Penetrating Radar and Their Relation to Detection Performance SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Ground penetrating radar (GPR); multistatic imaging; synthetic aperture radar (SAR) ID BURIED DIELECTRIC ANOMALIES; LANDMINE DETECTION; NEURAL-NETWORK; SCATTERING PARAMETERS; FEATURE-EXTRACTION; MINE DETECTION; GPR DATA; DISCRIMINATION; CLASSIFICATION; ALGORITHMS AB The focus of this paper is an empirical study conducted to determine how imaging modes for ground penetrating radar (GPR) affect buried object detection performance. GPR data were collected repeatedly over lanes whose buried objects were mostly nonmetallic. This data were collected and processed with a GPR antenna array, system hardware, and processing software developed by the authors and their colleagues. The system enables GPR data to be collected, imaged, and processed in real-time on a moving vehicle. The images are focused by applying multistatic and synthetic aperture imaging techniques either separately or jointly to signal scans acquired by the GPR antenna array. An image-based detection statistic derived from the ratio of buried object energy in the foreground to energy of soil in the background is proposed. Detection-false alarm performance improved significantly when the detection algorithm was applied to focused multistatic synthetic aperture radar (SAR) images rather than to unfocused GPR signal scans. C1 [Paglieroni, David W.; Chambers, David H.; Bond, Steven W.; Beer, N. Reginald] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mast, Jeffrey E.] Teres Techol Inc, Loveland, CO 80537 USA. RP Paglieroni, DW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM paglieroni1@llnl.gov; chambers2@llnl.gov; jeff@terestech.com; bond6@llnl.gov; beer2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; JIEDDO FX This work was supported under auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with partial funding from JIEDDO. NR 42 TC 5 Z9 5 U1 1 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD MAR PY 2015 VL 8 IS 3 BP 1132 EP 1144 DI 10.1109/JSTARS.2014.2357718 PG 13 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA CF1BS UT WOS:000352279200017 ER PT J AU Wang, H Wu, PD Lee, SY Wang, J Neale, KW AF Wang, H. Wu, P. D. Lee, S. Y. Wang, J. Neale, K. W. TI Numerical study of the effects of shear deformation and superimposed hydrostatic pressure on the formability of AZ31B at room temperature SO INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES LA English DT Article DE Crystal plasticity; Magnesium; Formability; Differential speed rolling; Superimposed pressure ID MAGNESIUM ALLOY; MECHANICAL-BEHAVIOR; BASAL TEXTURE; ALUMINUM-ALLOY; FLOW-STRESS; SHEET; DUCTILITY; FRACTURE; MODEL; STEEL AB The effect of the shear deformation and the superimposed hydrostatic pressure on the formability of magnesium alloy sheet is simulated in terms of the forming limit diagram (FLD). The model employed is the elastic viscoplastic self-consistent (EVPSC) crystal plasticity model, which accounts for both slip and twinning systems as the deformation mechanisms. The conventiohal sheets have low formability at room temperature due to the strong basal texture developed by the rolling process. However differential speed rolling process develops relatively weak basal texture by introducing shear deformation. Therefore the formability of the sheets produced by differential speed rolling is enhanced. In terms of the superimposed hydrostatic pressure, it delays the onset of necking and therefore improves the formability of sheets. In addition, the effect of crystal elasticity on the formability of sheets is numerically studied. Published by Elsevier Ltd. C1 [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Wang, H.; Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87544 USA. [Lee, S. Y.] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. [Neale, K. W.] Univ Sherbrooke, Fac Engn, Sherbrooke, PQ J1K 2R1, Canada. RP Wang, H (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87544 USA. EM wanghm@lanl.gov RI Wang, Huamiao/F-7693-2010; Wu, Peidong/A-7009-2008; Wang, Jian/F-2669-2012 OI Wang, Huamiao/0000-0002-7167-2483; Wang, Jian/0000-0001-5130-300X FU NSERC Magnesium Strategic Research Network; U.S. Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401]; National Research Foundation of Korea (NRF) grant - Korean government (MSIP) [2013R1A4A1069528, 2013R1A1A1076023] FX This research was supported by funding from the NSERC Magnesium Strategic Research Network. More information on the Network can be found at www.MagNET.ubc.ca. HW and JW were supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Project no: FWP-06SCPE401). SYL was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Nos. 2013R1A4A1069528 and 2013R1A1A1076023). NR 52 TC 7 Z9 7 U1 4 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7403 EI 1879-2162 J9 INT J MECH SCI JI Int. J. Mech. Sci. PD MAR PY 2015 VL 92 BP 70 EP 79 DI 10.1016/j.ijmecsci.2014.12.002 PG 10 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CF7OB UT WOS:000352745100007 ER PT J AU Lim, HJ Carroll, JD Battaile, CC Boyce, BL Weinberger, CR AF Lim, Hojun Carroll, Jay D. Battaile, Corbett C. Boyce, Brad L. Weinberger, Christopher R. TI Quantitative comparison between experimental measurements and CP-FEM predictions of plastic deformation in a tantalum oligocrystal SO INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES LA English DT Article DE Tantalum; Crystal plasticity; Strain field; Texture; EBSD; DIC ID FINITE-ELEMENT SIMULATIONS; DUCTILE SINGLE-CRYSTALS; STRAIN-RATE DEPENDENCE; CENTERED-CUBIC METALS; CRYSTALLOGRAPHIC TEXTURE; FCC METALS; FLOW-STRESS; LATTICE FRICTION; GRAIN; POLYCRYSTALS AB Quantitative comparisons of experimental measurements and model predictions are crucial to validate and improve material models as well as to understand underlying physical phenomena. In this work, we used a recently developed in situ technique combining high resolution digital image correlation (HR-DIC) and electron backscatter diffraction (EBSD) to obtain intergranular surface strain fields and crystal rotations. These measurements were compared to predictions from a crystal plasticity-finite element method (CP-FEM) simulation. To accurately reproduce the initial grain morphology in the CP-FEM simulation without assumptions regarding the sub-surface microstructure, a coarse columnar-grained tantalum specimen was used. Experimental data was projected onto the finite element mesh to compare measured and simulated data on a point-wise basis. It is shown that model predictions of both surface strain fields and crystal rotations agree reasonably well with HR-DIC and EBSD measurements at various applied strains. This procedure provides an objective and quantitative methodology to evaluate the model-experiment agreement and allows for testing of various model parameters to improve the model. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lim, Hojun; Battaile, Corbett C.] Sandia Natl Labs, Dept Computat Mat & Data Sci, Albuquerque, NM 87185 USA. [Carroll, Jay D.; Boyce, Brad L.] Sandia Natl Labs, Dept Met & Mat Joining, Albuquerque, NM 87185 USA. [Weinberger, Christopher R.] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA. RP Lim, HJ (reprint author), Sandia Natl Labs, Dept Computat Mat & Data Sci, POB 5800, Albuquerque, NM 87185 USA. EM hnlim@sandia.gov RI Carroll, Jay/K-2720-2012 OI Carroll, Jay/0000-0002-5818-4709 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 57 TC 9 Z9 9 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7403 EI 1879-2162 J9 INT J MECH SCI JI Int. J. Mech. Sci. PD MAR PY 2015 VL 92 BP 98 EP 108 DI 10.1016/j.ijmecsci.2014.12.010 PG 11 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CF7OB UT WOS:000352745100010 ER PT J AU Boggs, MA Dai, ZR Kersting, AB Zavarin, M AF Boggs, Mark A. Dai, Zurong Kersting, Annie B. Zavarin, Mavrik TI Plutonium(IV) sorption to montmorillonite in the presence of organic matter SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Plutonium; Colloids; Humic acid; Siderophore; Sorption; Clay ID SIDEROPHORE DESFERRIOXAMINE B; NEVADA TEST-SITE; HUMIC-ACID; IONIC-STRENGTH; FULVIC-ACID; CLAY-MINERALS; METAL-IONS; ADSORPTION; COMPLEXATION; SUBSTANCES AB The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Boggs, Mark A.; Dai, Zurong; Kersting, Annie B.; Zavarin, Mavrik] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci, Livermore, CA 94550 USA. RP Boggs, MA (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci, POB 808, Livermore, CA 94550 USA. EM Boggs6@llnl.gov RI Boggs, Mark/I-6954-2012 FU Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research; LLNL [DE-AC52-07NA27344] FX This work was supported by the Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-JRNL-662319. NR 44 TC 4 Z9 4 U1 9 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD MAR PY 2015 VL 141 BP 90 EP 96 DI 10.1016/j.jenvrad.2014.12.005 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA CE9OM UT WOS:000352173300014 PM 25562752 ER PT J AU Begg, JD Zavarin, M Tumey, SJ Kersting, AB AF Begg, James D. Zavarin, Mavrik Tumey, Scott J. Kersting, Annie B. TI Plutonium sorption and desorption behavior on bentonite SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Plutonium; Sorption; Desorption; Bentonite; Montmorillonite; Clay ID SURFACE-MEDIATED REDUCTION; NUCLEAR-WASTE REPOSITORY; RADIONUCLIDE MIGRATION; GRANITE FRACTURE; MINERAL SURFACES; NATURAL-WATERS; TEST-SITE; ADSORPTION; KINETICS; PU(V) AB Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (<= 10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7) -10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-18) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations >= 10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci, Livermore, CA 94550 USA. [Tumey, Scott J.] Lawrence Livermore Natl Lab, Ctr AMS Phys & Life Sci, Livermore, CA 94550 USA. RP Begg, JD (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci, 7000 East Ave, Livermore, CA 94550 USA. EM Begg2@llnl.gov FU Used Fuel Disposition Campaign of the Department of Energy's Nuclear Energy Program; Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research; LLNL [DE-AC52-07NA27344] FX We thank P. Reimus (LANL) for providing the bentonite used in this work. We are grateful for the input of two anonymous reviewers and the editor, S.C. Sheppard which greatly improved the quality of this manuscript. This work was supported by the Used Fuel Disposition Campaign of the Department of Energy's Nuclear Energy Program and the Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research. Prepared by LLNL under Contract DE-AC52-07NA27344. NR 55 TC 6 Z9 6 U1 10 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD MAR PY 2015 VL 141 BP 106 EP 114 DI 10.1016/j.jenvrad.2014.12.002 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA CE9OM UT WOS:000352173300016 PM 25574607 ER PT J AU Crawford, CJ Griffin, D Kipfmueller, KF AF Crawford, Christopher J. Griffin, Daniel Kipfmueller, Kurt F. TI Capturing season-specific precipitation signals in the northern Rocky Mountains, USA, using earlywood and latewood tree rings SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE tree rings; dendroclimatology; seasonal precipitation; northern Rocky Mountains; Douglas-fir; climate ID WESTERN UNITED-STATES; AMERICAN MONSOON; DENDROCLIMATIC RECONSTRUCTION; DOUGLAS-FIR; NEW-MEXICO; GROWTH; VARIABILITY; CLIMATE; TEMPERATURE; REGION AB Douglas-fir (Pseudotsuga menziesii Mirb. Franco) total width, earlywood, and latewood tree ring chronologies were developed from six lower forest border sites in the northern Rocky Mountain region of central Idaho and southwestern Montana, USA, to assess the potential for season-specific moisture reconstructions. These long-lived arid-site trees share strong between-tree and between-site coherence, and subannual tree ring chronologies reliably span the past seven centuries. Mapping spatiotemporal patterns in northern Rocky Mountain precipitation highlighted winter- and summer-dominated precipitation regimes that transition along a west to east gradient. When Douglas-fir tree rings were compared with instrumental climate records, season-specific correlations emerged between earlywood and latewood. Total width, earlywood, and latewood shared the most statistically significant monthly correlations with April-June precipitation, whereas variability in adjusted latewood was tuned to June-August precipitation. Principal component analysis indicated that the leading mode of common variance for earlywood and adjusted latewood explained 65% and 55% variance in the chronologies, respectively. Pearson's correlations between earlywood principal component one and the northern Rocky Mountain precipitation field showed that annual (July-June) and spring (April-June) precipitation exhibited the strongest pattern of significance in central Idaho and southwestern Montana valleys and the Snake River Plain. Summer precipitation (June-August) was correlated with adjusted latewood principal component one and was particularly pronounced along and east of the continental divide in southwestern Montana. These results indicate that Douglas-fir earlywood and adjusted latewood tree rings in the northern Rocky Mountains retain season-specific precipitation signals and may be helpful for studying historical precipitation within the winter-summer transition zone. Key Points C1 [Crawford, Christopher J.] NASA, Oak Ridge Associated Univ, Cryospher Sci Lab, Goddard Space Flight Ctr, Washington, DC 20546 USA. [Crawford, Christopher J.; Griffin, Daniel; Kipfmueller, Kurt F.] Univ Minnesota, Dept Geog Environm & Soc, Minneapolis, MN USA. [Griffin, Daniel] Woods Hole Massachusetts, WHOI, Woods Hole, MA USA. RP Crawford, CJ (reprint author), NASA, Oak Ridge Associated Univ, Cryospher Sci Lab, Goddard Space Flight Ctr, Washington, DC 20546 USA. EM christopher.j.crawford@nasa.gov FU University of Minnesota's College of Liberal Arts Graduate Research Partnership Program; University of Minnesota's Department of Geography, Environment and Society; Association of American Geographers-Paleoenvironmental Change Specialty Group; Association of American Geographers; NOAA Climate and Global Change Postdoctoral Fellowship FX The PRISM climate data for this paper are available at Westmap (http://www.cefa.dri.edu/Westmap) and/or the PRISM Climate Group (http://www.prism.oregonstate.edu). The Douglas-fir tree ring data used in this paper are accessible from the supporting information. This research and CJC were funded through the University of Minnesota's College of Liberal Arts Graduate Research Partnership Program; the University of Minnesota's Department of Geography, Environment and Society; the Association of American Geographers-Paleoenvironmental Change Specialty Group; and a dissertation research grant from the Association of American Geographers. DG was supported by a NOAA Climate and Global Change Postdoctoral Fellowship. We thank Christian Ferguson for his fieldwork assistance, and appreciation is extended to Douglas Owen, Steve Bekedam, and Craters of the Moon National Monument, National Park Service, Salmon-Challis, Sawtooth, and Beaverhead-Deerlodge National Forests for research permission and other assistance. We thank Scott St. George, Matthew Salzer and Max Torbenson for comments during the development of this research and Dennis Baldocchi, Matthew Therrell, and one anonymous reviewer for suggestions that improved this manuscript. NR 60 TC 4 Z9 4 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAR PY 2015 VL 120 IS 3 BP 428 EP 440 DI 10.1002/2014JG002740 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CG1PT UT WOS:000353046200003 ER PT J AU Church, J Ekechi, CO Hoss, A Larson, AJ AF Church, Jerilyn Ekechi, Chinyere O. Hoss, Aila Larson, Anika Jade TI Tribal Water Rights: Exploring Dam Construction in Indian Country SO JOURNAL OF LAW MEDICINE & ETHICS LA English DT Article; Proceedings Paper CT National Public Health Law Conference - Intersection of Law, Policy and Prevention CY OCT, 2014 CL Atlanta, GA SP Network Public Hlth Law, Ame Soc Law, Med & Eth ID CLIMATE-CHANGE; IMPACTS AB This paper examines the legal and policy framework related to Tribal water rights, with a key focus on the environmental public health impacts of dam construction in Indian Country. Three dam projects will be highlighted: the Dalles Dam, the Elwha River Dams, and the Pick-Sloan Missouri River Basin Program. C1 [Church, Jerilyn] Great Plains Tribal Chairmens Hlth Board, Rapid City, SD 57702 USA. [Ekechi, Chinyere O.] Ctr Dis Control & Prevent, Agcy Tox Subst & Dis Registry, De Kalb, GA USA. [Hoss, Aila] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Publ Hlth Law Program, Off State Tribal Local & Terr Support, De Kalb, GA USA. [Larson, Anika Jade] Ctr Dis Control & Prevent, Environm Hlth Intern, De Kalb, GA USA. RP Church, J (reprint author), Great Plains Tribal Chairmens Hlth Board, Rapid City, SD 57702 USA. FU Intramural CDC HHS [CC999999] NR 9 TC 2 Z9 2 U1 5 U2 18 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1073-1105 EI 1748-720X J9 J LAW MED ETHICS JI J. Law Med. Ethics PD SPR PY 2015 VL 43 SU 1 SI SI BP 60 EP 63 DI 10.1111/jlme.12218 PG 4 WC Ethics; Law; Medical Ethics; Medicine, Legal SC Social Sciences - Other Topics; Government & Law; Medical Ethics; Legal Medicine GA CF5CS UT WOS:000352573600014 PM 25846167 ER PT J AU Casco, ME Silvestre-Albero, J Ramirez-Cuesta, AJ Rey, F Jorda, JL Bansode, A Urakawa, A Peral, I Martinez-Escandell, M Kaneko, K Rodriguez-Reinoso, F AF Casco, Mirian E. Silvestre-Albero, Joaquin Ramirez-Cuesta, Anibal J. Rey, Fernando Jorda, Jose L. Bansode, Atul Urakawa, Atsushi Peral, Inma Martinez-Escandell, Manuel Kaneko, Katsumi Rodriguez-Reinoso, Francisco TI Methane hydrate formation in confined nanospace can surpass nature SO NATURE COMMUNICATIONS LA English DT Article ID ACTIVATED CARBON; POROUS MATERIALS; GAS-STORAGE; MONOLITHS AB Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.5 MPa and 2 degrees C), with faster kinetics (within minutes) than nature, fully reversibly and with a nominal stoichiometry that mimics nature. The formation of the hydrate structures in nanospace and their similarity to natural hydrates is confirmed using inelastic neutron scattering experiments and synchrotron X-ray powder diffraction. These findings may be a step towards the application of a smart synthesis of methane hydrates in energy-demanding applications (for example, transportation). C1 [Casco, Mirian E.; Silvestre-Albero, Joaquin; Martinez-Escandell, Manuel; Rodriguez-Reinoso, Francisco] Univ Alicante, Inst Univ Mat, Lab Mat Avanzados, Dept Quim Inorgan, E-03690 San Vicente De Raspeig, Spain. [Ramirez-Cuesta, Anibal J.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Rey, Fernando; Jorda, Jose L.] Univ Politecn Valencia, CSIC, Inst Tecnol Quim, E-46022 Valencia, Spain. [Bansode, Atul; Urakawa, Atsushi] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain. [Peral, Inma] ALBA Light Source, Barcelona 08290, Spain. [Kaneko, Katsumi] Shinshu Univ, Res Ctr Exot Nanocarbons, Nagano 3808553, Japan. RP Silvestre-Albero, J (reprint author), Univ Alicante, Inst Univ Mat, Lab Mat Avanzados, Dept Quim Inorgan, Ctra San Vicente Alicante S-N, E-03690 San Vicente De Raspeig, Spain. EM joaquin.silvestre@ua.es RI Ramirez-Cuesta, Timmy/A-4296-2010; Jorda, Jose L./D-1334-2009; Laboratory, Advanced Materials/I-7298-2015; Urakawa, Atsushi/A-3542-2014; Rodriguez-Reinoso, Francisco/G-7941-2016; Silvestre-Albero, Joaquin/H-2000-2016; Rey, Fernando/C-6778-2011; Peral Alonso, Inmaculada/P-5298-2016; OI Ramirez-Cuesta, Timmy/0000-0003-1231-0068; Jorda, Jose L./0000-0002-0304-5680; Urakawa, Atsushi/0000-0001-7778-4008; Rodriguez-Reinoso, Francisco/0000-0002-4212-9860; Silvestre-Albero, Joaquin/0000-0002-0303-0817; Rey, Fernando/0000-0003-3227-5669; Peral Alonso, Inmaculada/0000-0002-6994-1277; Casco, Mirian Elizabeth/0000-0002-7189-3497 FU UK Science and Technlology Facilities Council [RB1410624, RB122099]; European Commission under the 7th Framework Programme through the 'Research Infrastructures' action of the 'Capacities' Programme (NMI3-II) [283883]; MINECO: Strategic Japanese-Spanish Cooperation Program [PLE2009-0052]; Concert Project-NASEMS [PCIN-2013-057]; Generalitat Valenciana [PROMETEO/2009/002]; MINECO [MAT2012-38567-C02-01, CSD-2009-00050, SEV-2012-0267, SEV-2013-0319]; [2424-1038] FX We acknowledge UK Science and Technlology Facilities Council for the provision of beam time on the TOSCA spectrometer (Projects RB1410624 and RB122099) and financial support from the European Commission under the 7th Framework Programme through the 'Research Infrastructures' action of the 'Capacities' Programme (NMI3-II Grant number 283883). J.S.-A. and F.R. acknowledges the financial support from MINECO: Strategic Japanese-Spanish Cooperation Program (PLE2009-0052), Concert Project-NASEMS (PCIN-2013-057) and Generalitat Valenciana (PROMETEO/2009/002). F.R. and J.L.J. thank the financial support from MINECO (MAT2012-38567-C02-01, Consolider Ingenio 2010-Multicat CSD-2009-00050 and SEV-2012-0267). K.K. thanks Grant-in-Aid for Scientific Research (A) (2424-1038), Japan. A.B. and A.U. thank the financial support from MINECO (SEV-2013-0319). J.L.J. and I.P. thank synchrotron ALBA for beamtime availability. NR 29 TC 19 Z9 19 U1 18 U2 76 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6432 DI 10.1038/ncomms7432 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5YS UT WOS:000352633900016 PM 25728378 ER PT J AU Chen, G N'Diaye, AT Kang, SP Kwon, HY Won, C Wu, YZ Qiu, ZQ Schmid, AK AF Chen, Gong N'Diaye, Alpha T. Kang, Sang Pyo Kwon, Hee Young Won, Changyeon Wu, Yizheng Qiu, Z. Q. Schmid, Andreas K. TI Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain SO NATURE COMMUNICATIONS LA English DT Article ID ENERGY-ELECTRON MICROSCOPY; DOMAIN-WALLS; WEAK FERROMAGNETISM; SPIN TORQUE; DRIVEN; SKYRMIONS; DYNAMICS; LATTICE; W(110); LAYER AB Chiral magnetic domain walls are of great interest because lifting the energetic degeneracy of left-and right-handed spin textures in magnetic domain walls enables fast current-driven domain wall propagation. Although two types of magnetic domain walls are known to exist in magnetic thin films, Bloch-and Neel-walls, up to now the stabilization of homochirality was restricted to Neel-type domain walls. Since the driving mechanism of thin-film magnetic chirality, the interfacial Dzyaloshinskii-Moriya interaction, is thought to vanish in Bloch-type walls, homochiral Bloch walls have remained elusive. Here we use real-space imaging of the spin texture in iron/nickel bilayers on tungsten to show that chiral domain walls of mixed Bloch-type and Neel-type can indeed be stabilized by adding uniaxial strain in the presence of interfacial Dzyaloshinskii-Moriya interaction. Our findings introduce Bloch-type chirality as a new spin texture, which may open up new opportunities to design spin-orbitronics devices. C1 [Chen, Gong; N'Diaye, Alpha T.; Schmid, Andreas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA. [Kang, Sang Pyo; Kwon, Hee Young; Won, Changyeon] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Wu, Yizheng] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Wu, Yizheng] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. [Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Chen, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA. EM gchenncem@gmail.com; akschmid@lbl.gov RI Chen, Gong/H-3074-2015; Wu, yizheng/P-2395-2014; Foundry, Molecular/G-9968-2014; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Research Foundation of Korea - Korean Government [2012R1A1A2007524]; National Key Basic Research Program [2015CB921401, 2011CB921801]; National Science Foundation of China [11434003, 11474066]; National Science Foundation [DMR-1210167]; NRF through Global Research Laboratory project of Korea FX We acknowledge Dr Colin Ophus for helpful discussions. Experiments were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by the National Research Foundation of Korea Grant funded by the Korean Government (2012R1A1A2007524), by the National Key Basic Research Program (No. 2015CB921401 and No. 2011CB921801) and the National Science Foundation (No. 11434003 and No. 11474066) of China, by National Science Foundation DMR-1210167 and NRF through Global Research Laboratory project of Korea. NR 44 TC 7 Z9 7 U1 4 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6598 DI 10.1038/ncomms7598 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1NR UT WOS:000353040300011 PM 25798953 ER PT J AU Chen, YG Lu, YM Kee, HY AF Chen, Yige Lu, Yuan-Ming Kee, Hae-Young TI Topological crystalline metal in orthorhombic perovskite iridates SO NATURE COMMUNICATIONS LA English DT Article ID HGTE QUANTUM-WELLS; INSULATORS; PHASE; STATE AB Since topological insulators were theoretically predicted and experimentally observed in semiconductors with strong spin-orbit coupling, increasing attention has been drawn to topological materials that host exotic surface states. These surface excitations are stable against perturbations since they are protected by global or spatial/lattice symmetries. Following the success in achieving various topological insulators, a tempting challenge now is to search for metallic materials with novel topological properties. Here we predict that orthorhombic perovskite iridates realize a new class of metals dubbed topological crystalline metals, which support zero-energy surface states protected by certain lattice symmetry. These surface states can be probed by photoemission and tunnelling experiments. Furthermore, we show that by applying magnetic fields, the topological crystalline metal can be driven into other topological metallic phases, with different topological properties and surface states. C1 [Chen, Yige; Kee, Hae-Young] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Lu, Yuan-Ming] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lu, Yuan-Ming] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Kee, Hae-Young] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Kee, HY (reprint author), Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. EM hykee@physics.utoronto.ca RI CHEN, YIGE/E-8080-2016; Lu, Yuan-Ming/D-7554-2017 OI Lu, Yuan-Ming/0000-0001-6275-739X FU Natural Science and Engineering Research Council of Canada (NSERC); Center for Quantum Materials at the University of Toronto; Office of BES, Materials Sciences Division of the U.S. DOE [DE-AC02-05CH11231]; National Science Foundation [PHYS-1066293] FX This work is supported by Natural Science and Engineering Research Council of Canada (NSERC), Center for Quantum Materials at the University of Toronto (Y.C. and H.-Y.K.) and Office of BES, Materials Sciences Division of the U.S. DOE under contract No. DE-AC02-05CH11231 (Y.-M.L.). H.-Y.K. thanks S. Ryu for informing topology of gapless superconductors in Ref. 36. Y.-M.L. and H.-Y.K. acknowledge the hospitality of the Aspen Cetner for Physics supported by National Science Foundation Grant No. PHYS-1066293 where a part of this work was carried out. NR 36 TC 47 Z9 47 U1 16 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6593 DI 10.1038/ncomms7593 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1NR UT WOS:000353040300006 PM 25775413 ER PT J AU Ginn, HM Messerschmidt, M Ji, XY Zhang, HW Axford, D Gildea, RJ Winter, G Brewster, AS Hattne, J Wagner, A Grimes, JM Evans, G Sauter, NK Sutton, G Stuart, DI AF Ginn, Helen M. Messerschmidt, Marc Ji, Xiaoyun Zhang, Hanwen Axford, Danny Gildea, Richard J. Winter, Graeme Brewster, Aaron S. Hattne, Johan Wagner, Armin Grimes, Jonathan M. Evans, Gwyndaf Sauter, Nicholas K. Sutton, Geoff Stuart, David I. TI Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data SO NATURE COMMUNICATIONS LA English DT Article ID OSCILLATION CAMERA DATA; POST-REFINEMENT; PROTEIN; RESOLUTION; MODEL; SOFTWARE; VIRUSES; LATTICE; LASER AB The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 angstrom), using fewer crystals than previously required for this resolution. The crystal lattice and protein core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis. C1 [Ginn, Helen M.; Ji, Xiaoyun; Zhang, Hanwen; Grimes, Jonathan M.; Sutton, Geoff; Stuart, David I.] Univ Oxford, Wellcome Trust Ctr Human Genet, Div Struct Biol, Oxford OX3 7BN, Oxfordshire, England. [Messerschmidt, Marc] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Ji, Xiaoyun] Yale Univ, Sch Med, Mol Biophys & Biochem, New Haven, CT 06510 USA. [Axford, Danny; Gildea, Richard J.; Winter, Graeme; Wagner, Armin; Grimes, Jonathan M.; Evans, Gwyndaf; Stuart, David I.] Diamond House, Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Brewster, Aaron S.; Hattne, Johan; Sauter, Nicholas K.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Stuart, DI (reprint author), Univ Oxford, Wellcome Trust Ctr Human Genet, Div Struct Biol, Roosevelt Dr, Oxford OX3 7BN, Oxfordshire, England. EM dave@strubi.ox.ac.uk RI Messerschmidt, Marc/F-3796-2010; Sauter, Nicholas/K-3430-2012; OI Messerschmidt, Marc/0000-0002-8641-3302; Wagner, Armin/0000-0001-8995-7324; Evans, Gwyndaf/0000-0002-6079-2201; Hattne, Johan/0000-0002-8936-0912 FU US National Institutes of Health [R01GM102520]; Medical Research Council [G1000099]; Wellcome Trust [ALR00040, 090532/Z/09/Z]; NSF award [1231306]; Ilme Schlichting (Max Planck Institute for Medical Research, Heidelberg, Germany) FX A.S.B., J.H. and N.K.S. were supported by US National Institutes of Health grant R01GM102520. G.S. and D.I.S. were supported by the Medical Research Council, grant G1000099. H.M.G. was supported by the Wellcome Trust (studentship ALR00040). M.M. was supported by NSF award 1231306. We are very grateful for the expert support for the operation of the sample injector provided by the group of Ilme Schlichting (Max Planck Institute for Medical Research, Heidelberg, Germany), in particular Sabine Botha, R. Bruce Doak and Robert L. Shoeman. We are very grateful to LCLS-CXI staff, Sebastien Boutet, Garth Williams and Dan Deponte. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Admin support from the Wellcome Trust, grant 090532/Z/09/Z. This is a contribution from the Oxford Instruct Centre. Computer code is available on request. NR 43 TC 15 Z9 15 U1 4 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6435 DI 10.1038/ncomms7435 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5YS UT WOS:000352633900019 PM 25751308 ER PT J AU Kitano, M Kanbara, S Inoue, Y Kuganathan, N Sushko, PV Yokoyama, T Hara, M Hosono, H AF Kitano, Masaaki Kanbara, Shinji Inoue, Yasunori Kuganathan, Navaratnarajah Sushko, Peter V. Yokoyama, Toshiharu Hara, Michikazu Hosono, Hideo TI Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis SO NATURE COMMUNICATIONS LA English DT Article ID PROMOTED TRANSITION-METAL; AUGMENTED-WAVE METHOD; INORGANIC ELECTRIDE; N-2 DISSOCIATION; STABLE ELECTRIDE; UNPROMOTED IRON; SINGLE-CRYSTAL; ALKALI-METAL; KINETICS; 12CAO-CENTER-DOT-7AL(2)O(3) AB Novel approaches to efficient ammonia synthesis at an ambient pressure are actively sought out so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis-ruthenium-loaded 12CaO center dot 7Al(2)O(3) electride (Ru/C12A7:e(-))-and find that the rate controlling step of ammonia synthesis over Ru/C12A7:e(-) is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H-n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:e(-) surface is proposed on the basis of observed hydrogen absorption/desorption kinetics. C1 [Kitano, Masaaki; Yokoyama, Toshiharu; Hosono, Hideo] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Kanbara, Shinji; Inoue, Yasunori; Hara, Michikazu; Hosono, Hideo] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Kuganathan, Navaratnarajah] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, Peter V.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Sushko, Peter V.; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo] Japan Sci & Technol Agcy, ACCEL, Kawaguchi, Saitama 3320012, Japan. [Hara, Michikazu; Hosono, Hideo] Tokyo Inst Technol, Frontier Res Ctr, Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Hara, M (reprint author), Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, 4259 Nagatsuta, Yokohama, Kanagawa 2268503, Japan. EM mhara@msl.titech.ac.jp; hosono@msl.titech.ac.jp RI Kitano, Masaaki/F-6846-2014; Sushko, Peter/F-5171-2013; Hosono, Hideo/J-3489-2013; Hara, Michikazu/E-6418-2014 OI Kitano, Masaaki/0000-0003-4466-7387; Sushko, Peter/0000-0001-7338-4146; Hosono, Hideo/0000-0001-9260-6728; Hara, Michikazu/0000-0003-3450-5704 FU Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values (ACCEL) of Japan Science and Technology Agency in Japan; Laboratory Directed Research and Development programme at Pacific Northwest National Laboratory (PNNL); EPSRC [EP/L000202] FX We appreciate Y. Takasaki and E. Sano for their technical assistance. This work was supported by a fund from Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values (ACCEL) of Japan Science and Technology Agency in Japan. P.V.S. was supported by the Laboratory Directed Research and Development programme at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the US Department of Energy. This work made use of the computing facilities of HECToR and ARCHER via our membership of the UK's HPC Materials Chemistry Consortium, funded by EPSRC (grant EP/L000202). NR 53 TC 27 Z9 27 U1 27 U2 142 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6731 DI 10.1038/ncomms7731 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1PJ UT WOS:000353045100003 PM 25816758 ER PT J AU Lu, Q Hutchings, GS Yu, WT Zhou, Y Forest, RV Tao, RZ Rosen, J Yonemoto, BT Cao, ZY Zheng, HM Xiao, JQ Jiao, F Chen, JGG AF Lu, Qi Hutchings, Gregory S. Yu, Weiting Zhou, Yang Forest, Robert V. Tao, Runzhe Rosen, Jonathan Yonemoto, Bryan T. Cao, Zeyuan Zheng, Haimei Xiao, John Q. Jiao, Feng Chen, Jingguang G. TI Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution SO NATURE COMMUNICATIONS LA English DT Article ID OXYGEN REDUCTION REACTION; FUEL-CELL CATALYSTS; ACTIVE EDGE SITES; NANOPARTICLE ELECTROCATALYSTS; MOLYBDENUM CARBIDE; ALKALINE ELECTROLYTES; MOS2; ENERGY; SCALE; CO2 AB A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. In addition, the hierarchical porosity of the nanoporous copper-titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface. C1 [Lu, Qi; Hutchings, Gregory S.; Forest, Robert V.; Rosen, Jonathan; Yonemoto, Bryan T.; Jiao, Feng] Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. [Lu, Qi; Yu, Weiting; Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Zhou, Yang; Xiao, John Q.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Tao, Runzhe; Zheng, Haimei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cao, Zeyuan] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA. RP Jiao, F (reprint author), Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. EM jiao@udel.edu; jgchen@columbia.edu RI Hutchings, Gregory/B-5620-2012; Lu, Qi/P-7477-2016; OI Hutchings, Gregory/0000-0002-0819-9654; Jiao, Feng/0000-0002-3335-3203 FU Fondazione Oronzio e Niccolo De Nora Fellowship; US Department of Energy [DE-FG02-13ER16381]; University of Delaware Research Foundation; National Science Foundation [CBET-1350911]; National Aeronautics and Space Administration (NASA) [NNX11AQ29A] FX Q.L. acknowledges the support from Fondazione Oronzio e Niccolo De Nora Fellowship. Authors at the Columbia University acknowledge support from the US Department of Energy (DE-FG02-13ER16381). Authors at the University of Delaware acknowledge the University of Delaware Research Foundation and National Science Foundation CAREER Program (Award No. CBET-1350911) for financial support. Y.Z. and J.Q.X. thanks financial support from National Aeronautics and Space Administration (NASA) under Grant No. NNX11AQ29A. Authors at Lawrence Berkeley National Laboratory thank the US Department of Energy, Office of Science Early Career Research Program. We thank Professor Karl M. Unruh for the assistance in data analysis and Dr Huolin Xin for the help in microscopic studies. NR 53 TC 53 Z9 53 U1 81 U2 461 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR UNSP 6567 DI 10.1038/ncomms7567 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7FD UT WOS:000352720700002 PM 25910892 ER PT J AU Moll, PJW Zeng, B Balicas, L Galeski, S Balakirev, FF Bauer, ED Ronning, F AF Moll, Philip J. W. Zeng, Bin Balicas, Luis Galeski, Stanislaw Balakirev, Fedor F. Bauer, Eric D. Ronning, Filip TI Field-induced density wave in the heavy-fermion compound CeRhIn5 SO NATURE COMMUNICATIONS LA English DT Article ID MAGNETIC-FIELD; CHARGE; SUPERCONDUCTIVITY; TRANSITIONS; ANOMALIES; PRESSURE; SURFACE; CECOIN5; ORDER AB Strong electron correlations lead to a variety of distinct ground states, such as magnetism, charge order or superconductivity. Understanding the competitive or cooperative interplay between neighbouring phases is an outstanding challenge in physics. CeRhIn5 is a prototypical example of a heavy-fermion superconductor: it orders anti-ferromagnetically below 3.8 K, and moderate hydrostatic pressure suppresses the anti-ferromagnetic order inducing unconventional superconductivity. Here we show evidence for a phase transition to a state akin to a density wave (DW) under high magnetic fields (>27 T) in high-quality single crystal microstructures of CeRhIn5. The DW is signalled by a hysteretic anomaly in the in-plane resistivity accompanied by non-linear electrical transport, yet remarkably thermodynamic measurements suggest that the phase transition involves only small portions of the Fermi surface. Such a subtle order might be a common feature among correlated electron systems, reminiscent of the similarly subtle charge DW state in the cuprates. C1 [Moll, Philip J. W.; Galeski, Stanislaw] ETH, Dept Phys, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Zeng, Bin; Balicas, Luis] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Balakirev, Fedor F.] LANL, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Bauer, Eric D.; Ronning, Filip] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moll, PJW (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM moll@berkeley.edu OI Ronning, Filip/0000-0002-2679-7957; Moll, Philip/0000-0002-7616-5886; Bauer, Eric/0000-0003-0017-1937 FU EMEZ; ScopeM at ETH Zurich; DOE-BES [DE-SC0002613]; DOE-"Science in 100T''; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; US NSF [DMR-1157490]; DOE; State of Florida FX FIB and scanning electron microscope work were supported by EMEZ and ScopeM at ETH Zurich. L.B. is supported by DOE-BES through award DE-SC0002613. F.B. is supported by DOE-"Science in 100T''. We thank Bertram Batlogg, Brad Ramshaw, Joe Thompson, Suchitra Sebastian, Christoph Geibel and Michael Nicklas for interesting discussions and Philippe Gasser for supporting the FIB work. Work at Los Alamos was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The NHMFL facility is funded through the US NSF Cooperative Grant No. DMR-1157490, the DOE, and the State of Florida. NR 36 TC 5 Z9 5 U1 9 U2 45 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6663 DI 10.1038/ncomms7663 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1OG UT WOS:000353042000002 PM 25798749 ER PT J AU Paul, BG Bagby, SC Czornyj, E Arambula, D Handa, S Sczyrba, A Ghosh, P Miller, JF Valentine, DL AF Paul, Blair G. Bagby, Sarah C. Czornyj, Elizabeth Arambula, Diego Handa, Sumit Sczyrba, Alexander Ghosh, Partho Miller, Jeff F. Valentine, David L. TI Targeted diversity generation by intraterrestrial archaea and archaeal viruses SO NATURE COMMUNICATIONS LA English DT Article ID MASSIVE SEQUENCE VARIATION; BORDETELLA-BACTERIOPHAGE; PHAGE GENOMES; LECTIN FOLD; PROTEIN; RETROELEMENTS; DNA; IDENTIFICATION; METAGENOMES; PREDICTION AB In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >10(18) protein variants. The two single-cell nanoarchaeal genomes each possess >= 4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses. C1 [Paul, Blair G.; Bagby, Sarah C.; Valentine, David L.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. [Czornyj, Elizabeth; Arambula, Diego] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Handa, Sumit; Ghosh, Partho] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Sczyrba, Alexander] Univ Bielefeld, Ctr Biotechnol, D-33615 Bielefeld, Germany. [Sczyrba, Alexander] Univ Bielefeld, Fac Technol, D-33615 Bielefeld, Germany. [Sczyrba, Alexander] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Miller, Jeff F.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Miller, Jeff F.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Valentine, David L.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. RP Valentine, DL (reprint author), Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. EM valentine@geol.ucsb.edu OI Valentine, David/0000-0001-5914-9107 FU National Science Foundation [OCE-1046144]; National Institutes of Health [RO1 AI069838] FX This research was funded by National Science Foundation grant OCE-1046144 to D.L.V. and National Institutes of Health grant RO1 AI069838 to P.G. and J.F.M.; sequencing was provided through a Gordon and Betty Moore Foundation grant to the Broad Institute. We thank Tanja Woyke for assistance in examining Nanoarchaeota sequences from the Microbial Dark Matter project. For assistance with viral metagenome preparation and advice on bioinformatic analyses, we thank Steven Quistad and Rob Edwards. Yanling Wang provided helpful comments on an earlier draft of the manuscript. NR 46 TC 4 Z9 4 U1 0 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6585 DI 10.1038/ncomms7585 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1NP UT WOS:000353040100004 PM 25798780 ER PT J AU Piazza, L Lummen, TTA Quinonez, E Murooka, Y Reed, BW Barwick, B Carbone, F AF Piazza, L. Lummen, T. T. A. Quinonez, E. Murooka, Y. Reed, B. W. Barwick, B. Carbone, F. TI Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRON-MICROSCOPY; SURFACE-PLASMONS; RESONANCES; POLARITONS; NANOPHOTONICS; TRANSMISSION; SCATTERING; NANOWIRES; GRAPHENE; PHOTONS AB Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave-particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. C1 [Piazza, L.; Lummen, T. T. A.; Murooka, Y.; Carbone, F.] Ecole Polytech Fed Lausanne, ICMP, Lab Ultrafast Microscopy & Elect Scattering, CH-1015 Lausanne, Switzerland. [Quinonez, E.; Barwick, B.] Trinity Coll, Dept Phys, Hartford, CT 06106 USA. [Reed, B. W.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Carbone, F (reprint author), Ecole Polytech Fed Lausanne, ICMP, Lab Ultrafast Microscopy & Elect Scattering, Stn 6, CH-1015 Lausanne, Switzerland. EM fabrizio.carbone@epfl.ch RI Carbone, Fabrizio/A-2969-2012; EPFL, Physics/O-6514-2016 FU ERC [USED258697]; Marie Curie IEF grant [623982]; NCCR MUST, a research instrument of the Swiss National Science Foundation (SNSF); Trinity College FRC grant; CT Space grant; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge K. Kern, A.J. Leggett and P. Verrucchi for useful discussions. Work at LUMES was supported by ERC starting grant USED258697 (F.C.), Marie Curie IEF grant 623982 (T.T.A.L.), and the NCCR MUST, a research instrument of the Swiss National Science Foundation (SNSF) B.B. and E.Q. were supported by a Trinity College FRC grant and by a CT Space grant. B.W.R. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Work presented in this article was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 45 TC 38 Z9 38 U1 21 U2 138 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6407 DI 10.1038/ncomms7407 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1NC UT WOS:000353038700002 PM 25728197 ER PT J AU Riggs, SC Shapiro, MC Maharaj, AV Raghu, S Bauer, ED Baumbach, RE Giraldo-Gallo, P Wartenbe, M Fisher, IR AF Riggs, Scott C. Shapiro, M. C. Maharaj, Akash V. Raghu, S. Bauer, E. D. Baumbach, R. E. Giraldo-Gallo, P. Wartenbe, Mark Fisher, I. R. TI Evidence for a nematic component to the hidden-order parameter in URu2Si2 from differential elastoresistance measurements SO NATURE COMMUNICATIONS LA English DT Article ID FERMION SUPERCONDUCTOR URU2SI2; SYMMETRY-BREAKING; SYSTEM URU2SI2; SURFACE; TRANSITION; RESISTIVITY; STATE; PHASE AB For materials that harbour a continuous phase transition, the susceptibility of the material to various fields can be used to understand the nature of the fluctuating order and hence the nature of the ordered state. Here we use anisotropic biaxial strain to probe the nematic susceptibility of URu2Si2, a heavy fermion material for which the nature of the low temperature 'hidden order' state has defied comprehensive understanding for over 30 years. Our measurements reveal that the fluctuating order has a nematic component, confirming reports of twofold anisotropy in the broken symmetry state and strongly constraining theoretical models of the hidden-order phase. C1 [Riggs, Scott C.; Shapiro, M. C.; Maharaj, Akash V.; Raghu, S.; Giraldo-Gallo, P.; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Riggs, Scott C.; Shapiro, M. C.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Riggs, Scott C.; Shapiro, M. C.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Maharaj, Akash V.; Raghu, S.; Giraldo-Gallo, P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Maharaj, Akash V.; Raghu, S.; Giraldo-Gallo, P.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bauer, E. D.; Baumbach, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wartenbe, Mark] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Riggs, SC (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM scr@magnet.fsu.edu OI Bauer, Eric/0000-0003-0017-1937 FU U.S. DOE, Office of Basic Energy Sciences [DEAC02-76SF00515]; Alfred P. Sloan Foundation FX We thank S. A. Kivelson, Arkady Shekhter, R. Fernandes, Kristjan Haule, Gabriel Kotliar, Ross D. McDonald, B. J. Ramshaw and Sudip Chakravarty for stimulating discussions. We also thank Takasada Shibauchi for sharing his data before submission. Work at Stanford was supported by the U.S. DOE, Office of Basic Energy Sciences, under contract DEAC02-76SF00515 and the Alfred P. Sloan Foundation (SR). Work at Los Alamos National Laboratory was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering. NR 38 TC 16 Z9 16 U1 8 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6425 DI 10.1038/ncomms7425 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5YS UT WOS:000352633900009 PM 25742938 ER PT J AU Seo, S Park, E Bauer, ED Ronning, F Kim, JN Shim, JH Thompson, JD Park, T AF Seo, S. Park, E. Bauer, E. D. Ronning, F. Kim, J. N. Shim, J. -H. Thompson, J. D. Park, Tuson TI Controlling superconductivity by tunable quantum critical points SO NATURE COMMUNICATIONS LA English DT Article ID HEAVY-FERMION COMPOUNDS; CERHIN5; RESISTIVITY; SCATTERING; PRESSURE; ELECTRON; METALS AB The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5. C1 [Seo, S.; Park, E.; Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Bauer, E. D.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Condensed Matter & Magnet Sci, Los Alamos, NM 87545 USA. [Kim, J. N.; Shim, J. -H.] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. RP Thompson, JD (reprint author), Los Alamos Natl Lab, Condensed Matter & Magnet Sci, Los Alamos, NM 87545 USA. EM jdt@lanl.gov; tp8701@skku.edu OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU NRF - Ministry of Science, ICT and Future Planning [2012R1A3A2048816]; US Department of Energy, Office of Science, Division of Materials Science and Engineering FX Work at Sungkyunkwan University was supported by a NRF grant funded by the Ministry of Science, ICT and Future Planning (No. 2012R1A3A2048816). Work at Los Alamos was performed under the auspices of the US Department of Energy, Office of Science, Division of Materials Science and Engineering. NR 26 TC 2 Z9 2 U1 2 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6433 DI 10.1038/ncomms7433 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5YS UT WOS:000352633900017 PM 25737108 ER PT J AU Shin, H Cox, JA Jarecki, R Starbuck, A Wang, Z Rakich, PT AF Shin, Heedeuk Cox, Jonathan A. Jarecki, Robert Starbuck, Andrew Wang, Zheng Rakich, Peter T. TI Control of coherent information via on-chip photonic-phononic emitter-receivers SO NATURE COMMUNICATIONS LA English DT Article ID STIMULATED BRILLOUIN-SCATTERING; INTEGRATED MICROWAVE PHOTONICS; SILICON WAVE-GUIDES; CAVITY OPTOMECHANICS; FILTERS; OSCILLATOR; LIGHT; FIBER; RESONATOR; LASER AB Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics-which supports GHz frequencies-we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. C1 [Shin, Heedeuk; Rakich, Peter T.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, Zheng] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA. RP Rakich, PT (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. EM peter.rakich@yale.edu RI Wang, Zheng/B-9804-2009 FU US Department of Energy's NNSA [DE-AC04-94AL85000]; DDRE under Air Force [FA8721-05-C-000]; MesoDynamic Architectures program at DARPA; Sandia's Laboratory Directed Research and Development program; Packard Fellowship in Science and Engineering; Alfred P. Sloan Research Fellowship FX Sandia Laboratory is operated by Sandia Co., a Lockheed Martin Company, for the US Department of Energy's NNSA under Contract No. DE-AC04-94AL85000. This work was supported in part by the DDRE under Air Force Contract No. FA8721-05-C-000, the MesoDynamic Architectures program at DARPA under the direction of Dr Jeffrey L. Rogers and Dr Daniel Green, and Sandia's Laboratory Directed Research and Development program under Dr Wahid Hermina. Z.W. acknowledges support from the Packard Fellowship in Science and Engineering and the Alfred P. Sloan Research Fellowship. We thank Dr Wenjun Qiu, Dr Ryan M. Camacho, Dr Roy Olsson and Dr Ihab El-Kady for helpful technical discussions involving phononic systems, optomechanics and nonlinear interactions. We are grateful to Dr Ryan Behunin, Dr William Renninger, Dr Whitney Purvis Rakich for careful reading and critique of this manuscript. We also thank Anthony Lollo, Dr Ivana Petkovic and Dr Jack Harris for providing the helpful recipe of KOH etching to fabricate silicon V-grooves. NR 55 TC 23 Z9 23 U1 8 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6427 DI 10.1038/ncomms7427 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5YS UT WOS:000352633900011 PM 25740405 ER PT J AU Szilagyi, E Wittenberg, JS Miller, TA Lutker, K Quirin, F Lemke, H Zhu, DL Chollet, M Robinson, J Wen, HD Sokolowski-Tinten, K Lindenberg, AM AF Szilagyi, Erzsi Wittenberg, Joshua S. Miller, Timothy A. Lutker, Katie Quirin, Florian Lemke, Henrik Zhu, Diling Chollet, Matthieu Robinson, Joseph Wen, Haidan Sokolowski-Tinten, Klaus Lindenberg, Aaron M. TI Visualization of nanocrystal breathing modes at extreme strains SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-DIFFRACTION; LATTICE-DYNAMICS; QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; METAL NANOPARTICLES; COHERENT EXCITATION; VIBRATIONAL-MODES; ACOUSTIC PHONONS; ELECTRON; TRANSFORMATION AB Nanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods. Strains at the percent level are observed in CdS and CdSe samples, associated with a rapid expansion followed by contraction along the nanosphere or nanorod radial direction driven by a transient carrier-induced stress. These morphological changes occur simultaneously with the first steps in the melting transition on hundreds of femtosecond timescales. This work represents the first direct real-time probe of the dynamics of these large-amplitude strains and shape changes in few-nanometre-scale particles. C1 [Szilagyi, Erzsi] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Szilagyi, Erzsi; Wittenberg, Joshua S.; Lindenberg, Aaron M.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Miller, Timothy A.; Lindenberg, Aaron M.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Lutker, Katie] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Quirin, Florian; Sokolowski-Tinten, Klaus] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. [Quirin, Florian; Sokolowski-Tinten, Klaus] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47048 Duisburg, Germany. [Lemke, Henrik; Zhu, Diling; Chollet, Matthieu; Robinson, Joseph] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Wen, Haidan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lindenberg, Aaron M.] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. RP Lindenberg, AM (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM aaronl@stanford.edu RI Miller, Timothy/C-9128-2011; Lemke, Henrik Till/N-7419-2016 OI Miller, Timothy/0000-0002-5585-7736; Lemke, Henrik Till/0000-0003-1577-8643 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. DOE, Office of Science [DE-AC02-06CH11357]; German Research Council through the Collaborative Research Center [SFB 616]; Office of Science, Office of Basic Energy Sciences of the US DOE [DE-AC02-05CH11231] FX This work was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Stanford University. H.W. acknowledges support from the U.S. DOE, Office of Science, under contract no. DE-AC02-06CH11357. F.Q. and K.S.-T. gratefully acknowledge financial support by the German Research Council through the Collaborative Research Center SFB 616 'Energy Dissipation at Surfaces'. K.L. was supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3105, Director, Office of Science, Office of Basic Energy Sciences of the US DOE under contract no. DE-AC02-05CH11231. NR 45 TC 6 Z9 6 U1 11 U2 58 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6577 DI 10.1038/ncomms7577 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7FD UT WOS:000352720700012 PM 25762350 ER PT J AU Wang, F Kim, SW Seo, DH Kang, K Wang, LP Su, D Vajo, JJ Wang, J Graetz, J AF Wang, Feng Kim, Sung-Wook Seo, Dong-Hwa Kang, Kisuk Wang, Liping Su, Dong Vajo, John J. Wang, John Graetz, Jason TI Ternary metal fluorides as high-energy cathodes with low cycling hysteresis SO NATURE COMMUNICATIONS LA English DT Article ID LITHIUM RECHARGEABLE BATTERIES; CONVERSION REACTION-MECHANISMS; ELECTRODE MATERIALS; HIGH-CAPACITY; ION BATTERIES; STORAGE DEVICES; IRON FLUORIDE; HIGH-POWER; LI; ELECTROCHEMISTRY AB Transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3-4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides ((MyM1-yFx)-M-1-F-2: M-1, M-2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid-solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. Although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries. C1 [Wang, Feng; Kim, Sung-Wook; Wang, Liping; Graetz, Jason] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Seo, Dong-Hwa; Kang, Kisuk] Seoul Natl Univ, Dept Mat Sci & Engn, Res Inst Adv Mat, Seoul 151742, South Korea. [Seo, Dong-Hwa; Kang, Kisuk] Seoul Natl Univ, Ctr Nanoparticle Res, Inst Basic Sci, Seoul 151742, South Korea. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Vajo, John J.; Wang, John; Graetz, Jason] HRL Labs LLC, Sensors & Mat Lab, Malibu, CA 90265 USA. RP Wang, F (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM fwang@bnl.gov RI Seo, Dong-Hwa/D-1446-2011; Wang, Feng/C-1443-2016; Su, Dong/A-8233-2013; Kim, Sung-Wook/B-9818-2011 OI Seo, Dong-Hwa/0000-0002-7200-7186; Wang, Feng/0000-0003-4068-9212; Su, Dong/0000-0002-1921-6683; Kim, Sung-Wook/0000-0002-5537-4793 FU NorthEastern Center for Chemical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science [DE-SC0001294]; DOE-EERE under the Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-98CH10886, DE-SC0012704]; World Premier Materials grant - Korea government Ministry of Trade, Industry and Energy; 'Center on Nanostructuring for Efficient Energy Conversion' (CNEEC), an Energy Frontier Research Center - US Department of Energy, Office of Science [DE-SC0001060]; Nuclear Research and Development Program of National Research Foundation (NRF) - Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-SC0012704] FX We thank Clare Grey and M. Stanley Whittingham for discussions concerning the conversion reaction mechanisms and for reviewing the manuscript. We thank colleagues Steven Ehrlich, Jianming Bai, Steve Greenbaum, Mallory Gobet, Young-Uk Park, LinSen Li, Lihua Zhang, Eric Stach, Vyacheslav Volkov, Lijun Wu and Yimei Zhu for discussion and technical support. The work was initiated by and supported as part of the NorthEastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, under Award Number DE-SC0001294; this award supported the Brookhaven efforts of F.W., S-W.K. and J.G. The XAS measurements by F.W. and L.W. were supported by DOE-EERE under the Batteries for Advanced Transportation Technologies (BATT) Program (being incorporated into the new Advanced Battery Materials Research (BMR) program), under Contract No. DE-AC02-98CH10886 (being recently changed to new DE-SC0012704). DFT calculations by D-H.S. and K.K., were supported by the World Premier Materials grant funded by the Korea government Ministry of Trade, Industry and Energy. Electrochemical tests in Fig. 2 and electrode fabrication for XAS measurements by J.W., J.V. and J.G. were supported as part of the 'Center on Nanostructuring for Efficient Energy Conversion' (CNEEC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, under Award Number DE-SC0001060. S.-W.K. thanks the partial support, whilst completing the writing of the manuscript, from the Nuclear Research and Development Program of National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 (being recently changed to new DE-SC0012704). NR 42 TC 17 Z9 17 U1 16 U2 104 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6668 DI 10.1038/ncomms7668 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1OK UT WOS:000353042400002 PM 25808876 ER PT J AU Yang, W Sherman, VR Gludovatz, B Schaible, E Stewart, P Ritchie, RO Meyers, MA AF Yang, Wen Sherman, Vincent R. Gludovatz, Bernd Schaible, Eric Stewart, Polite Ritchie, Robert O. Meyers, Marc A. TI On the tear resistance of skin SO NATURE COMMUNICATIONS LA English DT Article ID HUMAN CORTICAL BONE; EXCISED HUMAN SKIN; X-RAY-SCATTERING; MECHANICAL-PROPERTIES; CONNECTIVE TISSUES; COLLAGEN FIBRILS; DERMAL ARMOR; TOUGHNESS; STRAIN; MODEL AB Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. We explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. We express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip. C1 [Yang, Wen; Sherman, Vincent R.; Meyers, Marc A.] Univ Calif San Diego, Mat Sci & Engn Program, San Diego, CA 92093 USA. [Gludovatz, Bernd; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaible, Eric; Stewart, Polite] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Meyers, Marc A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA. [Meyers, Marc A.] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92093 USA. RP Ritchie, RO (reprint author), Univ Calif San Diego, Mat Sci & Engn Program, San Diego, CA 92093 USA. EM roritchie@lbl.gov; mameyers@ucsd.edu RI Ritchie, Robert/A-8066-2008; YANG, Wen/E-1449-2015; Yang, Wen/H-8628-2013; Meyers, Marc/A-2970-2016; OI Ritchie, Robert/0000-0002-0501-6998; YANG, Wen/0000-0002-1817-4194; Yang, Wen/0000-0002-1817-4194; Meyers, Marc/0000-0003-1698-5396; Gludovatz, Bernd/0000-0002-2420-3879 FU Multi-University Research Initiative through the Air Force Office of Scientific Research [AFOSR-FA9550-15-1-0009]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge financial support from a Multi-University Research Initiative through the Air Force Office of Scientific Research (AFOSR-FA9550-15-1-0009) to the University of California Riverside, with subcontracts to the University of California San Diego and the University of California Berkeley. We acknowledge the use of beam line 7.3.3 at the Advanced Light Source at the Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy under Contract no. DE-AC02-05CH11231. We thank Dr Y.-Z. Tang for the calculated stress-strain response of the wire. Mason Mackey kindly assisted us in the TEM sample preparation. NR 48 TC 14 Z9 14 U1 7 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6649 DI 10.1038/ncomms7649 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1NZ UT WOS:000353041200002 PM 25812485 ER PT J AU Donev, A Nonaka, A Bhattacharjee, AK Garcia, AL Bell, JB AF Donev, Aleksandar Nonaka, Andy Bhattacharjee, Amit Kumar Garcia, Alejandro L. Bell, John B. TI Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures SO PHYSICS OF FLUIDS LA English DT Article ID MAXWELL-STEFAN DIFFUSIVITIES; MOLECULAR-DYNAMICS SIMULATIONS; SCALAR CONSERVATION-LAWS; NONEQUILIBRIUM FLUCTUATIONS; GODUNOV METHOD; DIFFUSION; FLUIDS; MICROGRAVITY; SCHEMES; UNSPLIT AB We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., "Fluctuating hydrodynamics of multispecies nonreactive mixtures," Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., "Low mach number fluctuating hydrodynamics of diffusively mixing fluids," Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a " solvent" species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., " Low mach number fluctuating hydrodynamics of binary liquid mixtures," arXiv:1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., "Mixedmode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes," Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments. (C) 2015 AIP Publishing LLC. C1 [Donev, Aleksandar; Bhattacharjee, Amit Kumar] NYU, Courant Inst Math Sci, New York, NY 10012 USA. [Nonaka, Andy; Bell, John B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Garcia, Alejandro L.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. RP Donev, A (reprint author), NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA. EM donev@courant.nyu.edu RI Bhattacharjee, Amit/A-5596-2013 OI Bhattacharjee, Amit/0000-0002-1475-743X FU U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program [DE-SC0008271, DE-AC02-05CH11231] FX We would like to thank Anne De Wit and Jorge Carballido Landeira for numerous discussions regarding their experiments on gravitational instabilities in ternary mixtures. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Award No. DE-SC0008271, and under Contract No. DE-AC02-05CH11231. NR 55 TC 7 Z9 7 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2015 VL 27 IS 3 AR 037103 DI 10.1063/1.4913571 PG 33 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CF1MH UT WOS:000352309400063 ER PT J AU Munoz-Esparza, D Kosovic, B van Beeck, J Mirocha, J AF Munoz-Esparza, D. Kosovic, B. van Beeck, J. Mirocha, J. TI A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers (vol 27, 035102, 2015) SO PHYSICS OF FLUIDS LA English DT Correction C1 [Munoz-Esparza, D.] Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, Los Alamos, NM 87545 USA. [Kosovic, B.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [van Beeck, J.] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium. [Mirocha, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Munoz-Esparza, D (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, POB 1663, Los Alamos, NM 87545 USA. EM dmunozes@lanl.gov NR 1 TC 0 Z9 0 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2015 VL 27 IS 3 AR 039901 DI 10.1063/1.4915140 PG 1 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CF1MH UT WOS:000352309400064 ER PT J AU Munoz-Esparza, D Kosovic, B van Beeck, J Mirocha, J AF Munoz-Esparza, D. Kosovic, B. van Beeck, J. Mirocha, J. TI A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers SO PHYSICS OF FLUIDS LA English DT Article ID COHERENT STRUCTURES; REYNOLDS-NUMBER; WRF MODEL; FLOW; MESOSCALE; STATISTICS; PRESSURE; DYNAMICS; CHANNEL; MOTION AB Despite the variety of existing methods, efficient generation of turbulent inflow conditions for large-eddy simulation (LES) models remains a challenging and active research area. Herein, we extend our previous research on the cell perturbation method, which uses a novel stochastic approach based upon finite amplitude perturbations of the potential temperature field applied within a region near the inflow boundaries of the LES domain [Munoz-Esparza et al., "Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models," Boundary-Layer Meteorol., 153, 409-440 (2014)]. The objective was twofold: (i) to identify the governing parameters of the method and their optimum values and (ii) to generalize the results over a broad range of atmospheric large-scale forcing conditions, U-g = 5 - 25 m s(-1), where U-g is the geostrophic wind. We identified the perturbation Eckert number, Ec = U-g(2)/rho cp (theta) over tilde (pm), to be the parameter governing the flow transition to turbulence in neutrally stratified boundary layers. Here, (theta) over tilde (pm) is the maximum perturbation amplitude applied, c(p) is the specific heat capacity at constant pressure, and rho is the density. The optimal Eckert number was found for nonlinear perturbations allowed by Ec approximate to 0.16, which instigate formation of hairpin-like vortices that most rapidly transition to a developed turbulent state. Larger Ec numbers (linear small-amplitude perturbations) result in streaky structures requiring larger fetches to reach the quasi-equilibrium solution, while smaller Ec numbers lead to buoyancy dominated perturbations exhibiting difficulties for hairpin-like vortices to emerge. Cell perturbations with wavelengths within the inertial range of three-dimensional turbulence achieved identical quasi-equilibrium values of resolved turbulent kinetic energy, q, and Reynolds-shear stress, aw' u'o. In contrast, large-scale perturbations acting at the production range exhibited reduced levels of aw' u'o, due to the formation of coherent streamwise structures, while q was maintained, requiring larger fetches for the turbulent solution to stabilize. Additionally, the cell perturbation method was compared to a synthetic turbulence generator. The proposed stochastic approach provided at least the same efficiency in developing realistic turbulence, while accelerating the formation of large-scales associated with production of turbulent kinetic energy. Also, it is computationally inexpensive and does not require any turbulent information. (C) 2015 AIP Publishing LLC. C1 [Munoz-Esparza, D.] Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, Los Alamos, NM 87545 USA. [Kosovic, B.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [van Beeck, J.] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium. [Mirocha, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Munoz-Esparza, D (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, POB 1663, Los Alamos, NM 87545 USA. FU von Karman Institute for Fluid Dynamics (VKI); Computational Earth Science Group at Los Alamos National Laboratory (LANL) [EES-16] FX This work has been mainly funded by the von Karman Institute for Fluid Dynamics (VKI) and mostly carried out during DME's postdoctoral appointment at the VKI. The leading author also acknowledges support from the Computational Earth Science Group (EES-16) at Los Alamos National Laboratory (LANL). We thank our two anonymous reviewers for their comments that helped to improve the manuscript. NR 49 TC 9 Z9 9 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2015 VL 27 IS 3 AR 035102 DI 10.1063/1.4913572 PG 27 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CF1MH UT WOS:000352309400041 ER PT J AU Bennett, N Welch, DR Webb, TJ Mazarakis, MG Kiefer, ML Crain, MD Droemer, DW Gignac, RE Johnston, MD Leckbee, JJ Molina, I Nielsen, D Obregon, R Romero, T Simpson, S Smith, CC Wilkins, FL Ziska, D AF Bennett, Nichelle Welch, Dale R. Webb, Timothy J. Mazarakis, Michael G. Kiefer, Mark L. Crain, M. Dale Droemer, Darryl W. Gignac, Raymond E. Johnston, Mark D. Leckbee, Joshua J. Molina, Isidro Nielsen, Dan Obregon, Robert Romero, Tobias Simpson, Sean Smith, Chase C. Wilkins, Frank L. Ziska, Derek TI The impact of plasma dynamics on the self-magnetic-pinch diode impedance SO PHYSICS OF PLASMAS LA English DT Article ID INTENSE ELECTRON-BEAM; PARTICLE-IN-CELL; RADIOGRAPHIC DIODE; ACCELERATOR; DESORPTION; EMISSION; TARGET; FIELD; SPOT; FLOW AB The self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standing theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. The results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion nu(r) x B-theta acceleration into the gap. (C) 2015 AIP Publishing LLC. C1 [Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; Gignac, Raymond E.; Molina, Isidro; Obregon, Robert; Smith, Chase C.; Wilkins, Frank L.] Natl Secur Technol LLC, Las Vegas, NV 89193 USA. [Welch, Dale R.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Webb, Timothy J.; Mazarakis, Michael G.; Kiefer, Mark L.; Johnston, Mark D.; Leckbee, Joshua J.; Nielsen, Dan; Romero, Tobias; Simpson, Sean; Ziska, Derek] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bennett, N (reprint author), Natl Secur Technol LLC, Las Vegas, NV 89193 USA. FU U.S. Department of Energy [DE-AC52-06NA25946]; Sandia National Laboratories, Sandia Corporation - U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This manuscript has been authored by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The U.S. Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was also supported by the Sandia National Laboratories, Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 34 TC 1 Z9 2 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 033113 DI 10.1063/1.4916062 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500077 ER PT J AU Cerjan, C Sayre, DB Landen, OL Church, JA Stoeffl, W Grafil, EM Herrmann, HW Hoffman, NM Kim, Y AF Cerjan, C. Sayre, D. B. Landen, O. L. Church, J. A. Stoeffl, W. Grafil, E. M. Herrmann, H. W. Hoffman, N. M. Kim, Y. TI Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments SO PHYSICS OF PLASMAS LA English DT Article ID CARBON AB The inelastic neutron scattering induced c-ray signal from C-12 in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4MeV using threshold detection from four gas Cerenkov cells provides a direct measurement of the C-12 areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive. (C) 2015 AIP Publishing LLC. C1 [Cerjan, C.; Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grafil, E. M.] Colorado Sch Mines, Golden, CO 80401 USA. [Herrmann, H. W.; Hoffman, N. M.; Kim, Y.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cerjan, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM cerjan1@llnl.gov OI Hoffman, Nelson/0000-0003-0178-767X; Cerjan, Charles/0000-0002-5168-6845 FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 30 TC 5 Z9 5 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032710 DI 10.1063/1.4916124 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500057 ER PT J AU Coleman, JE Moir, DC Crawford, MT Welch, DR Offermann, DT AF Coleman, J. E. Moir, D. C. Crawford, M. T. Welch, D. R. Offermann, D. T. TI Temporal response of a surface flashover on a velvet cathode in a relativistic diode SO PHYSICS OF PLASMAS LA English DT Article ID FERROELECTRIC PLASMA CATHODE; ELECTRON-ION EMISSION; X-RAY IMAGER; SIMULATION; TRANSPORT AB Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to c ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the similar to 100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements will also be presented confirming the ion species are dominated by hydrogen. (C) 2015 AIP Publishing LLC. C1 [Coleman, J. E.; Moir, D. C.; Crawford, M. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Welch, D. R.; Offermann, D. T.] Voss Sci, Albuquerque, NM 87108 USA. RP Coleman, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Offermann, Dustin/0000-0002-6033-4905 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. I would like to take the opportunity to thank the DARHT Axis-I operators and technicians James Carothers, Sam Snider, Melissa Reed, Jules Carson, Tim McCurdy, Rudy Valdez, and Edward Jacquez for their continued support. NR 37 TC 2 Z9 2 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 033508 DI 10.1063/1.4914851 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500093 ER PT J AU Finn, JM AF Finn, John M. TI Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC SURFACES; DESTRUCTION; DYNAMICS; SYSTEMS; CHAOS AB Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a "special divergence-free" (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012)], appears to work very well. (C) 2015 AIP Publishing LLC. C1 Los Alamos Natl Lab, Appl Math & Plasma Phys, Los Alamos, NM 87545 USA. RP Finn, JM (reprint author), Los Alamos Natl Lab, Appl Math & Plasma Phys, T-5, Los Alamos, NM 87545 USA. EM finn@lanl.gov FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences FX I wish to acknowledge L. Chacon, A. J. Dragt, C. L. Ellison, J. D. Meiss, P. Morrison, and A. S. Richardson and for useful discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences. NR 42 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032508 DI 10.1063/1.4914839 PG 16 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500044 ER PT J AU Fredrickson, ED Bell, MG Budny, RV Darrow, DS White, R AF Fredrickson, E. D. Bell, M. G. Budny, R. V. Darrow, D. S. White, R. TI Anomalous fast ion losses at high beta on the tokamak fusion test reactor SO PHYSICS OF PLASMAS LA English DT Article ID NEUTRAL BEAM; TFTR; MODES; PLASMAS; DISRUPTIONS AB This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of beta-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the beta-limit in high field plasmas were not found at low field, even for beta's 50% higher than the empirical beta-limit of beta(n) approximate to 2 at high field. Comparisons of experimentally measured beta's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest beta, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfven eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented. (C) 2015 AIP Publishing LLC. C1 [Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Fredrickson, ED (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. DoE [DE-AC02-76CH03073, DE-AC02-09CH11466] FX We would like to express our appreciation to the TFTR team, with special thanks for T. Carroll, L. Nixon, R. Reed, and C. Scimeca for support in recovering TFTR data. This work was supported under U.S. DoE Contract Nos. DE-AC02-76CH03073 and DE-AC02-09CH11466. NR 31 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032501 DI 10.1063/1.4907656 PG 11 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500037 ER PT J AU Gao, QD Budny, RV AF Gao, Q. D. Budny, R. V. TI Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation SO PHYSICS OF PLASMAS LA English DT Article ID JOINT EUROPEAN TORUS; FUSION TEST REACTOR; H-MODE TRANSITION; MAGNETIC SHEAR; POLOIDAL ROTATION; CONFINEMENT REGIMES; DIII-D; TURBULENCE; TOKAMAKS; BIFURCATION AB By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T-i,T-e) and toroidal velocity (V-phi) and the E x B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E x B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E x B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E x B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition. (C) 2015 AIP Publishing LLC. C1 [Gao, Q. D.] Southwestern Inst Phys, Chengdu 610041, Peoples R China. [Budny, R. V.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gao, QD (reprint author), Southwestern Inst Phys, Chengdu 610041, Peoples R China. EM qgao@swip.ac.cn OI Budny, Robert/0000-0001-5472-3771 FU National Natural Science Foundation of China [11275061]; National Magnetic Confinement Fusion Science Program [2014GB108002] FX Authors would like to acknowledge the TRANSP team in Princeton Plasma Physics Laboratory for their help in using the TRANSP code. This work was supported by the National Natural Science Foundation of China under Grant No. 11275061, and the National Magnetic Confinement Fusion Science Program 2014GB108002. NR 39 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032507 DI 10.1063/1.4914932 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500043 ER PT J AU Haan, SW Huang, H Johnson, MA Stadermann, M Baxamusa, S Bhandarkar, S Clark, DS Smalyuk, V Robey, HF AF Haan, S. W. Huang, H. Johnson, M. A. Stadermann, M. Baxamusa, S. Bhandarkar, S. Clark, D. S. Smalyuk, V. Robey, H. F. TI Instability growth seeded by oxygen in CH shells on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID DISCHARGE POLYMER SHELLS; GDP CAPSULES; DENSE MATTER; ICF SHELLS; FABRICATION; HOT AB Fusion targets imploded on the National Ignition Facility are subject to hydrodynamic instabilities. These have generally been assumed to be seeded primarily by surface roughness, as existing work had suggested that internal inhomogeneity was small enough not to contribute significantly. New simulations presented here examine this in more detail, and consider modulations in internal oxygen content in CH plastic ablators. The oxygen is configured in a way motivated by measurement of oxygen in the shells. We find that plausible oxygen nonuniformity, motivated by target characterization experiments, seeds instability growth that is 3-5 x bigger than expected from surface roughness. Pertinent existing capsule characterization is discussed, which suggests the presence of internal modulations that could be oxygen at levels large enough to be the dominant seed for hydrodynamic instability growth. Oxygen-seeded growth is smaller for implosions driven by high-foot pulse shapes, consistent with the performance improvement seen with these pulse shapes. Growth is somewhat smaller for planned future pulse shapes that were optimized to minimize growth of surface ripples. A possible modified specification for oxygen modulations is discussed, which is about 1/5 of the current requirement. (C) 2015 AIP Publishing LLC. C1 [Haan, S. W.; Johnson, M. A.; Stadermann, M.; Baxamusa, S.; Bhandarkar, S.; Clark, D. S.; Smalyuk, V.; Robey, H. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Huang, H.] Gen Atom Co, San Diego, CA 92186 USA. RP Haan, SW (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM haan1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 38 TC 18 Z9 18 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032708 DI 10.1063/1.4916300 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500055 ER PT J AU Levy, A Audebert, P Shepherd, R Dunn, J Cammarata, M Ciricosta, O Deneuville, F Dorchies, F Fajardo, M Fourment, C Fritz, D Fuchs, J Gaudin, J Gauthier, M Graf, A Lee, HJ Lemke, H Nagler, B Park, J Peyrusse, O Steel, AB Vinko, SM Wark, JS Williams, GO Zhu, D Lee, RW AF Levy, A. Audebert, P. Shepherd, R. Dunn, J. Cammarata, M. Ciricosta, O. Deneuville, F. Dorchies, F. Fajardo, M. Fourment, C. Fritz, D. Fuchs, J. Gaudin, J. Gauthier, M. Graf, A. Lee, H. J. Lemke, H. Nagler, B. Park, J. Peyrusse, O. Steel, A. B. Vinko, S. M. Wark, J. S. Williams, G. O. Zhu, D. Lee, R. W. TI The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser SO PHYSICS OF PLASMAS LA English DT Article ID SHOCK-WAVES; STATE; PLASMA; EQUATIONS; PULSES AB The efficiency and uniformity of heating induced by hard x-ray free-electron laser pulse is investigated for 0.5 mu m silver foils using the X-ray Pump Probe instrument at the Linac Coherent Light Source facility. Intense 8.9 keV x-ray pulses of 60 fs duration deposit energy predominantly via inner-shell ionization to create a non-equilibrium Ag solid density plasma. The x-ray pulses are focused to 14 X 17 mu m(2) by means of beryllium lenses and by varying the total beam energy, the energy deposition is varied over a range of irradiances from 4.4 to 6.5 X 10(15) W/cm(2). Two time-and-space resolved interferometers simultaneously probed the expansion of the front and rear sample surfaces and find evidence of a nearly symmetric expansion pointing to the uniformity of energy deposition over the full target thickness. The experimental results are compared with two different hydrodynamic simulations of the sample expansion. The agreement between experimental and theoretical results yields an estimate of the temperature evolution as a function of x-ray irradiance that varies from 8 to 10 eV for the x-ray irradiances studied. (C) 2015 AIP Publishing LLC. C1 [Levy, A.] Univ Paris 06, Sorbonne Univ, UMR 7588, CNRS,INSP, F-75005 Paris, France. [Levy, A.; Audebert, P.; Fuchs, J.; Gauthier, M.] UPMC, CEA, CNRS, Ecole Polytech,LULI, F-91128 Palaiseau, France. [Shepherd, R.; Dunn, J.; Graf, A.; Park, J.; Steel, A. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Cammarata, M.; Fritz, D.; Lee, H. J.; Lemke, H.; Nagler, B.; Zhu, D.; Lee, R. W.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Ciricosta, O.; Vinko, S. M.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Deneuville, F.; Dorchies, F.; Fourment, C.; Peyrusse, O.] Univ Bordeaux, CNRS, CELIA Ctr Lasers Intenses & Applicat, CEA,UMR 5107, F-33405 Talence, France. [Fajardo, M.; Williams, G. O.] Inst Super Tecn, P-1049001 Lisbon, Portugal. [Gaudin, J.] European XFEL GmbH, D-22607 Hamburg, Germany. [Lee, R. W.] Univ Calif Berkeley, Inst Mat Dynam Extreme Condit, Berkeley, CA 94720 USA. RP Levy, A (reprint author), Univ Paris 06, Sorbonne Univ, UMR 7588, CNRS,INSP, F-75005 Paris, France. EM levy@insp.jussieu.fr RI Fajardo, Marta/A-4608-2012; Cammarata, Marco/C-2322-2008; Fuchs, Julien/D-3450-2016; Lemke, Henrik Till/N-7419-2016 OI Fajardo, Marta/0000-0003-2133-2365; Cammarata, Marco/0000-0003-3013-1186; Fuchs, Julien/0000-0001-9765-0787; Lemke, Henrik Till/0000-0003-1577-8643 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; French Research Network RTRA "Triangle de la Physique" ["MELEL" 2010-053T]; French Agence Nationale de la Recherche [OEDYP - ANR-09- BLAN-0206-01, 11-IDEX-0004-02]; CNRS via the Program PEPS SASLEX; FCT Project [PTDC/FIS/112392/2009]; LABEX Plas@Par Project FX We wish to acknowledge P. Combis, T. Vinci, and David Hebert for useful discussions and expert support. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The experiment was carried out at the Linac Coherent Light Source, a National User Facility operated by Stanford University for the U.S. Department of Energy. We acknowledge the support from French Research Network RTRA "Triangle de la Physique" (Grants "MELEL" 2010-053T), French Agence Nationale de la Recherche (Grant OEDYP - ANR-09-BLAN-0206-01 and Grant No. 11-IDEX-0004-02), the CNRS via the Program PEPS SASLEX, the FCT Project (PTDC/FIS/112392/2009), and the LABEX Plas@Par Project. NR 29 TC 13 Z9 13 U1 4 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 030703 DI 10.1063/1.4916103 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500003 ER PT J AU Nagel, SR Haan, SW Rygg, JR Aracne-Ruddle, C Barrios, M Benedetti, LR Bradley, DK Field, JE Hammel, BA Izumi, N Jones, OS Khan, SF Ma, T Pak, AE Segraves, K Stadermann, M Strauser, RJ Tommasini, R Town, RPJ AF Nagel, S. R. Haan, S. W. Rygg, J. R. Aracne-Ruddle, C. Barrios, M. Benedetti, L. R. Bradley, D. K. Field, J. E. Hammel, B. A. Izumi, N. Jones, O. S. Khan, S. F. Ma, T. Pak, A. E. Segraves, K. Stadermann, M. Strauser, R. J. Tommasini, R. Town, R. P. J. TI Effect of the mounting membrane on shape in inertial confinement fusion implosions (vol 22, 022704, 2015) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Nagel, S. R.; Haan, S. W.; Rygg, J. R.; Aracne-Ruddle, C.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Stadermann, M.; Tommasini, R.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Segraves, K.] Schafer Corp, Livermore, CA 94551 USA. [Strauser, R. J.] Gen Atom Co, San Diego, CA 92186 USA. RP Nagel, SR (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM nagel7@llnl.gov RI IZUMI, Nobuhiko/J-8487-2016; tommasini, riccardo/A-8214-2009; OI IZUMI, Nobuhiko/0000-0003-1114-597X; tommasini, riccardo/0000-0002-1070-3565; Nagel, Sabrina/0000-0002-7768-6819 NR 3 TC 1 Z9 1 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 039902 DI 10.1063/1.4916494 PG 1 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500113 ER PT J AU Park, GY Kim, SS Jhang, H Diamond, PH Rhee, T Xu, XQ AF Park, G. Y. Kim, S. S. Jhang, Hogun Diamond, P. H. Rhee, T. Xu, X. Q. TI Flux-driven simulations of turbulence collapse SO PHYSICS OF PLASMAS LA English DT Article ID DIVERTOR GEOMETRY; EDGE TURBULENCE; MAGNETIC SHEAR; H TRANSITION; CONFINEMENT; TRANSPORT; TOKAMAK; PLASMA; ROTATION; MODES AB Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R-T > 1 at t = t(R) (R-T: normalized Reynolds power), while the conventional transition criterion (omega(ExB) > gamma(lin) where omega(ExB) denotes mean flow shear) is satisfied only after t = t(C) (>t(R)), when the mean flow shear grows due to positive feedback. (C) 2015 AIP Publishing LLC. C1 [Park, G. Y.; Kim, S. S.; Jhang, Hogun; Diamond, P. H.; Rhee, T.] Natl Fus Res Inst, Daejeon 305333, South Korea. [Diamond, P. H.] Univ Calif San Diego, CASS, La Jolla, CA 92093 USA. [Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Park, GY (reprint author), Natl Fus Res Inst, Daejeon 305333, South Korea. FU World Class Institute (WCI) Program of the National Research Foundation (NRF) - Ministry of Science, ICT and Future Planning (MSIP) of Korea [WCI 2009-001] FX The authors acknowledge valuable discussions with G. R. Tynan, L. Schmitz, T. Estrada, Z. Yan, and G. McKee. This research was supported by the World Class Institute (WCI) Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea (WCI 2009-001). NR 34 TC 12 Z9 12 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032505 DI 10.1063/1.4914841 PG 5 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500041 ER PT J AU Thoma, C Genoni, TC Welch, DR Rose, DV Clark, RE Miller, CL Stygar, WA Kiefer, ML AF Thoma, C. Genoni, T. C. Welch, D. R. Rose, D. V. Clark, R. E. Miller, C. L. Stygar, W. A. Kiefer, M. L. TI Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines SO PHYSICS OF PLASMAS LA English DT Article ID BRILLOUIN-FLOW; ELECTRON FLOW; INSTABILITIES; GENERATION; EVOLUTION; DIODES; BEAMS; GAPS AB A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the "effective" cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer. (C) 2015 AIP Publishing LLC. C1 [Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.; Kiefer, M. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Thoma, C (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. FU Sandia National Laboratories [LDRD 173104]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Nuclear Weapons program and the Laboratory Directed Research and Development program (LDRD 173104) at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 23 TC 1 Z9 1 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032101 DI 10.1063/1.4913805 PG 11 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500005 ER PT J AU Thornber, B Zhou, Y AF Thornber, B. Zhou, Y. TI Numerical simulations of the two-dimensional multimode Richtmyer-Meshkov instability SO PHYSICS OF PLASMAS LA English DT Article ID LARGE-EDDY SIMULATION; RAYLEIGH-TAYLOR INSTABILITY; HIGH-RESOLUTION METHODS; COMPRESSIBLE FLOWS; REYNOLDS-NUMBER; TURBULENT-FLOW; IA SUPERNOVAE; ORDER; DISSIPATION; SCHEMES AB The two-dimensional Richtmyer-Meshkov instability occurs as shock waves pass through a perturbed material interface, triggering transition to an inhomogeneous turbulence variable density flow. This paper presents a series of large-eddy-simulations of the two dimensional turbulent RM instability and compares the results to the fully three dimensional simulations. There are two aims for this paper, the first is to explore what numerical resolution is required for a statistically converged solution for a two dimensional inhomogeneous flow field. The second aim is to elucidate the key differences in flow physics between the two dimensional and three dimensional Richtmyer-Meshkov instabilities, particularly their asymptotic self-similar regime. Convergence is achieved using 64 independent realisations and grid resolutions up to 4096(2) in the plane. It is shown that for narrowband cases the growth rate theta = 0.48 which is substantially higher than the three-dimensional equivalent. Mix measures are consistently lower compared to three-dimensional, and the kinetic energy distribution is homogeneous at late time. The broadband case has a similar initial growth rate as the three-dimensional case, with a marginally lower theta = 0.63. Mix is similar in magnitude, but is reducing at late time. The spectra in both cases exhibit the dual-cascade expected from two-dimensional turbulence. (C) 2015 AIP Publishing LLC. C1 [Thornber, B.] Univ Sydney, Sch Aerosp Mech & Mech Engn, Sydney, NSW 2006, Australia. [Zhou, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Thornber, B (reprint author), Univ Sydney, Sch Aerosp Mech & Mech Engn, Sydney, NSW 2006, Australia. EM ben.thornber@sydney.edu.au OI Thornber, Ben/0000-0002-7665-089X FU Australian Research Council [DP150101059]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP150101059). The authors would like to acknowledge the computational resources at the National Computational Infrastructure through the National Computational Merit Allocation Scheme which were employed for all cases presented here. This work of the second author was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 64 TC 3 Z9 3 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032309 DI 10.1063/1.4915517 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500030 ER PT J AU Weber, CR Clark, DS Cook, AW Eder, DC Haan, SW Hammel, BA Hinkel, DE Jones, OS Marinak, MM Milovich, JL Patel, PK Robey, HF Salmonson, JD Sepke, SM Thomas, CA AF Weber, C. R. Clark, D. S. Cook, A. W. Eder, D. C. Haan, S. W. Hammel, B. A. Hinkel, D. E. Jones, O. S. Marinak, M. M. Milovich, J. L. Patel, P. K. Robey, H. F. Salmonson, J. D. Sepke, S. M. Thomas, C. A. TI Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion SO PHYSICS OF PLASMAS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; PHASE AB The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400-800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement. (C) 2015 AIP Publishing LLC. C1 [Weber, C. R.; Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Weber, CR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM weber30@llnl.gov RI Patel, Pravesh/E-1400-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank C. Cerjan and D. Munro for useful discussions and helpful comments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 51 TC 12 Z9 12 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032702 DI 10.1063/1.4914157 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500049 ER PT J AU Weis, MR Zhang, P Lau, YY Schmit, PF Peterson, KJ Hess, M Gilgenbach, RM AF Weis, M. R. Zhang, P. Lau, Y. Y. Schmit, P. F. Peterson, K. J. Hess, M. Gilgenbach, R. M. TI Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner SO PHYSICS OF PLASMAS LA English DT Article ID PINCHES AB This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a pre-heated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode. (C) 2015 AIP Publishing LLC. C1 [Weis, M. R.; Zhang, P.; Lau, Y. Y.; Gilgenbach, R. M.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Schmit, P. F.; Peterson, K. J.; Hess, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lau, YY (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM yylau@umich.edu FU DoE [DE-SC0002590, DE-SC0012328]; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by DoE Award Nos. DE-SC0002590 and DE-SC0012328. Matt Weis was supported by the Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 21 TC 7 Z9 7 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2015 VL 22 IS 3 AR 032706 DI 10.1063/1.4915520 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CE9KS UT WOS:000352163500053 ER PT J AU Scherpelz, RI Cezeaux, JR AF Scherpelz, R. I. Cezeaux, J. R. TI PERFORMANCE OF THE EPD-N2 DOSEMETER FOR MONITORING AIRCREW DOSES SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB United States Air Force (USAF) aircrew fly at altitudes and for durations where doses from cosmic radiation are significant enough to warrant monitoring. This study evaluated a candidate radiological monitoring system for USAF aircrew, the Thermo Scientific electronic personnel dosemeter (EPD-N2). The evaluation consisted of characterising the device in a well-characterised radiation field at a European Organization for Nuclear Research (CERN) accelerator, and aboard an USAF aircraft. The performance of the EPDs was evaluated by comparison with accepted values for dose at the CERN facility, comparison with the value calculated by flight dose software and comparison with the value estimated by a tissue-equivalent proportional counter aboard the aircraft. This study recommends that a correction factor of 1/CF 5 1/3.9 be applied to EPD-N2 measurements aboard aircraft flights. The uncertainty in this correction factor is 11.8%. C1 [Scherpelz, R. I.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cezeaux, J. R.] US Air Force Sch Aerosp Med, Wright Patterson AFB, OH 45433 USA. RP Scherpelz, RI (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM scherpelz@pnnl.gov FU United States Air Force School of Aerospace Medicine [88ABW-2013-4918] FX This work was supported by the United States Air Force School of Aerospace Medicine. Approved for Public Release, Case Number 88ABW-2013-4918. NR 13 TC 3 Z9 3 U1 1 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2015 VL 163 IS 4 BP 415 EP 423 DI 10.1093/rpd/ncu234 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CF4RQ UT WOS:000352538900003 PM 25108394 ER PT J AU Diallo, A Keller, S Shi, Y Raitses, Y Mazouffre, S AF Diallo, A. Keller, S. Shi, Y. Raitses, Y. Mazouffre, S. TI Time-resolved ion velocity distribution in a cylindrical Hall thruster: Heterodyne-based experiment and modeling SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF. (C) 2015 AIP Publishing LLC. C1 [Diallo, A.; Keller, S.; Shi, Y.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Mazouffre, S.] CNRS, ICARE, F-45071 Orleans, France. RP Diallo, A (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. OI Shi, Yuan/0000-0002-3284-4449 FU US DoE; AFOSR; EOARD [FA8655-12-1-2061] FX This work was partially supported by US DoE and AFOSR. We acknowledge Rostislav Spektor of the Aerospace Corp. for fruitful discussions and help with the LIF setup and Alex Merzhevskiy for his technical support. One of us, S.M., was supported by EOARD Grant No. FA8655-12-1-2061. NR 14 TC 1 Z9 1 U1 6 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2015 VL 86 IS 3 AR 033506 DI 10.1063/1.4914829 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CE9ZD UT WOS:000352201400025 PM 25832228 ER PT J AU Jung, D Senje, L McCormack, O Yin, L Albright, BJ Letzring, S Gautier, DC Dromey, B Toncian, T Fernandez, JC Zepf, M Hegelich, BM AF Jung, D. Senje, L. McCormack, O. Yin, L. Albright, B. J. Letzring, S. Gautier, D. C. Dromey, B. Toncian, T. Fernandez, J. C. Zepf, M. Hegelich, B. M. TI On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ENERGY PROTON-BEAMS AB We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments. (C) 2015 AIP Publishing LLC. C1 [Jung, D.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jung, D.; McCormack, O.; Dromey, B.; Zepf, M.] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. [Senje, L.] Lund Univ, S-22100 Lund, Sweden. [Toncian, T.; Hegelich, B. M.] Univ Texas Austin, Austin, TX 78712 USA. RP Jung, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM daniel.jung@outlook.com RI Fernandez, Juan/H-3268-2011; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320 FU LANL Laboratory Directed Research & Development (LDRD); DOE Office of Fusion Energy Sciences (OFES); EPSRC; Swedish Research Council FX This work was supported by LANL Laboratory Directed Research & Development (LDRD), the DOE Office of Fusion Energy Sciences (OFES), EPSRC and the Swedish Research Council. NR 23 TC 2 Z9 2 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2015 VL 86 IS 3 AR 033303 DI 10.1063/1.4914845 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CE9ZD UT WOS:000352201400016 PM 25832219 ER PT J AU Levy, MC Ryutov, DD Wilks, SC Ross, JS Huntington, CM Fiuza, F Martinez, DA Kugland, NL Baring, MG Park, HS AF Levy, M. C. Ryutov, D. D. Wilks, S. C. Ross, J. S. Huntington, C. M. Fiuza, F. Martinez, D. A. Kugland, N. L. Baring, M. G. Park, H-S. TI Development of an interpretive simulation tool for the proton radiography technique SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-INTENSITY LASER; INERTIAL-FUSION IMPLOSIONS; ELECTROMAGNETIC-FIELD; MATTER INTERACTIONS; PLASMA INTERACTION; DRIVEN; GENERATION; ACCELERATION; TARGETS AB Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field "primitives" is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using similar to 10(8) particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of similar to 10 mm(3). Insights derived from this application show that the tool can support understanding of HED plasmas. (C) 2015 AIP Publishing LLC. C1 [Levy, M. C.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Levy, M. C.; Ryutov, D. D.; Wilks, S. C.; Ross, J. S.; Huntington, C. M.; Fiuza, F.; Martinez, D. A.; Park, H-S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kugland, N. L.] Lam Res Corp, Fremont, CA 94538 USA. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Levy, MC (reprint author), Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM levymc@stanford.edu FU LLNL Lawrence Scholarship; Royal Society Newton International Fellowship; LLNL Lawrence Fellowship; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX M.L. is grateful to Elijah Kemp, Tony Link, Mario Manuel, Chikang Li, Gianluca Gregori, and Anatoly Spitkovsky for useful discussions. M.L. thanks the LLNL Lawrence Scholarship and Royal Society Newton International Fellowship for support and the LLNL Institutional Grand Challenge program for computational resources. F.F. acknowledges the LLNL Lawrence Fellowship for financial support. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 71 TC 4 Z9 4 U1 5 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2015 VL 86 IS 3 AR 033302 DI 10.1063/1.4909536 PG 15 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CE9ZD UT WOS:000352201400015 PM 25832218 ER PT J AU Mitarai, O Xiao, C McColl, D Dreval, M Hirose, A Peng, M AF Mitarai, O. Xiao, C. McColl, D. Dreval, M. Hirose, A. Peng, M. TI Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID VERTICAL FIELD-COILS; ASPECT-RATIO TOKAMAK; SPHERICAL TOKAMAK AB A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. This result suggests a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. The effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments in the STOR-M tokamak. (C) 2015 AIP Publishing LLC. C1 [Mitarai, O.] Tokai Univ, Liberal Arts Educ Ctr, Higashi Ku, Kumamoto 8628652, Japan. [Xiao, C.; McColl, D.; Dreval, M.; Hirose, A.] Univ Saskatchewan, Plasma Phys Lab, Saskatoon, SK S7N 5E2, Canada. [Peng, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mitarai, O (reprint author), Tokai Univ, Liberal Arts Educ Ctr, Higashi Ku, Kumamoto Campus,9-1-1 Toroku, Kumamoto 8628652, Japan. EM omitarai@ktmail.tokai-u.jp OI Dreval, Mykola/0000-0003-0482-0981 FU Japanese Society for the Promotion of Science (JSPS) KAKENHI [24561026]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chair (CRC) Program; Fedoruk Centre for Nuclear Innovation FX We gratefully acknowledge Dr. Takumi Onchi for redrawing Fig. 4. This work was supported by Japanese Society for the Promotion of Science (JSPS) KAKENHI Grant No. 24561026. The research was also supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) Program, and Fedoruk Centre for Nuclear Innovation. NR 27 TC 1 Z9 1 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2015 VL 86 IS 3 AR 033508 DI 10.1063/1.4915316 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CE9ZD UT WOS:000352201400027 PM 25832230 ER PT J AU Chen, J Yu, X Miller, RG Feng, Z AF Chen, J. Yu, X. Miller, R. G. Feng, Z. TI In situ strain and temperature measurement and modelling during arc welding SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE In situ strain; Temperature; Arc welding; Digital image correlation; FEM AB Experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well as a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Additionally, a thermal-mechanical finite element model was applied to substantiate the experimental measurement. C1 [Chen, J.; Yu, X.; Miller, R. G.; Feng, Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Feng, Z (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM fengz@ornl.gov RI Feng, Zhili/H-9382-2012; Yu, Xinghua/E-2254-2017 OI Feng, Zhili/0000-0001-6573-7933; Yu, Xinghua/0000-0001-9605-8239 FU US Department of Energy, Office of Nuclear Energy, for the Light Water Reactor Sustainability Research and Development effort; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the US Department of Energy, Office of Nuclear Energy, for the Light Water Reactor Sustainability Research and Development effort, and for the Nuclear Energy Enabling Technologies Crosscutting Technology Development effort, under a prime contract with Oak Ridge National Laboratory (ORNL). The ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract no. DE-AC05-00OR22725. The authors would like to thank Dr X. Chen for his support. NR 3 TC 3 Z9 4 U1 3 U2 17 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAR PY 2015 VL 20 IS 3 BP 181 EP 188 DI 10.1179/1362171814Y.0000000270 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CF1NP UT WOS:000352313200001 ER PT J AU Yu, X Mazumder, B Miller, MK David, SA Feng, Z AF Yu, X. Mazumder, B. Miller, M. K. David, S. A. Feng, Z. TI Stability of Y-Ti-O precipitates in friction stir welded nanostructured ferritic alloys SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Friction stir weld; Nanostructured ferritic alloys; Oxide dispersion strengthened alloys; Atom probe tomography ID MICROSTRUCTURAL EVOLUTION; MECHANICAL-PROPERTIES; ION-IRRADIATION; OBSTACLES; STEELS; 14YWT AB Nanostructured ferritic alloys, which have complex microstructures consisting of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters, are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This study evaluates microstructure of friction stir welded nanostructured ferritic alloys using electron microscopy and atom probe tomography techniques. Atom probe tomography results revealed that nanoclusters are coarsened and inhomogeneously distributed in the stir zone and thermomechanically affected zone. Three hypotheses on coarsening of nanoclusters are presented. The hardness difference in different regions of friction stir weld has been explained. C1 [Yu, X.; David, S. A.; Feng, Z.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mazumder, B.; Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Feng, Z (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM fengz@ornl.gov RI Feng, Zhili/H-9382-2012; Mazumder, Baishakhi/A-1804-2016; Yu, Xinghua/E-2254-2017 OI Feng, Zhili/0000-0001-6573-7933; Mazumder, Baishakhi/0000-0001-5158-5799; Yu, Xinghua/0000-0001-9605-8239 FU U.S. Department of Energy, Office of Fusion Energy; U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy, Office of Fusion Energy (XY, SAD, FZ), and by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division (BM, MKM). APT was supported through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank Dr D.T. Hoelzer for providing the material used in this study.; This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 23 TC 4 Z9 4 U1 1 U2 12 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAR PY 2015 VL 20 IS 3 BP 236 EP 241 DI 10.1179/1362171815Y.0000000002 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CF1NP UT WOS:000352313200008 ER PT J AU Squires, L Lim, YC Miles, MP Feng, Z AF Squires, L. Lim, Y. C. Miles, M. P. Feng, Z. TI Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6 SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Dissimilar material joining; Aluminium alloy 7075-T6; Dual phase 980; Friction bit joining; Mechanical properties; Adhesive ID SELF-PIERCING RIVETS; ALUMINUM-ALLOY; PART 1; STRENGTH; MICROSTRUCTURE; PERFORMANCE; BIT AB A solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged,10 kN, while cross-tension specimens averaged 2.8 kN. Addition of adhesive with a thickness up to 500 mm provided a gain of similar to 50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its higher alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial. C1 [Squires, L.; Miles, M. P.] Brigham Young Univ, Mfg Engn Technol, Provo, UT 84602 USA. [Lim, Y. C.; Feng, Z.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Miles, MP (reprint author), Brigham Young Univ, Mfg Engn Technol, Provo, UT 84602 USA. EM mmiles@byu.edu RI Feng, Zhili/H-9382-2012; OI Feng, Zhili/0000-0001-6573-7933; Lim, Yong Chae/0000-0003-2177-3988 FU U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies; UT-Battelle, LLC for the U.S. Department of Energy [DE-AC05-00OR22725] FX This research was financially sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Lightweight Materials Program. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 24 TC 2 Z9 3 U1 0 U2 18 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAR PY 2015 VL 20 IS 3 BP 242 EP 248 DI 10.1179/1362171815Y.0000000013 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CF1NP UT WOS:000352313200009 ER PT J AU Yu, XH AF Yu, Xinghua TI Correlation of ferrite formation to creep properties of Cr-Mo steel welds SO WELDING IN THE WORLD LA English DT Article DE Graded materials; Tempering; Welding; Heat-affected zone; Creep; Electron microscopy ID X-RAY-DIFFRACTION; AUSTENITIC STAINLESS-STEEL; IN-SITU OBSERVATIONS; POWER-PLANT STEELS; PHASE-TRANSFORMATIONS; RESISTANT STEELS; IV CRACKING; CARBIDE; SOLIDIFICATION; BEHAVIOR AB A factor of four decreases from 16.0x10(-4) to 4.1 x 10(-4) %/h in steady state creep rate was observed in the fine-grained heat-affected zone (FGHAZ) of a Cr-Mo steel weld, by reducing the pre-weld tempering temperature from 760 to 650 degrees C. The current study used electron backscatter diffraction and synchrotron x-ray diffraction techniques to characterize the microstructure in the FGHAZ of the two tempering temperature conditions. The results showed carbide-free ferrite that formed in the FGHAZ of weldments that were pre-weld tempered at 760 degrees C, contributed to void formation resulting in lower creep strength. It is proposed that the formation of ferrite in the FGHAZ is due to the incomplete dissolution of Cr23C6 carbide at heating process during welding, which results in Cr enrichment adjacent to the undissolved Cr23C6 carbide. Dictra simulation confirmed ferrite formation at the carbide/austenite boundaries during Cr23C6 carbide dissolution. C1 [Yu, Xinghua] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Yu, Xinghua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Yu, XH (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA. EM xhyu.hit@gmail.com RI Yu, Xinghua/E-2254-2017 OI Yu, Xinghua/0000-0001-9605-8239 FU Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy FX This research was conducted as part of the Fossil Energy Advanced Research Materials Program, which is sponsored by the Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy. The author would like to thank Dr. Yukinori Yamamoto and Dr. Mike Santella from Oak Ridge National Lab (ORNL) for the mentoring and discussion. Dr. Terasaki and Dr. Komizo from Osaka University are thanked for their help and discussion on the synchrotron experiments. Mr. Thomas Muth from ORNL is thanked for technically reviewing the manuscript. The synchrotron radiation experiments were performed at the BL46XU of SPring-8 as the Priority Research Proposal (priority filed: industrial application) with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no. 2011B1968). NR 39 TC 0 Z9 0 U1 1 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0043-2288 EI 1878-6669 J9 WELD WORLD JI Weld. World PD MAR PY 2015 VL 59 IS 2 BP 251 EP 259 DI 10.1007/s40194-014-0200-5 PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA CF4EI UT WOS:000352501100010 ER PT J AU Xu, WH Lauer, K Yan, H Milanovic, V Lu, M Nazaretski, E AF Xu, Weihe Lauer, Kenneth Yan, Hui Milanovic, Veljko Lu, Ming Nazaretski, Evgeny TI Performance and characterization of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics SO AIP ADVANCES LA English DT Article ID MICROSCOPY; RESOLUTION; ACTUATION; NM AB X-ray microscopy is a powerful, non-invasive tool used for nanometer-scale resolution imaging, and it is widely applied in various areas of science and technology. To push the spatial resolution of x-ray microscopy studies in the hard x-ray regime below 10 nm, Multilayer Laue Lenses (MLL) can be used as nanofocusing elements. To ensure distortion-free x-ray imaging, high-stability microscopy systems are required. MEMS-based manipulators are a promising route to achieve high stability when used for alignment and manipulation of nanofocusing optics. In this work, we present a tip-tilt MEMS-based device suitable for MLL alignment. We fully characterize the device and demonstrate better-than 10 millidegree angular positioning resolution when utilizing capacitive displacement sensors, and better-than 0.8 millidegree resolution when using laser interferometry. (C) 2015 Author(s). C1 [Xu, Weihe; Lauer, Kenneth; Yan, Hui; Lu, Ming; Nazaretski, Evgeny] Brookhaven Natl Lab, Upton, NY 11973 USA. [Milanovic, Veljko] Mirrorcle Technol Inc, Richmond, CA 94804 USA. RP Nazaretski, E (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM enazaretski@bnl.gov FU US Department of Energy [DE-AC02-98CH10886] FX We acknowledge D. Kuhne (BNL) for machining/assembling of mechanical parts. Work at Brookhaven was supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. In part it was carried at the Centre for Functional Nanomaterials, Brookhaven National Laboratory. NR 24 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAR PY 2015 VL 5 IS 3 AR 037137 DI 10.1063/1.4916677 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CF3LG UT WOS:000352449500038 ER PT J AU Farooq, W Moon, M Ryu, BG Suh, WI Shrivastav, A Park, MS Mishra, SK Yang, JW AF Farooq, Wasif Moon, Myounghoon Ryu, Byung-gon Suh, William I. Shrivastav, Anupama Park, Min S. Mishra, Sanjiv K. Yang, Ji-Won TI Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; Chlorella vulgaris; Reuse of water; Harvest; Iron removal; Biomass; Lipids; Biodiesel ID BIOMASS PRODUCTION; MICROALGAE; FLOCCULATION; CULTURES; GROWTH; ALGAE AB The large water footprint is one of the major bottlenecks for the sustainable microalgae-based biorefinery. In order to reduce the amount of water that is needed for mass cultivation of microalgae, the reusability of culture medium for further algal growth was tested. Chlorella vulgaris was cultivated in recycled medium that was obtained from harvesting microalgal cells by using either centrifugation or flocculation with FeCl3 or alum. The present study shows that centrifugation and flocculation with FeCl3 are equally effective (>90%) for harvesting C. vulgaris without any deleterious effects on algal growth when recycled media was used. However, even low concentration (<5 ppm) of residual alum was shown to inhibit microalgal growth. More interestingly, the recycled media obtained after centrifugation or flocculation with FeCl3 had a positive effect on biomass and lipid productivity of C. vulgaris. Extracellular substances such as carbohydrate, proteins, or ferric ions in the recycled media appear to cause these positive effects. Furthermore, change of pH to 2-3 and washing with water were found to effectively remove the residual ferric ions that are present in either harvested biomass or biodiesel, respectively. These results suggest that the use of recycled medium for microalgal cultivation is possible, and the choice of harvest methods must be carefully made when the recycling of culture medium is considered for microalgal cultivation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Farooq, Wasif; Moon, Myounghoon; Ryu, Byung-gon; Yang, Ji-Won] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. [Suh, William I.; Shrivastav, Anupama; Park, Min S.; Mishra, Sanjiv K.; Yang, Ji-Won] Korea Adv Inst Sci & Technol, Adv Biomass R&D Ctr, Taejon 305701, South Korea. [Park, Min S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Farooq, Wasif] Natl Sci & Technol NUST, Sch Chem & Mat Engn, Islamabad 44000, Pakistan. RP Mishra, SK (reprint author), Korea Adv Inst Sci & Technol, Adv Biomass R&D Ctr, 291 Daehak Ro, Taejon 305701, South Korea. EM sanjivkm@kaist.ac.kr; jwyang@kaist.a.kr RI Yang, Ji-Won/C-1933-2011; Mishra, Sanjiv/I-4156-2014 OI Mishra, Sanjiv/0000-0002-0403-6575 FU Advanced Biomass R&D Center (ABC) of Korea Grant - Ministry of Science, ICT and Future Planning [ABC-2010-0029728] FX This work was supported by the Advanced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728). NR 26 TC 12 Z9 12 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD MAR PY 2015 VL 8 BP 1 EP 7 DI 10.1016/j.algal.2014.12.007 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CF1AB UT WOS:000352274800001 ER PT J AU Farrow, T Yang, N Doria, S Belianinov, A Jesse, S Arruda, TM Balestrino, G Kalinin, SV Kumar, A AF Farrow, Tim Yang, Nan Doria, Sandra Belianinov, Alex Jesse, Stephen Arruda, Thomas M. Balestrino, Giuseppe Kalinin, Sergei V. Kumar, Amit TI Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films SO APL MATERIALS LA English DT Article ID IONIC-ELECTRONIC CONDUCTORS; CEO2 SINGLE-CRYSTALS; OXIDE THIN-FILMS; DOPED CERIA; ELECTRICAL-CONDUCTIVITY; TRANSPORT; DIFFUSION; SOLIDS; STRAIN AB Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Farrow, Tim; Kumar, Amit] Queens Univ Belfast, Sch Math & Phys, Ctr Nanostruct Media, Belfast BT7 1NN, Antrim, North Ireland. [Yang, Nan] CNR SPIN, I-00166 Rome, Italy. [Yang, Nan] Univ Niccolo Cusano, Fac Engn, I-00166 Rome, Italy. [Doria, Sandra; Balestrino, Giuseppe] CNR SPIN, I-00133 Rome, Italy. [Doria, Sandra; Balestrino, Giuseppe] Univ Roma Tor Vergata, DICCI Dipartiment, I-00133 Rome, Italy. [Belianinov, Alex; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Arruda, Thomas M.] Salve Regina Univ, Dept Chem, Newport, RI 02840 USA. RP Farrow, T (reprint author), Queens Univ Belfast, Sch Math & Phys, Ctr Nanostruct Media, Belfast BT7 1NN, Antrim, North Ireland. EM a.kumar@qub.ac.uk RI Kumar, Amit/C-9662-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; OI Kumar, Amit/0000-0002-1194-5531; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Belianinov, Alex/0000-0002-3975-4112 FU Scientific User Facilities Division, U.S. Department of Energy; Royal Society [RG130604]; Engineering and Physical Sciences Research Council [EP/K502911/1, EP/M506400/1] FX Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. A.K. acknowledges support from the Royal Society (No. RG130604). This work was also supported by the Engineering and Physical Sciences Research Council [grant number EP/K502911/1 and EP/M506400/1]. NR 45 TC 2 Z9 2 U1 4 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAR PY 2015 VL 3 IS 3 AR 036106 DI 10.1063/1.4914943 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CF3LN UT WOS:000352450200007 ER PT J AU Zou, K Ismail-Beigi, S Kisslinger, K Shen, X Su, D Walker, FJ Ahn, CH AF Zou, K. Ismail-Beigi, Sohrab Kisslinger, Kim Shen, Xuan Su, Dong Walker, F. J. Ahn, C. H. TI LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system SO APL MATERIALS LA English DT Article ID LAALO3/SRTIO3 INTERFACE; SUPERCONDUCTIVITY; TEMPERATURE; MOBILITY; OXIDES; SRTIO3; KTAO3 AB We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO3, and a band insulator, KTaO3. For LaTiO3/KTaO3 interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO3-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm(2)/V s) of SrTiO3 at room temperature. By using KTaO3, we achieve mobilities in LaTiO3/KTaO3 interfaces as high as 21 cm(2)/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO3. By density functional theory, we attribute the higher mobility in KTaO3 2DEGs to the smaller effective mass for electrons in KTaO3. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Zou, K.; Ismail-Beigi, Sohrab; Walker, F. J.; Ahn, C. H.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Zou, K.; Ismail-Beigi, Sohrab; Walker, F. J.; Ahn, C. H.] Yale Univ, CRISP, New Haven, CT 06520 USA. [Kisslinger, Kim; Shen, Xuan; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Shen, Xuan] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Shen, Xuan] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China. RP Zou, K (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. RI Zou, Ke/D-2322-2014; Kisslinger, Kim/F-4485-2014; Ismail-Beigi, Sohrab/F-2382-2014; Su, Dong/A-8233-2013; OI Zou, Ke/0000-0002-1181-1779; Ismail-Beigi, Sohrab/0000-0002-7331-9624; Su, Dong/0000-0002-1921-6683; Walker, Frederick/0000-0002-8094-249X FU AFOSR [FA9550-12-1-0279]; National Science Foundation [DMR 1119826]; U.S. Department of Energy, Office of Basic Energy Sciences Division of Materials Science and Engineering [DE-AC02-98CH10886]; China Scholarship Council; Brookhaven National Laboratory FX This research is sponsored by the AFOSR under Grant No. FA9550-12-1-0279. S.I.B. acknowledges support from the National Science Foundation DMR 1119826 (CRISP). The work at the Center for Functional Nanomaterials, Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Division of Materials Science and Engineering, under Contract No. DE-AC02-98CH10886. X.S. thanks the China Scholarship Council and Brookhaven National Laboratory for financial support. NR 44 TC 9 Z9 9 U1 13 U2 69 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAR PY 2015 VL 3 IS 3 AR 036104 DI 10.1063/1.4914310 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CF3LN UT WOS:000352450200005 ER PT J AU Junghans, A Watkins, EB Barker, RD Singh, S Waltman, MJ Smith, HL Pocivavsek, L Majewski, J AF Junghans, Ann Watkins, Erik B. Barker, Robert D. Singh, Saurabh Waltman, Mary Jo Smith, Hillary L. Pocivavsek, Luka Majewski, Jaroslaw TI Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces SO BIOINTERPHASES LA English DT Article ID INTERNAL-REFLECTION FLUORESCENCE; ATOMIC-FORCE MICROSCOPY; ELECTRICAL-IMPEDANCE SPECTROSCOPY; INTERFERENCE-CONTRAST MICROSCOPY; PULMONARY ENDOTHELIAL-CELLS; MODEL BIOLOGICAL MEMBRANE; PRECORNEAL TEAR FILM; SUBSTRATE CONTACTS; LIPID-MEMBRANES; BLOCK-COPOLYMER AB Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of softcondensed material. These materials include model biophysical systems as well as in situ living tissue at the solid-liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5-5000 angstrom at various buried, for example, solid-liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. In the current report, the authors would like to highlight some of our recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials. (C) 2015 American Vacuum Society. C1 [Junghans, Ann; Singh, Saurabh; Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, MPA CINT Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Watkins, Erik B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, MPA Lujan Neutron Scattering Ctr 11, Los Alamos, NM 87545 USA. [Watkins, Erik B.; Barker, Robert D.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Waltman, Mary Jo] Los Alamos Natl Lab, Bioenergy & Biome Sci, Biosci Div, Los Alamos, NM 87545 USA. [Smith, Hillary L.] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Pocivavsek, Luka] Univ Pittsburgh, Med Ctr, Dept Surg, Pittsburgh, PA 15213 USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, MPA CINT Lujan Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA. EM jarek@lanl.gov RI Barker, Robert/E-6386-2012; Junghans, Ann/A-4257-2011 OI Barker, Robert/0000-0002-8645-5385; Junghans, Ann/0000-0001-7061-4663 FU DOE Office of Basic Energy Sciences; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396] FX This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract No. DE-AC52-06NA25396. The authors thank the ISIS Neutron Source (STFC, UK) for access to neutron facilities on POLREF through Proposal No. RB1120119. NR 104 TC 2 Z9 2 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1934-8630 EI 1559-4106 J9 BIOINTERPHASES JI Biointerphases PD MAR PY 2015 VL 10 IS 1 AR 019014 DI 10.1116/1.4914948 PG 12 WC Biophysics; Materials Science, Biomaterials SC Biophysics; Materials Science GA CE8AL UT WOS:000352063000023 PM 25779088 ER PT J AU Elzek, MA Rodland, KD AF Elzek, Mohamed A. Rodland, Karin D. TI Proteomics of ovarian cancer: functional insights and clinical applications SO CANCER AND METASTASIS REVIEWS LA English DT Review DE Ovarian cancer; Proteomics; Biomarker; Drug resistance; Subtypes ID LASER-CAPTURE MICRODISSECTION; PLATINUM-RESISTANT SUBLINES; GENE-EXPRESSION PROFILES; CELL-LINE; MASS-SPECTROMETRY; MALIGNANCY ALGORITHM; EPITHELIAL TUMORS; SEROUS CARCINOMA; PELVIC MASS; PACLITAXEL-RESISTANCE AB In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics' contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. We propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs. C1 [Elzek, Mohamed A.] Egybiotech Res & Biotechnol, Alexandria, Egypt. [Elzek, Mohamed A.; Rodland, Karin D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Elzek, MA (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM MohamedElzek@expertland.com FU National Cancer Institute (NCI) Early Detection Research Network [ACN12003-001-00000]; National Institutes of Health [5 U24 CA160019-03]; Department of Energy [DE-AC05-76RL0 1830] FX Portions of this work were supported by the National Cancer Institute (NCI) Early Detection Research Network Interagency Agreement ACN12003-001-00000 (to K.D.R. and D.G.C.), and National Institutes of Health grant 5 U24 CA160019-03 (to K.D.R.). The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL0 1830. The opinions and assertions contained herein represent the personal views of the authors and are not to be construed as official or as representing the views of the Department of Energy, or the United States Government. NR 143 TC 5 Z9 5 U1 5 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-7659 EI 1573-7233 J9 CANCER METAST REV JI Cancer Metastasis Rev. PD MAR PY 2015 VL 34 IS 1 BP 83 EP 96 DI 10.1007/s10555-014-9547-8 PG 14 WC Oncology SC Oncology GA CE9ZX UT WOS:000352203400008 PM 25736266 ER PT J AU Kondic, L Dong, N Wu, Y Fowlkes, JD Rack, PD AF Kondic, L. Dong, N. Wu, Y. Fowlkes, J. D. Rack, P. D. TI Instabilities of nanoscale patterned metal films SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID THIN LIQUID-FILMS; NANOPARTICLE ARRAYS; LASER; EVOLUTION AB We consider the evolution and related instabilities of thin metal films liquefied by laser pulses. The films are patterned by large-scale perturbations and we discuss how these perturbations influence the dynamics. In the experiments, we find that the considered thin films dewet, leading to the formation of primary and secondary drops, with the locations of the primary ones coinciding with the original perturbations. Based on the results of the fully nonlinear time-dependent simulations, we discuss the details of the evolution leading to these patterns. Furthermore, in both experiments and simulations, we discuss the influence of the shape of the initial perturbations on the properties of the final patterns. C1 [Kondic, L.; Dong, N.] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. [Wu, Y.; Rack, P. D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, J. D.; Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA. RP Kondic, L (reprint author), New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. EM kondic@njit.edu OI Rack, Philip/0000-0002-9964-3254 FU NSF [CBET-1235710, CBET-1235651]; TN-SCORE program - NSF EPS [1004083]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX L. Kondic and N. Dong acknowledge support by NSF grant No. CBET-1235710. Y. Wu acknowledges support from the TN-SCORE program funded by NSF EPS 1004083. J.D. Fowlkes acknowledges that the portion of this work related to the deposition of thin films and nanolithography was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. P.D. Rack acknowledges support from NSF grant No. CBET-1235651. NR 29 TC 1 Z9 1 U1 1 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2015 VL 224 IS 2 BP 369 EP 378 DI 10.1140/epjst/e2015-02366-2 PG 10 WC Physics, Multidisciplinary SC Physics GA CF6FE UT WOS:000352651600014 ER PT J AU Havstad, MA Miles, RR Hsieh, H AF Havstad, Mark A. Miles, Robin R. Hsieh, Henry (Shang-Rou) TI Transient thermal protection of film covering circular aperture by sublimation and weak decomposition SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Sublimation; Heat transfer; Sensitivity analysis; Variance decomposition; Latin hypercube ID POLYIMIDE; ABLATION; SURFACE; DEGRADATION; PYROLYSIS; MECHANISM; GRAPHITE; CARBON AB Unwanted heating of sensitive surfaces in harsh thermal environments can be prevented by precise application of sacrificial materials such as sublimation layers and pyrolyzing films. The use of sublimation for the protection of circular polyimide membranes subjected to brief (similar to 100 ms) heating by infrared radiation and hot (6000 K) inert gas convection is analyzed. Selection of sublimation material and sublimation layer and membrane thickness is considered with emphasis on providing sufficient thermal protection yet negligible unwanted material remaining at the end of a specified heating period. Though the analysis here is general, the motivation is protection of the polyimide films covering the laser entrance holes on IFE (inertial fusion energy) hohlraums being injected into the hot gas (xenon) protecting IFE reactor chambers. Both one and two dimensional thermal models are used to develop a robust thermal concept. Sensitivity analyses (SA) methods are exercised to show where the design may be vulnerable and which input parameters have the greatest effect on performance and likelihood of success. For the design and conditions considered, methane sublimating layers are probably preferred over xenon or pentane. (C) 2015 Elsevier B.V. All rights reserved. C1 [Havstad, Mark A.; Miles, Robin R.; Hsieh, Henry (Shang-Rou)] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hsieh, H (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM hsieh6@llnl.gov FU agency of the United States government; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.; Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 31 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD MAR PY 2015 VL 92 BP 59 EP 68 DI 10.1016/j.fusengdes.2015.01.031 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CF7QF UT WOS:000352750700009 ER PT J AU Xu, W Neill, T Yang, Y Hu, Z Cleveland, E Wu, Y Hutten, R Xiao, X Stock, SR Shevrin, D Kaul, K Brendler, C Iozzo Renato, V Seth, P AF Xu, W. Neill, T. Yang, Y. Hu, Z. Cleveland, E. Wu, Y. Hutten, R. Xiao, X. Stock, S. R. Shevrin, D. Kaul, K. Brendler, C. Iozzo Renato, V. Seth, P. TI The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer SO GENE THERAPY LA English DT Article ID SKELETAL-RELATED EVENTS; BETA RECEPTOR-II; BREAST-CANCER; GROWTH; MET; CELLS; THERAPY; MATRIX; SUPPRESSION; ACTIVATION AB In an effort to develop a new therapy for prostate cancer (PCa) bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/beta-catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels and inhibited tumor cell migration. To examine the antitumor response of Ad. dcn, PC-3-luc cells were inoculated in the left heart ventricle to establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum tartrate-resistant acid phosphatase 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia and an increase in the animal survival. Based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for PCa bone metastasis. C1 [Xu, W.; Yang, Y.; Seth, P.] Univ Chicago, NorthShore Res Inst, Dept Med, Gene Therapy Program, Evanston, IL 60201 USA. [Neill, T.; Iozzo Renato, V.] Thomas Jefferson Univ, Kimmel Canc Ctr, Dept Pathol Anat & Cell Biol, Philadelphia, PA 19107 USA. [Neill, T.; Iozzo Renato, V.] Thomas Jefferson Univ, Kimmel Canc Ctr, Canc Cell Biol & Signaling Program, Philadelphia, PA 19107 USA. [Hu, Z.] Natl Inst Food & Drug Control, Div In Vitro Diagnost Reagents 1, Beijing, Peoples R China. [Cleveland, E.; Kaul, K.] NorthShore Res Inst, Dept Pathol, Evanston, IL USA. [Wu, Y.] NorthShore Res Inst, Dept Radiol, Image Proc Lab, Evanston, IL USA. [Hutten, R.] Argonne Natl Lab, Adv Photon Source, Lemont, IL USA. [Stock, S. R.] Northwestern Univ, Dept Cell & Mol Biol, Chicago, IL 60611 USA. [Shevrin, D.] NorthShore Res Inst, Dept Med, Evanston, IL USA. [Brendler, C.] NorthShore Univ HealthSytem, Dept Surg, Evanston, IL USA. RP Seth, P (reprint author), Univ Chicago, Evanston Hosp, NorthShore Res Inst, Gene Therapy Program,Dept Med, 2650 Ridge Ave,Room B 652, Evanston, IL 60201 USA. EM pseth@northshore.org OI Iozzo, Renato/0000-0002-5908-5112 FU National Institutes of Health [R01CA12738, R01CA39481]; John and Carol Walter Center for Urological Health, NorthShore University HealthSystem; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The work was funded in part by the National Institutes of Health grant # R01CA12738 (PS), grant # R01CA39481 (RVI), and philanthropic support through John and Carol Walter Center for Urological Health, NorthShore University HealthSystem. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We are thankful to Janardan Khandekar, Theodore Mazzone, Bruce Brockstein and Michael Caplan for their continuous support. NR 49 TC 7 Z9 7 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0969-7128 EI 1476-5462 J9 GENE THER JI Gene Ther. PD MAR PY 2015 VL 22 IS 3 BP 247 EP 256 DI 10.1038/gt.2014.110 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA CE9QX UT WOS:000352179600004 PM 25503693 ER PT J AU Commer, M Hoversten, GM Um, ES AF Commer, Michael Hoversten, G. Michael Um, Evan Schankee TI Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure SO GEOPHYSICS LA English DT Article ID 4-ELECTRODE SURFACE ARRAY; LINE SOURCE; FIELD MEASUREMENTS; POTENTIAL-FIELD; IP RESPONSE; DIFFUSION; POLARIZABILITIES; SIMULATION; SCATTERING; CONDUCTOR AB Including highly conductive steel infrastructure into electromagnetic (EM) earth modeling is motivated by the fact that long metal-cased boreholes have the potential to be used as boosting antennas that enable larger source dipole moments and greater signal penetration depths. Unfortunately, geophysical algorithms designed to simulate EM responses over rather regional scales are complicated by material property contrasts and structure geometries that are more typical for EM engineering applications. Hence, the great majority of earth-modeling algorithms that consider EM responses from steel-cased boreholes use integral-equation methods. To be able to model complex casing scenarios, we revisited the finite-difference time-domain (FDTD) method to advance the modeling of transient-EM field responses from steelcased boreholes. A time-dependent function that allows for larger FDTD time steps in the DuFort-Frankel method was developed, alleviating the generally large computational overhead. We compared our method against three different kinds of benchmark solutions to demonstrate the reliability of the FDTD field solutions. These test cases were carried out to check the feasibility of a final hydraulic fracturing study. Images of the electric current distribution in a sheetlike rock fracture were calculated for the cases with and without the presence of a connecting borehole casing, demonstrating the casing's potential of illuminating deep target zones. C1 [Commer, Michael; Um, Evan Schankee] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hoversten, G. Michael] Chevron Energy Technol Co, CoRE Leveraged Res, San Ramon, CA USA. RP Commer, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM mcommer@lbl.gov; hovg@chevron.com; esum@lbl.gov RI Commer, Michael/G-3350-2015; Um, Evan/E-9414-2015 OI Commer, Michael/0000-0003-0015-9217; FU Chevron Energy Technology Company FX This work was carried out at Lawrence Berkeley National Laboratory and was funded by Chevron Energy Technology Company. We thank E. Gasperikova, J. T. Smith, and H. Frank Morrison for providing the UXO algorithm and guidance. We thank M. Everett, D. V. Fitterman, and one anonymous reviewer for their helpful comments that helped improve this article. NR 45 TC 6 Z9 6 U1 3 U2 15 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2015 VL 80 IS 2 BP E147 EP E162 DI 10.1190/GEO2014-0324.1 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF0FO UT WOS:000352218700027 ER PT J AU Robinson, J Johnson, T Slater, L AF Robinson, Judith Johnson, Timothy Slater, Lee TI Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity SO GEOPHYSICS LA English DT Article ID 3-D RESISTIVITY; TOMOGRAPHY DATA; DC RESISTIVITY; RIVER-WATER; INVERSION; AQUIFER; CONSTRAINTS; SENSITIVITY; BOUNDARY; MODELS AB There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured rock through 3D inversion and accurate modeling of boreholes. However, deregularization of localized features can result in significant electrical conductivity artifacts, especially when representing features with a high degree of spatial uncertainty. C1 [Robinson, Judith; Slater, Lee] Rutgers State Univ, Newark, NJ 07102 USA. [Johnson, Timothy] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Robinson, J (reprint author), Rutgers State Univ, Newark, NJ 07102 USA. EM judy.robinson@rutgers.edu; tj@pnnl.gov; lslater@andromeda.rutgers.edu FU U.S. Department of Defense under the Environmental Security Technology Certification Program [ER 201118] FX Funding for this project was provided by the U.S. Department of Defense under the Environmental Security Technology Certification Program ER 201118 (L. Slater, PI). Inverse computations were performed on the Pacific Northwest National Laboratory Institutional Computing System. We are grateful to A. Binley (Lancaster University) for providing the original Middlebarrow data set and field notes for reevaluation of this work and for providing R2 for 2D reinversion of this data set. This manuscript was improved considerably thanks to detailed comments received from three anonymous reviewers. NR 30 TC 1 Z9 1 U1 2 U2 17 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2015 VL 80 IS 2 BP E49 EP E61 DI 10.1190/GEO2014-0138.1 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF0FO UT WOS:000352218700020 ER PT J AU Gao, DL Di, HB AF Gao, Dengliang Di, Haibin TI Extreme curvature and extreme flexure analysis for fracture characterization from 3D seismic data: New analytical algorithms and geologic implications SO GEOPHYSICS LA English DT Article ID ATTRIBUTES; BASIN; COMPUTATIONS; GRADIENT AB Fracture characterization is fundamental to the reliable prediction of fractured reservoirs; however, it is difficult and expensive to obtain detailed fracture information required for reservoir prediction due to the lack of direct observational data in the subsurface. Here we develop seismic analysis methods to characterize fractured reservoirs based on reflection geometry related to bending and shearing of reservoir formations. Among various geometric attributes, we focus on extreme curvature and extreme flexure that are considered effective at detecting fractures. Extreme curvature refers to the signed absolute maximum curvature at a specific azimuth where the curve shape is the tightest, whereas extreme flexure refers to the signed absolute maximum gradient of curvature at a specific azimuth where the curve shape changes the most. We implement new algorithms based on analytical equations to calculate extreme curvature and extreme flexure along with the corresponding azimuth from 3D seismic data. Results from 3D seismic surveys demonstrate that the new algorithms help resolve structural details that are otherwise not easily discernible from regular amplitude and conventional attributes. Most importantly, the algorithms hold the potential to volumetrically detect and visualize fractures in an automatic and quantitative manner. We conclude that extreme curvature and extreme flexure attributes have important geologic implications for predicting fundamental fracture properties that are critical to fractured reservoir characterization in the subsurface. C1 [Gao, Dengliang; Di, Haibin] W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. [Gao, Dengliang] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Gao, DL (reprint author), W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. EM dengliang.gao@mail.wvu.edu FU URS Outstanding NETL/RUA Research Award [400U.OUTSTAN-DIRD] FX This study was funded by URS 2013 Outstanding NETL/RUA Research Award to D. Gao (project ID number: 400U.OUTSTAN-DIRD). Thanks go to K. Marfurt for his offer of the newly processed prestack depth-migrated seismic data over Teapot Dome in Wyoming. The Kirchhoff prestack depth migration was computed by S. Aktepe at the University of Houston. Data from the Netherlands North Sea were downloaded from the OpendTect Open Seismic Repository. Thanks go to R. Heggland, A. Barnes, and two other anonymous peer reviewers for their comments and suggestions that helped improve the quality of the paper. Thanks go to Paradigm Geophysical, Schlumberger, and dGB for their software. This paper is a contribution to the West Virginia University Advanced Energy Initiative program. NR 32 TC 5 Z9 5 U1 0 U2 3 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2015 VL 80 IS 2 BP IM11 EP IM20 DI 10.1190/GEO2014-0185.1 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF0FO UT WOS:000352218700035 ER PT J AU Zhang, XX Tan, SR AF Zhang, Xiangxiong Tan, Sirui TI A simple and accurate discontinuous Galerkin scheme for modeling scalar-wave propagation in media with curved interfaces SO GEOPHYSICS LA English DT Article ID FINITE-ELEMENT-METHOD; EQUATIONS; DOMAINS AB Conventional high-order discontinuous Galerkin (DG) schemes suffer from interface errors caused by the misalignment between straight-sided elements and curved material interfaces. We have developed a novel DG scheme to reduce those errors. Our new scheme uses the correct normal vectors to the curved interfaces, whereas the conventional scheme uses the normal vectors to the element edge. We modify the numerical fluxes to account for the curved interface. Our numerical modeling examples demonstrate that our new discontinuous Galerkin scheme gives errors with much smaller magnitudes compared with the conventional scheme, although both schemes have second-order convergence. Moreover, our method significantly suppresses the spurious diffractions seen in the results obtained using the conventional scheme. The computational cost of our scheme is similar to that of the conventional scheme. The new DG scheme we developed is, thus, particularly useful for large-scale scalar-wave modeling involving complex subsurface structures. C1 [Zhang, Xiangxiong] MIT, Dept Math, Cambridge, MA 02139 USA. [Tan, Sirui] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA. RP Zhang, XX (reprint author), Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. EM zhan1966@purdue.edu; siruitan@hotmail.com RI Tan, Sirui/H-9565-2015 OI Tan, Sirui/0000-0002-8150-3261 FU U.S. Department of Energy [DE-AC52-06NA25396] FX The work of S. Tan was supported by the U.S. Department of Energy through contract no. DE-AC52-06NA25396 to Los Alamos National Laboratory. We thank the associate editor and two anonymous reviewers for their valuable comments. NR 18 TC 3 Z9 3 U1 0 U2 0 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2015 VL 80 IS 2 BP T83 EP T89 DI 10.1190/GEO2014-0164.1 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF0FO UT WOS:000352218700046 ER PT J AU Khare, A Saxena, A AF Khare, Avinash Saxena, Avadh TI Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID SCATTERING; SYMMETRY AB For a number of nonlocal nonlinear equations such as nonlocal, nonlinear Schrodinger equation (NLSE), nonlocal Ablowitz-Ladik (AL), nonlocal, saturable discrete NLSE (DNLSE), coupled nonlocal NLSE, coupled nonlocal AL, and coupled nonlocal, saturable DNLSE, we obtain periodic solutions in terms of Jacobi elliptic functions as well as the corresponding hyperbolic soliton solutions. Remarkably, in all the six cases, we find that unlike the corresponding local cases, all the nonlocal models simultaneously admit both the bright and the dark soliton solutions. Further, in all the six cases, not only the elliptic functions dn(x, m) and cn(x, m) with modulus m but also their linear superposition is shown to be an exact solution. Finally, we show that the coupled nonlocal NLSE not only admits solutions in terms of Lame polynomials of order 1 but also admits solutions in terms of Lame polynomials of order 2, even though they are not the solution of the uncoupled nonlocal problem. We also remark on the possible integrability in certain cases. (C) 2015 AIP Publishing LLC. C1 [Khare, Avinash] Indian Inst Sci Educ & Res, Pune 411021, Maharashtra, India. [Saxena, Avadh] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Saxena, A (reprint author), Indian Inst Sci Educ & Res, Pune 411021, Maharashtra, India. FU U.S. Department of Energy FX This work was supported in part by the U.S. Department of Energy. NR 20 TC 9 Z9 9 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0022-2488 EI 1089-7658 J9 J MATH PHYS JI J. Math. Phys. PD MAR PY 2015 VL 56 IS 3 AR 032104 DI 10.1063/1.4914335 PG 27 WC Physics, Mathematical SC Physics GA CE9EY UT WOS:000352147900007 ER PT J AU Polking, MJ Alivisatos, AP Ramesh, R AF Polking, Mark J. Alivisatos, A. Paul Ramesh, Ramamoorthy TI Synthesis, physics, and applications of ferroelectric nanomaterials SO MRS COMMUNICATIONS LA English DT Article ID BARIUM-TITANATE; PHASE-TRANSITION; BATIO3 NANOPARTICLES; NANOWIRE ARRAYS; PYROELECTRIC NANOGENERATORS; 2ND-HARMONIC GENERATION; NANOCRYSTALLINE BATIO3; OXIDE NANOCRYSTALS; CRYSTAL-STRUCTURE; RAMAN-SCATTERING AB Improvement of both solution and vapor-phase synthetic techniques for nanoscale ferroelectrics has fueled progress in fundamental understanding of the polar phase at reduced dimensions, and this physical insight has pushed the boundaries of ferroelectric phase stability and polarization switching to sub-10 nm dimensions. The development and characterization of new ferroelectric nanomaterials has opened new avenues toward future nonvolatile memories, devices for energy storage and conversion, biosensors, and many other applications. This prospective will highlight recent progress on the synthesis, fundamental understanding, and applications of zero- and one-dimensional ferroelectric nanomaterials and propose new directions for future study in all three areas. C1 [Polking, Mark J.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Alivisatos, A. Paul; Ramesh, Ramamoorthy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@berkeley.edu; rramesh@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 NR 110 TC 2 Z9 2 U1 6 U2 60 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD MAR PY 2015 VL 5 IS 1 BP 27 EP 44 DI 10.1557/mrc.2015.8 PG 18 WC Materials Science, Multidisciplinary SC Materials Science GA CF5XC UT WOS:000352629600003 ER PT J AU Achtyl, JL Unocic, RR Xu, LJ Cai, Y Raju, M Zhang, WW Sacci, RL Vlassiouk, IV Fulvio, PF Ganesh, P Wesolowski, DJ Dai, S van Duin, ACT Neurock, M Geiger, FM AF Achtyl, Jennifer L. Unocic, Raymond R. Xu, Lijun Cai, Yu Raju, Muralikrishna Zhang, Weiwei Sacci, Robert L. Vlassiouk, Ivan V. Fulvio, Pasquale F. Ganesh, Panchapakesan Wesolowski, David J. Dai, Sheng van Duin, Adri C. T. Neurock, Matthew Geiger, Franz M. TI Aqueous proton transfer across single-layer graphene SO NATURE COMMUNICATIONS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; 2ND-HARMONIC GENERATION; WATER INTERFACE; CHARGED INTERFACE; OXIDE MEMBRANES; DIFFUSION; SURFACE; TRANSPORT; CHROMIUM(VI) AB Proton transfer across single-layer graphene proceeds with large computed energy barriers and is therefore thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid-base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energy barriers of 0.61-0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. Unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons. C1 [Achtyl, Jennifer L.; Geiger, Franz M.] Northwestern Univ, Dept Chem, Evanston, IL 60201 USA. [Unocic, Raymond R.; Ganesh, Panchapakesan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Xu, Lijun; Cai, Yu; Neurock, Matthew] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. [Xu, Lijun; Cai, Yu; Neurock, Matthew] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Neurock, Matthew] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Raju, Muralikrishna] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Zhang, Weiwei; van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16801 USA. [Sacci, Robert L.; Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37931 USA. [Fulvio, Pasquale F.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Fulvio, Pasquale F.; Wesolowski, David J.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Geiger, FM (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60201 USA. EM geigerf@chem.northwestern.edu RI Dai, Sheng/K-8411-2015; Ganesh, Panchapakesan/E-3435-2012; Vlassiouk, Ivan/F-9587-2010; OI Dai, Sheng/0000-0002-8046-3931; Ganesh, Panchapakesan/0000-0002-7170-2902; Vlassiouk, Ivan/0000-0002-5494-0386; Unocic, Raymond/0000-0002-1777-8228 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center,an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Science FX This work was supported by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Science. Microscopy conducted as part of a user proposal at ORNL's Center for Nanophase Materials Sciences (CNMS), which is an Office of Science User Facility. We also gratefully acknowledge the helpful discussions with Wesley R. Burghardt. NR 67 TC 29 Z9 29 U1 27 U2 191 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6539 DI 10.1038/ncomms7539 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7EW UT WOS:000352720000029 PM 25781149 ER PT J AU Belianinov, A Kalinin, SV Jesse, S AF Belianinov, Alexei Kalinin, Sergei V. Jesse, Stephen TI Complete information acquisition in dynamic force microscopy SO NATURE COMMUNICATIONS LA English DT Article AB Scanning probe microscopy has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of scanning probe measurements is the information transfer from the tip-surface junction to the measurement system. This process reduces responses at multiple degrees of freedom of the probe to relatively few parameters recorded as images. Similarly, details of dynamic cantilever response at sub-microsecond time scales, higher-order eigenmodes and harmonics are lost by transitioning to the millisecond time scale of pixel acquisition. Hence, information accessible to the operator is severely limited, and its selection is biased by data processing methods. Here we report a fundamentally new approach for dynamic Atomic Force Microscopy imaging based on information-theory analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material's properties and their mutual interactions, and imaging at the information channel capacity limit. C1 [Belianinov, Alexei; Kalinin, Sergei V.; Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; sjesse@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU Oak Ridge National Laboratory, Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Research for (A.B., S.V.K. and S.J.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Polystyrene-polycaprolactone polymer blend test sample courtesy of Oxford Instruments, Asylum Research. NR 22 TC 8 Z9 8 U1 5 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6550 DI 10.1038/ncomms7550 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7EY UT WOS:000352720200006 PM 25766370 ER PT J AU Canton, SE Kjaer, KS Vanko, G van Driel, TB Adachi, SI Bordage, A Bressler, C Chabera, P Christensen, M Dohn, AO Galler, A Gawelda, W Gosztola, D Haldrup, K Harlang, T Liu, YZ Moller, KB Nemeth, Z Nozawa, S Papai, M Sato, T Sato, T Suarez-Alcantara, K Togashi, T Tono, K Uhlig, J Vithanage, DA Warnmark, K Yabashi, M Zhang, JX Sundstrom, V Nielsen, MM AF Canton, Sophie E. Kjaer, Kasper S. Vanko, Gyorgy van Driel, Tim B. Adachi, Shin-ichi Bordage, Amelie Bressler, Christian Chabera, Pavel Christensen, Morten Dohn, Asmus O. Galler, Andreas Gawelda, Wojciech Gosztola, David Haldrup, Kristoffer Harlang, Tobias Liu, Yizhu Moller, Klaus B. Nemeth, Zoltan Nozawa, Shunsuke Papai, Matyas Sato, Tokushi Sato, Takahiro Suarez-Alcantara, Karina Togashi, Tadashi Tono, Kensuke Uhlig, Jens Vithanage, Dimali A. Warnmark, Kenneth Yabashi, Makina Zhang, Jianxin Sundstrom, Villy Nielsen, Martin M. TI Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses SO NATURE COMMUNICATIONS LA English DT Article ID EXCITED-STATE; CHARGE-TRANSFER; FLUORESCENCE SPECTROSCOPY; EMISSION SPECTROSCOPY; SOLVATION DYNAMICS; BRIDGING LIGAND; CHEMICAL-BOND; 1ST STEP; COMPLEXES; SCATTERING AB Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor-acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. C1 [Canton, Sophie E.; Suarez-Alcantara, Karina] Lund Univ, Dept Synchrotron Radiat Instrumentat, S-22100 Lund, Sweden. [Kjaer, Kasper S.] Univ Copenhagen, Niels Bohr Inst, Ctr Mol Movies, DK-2100 Copenhagen, Denmark. [Kjaer, Kasper S.; van Driel, Tim B.; Christensen, Morten; Haldrup, Kristoffer; Nielsen, Martin M.] Tech Univ Denmark, Dept Phys, Ctr Mol Movies, DK-2800 Lyngby, Denmark. [Vanko, Gyorgy; Bordage, Amelie; Nemeth, Zoltan] Hungarian Acad Sci, Wigner Res Ctr Phys, H-1525 Budapest, Hungary. [Adachi, Shin-ichi; Nozawa, Shunsuke; Sato, Tokushi] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Bressler, Christian; Galler, Andreas; Gawelda, Wojciech] European XFEL, D-22761 Hamburg, Germany. [Bressler, Christian] Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany. [Chabera, Pavel; Harlang, Tobias; Uhlig, Jens; Vithanage, Dimali A.; Sundstrom, Villy] Lund Univ, Dept Chem Phys, S-22100 Lund, Sweden. [Dohn, Asmus O.] Tech Univ Denmark, Dept Chem, Lyngby, Denmark. [Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Liu, Yizhu; Warnmark, Kenneth; Zhang, Jianxin] Lund Univ, Dept Chem, Ctr Anal & Synth, S-22100 Lund, Sweden. [Sato, Takahiro; Yabashi, Makina] RIKEN SPring 8 Ctr, Sayo, Hyogo 6795148, Japan. [Togashi, Tadashi; Tono, Kensuke] Japan Synchrotron Radiat Res Inst JASRI, Sayo, Hyogo 6795198, Japan. RP Canton, SE (reprint author), Lund Univ, Dept Synchrotron Radiat Instrumentat, POB 118, S-22100 Lund, Sweden. EM sophie.canton@desy.de; kaspersk@gmail.com; mmee@fysik.dtu.dk RI Nielsen, Martin/A-5133-2009; Dohn, Asmus/K-2808-2015; Harlang, Tobias/M-6360-2015; Chabera, Pavel/B-4202-2014; Uhlig, Jens/A-5475-2010; Gosztola, David/D-9320-2011; Canton, Sophie/A-8432-2016; Vanko, Gyorgy/B-8176-2012; Haldrup, Kristoffer/J-6875-2013; Yabashi, Makina/A-2832-2015; Nemeth, Zoltan/B-7037-2014; Moller, Klaus Braagaard/B-7647-2014; Christensen, Morten/G-7870-2016; Gawelda, Wojciech/B-7878-2014; Sato, Takahiro/C-2306-2017; OI Nielsen, Martin/0000-0002-8135-434X; Harlang, Tobias/0000-0002-2056-6883; Chabera, Pavel/0000-0002-0531-5138; Uhlig, Jens/0000-0002-0528-0422; Gosztola, David/0000-0003-2674-1379; Vanko, Gyorgy/0000-0002-3095-6551; Haldrup, Kristoffer/0000-0002-0565-6397; Yabashi, Makina/0000-0002-2472-1684; Moller, Klaus Braagaard/0000-0002-9797-7437; Christensen, Morten/0000-0002-6626-7301; Gawelda, Wojciech/0000-0001-7824-9197; Papai, Matyas Imre/0000-0002-4819-0611 FU X-ray Free-Electron Laser Priority Strategy Program of MEXT,Japan; Swedish Research Council; Knut and Alice Wallenberg Foundation; Crafoord Foundation; Swedish Energy Administration; Science Faculty at Lund University (MAXIV); Science Faculty at Lund University (ESS initiative grant); Danish National Research Foundation Center for Molecular Movies; DANSCATT; Carlsberg Foundation; Lundbeck Foundation; European Research Council [ERC-AdvGVISCHEM-226136, ERC-StG-259709]; European XFEL; German Research Foundation (DFG) [SFB925]; Centre of Ultrafast Imaging (CUI); Hungarian Academy of Sciences via the Lendulet (Momentum) Program; Bolyai Fellowship; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project was supported by the X-ray Free-Electron Laser Priority Strategy Program of MEXT,Japan (to SA), the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Crafoord Foundation, the Swedish Energy Administration, the Science Faculty at Lund University (MAXIV and ESS initiative grant), the Danish National Research Foundation Center for Molecular Movies, DANSCATT, The Carlsberg Foundation, the Lundbeck Foundation, the European Research Council (ERC-AdvGVISCHEM-226136 to V.S. and ERC-StG-259709 to G.V.), by the European XFEL (CB, WG, AG), by the German Research Foundation (DFG, SFB925, TP A4), by the Centre of Ultrafast Imaging (CUI), the Hungarian Academy of Sciences via the Lendulet (Momentum) Program (G.V.), and the Bolyai Fellowship (Z.N.). The XFEL experiments were performed at the BL3 of SACLA with the approval of JASRI (Proposal No. 2012A8049). Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 70 TC 32 Z9 32 U1 19 U2 104 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6359 DI 10.1038/ncomms7359 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7EM UT WOS:000352719000001 PM 25727920 ER PT J AU Gu, Z Nowakowski, ME Carlton, DB Storz, R Im, MY Hong, JM Chao, WL Lambson, B Bennett, P Alam, MT Marcus, MA Doran, A Young, A Scholl, A Fischer, P Bokor, J AF Gu, Zheng Nowakowski, Mark E. Carlton, David B. Storz, Ralph Im, Mi-Young Hong, Jeongmin Chao, Weilun Lambson, Brian Bennett, Patrick Alam, Mohmmad T. Marcus, Matthew A. Doran, Andrew Young, Anthony Scholl, Andreas Fischer, Peter Bokor, Jeffrey TI Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains SO NATURE COMMUNICATIONS LA English DT Article ID QUANTUM CELLULAR-AUTOMATA; BIAXIAL ANISOTROPY; MICROSCOPY; FILMS AB Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. C1 [Gu, Zheng; Nowakowski, Mark E.; Hong, Jeongmin; Bennett, Patrick; Bokor, Jeffrey] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Carlton, David B.] Intel Corp, Santa Clara, CA 95054 USA. [Storz, Ralph] Thorlabs Inc, Newton, NJ 07860 USA. [Im, Mi-Young; Chao, Weilun; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Im, Mi-Young] Daegu Gyeongbuk Inst Sci & Technol, Daegu 711873, South Korea. [Lambson, Brian] iRunway, Santa Clara, CA 95054 USA. [Alam, Mohmmad T.] Intel Corp, Hillsboro, OR 97124 USA. [Marcus, Matthew A.; Doran, Andrew; Young, Anthony; Scholl, Andreas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 94056 USA. RP Bokor, J (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM jbokor@eecs.berkeley.edu RI Scholl, Andreas/K-4876-2012; Fischer, Peter/A-3020-2010; Foundry, Molecular/G-9968-2014; OI Fischer, Peter/0000-0002-9824-9343; Doran, Andrew/0000-0001-5158-4569 FU Western Institute of Nanoelectronics; Defense Advanced Research Projects Agency (DARPA); National Science Foundation (NSF) Center; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea - Ministry of Education, Science and Technology [2012K1A4A3053565] FX We gratefully acknowledge support from the Western Institute of Nanoelectronics, the Defense Advanced Research Projects Agency (DARPA), and the National Science Foundation (NSF) Center for Energy Efficient Electronics Science. Work at the Advanced Light Source, Center for X-ray Optics and the Molecular Foundry at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract number DE-AC02-05CH11231. M.-Y.I. and P.F. acknowledge support by the Leading Foreign Research Institute Recruitment Program (grant no. 2012K1A4A3053565) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. In addition, we acknowledge the Marvell Nanofabrication Laboratory for the cleanroom and machine shop facilities. NR 32 TC 6 Z9 6 U1 4 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6466 DI 10.1038/ncomms7466 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF6WJ UT WOS:000352697100007 PM 25774621 ER PT J AU Li, CS Melaet, G Ralston, WT An, K Brooks, C Ye, YF Liu, YS Zhu, JF Guo, JH Alayoglu, S Somorjai, GA AF Li, Cheng-Shiuan Melaet, Gerome Ralston, Walter T. An, Kwangjin Brooks, Christopher Ye, Yifan Liu, Yi-Sheng Zhu, Junfa Guo, Jinghua Alayoglu, Selim Somorjai, Gabor A. TI High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis SO NATURE COMMUNICATIONS LA English DT Article ID SUPERCRITICAL CARBON-DIOXIDE; CO2; HYDROGENATION; REDUCTION; NANOPARTICLES; EMISSIONS AB Carbon dioxide capture and use as a carbon feedstock presents both environmental and industrial benefits. Here we report the discovery of a hybrid oxide catalyst comprising manganese oxide nanoparticles supported on mesoporous spinel cobalt oxide, which catalyses the conversion of carbon dioxide to methanol at high yields. In addition, carboncarbon bond formation is observed through the production of ethylene. We document the existence of an active interface between cobalt oxide surface layers and manganese oxide nanoparticles by using X-ray absorption spectroscopy and electron energy-loss spectroscopy in the scanning transmission electron microscopy mode. Through control experiments, we find that the catalyst's chemical nature and architecture are the key factors in enabling the enhanced methanol synthesis and ethylene production. To demonstrate the industrial applicability, the catalyst is also run under high conversion regimes, showing its potential as a substitute for current methanol synthesis technologies. C1 [Li, Cheng-Shiuan; Melaet, Gerome; Ralston, Walter T.; An, Kwangjin; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Li, Cheng-Shiuan; Ralston, Walter T.; An, Kwangjin; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Li, Cheng-Shiuan] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu 31040, Taiwan. [Melaet, Gerome] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Brooks, Christopher] Honda Res Inst USA Inc, Columbus, OH 43212 USA. [Ye, Yifan; Liu, Yi-Sheng; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230029, Peoples R China. RP Alayoglu, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. EM salayoglu@lbl.gov; somorjai@berkeley.edu RI Melaet, Gerome/N-4879-2015; Foundry, Molecular/G-9968-2014; Zhu, Junfa/E-4020-2010 OI Melaet, Gerome/0000-0003-1414-1683; Zhu, Junfa/0000-0003-0888-4261 FU Chemical Science Division at the LBNL; Director, Office of Basic Energy Sciences; Division of Chemical Science, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Natural Science Foundation of China [U1232102]; Green Energy and Environmental Research Laboratories; Industrial Technology Research Institute (Hsinchu, Taiwan) FX The synthesis and catalysis part of this work was funded by the Chemical Science Division at the LBNL. X-ray absorption experiments were performed at the Advanced Light Source (LBNL), the electron microscopy imaging and spectroscopy were conducted at the Molecular Foundry Imaging Facility (LBNL). The LBNL is supported by the Director, Office of Basic Energy Sciences, the Division of Chemical Science, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Honda Research Institute, USA for funding the catalytic reactor. J.G. acknowledges the instrumentation support from Joint Center for Artificial Photosynthesis (JCAP) hub. J.Z. acknowledges the financial supports from the Natural Science Foundation of China (Grant No. U1232102). C.-S.L. is thanking the Green Energy and Environmental Research Laboratories, Industrial Technology Research Institute (Hsinchu, Taiwan) for his research grant. NR 23 TC 16 Z9 16 U1 19 U2 170 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6538 DI 10.1038/ncomms7538 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7EW UT WOS:000352720000028 PM 25754475 ER PT J AU van Sebille, E Scussolini, P Durgadoo, JV Peeters, FJC Biastoch, A Weijer, W Turney, C Paris, CB Zahn, R AF van Sebille, Erik Scussolini, Paolo Durgadoo, Jonathan V. Peeters, Frank J. C. Biastoch, Arne Weijer, Wilbert Turney, Chris Paris, Claire B. Zahn, Rainer TI Ocean currents generate large footprints in marine palaeoclimate proxies SO NATURE COMMUNICATIONS LA English DT Article ID SOUTHERN-HEMISPHERE WESTERLIES; PLANKTONIC-FORAMINIFERA; SEDIMENT TRAPS; SINKING PARTICLES; AGULHAS LEAKAGE; DATA SET; VARIABILITY; ATLANTIC; TEMPERATURE; TRAJECTORIES AB Fossils of marine microorganisms such as planktic foraminifera are among the cornerstones of palaeoclimatological studies. It is often assumed that the proxies derived from their shells represent ocean conditions above the location where they were deposited. Planktic foraminifera, however, are carried by ocean currents and, depending on the life traits of the species, potentially incorporate distant ocean conditions. Here we use high-resolution ocean models to assess the footprint of planktic foraminifera and validate our method with proxy analyses from two locations. Results show that foraminifera, and thus recorded palaeoclimatic conditions, may originate from areas up to several thousands of kilometres away, reflecting an ocean state significantly different from the core site. In the eastern equatorial regions and the western boundary current extensions, the offset may reach 1.5 degrees C for species living for a month and 3.0 degrees C for longer-living species. Oceanic transport hence appears to be a crucial aspect in the interpretation of proxy signals. C1 [van Sebille, Erik; Turney, Chris] Univ New S Wales, ARC Ctr Excellence Climate Syst Sci, Sch Biol Earth & Environm Sci, Sydney, NSW 2010, Australia. [van Sebille, Erik; Turney, Chris] Univ New S Wales, Climate Change Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2010, Australia. [Scussolini, Paolo; Peeters, Frank J. C.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Earth & Climate Cluster, NL-1081 HV Amsterdam, Netherlands. [Durgadoo, Jonathan V.; Biastoch, Arne] GEOMAR Helmholtz Ctr Ocean Res Kiel, D-24148 Kiel, Germany. [Weijer, Wilbert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Paris, Claire B.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Zahn, Rainer] Inst Catalana Recerca Estudis & Avancats, Barcelona 08010, Spain. [Zahn, Rainer] Univ Autonoma Barcelona, Dept Fis, Inst Ciencia & Tecnol Ambientals, Bellaterra 08193, Cerdanyola, Spain. RP van Sebille, E (reprint author), Univ New S Wales, ARC Ctr Excellence Climate Syst Sci, Sch Biol Earth & Environm Sci, Sydney, NSW 2010, Australia. EM e.van-sebille@imperial.ac.uk RI van Sebille, Erik/F-6781-2010; Weijer, Wilbert/A-7909-2010; Biastoch, Arne/B-5219-2014; OI van Sebille, Erik/0000-0003-2041-0704; Biastoch, Arne/0000-0003-3946-4390; Turney, Chris/0000-0001-6733-0993; Durgadoo, Jonathan/0000-0001-6297-5178 FU Australian Research Council [DE130101336, CE110001028]; Regional and Global Climate Modeling Program of the United States Department of Energy's Office of Science; Bundesministerium fur Bildung und Forschung [03G0835A]; ARC Laureate Fellowship [FL100100195]; GOMRI through C-IMAGE Consortium; European Community [238512] FX E.v.S. was supported by the Australian Research Council via grants DE130101336 and CE110001028. W.W. was supported by the Regional and Global Climate Modeling Program of the United States Department of Energy's Office of Science. J.V.D. and A.B. acknowledge funding by the Bundesministerium fur Bildung und Forschung project SPACES 03G0835A. C.T. acknowledges the support of an ARC Laureate Fellowship (FL100100195). C.B.P. is funded by GOMRI through C-IMAGE Consortium. P.S., J.V.D., F.P., A.B. and R.Z. acknowledge funding by the European Community's Seventh Framework Programme (FP7) Marie-Curie Initial Training Network 'GATEWAYS' under Grant Agreement 238512. We thank Kelsey Dyez for providing core top material of MD02-2524, Ian Hall and Margit Simon for providing core top material of CD154-18-13P, and the Trace Element Laboratory of Uni Research Bergen for enabling the Mg/Ca measurements. INALT01 CMS experiments were performed at the super-computer at Kiel University. The OFES simulation was conducted on the Earth Simulator under the support of JAMSTEC. NR 42 TC 9 Z9 9 U1 0 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6521 DI 10.1038/ncomms7521 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7EW UT WOS:000352720000011 PM 25735516 ER PT J AU Vinko, SM Ciricosta, O Preston, TR Rackstraw, DS Brown, CRD Burian, T Chalupsky, J Cho, BI Chung, HK Engelhorn, K Falcone, RW Fiokovinini, R Hajkova, V Heimann, PA Juha, L Lee, HJ Lee, RW Messerschmidt, M Nagler, B Schlotter, W Turner, JJ Vysin, L Zastrau, U Wark, JS AF Vinko, S. M. Ciricosta, O. Preston, T. R. Rackstraw, D. S. Brown, C. R. D. Burian, T. Chalupsky, J. Cho, B. I. Chung, H. -K. Engelhorn, K. Falcone, R. W. Fiokovinini, R. Hajkova, V. Heimann, P. A. Juha, L. Lee, H. J. Lee, R. W. Messerschmidt, M. Nagler, B. Schlotter, W. Turner, J. J. Vysin, L. Zastrau, U. Wark, J. S. TI Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY LASER; ELECTRON-IMPACT IONIZATION; RATE COEFFICIENTS; IONS; SIMULATIONS; CODE AB The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures similar to 30 eV to be several times higher than that predicted by standard semiempirical models. C1 [Vinko, S. M.; Ciricosta, O.; Preston, T. R.; Rackstraw, D. S.; Fiokovinini, R.; Wark, J. S.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Brown, C. R. D.] AWE Aldermaston, Dept Plasma Phys, Reading RG7 4PR, Berks, England. [Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Vysin, L.] Inst Phys ASCR, Prague 18221 8, Czech Republic. [Cho, B. I.] Inst Basic Sci, Ctr Relativist Laser Sci, Kwangju 500712, South Korea. [Cho, B. I.] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Kwangju 500712, South Korea. [Chung, H. -K.] IAEA, Nucl Data Sect, Atom & Mol Data Unit, A-1400 Vienna, Austria. [Engelhorn, K.; Falcone, R. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Falcone, R. W.; Lee, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Heimann, P. A.; Lee, H. J.; Nagler, B.; Schlotter, W.; Turner, J. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Messerschmidt, M.] Natl Sci Fdn, BioXFEL Sci & Technol Ctr, Buffalo, NY 14203 USA. [Zastrau, U.] Univ Jena, IOQ, D-07743 Jena, Germany. RP Vinko, SM (reprint author), Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England. EM sam.vinko@physics.ox.ac.uk RI Messerschmidt, Marc/F-3796-2010; Chalupsky, Jaromir/H-2079-2014; Cho, Byoung-ick/A-6294-2011 OI Messerschmidt, Marc/0000-0002-8641-3302; FU EPSRC [EP/G007187/1]; Royal Society University Research Fellowship; Institute for Basic Science [IBS-R012-D1-2014-a00]; Czech Science Foundation [14-29772S]; Czech Ministry of Education [LH14072, LG13029]; Joint High Energy Density Laboratory Plasmas Program - Office of Science, Fusion Energy Sciences and the National Nuclear Security Administration, Defense Programs [DENA0001859]; LCLS; Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL); University of Hamburg through the BMBF priority programme [FSP 301]; Center for Free-Electron Laser Science (CFEL) FX It is a pleasure to thank Pedro Velarde for useful discussions regarding electron thermalization dynamics. S.M.V., O.C., D.S.R. and J.S.W. wish to acknowledge support via EPSRC grant No. EP/G007187/1. S.M.V. is supported by a Royal Society University Research Fellowship. B.I.C acknowledges support by the Institute for Basic Science (IBS-R012-D1-2014-a00). T.B., J.Ch., V.H., L.J. and L.V. appreciate financial support from the Czech Science Foundation (grant 14-29772S) and the Czech Ministry of Education (grants LH14072 and LG13029). R.W.F. acknowledges support from the Joint High Energy Density Laboratory Plasmas Program under grant DENA0001859, funded by the Office of Science, Fusion Energy Sciences and the National Nuclear Security Administration, Defense Programs. Portions of this research were carried out on the SXR Instrument at the LCLS, a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by the Stanford University for the US Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL), University of Hamburg through the BMBF priority programme FSP 301, and the Center for Free-Electron Laser Science (CFEL). We gratefully acknowledge the support of A. Scherz, C. Graves, T. Wang, B. Wu and D. Zhu in the set-up and operation of the Resonant Coherent Imaging endstation at the LCLS. Some figures for this paper were generated with the Matplotlib package37. NR 37 TC 15 Z9 16 U1 7 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6397 DI 10.1038/ncomms7397 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5YN UT WOS:000352633400010 PM 25731816 ER PT J AU Wang, YG Mei, DH Glezakou, VA Li, J Rousseau, R AF Wang, Yang-Gang Mei, Donghai Glezakou, Vassiliki-Alexandra Li, Jun Rousseau, Roger TI Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles SO NATURE COMMUNICATIONS LA English DT Article ID CO OXIDATION; AU NANOPARTICLES; REACTION-MECHANISMS; MOLECULAR-DYNAMICS; CEO2(111) SURFACE; AU/CEO2; CLUSTERS; TEMPERATURE; INTERFACE; DFT AB Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. C1 [Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Rousseau, Roger] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Wang, Yang-Gang; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Li, Jun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Rousseau, R (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM junli@tsinghua.edu.cn; roger.rousseau@pnnl.gov RI Rousseau, Roger/C-3703-2014; Li, Jun/E-5334-2011; Mei, Donghai/D-3251-2011; Mei, Donghai/A-2115-2012; Wang, Yang-Gang/D-6480-2015 OI Li, Jun/0000-0002-8456-3980; Mei, Donghai/0000-0002-0286-4182; Wang, Yang-Gang/0000-0002-0582-0855 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; NKBRSF [2011CB932400]; NSFC of China [91026003, 21101098]; US Department of Energy, Office of Science, Office of Biological and Environmental Research; National Energy Research Scientific Computing Center (NERSC) FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-programme national laboratory operated by Battelle for the US Department of Energy. J.L. and Y.-G.W. were also financially supported by NKBRSF (2011CB932400) and NSFC (91026003, 21101098) of China. Computational resources were provided at W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at PNNL and sponsored by the US Department of Energy, Office of Science, Office of Biological and Environmental Research and at the National Energy Research Scientific Computing Center (NERSC) located at Lawrence Berkeley National Laboratory. NR 55 TC 41 Z9 43 U1 59 U2 260 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6511 DI 10.1038/ncomms7511 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF7EW UT WOS:000352720000001 PM 25735407 ER PT J AU Wang, YS Liu, J Lee, BJ Qiao, RM Yang, ZZ Xu, SY Yu, XQ Gu, L Hu, YS Yang, WL Kang, K Li, H Yang, XQ Chen, LQ Huang, XJ AF Wang, Yuesheng Liu, Jue Lee, Byungju Qiao, Ruimin Yang, Zhenzhong Xu, Shuyin Yu, Xiqian Gu, Lin Hu, Yong-Sheng Yang, Wanli Kang, Kisuk Li, Hong Yang, Xiao-Qing Chen, Liquan Huang, Xuejie TI Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries SO NATURE COMMUNICATIONS LA English DT Article ID ENERGY-STORAGE; ELECTROCHEMICAL INTERCALATION; POSITIVE ELECTRODE; CATHODE MATERIALS; MANGANESE OXIDES; AB-INITIO; MECHANISM; INSERTION; STABILITY; CHEMISTRY AB The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, because of the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, for example, Na0.44MnO2, were proposed, few negative electrode materials, for example, activated carbon and NaTi2(PO4)(3), are available. Here we show that Ti-substituted Na0.44MnO2 (Na-0.44[Mn1-xTix] O-2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/ charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na-0.44[Mn1-xTix]O-2 is a promising negative electrode material for aqueous sodium-ion batteries. C1 [Wang, Yuesheng; Yang, Zhenzhong; Xu, Shuyin; Gu, Lin; Hu, Yong-Sheng; Li, Hong; Chen, Liquan; Huang, Xuejie] Chinese Acad Sci, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Inst Phys, Key Lab Renewable Energy,Lab Adv Mat & Electron M, Beijing 100190, Peoples R China. [Liu, Jue; Yu, Xiqian; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Lee, Byungju; Kang, Kisuk] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. [Qiao, Ruimin; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Yu, XQ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM xyu@bnl.gov; l.gu@iphy.ac.cn; yshu@iphy.ac.cn RI Gu, Lin/D-9631-2011; Li, Hong/C-4643-2008; Qiao, Ruimin/E-9023-2013; Yang, Wanli/D-7183-2011; Hu, Yong-Sheng/H-1177-2011; Yu, Xiqian/B-5574-2014; LIU, JUE/I-8631-2016; Yang, Zhenzhong/O-2344-2014 OI Gu, Lin/0000-0002-7504-031X; Li, Hong/0000-0002-8659-086X; Yang, Wanli/0000-0003-0666-8063; Hu, Yong-Sheng/0000-0002-8430-6474; Yu, Xiqian/0000-0001-8513-518X; LIU, JUE/0000-0002-4453-910X; Yang, Zhenzhong/0000-0002-7226-7973 FU NSFC [51222210, 11234013]; '973' Projects [2012CB932900]; One Hundred Talent Project of the Chinese Academy of Sciences; US Department of Energy; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies [DEAC02-98CH10886, DE-SC0012704]; NSLS [X14A, X18A] FX This work was supported by funding from the NSFC (51222210, 11234013), '973' Projects (2012CB932900) and the One Hundred Talent Project of the Chinese Academy of Sciences. The work at Brookhaven National Laboratory was supported by the US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DEAC02-98CH10886 and DE-SC0012704. We acknowledge the support by the scientists at beamline X14A and X18A at NSLS (BNL) and beamline 8.0.1 at ALS(LBNL). We thank the BASF company for providing the non-aqueous electrolyte solvents used in this work. NR 57 TC 44 Z9 44 U1 60 U2 342 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6401 DI 10.1038/ncomms7401 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5GU UT WOS:000352586300001 PM 25806965 ER PT J AU Wu, M Tse, JS Wang, SY Wang, CZ Jiang, JZ AF Wu, Min Tse, John S. Wang, S. Y. Wang, C. Z. Jiang, J. Z. TI Origin of pressure-induced crystallization of Ce75Al25 metallic glass SO NATURE COMMUNICATIONS LA English DT Article ID AUGMENTED-WAVE METHOD; ULTRASOFT PSEUDOPOTENTIALS; ATOMIC PACKING; ORDER; DYNAMICS; DISORDER; DENSITY; AL AB Phase transitions in amorphous alloys under pressure are an important fundamental problem. Here we report on a first-principles study that reproduces the recently discovered pressure-induced crystallization of amorphous Ce100-xAlx (x<25) alloys and reveals an atomistic transformation mechanism. Contrary to common belief, pressure-induced devitrification of an amorphous Ce-Al alloy is not due to the Ce 4f delocalization that is expected to bring the size of Ce atoms closer to that of Al atoms. Our theoretical results show that the Bader volume of Ce is always larger than that of Al. A continuous increase in the relative Ce/Al Bader volume leads to favourable conditions for forming a close-packed structure at high pressure. The results also show that the Hume-Rothery rules are not applicable to describe the structures of substitutional alloys at high pressure. This study provides a new perspective on the electron distribution in lanthanide alloys under the application of pressure. C1 [Wu, Min; Tse, John S.; Jiang, J. Z.] Zhejiang Univ, Int Ctr New Structured Mat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Wu, Min; Tse, John S.; Jiang, J. Z.] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Wu, Min; Tse, John S.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Tse, John S.] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Wang, S. Y.] Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Dept Optic Sci & Engn, Shanghai 200433, Peoples R China. [Wang, C. Z.] ISU, Ames Lab, Zaffarano A5O6, Ames, IA 50011 USA. RP Jiang, JZ (reprint author), Zhejiang Univ, Int Ctr New Structured Mat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. EM john.tse@usask.ca; jiangjz@zju.edu.cn FU National Key Basic Research Program of China [2012CB825700]; National Natural Science Foundation of China [51371157, U1432105, 11374055]; Fundamental Research Funds for the Central Universities; Canada Research Chair programme; NSERC grant; US Department of Energy, Basic Energy Sciences; Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA [DE-AC02-07CH11358] FX Financial support from the National Key Basic Research Program of China (2012CB825700), National Natural Science Foundation of China (grants 51371157 and U1432105) and the Fundamental Research Funds for the Central Universities are gratefully acknowledged. Computations were performed at the Shanghai Supercomputer Center (China) and Westgrid (Canada). J.S.T. is supported by the Canada Research Chair programme and an NSERC grant. Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, and Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA under Contract No. DE-AC02-07CH11358. S.Y.W is supported by National Natural Science Foundation of China (grant 11374055). NR 33 TC 4 Z9 4 U1 9 U2 88 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6493 DI 10.1038/ncomms7493 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF6WN UT WOS:000352697500002 PM 25751790 ER PT J AU Yin, PC Zhang, ZM Lv, HJ Li, T Haso, F Hu, L Zhang, BF Bacsa, J Wei, YG Gao, YQ Hou, Y Li, YG Hill, CL Wang, EB Liu, TB AF Yin, Panchao Zhang, Zhi-Ming Lv, Hongjin Li, Tao Haso, Fadi Hu, Lang Zhang, Baofang Bacsa, John Wei, Yongge Gao, Yanqing Hou, Yu Li, Yang-Guang Hill, Craig L. Wang, En-Bo Liu, Tianbo TI Chiral recognition and selection during the self-assembly process of protein-mimic macroanions SO NATURE COMMUNICATIONS LA English DT Article ID HOMOCHIRAL SUPRAMOLECULAR POLYMERIZATION; AMINO-ACIDS; MACROIONS; NANOSTRUCTURES; AMPLIFICATION; INDUCTION; AUXILIARY; CLUSTERS; CENTERS; PURITY AB The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe-28(mu(3)-O)(8)(Tart)(16) (HCOO)(24)](20) (-) (Tart = D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis of the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection. C1 [Yin, Panchao; Haso, Fadi; Hu, Lang; Zhang, Baofang; Liu, Tianbo] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Yin, Panchao; Haso, Fadi; Hu, Lang; Zhang, Baofang; Liu, Tianbo] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA. [Zhang, Zhi-Ming; Gao, Yanqing; Li, Yang-Guang; Wang, En-Bo] NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Changchun 130024, Jilin, Peoples R China. [Lv, Hongjin; Bacsa, John; Hou, Yu; Hill, Craig L.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Li, Tao] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Wei, Yongge] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. RP Wang, EB (reprint author), NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Changchun 130024, Jilin, Peoples R China. EM wangeb889@nenu.edu.cn; tliu@uakron.edu RI li, tao/K-8911-2012; Yin, Panchao/J-3322-2013; BACSA, JOHN/L-8501-2016; Liu, Tianbo/D-8915-2017 OI li, tao/0000-0001-5454-1468; Yin, Panchao/0000-0003-2902-8376; Liu, Tianbo/0000-0002-8181-1790 FU National Science Foundation [CHE1305756, CHE1124862]; Lehigh University; University of Akron; National Natural Science Foundation of China [21101022]; US DOE [DE-AC02-06CH11357] FX T.L. acknowledges the support from the National Science Foundation (CHE1305756), Lehigh University and the University of Akron. E.W. is grateful for support from the National Natural Science Foundation of China (21101022). C.L.H. thanks the National Science Foundation (CHE1124862) for support. We are thankful for the use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory; the use of this facility was supported by the US DOE under Contract No. DE-AC02-06CH11357. We acknowledge Dr Xiaobing Zuo for insightful discussion. NR 46 TC 13 Z9 13 U1 24 U2 122 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2015 VL 6 AR 6475 DI 10.1038/ncomms7475 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF6WJ UT WOS:000352697100016 PM 25756393 ER PT J AU Kocan, M Pitts, RA Arnoux, G Balboa, I de Vries, PC Dejarnac, R Furno, I Goldston, RJ Gribov, Y Horacek, J Komm, M Labit, B LaBombard, B Lasnier, CJ Mitteau, R Nespoli, F Pace, D Panek, R Stangeby, PC Terry, JL Tsui, C Vondracek, P AF Kocan, M. Pitts, R. A. Arnoux, G. Balboa, I. de Vries, P. C. Dejarnac, R. Furno, I. Goldston, R. J. Gribov, Y. Horacek, J. Komm, M. Labit, B. LaBombard, B. Lasnier, C. J. Mitteau, R. Nespoli, F. Pace, D. Panek, R. Stangeby, P. C. Terry, J. L. Tsui, C. Vondracek, P. TI Impact of a narrow limiter SOL heat flux channel on the ITER first wall panel shaping SO NUCLEAR FUSION LA English DT Article DE ITER; limiter plasma; heat flux density; scrape-off layer; first wall panels; narrow feature ID THERMAL LOAD DISTRIBUTION; ALT-II LIMITER; MAGNETIC-FIELD; PLASMA CONVECTION; TOKAMAK; DESIGN; TRANSPORT; TEXTOR-94; SHEATH AB The inboard limiters for ITER were initially designed on the assumption that the parallel heat flux density in the scrape-off layer (SOL) could be approximated by a single exponential with decay length lambda(q). This assumption was found not to be adequate in 2012, when infra-red (IR) thermography measurements on the inner column during JET limiter discharges clearly revealed the presence of a narrow heat flux channel adjacent to the last closed flux surface. This near-SOL decay occurs with lambda(q) similar to few mm, much shorter than the main SOL lambda(q), and can raise the heat flux at the limiter apex a factor up to similar to 4 above the value expected from a single, broader exponential. The original logarithmically shaped ITER inner wall first wall panels (FWPs) would be unsuited to handling the power loads produced by such a narrow feature. A multi-machine study involving the C-Mod, COMPASS, DIII-D and TCV tokamaks, employing inner wall IR measurements and/ or inner wall reciprocating probes, was initiated to investigate the narrow limiter SOL heat flux channel. This paper describes the new results which have provided an experimental database for the narrow feature and presents an ITER inner wall FWP toroidal shape optimized for a double-exponential profile with lambda(q) = 4 (narrow feature) and 50 mm(main-SOL), the latter also derived from a separate multi-machine database constituted recently within the International Tokamak Physics Activity. It is shown that the new shape allows the power handling capability of the original shape design to be completely recovered for a wide variety of limiter start-up equilibria in the presence of a narrow feature, even taking assembly tolerances into account. It is, moreover, further shown that the new shape has the interesting property of both mitigating the impact of the narrow feature and resulting in only a very modest increase in heat load, compared to the current design, if the narrow feature is not eventually found on ITER. C1 [Kocan, M.; Pitts, R. A.; de Vries, P. C.; Gribov, Y.; Mitteau, R.] ITER Org, F-13067 St Paul Les Durance, France. [Arnoux, G.; Balboa, I.] Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. [Dejarnac, R.; Horacek, J.; Komm, M.; Panek, R.; Vondracek, P.] Acad Sci Czech Republic, Inst Plasma Phys, Vvi, Prague 18200, Czech Republic. [Furno, I.; Labit, B.; Nespoli, F.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Goldston, R. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [LaBombard, B.] MIT, PSFC, Cambridge, MA 02139 USA. [Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pace, D.] Gen Atom Co, San Diego, CA 92186 USA. [Stangeby, P. C.; Tsui, C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. RP Kocan, M (reprint author), ITER Org, Route Vinon Sur Verdon CS 90 046, F-13067 St Paul Les Durance, France. EM martin.kocan@iter.org RI Komm, Michael/C-1602-2010; Vondracek, Petr/G-6786-2014; Panek, Radomir/G-7507-2014; EPFL, Physics/O-6514-2016; Horacek, Jan/G-8301-2014 OI Vondracek, Petr/0000-0003-0125-9252; Panek, Radomir/0000-0002-6106-3422; Horacek, Jan/0000-0002-4276-3124 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-94ER54235, DE-AC52-07NA27344, DE-FC02-04ER54698]; project GA CR [P205/12/2327]; European Union [633053]; project MSMT [LM2011021] FX This work was supported in part by the US Department of Energy under DE-AC02-09CH11466, DE-FG02-94ER54235, DE-AC52-07NA27344 and DE-FC02-04ER54698 as and by the projects GA CR P205/12/2327 and MSMT LM2011021. This project has also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. NR 36 TC 11 Z9 11 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2015 VL 55 IS 3 AR 033019 DI 10.1088/0029-5515/55/3/033019 PG 16 WC Physics, Fluids & Plasmas SC Physics GA CE7LE UT WOS:000352020500023 ER PT J AU Rice, JE Reinke, ML Gao, C Howard, NT Chilenski, MA Delgado-Aparicio, L Granetz, RS Greenwald, MJ Hubbard, AE Hughes, JW Irby, JH Lin, Y Marmar, ES Mumgaard, RT Scott, SD Terry, JL Walk, JR White, AE Whyte, DG Wolfe, SM Wukitch, SJ AF Rice, J. E. Reinke, M. L. Gao, C. Howard, N. T. Chilenski, M. A. Delgado-Aparicio, L. Granetz, R. S. Greenwald, M. J. Hubbard, A. E. Hughes, J. W. Irby, J. H. Lin, Y. Marmar, E. S. Mumgaard, R. T. Scott, S. D. Terry, J. L. Walk, J. R. White, A. E. Whyte, D. G. Wolfe, S. M. Wukitch, S. J. TI Core impurity transport in Alcator C-Mod L-, I- and H-mode plasmas SO NUCLEAR FUSION LA English DT Article DE impurity transport; tokamaks; x-rays ID X-RAY; ENERGY CONFINEMENT; PELLET INJECTION; TOKAMAK PLASMAS; ASDEX UPGRADE; TORE-SUPRA; JET; PROFILES; BARRIER; SCALINGS AB Core impurity transport has been investigated for a variety of confinement regimes in Alcator C-Mod plasmas from x-ray emission following injection of medium and high Z materials. In ohmic L-mode discharges, impurity transport is anomalous (D-eff >> D-nc) and changes very little across the LOC/SOC boundary. In ion cyclotron range of frequencies (ICRF) heated L-mode plasmas, the core impurity confinement time decreases with increasing ICRF input power (and subsequent increasing electron temperature) and increases with plasma current. Nearly identical impurity confinement characteristics are observed in I-mode plasmas. In enhanced D-alpha H-mode discharges the core impurity confinement times are much longer. There is a strong connection between core impurity confinement time and the edge density gradient across all confinement regimes studied here. Deduced central impurity density profiles in stationary plasmas are generally flat, in spite of large amplitude sawtooth oscillations, and there is little evidence of impurity convection inside of r/a = 0.3 when averaged over sawteeth. C1 [Rice, J. E.; Gao, C.; Howard, N. T.; Chilenski, M. A.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Lin, Y.; Marmar, E. S.; Mumgaard, R. T.; Terry, J. L.; Walk, J. R.; White, A. E.; Whyte, D. G.; Wolfe, S. M.; Wukitch, S. J.] MIT, PSFC, Cambridge, MA 02139 USA. [Reinke, M. L.] Univ York, York YO10 5DD, N Yorkshire, England. [Delgado-Aparicio, L.; Scott, S. D.] PPPL, Princeton, NJ 08543 USA. RP Rice, JE (reprint author), MIT, PSFC, Cambridge, MA 02139 USA. EM rice@psfc.mit.edu FU DoE [DE-FC02-99ER54512] FX The authors thank A. Loarte, P. Diamond and C. Angioni for enlightening discussions, and the Alcator C-Mod operations and ICRF groups for expert running of the tokamak. Work supported at MIT by DoE Contract No. DE-FC02-99ER54512 and in part by an appointment to the US DOE Fusion Energy Postdoctoral Research Program administered by ORISE. NR 78 TC 4 Z9 4 U1 4 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2015 VL 55 IS 3 AR 033014 DI 10.1088/0029-5515/55/3/033014 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CE7LE UT WOS:000352020500018 ER PT J AU Suslova, A El-Atwani, O Harilal, SS Hassanein, A AF Suslova, A. El-Atwani, O. Harilal, S. S. Hassanein, A. TI Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices SO NUCLEAR FUSION LA English DT Article DE PFC; ELMs; tungsten; material removal; laser heating ID DIVERTOR ARMOR MATERIALS; SIMULATION EXPERIMENTS; GRAINED TUNGSTEN; ITER; IRRADIATION; ELMS; MICROSTRUCTURE; DISRUPTIONS; PERFORMANCE; TRANSITION AB We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations similar to 1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities. C1 [Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.] Purdue Univ, Sch Nucl Engn, Ctr Mat Extreme Environm, W Lafayette, IN 47907 USA. [El-Atwani, O.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Harilal, S. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Suslova, A (reprint author), Purdue Univ, Sch Nucl Engn, Ctr Mat Extreme Environm, W Lafayette, IN 47907 USA. EM asuslova25@gmail.com; oelatwan@hotmail.com RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; El Atwani, Osman/0000-0002-1862-7018 FU National Science Foundation; PIRE project; US DOE, Office of Fusion Energy Sciences (OFES) FX This work is supported by the National Science Foundation, PIRE project, and the US DOE, Office of Fusion Energy Sciences (OFES). NR 46 TC 9 Z9 9 U1 3 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2015 VL 55 IS 3 AR 033007 DI 10.1088/0029-5515/55/3/033007 PG 15 WC Physics, Fluids & Plasmas SC Physics GA CE7LE UT WOS:000352020500011 ER PT J AU Delben, ACB Cannon, M Vieira, AEM Basso, MD Danelon, M Santo, MRE Stock, SR Xiao, X De Carlo, F AF Delben, A. C. B. Cannon, M. Vieira, A. E. M. Basso, M. D. Danelon, M. Santo, M. R. E. Stock, S. R. Xiao, X. De Carlo, F. TI Analysis of Anticaries Potential of Pit and Fissures Sealants Containing Amorphous Calcium Phosphate Using Synchrotron Microtomography SO OPERATIVE DENTISTRY LA English DT Article ID GLASS-IONOMER CEMENT; IN-SITU; FLUORIDE; ENAMEL; REMINERALIZATION; COMPOSITES; EFFICACY AB The aim of this study was to analyze the anticaries potential of pit and fissure sealants containing amorphous calcium phosphate (ACP) by synchrotron microtomography. Bovine enamel blocks (4x4 mm; n=50) were selected through surface hardness (Knoop) analysis. Slabs were obtained through cross-sections taken 1 mm from the border of the enamel. Five indentations, spaced 100 mu m apart, were made 300 mu m from the border. Ten specimens were prepared for each tested material (Ultraseal XT plus TM, Aegis, Embrace, Vitremer and Experimental Sealant). The materials were randomly attached to the sectioned surfaces of the enamel blocks and fixed with sticky wax. The specimens were submitted to pH cycling. After that, the surface hardness (SH1) was determined, and the blocks were submitted to synchrotron microcomputed tomography analysis to calculate the mineral concentration (Delta g(HAp) cm(-3)) at different areas of the enamel. The comparison between the SH1 and DgHAp cm(-3) showed a correlation for all groups (r=0.840; p<0.001). The fluoride groups presented positive values of DgHAp cm(-3), indicating a mineral gain that was observed mainly in the outer part of the enamel. The ACP showed mineral loss in the outer enamel compared with fluoride groups, although it inhibited the demineralization in the deeper areas of enamel. The combination of two remineralizing agents (fluoride and ACP) was highly effective in preventing demineralization. C1 [Delben, A. C. B.; Vieira, A. E. M.; Basso, M. D.; Danelon, M.; Santo, M. R. E.] Unesp Univ Estadual Paulista, Aracatuba Sch Dent, Dept Publ Hlth & Pediat Dent, Aracatuba, Brazil. [Cannon, M.] Northwestern Univ, Feinberg Sch Med, Ann & Robert Lurie Childrens, Chicago, IL 60611 USA. [Stock, S. R.] Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA. [Xiao, X.; De Carlo, F.] Argonne Natl Lab, Lemont, IL USA. RP Delben, ACB (reprint author), Rua Jose Bonifacio 1193, BR-16015050 Sao Paulo, Brazil. EM adelbem@foa.unesp.br OI Danelon, Marcelle/0000-0003-2091-649X NR 18 TC 0 Z9 0 U1 1 U2 11 PU OPERATIVE DENTISTRY INC PI INDIANAPOLIS PA INDIANA UNIV SCHOOL DENTISTRY, ROOM S411, 1121 WEST MICHIGAN ST, INDIANAPOLIS, IN 46202-5186 USA SN 0361-7734 EI 1559-2863 J9 OPER DENT JI Oper. Dent. PD MAR-APR PY 2015 VL 40 IS 2 BP 218 EP 223 DI 10.2341/13-325-L PG 6 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA CF4AG UT WOS:000352490000014 PM 25268042 ER PT J AU Chavarria-Miranda, D Panyala, A Ma, WJ Prantl, A Krishnamoorthy, S AF Chavarria-Miranda, Daniel Panyala, Ajay Ma, Wenjing Prantl, Adrian Krishnamoorthy, Sriram TI Global transformations for legacy parallel applications via structural analysis and rewriting SO PARALLEL COMPUTING LA English DT Article DE Source-to-source transformations; Term rewriting; Semantic patches; Legacy parallel applications ID PERFORMANCE; LANGUAGE; MPI; PROGRAMS AB Performance and scalability optimization of large HPC applications is currently a labor-intensive, manual process with very low productivity. Major difficulties come from the disaggregated environment for HPC application development: the compiler is only involved in local decisions (core or multithreaded domain), while a library-based, communication-oriented programming model realizes whole-machine parallelism. Realizing any major global change in such a disaggregated environment is very difficult and involves changing large portions of the source code. We present semi-automated techniques, based on structural analysis and rewriting, for performing global transformations on an HPC application source code. We present two case studies using the Self-Consistent Field (SCF) standalone benchmark as well as the Coupled Cluster (CCSD) module (2.9 million lines of Fortran code), a key module of the NWChem computational chemistry application. We demonstrate how structural rewriting techniques can be used to automate transformations that affect multiple sections of the application's source code. We show that the transformations can be applied in a systematic fashion across the source code bases with minimal manual effort. These transformations improve the scalability of the SCF benchmark by more than two orders of magnitude and the performance of the full CCSD module by a factor of four. (C) 2015 Elsevier B.V. All rights reserved. C1 [Chavarria-Miranda, Daniel; Ma, Wenjing; Krishnamoorthy, Sriram] Pacific NW Natl Lab, High Performance Comp, Richland, WA 99352 USA. [Panyala, Ajay] Louisiana State Univ, Sch Elect Engn & Comp Sci, Comp Sci & Engn Div, Baton Rouge, LA 70803 USA. [Prantl, Adrian] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Chavarria-Miranda, D (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,MSIN J4-30, Richland, WA 99352 USA. EM daniel.chavarria@pnnl.gov; ajay@csc.lsu.edu; wenjing.ma@pnnl.gov; adrian@llnl.gov; sriram@pnnl.gov FU DOE Office of Science, Advanced Scientific Computing Research [59197]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-CONF-554943] FX This work was supported in part by the DOE Office of Science, Advanced Scientific Computing Research, under award number 59197 and in part performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-CONF-554943. The evaluation was performed using the DOE Environmental Molecular Sciences Laboratory's Molecular Sciences Computing Facility and PNNL's Institutional Computing Facility. NR 40 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD MAR PY 2015 VL 43 BP 1 EP 26 DI 10.1016/j.parco.2015.01.001 PG 26 WC Computer Science, Theory & Methods SC Computer Science GA CF0QO UT WOS:000352249500001 ER PT J AU Jeanne, P Rutqvist, J Hutchings, L Singh, A Dobson, PF Walters, M Hartline, C Garcia, J AF Jeanne, Pierre Rutqvist, Jonny Hutchings, Lawrence Singh, Ankit Dobson, Patrick F. Walters, Mark Hartline, Craig Garcia, Julio TI Degradation of the mechanical properties imaged by seismic tomography during an EGS creation at The Geysers (California) and geomechanical modeling SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Enhanced Geothermal System; Microseismic events; Geomechanical simulation; Seismic tomography; V-p/V-s ID GEOTHERMAL-FIELD; FLUID-FLOW; PRESSURE; RESERVOIR; VELOCITY; STRESS; BEREA; ROCK; AREA; PORE AB Using coupled thermal-hydro-mechanical (THM) modeling, we evaluated new seismic tomography results associated with stimulation injection at an EGS demonstration project at the Northwest Geysers geothermal steam field, California. We studied high resolution seismic tomography images built from data recorded during three time periods: a period of two months prior to injection and during two consecutive one month periods after injection started in October 2011. Our analysis shows that seismic velocity decreases in areas of most intense induced microseismicity and this is also correlated with the spatial distribution of calculated steam pressure changes. A detailed analysis showed that shear wave velocity decreases with pressure in areas where pressure is sufficiently high to cause shear reactivation of pre-existing fractures. The analysis also indicates that cooling in a liquid zone around the injection well contributes to reduced shear wave velocity. A trend of reducing compressional wave velocity with fluid pressure was also found, but at pressures much above the pressure required for shear reactivation. We attribute the reduction in shear wave velocity to softening in the rock mass shear modulus associated with shear dislocations and associated changes in fracture surface properties. Also, as the rock mass become more fractured and more deformable this favors reservoir expansion caused by the pressure increase, and so the fracture porosity increases leading to a decrease in bulk density, a decrease in Young modulus and finally a decrease in V-p. 2014 Elsevier B.V. All rights reserved. C1 [Jeanne, Pierre; Rutqvist, Jonny; Hutchings, Lawrence; Singh, Ankit; Dobson, Patrick F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Walters, Mark; Hartline, Craig; Garcia, Julio] Calpine Corp, Middletown, CA 95461 USA. RP Jeanne, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RI Rutqvist, Jonny/F-4957-2015; Dobson, Patrick/D-8771-2015; Jeanne, Pierre/I-2996-2015; OI Rutqvist, Jonny/0000-0002-7949-9785; Dobson, Patrick/0000-0001-5031-8592; Jeanne, Pierre/0000-0003-1487-8378; Walters, Mark/0000-0001-8458-4813 FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy [DE-AC02-05CH11231]; EGS Demonstration Project under a separate DOE contract FX This work was conducted with funding provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy Contract No. DE-AC02-05CH11231.; Calpine Corporation provided funding to the EGS Demonstration Project under a separate DOE contract. NR 38 TC 5 Z9 5 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 EI 1872-7395 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD MAR PY 2015 VL 240 BP 82 EP 94 DI 10.1016/j.pepi.2014.12.003 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF0RF UT WOS:000352251200006 ER PT J AU Weighill, DA Jacobson, DA AF Weighill, Deborah A. Jacobson, Daniel A. TI 3-way Networks: Application of Hypergraphs for Modelling Increased Complexity in Comparative Genomics SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID BACILLUS-SUBTILIS; SPORULATION; TOOL AB We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes. C1 [Weighill, Deborah A.; Jacobson, Daniel A.] Univ Stellenbosch, Inst Wine Biotechnol, ZA-7600 Stellenbosch, South Africa. [Weighill, Deborah A.; Jacobson, Daniel A.] Oak Ridge Natl Lab, Comparat Genom Grp, Biosci Div, Oak Ridge, TN USA. [Weighill, Deborah A.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. RP Weighill, DA (reprint author), Univ Stellenbosch, Inst Wine Biotechnol, ZA-7600 Stellenbosch, South Africa. EM jacobsonda@ornl.gov FU Genomic Science Program, U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) as part of the Plant Microbe Interfaces Scientific Focus Area; BER's BioEnergy Science Center (BESC) at the Oak Ridge National Laboratory [DE-PS02-06ER64304]; U.S. Department of Energy [DE-AC05-00OR22725]; DOE Public Access Plan; National Research Foundation (NRF) FX We gratefully acknowledge funding support for this research by the Genomic Science Program, U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov) and the BER's BioEnergy Science Center (BESC) at the Oak Ridge National Laboratory (contract DE-PS02-06ER64304). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. South African National Research Foundation Technology(www.nrf.ac.za) and Human Resources Programme (DAJ) and Winetech (DAJ DAW). The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged (DAW). Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. NR 30 TC 0 Z9 0 U1 1 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAR PY 2015 VL 11 IS 3 AR UNSP e1004079 DI 10.1371/journal.pcbi.1004079 PG 23 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA CE9XB UT WOS:000352195700011 PM 25815802 ER PT J AU Schwessinger, B Bahar, O Thomas, N Holton, N Nekrasov, V Ruan, DL Canlas, PE Daudi, A Petzold, CJ Singan, VR Kuo, R Chovatia, M Daum, C Heazlewood, JL Zipfel, C Ronald, PC AF Schwessinger, Benjamin Bahar, Ofir Thomas, Nicolas Holton, Nicolas Nekrasov, Vladimir Ruan, Deling Canlas, Patrick E. Daudi, Arsalan Petzold, Christopher J. Singan, Vasanth R. Kuo, Rita Chovatia, Mansi Daum, Christopher Heazlewood, Joshua L. Zipfel, Cyril Ronald, Pamela C. TI Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses SO PLOS PATHOGENS LA English DT Article ID ORYZAE PV.-ORYZAE; PLANT INNATE IMMUNITY; XA21-MEDIATED DISEASE RESISTANCE; PSEUDOMONAS-SYRINGAE EFFECTOR; KINASE-LIKE PROTEIN; ER QUALITY-CONTROL; ENDOPLASMIC-RETICULUM; BACTERIAL-BLIGHT; GENOME SEQUENCE; FLAGELLIN PERCEPTION AB Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR:: XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli-and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR:: XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. C1 [Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas; Ruan, Deling; Canlas, Patrick E.; Daudi, Arsalan; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Schwessinger, Benjamin; Ruan, Deling; Canlas, Patrick E.; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Schwessinger, Benjamin; Ruan, Deling; Canlas, Patrick E.; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Holton, Nicolas; Nekrasov, Vladimir; Zipfel, Cyril] Sainsbury Lab, Norwich, Norfolk, England. [Singan, Vasanth R.; Kuo, Rita; Chovatia, Mansi; Daum, Christopher] Dept Energy Joint Genome Inst, Walnut Creek, CA USA. RP Schwessinger, B (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. EM pcronald@ucdavis.edu RI Heazlewood, Joshua/A-2554-2008; ZIPFEL, CYRIL/D-7103-2011; OI Heazlewood, Joshua/0000-0002-2080-3826; ZIPFEL, CYRIL/0000-0003-4935-8583; Nekrasov, Vladimir/0000-0001-9386-1683; Schwessinger, Benjamin/0000-0002-7194-2922 FU EMBO long-term post-doctoral fellowship [ALTF 1290-2011]; Human Frontier Science Program long-term post-doctoral fellowship [LT000674/2012]; Gatsby Charitable Foundation; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; NIH [GM59962] FX This work was supported by an EMBO long-term post-doctoral fellowship (ALTF 1290-2011) and a Human Frontier Science Program long-term post-doctoral fellowship (LT000674/2012) to BS. This work was funded by the Gatsby Charitable Foundation (CZ). The work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by the NIH GM59962 to PCR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 96 TC 15 Z9 15 U1 5 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD MAR PY 2015 VL 11 IS 3 AR UNSP e1004809 DI 10.1371/journal.ppat.1004809 PG 34 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA CE9ZI UT WOS:000352201900087 PM 25821973 ER PT J AU Ragauskas, AJ Rials, TG AF Ragauskas, Arthur J. Rials, Timothy G. TI Forest biorefining fast forward SO TAPPI JOURNAL LA English DT Editorial Material C1 [Ragauskas, Arthur J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Dept Chem & Biomol Engn, Oak Ridge Natl Lab, Knoxville, TN 37996 USA. [Rials, Timothy G.] Univ Tennessee, Inst Agr, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37901 USA. [Rials, Timothy G.] Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Knoxville, TN 37901 USA. RP Ragauskas, AJ (reprint author), Univ Tennessee, Dept Forestry Wildlife & Fisheries, Dept Chem & Biomol Engn, Oak Ridge Natl Lab, Knoxville, TN 37996 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU TECH ASSOC PULP PAPER IND INC PI NORCROSS PA 15 TECHNOLOGY PARK SOUTH, NORCROSS, GA 30092 USA SN 0734-1415 J9 TAPPI J JI TAPPI J. PD MAR PY 2015 VL 14 IS 3 BP 157 EP 157 PG 1 WC Materials Science, Paper & Wood SC Materials Science GA CF4VV UT WOS:000352551900001 ER PT J AU Huang, YX Zhou, Y AF Huang, Yongxi Zhou, Yan TI An optimization framework for workplace charging strategies SO TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES LA English DT Article DE Workplace charging; Optimization; Resource allocation ID REFUELING LOCATION MODEL; BATTERY ELECTRIC VEHICLES; RESOURCE-ALLOCATION; STATIONS; INFRASTRUCTURE; NETWORK; DEPLOYMENT; TRANSPORT; RECHARGE AB The workplace charging (WPC) has been recently recognized as the most important secondary charging point next to residential charging for plug-in electric vehicles (PEVs). The current WPC practice is spontaneous and grants every PEV a designated charger, which may not be practical or economic when there are a large number of PEVs present at workplace. This study is the first research undertaken that develops an optimization framework for WPC strategies to satisfy all charging demand while explicitly addressing different eligible levels of charging technology and employees' demographic distributions. The optimization model is to minimize the lifetime cost of equipment, installations, and operations, and is formulated as an integer program. We demonstrate the applicability of the model using numerical examples based on national average data. The results indicate that the proposed optimization model can reduce the total cost of running a WPC system by up to 70% compared to the current practice. The WPC strategies are sensitive to the time windows and installation costs, and dominated by the PEV population size. The WPC has also been identified as an alternative sustainable transportation program to the public transit subsidy programs for both economic and environmental advantages. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Huang, Yongxi] Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. [Zhou, Yan] Argonne Natl Lab, Lemont, IL 60439 USA. RP Huang, YX (reprint author), Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. EM yxhuang@clemson.edu; yzhou@anl.gov FU Vehicle Technology Office, Energy Efficiency and Renewable Energy Office; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The effort of Yan Zhou of Argonne National Laboratory is supported by the Vehicle Technology Office, Energy Efficiency and Renewable Energy Office. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 53 TC 4 Z9 4 U1 6 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-090X J9 TRANSPORT RES C-EMER JI Transp. Res. Pt. C-Emerg. Technol. PD MAR PY 2015 VL 52 BP 144 EP 155 DI 10.1016/j.trc.2015.01.022 PG 12 WC Transportation Science & Technology SC Transportation GA CF0RR UT WOS:000352252400010 ER PT J AU Beasley, J Webster, SC Rhodes, OE Cunningham, FL AF Beasley, James Webster, Sarah C. Rhodes, Olin E., Jr. Cunningham, Fred L. TI Evaluation of Rhodamine B as a Biomarker for Assessing Bait Acceptance in Wild Pigs SO WILDLIFE SOCIETY BULLETIN LA English DT Article DE bait; boar; feral swine; hair; pharmaceutical; Rhodamine B; Sus scrofa; toxicant; vaccination; wild pig ID CLASSICAL SWINE-FEVER; FERAL SWINE; ORAL IMMUNIZATION; SUS-SCROFA; MARKER; BOAR; POPULATIONS; AUSTRALIA; PRESSURE; EFFICACY AB Worldwide, there is growing interest in the use of pharmaceutical baits to control populations of wild pigs (Sus scrofa). In this study we evaluated the utility of Rhodamine B (RB), a chemical marker commonly used in wildlife research and management, as a potential biomarker for quantifying bait uptake in wild pigs. Thirty wild pigs were live-trapped, transported to a captive facility on the Department of Energy's Savannah River Site located in South Carolina, USA, during autumn 2013, and administered RB orally at a dosage of 30mg/kg. Eight vibrissae and guard hairs were collected pre- and post-RB exposure (7 or 14 days) and evaluated for the presence of RB using fluorescence microscopy. No evidence of RB marking was observed in any samples collected pre-RB administration. In contrast, we observed fluorescent marking post-RB exposure that was indicative of the presence of RB for all individuals, with 98% of vibrissae and 100% of guard hairs exhibiting RB marks. The uniform detection of RB among individuals and consistent manifestation of marks in both guard hair and vibrissae, samples that easily can be collected and stored by untrained field personnel from live or deceased pigs, suggests that RB is an effective biomarker for use in large-scale management programs to control wild pigs. In particular, our results, combined with previous studies evaluating uptake of RB in other species, suggest that RB can be used to develop baiting programs to deliver pharmaceuticals to free-ranging wild pigs, as well as evaluate the potential impacts of pig baits on non-target species. (c) 2014 The Wildlife Society. C1 [Beasley, James; Webster, Sarah C.; Rhodes, Olin E., Jr.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Cunningham, Fred L.] USDA, Anim Plant Hlth Inspect Serv, Wildlife Serv, Natl Wildlife Res Ctr, Mississippi State, MS 39762 USA. RP Beasley, J (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM beasley@srel.uga.edu FU U.S. Department of Agriculture National Wildlife Research Center; U.S. Department of Energy [DE-FC09-07SR22506] FX We would especially like to thank T. Grazia, J. Nance, T. Mims, and the Savannah River Site pig-trapping contractors for their assistance capturing wild pigs for this study. We also would like to thank Z. Smith and L. Oliver for their assistance with this research and 2 anonymous reviewers for providing comments on this manuscript. Funding was provided by the U.S. Department of Agriculture National Wildlife Research Center and the U.S. Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 33 TC 1 Z9 1 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1938-5463 J9 WILDLIFE SOC B JI Wildl. Soc. Bull. PD MAR PY 2015 VL 39 IS 1 BP 188 EP 192 DI 10.1002/wsb.510 PG 5 WC Biodiversity Conservation SC Biodiversity & Conservation GA CE8MA UT WOS:000352095300023 ER PT J AU Zhou, H Ruther, RE Adcock, J Zhou, W Dai, S Nanda, J AF Zhou, Hui Ruther, Rose E. Adcock, Jamie Zhou, Wu Dai, Sheng Nanda, Jagjit TI Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3-FeF3 Conversion Compounds by Direct Fluorination SO ACS NANO LA English DT Article DE conversion electrode; fluorination; nano-Fe2O3; fluoride ID LITHIUM-ION BATTERIES; METAL FLUORIDE NANOCOMPOSITES; ELECTRODE MATERIALS; CATHODE MATERIALS; IRON OXYFLUORIDE; ENERGY-STORAGE; ANODE MATERIAL; ALPHA-FE2O3; OXIDE; ELECTROCHEMISTRY AB We report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe2O3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 degrees C. Instead, at fluorination temperatures below 250 degrees C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe2O3-2F2x(x<1). At fluorination temperatures of 275 degrees C, STEM-EELS results showed porous interconnected nanodomains of FeF3 and Fe2O3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF3 + Fe2O3 composition, and correlate the results to their electrochemical performance. Further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides. C1 [Zhou, Hui; Ruther, Rose E.; Zhou, Wu; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Adcock, Jamie; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Nanda, Jagjit] Univ Tennessee, Bredesen Ctr Interdisciplinary Sci & Grad Educ, Knoxville, TN 37996 USA. [Nanda, Jagjit] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Nanda, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM nyhzhou@gmail.com; nandaj@ornl.gov RI Zhou, Wu/D-8526-2011; Dai, Sheng/K-8411-2015; Ruther, Rose/I-9207-2016 OI Zhou, Wu/0000-0002-6803-1095; Dai, Sheng/0000-0002-8046-3931; Ruther, Rose/0000-0002-1391-902X FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering FX This research was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. The microscopy work was supported by a Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for DOE (WZ). The microscopy was performed on the Nion UltraSTEM200 at ORNL, supported by DOE BES Materials Sciences and Engineering Division. J.A. and S.D. were supported by the U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering. We thank Gabriel Veith for discussion and assistance with XPS measurements and Juchuan Li for assistance with PITT measurements. NR 41 TC 9 Z9 9 U1 16 U2 148 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2015 VL 9 IS 3 BP 2530 EP 2539 DI 10.1021/acsnano.5b00191 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CE4HN UT WOS:000351791800029 PM 25703921 ER PT J AU Lentijo-Mozo, S Tan, RP Garcia-Marcelot, C Altantzis, T Fazzini, PF Hungria, T Cormary, B Gallagher, JR Miller, JT Martinez, H Schrittwieser, S Schotter, J Respaud, M Bals, S Van Tendeloo, G Gatel, C Soulantica, K AF Lentijo-Mozo, Sergio Tan, Reasmey P. Garcia-Marcelot, Cecile Altantzis, Thomas Fazzini, Pier-Francesco Hungria, Teresa Cormary, Benoit Gallagher, James R. Miller, Jeffrey T. Martinez, Herve Schrittwieser, Stefan Schotter, Joerg Respaud, Marc Bals, Sara Van Tendeloo, Gustaaf Gatel, Christophe Soulantica, Katerina TI Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods SO ACS NANO LA English DT Article DE core-shell; ferromagnetic; nanorods; cobalt; water resistant ID CORE-SHELL NANOPARTICLES; MAGNETIC NANOPARTICLES; INTERMETALLIC COMPOUNDS; OXYGEN REDUCTION; SHAPE CONTROL; NANOCRYSTALS; GROWTH; CATALYSIS; CRYSTAL; SUPERLATTICES AB Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering,them air- and water-resistant, while conserving the monocrystallity, metallicity and the Magnetic properties of the Co core. Thus, the as-synthesized tore shell ferromagnetic nanorods combine high;Magnetization and strong uniaxial Magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes Of high magnetization and anisotropic shape. C1 [Lentijo-Mozo, Sergio; Tan, Reasmey P.; Garcia-Marcelot, Cecile; Fazzini, Pier-Francesco; Hungria, Teresa; Cormary, Benoit; Respaud, Marc; Soulantica, Katerina] Univ Toulouse, INSA, UPS, Lab Phys & Chim Nanoobjets LPCNO,CNRS, F-31077 Toulouse, France. [Garcia-Marcelot, Cecile; Gatel, Christophe] CNRS, CEMES, F-31055 Toulouse, France. [Altantzis, Thomas; Bals, Sara; Van Tendeloo, Gustaaf] Univ Antwerp, Electron Microscopy Mat Res EMAT, B-2020 Antwerp, Belgium. [Gallagher, James R.; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Martinez, Herve] Univ Pau, IPREM ECP CNRS UMR 5254, F-64053 Pau 9, France. [Schrittwieser, Stefan; Schotter, Joerg] AIT, Mol Diagnost, A-1220 Vienna, Austria. RP Soulantica, K (reprint author), Univ Toulouse, INSA, UPS, Lab Phys & Chim Nanoobjets LPCNO,CNRS, 135 Ave Rangueil, F-31077 Toulouse, France. EM ksoulant@insa-toulouse.fr RI Gatel, Christophe/F-6046-2014; Schrittwieser, Stefan/L-6894-2015; FAZZINI, Pier Francesco/B-2645-2012; Gallagher, James/E-4896-2014; Bals, Sara/F-6963-2016; BM, MRCAT/G-7576-2011 OI Gatel, Christophe/0000-0001-5549-7008; Schrittwieser, Stefan/0000-0001-5807-3331; FAZZINI, Pier Francesco/0000-0002-4307-6481; Gallagher, James/0000-0002-5628-5178; FU European Commission [EU NMP4-LA-2010-246479]; Region Midi-Pyrenees [MET-NANO EFA 17/08]; French Research National Agency (ANR) [ANR-09-BLAN-0804]; grant NEXT [ANR-10-LABX-0037]; European Union Seventh Framework Programme [312483 - ESTEEM2]; European Research Council (ERC Advanced Grant) [24691-COUNTATOMS]; European Research Council (ERC Starting Grant) [335078-COLOURATOMS]; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank the European Commission for the FP7 NAMDIATREAM project (EU NMP4-LA-2010-246479), the European Commission and the Region Midi-Pyrenees for the POCTEFA Interreg project (MET-NANO EFA 17/08) and the French Research National Agency (ANR) for the project CARMA (ANR-09-BLAN-0804). This study has been partially supported through the grant NEXT No. ANR-10-LABX-0037 in the framework of the "Programme des Investissements d'Avenir" and has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative-13). TEMSCAN service is acknowledged for the routine TEM and EDX. G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant # 24691-COUNTATOMS, and ERC Starting Grant # 335078-COLOURATOMS). X-ray absorption spectroscopy studies by J.T.M. and J.R.G. were supported by the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 63 TC 7 Z9 7 U1 7 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2015 VL 9 IS 3 BP 2792 EP 2804 DI 10.1021/nn506709k PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CE4HN UT WOS:000351791800055 PM 25734760 ER PT J AU Zhu, F Men, L Guo, YJ Zhu, QC Bhattacharjee, U Goodwin, PM Petrich, JW Smith, EA Vela, J AF Zhu, Feng Men, Long Guo, Yijun Zhu, Qiaochu Bhattacharjee, Ujjal Goodwin, Peter M. Petrich, Jacob W. Smith, Emily A. Vela, Javier TI Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals SO ACS NANO LA English DT Article DE organometal halide perovskites; nanocrystals; preferred orientation; morphology control; size control; single particle photoluminescence ID HETEROJUNCTION SOLAR-CELLS; SEMICONDUCTOR QUANTUM RODS; INDIUM-PHOSPHIDE NANOWIRES; LEAD BROMIDE PEROVSKITE; IODIDE PEROVSKITE; SEQUENTIAL DEPOSITION; CDSE NANOWIRES; LOW-COST; EFFICIENCY; LIGHT AB Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most prOmising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more cOntrollable syntheses that permit a detailed understanding oftheirfundamental chemiStry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets)-by using different solvents and capping ligands.,CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides.show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH(3)NH(3)Pbl(3) nanowires Monitored at the single particle level show shape-correlated PL emissiOn across whole particles, with little photobleaching'Observed and very few off periods; This work highlights the potential of low-dimensional organonrietal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to-other fields such as light-emitting devices and single particle imaging and tracking. C1 [Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Men, Long; Bhattacharjee, Ujjal; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier] US DOE, Ames Lab, Ames, IA 50011 USA. [Goodwin, Peter M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Petrich, JW (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM jwp@iastate.edu; esmith1@iastate.edu; vela@iastate.edu RI Vela, Javier/I-4724-2014; Petrich, Jacob/L-1005-2015; OI Vela, Javier/0000-0001-5124-6893; Smith, Emily/0000-0001-7438-7808 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy [DE-AC02-07CH11358]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was performed, in part (AFM/PL), at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 85 TC 68 Z9 69 U1 31 U2 316 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2015 VL 9 IS 3 BP 2948 EP 2959 DI 10.1021/nn507020s PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CE4HN UT WOS:000351791800068 PM 25661423 ER PT J AU Yalcin, SE Galande, C Kappera, R Yamaguchi, H Martinez, U Velizhanin, KA Doorn, SK Dattelbaum, AM Chhowalla, M Ajayan, PM Gupta, G Mohite, AD AF Yalcin, Sibel Ebru Galande, Charudatta Kappera, Rajesh Yamaguchi, Hisato Martinez, Ulises Velizhanin, Kirill A. Doorn, Stephen K. Dattelbaum, Andrew M. Chhowalla, Manish Ajayan, Pulickel M. Gupta, Gautam Mohite, Aditya D. TI Direct Imaging of Charge Transport in Progressively Reduced Graphene Oxide Using Electrostatic Force Microscopy SO ACS NANO LA English DT Article DE progressively reduced graphene oxide; charge injection; charge transport; electrostatic force microscopy (EFM); photoluminescence; tight-binding calculations ID EXFOLIATED GRAPHITE OXIDE; CHEMICAL-REDUCTION; THIN-FILMS; TRANSPARENT; ELECTRONICS; EVOLUTION; SHEETS AB Graphene oxide (GO) has emerged as a multifunctional material that can be synthesized in bulk quantities and can be solution processed to form large-area atomic layered photoactive, flexible thin films for optoelectronic devices. This is largely due to the potential ability to tune electrical and optical properties of GO using functional groups. For the successful application of GO, it is key to understand the evolution of its optoelectronic properties as the GO undergoes a phase transition from its insulating and optically active state to the electrically conducting state with progressive reduction. In this paper, we use a combination of electrostatic force microscopy (EFM) and optical spectroscopy to monitor the emergence of the optoelectronic properties of GO with progressive reduction. EFM measurements enable, for the first time, direct visualization of charge propagation along the conducting pathways that emerge on progressively reduced graphene oxide (rGO) and demonstrate that with the increasing degree of reduction, injected charges can rapidly migrate over a distance of several micrometers, irrespective of their polarities. Direct imaging reveals the presence of an insurmountable potential barrier between reduced GO (rGO) and GO, which plays the decisive role in the charge transport. We complement charge imaging with theoretical modeling using quantum chemistry calculations that further demonstrate that the role of barrier in regulating the charge transport. Furthermore, by correlating the EFM measurements with photoluminescence imaging and electrical conductivity studies, we identify a bifunctional state in GO, where the optical properties are preserved along with good electrical conductivity, providing design principles for the development of GO-based, lowcost, thin-film optoelectronic applications. C1 [Yalcin, Sibel Ebru; Doorn, Stephen K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotectmol, Los Alamos, NM 87545 USA. [Galande, Charudatta; Ajayan, Pulickel M.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Kappera, Rajesh; Chhowalla, Manish] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. [Yamaguchi, Hisato; Martinez, Ulises; Dattelbaum, Andrew M.; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. [Velizhanin, Kirill A.] Los Alamos Natl Lab, Div Theoret, Phys & Chem Mat T1, Los Alamos, NM 87545 USA. RP Yalcin, SE (reprint author), Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. EM seyalcin@pnnl.gov; amohite@lanl.gov RI Velizhanin, Kirill/C-4835-2008; Yamaguchi, Hisato/C-5571-2008; OI Yamaguchi, Hisato/0000-0002-6703-8826; Kappera, Rajesh/0000-0003-1792-4405 FU LANL LDRD program [XW5A, XW5X] FX This work was supported by the LANL LDRD program (XW5A and XW5X). The work was conducted, in part, at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, and Office of Basic Energy Sciences (OBES) user facility. The authors thank Gabriel A. Montano for the use of Asylum Research MFP-3D, Nikhil S. Malvankar for the helpful discussions on electrical measurements and EFM imaging, and Jinkyoung Yoo for the support. NR 37 TC 8 Z9 8 U1 10 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2015 VL 9 IS 3 BP 2981 EP 2988 DI 10.1021/nn507150q PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CE4HN UT WOS:000351791800071 PM 25668323 ER PT J AU Zhang, JN Wang, KX Xu, Q Zhou, YC Cheng, FY Guo, SJ AF Zhang, Jianan Wang, Kaixi Xu, Qun Zhou, Yunchun Cheng, Fangyi Guo, Shaojun TI Beyond Yolk-Shell Nanoparticles: Fe3O4@Fe3C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage SO ACS NANO LA English DT Article DE yolk-shell structure; iron oxide; iron carbonide; core-shell structure; lithium ion battery ID HIGH-PERFORMANCE ANODE; OXYGEN REDUCTION REACTION; FE3O4 NANOPARTICLES; RATE CAPABILITY; BATTERY ANODES; SUPERIOR ANODE; DRUG-DELIVERY; GRAPHENE; COMPOSITES; PARTICLES AB To well address the problems of large volume change and dissolution of Fe3O4 nanomaterials during Li+ intercalation/extraction, herein we demonstrate a one-step in situ nanospace-confined pyrolysis strategy for robust yolk-shell nanospindles with very sufficient internal void space (VSIVS) for high-rate and long-term lithium ion batteries (LIBs), in which an Fe3O4@Fe3C core@shell nanoparticle is well confined in the compartment of a hollow carbon nanospindle. This particular structure can not only introduce VSIVS to accommodate volume change of Fe3O4 but also afford a dual shell of Fe3C and carbon to restrict Fe3O4 dissolution, thus providing dual roles for greatly improving the capacity retention. As a consequence, Fe3O4@Fe3C-C yolk shell nanospindles deliver a high reversible capadty of 11283 mAh g(-1) at even 500 inA g(-1), excellent high rate capacity (604.8 mAh g(-1) at 2000 mA g(-1)), and prolonged cycling life (maintaining 1120.2 mAh g(-1) at 500 mA g 100 cycles) for LIBs, which are much better than those of Fe3O4@C core@shell nanospindles and Fe3O4 nanoparticles. The present Fe3O4@Fe3C-C yolk shell nanospindles are the most efficient Fe3O4-based anode materials ever reported for LIBs. C1 [Zhang, Jianan; Wang, Kaixi; Xu, Qun] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450052, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA. [Zhou, Yunchun] Chinese Acad Sci, Changchun Inst Appl Chem, Natl Analyt Res Ctr Electrochem & Spect, Changchun 130022, Peoples R China. [Cheng, Fangyi] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China. RP Xu, Q (reprint author), Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450052, Peoples R China. EM qunxu@zzu.edu.cn; sguo@lanl.gov RI Guo, Shaojun/A-8449-2011 OI Guo, Shaojun/0000-0002-5941-414X FU National Natural Science Foundation of China [21101141, 51173170]; Program for New Century Excellent Talents in Universities (NCET); J. Robert Oppenheimer Distinguished Fellowship; Open Project Foundation of Key Laboratory of Advanced Energy Materials Chemistry of Nankai University [2015-32] FX This work was financially supported by the National Natural Science Foundation of China (Nos. 21101141 and 51173170), the Program for New Century Excellent Talents in Universities (NCET), a J. Robert Oppenheimer Distinguished Fellowship, and the Open Project Foundation of Key Laboratory of Advanced Energy Materials Chemistry of Nankai University (2015-32). NR 42 TC 49 Z9 50 U1 45 U2 364 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2015 VL 9 IS 3 BP 3369 EP 3376 DI 10.1021/acsnano.5b00760 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CE4HN UT WOS:000351791800111 PM 25716070 ER PT J AU Shingledecker, J Shyam, A Yamamoto, Y Kuhn, B AF Shingledecker, John Shyam, Amit Yamamoto, Yukinori Kuhn, Bernd TI MATERIALS RESEARCH FOR ADVANCED POWER ENGINEERING IN EUROPE SO ADVANCED MATERIALS & PROCESSES LA English DT Article C1 [Shingledecker, John] Elect Power Res Inst, Charlotte, NC 28262 USA. [Shyam, Amit; Yamamoto, Yukinori] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kuhn, Bernd] Forschungszentrum Julich, D-52425 Julich, Germany. RP Shingledecker, J (reprint author), Elect Power Res Inst, Charlotte, NC 28262 USA. OI Shyam, Amit/0000-0002-6722-4709 NR 1 TC 0 Z9 0 U1 0 U2 2 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD MAR PY 2015 VL 173 IS 3 BP 24 EP 27 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA CE8UN UT WOS:000352119700003 ER PT J AU Meng, ZY Yang, T Dimarogonas, DV Johansson, KH AF Meng, Ziyang Yang, Tao Dimarogonas, Dimos V. Johansson, Karl Henrik TI Coordinated output regulation of heterogeneous linear systems under switching topologies SO AUTOMATICA LA English DT Article DE Heterogeneous linear dynamic systems; Coordinated output regulation; Switching communication topology ID MOBILE AUTONOMOUS AGENTS; MULTIAGENT SYSTEMS; CONSENSUS; NETWORKS; SYNCHRONIZATION; CONVERGENCE; STABILITY; FLOCKING; TRACKING; DELAYS AB In this paper, we construct a framework to describe and study the coordinated output regulation problem for multiple heterogeneous linear systems. Each agent is modeled as a general linear multiple-input multiple-output system with an autonomous exosystem which represents the individual offset from the group reference for the agent. The multi-agent system as a whole has a group exogenous state which represents the tracking reference for the whole group. Under the constraints that the group exogenous output is only locally available to each agent and that the agents have only access to their neighbors' information, we propose observer-based feedback controllers to solve the coordinated output regulation problem using output feedback information. A high-gain approach is used and the information interactions are allowed to be switching over a finite set of networks containing both graphs that have a directed spanning tree and graphs that do not. Simulations are shown to validate the theoretical results. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Meng, Ziyang; Yang, Tao; Dimarogonas, Dimos V.; Johansson, Karl Henrik] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, S-10044 Stockholm, Sweden. [Meng, Ziyang; Yang, Tao; Dimarogonas, Dimos V.; Johansson, Karl Henrik] KTH Royal Inst Technol, Sch Elect Engn, S-10044 Stockholm, Sweden. [Meng, Ziyang] Tech Univ Munich, Inst Informat Oriented Control, D-80290 Munich, Germany. [Yang, Tao] Pacific NW Natl Lab, Elect Infrastruct Grp, Richland, WA 99352 USA. RP Meng, ZY (reprint author), KTH Royal Inst Technol, ACCESS Linnaeus Ctr, S-10044 Stockholm, Sweden. EM ziyangm@kth.se; taoyang@kth.se; dimos@kth.se; kallej@kth.se RI Yang, Tao/K-7139-2016 OI Yang, Tao/0000-0003-4090-8497 FU Knut and Alice Wallenberg Foundation; Swedish Research Council; EU HYCON2; Alexander von Humboldt Foundation of Germany FX This work has been supported in part by the Knut and Alice Wallenberg Foundation, the Swedish Research Council, EU HYCON2, and the Alexander von Humboldt Foundation of Germany. The material in this paper was partially presented at the 52th IEEE Conference on Decision and Control, December 10-13, 2013, Florence, Italy (Meng, Yang, Dimarogonas, & Johansson, 2013). This paper was recommended for publication in revised form by Associate Editor Tamas Keviczky under the direction of Editor Frank Allgower. NR 42 TC 1 Z9 1 U1 2 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0005-1098 EI 1873-2836 J9 AUTOMATICA JI Automatica PD MAR PY 2015 VL 53 BP 362 EP 368 DI 10.1016/j.automatica.2015.01.009 PG 7 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA CE6QB UT WOS:000351961900046 ER PT J AU Trendewicz, A Evans, R Dutta, A Sykes, R Carpenter, D Braun, R AF Trendewicz, Anna Evans, Robert Dutta, Abhijit Sykes, Robert Carpenter, Daniel Braun, Robert TI Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics SO BIOMASS & BIOENERGY LA English DT Article DE Cellulose; Pyrolysis; Potassium; Kinetics; MBMS ID FLUIDIZED-BED REACTOR; BIOMASS FAST PYROLYSIS; THERMAL-DECOMPOSITION; MODEL; WOOD; LEVOGLUCOSAN; FUNDAMENTALS; DEGRADATION; PRODUCTS; SCHEME AB This paper proposes modifications to an existing cellulose pyrolysis mechanism in order to include the effect of potassium on product yields and composition. The changes in activation energies and pre-exponential factors due to potassium were evaluated based on the experimental data collected from pyrolysis of cellulose samples treated with different levels of potassium (0-1% mass fraction). The experiments were performed in a pyrolysis reactor coupled to a molecular beam mass spectrometer (MBMS). Principal component analysis (PCA) performed on the collected data revealed that cellulose pyrolysis products could be divided into two groups: anhydrosugars and other fragmentation products (hydroxyacetaldehyde, 5-hydroxymethylfurfural, acetyl compounds). Multivariate curve resolution (MCR) was used to extract the time resolved concentration score profiles of principal components. Kinetic tests revealed that potassium apparently inhibits the formation of anhydrosugars and catalyzes char formation. Therefore, the oil yield predicted at 500 degrees C decreased from 87.9% from cellulose to 54.0% from cellulose with 0.5% mass fraction potassium treatment. The decrease in oil yield was accompanied by increased yield of char and gases produced via a catalyzed dehydration reaction. The predicted char and gas yield from cellulose were 3.7% and 8.4%, respectively. Introducing 0.5% mass fraction potassium treatment resulted in an increase of char yield to 12.1% and gas yield to 33.9%. The validation of the cellulose pyrolysis mechanism with experimental data from a fluidized-bed reactor, after this correction for potassium, showed good agreement with our results, with differences in product yields of up to 5%. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Trendewicz, Anna; Evans, Robert; Braun, Robert] Colorado Sch Mines, Golden, CO 80401 USA. [Evans, Robert; Dutta, Abhijit; Sykes, Robert; Carpenter, Daniel] Natl Renewable Energy Lab, Golden, CO USA. RP Braun, R (reprint author), Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. EM rbraun@mines.edu FU U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX We thank the U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) for supporting this work under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 38 TC 15 Z9 15 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD MAR PY 2015 VL 74 BP 15 EP 25 DI 10.1016/j.biombioe.2015.01.001 PG 11 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CE4GQ UT WOS:000351789500003 ER PT J AU Kim, S Dale, BE AF Kim, Seungdo Dale, Bruce E. TI Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems SO BIOMASS & BIOENERGY LA English DT Article DE Cellulosic ethanol; Corn stover; Distributed biomass processing; Life cycle assessment; Local biomass processing depot; Minimum ethanol selling price ID LIFE-CYCLE ASSESSMENT; CORN STOVER; ETHANOL-PRODUCTION; PRETREATMENT TECHNOLOGIES; BIOFUEL PRODUCTION; SWITCHGRASS; FEEDSTOCK; LOGISTICS; TRANSPORTATION; CHALLENGES AB This study explores how two different cellulosic ethanol production system configurations (distributed versus centralized processing) affect some aspects of the economic and environmental performance of cellulosic ethanol, measured as minimum ethanol selling price (MESP) and various environmental impact categories. The eco-efficiency indicator, which simultaneously accounts for economic and environmental features, is also calculated. The centralized configuration offers better economic performance for small-scale biorefineries, while the distributed configuration is economically superior for large-scale biorefineries. The MESP of the centralized configuration declines with increased biorefinery size up to a point and then rises due to the cost of trucking biomass to the biorefinery. In contrast, the MESP in the distributed configuration continuously declines with increasing biorefinery size due to the lower costs of railroad transportation and the greater economies of scale achieved at much larger biorefinery sizes, including biorefineries that reach the size of an average oil refinery-about 30,000 tons per day of feedstock. The centralized system yields lower environmental impacts for most impact categories than does the distributed system regardless of the biorefinery size. Eco-efficiency analysis shows that the centralized configuration is more sustainable for small-scale biorefineries, while the distributed configuration with railroad transport is more sustainable for large-scale biorefineries. Compared with gasoline from petroleum, cellulosic ethanol fuel offers sustainability advantages for the following environmental impact categories: fossil energy consumption, global warming, human health impacts by particulate matter, ozone layer depletion, ecotoxicity, human health cancer, and human health non-cancer, depending somewhat on the biorefinery sizes and the system configurations. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kim, Seungdo; Dale, Bruce E.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, Lansing, MI 48910 USA. [Kim, Seungdo; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. RP Kim, S (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, 3815 Technol Blvd, Lansing, MI 48910 USA. EM kimseun@egr.msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science ) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830] FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). NR 42 TC 13 Z9 13 U1 5 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD MAR PY 2015 VL 74 BP 135 EP 147 DI 10.1016/j.biombioe.2015.01.018 PG 13 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CE4GQ UT WOS:000351789500015 ER PT J AU Panisko, E Wietsma, T Lemmon, T Albrecht, K Howe, D AF Panisko, Ellen Wietsma, Thomas Lemmon, Teresa Albrecht, Karl Howe, Daniel TI Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks SO BIOMASS & BIOENERGY LA English DT Article DE Hydrothermal liquefaction; Hydrotreatment; Bio-fuels; Thermochemical conversions; Wastewater analysis ID BIO-OIL; BIOMASS; WATER AB In this study the aqueous phases resulting from the hydrothermal liquefaction (HTL) of biomass and the hydrotreatment (HT) of fast pyrolysis bio-oils were analyzed via TC, COD, GC-MS, GC-FID, HPLC, and ICP-OES to determine the organic and inorganic species present and the quantitative amounts of each. This work is necessary to address a significant knowledge gap in the literature related to the aqueous phases from thermochemical processes. Results showed that water from the hydrotreatment of eight different bio-oils contained less than 1 wt% total carbon, in many cases less than 0.2%. Negligible organic carbon was observed. HTL samples contained between 1 and 2 wt% carbon. Due to the large volume of water added to the HTL feedstock and the dilute samples generated, this accounts for 34-45% of the total carbon sent to the reactor. The majority of this carbon was present as acids, with glycolic acid and acetic acid having the highest concentrations. Alcohols, specifically methanol and ethanol, were also present. Numerous ketones were observed, consisting of mainly acetone and cyclopenta-ones. The amount of the total carbon identified and quantified in the HTL samples ranged from 64 to 82%. Inorganic species present in the HT samples were sodium, silicon, and sulfur. The highest levels of sulfur were observed in the grasses and agricultural residue (corn stover). The HTL samples exhibited much higher inorganic content, with very high levels of sodium and potassium. Alkali and alkali earth metals, as well as sulfur, were also present at levels high enough to raise concerns for the use of catalysts in downstream upgrading or reforming processes. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Panisko, Ellen; Wietsma, Thomas; Lemmon, Teresa; Albrecht, Karl; Howe, Daniel] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Howe, D (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN P8-60, Richland, WA 99352 USA. EM Ellen.panisko@pnnl.gov; Thomas.wietsma@pnnl.gov; Teresa.lemmon@pnnl.gov; Karl.albrecht@pnnl.gov; Daniel.howe@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830] FX This manuscript has been authored by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 23 TC 16 Z9 16 U1 6 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD MAR PY 2015 VL 74 BP 162 EP 171 DI 10.1016/j.biombioe.2015.01.011 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CE4GQ UT WOS:000351789500017 ER PT J AU Choi, JS Schwartz, V Santillan-Jimenez, E Crocker, M Lewis, SA Lance, MJ Meyer, HM More, KL AF Choi, Jae-Soon Schwartz, Viviane Santillan-Jimenez, Eduardo Crocker, Mark Lewis, Samuel A. Lance, Michael J. Meyer, Harry M., III More, Karren L. TI Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid SO CATALYSTS LA English DT Article ID TRANSITION-METAL CARBIDES; BIO-OIL; CATALYTIC PROPERTIES; PHASE HYDROGENATION; TUNGSTEN CARBIDE; TURNOVER RATES; SURFACE-AREA; BIOMASS; HYDRODEOXYGENATION; HYDROGENOLYSIS AB We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. The results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils. C1 [Choi, Jae-Soon; Schwartz, Viviane; Lewis, Samuel A.; Lance, Michael J.; Meyer, Harry M., III; More, Karren L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Santillan-Jimenez, Eduardo; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. RP Choi, JS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM choijs@ornl.gov; schwartzv@ornl.gov; e.santillan@uky.edu; mark.crocker@uky.edu; lewissasr@ornl.gov; lancem@ornl.gov; meyerhmiii@ornl.gov; morekl1@ornl.gov RI More, Karren/A-8097-2016; Lance, Michael/I-8417-2016; OI More, Karren/0000-0001-5223-9097; Lance, Michael/0000-0001-5167-5452; Santillan-Jimenez, Eduardo/0000-0002-1627-2719; Choi, Jae-Soon/0000-0002-8162-4207 FU U.S. Department of Energy Bioenergy Technologies Office; Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory; University of Kentucky (Office of the Vice President for Research) FX This research was financially supported by the U.S. Department of Energy Bioenergy Technologies Office, the Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory, and the University of Kentucky (Office of the Vice President for Research). A portion of this research was conducted at ORNL's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The authors thank D. C. Elliott and T. R Hart at the Pacific Northwest National Laboratory for the useful discussion on the aqueous-phase aging and bio-oil evaluation approaches used in this study. Kevin Perrin, Jaime Shoup and Tonya Morgan at the University of Kentucky are thanked for their technical assistance. NR 41 TC 3 Z9 3 U1 5 U2 31 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4344 J9 CATALYSTS JI Catalysts PD MAR PY 2015 VL 5 IS 1 BP 406 EP 423 DI 10.3390/catal5010406 PG 18 WC Chemistry, Physical SC Chemistry GA CE7ZB UT WOS:000352059400020 ER PT J AU Chen, L Toma, FM Cooper, JK Lyon, A Lin, YJ Sharp, ID Ager, JW AF Chen, Le Toma, Francesca M. Cooper, Jason K. Lyon, Alan Lin, Yongjing Sharp, Ian D. Ager, Joel W. TI Mo-Doped BiVO4 Photoanodes Synthesized by Reactive Sputtering SO CHEMSUSCHEM LA English DT Article DE artificial photosynthesis; semiconductors; thin films; water oxidation; water splitting ID PHOTOELECTROCHEMICAL WATER OXIDATION; BISMUTH VANADATE PHOTOANODES; VISIBLE-LIGHT; SOLAR PHOTOELECTROLYSIS; ELECTRONIC-STRUCTURE; HYDROGEN-PRODUCTION; MONOCLINIC BIVO4; EFFICIENT; CATALYST; CELLS AB We report a scalable and reproducible method for reactive co-sputtering of Mo-doped BiVO4 thin films with broad compositional control. Optimal photoanode performance is achieved at a Mo concentration of 3at.%. Incorporation of Mo promotes growth of large grains and reduces majority carrier transport limitations, resulting in maximum AM1.5G photocurrent densities of 3.5mAcm(-2) at 1.23V vs. RHE in pH6.8 buffer solution containing 0.1M Na2SO3 as a hole scavenger. Operation as a front-illuminated water oxidation photoanode is achieved by balancing the operational stability, catalytic activity, and parasitic optical absorption of a FeOOH oxygen evolution catalyst. FeOOH/Mo:BiVO4 thin film photoanodes enable water oxidation under the front-side illumination conditions used in integrated tandem water splitting devices. C1 [Chen, Le; Toma, Francesca M.; Cooper, Jason K.; Lyon, Alan; Lin, Yongjing; Sharp, Ian D.; Ager, Joel W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Chen, Le; Cooper, Jason K.; Lyon, Alan; Lin, Yongjing; Ager, Joel W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Toma, Francesca M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Lin, Yongjing] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Chen, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM JWAger@lbl.gov RI Sharp, Ian/I-6163-2015; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. NR 53 TC 25 Z9 25 U1 13 U2 122 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD MAR PY 2015 VL 8 IS 6 BP 1066 EP 1071 DI 10.1002/cssc.201402984 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CE2BK UT WOS:000351617500018 PM 25705871 ER PT J AU Huang, DZ Gu, Q Wang, Z Zhang, M Ng, KY AF Huang Da-Zhang Gu Qiang Wang Zhen Zhang Meng King Yuen Ng TI Analysis of the microbunching instability in a mid-energy electron linac SO CHINESE PHYSICS C LA English DT Article DE Free Electron Laser (FEL); electron linear accelerator (linac); microbunching instability AB Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine will not operate properly. In the electron linac of a soft X-ray FEL device, because the electron energy is not very high, the problem can become even more serious. As a typical example, the microbunching instability in the linac of the proposed Shanghai Soft X-ray Free Electron Laser facility (SXFEL) is investigated in detail by means of both analytical formulae and simulation tools. In the study, a new mechanism introducing random noise into the beam current profile as the beam passes through a chicane-type bunch compressor is proposed. The higher-order modes that appear in the simulations suggest that further improvement of the current theoretical model of the instability is needed. C1 [Huang Da-Zhang; Gu Qiang; Wang Zhen; Zhang Meng] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [King Yuen Ng] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Huang, DZ (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. EM huangdazhang@sinap.ac.cn FU National Natural Science Foundation of China [11275253]; Natural Science Foundation of Shanghai City [12ZR1436600] FX Supported by National Natural Science Foundation of China, (11275253), and Natural Science Foundation of Shanghai City (12ZR1436600) NR 10 TC 2 Z9 2 U1 1 U2 2 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2015 VL 39 IS 3 AR 038101 DI 10.1088/1674-1137/39/3/038101 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CE4NO UT WOS:000351807500015 ER PT J AU Shi, T Ji, FH Ye, M Wan, WS Qiao, S AF Shi Tan Ji Fu-Hao Ye Mao Wan Wei-Shi Qiao Shan TI Design of a multi-channel spin polarimeter SO CHINESE PHYSICS C LA English DT Article DE multi-channel electron spin polarimeter; spatial resolution ID POLARIZATION ANALYZER AB All commercial electron spin polarimeters work in single channel mode, which is the bottleneck of researches by spin-resolved photoelectron spectroscopy. By adopting the time inversion antisymmetry of the magnetic field, we developed a multichannel spin polarimeter based on normal incident very low energy electron diffraction (VLEED). The key point to achieve the multi-channel measurements is the spatial resolution of the electron optics. The test of the electron optics shows that the designed spatial resolution can be achieved and an image type spin polarimeter with 100 times 100, totally ten thousand channels is possible to be realized. C1 [Shi Tan; Ji Fu-Hao; Qiao Shan] Fudan Univ, Dept Phys, Adv Mat Lab, Shanghai 200438, Peoples R China. [Shi Tan; Ji Fu-Hao; Qiao Shan] Fudan Univ, Surface Phys Lab, Shanghai 200438, Peoples R China. [Ye Mao; Qiao Shan] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Wan Wei-Shi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Qiao Shan] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China. RP Shi, T (reprint author), Fudan Univ, Dept Phys, Adv Mat Lab, Shanghai 200438, Peoples R China. EM qiaoshan@mail.sim.ac.cn FU National Natural Science Foundation of China [10979021, 11027401, 11174054, 11304338, 11227902]; Ministry of Science and Technology of China [2011CB921800]; Chinese Academy of Sciences [XDB04010100] FX Supported by National Natural Science Foundation of China (10979021, 11027401, 11174054, 11304338, 11227902), the Ministry of Science and Technology of China (2011CB921800) and the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (XDB04010100) NR 10 TC 1 Z9 1 U1 2 U2 8 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2015 VL 39 IS 3 AR 039001 DI 10.1088/1674-1137/39/3/039001 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CE4NO UT WOS:000351807500019 ER PT J AU Castellana, VG Morari, A Weaver, J Tumeo, A Haglin, D Villa, O Feo, J AF Castellana, Vito Giovanni Morari, Alessandro Weaver, Jesse Tumeo, Antonino Haglin, David Villa, Oreste Feo, John TI In-Memory Graph Databases for Web-Scale Data SO COMPUTER LA English DT Article AB A software stack relies primarily on graph-based methods to implement scalable resource description framework databases on top of commodity clusters, providing an inexpensive way to extract meaning from volumes of heterogeneous data. C1 [Castellana, Vito Giovanni; Morari, Alessandro; Tumeo, Antonino] Pacific NW Natl Lab, High Performance Comp Grp, Richland, WA 99352 USA. [Weaver, Jesse] Pacific NW Natl Lab, Data Sci Grp, Richland, WA 99352 USA. [Haglin, David] Pacific NW Natl Lab, Data Intens Sci Comp Grp, Richland, WA 99352 USA. RP Castellana, VG (reprint author), Pacific NW Natl Lab, High Performance Comp Grp, Richland, WA 99352 USA. EM vitogiovanni.castellana@pnnl.gov; alessandro.morari@pnnl.gov; jrweaver@gmail.com; antonino.tumeo@pnnl.gov; david.haglin@pnnl.gov; ovilla@nvidia.com; jfeo@contextrelevant.com RI Tumeo, Antonino/L-3106-2016 NR 10 TC 5 Z9 5 U1 1 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD MAR PY 2015 VL 48 IS 3 BP 24 EP 35 PG 12 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA CE3UN UT WOS:000351755000015 ER PT J AU Janka, O Shang, T Baumbach, RE Bauer, ED Thompson, JD Kauzlarich, SM AF Janka, Oliver Shang, Tian Baumbach, Ryan E. Bauer, Eric D. Thompson, Joe D. Kauzlarich, Susan M. TI Structure and Magnetic Properties of Ce-3(Ni/Al/Ga)(11)-A New Phase with the La3Al11 Structure Type SO CRYSTALS LA English DT Article DE cerium; single crystal; magnetism; aluminum ID ELECTRICAL-RESISTIVITY; CE3AL11; PRESSURE; CRYSTAL; CEAL3 AB Single crystals of Ce-3(Ni/Al/Ga)(11) were obtained from an Al flux reaction. Single crystals of the title compound crystallizing in the orthorhombic space group Immm (No. 71, Z = 2) with a = 436.38(14), b = 1004.5(3) and c = 1293.4(4) pm. This is a standardized unit cell of the previously published La3Al11 structure type. Wavelength dispersive microprobe provides the composition of Ce-3.11(1) Ni-0.03(1) Al-8.95(1) Ga-1.90(1). Single crystal refinement provides the composition Ce3Ni0.08Al9.13Ga1.78 with substitution of the Ni and Ga on the Al1 and Al4 sites with the Al2 and Al3 solely occupied by Al. Magnetic susceptibility measurements reveal antiferromagnetic ordering with T-N = 4.8 K and there is no evidence for a ferromagnetic ordering that has been reported for Ce3Al11. The effective magnetic moment was found to be mu(eff) = 1.9 mu B/Ce, which is lower than the expected value for trivalent Ce (2.54 mu B/Ce). C1 [Janka, Oliver; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Janka, Oliver] Univ Munster, Inst Anorgan & Analyt Chem, D-48149 Munster, Germany. [Shang, Tian; Baumbach, Ryan E.; Bauer, Eric D.; Thompson, Joe D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shang, Tian] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310027, Zhejiang, Peoples R China. [Shang, Tian] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. [Baumbach, Ryan E.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Janka, O (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM shangtianphy@gmail.com; baumbach@magnet.fsu.edu; edbauer@lanl.gov; jdt@lanl.gov RI Janka, Oliver/B-3233-2011; OI Janka, Oliver/0000-0002-9480-3888; Bauer, Eric/0000-0003-0017-1937 FU NSF [DMR-1100313]; US DOE, Office of Basic Energy Sciences (OBES), Division of Material Science and Engineering FX This work was funded by NSF DMR-1100313. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, PECASE funding from the US DOE, Office of Basic Energy Sciences (OBES), Division of Material Science and Engineering. NR 14 TC 0 Z9 0 U1 1 U2 11 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4352 J9 CRYSTALS JI Crystals PD MAR PY 2015 VL 5 IS 1 BP 1 EP 8 DI 10.3390/cryst5010001 PG 8 WC Crystallography; Materials Science, Multidisciplinary SC Crystallography; Materials Science GA CE5LZ UT WOS:000351878300001 ER PT J AU Tao, SX Theulings, A Smedley, J van der Graaf, H AF Tao, Shu Xia Theulings, Annemarie Smedley, John van der Graaf, Harry TI DFT study of electron affinity of hydrogen terminated beta-Si3N4 SO DIAMOND AND RELATED MATERIALS LA English DT Article DE DFT simulation; Electron affinity; Hydrogen termination; Silicon nitride; Electron emission; Detector ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; AB-INITIO; SILICON-NITRIDE; DIAMOND 100; 110 SURFACES; BASIS-SET; EMISSION; PHOTOEMISSION; ENHANCEMENT AB Despite a large amount of interests in mechanical and physical properties of silicon nitride in high temperature and high pressure applications, little has been explored in terms of using silicon nitride as secondary electron emission material. This paper reports a DFT stud of the electron affinity (EA) of clean and hydrogen (H) terminated five low index beta-Si3N4 surfaces: (10 (1) over bar0), (11 (2) over bar0), (00 (0) over bar1), (10 (1) over bar1), and (11 (2) over bar1). The clean surfaces are found to have positive electron affinity (PEA) in the range of 0.10-2.00 eV. Surfaces with H termination on N atoms always show negative electron affinity (NEA), whereas surfaces with H termination on Si atoms show PEA or NEA, depending on the type of surface. However, for all surfaces except (11 (2) over bar1), the overall effect of H termination on both N and Si is large EA shifts from -0.9 to -32 eV relative to the clean surfaces, giving rise to NEA, an effect which is similar to that seen for H termination on diamond. The different effect of H termination on the EA is understood by analyzing the geometric properties and the charge distribution of the surfaces. We propose that H terminated beta-Si3N4 is a promising candidate for electron emission applications, because of its potential to obtain NEA by H termination. (c) 2015 Published by Elsevier B.V. C1 [Tao, Shu Xia; Theulings, Annemarie; van der Graaf, Harry] Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Tao, Shu Xia; Theulings, Annemarie; van der Graaf, Harry] Delft Univ Technol TNW, NL-2629 JB Delft, Netherlands. [Smedley, John] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Tao, SX (reprint author), Natl Inst Subat Phys, Nikhef Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. EM sxtao@nikhef.nl FU European Research Council (ERC-Advanced MEMBrane) [320764] FX This work is funded by the European Research Council (320764) (ERC-Advanced 2013 MEMBrane). NR 41 TC 5 Z9 5 U1 2 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD MAR PY 2015 VL 53 BP 52 EP 57 DI 10.1016/j.diamond.2015.02.001 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA CE7UG UT WOS:000352046700009 ER PT J AU Gu, X Cole, DR Rother, G Mildner, DFR Brantley, SL AF Gu, Xin Cole, David R. Rother, Gernot Mildner, David F. R. Brantley, Susan L. TI Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study SO ENERGY & FUELS LA English DT Article ID SMALL-ANGLE SCATTERING; GAS-ADSORPTION; SURFACE-AREA; MULTIPLE-SCATTERING; SEDIMENTARY-ROCKS; SIZE DISTRIBUTION; OPALINUS CLAY; BARNETT SHALE; ALBANY SHALE; POROSITY AB The production of natural gas has become increasingly important in the United States because of the development of hydraulic fracturing techniques, which significantly increase the permeability and fracture network of black shales. The pore structure of shale is a controlling factor for hydrocarbon storage and gas migration. In this work, we investigated the porosity of the Union Springs (Shamokin) Member of the Marcellus Formation from a core drilled in Centre County, PA, USA, using ultrasmall-angle neutron scattering (USANS), small-angle neutron scattering (SANS), focused ion beam scanning electron microscopy (FIB-SEM), and nitrogen gas adsorption. The scattering of neutrons by Marcellus shale depends on the sample orientation: for thin sections cut in the plane of bedding, the scattering pattern is isotropic, while for thin sections cut perpendicular to the bedding, the scattering pattern is anisotropic. The FIB-SEM observations allow attribution of the anisotropic scattering patterns to elongated pores predominantly associated with clay. The apparent porosities calculated from scattering data from the bedding plane sections are lower than those calculated from sections cut perpendicular to the bedding. A preliminary method for estimating the total porosity from the measurements made on the two orientations is presented. This method is in good agreement with nitrogen adsorption for both porosity and specific surface area measurements. Neutron scattering combined with FIB-SEM reveals that the dominant nanosized pores in organic-poor, clay-rich shale samples are water-accessible sheetlike pores within clay aggregates. In contrast, bubblelike organophilic pores in kerogen dominate organic-rich samples. Developing a better understanding of the distribution of the water-accessible pores will promote more accurate models of watermineral interactions during hydrofracturing. C1 [Gu, Xin; Brantley, Susan L.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Cole, David R.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Rother, Gernot] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mildner, David F. R.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. RP Gu, X (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. EM xug102@psu.edu; sxb7@psu.edu RI Rother, Gernot/B-7281-2008 OI Rother, Gernot/0000-0003-4921-6294 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; NSF [OCE 11-40159]; DOE OBES [DE-FG02-OSER15675]; Oak Ridge National Laboratory [DE-AC05-00OR22725]; U.S. Department of Energy; DOE Energy Frontier Research Center (EFRC) Nanoscale Control of Geologic CO2 [698077]; NSF Dimensions: Division of Environmental Biology [DEB-1342701] FX We thank T. Clark and M. Yashinski at Material Characterization Laboratory at the Pennsylvania State University for FIB-SEM. We thank the Appalachian Basin Black Shales Group at the Pennsylvania State University and the Pennsylvania Topographic and Geologic Survey for providing shale samples. The SANS measurements at the National Institute of Standards and Technology were supported in part by the National Science Foundation under Agreement DMR-0944772. Research of X.G. and G.R. was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. S.L.B. acknowledges NSF Grant OCE 11-40159 for support for working on Marcellus shale, DOE OBES Grant DE-FG02-OSER15675 for work on porosity using neutron scattering, and Oak Ridge National Laboratory (acting under Contract DE-AC05-00OR22725 with the U.S. Department of Energy) for support for X.G. D.R.C. at OSU received support from the DOE Energy Frontier Research Center (EFRC) Nanoscale Control of Geologic CO2 through Grant 698077 (neutron scattering experiments) and NSF Dimensions: Division of Environmental Biology under grant DEB-1342701 (interpretation). NR 67 TC 16 Z9 17 U1 13 U2 96 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2015 VL 29 IS 3 BP 1295 EP 1308 DI 10.1021/acs.energyfuels.5b00033 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CE2NV UT WOS:000351653200003 ER PT J AU Jones, K Ramakrishnan, G Uchimiya, M Orlov, A AF Jones, Keith Ramakrishnan, Girish Uchimiya, Minori Orlov, Alexander TI New Applications of X-ray Tomography in Pyrolysis of Biomass: Biochar Imaging SO ENERGY & FUELS LA English DT Article ID BLACK CARBON BIOCHAR; CHEMICAL-COMPOSITION; MOLECULAR-STRUCTURE; MICRO-CT; TEMPERATURE; PLANT AB We report on the first ever use of nondestructive micrometer-scale synchrotron-computed microtomography (CMT) for biochar material characterization as a function of pyrolysis temperature. This innovative approach demonstrated an increase in micron-sized marcropore fraction of the cotton hull (CH) sample, resulting in up to 29% sample porosity. We have also found that initial porosity development occurred at low temperatures (below 350 degrees C) of pyrolysis, consistent with chemical composition of CH. This innovative technique can be highly complementary to traditional BET measurements, considering that Barrett-Joyner-Halenda (BJH) analysis of pore size distribution cannot detect these macropores. Such information can be of substantial relevance to environmental applications, given that water retention by biochars added to soils is controlled by macropore characteristic among the other factors. Complementing our data with SEM, EDX, and XRF characterization techniques allowed us to develop a better understanding of evolution of biochar properties during its production, such presence of metals and initial morphological features of biochar before pyrolysis. These results have significant implications for using biochar as a soil additive and for clarifying the mechanisms of biofuel production by pyrolysis. C1 [Jones, Keith; Ramakrishnan, Girish; Orlov, Alexander] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Jones, Keith] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. [Uchimiya, Minori] USDA, ARS Southern Reg Res Ctr, New Orleans, LA 70124 USA. RP Orlov, A (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. FU U.S. Department of Energy [DE-AC02-98CH10886] FX Work was supported in part by the U.S. Department of Energy under contract No: DE-AC02-98CH10886. The U.S. DOE, Office of Science, and Office of Basic Energy Sciences supported use of National Synchrotron Light Source. NR 26 TC 1 Z9 1 U1 6 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2015 VL 29 IS 3 BP 1628 EP 1634 DI 10.1021/ef5027604 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CE2NV UT WOS:000351653200035 ER PT J AU Morgan, TJ George, A Boulamanti, AK Alvarez, P Adanouj, I Dean, C Vassilev, SV Baxter, D Andersen, LK AF Morgan, Trevor J. George, Anthe Boulamanti, Aikaterini K. Alvarez, Patricia Adanouj, Ibtissam Dean, Charles Vassilev, Stanislav V. Baxter, David Andersen, Lars Klembt TI Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucalyptus, Beech, and Pine Wood) with a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer SO ENERGY & FUELS LA English DT Article ID CHEMICAL-COMPOSITION; SAMPLES AB Quick and reliable inorganic elemental chemical analysis of biomass (including solid biofuels) is of importance in the increasing utilization and trade of biomass. In particular, it is important for the exploitation of contaminated/dirty biomass/biomass waste, and potentially also as a tool in ascertaining the type/origin of biomass. X-ray fluorescence (XRF) spectrometry performed directly on the raw biomass with limited prior sample preparation is an attractive method for performing such inorganic elemental analysis. In the present study, we therefore carefully investigate the performance of a commercial multi-element standardless XRF method by analyzing five common biomass types (switchgrass, corn stover, eucalyptus, beech, and pine wood). Sample preparation involves milling the raw biomass using cutter and rotor mills (avoiding ball-milling) and cold-pressing the powdered samples into pellets using wax binder. XRF users often rely on this type of commercial precalibrated or standardless methods delivered with their XRF spectrometer. However, these methods are often sold without any guarantee on performance. We recently demonstrated the quite good performance of a typical commercial precalibrated/standardless method when analyzing biomass in the ideal form of certified reference material. In the present article, we report now on analysis of common raw biomass using the same method purchased with a 4 kW wavelength dispersive (WD) XRF spectrometer. The accuracy (trueness and precision) is determined by comparing the XRF data with the elemental composition obtained by standard elemental analysis (ICP-OES and ion-chromatography). The elements positively detected by the XRF are Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, and maybe Mo. For elements above 25 ppm, the XRF data show a relative systematic error (bias, trueness) typically better than +/- 15% independent of the concentration. The elements present with >1000 ppm (Mg, Si, Cl, K, Ca) consistently show a positive bias of 3-18% relative. The relative precision (measured as the relative standard error) is better than +/- 5% (typically +/- 1%) for concentrations >25 ppm (obtained with 10-30 measurements). Quantifying elements below 25 ppm (Co, Ni, Cu, Zn, Sr, Mo) is possible in some cases, but it requires a more detailed study for each specific element. For example, Cu can be determined down to a few parts per million with an appropriate correction for the method bias. Occasionally, larger relative biases of up to 45-90% can occur for certain elements (Cl, Si) in certain samples, so care should be taken to carefully test the applied method for the particular samples and elements of interest. Quantification of silicon (Si) by XRF works well for concentrations >100 ppm. The XRF method can further be used to estimate the ash yield from biomass combustion with a relative bias better than +/- 10%. It is shown that the errors on the elemental composition are dominated by systematic errors (biases), and therefore, measuring the two sides of a single pellet combined with correction for any bias is the optimum approach. The five biomass types employed here, combined with the 13 certified reference materials employed in our previous study, span a broad range of biomass types with the XRF method generally producing reliable results (keeping in mind the limitations and needed bias corrections) with errors comparable to the standard reference methods. This suggests that typical standardless/precalibrated XRF methods work well in elemental analysis of raw biomass (keeping in mind the limitations) and therefore could be considered for general usage in, for example, industrial analytical laboratories requiring fast elemental analysis of biomass. C1 [Morgan, Trevor J.; Boulamanti, Aikaterini K.; Adanouj, Ibtissam; Vassilev, Stanislav V.; Baxter, David; Andersen, Lars Klembt] European Commiss, Joint Res Ctr, Inst Energy & Transport, NL-1755 LE Petten, Netherlands. [George, Anthe] Sandia Natl Labs, Livermore, CA 94550 USA. [Alvarez, Patricia] INCAR CSIC, Inst Nacl Carbon, Oviedo 33011, Spain. [Dean, Charles] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England. [Vassilev, Stanislav V.] Bulgarian Acad Sci, Inst Mineral & Crystallog, BU-1113 Sofia, Bulgaria. RP Andersen, LK (reprint author), European Commiss, Joint Res Ctr, Inst Energy & Transport, Westerduinweg 3, NL-1755 LE Petten, Netherlands. EM lars.andersen@ec.europa.eu RI Alvarez, Patricia/G-1038-2016 FU Spanish Science and Innovation Ministry [MAT2010-16194] FX The present work was carried out in part within the European Commission's research programme. Stanislav Vassilev would like to express his gratitude to the Joint Research Centre (European Commission) for the possibility to perform studies at the Institute for Energy and Transport (Petten, The Netherlands) as a Detached National Expert. Patricia Alvarez would like to thank the Spanish Science and Innovation Ministry for her Ramon y Cajal contract and research project MAT2010-16194. We gratefully acknowledge the encouragement received from working group WG 5 of the standardization bodies ISO/TC 238 and CEN/TC 335 working on Chemical Test Methods for Solid Biofuels, including a technical specification for X-ray analysis of biomass (ISO TS 16996). We thank Eoin Oude Essink, Jakub Bielewski, and Jesse Ang from the European School in Bergen (NL) for their help with preparing the biomass samples for analysis and their help with data extraction and evaluation. We thank Peter Rensen and Maurice Heimstra, Energy Research Centre of The Netherlands (ECN), for discussion of the results obtained by ICP-OES and ion-chromatography. NR 28 TC 3 Z9 3 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2015 VL 29 IS 3 BP 1669 EP 1685 DI 10.1021/ef502380x PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CE2NV UT WOS:000351653200040 ER PT J AU da Veiga, LB Manzini, G AF da Veiga, L. Beirao Manzini, G. TI RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE LA English DT Article DE A posteriori error estimation; virtual element method; polygonal mesh; high-order scheme ID POLYGONAL FINITE-ELEMENTS; DIFFERENCE METHOD; MIMETIC DISCRETIZATION; MESHES; CONVERGENCE; FLOW AB A posteriori error estimation and adaptivity are very useful in the context of the virtual element and mimetic discretization methods due to the flexibility of the meshes to which these numerical schemes can be applied. Nevertheless, developing error estimators for virtual and mimetic methods is not a straightforward task due to the lack of knowledge of the basis functions. In the new virtual element setting, we develop a residual based a posteriori error estimator for the Poisson problem with (piecewise) constant coefficients, that is proven to be reliable and efficient. We moreover show the numerical performance of the proposed estimator when it is combined with an adaptive strategy for the mesh refinement. C1 [da Veiga, L. Beirao] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy. [Manzini, G.] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. [Manzini, G.] CNR, IMATI, I-27100 Pavia, Italy. RP da Veiga, LB (reprint author), Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy. EM lourenco.beirao@unimi.it; gmanzini@lanl.gov RI Beirao da Veiga, Lourenco/A-8080-2010 FU Laboratory Directed Research and Development (LDRD) Program [LDRD 20140270ER]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics under National Security Administration of the U.S.Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX The work of the second author was supported by the Laboratory Directed Research and Development (LDRD) Program (project LDRD 20140270ER) and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics under the auspices of the National Security Administration of the U.S.Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LCC under contract DE-AC52-06NA25396. NR 41 TC 4 Z9 4 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0764-583X EI 1290-3841 J9 ESAIM-MATH MODEL NUM JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. PD MAR-APR PY 2015 VL 49 IS 2 BP 577 EP 599 DI 10.1051/m2an/2014047 PG 23 WC Mathematics, Applied SC Mathematics GA CE5MM UT WOS:000351879800013 ER PT J AU Chen, K Kunz, M Tamura, N Wenk, HR AF Chen, Kai Kunz, Martin Tamura, Nobumichi Wenk, Hans-Rudolf TI Residual stress preserved in quartz from the San Andreas Fault Observatory at Depth SO GEOLOGY LA English DT Article ID TOHOKU-OKI EARTHQUAKE; SAFOD CORE; SLIP ZONE; ROCKS; DISCLINATIONS AB We report on measurements of residual stress up to 300 MPa with a microfocused synchrotron X-ray beam in quartz fragments in a cataclasite from the damage zone of the San Andreas fault, California (USA). Samples were extracted from the San Andreas Fault Observatory at Depth drill core at a depth of 2.7 km. Stresses were derived from lattice distortions observed on Laue diffraction images. These stresses are distributed nonhomogeneously at the micron scale and are much higher than bulk-rock strengths of fault gouge, suggesting different processes at the microscopic and macroscopic scales. Our results indicate that residual lattice strain in quartz is a potential paleopiezometer to estimate stress in deformed rocks. C1 [Chen, Kai] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China. [Kunz, Martin; Tamura, Nobumichi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Chen, K (reprint author), Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China. RI xjtu, campnano/Q-1904-2015; Chen, Kai/O-5662-2014 OI Chen, Kai/0000-0002-4917-4445 FU Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation [0416243]; National Young 1000 Talents Program of China; U.S. Department of Energy Basic Energy Sciences [DE-FG02-05ER15637]; U.S. National Science Foundation [EAR-1343908] FX The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The microdiffraction program at the ALS on Beamline 12.3.2 was made possible by National Science Foundation grant 0416243. Chen is supported by the National Young 1000 Talents Program of China. Wenk acknowledges support from U.S. Department of Energy Basic Energy Sciences grant DE-FG02-05ER15637 and U.S. National Science Foundation grant EAR-1343908, Christoph Janssen for providing the sample, and help from Tim Teague in sample preparation. We are grateful for comments from reviewers and the editor that helped us to improve this presentation. NR 27 TC 10 Z9 10 U1 3 U2 20 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD MAR PY 2015 VL 43 IS 3 BP 219 EP 222 DI 10.1130/G36443.1 PG 4 WC Geology SC Geology GA CE8ML UT WOS:000352096700009 ER PT J AU Menegon, L Fusseis, F Stunitz, H Xiao, XH AF Menegon, Luca Fusseis, Florian Stunitz, Holger Xiao, Xianghui TI Creep cavitation bands control porosity and fluid flow in lower crustal shear zones SO GEOLOGY LA English DT Article ID DIFFUSION CREEP; CENTRAL ALPS; QUARTZ; MICROSTRUCTURES; DISSOLUTION; TRANSITION; MYLONITES; RHEOLOGY; DUCTILE; LOFOTEN AB Shear zones channelize fluid flow in Earth's crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700-730 degrees C, pressure = 0.65-0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 mu m. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size-sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites. C1 [Menegon, Luca] Univ Plymouth, Sch Geog Earth & Environm Sci, Plymouth PL4 8AA, Devon, England. [Fusseis, Florian] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FE, Midlothian, Scotland. [Stunitz, Holger] Univ Tromso, Dept Geol, N-9037 Tromso, Norway. [Xiao, Xianghui] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Menegon, L (reprint author), Univ Plymouth, Sch Geog Earth & Environm Sci, Plymouth PL4 8AA, Devon, England. RI Fusseis, Florian/M-5321-2016; OI Fusseis, Florian/0000-0002-3104-8109; Menegon, Luca/0000-0003-0625-2762 FU Mohn Foundation (University of Tromso, Norway); Plymouth University, UK; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was funded by a grant from the Mohn Foundation (University of Tromso, Norway) and by Plymouth University, UK. We thank Marianne Ahlbom, Natasha Stephen, Erling Ravna, and Trine Dahl for their help with the EBSD, XRF, LOI, and LECO analyses. We thank N. Mancktelow, S. Piazolo, and an anonymous reviewer for their constructive reviews, and Bob Holdsworth for editorial handling. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 25 TC 11 Z9 11 U1 0 U2 19 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD MAR PY 2015 VL 43 IS 3 BP 227 EP 230 DI 10.1130/G36307.1 PG 4 WC Geology SC Geology GA CE8ML UT WOS:000352096700011 ER PT J AU Rutkow, L Turner, L Lucas, E Hwang, C Alexander, GC AF Rutkow, Lainie Turner, Lydia Lucas, Eleanor Hwang, Catherine Alexander, G. Caleb TI Most Primary Care Physicians Are Aware Of Prescription Drug Monitoring Programs, But Many Find The Data Difficult To Access SO HEALTH AFFAIRS LA English DT Article ID CONTROLLED SUBSTANCES; DIVERSION; OPIOIDS; GUIDELINES; DEATHS; HEALTH; ABUSE; RATES; PAIN AB State prescription drug monitoring programs are common tools intended to reduce prescription drug abuse and diversion, or the nonmedical use of a prescribed drug. The success of these programs depends largely upon physicians' awareness and use of them. We conducted a nationally representative mail survey of 1,000 practicing primary care physicians in 2014 to characterize their attitudes toward and awareness and use of prescription drug monitoring programs. A total of 420 eligible physicians (adjusted response rate: 58 percent) returned completed surveys. Among all physicians surveyed, 72 percent were aware of their state's prescription drug monitoring program, and 53 percent reported using one of the programs. We identified several barriers that may prevent greater use of the programs, including the time-consuming nature of information retrieval and the lack of an intuitive format for data provided by the programs. These results suggest that the majority of US primary care physicians are aware of and use prescription drug monitoring programs at least on occasion, although many did not access these programs routinely. To increase the use of the programs in clinical practice, states should consider implementing legal mandates, investing in prescriber education and outreach, and taking measures to enhance ease of access to and use of the programs. C1 [Rutkow, Lainie] Johns Hopkins Bloomberg Sch Publ Hlth, Hlth Policy & Management, Baltimore, MD 21205 USA. [Turner, Lydia; Lucas, Eleanor; Hwang, Catherine; Alexander, G. Caleb] Johns Hopkins Bloomberg Sch Publ Hlth, Epidemiol, Baltimore, MD USA. [Hwang, Catherine] US FDA, ORISE, Silver Spring, MD USA. RP Rutkow, L (reprint author), Johns Hopkins Bloomberg Sch Publ Hlth, Hlth Policy & Management, Baltimore, MD 21205 USA. EM galexand@jhsph.edu FU Robert Wood Johnson Foundation Public Health Law Research Program [71520]; Lipitz Public Health Policy Award from Johns Hopkins Bloomberg School of Public Health; Peripheral and Central Nervous System Advisory Committee at the Food and Drug Administration (FDA) FX Caleb Alexander and Lainie Rutkow are supported by the Robert Wood Johnson Foundation Public Health Law Research Program (Grant No. 71520). Alexander is also supported by the Lipitz Public Health Policy Award from the Johns Hopkins Bloomberg School of Public Health. The funding sources had no role in the design or conduct of the study, analysis or interpretation of the data, and preparation or final approval of the manuscript prior to publication. Alexander is chair of the Peripheral and Central Nervous System Advisory Committee at the Food and Drug Administration (FDA), serves as a paid consultant to IMS Health, and serves on an IMS Health scientific advisory board. This arrangement has been reviewed and approved by Johns Hopkins University in accordance with its conflict-of-interest policies. Catherine Hwang is an Oak Ridge Institute for Science and Education (ORISE) fellow at the FDA. NR 45 TC 19 Z9 20 U1 1 U2 3 PU PROJECT HOPE PI BETHESDA PA 7500 OLD GEORGETOWN RD, STE 600, BETHESDA, MD 20814-6133 USA SN 0278-2715 J9 HEALTH AFFAIR JI Health Aff. PD MAR PY 2015 VL 34 IS 3 BP 484 EP 492 DI 10.1377/hlthaff.2014.1085 PG 9 WC Health Care Sciences & Services; Health Policy & Services SC Health Care Sciences & Services GA CE3HB UT WOS:000351716200017 PM 25732500 ER PT J AU Ahrens, J AF Ahrens, James TI Increasing Scientific Data Insights about Exascale Class Simulations under Power and Storage Constraints SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ahrens, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM ahrens@lanl.gov FU Department of Energy's Office of Science, Advanced Scientific Computing Research (ASCR) program office; National Nuclear, Security Administration (NNSA) program office FX I work with a great team of people at Los Alamos. More information about our team members and projects can be found at http://datascience.lanl.gov. The work is supported by the Department of Energy's Office of Science, Advanced Scientific Computing Research (ASCR) program office (Lucy Nowell) and National Nuclear, Security Administration (NNSA) program office (Thuc Hoang). NR 3 TC 1 Z9 1 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 EI 1558-1756 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD MAR-APR PY 2015 VL 35 IS 2 BP 8 EP 11 PG 4 WC Computer Science, Software Engineering SC Computer Science GA CE3OZ UT WOS:000351738100003 PM 25807503 ER PT J AU Xiao, BL Hang, LJ Mei, J Riley, C Tolbert, LM Ozpineci, B AF Xiao, Bailu Hang, Lijun Mei, Jun Riley, Cameron Tolbert, Leon M. Ozpineci, Burak TI Modular Cascaded H-Bridge Multilevel PV Inverter With Distributed MPPT for Grid-Connected Applications SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Cascaded multilevel inverter; distributed maximum power point (MPP) tracking (MPPT); modular; modulation compensation; photovoltaic (PV) ID PHOTOVOLTAIC MODULES; SYSTEMS; CONVERTER; TOPOLOGIES AB This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single-or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking control scheme is applied to both single-and three-phase multilevel inverters, which allows independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase seven-level cascaded H-bridge inverter has been built utilizing nine H-bridge modules (three modules per phase). Each H-bridge module is connected to a 185-W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach. C1 [Xiao, Bailu; Hang, Lijun; Riley, Cameron; Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Mei, Jun] Southeast Univ, Dept Elect Engn, Nanjing 210096, Jiangsu, Peoples R China. [Tolbert, Leon M.; Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37932 USA. RP Xiao, BL (reprint author), Oak Ridge Natl Lab, Power & Energy Syst Grp, Oak Ridge, TN 37932 USA. EM bxiao@utk.edu; lijunhang.hhy@aliyun.com; meijun2000@gmail.com; criley5@utk.edu; tolbert@utk.edu; burak@ornl.gov OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X FU Engineering Research Center Program of the National Science Foundation (NSF); Department of Energy under NSF [EEC-1041877]; Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program FX This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation (NSF) and Department of Energy under NSF Award EEC-1041877 and the Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program. NR 26 TC 38 Z9 38 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD MAR-APR PY 2015 VL 51 IS 2 BP 1722 EP 1731 DI 10.1109/TIA.2014.2354396 PG 10 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA CE3WJ UT WOS:000351760400065 ER PT J AU Zhang, K Lan, L Kwok, JT Vucetic, S Parvin, B AF Zhang, Kai Lan, Liang Kwok, James T. Vucetic, Slobodan Parvin, Bahram TI Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS LA English DT Article DE Graph-based methods; large data sets; low-rank approximation; manifold regularization; semisupervised learning ID NONLINEAR DIMENSIONALITY REDUCTION; SEMI-SUPERVISED CLASSIFICATION; MONTE-CARLO ALGORITHMS; NYSTROM METHOD; MANIFOLD REGULARIZATION; GEOMETRIC FRAMEWORK; CLUSTER ASSUMPTION; SELECTION; MATRIX AB When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via l(1)-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. C1 [Zhang, Kai] NEC Labs Amer Inc, Princeton, NJ 08540 USA. [Lan, Liang] Huawei Noahs Ark Lab, Hong Kong, Hong Kong, Peoples R China. [Kwok, James T.] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China. [Vucetic, Slobodan] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA. [Parvin, Bahram] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Zhang, K (reprint author), NEC Labs Amer Inc, Princeton, NJ 08540 USA. EM kzhang@nec-labs.com; lanliang@temple.edu; jamesk@cs.ust.hk; vucetic@temple.edu; b_parvin@lbl.gov FU National Institute of Health [R01-CA140663]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Hong Kong Competitive Earmarked Research Grant [614012] FX This work was supported in part by the National Institute of Health under Grant R01-CA140663 and in part by the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The work of J. T. Kwok was supported by the Hong Kong Competitive Earmarked Research Grant under Project 614012. NR 49 TC 9 Z9 9 U1 3 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2162-237X EI 2162-2388 J9 IEEE T NEUR NET LEAR JI IEEE Trans. Neural Netw. Learn. Syst. PD MAR PY 2015 VL 26 IS 3 BP 444 EP 457 DI 10.1109/TNNLS.2014.2315526 PG 14 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CE4XT UT WOS:000351834400003 PM 25720002 ER PT J AU Philip, S Summa, B Tierny, J Bremer, PT Pascucci, V AF Philip, Sujin Summa, Brian Tierny, Julien Bremer, Peer-Timo Pascucci, Valerio TI Distributed Seams for Gigapixel Panoramas SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Panorama; seams; gigapixel; parallel; scalable; out-of-core; MPI ID GRAPH-CUTS; ENERGY MINIMIZATION; IMAGE; MOSAICS; ALGORITHMS; TEXTURES; FLOW AB Gigapixel panoramas are an increasingly popular digital image application. They are often created as a mosaic of many smaller images. The mosaic acquisition can take many hours causing the individual images to differ in exposure and lighting conditions. A blending operation is often necessary to give the appearance of a seamless image. The blending quality depends on the magnitude of discontinuity along the image boundaries. Often, new boundaries, or seams, are first computed that minimize this transition. Current techniques based on multi-labeling Graph Cuts are too slow and memory intensive for gigapixel sized panoramas. In this paper, we present a parallel, out-of-core seam computing technique that is fast, has small memory footprint, and is capable of running efficiently on different types of parallel systems. Its maximum memory usage is configurable, in the form of a cache, which can improve performance by reducing redundant disk I/O and computations. It shows near-perfect scaling on symmetric multiprocessing systems and good scaling on clusters and distributed shared memory systems. Our technique improves the time required to compute seams for gigapixel imagery from many hours (or even days) to just a few minutes, while still producing boundaries with energy that is on-par with Graph Cuts. C1 [Philip, Sujin; Summa, Brian; Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Tierny, Julien] CNRS LIP6 UPMC Sorbonne Univ, LTCI Telecom ParisTech, Paris, France. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Philip, S (reprint author), Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. EM sujin@sci.utah.edu; bsumma@sci.utah.edu; tierny@telecom-paristech.fr; bremer5@llnl.gov; pascucci@sci.utah.edu FU NSF [OCI-0906379, OCI-0904631]; DOE/NEUP [120341]; DOE/MAPD [DESC000192]; DOE/LLNL [B597476]; DOE/Codesign [P01180734]; DOE/SciDAC [DESC0007446] FX This work was supported in part by NSF OCI-0906379, NSF OCI-0904631, DOE/NEUP 120341, DOE/MAPD DESC000192, DOE/LLNL B597476, DOE/Codesign P01180734, and DOE/SciDAC DESC0007446. NR 29 TC 2 Z9 2 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD MAR PY 2015 VL 21 IS 3 BP 350 EP 362 DI 10.1109/TVCG.2014.2366128 PG 13 WC Computer Science, Software Engineering SC Computer Science GA CE3UT UT WOS:000351755700005 PM 26357067 ER PT J AU Chen, Q Cheng, XL Wei, DQ Xu, Q AF Chen, Qi Cheng, Xiaolin Wei, Dongqing Xu, Qin TI Molecular Dynamics Simulation Studies of the Wild Type and E92Q/N155H Mutant of Elvitegravir-resistance HIV-1 Integrase SO INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES LA English DT Article DE HIV-1 integrase; elvitegravir; molecular dynamics simulation; drug resistance ID INHIBITION AB Although Elvitegravir (EVG) is a newly developed antiretrovirals drug to treat the acquired immunodeficiency syndrome (AIDS), drug resistance has already been found in clinic, such as E92Q/N155H and Q148H/G140S. Several structural investigations have already been reported to reveal the molecular mechanism of the drug resistance. As full length crystal structure for HIV-1 integrase is still unsolved, we herein use the crystal structure of the full length prototype foamy virus (PFV) in complex with virus DNA and inhibitor Elvitegravir as a template to construct the wild type and E92Q/N155H mutant system of HIV-1 integrase. Molecular dynamic simulations was used to revel the binding mode and the drug resistance of the EVG ligand in E92Q/N155H. Several important interactions were discovered between the mutated residues and the residues in the active site of the E92Q/N155H double mutant pattern, and cross correlation and clustering methods were used for detailed analysis. The results from the MD simulation studies will be used to guide the experimental efforts of developing novel inhibitors against drug-resistant HIV integrase mutants. C1 [Chen, Qi; Wei, Dongqing; Xu, Qin] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China. [Chen, Qi; Wei, Dongqing; Xu, Qin] Shanghai Jiao Tong Univ, Coll Life Sci & Biotechnol, Shanghai 200240, Peoples R China. [Cheng, Xiaolin] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Cheng, Xiaolin] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Xu, Q (reprint author), Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China. EM xuqin523@sjtu.edu.cn RI Xu, Qin/O-7310-2015 OI Xu, Qin/0000-0002-8346-9431 FU National High-Tech R&D Program (863 Program) [2012AA020307]; National Basic Research Program of China (973 Program) [2012CB721000]; Key Project of Shanghai Science and Technology Commission [11JC1406400]; Ph.D. Programs Foundation of Ministry of Education of China [20120073110057] FX This work is supported by grants from the National High-Tech R&D Program (863 Program Contract No. 2012AA020307), the National Basic Research Program of China (973 Program) (Contract No. 2012CB721000), the Key Project of Shanghai Science and Technology Commission (Contract No. 11JC1406400), and Ph.D. Programs Foundation of Ministry of Education of China (Contract No., 20120073110057), which were awarded to D.Q. Wei. NR 20 TC 0 Z9 0 U1 3 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1913-2751 EI 1867-1462 J9 INTERDISCIP SCI JI Interdiscip. Sci. PD MAR PY 2015 VL 7 IS 1 BP 36 EP 42 DI 10.1007/s12539-014-0235-8 PG 7 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA CE1II UT WOS:000351564900004 PM 25519157 ER PT J AU Tjellstrom, H Strawsine, M Ohlrogge, JB AF Tjellstroem, Henrik Strawsine, Merissa Ohlrogge, John B. TI Tracking synthesis and turnover of triacylglycerol in leaves SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Acyl-CoA; DGAT; diacylglycerol acyltransferase; leaf TAG; lipids; triacylglycerol ID ACYL-COADIACYLGLYCEROL ACYLTRANSFERASE; FATTY-ACID FLUX; DIACYLGLYCEROL ACYLTRANSFERASE; ARABIDOPSIS-THALIANA; SPINACH LEAVES; ENDOPLASMIC-RETICULUM; MICROSOMAL PREPARATIONS; LIPID-METABOLISM; MEMBRANE-LIPIDS; SAFFLOWER SEEDS AB Triacylglycerol (TAG), typically represents < 1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [C-14]lauric acid (12:0), a major initial product was [C-14]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [C-14]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [C-14]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [C-14]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [C-14]12:0 and the plastid products of [C-14]12:0 metabolism entered different pathways. Although plastid-modified C-14-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [C-14]16:0 and [C-14]18:1 in TAG. Because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [C-14]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG. C1 [Tjellstroem, Henrik] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Plant Biol, E Lansing, MI 48824 USA. Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Energy, E Lansing, MI 48824 USA. RP Tjellstrom, H (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Plant Biol, E Lansing, MI 48824 USA. EM henrik@msu.edu FU Stiftelsen Olle Engkvist Byggmastare; Swedish Council for Environment, Agricultural Sciences and Spatial Planning [2009-664]; Great Lakes Bioenergy Research Center through the US Department of Energy [DE-FC02-07ER64494]; US National Science Foundation [DBI-0701919] FX We gratefully acknowledge the critical reading by and linguistic advice from Dr Sarynna Lopez Meza. This work was supported by Stiftelsen Olle Engkvist Byggmastare and the Swedish Council for Environment, Agricultural Sciences and Spatial Planning (project no. 2009-664) to HT and by the Great Lakes Bioenergy Research Center through the US Department of Energy (Cooperative Agreement no. DE-FC02-07ER64494) and the US National Science Foundation (grant no. DBI-0701919) to JO. NR 70 TC 13 Z9 13 U1 3 U2 23 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD MAR PY 2015 VL 66 IS 5 BP 1453 EP 1461 DI 10.1093/jxb/eru500 PG 9 WC Plant Sciences SC Plant Sciences GA CE2RJ UT WOS:000351663300025 PM 25609824 ER PT J AU Sung, YH Hau, BCH Lau, MWN Crow, PA Kendrick, RC Buhlmann, KA Ades, GWJ Karraker, NE AF Sung, Yik-Hei Hau, Billy C. H. Lau, Michael W. N. Crow, Paul A. Kendrick, Roger C. Buhlmann, Kurt A. Ades, Gary W. J. Karraker, Nancy E. TI Growth Rate and an Evaluation of Age Estimation for the Endangered Big-Headed Turtle (Platysternon megacephalum) in China SO JOURNAL OF HERPETOLOGY LA English DT Article ID SEXUAL SIZE DIMORPHISM; COMPLETE MITOCHONDRIAL GENOME; LONG-LIVED VERTEBRATE; FRESH-WATER TURTLES; CHELYDRA-SERPENTINA; SPOTTED TURTLES; CLEMMYS-GUTTATA; CHRYSEMYS-PICTA; BODY-SIZE; EMYDOIDEA-BLANDINGII AB Understanding growth patterns is critical for determining age and size at sexual maturity and longevity in species that are severely threatened by over-collection and habitat loss, particularly in poorly understood species in tropical East Asia. Using data collected during a 9-year mark-recapture study, we fit the von Bertalanffy and logistic growth models to examine growth patterns of the endangered Bigheaded Turtle (Platysternon megacephalum). Growth rate of P. megacephalum was best described by the von Bertalanffy model. Mean age at maturation for female and male P. megacephalum was 8 and 13 years. At maturity for female and male P. megacephalum, mean carapace length was 100 mm and 130 mm, respectively. We determined that counting growth rings on the carapace and plastron was not a reliable method for estimating ages. The long time to maturation in P. megacephalum may be costly in harvested populations, with individuals potentially being removed from populations prior to first reproduction. The growth patterns we have documented, and associated information on body size and age at sexual maturity, yield metrics that may be used to assess the effects of harvesting in populations and may contribute to conservation efforts for this endangered species. C1 [Sung, Yik-Hei; Hau, Billy C. H.; Karraker, Nancy E.] Univ Hong Kong, Sch Biol Sci, Hong Kong, Hong Kong, Peoples R China. [Lau, Michael W. N.; Crow, Paul A.; Kendrick, Roger C.; Ades, Gary W. J.] Kadoorie Farm & Bot Garden, Fauna Conservat Dept, Tai Po, Hong Kong, Peoples R China. [Buhlmann, Kurt A.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. RP Sung, YH (reprint author), Kadoorie Farm & Bot Garden, Kadoorie Conservat China, Tai Po, Hong Kong, Peoples R China. EM heisyh@gmail.com OI Sung, Yik Hei/0000-0003-0026-8624 NR 59 TC 1 Z9 1 U1 2 U2 18 PU SOC STUDY AMPHIBIANS REPTILES PI ST LOUIS PA C/O ROBERT D ALDRIDGE, ST LOUIS UNIV, DEPT BIOLOGY, 3507 LACLEDE, ST LOUIS, MO 63103 USA SN 0022-1511 EI 1937-2418 J9 J HERPETOL JI J. Herpetol. PD MAR PY 2015 VL 49 IS 1 BP 99 EP 103 DI 10.1670/12-166 PG 5 WC Zoology SC Zoology GA CE1LC UT WOS:000351572100014 ER PT J AU Fowler, JS Logan, J Shumay, E Alia-Klein, N Wang, GJ Volkow, ND AF Fowler, Joanna S. Logan, Jean Shumay, Elena Alia-Klein, Nelly Wang, Gene-Jack Volkow, Nora D. TI Monoamine oxidase: radiotracer chemistry and human studies SO JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS LA English DT Review DE monoamine oxidase; PET; radiotracer chemistry; human studies ID POSITRON-EMISSION-TOMOGRAPHY; B MAO-B; C-11 DEUTERIUM-DEPRENYL; HEALTHY-HUMAN SUBJECTS; HUMAN-BRAIN; IN-VIVO; PERIPHERAL ORGANS; BABOON BRAIN; SELECTIVE INHIBITORS; CIGARETTE-SMOKING AB Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serotonin, norepinephrine, and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson's disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30years since the first radiotracers were developed and the first positron emission tomography (PET) images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables that have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe the following: (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological, and psychiatric disorders; and (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers that are currently used and possible new applications. C1 [Fowler, Joanna S.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Logan, Jean] NYU, Langone Med Ctr, Dept Radiol, New York, NY USA. [Shumay, Elena; Wang, Gene-Jack; Volkow, Nora D.] NIAAA, NIH, Bethesda, MD USA. [Alia-Klein, Nelly] Mt Sinai Sch Med, Dept Psychiat, New York, NY USA. [Volkow, Nora D.] NIDA, NIH, Bethesda, MD 20892 USA. RP Fowler, JS (reprint author), Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. EM fowler@bnl.gov OI Logan, Jean/0000-0002-6993-9994 NR 114 TC 12 Z9 13 U1 0 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0362-4803 EI 1099-1344 J9 J LABELLED COMPD RAD JI J. Label. Compd. Radiopharm. PD MAR PY 2015 VL 58 IS 3 SI SI BP 51 EP 64 DI 10.1002/jlcr.3247 PG 14 WC Biochemical Research Methods; Chemistry, Medicinal; Chemistry, Analytical SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA CE3XV UT WOS:000351764300003 PM 25678277 ER PT J AU Barry, MM Jung, Y Lee, JK Phuoc, TX Chyu, MK AF Barry, Matthew M. Jung, Youngsoo Lee, Jung-Kun Phuoc, Tran X. Chyu, Minking K. TI Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE bentonite; drilling fluid; filtration; high-temperature high-pressure; nanoparticle embedded clay hybrids; iron-oxide; low-temperature low-pressure; rheological behavior ID MONTMORILLONITE SUSPENSIONS; HIGH-TEMPERATURES; BEHAVIOR; PH; FLOCCULATION; FLOW AB The fluid filtration and rheological properties of low solid content (LSC) bentonite fluids containing iron-oxide (Fe2O3) nanoparticle (NP) additives and two different NP intercalated clay hybrids, iron-oxide clay hybrid (ICH) and aluminosilicate clay hybrid (ASCH), under both low-temperature low-pressure (LTLP: 25 degrees C, 6.9 bar) and high-temperature high-pressure (HTHP: 200 degrees C, 70 bar) conditions are investigated. The viscosity of each fluid was measured under LTLP and HTHP conditions using a pressurized and heated rotational viscometer. The LTLP and HTHP fluid filtrate volumes were measured in accordance to American Petroleum Institute standards. The addition of ICH and ASCH into bentonite solutions reduced both LTLP and HTHP fluid loss as much as 37% and 47% as compared to the control, under the respective conditions. The pure addition of 0.5 wt% 3 and 30 nm Fe2O3 NP increased the LTLP fluid filtration as much as 14% as compared to the control. However, this addition of Fe2O3 NP decreased the HTHP fluid filtrate volumes as much as 28% as compared to the control. It was found that the addition of clay hybrids reduced LTLP and HTHP fluid loss due to a restructured mode of clay platelet interaction attributed to a modification in surface charge as demonstrated by zeta potential measurements and scanning electron microscope images. (C) 2015 Elsevier B.V. All rights reserved. C1 [Barry, Matthew M.; Jung, Youngsoo; Lee, Jung-Kun; Phuoc, Tran X.; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Phuoc, Tran X.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Chyu, MK (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. EM mmb49@pitt.edu; yoj14@pitt.edu; jul37@pitt.edu; Phuoc.Tran@netl.doe.gov; mkchyu@pitt.edu FU Department of Energy FX This work was supported by the Department of Energy. NR 37 TC 11 Z9 12 U1 4 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD MAR PY 2015 VL 127 BP 338 EP 346 DI 10.1016/j.petrol.2015.01.012 PG 9 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA CE4DX UT WOS:000351782400030 ER PT J AU Rutqvist, J Rinaldi, AP Cappa, F Moridis, GJ AF Rutqvist, Jonny Rinaldi, Antonio P. Cappa, Frederic Moridis, George J. TI Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE Shale-gas; Stimulation; Modeling; Fault reactivation; Induced seismicity; Leakage ID ROCK; SEQUESTRATION; RUPTURE; LEAKAGE AB We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dipping fault, with hydraulic fracturing channeled within the fault, during a 3-h hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-h injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources. Published by Elsevier B.V. C1 [Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Rutqvist, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jrutqvist@lb.gov RI Rinaldi, Antonio Pio/N-3284-2013; Rutqvist, Jonny/F-4957-2015; Cappa, Frederic/B-4014-2017 OI Rinaldi, Antonio Pio/0000-0001-7052-8618; Rutqvist, Jonny/0000-0002-7949-9785; Cappa, Frederic/0000-0003-4859-8024 FU U.S. Environmental Protection Agency (EPA), Office of Research and Development [DW-89-92378101]; US Department of Energy at the Lawrence Berkeley National Laboratory (LBNL) FX We thank the U.S. Environmental Protection Agency (EPA), Office of Research and Development, for supporting this study under an Interagency Agreement (DW-89-92378101) with the US Department of Energy at the Lawrence Berkeley National Laboratory (LBNL). The views in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA. Mention of commercial software does not constitute endorsement by EPA or LBNL. NR 38 TC 13 Z9 14 U1 5 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD MAR PY 2015 VL 127 BP 377 EP 386 DI 10.1016/j.petrol.2015.01.019 PG 10 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA CE4DX UT WOS:000351782400034 ER PT J AU Ardelean, EV Babuska, V Goodding, JC Coombs, DM Robertson, LM Lane, SA AF Ardelean, Emil V. Babuska, Vit Goodding, James C. Coombs, Douglas M. Robertson, Lawrence M., III Lane, Steven A. TI Cable Effects Study: Tangents, Rabbit Holes, Dead Ends, and Valuable Results SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID EXPERIMENTAL VALIDATION AB Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. The study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamics research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. First, methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. Abeam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. A spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed. C1 [Ardelean, Emil V.] Schafer Corp, Albuquerque, NM 87106 USA. [Babuska, Vit] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Goodding, James C.; Coombs, Douglas M.] Moog CSA Engn, Albuquerque, NM 87123 USA. [Robertson, Lawrence M., III; Lane, Steven A.] US Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. RP Ardelean, EV (reprint author), Schafer Corp, 2309 Renard Pl SE,Suite 300, Albuquerque, NM 87106 USA. EM vitbabuska1@msn.com; jgoodding@csaengineering.com; dcoombs@csaengineering.com; lawrence.robertson@us.af.mil; steven.lane.1@us.af.mil FU U.S. Air Force Office of Scientific Research; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This effort was supported in part by the U.S. Air Force Office of Scientific Research. A portion of this work was performed at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank Greg Mehle, Roger Glease, and Cody Griffee for their contributions during the course of the project. NR 23 TC 0 Z9 0 U1 1 U2 4 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 569 EP 583 DI 10.2514/1.A32792 PG 15 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400025 ER PT J AU Edwards, TS AF Edwards, Timothy S. TI Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article C1 Sandia Natl Labs, Albuquerque, NM 87122 USA. RP Edwards, TS (reprint author), Sandia Natl Labs, Org 2134,1515 Eubank Southeast,Mail Stop 0472, Albuquerque, NM 87122 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 622 EP 624 DI 10.2514/1.A33029 PG 3 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400030 ER PT J AU Durand, C Zhang, XG Fowlkes, J Najmaei, S Lou, J Li, AP AF Durand, Corentin Zhang, Xiaoguang Fowlkes, Jason Najmaei, Sina Lou, Jun Li, An-Ping TI Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS2 SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; MOLYBDENUM-DISULFIDE; GRAIN-BOUNDARIES; DEPOSITION; MOBILITY; STATES AB The authors study the electrical transport properties of atomically thin individual crystalline grains of MoS2 with four-probe scanning tunneling microscopy. The monolayer MoS2 domains are synthesized by chemical vapor deposition on SiO2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carrier density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS2. Our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS2. (C) 2015 American Vacuum Society. C1 [Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Najmaei, Sina; Lou, Jun] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77251 USA. RP Durand, C (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov RI Li, An-Ping/B-3191-2012 OI Li, An-Ping/0000-0003-4400-7493 FU Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A portion of theory work (C.D.) was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 33 TC 7 Z9 7 U1 3 U2 57 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2015 VL 33 IS 2 AR 02B110 DI 10.1116/1.4906331 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CE3TF UT WOS:000351751100010 ER PT J AU Richardson, M Cheemalapati, S Everly, R Sankaranarayanan, SKRS Pyayt, A Bhethanabotla, VR AF Richardson, Mandek Cheemalapati, Surya Everly, Richard Sankaranarayanan, Subramanian K. R. S. Pyayt, Anna Bhethanabotla, Venkat R. TI Design and fabrication of a SAW device with Ta filled microcavities inserted into its delay path for improved power transfer SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ACOUSTIC-WAVE SENSORS; GAS SENSOR; DEEP RIE; BIOSENSORS; QUARTZ; PROPAGATION; SENSITIVITY AB The authors report the design and fabrication of a surface acoustic wave (SAW) device with improved power transfer due to modification of its delay path. Typically, SAW delay-line devices suffer from relatively high insertion loss (IL) (similar to 10-30 dB). Our approach is to incorporate an array of microcavities, having square cross-sectional area (lambda/2 x lambda/2) and filled with tantalum, within the delay path to maximize acoustic confinement to the surface and reduce IL. To determine the effectiveness of the cavities without expending too many resources and to explain trends found in actual devices, a finite element model of a SAW device with tantalum filled cavities having various depths was utilized. For each depth simulated, IL was decreased compared to a standard SAW device. Microcavities 2.5 mu m deep filled with tantalum showed the best performance (Delta IL = 17.93 dB). To validate simulated results, the authors fabricated a SAW device on ST 90 degrees-X quartz with microcavities etched into its delay path using deep reactive ion etching and filled with tantalum. Measurement of fabricated devices showed inclusion of tantalum filled microcavities increased power transfer compared to a device without cavities. (C) 2015 American Vacuum Society. C1 [Richardson, Mandek; Cheemalapati, Surya; Pyayt, Anna; Bhethanabotla, Venkat R.] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA. [Everly, Richard] Univ S Florida, Nanotechnol Res & Educ Ctr, Tampa, FL 33620 USA. [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Richardson, M (reprint author), Univ S Florida, Dept Chem & Biomed Engn, 4202 E Fowler Ave,ENB 118, Tampa, FL 33620 USA. EM bhethana@usf.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank the Research Computing, within USF Information Technology, University of South Florida for use of software and access to high performance computing resources. The authors would also like to thank the staff at USF's Nanomanufacturing Research and Education Center (NREC). Use of the Center for Nanoscale Materials is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 39 TC 1 Z9 1 U1 2 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2015 VL 33 IS 2 AR 022001 DI 10.1116/1.4906515 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CE3TF UT WOS:000351751100037 ER PT J AU Upadhyaya, M Basavalingappa, A Herbol, H Denbeaux, G Jindal, V Harris-Jones, J Jang, IY Goldberg, KA Mochi, I Marokkey, S Demmerle, W Pistor, TV AF Upadhyaya, Mihir Basavalingappa, Adarsh Herbol, Henry Denbeaux, Gregory Jindal, Vibhu Harris-Jones, Jenah Jang, Il-Yong Goldberg, Kenneth A. Mochi, Iacopo Marokkey, Sajan Demmerle, Wolfgang Pistor, Thomas V. TI Level-set multilayer growth model for predicting printability of buried native extreme ultraviolet mask defects SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID LOCALIZED DEFECTS; LITHOGRAPHY; FRONTS AB The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of EUV mask defects. In this work, two native mask blank defects were characterized using atomic force microscopy (AFM) and cross-section transmission electron microscopy (TEM), and the defect printability of the characterized native mask defects was evaluated using simulations implementing the finite-difference time-domain and the waveguide algorithms. The simulation results were compared with through-focus aerial images obtained at the SEMATECH Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory. The authors found agreement between the through-focus simulation results and the AIT results. To model the Mo/Si multilayer growth over the native defects, which served as the input for the defect printability simulations, a level-set technique was used to predict the evolution of the multilayer disruption over the defect. Unlike other models that assume a constant flux of atoms (of materials to be deposited) coming from a single direction, this model took into account the direction and incident fluxes of the materials to be deposited, as well as the rotation of the mask substrate, to accurately simulate the actual deposition conditions existing inside the ion beam deposition tool. The modeled multilayer growth was compared to the cross-section TEM images through the defects, as well as to the AFM scans for the given defects, and a good agreement was observed between them. (C) 2015 American Vacuum Society. C1 [Upadhyaya, Mihir; Basavalingappa, Adarsh; Herbol, Henry; Denbeaux, Gregory] SUNY Polytech Inst, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Jindal, Vibhu; Harris-Jones, Jenah] SEMATECH, Albany, NY 12203 USA. [Jang, Il-Yong] Samsung Elect Co, Suwon 443742, Gyeonggi Do, South Korea. [Goldberg, Kenneth A.; Mochi, Iacopo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Marokkey, Sajan; Demmerle, Wolfgang] Synopsys, Mountain View, CA 94043 USA. [Pistor, Thomas V.] Panoram Technol Inc, Burlingame, CA 94010 USA. RP Upadhyaya, M (reprint author), SUNY Polytech Inst, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. EM mihirupadhyaya@gmail.com FU SEMATECH; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to acknowledge the helpful ideas from Yudhishthir Kandel of SUNY College of Nanoscale Science and Engineering. The AIT was funded by SEMATECH, and the work was performed by University of California Lawrence Berkeley National Laboratory under the auspices of the U.S. Department of Energy, Contract No. DE-AC02-05CH11231. NR 22 TC 2 Z9 2 U1 1 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2015 VL 33 IS 2 AR 021602 DI 10.1116/1.4913315 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CE3TF UT WOS:000351751100029 ER PT J AU Atamturktur, S Hegenderfer, J Williams, B Egeberg, M Lebensohn, RA Unal, C AF Atamturktur, S. Hegenderfer, J. Williams, B. Egeberg, M. Lebensohn, R. A. Unal, C. TI A Resource Allocation Framework for Experiment-Based Validation of Numerical Models SO MECHANICS OF ADVANCED MATERIALS AND STRUCTURES LA English DT Article DE Bayesian inference; model calibration; uncertainty quantification; predictive maturity; viscoplastic self-consistent; material plasticity models ID BAYESIAN CALIBRATION; COMPUTER-MODELS; POLYCRYSTALS; DEFORMATION; UNCERTAINTY; DYNAMICS; CLIMB AB In experiment-based validation, uncertainties and systematic biases in model predictions are reduced by either increasing the amount of experimental evidence available for model calibration-thereby mitigating prediction uncertainty-or increasing the rigor in the definition of physics and/or engineering principles-thereby mitigating prediction bias. Hence, decision makers must regularly choose between either allocating resources for experimentation or further code development. The authors propose a decision-making framework to assist in resource allocation strictly from the perspective of predictive maturity and demonstrate the application of this framework on a nontrivial problem of predicting the plastic deformation of polycrystals. C1 [Atamturktur, S.; Hegenderfer, J.; Egeberg, M.] Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. [Williams, B.] Los Alamos Natl Lab, CS Div, Los Alamos, NM USA. [Lebensohn, R. A.] Los Alamos Natl Lab, MTS Div, Los Alamos, NM USA. [Unal, C.] Los Alamos Natl Lab, Div D, Los Alamos, NM USA. RP Atamturktur, S (reprint author), Clemson Univ, Glenn Dept Civil Engn, Lowry Hall, Clemson, SC 29634 USA. EM sez@clemson.edu RI Lebensohn, Ricardo/A-2494-2008; OI Lebensohn, Ricardo/0000-0002-3152-9105; Williams, Brian/0000-0002-3465-4972 FU DOE Office of Nuclear Energy's Nuclear Energy University Programs [00101999] FX This research was performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs (Contract No. 00101999). NR 33 TC 0 Z9 0 U1 0 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1537-6494 EI 1537-6532 J9 MECH ADV MATER STRUC JI Mech. Adv. Mater. Struct. PD MAR PY 2015 VL 22 IS 8 BP 641 EP 654 DI 10.1080/15376494.2013.828819 PG 14 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing; Materials Science, Composites SC Materials Science; Mechanics GA CE3AA UT WOS:000351694300004 ER PT J AU Shrestha, T Alsagabi, SF Charit, I Potirniche, GP Glazoff, MV AF Shrestha, Triratna Alsagabi, Sultan F. Charit, Indrajit Potirniche, Gabriel P. Glazoff, Michael V. TI Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel SO METALS LA English DT Article ID MODIFIED 9CR-1MO STEEL; MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; CREEP DEFORMATION; BEHAVIOR; TEMPERATURE; STRENGTH; REACTORS; CARBIDE; NIOBIUM AB Grade 91 steel (modified 9Cr-1Mo steel) is considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures of up to 650 degrees C. In this study, heat treatment of Grade 91 steel was performed by normalizing and tempering the steel at various temperatures for different periods of time. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the microstructural evolution including precipitate structures and were correlated with mechanical behavior of the steel. Thermo-Calc (TM) calculations were used to support the experimental work. Furthermore, carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. C1 [Shrestha, Triratna; Alsagabi, Sultan F.; Charit, Indrajit] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Potirniche, Gabriel P.] Univ Idaho, Dept Mech Engn, Moscow, ID 83844 USA. [Glazoff, Michael V.] Idaho Natl Lab, Energy Syst Integrat, Idaho Falls, ID 83415 USA. RP Glazoff, MV (reprint author), Idaho Natl Lab, Energy Syst Integrat, Idaho Falls, ID 83415 USA. EM triratna.shrestha@gmail.com; ssagabi@kacst.edu.sa; icharit@uidaho.edu; gabrielp@uidaho.edu; michael.glazoff@inl.gov FU DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP) through the US Department of Energy [42246 release 59] FX This research was performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP) through the US Department of Energy Grant No. 42246 release 59. We would like to thank Zack Wuthrich and Tshering Sherpa for their assistance with the optical microscopy work. NR 26 TC 7 Z9 7 U1 2 U2 11 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2075-4701 J9 METALS-BASEL JI Metals PD MAR PY 2015 VL 5 IS 1 BP 131 EP 149 DI 10.3390/met5010131 PG 19 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CF1CW UT WOS:000352282200006 ER PT J AU Natvig, DO Taylor, JW Tsang, A Hutchinson, MI Powell, AJ AF Natvig, Donald O. Taylor, John W. Tsang, Adrian Hutchinson, Miriam I. Powell, Amy J. TI Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila) SO MYCOLOGIA LA English DT Article DE Chaetomiaceae; Mycothermus; Scytalidium; Sordariales; thermophilic fungi ID MUSHROOM COMPOST; AGARICUS-BISPORUS; FUNGI; MYCELIOPHTHORA; PHYLOGENY AB Thermophilic fungi have received substantial attention in industry for their potential to produce thermostable enzymes and as production platforms tolerant of high temperature. Studies exploring the ecology and biosystematics of thermophilic fungi have lagged behind studies in applied biology. The species commonly known as Scytalidium thermophilum (Chaetomiaceae) is one of the most frequently encountered organisms in surveys of thermophilic fungi. There is evidence that it is ecologically and economically important, for example in the context of commercial mushroom growing. As described here, this species should not be placed in the genus Scytalidium or any other existing genus. We propose a new genus and combination, Mycothermus thermophilus. C1 [Natvig, Donald O.; Hutchinson, Miriam I.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Taylor, John W.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Tsang, Adrian] Concordia Univ, Ctr Struct & Funct Gen, Montreal, PQ H4B 1R6, Canada. [Powell, Amy J.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Natvig, DO (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM dnatvig@gmail.com OI Hutchinson, Miriam/0000-0003-4077-0184 FU University of New Mexico Research Allocations Committee; Department of Energy's Joint Genome Institute FX This research was partially supported by grants to the University of New Mexico for the Sevilleta Long-term Ecological Research program, Genome Canada and by a grant from the University of New Mexico Research Allocations Committee. We thank Randy Berka, Novozymes Inc., for helpful discussions and Richard L. Moe, University of California Berkeley, and David Geiser, Pennsylvania State University, for help with nomenclature and presentation. Lynne Sigler, University of Alberta, provided valuable help interpreting the systematics of Scytalidium and Neoscytalidium. The N. discreta sequences employed in our analysis were acquired through a Community Sequencing Program award from the Department of Energy's Joint Genome Institute. NR 27 TC 4 Z9 4 U1 2 U2 11 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD MAR-APR PY 2015 VL 107 IS 2 BP 319 EP 327 DI 10.3852/13-399 PG 9 WC Mycology SC Mycology GA CE5RF UT WOS:000351892600007 PM 25550298 ER PT J AU Chiang, NY Grothey, A AF Chiang, Naiyuan Grothey, Andreas TI Solving security constrained optimal power flow problems by a structure exploiting interior point method SO OPTIMIZATION AND ENGINEERING LA English DT Article DE SCOPF; Interior point methods; Structure exploitation iterative methods; Preconditioner ID SYSTEMS; OPTIMIZATION; ALGORITHM AB In this paper we present a new approach to solve the DC (n - 1) security constrained optimal power flow (SCOPF) problem by a structure exploiting interior point solver. Our approach is based on a reformulation of the linearised SCOPF model, in which most matrices that need to be factorized are constant. Hence, most factorizations and a large number of back-solve operations only need to be performed once. However, assembling the Schur complement matrix remains expensive in this scheme. To reduce the effort, we suggest using a preconditioned iterative method to solve the corresponding linear system. We suggest two main schemes to pick a good and robust preconditioner based on combining different "active" contingency scenarios of the SCOPF model. These new schemes are implemented within the object-oriented parallel solver (OOPS), a structure-exploiting primal-dual interior-point implementation. We give results on several SCOPF test problems. The largest example contains 500 buses. We compare the results from the original interior point method (IPM) implementation in OOPS and our new reformulation. C1 [Chiang, Naiyuan; Grothey, Andreas] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Chiang, NY (reprint author), Argonne Natl Lab, 9700 South Cass Ave,Bldg 240, Lemont, IL 60439 USA. EM nychiang@mcs.anl.gov; A.Grothey@ed.ac.uk NR 19 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-4420 EI 1573-2924 J9 OPTIM ENG JI Optim. Eng. PD MAR PY 2015 VL 16 IS 1 BP 49 EP 71 DI 10.1007/s11081-014-9250-1 PG 23 WC Engineering, Multidisciplinary; Operations Research & Management Science; Mathematics, Interdisciplinary Applications SC Engineering; Operations Research & Management Science; Mathematics GA CE5AO UT WOS:000351842300003 ER PT J AU Mun, BS Chen, K Leem, Y Dejoie, C Tamura, N Kunz, M Liu, Z Grass, ME Park, C Yoon, J Lee, YY Ju, H AF Mun, Bongjin Simon Chen, Kai Leem, Youngchul Dejoie, Catherine Tamura, Nobumichi Kunz, Martin Liu, Zhi Grass, Michael E. Park, Changwoo Yoon, Joonseok Lee, Y. Yvette Ju, Honglyoul TI Observation of insulating-insulating monoclinic structural transition in macro-sized VO2 single crystals (vol 5, pg R107, 2011) SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Correction C1 [Mun, Bongjin Simon; Grass, Michael E.] Hanyang Univ, ERICA, Dept Appl Phys, Kyonggi Do 426791, South Korea. [Chen, Kai; Dejoie, Catherine; Tamura, Nobumichi; Kunz, Martin; Liu, Zhi; Grass, Michael E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Leem, Youngchul; Yoon, Joonseok; Lee, Y. Yvette; Ju, Honglyoul] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Park, Changwoo] Hanbat Natl Univ, Div Appl Chem & Biotechnol, Taejon 305719, South Korea. [Park, Changwoo] Adv Nano Prod, Chungwon 363942, Chungbuk, South Korea. RP Ju, H (reprint author), Yonsei Univ, Dept Phys, Seoul 120749, South Korea. EM tesl@yonsei.ac.kr RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 NR 3 TC 1 Z9 1 U1 0 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-6254 EI 1862-6270 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD MAR PY 2015 VL 9 IS 3 BP 206 EP 206 DI 10.1002/pssr.201510046 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CE2UK UT WOS:000351674600011 ER PT J AU Lax, S Nagler, CR Gilbert, JA AF Lax, Simon Nagler, Cathryn R. Gilbert, Jack A. TI Our interface with the built environment: immunity and the indoor microbiota SO TRENDS IN IMMUNOLOGY LA English DT Editorial Material DE microbiome; built environment AB The rise of urbanization and an increasingly indoor lifestyle has affected human interactions with our microbiota in unprecedented ways. We discuss how this lifestyle may influence immune development and function, and argue that it is time that we examined ways to manipulate the indoor environment to increase our exposure to a wider phylogeny of microorganisms. An important step is to continue to engage citizen scientists in the efforts to characterize our interactions with the diverse microbial environments that we inhabit. C1 [Lax, Simon; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Dept Biosci, Argonne, IL 60439 USA. [Lax, Simon; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Nagler, Cathryn R.] Univ Chicago, Dept Pathol, Comm Immunol, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. RP Gilbert, JA (reprint author), Argonne Natl Lab, Inst Genom & Syst Biol, Dept Biosci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gilbertjack@anl.gov FU Alfred P Sloan Foundation FX The authors wish to thank the Alfred P Sloan Foundation for funding the Hospital Microbiome Project. NR 15 TC 4 Z9 4 U1 4 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1471-4906 EI 1471-4981 J9 TRENDS IMMUNOL JI Trends Immunol. PD MAR PY 2015 VL 36 IS 3 BP 121 EP 123 DI 10.1016/j.it.2015.01.001 PG 3 WC Immunology SC Immunology GA CE6RY UT WOS:000351967000001 PM 25754179 ER PT J AU Zheng, J Cullen, DA Forest, RV Wittkopft, JA Zhuang, ZB Sheng, WC Chen, JGG Yan, YS AF Zheng, Jie Cullen, David A. Forest, Robert V. Wittkopft, Jarrid A. Zhuang, Zhongbin Sheng, Wenchao Chen, Jingguang G. Yan, Yushan TI Platinum-Ruthenium Nanotubes and Platinum-Ruthenium Coated Copper Nanowires As Efficient Catalysts for Electro-Oxidation of Methanol SO ACS CATALYSIS LA English DT Article DE methanol fuel cells; electrocatalysis; methanol oxidation reaction; one-dimensional structure; platinum-ruthenium ID ENHANCED ELECTROCATALYTIC ACTIVITY; GALVANIC REPLACEMENT REACTION; PROTON-EXCHANGE MEMBRANE; OXYGEN-REDUCTION; PT-RU; FORMIC-ACID; FUEL-CELL; OXIDATION REACTION; ALLOY NANOWIRES; PARTICLES AB The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this work, we report a facile synthesis of platinum-ruthenium nanotubes (PtRuNTs) and platinum-ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). X-ray photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs. C1 [Zheng, Jie; Forest, Robert V.; Wittkopft, Jarrid A.; Zhuang, Zhongbin; Sheng, Wenchao; Yan, Yushan] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. [Cullen, David A.] Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. [Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. RP Yan, YS (reprint author), Univ Delaware, Dept Chem & Biomol Engn, 150 Acad St, Newark, DE 19716 USA. EM yanys@udel.edu RI Cullen, David/A-2918-2015; Zhuang, e/H-8164-2016 OI Cullen, David/0000-0002-2593-7866; Zhuang, e/0000-0001-7187-1266 FU U.S. Department of Energy through the Fuel Cell Technologies Program [DE-AC36-08-NA25396]; Los Alamos National Laboratory FX This work was financially supported by the U.S. Department of Energy through the Fuel Cell Technologies Program under No. DE-AC36-08-NA25396 with the Los Alamos National Laboratory. NR 54 TC 27 Z9 27 U1 24 U2 131 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1468 EP 1474 DI 10.1021/cs501449y PG 7 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500009 ER PT J AU Jung, U Elsen, A Li, Y Smith, JG Small, MW Stach, EA Frenkel, AI Nuzzo, RG AF Jung, Ulrich Elsen, Annika Li, Yuanyuan Smith, Jeremy G. Small, Matthew W. Stach, Eric A. Frenkel, Anatoly I. Nuzzo, Ralph G. TI Comparative in Operando Studies in Heterogeneous Catalysis: Atomic and Electronic Structural Features in the Hydrogenation of Ethylene over Supported Pd and Pt Catalysts SO ACS CATALYSIS LA English DT Article DE supported metal nanocatalysts; ethylene hydrogenation; X-ray absorption spectroscopy (XAS); in operando study; atomic structure; structural dynamics; scanning transmission electron microscopy (STEM) ID X-RAY-ABSORPTION; SINGLE-CRYSTAL SURFACES; SUM-FREQUENCY GENERATION; IN-SITU; PALLADIUM CATALYSTS; ETHYLIDYNE FORMATION; EXCHANGE-REACTIONS; THERMAL CHEMISTRY; PT(111) SURFACES; ADSORPTION SITES AB There exists an emerging opportunity, engendered by advances made in experimental methods of research, to address long-standing questions about the nature of the molecular mechanisms that are operative in important heterogeneous catalytic processes, as well as the nature of the complex atomic and electronic structural features that mediate them. Of particular interest in this regard is the understanding of the dynamical attributes of catalytic processes-an understanding that might allow design principles to be applied to optimize the atomic and electronic structure of heterogeneous catalysts to sustain their performance in essentially any operating process condition. The current work explores these ideas-highlighting capabilities of in operando methods of spectroscopic characterization as applied to an exemplary heterogeneous catalytic process, olefin hydrogenation. No heterogeneous catalytic process has been studied more intensively than olefin hydrogenation. The extensive literature available establishes important features by which metal catalysts activate and efficiently transform the bonding of the hydrogen and alkene reactants to generate a product alkane. Even so, many important mechanistic questions remain poorly understood due to the inherent multiscale complexity associated with heterogeneous catalytic transformations, as well as the paucity of methods suitable for their characterization in operando. The recent literature documents the development of new capabilities for characterization afforded by in situ and in operando methods. Of these, X-ray absorption spectroscopy (XAS) has become a particularly important technique for studying the mechanisms of catalytic reactions due to its capabilities for elucidating the nature of the atomic and electronic structural features of operating catalysts. Many important questions can now be addressed, in particular those that follow from the unique dynamical impacts and patterns of reactivity that occur in higher pressure (non-UHV) environments. In this Perspective, we examine important structure-property correlations for an exemplary model reaction-ethylene hydrogenation-as elucidated in operando for two efficient catalyst materials-nanoscale Pd and Pt clusters supported on SiO2. The examined features include the following: the structural dynamics of the metal clusters and their sensitivity to the composition of the reactant feed; the role of hydrogen, and metal- and/or support-bonded forms of adsorbates more generally, in forming intermediates and products; the influences of adsorbate bonding states (e.g., hydrogen) on reactivity; the role played by carbonaceous deposits (and the mechanisms of their formation); the quantitative nature of the atomistic features that exist within the structure-sensitivity correlations of this catalytic reaction; and mechanisms that mediate the sintering of catalysts operating in high-pressure ambient environment. Here we present a comparative overview of the hydrogenation of ethylene over approximate to 1 nm-sized Pd and Pt catalysts supported on SiO2. The reaction was characterized in various mixed hydrogen and ethylene atmospheres at ambient conditions by in operando XAS and complemented with scanning transmission electron microscopy (STEM). Pronounced changes in the atomic and electronic structures of both catalysts (e.g., defined transitions between hydrogen- and hydrocarbon-covered surfaces, carbide-phase formation, hydrogen (de)intercalation, and particle coarsening) are found to occur during the reaction. The evolution of the catalysts features, however, has only minimal impact on the largely reversible patterns of reactivity. These findings demonstrate remarkable dynamic structural complexity within the mechanisms of alkane formation over both types of supported catalysts. C1 [Jung, Ulrich; Elsen, Annika; Smith, Jeremy G.; Small, Matthew W.; Nuzzo, Ralph G.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Li, Yuanyuan; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Frenkel, AI (reprint author), Yeshiva Univ, Dept Phys, New York, NY 10016 USA. EM anatoly.frenkel@yu.edu; r-nuzzo@illinois.edu RI Frenkel, Anatoly/D-3311-2011; Stach, Eric/D-8545-2011 OI Frenkel, Anatoly/0000-0002-5451-1207; Stach, Eric/0000-0002-3366-2153 FU U.S. DOE [DE- FG02-03ER15476, DE-FG02-05ERI5688]; Center for Functional Nanomaterials, U.S. DOE [DE-AC02-98CH10886] FX The authors gratefully acknowledge funding of this work by the U.S. DOE Grant No. DE- FG02-03ER15476. Beamlines X18B and X19A are supported in part by the U.S. DOE Grant No. DE-FG02-05ERI5688. E.A.S. acknowledges support to the Center for Functional Nanomaterials, U.S. DOE Contract No. DE-AC02-98CH10886. NR 111 TC 17 Z9 17 U1 26 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1539 EP 1551 DI 10.1021/cs501846g PG 13 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500017 ER PT J AU Tsai, HC Hsieh, YC Yu, TH Lee, YJ Wu, YH Merinov, BV Wu, PW Chen, SY Adzic, RR Goddard, WA AF Tsai, Ho-Cheng Hsieh, Yu-Chi Yu, Ted H. Lee, Yi-Juei Wu, Yue-Han Merinov, Boris V. Wu, Pu-Wei Chen, San-Yuan Adzic, Radoslav R. Goddard, William A., III TI DFT Study of Oxygen Reduction Reaction on Os/Pt Core-Shell Catalysts Validated by Electrochemical Experiment SO ACS CATALYSIS LA English DT Article DE PtOs; core-shell catalysts; DFT; ORR; UPD; electrocatalysis ID PLATINUM-MONOLAYER ELECTROCATALYSTS; INITIO EFFECTIVE POTENTIALS; DENSITY-FUNCTIONAL THEORY; FUEL-CELL CATHODE; POISSON-BOLTZMANN EQUATION; ALLOY CATALYSTS; O-2 REDUCTION; SURFACE SEGREGATION; QUANTUM-MECHANICS; PT-CO AB Proton exchange membrane fuel cells (PEMFCs) have attracted much attention as an alternative source of energy with a number of advantages, including high efficiency, sustainability, and environmentally friendly operation. However, the low kinetics of the oxygen reduction reaction (ORR) restricts the performance of PEMFCs. Various types of catalysts have been developed to improve the ORR efficiency, but this problem still needs further investigations and improvements. In this paper, we propose advanced Os/Pt core-shell catalysts based on our previous study on segregation of both bare surfaces and surfaces exposed to ORR adsorbates, and we evaluate the catalytic activity of the proposed materials by density functional theory (DFT). Quantum mechanics was applied to calculate binding energies of ORR species and reaction energy barriers on Os/Pt core-shell catalysts. Our calculations predict a much better catalytic activity of the Os/Pt system than that of pure Pt. We find that the ligand effect of the Os substrate is more important than the lattice compression strain effect. To validate our DFT prediction, we demonstrate the fabrication of Os/Pt core-shell nanoparticles using the underpotential deposition (UPD) technique and succeeding galvanic displacement reaction between the Pt ions and Cu-coated Os nanoparticles. The Os/Pt/C samples were evaluated for electrocatalytic activities toward the ORR in acidic electrolytes. The samples with two consecutive UPD-displacement reaction cycles show 3.5 to 5 times better ORR activities as compared to those of commercially available Pt/C. Our results show good agreement between the computational predictions and electrochemical experimental data for the Os/Pt core-shell ORR catalysts. C1 [Tsai, Ho-Cheng; Yu, Ted H.; Merinov, Boris V.; Goddard, William A., III] CALTECH, Mat & Proc Simulat Ctr MC 139 74, Pasadena, CA 91125 USA. [Hsieh, Yu-Chi; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hsieh, Yu-Chi; Lee, Yi-Juei; Wu, Yue-Han; Wu, Pu-Wei; Chen, San-Yuan] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Yu, Ted H.] Calif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA. RP Merinov, BV (reprint author), CALTECH, Mat & Proc Simulat Ctr MC 139 74, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM merinov@caltech.edu; wag@wag.caltech.edu OI Hsieh, Yu-Chi/0000-0003-0823-6571 FU Caltech and Taiwan Energy Exchange (CTEE) collaborative program - National Science Council of Taiwan [NSC 103-3113-P-008-001]; National Science Foundation, Caltech [CBET-1067848]; U.S. Department of Energy [DE-AC02-98CH10886]; DURIP-ONR; DURIP-ARO; NSF-CSEM FX This work was supported by Caltech and Taiwan Energy Exchange (CTEE) collaborative program funded by the National Science Council of Taiwan (grant NSC 103-3113-P-008-001) and partially by the National Science Foundation (grant CBET-1067848, Caltech). The work performed at Brookhaven National Laboratory was supported by the U.S. Department of Energy under contract DE-AC02-98CH10886. The facilities of the Materials and Process Simulation Center used in this study were established with grants from DURIP-ONR, DURIP-ARO, and NSF-CSEM. NR 115 TC 9 Z9 9 U1 21 U2 123 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1568 EP 1580 DI 10.1021/cs501020a PG 13 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500021 ER PT J AU Bataineh, H Pestovsky, O Bakac, A AF Bataineh, Hajem Pestovsky, Oleg Bakac, Andreja TI Iron(II) Catalysis in Oxidation of Hydrocarbons with Ozone in Acetonitrile SO ACS CATALYSIS LA English DT Article DE iron; ozone; oxidation; catalysis; alcohol; kinetics; mechanism ID ALKALINE AQUEOUS-SOLUTIONS; O-CENTER-DOT; HYDROXYL RADICALS; HYDROGEN-PEROXIDE; ATOM TRANSFER; REACTIVITY; ION; KINETICS; ACID; SUPEROXIDE AB Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)(6) (2+) . The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)(6)(2+)-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)(6)(2+)] and [O-3] and independent of [substrate] at concentrations greater than similar to 5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, k(cat) = (8 +/- 1) x 104 M-1 s(-1), and that for (C2H5)(2)O is (5 +/- 0.5) x 104 M-1 s(-1). In the absence of substrate, Fe(CH3CN)(6)(2+) reacts with O-3 with k(Fe) = (9.3 +/- 0.3) x 104 M-1 s(-1). The similarity between the rate constants k(Fe) and k(cat) strongly argues for Fe(CH3CN)(6) (2+)/O-3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)(6) (2+)/O-3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. This assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates. C1 [Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Pestovsky, O (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pvp@iastate.edu; bakac@iastate.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy [DE-AC02-07CH11358] FX We are grateful to Dr. Jana for help with the synthesis of iron(II) bis(acetonitrile) complex. This research is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract DE-AC02-07CH11358. NR 46 TC 4 Z9 4 U1 7 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1629 EP 1637 DI 10.1021/cs501962m PG 9 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500029 ER PT J AU Yoon, Y Wang, YG Rousseau, R Glezakou, VA AF Yoon, Yeohoon Wang, Yang-Gang Rousseau, Roger Glezakou, Vassiliki-Alexandra TI Impact of Nonadiabatic Charge Transfer on the Rate of Redox Chemistry of Carbon Oxides on Rutile TiO2(110) Surface SO ACS CATALYSIS LA English DT Article DE charge transfer; carbon oxides; redox chemistry; nonadiabatic effects; rutile TiO2; Marcus theory ID REDUCED TIO2(110); ELECTRON-TRANSFER; MOLECULAR-OXYGEN; EXCESS ELECTRONS; TIO2 SURFACES; CO OXIDATION; ANATASE TIO2; AB-INITIO; ADSORPTION; DEFECTS AB We present the results of a density functional theory (DFT) within the LDA+U approximation on large models of the partially reduced TiO2(110) rutile surface to investigate the nature of charge transfer and the role of nonadiabatic effects on three prototypical redox reactions: (i) O-2 adsorption, (ii) CO oxidation, and (iii) CO2 reduction. Charge-constrained DFT (cDFT) is used to estimate kinetic parameters for a Marcus theory rate law that accounts for adiabatic coupling effects on reaction rates. We find that for O-2 adsorption, the coupling between adiabatic states is strong, leading to fast charge transfer rates. The lowest energy structures at high coverage consist of two chemisorbed O-2(-), one adsorbed at a V-O site and the other adsorbed at an adjacent Ti-5C site. For CO oxidation, however, all reactions are kinetically hindered on the ground state because of the weak adiabatic coupling at the state crossing, such that one has to overcome two kinetically unfavorable charge transfer events to drive the process (nonadiabatically) on the thermal ground state. The process can be driven by photochemical means but would result in an adsorbed radical [OCOO-] intermediate species. Similarly, CO2 reduction also proceeds via a nonadiabatic charge transfer to form an adsorbed CO2- species, followed by a second nonadiabatic charge transfer to produce CO. Our analysis provides important computational guidelines for modeling these types of processes. C1 [Yoon, Yeohoon; Wang, Yang-Gang; Rousseau, Roger; Glezakou, Vassiliki-Alexandra] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Glezakou, VA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,K1-83, Richland, WA 99352 USA. EM Vanda.Glezakou@pnnl.gov RI Rousseau, Roger/C-3703-2014; Wang, Yang-Gang/D-6480-2015 OI Wang, Yang-Gang/0000-0002-0582-0855 FU U.S. Department of Energy, Office of Science; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Department of Energy's Office of Biological and Environmental Research located at PNNL; National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory FX We thank Drs. Z. Dohnalek, M. Henderson, G. Kimmel, H. Metieu, and N. Petrik for invaluable discussions. This work was supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the Department of Energy by Battelle. Computational resources were provided at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. NR 70 TC 4 Z9 4 U1 6 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1764 EP 1771 DI 10.1021/cs501873m PG 8 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500045 ER PT J AU Schaidle, JA Ruddy, DA Habas, SE Pan, M Zhang, GH Miller, JT Hensley, JE AF Schaidle, Joshua A. Ruddy, Daniel A. Habas, Susan E. Pan, Ming Zhang, Guanghui Miller, Jeffrey T. Hensley, Jesse E. TI Conversion of Dimethyl Ether to 2,2,3-Trimethylbutane over a Cu/BEA Catalyst: Role of Cu Sites in Hydrogen Incorporation SO ACS CATALYSIS LA English DT Article DE triptane; dimethyl ether; homologation; zeolite; H-BEA; Cu/H-BEA; olefin catalytic cycle; aromatic catalytic cycle; hydrogen incorporation ID RAY-ABSORPTION-SPECTROSCOPY; ZEOLITE CATALYSTS; PROTON MOBILITY; SURFACE-ACIDITY; REDUCTION; METHANOL; ZSM-5; IONS; BEA; IDENTIFICATION AB Recently, it has been demonstrated that methanol and/or dimethyl ether can be converted into branched alkanes at low temperatures and pressures over large pore acidic zeolites such as H-BEA. This process achieves high selectivity to branched C-4 (e g, isobutane) and C-7 (e g, 2,2,3-trimethylbutane) hydrocarbons. However, the direct homologation of methanol or dimethyl ether into alkanes and water is hydrogen deficient, resulting in the formation of unsaturated alkylated aromatic residues, which reduce yield and can contribute to catalyst deactivation. In this paper we describe a Cu modified H-BE,A catalyst that is able to incorporate hydrogen from gas phase H-2 cofed with dimethyl ether into the desired branched alkane products while maintaining the high C-4 and C-7 carbon selectivity of the parent H-BEA. This hydrogen incorporation is achieved through the combination of metallic Cu nanoparticles present on the external surface of the zeolite, which perform H-2 activation and olefin hydrogenation, and Lewis acidic ion exchanged cationic Cu present within the H-BEA pores, which promotes hydrogen transfer. With cofed H-2, this multifunctional catalyst achieved a 2-fold increase in hydrocarbon productivity in comparison to H-BEA and shifted selectivity toward products favored by the olefin catalytic cycle over the aromatic catalytic cycle. C1 [Schaidle, Joshua A.; Habas, Susan E.; Pan, Ming; Hensley, Jesse E.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Ruddy, Daniel A.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Zhang, Guanghui; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Schaidle, JA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM Joshua.Schaidle@nrel.gov RI Zhang, Guanghui/C-4747-2008; BM, MRCAT/G-7576-2011 OI Zhang, Guanghui/0000-0002-5854-6909; FU Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory; Department of Energy's Bioenergy Technology Office [DE-AC36-08-GO28308]; Department of Energy; MRCAT FX This work was supported by the Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory and the Department of Energy's Bioenergy Technology Office under Contract no. DE-AC36-08-GO28308. X-ray Absorption Spectroscopy was performed at the Advanced Photon Source at Argonne National Laboratory with the assistance of members of the Materials Research Collaborative Access Team (supported by the Department of Energy and the MRCAT member institutions). NR 48 TC 5 Z9 5 U1 6 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1794 EP 1803 DI 10.1021/cs501876w PG 10 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500048 ER PT J AU O'Neill, BJ Jackson, DHK Lee, J Canlas, C Stair, PC Marshall, CL Elam, JW Kuech, TF Dumesic, JA Huber, GW AF O'Neill, Brandon J. Jackson, David H. K. Lee, Jechan Canlas, Christian Stair, Peter C. Marshall, Christopher L. Elam, Jeffrey W. Kuech, Thomas F. Dumesic, James A. Huber, George W. TI Catalyst Design with Atomic Layer Deposition SO ACS CATALYSIS LA English DT Review DE atomic layer deposition; ALD; catalyst overcoating; metal nanoparticles; bimetallic nanoparticles; controlled synthesis; catalyst design; mechanism elucidation ID SUPPORTED METAL NANOPARTICLES; FLUIDIZED-BED REACTOR; QUADRUPOLE MASS-SPECTROMETRY; QUARTZ-CRYSTAL MICROBALANCE; CHEMICAL-VAPOR-DEPOSITION; VISCOUS-FLOW REACTOR; MEMBRANE FUEL-CELLS; THIN-FILM GROWTH; OXIDATIVE DEHYDROGENATION; PLATINUM NANOPARTICLES AB Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure property relationships by creating materials With a Controlled distribution of size, composition, and active site We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriad catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Finally, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts. C1 [O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; Kuech, Thomas F.; Dumesic, James A.; Huber, George W.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Jackson, David H. K.; Kuech, Thomas F.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Canlas, Christian; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Stair, Peter C.; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Huber, GW (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM huber@engr.wisc.edu RI Lee, Jechan/J-1229-2016 OI Lee, Jechan/0000-0002-9759-361X FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank David M. King for useful discussions pertaining to ALD reactor systems. NR 245 TC 70 Z9 72 U1 71 U2 395 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAR PY 2015 VL 5 IS 3 BP 1804 EP 1825 DI 10.1021/cs501862h PG 22 WC Chemistry, Physical SC Chemistry GA CD1OF UT WOS:000350843500049 ER PT J AU Hannah, DC Yang, JH Kramer, NJ Schatz, GC Kortshagen, UR Schaller, RD AF Hannah, Daniel C. Yang, Jihua Kramer, Nicolaas J. Schatz, George C. Kortshagen, Uwe R. Schaller, Richard D. TI Reply to "Comment on 'Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer'" SO ACS PHOTONICS LA English DT Editorial Material ID LUMINESCENCE; CORE C1 [Hannah, Daniel C.; Schatz, George C.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Yang, Jihua; Kramer, Nicolaas J.; Kortshagen, Uwe R.] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@anl.gov RI Kortshagen, Uwe/B-8744-2016 OI Kortshagen, Uwe/0000-0001-5944-3656 NR 11 TC 2 Z9 2 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD MAR PY 2015 VL 2 IS 3 BP 456 EP 458 DI 10.1021/ph500490a PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA CD9LK UT WOS:000351419600020 ER PT J AU Whitaker, WR Lee, H Arkin, AP Dueber, JE AF Whitaker, Weston R. Lee, Hanson Arkin, Adam P. Dueber, John E. TI Avoidance of Truncated Proteins from Unintended Ribosome Binding Sites within Heterologous Protein Coding Sequences SO ACS SYNTHETIC BIOLOGY LA English DT Article DE internal ribosome binding sites; truncated protein; gene optimization; protein expression; RBS calculator ID ESCHERICHIA-COLI; GENE-EXPRESSION; FLUORESCENT PROTEIN; TRANSLATION; TRANSCRIPTION; INITIATION; MECHANISMS; SCAFFOLDS; PRODUCTS; CELL AB Genetic sequences ported into non-native hosts for synthetic biology applications can gain unexpected properties. In this study, we explored sequences functioning as ribosome binding sites (RBSs) within protein coding DNA sequences (CDSs) that cause internal translation, resulting in truncated proteins. Genome-wide prediction of bacterial RBSs, based on biophysical calculations employed by the RBS calculator(1), suggests a selection against internal RBSs within CDSs in Escherichia coli, but not those in Saccharomyces cerevisiae. Based on these calculations, silent mutations aimed at removing internal RBSs can effectively reduce truncation products from internal translation. However, a solution for complete elimination of internal translation initiation is not always feasible due to constraints of available coding sequences. Fluorescence assays and Western blot analysis showed that in genes with internal RBSs, increasing the strength of the intended upstream RBS had little influence on the internal translation strength. Another strategy to minimize truncated products from an internal RBS is to increase the relative strength of the upstream RBS with a concomitant reduction in promoter strength to achieve the same protein expression level. Unfortunately, lower transcription levels result in increased noise at the single cell level due to stochasticity in gene expression. At the low expression regimes desired for many synthetic biology applications, this problem becomes particularly pronounced. We found that balancing promoter strengths and upstream RBS strengths to intermediate levels can achieve the target protein concentration while avoiding both excessive noise and truncated protein. C1 [Whitaker, Weston R.; Lee, Hanson; Arkin, Adam P.; Dueber, John E.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Lee, Hanson; Arkin, Adam P.; Dueber, John E.] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94704 USA. [Whitaker, Weston R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Whitaker, Weston R.] Univ Calif San Francisco, Grad Program Bioengn, Berkeley, CA 94720 USA. [Arkin, Adam P.; Dueber, John E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Dueber, JE (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM jdueber@berkeley.edu RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Energy Biosciences Institute; National Science Foundation (NSF) Synthetic Biology Engineering Research Center Grant [EEC-0540879]; NSF Grant [CBET-0756801] FX We thank Okoia Uket and Rami El-Kweifi from Prairie View A&M University and Aobo Wang from Zhejiang University, China, for assistance in experiments. We thank Ying-Ja Chen and Christopher Voigt for helping with the codes of RBS calculator, and members of the Dueber lab for discussions and comments during the preparation of this manuscript. This work is supported by Energy Biosciences Institute to Hanson Lee, by National Science Foundation (NSF) Synthetic Biology Engineering Research Center Grant EEC-0540879 and NSF Grant CBET-0756801 to Weston Whitaker and John Dueber. NR 33 TC 5 Z9 5 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD MAR PY 2015 VL 4 IS 3 BP 249 EP 257 DI 10.1021/sb500003x PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CE1IP UT WOS:000351565600007 PM 24931615 ER PT J AU Stauber, M Jakoncic, J Berger, J Karp, JM Axelbaum, A Sastow, D Buldyrev, SV Hrnjez, BJ Asherie, N AF Stauber, Mark Jakoncic, Jean Berger, Jacob Karp, Jerome M. Axelbaum, Ariel Sastow, Dahniel Buldyrev, Sergey V. Hrnjez, Bruce J. Asherie, Neer TI Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE MPD; crystallization additives; precipitants; high-resolution protein structures; chirality ID EGG-WHITE LYSOZYME; COUPLING PREFERENTIAL CRYSTALLIZATION; CAMBRIDGE STRUCTURAL DATABASE; CHIRAL STATIONARY PHASES; PROTEIN CRYSTALLIZATION; CRYSTAL-STRUCTURES; LIQUID-CHROMATOGRAPHY; BIOLOGICAL MACROMOLECULES; EFFICIENT RESOLUTION; DIFFRACTION DATA AB Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization. C1 [Stauber, Mark; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Asherie, Neer] Yeshiva Univ, Dept Phys, New York, NY 10033 USA. [Stauber, Mark; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Asherie, Neer] Yeshiva Univ, Dept Biol, New York, NY 10033 USA. [Jakoncic, Jean] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Hrnjez, Bruce J.] Collegiate Sch, New York, NY 10024 USA. RP Asherie, N (reprint author), Yeshiva Univ, Dept Phys, 2495 Amsterdam Ave, New York, NY 10033 USA. EM asherie@yu.edu RI Buldyrev, Sergey/I-3933-2015; OI Karp, Jerome/0000-0001-7266-0946 FU National Science Foundation [DMR 1206416]; Yeshiva University; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; [GM-0080] FX We thank Charles Ginsberg and Samuel Blass for help in the initial stages of this project and Shekhar Garde and Amish Patel for guidance on setting up molecular-dynamics simulations. We also thank Jianfeng Jiang and Mark Harris for helpful discussions. NA gratefully acknowledges financial support from the National Science Foundation (DMR 1206416) and Yeshiva University. Computational resources were provided by the Dr Bernard W. Gamson Computational Science Center at Yeshiva University. We thank the staff of the National Synchrotron Light Source, Brookhaven National Laboratory for their continuous support. The NSLS is supported by the US Department of Energy, Office of Basic Energy Sciences under contract No. DE-AC02-98CH10886. The NIGMS East Coast Structural Biology Facility, the X6A beamline, is funded under contract No. GM-0080. NR 87 TC 2 Z9 2 U1 5 U2 20 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD MAR PY 2015 VL 71 BP 427 EP 441 DI 10.1107/S1399004714025061 PN 3 PG 15 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CD5VD UT WOS:000351155400002 PM 25760593 ER PT J AU Marapakala, K Packianathan, C Ajees, AA Dheeman, DS Sankaran, B Kandavelu, P Rosen, BP AF Marapakala, Kavitha Packianathan, Charles Ajees, A. Abdul Dheeman, Dharmendra S. Sankaran, Banumathi Kandavelu, Palani Rosen, Barry P. TI A disulfide-bond cascade mechanism for arsenic(III) S-adenosylmethionine methyltransferase SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE arsenic(III) S-adenosylmethionine methyltransferase; AS3MT; phenylarsenite; roxarsone; disulfide-bond cascade ID PROTEIN; IDENTIFICATION; METHYLATION; ARSENITE; BIOTRANSFORMATION; BIOMETHYLATION; COMPLEXES; EVOLUTION; RESIDUES; SEQUENCE AB Methylation of the toxic metalloid arsenic is widespread in nature. Members of every kingdom have arsenic(III) S-adenosylmethionine (SAM) methyltransferase enzymes, which are termed ArsM in microbes and AS3MT in animals, including humans. Trivalent arsenic(III) is methylated up to three times to form methylarsenite [MAs(III)], dimethylarsenite [DMAs(III)] and the volatile trimethylarsine [TMAs(III)]. In microbes, arsenic methylation is a detoxification process. In humans, MAs(III) and DMAs(III) are more toxic and carcinogenic than either inorganic arsenate or arsenite. Here, new crystal structures are reported of ArsM from the thermophilic eukaryotic alga Cyanidioschyzon sp. 5508 (CmArsM) with the bound aromatic arsenicals phenylarsenite [PhAs(III)] at 1.80 angstrom resolution and reduced roxarsone [Rox(III)] at 2.25 angstrom resolution. These organoarsenicals are bound to two of four conserved cysteine residues: Cys174 and Cys224. The electron density extends the structure to include a newly identified conserved cysteine residue, Cys44, which is disulfide-bonded to the fourth conserved cysteine residue, Cys72. A second disulfide bond between Cys72 and Cys174 had been observed previously in a structure with bound SAM. The loop containing Cys44 and Cys72 shifts by nearly 6.5 angstrom in the arsenic(III)bound structures compared with the SAM-bound structure, which suggests that this movement leads to formation of the Cys72-Cys174 disulfide bond. A model is proposed for the catalytic mechanism of arsenic(III) SAM methyltransferases in which a disulfide-bond cascade maintains the products in the trivalent state. C1 [Marapakala, Kavitha] Osmania Univ, Coll Women, Dept Chem, Hyderabad 500095, Andhra Pradesh, India. [Packianathan, Charles; Dheeman, Dharmendra S.; Rosen, Barry P.] Florida Int Univ, Herbert Wertheim Coll Med, Dept Cellular Biol & Pharmacol, Miami, FL 33199 USA. [Ajees, A. Abdul] Manipal Univ, Manipal Inst Technol, Dept Atom & Mol Phys, Manipal 576104, Karnataka, India. [Sankaran, Banumathi] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94702 USA. [Kandavelu, Palani] Univ Georgia, SER CAT, Athens, GA 30602 USA. [Kandavelu, Palani] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. RP Rosen, BP (reprint author), Florida Int Univ, Herbert Wertheim Coll Med, Dept Cellular Biol & Pharmacol, 11200 SW 8th St, Miami, FL 33199 USA. EM brosen@fiu.edu OI Abdul Salam, Abdul Ajees/0000-0002-3377-3048 FU NIH [R37 GM55425]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by NIH grant R37 GM55425. This project utilized the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract No. W-31-109-Eng-38. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 6 Z9 7 U1 2 U2 25 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD MAR PY 2015 VL 71 BP 505 EP 515 DI 10.1107/S1399004714027552 PN 3 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CD5VD UT WOS:000351155400009 PM 25760600 ER PT J AU Afonine, PV Moriarty, NW Mustyakimov, M Sobolev, OV Terwilliger, TC Turk, D Urzhumtsev, A Adams, PD AF Afonine, Pavel V. Moriarty, Nigel W. Mustyakimov, Marat Sobolev, Oleg V. Terwilliger, Thomas C. Turk, Dusan Urzhumtsev, Alexandre Adams, Paul D. TI FEM: feature-enhanced map SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE Fourier map; map sharpening; map kurtosis; model bias; map improvement; density modification; PHENIX; cctbx; FEM; feature-enhanced map; OMIT ID ELECTRON-DENSITY MAPS; FOURIER PHASE REFINEMENT; PROTEIN DATA-BANK; HEAVY-ATOM METHOD; CRYSTAL-STRUCTURES; LOW-RESOLUTION; PATTERSON FUNCTION; BULK-SOLVENT; MACROMOLECULAR STRUCTURES; STRUCTURAL GENOMICS AB A method is presented that modifies a 2mF(obs) - DFmodel sigma(A)-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2mF(obs) - DFmodel sigma(A)-weighted map. C1 [Afonine, Pavel V.; Moriarty, Nigel W.; Sobolev, Oleg V.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Mustyakimov, Marat] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Turk, Dusan] Jozef Stefan Inst, Biochem & Mol & Struct Biol, SI-1000 Ljubljana, Slovenia. [Turk, Dusan] Jozef Stefan Inst, Ctr Excellence Integrated Approaches Chem & Biol, SI-1000 Ljubljana, Slovenia. [Urzhumtsev, Alexandre] CNRS INSERM UdS, Ctr Integrat Biol, IGBMC, F-67404 Illkirch Graffenstaden, France. [Urzhumtsev, Alexandre] Univ Lorraine, Dept Phys, Fac Sci & Technol, F-54506 Vandoeuvre Les Nancy, France. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Afonine, PV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, One Cyclotron Rd,MS64R0121, Berkeley, CA 94720 USA. EM pafonine@lbl.gov RI Terwilliger, Thomas/K-4109-2012; Adams, Paul/A-1977-2013 OI Terwilliger, Thomas/0000-0001-6384-0320; Adams, Paul/0000-0001-9333-8219 FU NIH [1P01 GM063210]; Phenix Industrial Consortium; US Department of Energy [DE-AC02-05CH11231]; Slovenian Research Agency [P0048] FX This work was supported by the NIH (Project 1P01 GM063210) and the Phenix Industrial Consortium. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. AU thanks the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01 and Instruct, which is part of the European Strategy Forum on Research Infrastructures (ESFRI). DT acknowledges support from Structural Biology Grant P0048 from the Slovenian Research Agency. NR 80 TC 36 Z9 36 U1 3 U2 14 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD MAR PY 2015 VL 71 BP 646 EP 666 DI 10.1107/S1399004714028132 PN 3 PG 21 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CD5VD UT WOS:000351155400021 PM 25760612 ER PT J AU Matthews, MJ Yang, ST Shen, N Elhadj, S Raman, RN Guss, G Bass, IL Nostrand, MC Wegner, PJ AF Matthews, Manyalibo J. Yang, Steven T. Shen, Nan Elhadj, Selim Raman, Rajesh N. Guss, Gabe Bass, Isaac L. Nostrand, Michael C. Wegner, Paul J. TI Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID HIGH-TEMPERATURES; RELAXATION; GLASS; RAMAN AB Localized infrared (IR) laser heating of fused silica optics has proven highly effective in reducing or removing surface flaws, which tend to limit performance in high power laser systems. Here, we present both simulation and experimental results to examine the use of IR laser light to polish, anneal, and micro-shape fused silica surfaces used in high power laser systems. We show how the resulting material response can be tuned by considering the temperature-dependent optical constants of the material and choosing the appropriate laser parameter set. For example, non-evaporative laser polishing of glass surfaces to heal crack networks is shown most effective when using mid-IR lasers, which lead to laser energy coupling up to approximate to 1mm in depth. In contrast, long-wave IR light tuned to the Restrahlen frequency of the material is shown to evaporate material most efficiently with penetration depths of <1m. Through calibrated, time-resolved thermal imaging we are able to monitor the laser polishing process, to control material response. The results of our studies can be applied beyond the practical application of damage mitigation in high energy pulsed laser systems to any which require laser-smoothing and shaping of silica surfaces. C1 [Matthews, Manyalibo J.; Yang, Steven T.; Shen, Nan; Elhadj, Selim; Raman, Rajesh N.; Guss, Gabe; Bass, Isaac L.; Nostrand, Michael C.; Wegner, Paul J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Matthews, MJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ibo@llnl.gov FU LLNL Lab-Directed Research and Development (LDRD) [08-ERD-057, 11-ERD-026]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by LLNL Lab-Directed Research and Development (LDRD) grants 08-ERD-057 and 11-ERD-026. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Laboratory assistance from N. Nielsen, B. Woods and D. Cooke is gratefully acknowledged. NR 19 TC 13 Z9 14 U1 5 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD MAR PY 2015 VL 17 IS 3 BP 247 EP 252 DI 10.1002/adem.201400349 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA CD4VS UT WOS:000351083900003 ER PT J AU Evan, AT Fiedler, S Zhao, C Menut, L Schepanski, K Flamant, C Doherty, O AF Evan, Amato T. Fiedler, Stephanie Zhao, Chun Menut, Laurent Schepanski, Kerstin Flamant, Cyrille Doherty, Owen TI Derivation of an observation-based map of North African dust emission SO AEOLIAN RESEARCH LA English DT Article DE Emission; Models; Satellite; Africa ID MINERAL DUST; SOURCE AREAS; TROPICAL ATLANTIC; SIZE DISTRIBUTION; WEST-AFRICA; DESERT DUST; MODEL; AEROSOL; VARIABILITY; IMPACT AB Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World's major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (+/- 16)% of all dust emitted from North Africa is from the Bodele depression, and that 13 (+/- 3)% of the North African dust flux is from a depression lying in the lee of the Air and Hoggar Mountains, making this area the second most important region of emission within North Africa. (C) 2015 Elsevier B.V. All rights reserved. C1 [Evan, Amato T.; Doherty, Owen] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Fiedler, Stephanie] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Zhao, Chun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Menut, Laurent] Univ Paris 06, CNRS, Sorbonne Univ, Paris, France. [Menut, Laurent] UVSQ, UMR LATMOS 8190, Paris, France. [Schepanski, Kerstin] Leibniz Inst Tropospher Res, Leipzig, Germany. [Flamant, Cyrille] Sorbonne Univ, UPMC, CNRS, Lab Atmosphere,Milieux,Observat Spatiales,UMR 819, F-75230 Paris 05, France. [Flamant, Cyrille] UVSQ, Paris, France. RP Evan, AT (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM aevan@ucsd.edu RI Schepanski, Kerstin/I-7967-2015; Zhao, Chun/A-2581-2012; Menut, Laurent/O-2296-2016 OI Fiedler, Stephanie/0000-0001-8898-9949; Schepanski, Kerstin/0000-0002-1027-6786; Zhao, Chun/0000-0003-4693-7213; Menut, Laurent/0000-0001-9776-0812 FU French Agence Nationale de la Recherche (ANR) of the national Programme Investissements d'Avenir [ANR-10-LABX-18-01]; Laboratoire d'excellence Institute Pierre Simon Laplace (L-IPSL); "Research in Paris" programme; National Oceanographic and Atmospheric Administration Climate Program Office [NA11OAR4310157]; European Research Council [257543]; U.S. DOE as part of the Regional and Global Climate Modeling program; DOE [DE-AC05-76RL01830] FX The authors would like to thank the two anonymous reviewers and the associate editor for their helpful and constructive comments on an earlier version of this manuscript. This work was supported by the French Agence Nationale de la Recherche (ANR) grant ANR-10-LABX-18-01 of the national Programme Investissements d'Avenir. Funding for this work was also provided by Laboratoire d'excellence Institute Pierre Simon Laplace (L-IPSL), a grant from the "Research in Paris" programme, and National Oceanographic and Atmospheric Administration Climate Program Office grant NA11OAR4310157. S. Fiedler acknowledges the research funding by the European Research Council grant 257543. C. Zhao acknowledges support by the U.S. DOE as part of the Regional and Global Climate Modeling program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 57 TC 9 Z9 9 U1 2 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-9637 EI 2212-1684 J9 AEOLIAN RES JI Aeolian Res. PD MAR PY 2015 VL 16 BP 153 EP 162 DI 10.1016/j.aeolia.2015.01.001 PG 10 WC Geography, Physical SC Physical Geography GA CE2LX UT WOS:000351648200015 ER PT J AU Lanekoff, I Burnum-Johnson, K Thomas, M Cha, J Dey, SK Yang, PX Conaway, MCP Laskin, J AF Lanekoff, Ingela Burnum-Johnson, Kristin Thomas, Mathew Cha, Jeeyeon Dey, Sudhansu K. Yang, Pengxiang Conaway, Maria C. Prieto Laskin, Julia TI Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Three-dimensional (3D) imaging mass spectrometry; Nanospray desorption electrospray ionization (nano-DESI); Mouse embryo; Phospholipids; Metabolites ID HIGH-SPATIAL-RESOLUTION; PROTEIN DISTRIBUTIONS; DRUG DISTRIBUTION; MOUSE-BRAIN; MALDI-TOF; 3D; SECTIONS; EXPRESSION; SIMS; ACETYLCHOLINE AB Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of > 5 Hz with moderate mass resolution of 35,000 (m/Delta m at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of similar to 150 mu m in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2. C1 [Lanekoff, Ingela; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99354 USA. [Burnum-Johnson, Kristin] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Thomas, Mathew] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99354 USA. [Cha, Jeeyeon; Dey, Sudhansu K.] Univ Cincinnati, Coll Med, Cincinnati Childrens Hosp Med Ctr, Div Reprod Sci,Perinatal Inst, Cincinnati, OH 45229 USA. [Yang, Pengxiang; Conaway, Maria C. Prieto] Thermo Fisher Sci, San Jose, CA 95134 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99354 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; Burnum, Kristin/B-1308-2011 OI Laskin, Julia/0000-0002-4533-9644; Burnum, Kristin/0000-0002-2722-4149 FU US Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research; NIH [HD068524, DA06668]; March of Dimes; Ruth L. Kirschstein Predoctoral NRSA Fellowship [F30AG040858] FX The research described in this paper is part of the Chemical Imaging Initiative, at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL a multiprogram national laboratory operated by Battelle for the US Department of Energy (DOE) under Contract DE-AC05-76RL01830. The research was performed at EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. This work was partially supported by NIH grants (HD068524 and DA06668) and the March of Dimes to SKD. JC is supported by a Ruth L. Kirschstein Predoctoral NRSA Fellowship (F30AG040858). NR 79 TC 11 Z9 11 U1 17 U2 99 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 EI 1618-2650 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD MAR PY 2015 VL 407 IS 8 BP 2063 EP 2071 DI 10.1007/s00216-014-8174-0 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA CD6JQ UT WOS:000351195800006 PM 25395201 ER PT J AU Kertesz, V Weiskittel, TM Van Berkel, GJ AF Kertesz, Vilmos Weiskittel, Taylor M. Van Berkel, Gary J. TI An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Liquid microjunction; Droplet-based liquid extraction; Autosampler; Spatial distribution; Laser distance sensor ID THIN TISSUE-SECTIONS; DESORPTION ELECTROSPRAY-IONIZATION; MASS-SPECTROMETRY; TRYPTIC DIGESTION; PROBE; PROTEINS; CHROMATOGRAPHY; METABOLITES; DRUGS AB Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparate height as well as reliably dispensing just 0.5 mu L of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. The merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade ("crude") cut mouse tissue. C1 [Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. [Weiskittel, Taylor M.] Univ Tennessee, ORISE HERE Intern, Knoxville, TN 37996 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov RI Kertesz, Vilmos/M-8357-2016; OI Kertesz, Vilmos/0000-0003-0186-5797; Weiskittel, Taylor/0000-0003-3682-0628 FU Cooperative Research and Development Agreement [CRADA NFE-10-02966]; AB Sciex; WFO agreement; Novartis Institutes for Biomedical Research FX The API 4000 instrument used in this work was provided on loan, and advancement of this surface sampling technology was supported by funding provided through a Cooperative Research and Development Agreement (CRADA NFE-10-02966) with AB Sciex. Drs. Jimmy Flarakos, Paul Moench, Adam Bentley, and Alexandre Catoire (Novartis Pharmaceuticals Corporation, East Hanover, NJ) are thanked for providing the whole-body rat thin tissue sections through a Work for Others (WFO) agreement with Novartis Institutes for Biomedical Research. AstraZeneca Pharmaceuticals (Waltham, MA, USA) is thanked for providing the AZ-3-dosed mouse tissues through a WFO agreement. T.M.W. acknowledges an ORNL appointment through the ORISE HERE program that was supported through the WFO agreement with Novartis Institutes for Biomedical Research. The authors would like to thank Lonnie J. Love from the Manufacturing Demonstration Facility of the Oak Ridge National Laboratory for his valuable help in 3D printing of the custom trays. NR 17 TC 12 Z9 12 U1 3 U2 25 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 EI 1618-2650 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD MAR PY 2015 VL 407 IS 8 BP 2117 EP 2125 DI 10.1007/s00216-014-8287-5 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA CD6JQ UT WOS:000351195800011 PM 25377777 ER PT J AU Grate, JW Mo, KF Shin, Y Vasdekis, A Warner, MG Kelly, RT Orr, G Hu, DH Dehoff, KJ Brockman, FJ Wilkins, MJ AF Grate, Jay W. Mo, Kai-For Shin, Yongsoon Vasdekis, Andreas Warner, Marvin G. Kelly, Ryan T. Orr, Galya Hu, Dehong Dehoff, Karl J. Brockman, Fred J. Wilkins, Michael J. TI Alexa Fluor-Labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments SO BIOCONJUGATE CHEMISTRY LA English DT Article ID PERIODATE-OXIDATION; POROUS-MEDIA; MOLECULAR-WEIGHT; WATER; DYES; CHEMISTRY; SURFACES AB Methods to covalently conjugate Alexa Fluor dyes to cellulose nanocrystals, at limiting amounts that retain the overall structure of the nanocrystals as model cellulose materials, were developed using two approaches. In the first, aldehyde groups are created on the cellulose surfaces by reaction with limiting amounts of sodium periodate, a reaction well-known for oxidizing vicinal diols to create dialdehyde structures. Reductive amination reactions were then applied to bind Alexa Fluor dyes with terminal amino-groups on the linker section. In the absence of the reductive step, dye washes out of the nanocrystal suspension, whereas with the reductive step, a colored product is obtained with the characteristic spectral bands of the conjugated dye. In the second approach, Alexa Fluor dyes were modified to contain chloro-substituted triazine ring at the end of the linker section. These modified dyes then were reacted with cellulose nanocrystals in acetonitrile at elevated temperature, again isolating material with the characteristic spectral bands of the Alexa Fluor dye. Reactions with Alexa Fluor 546 are given as detailed examples, labeling on the order of 1% of the total glucopyranose rings of the cellulose nanocrystals at dye loadings of ca. 5 mu g/mg cellulose. Fluorescent cellulose nanocrystals were deposited in pore network microfluidic structures (PDMS) and proof-of-principle bioimaging experiments showed that the spatial localization of the solid cellulose deposits could be determined, and their disappearance under the action of Celluclast enzymes or microbes could be observed over time. In addition, single molecule fluorescence microscopy was demonstrated as a method to follow the disappearance of solid cellulose deposits over time, following the decrease in the number of single blinking dye molecules with time instead of fluorescent intensity. C1 [Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jwgrate@pnnl.gov RI Hu, Dehong/B-4650-2010; Kelly, Ryan/B-2999-2008; Wilkins, Michael/A-9358-2013; OI Hu, Dehong/0000-0002-3974-2963; Kelly, Ryan/0000-0002-3339-4443; Vasdekis, Andreas/0000-0003-4315-1047 FU Microbial Communities Initiative by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL); Office of Biological and Environmental Research FX The authors would like to acknowledge Jonathan W. Pittman for his efforts early in this project. Shicheng Chen, Michigan State University, is thanked for providing the Flavobacterium strain used in this study. This research was supported as part of the Microbial Communities Initiative by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy (DOE). A portion of this research was carried out in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at PNNL. NR 45 TC 5 Z9 5 U1 10 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD MAR PY 2015 VL 26 IS 3 BP 593 EP 601 DI 10.1021/acs.bioconjchem.5b00048 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA CD9LY UT WOS:000351421000026 PM 25730280 ER PT J AU Dong, H Lund, R Xu, T AF Dong, He Lund, Reidar Xu, Ting TI Micelle Stabilization via Entropic Repulsion: Balance of Force Directionality and Geometric Packing of Subunit SO BIOMACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMER MICELLES; CHAIN EXCHANGE KINETICS; DRUG-DELIVERY; POLYMERIC MICELLES; 3-HELIX MICELLES; STABILITY; RELAXATION; PHARMACOKINETICS; NANOPARTICLES; ARCHITECTURE AB Nanoparticles, 10-30 nm in size, have shown great prospects as nanocarriers for drug delivery. We designed amphiphiles based on 3-helix peptide-PEG conjugate forming 15 nm micelles (defined as 3-helix micelles) with good in vivo stability. Here, we investigated the effect of the site of PEG conjugation on the kinetic stability and showed that the conjugation site affects the PEG chain conformation and the overall molecular architecture of the subunit. Compared to the original design where the PEG chain is located in the middle of the 3-helix bundle, micelle kinetic stability was reduced when the PEG chain was attached near the N-terminus (t(1/2) = 35 h) but was enhanced when the PEG chain was attached near the C-terminus (t(1/2) = 80 h). Quantitative structural and kinetic analysis suggest that the kinetic stability was largely dictated by the combined effects of entropic repulsion associated with PEG chain conformation and the geometric packing of the trimeric subunits. The modular design approach coupled with a variety of well-defined protein stucture and functional polymers will significantly expand the utility of these materials as nanocarriers to meet current demands in nanomedine. C1 [Dong, He; Lund, Reidar; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lund, Reidar; Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Lund, Reidar/F-3534-2014 FU National Institutes of Health [1R21EB016947-01A1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study is supported by National Institutes of Health under contracts 1R21EB016947-01A1. Use of the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 9 Z9 9 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD MAR PY 2015 VL 16 IS 3 BP 743 EP 747 DI 10.1021/bm501659w PG 5 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA CD1NH UT WOS:000350841100007 PM 25575164 ER PT J AU Kang, LL Han, XJ Chu, JY Xiong, J He, X Wang, HL Xu, P AF Kang, Leilei Han, Xijiang Chu, Jiayu Xiong, Jie He, Xiong Wang, Hsing-Lin Xu, Ping TI In Situ Surface-Enhanced Raman Spectroscopy Study of Plasmon-Driven Catalytic Reactions of 4-Nitrothiophenol under a Controlled Atmosphere SO CHEMCATCHEM LA English DT Article DE photochemistry; Raman spectroscopy; reaction mechanisms; silver; surface plasmon resonance ID CHEMICAL-REACTIONS; P-AMINOTHIOPHENOL; CHARGE-TRANSFER; SILVER NANOPARTICLES; COUPLING REACTION; SINGLE-MOLECULE; HOT-ELECTRONS; SCATTERING; SERS; AG AB We demonstrate the plasmon-driven catalytic reactions of 4-nitrothiophenol (4NTP) on a single Ag microsphere by an insitu surface-enhanced Raman spectroscopy (SERS) technique. The highly SERS-active hierarchical Ag structures served as an ideal platform to study plasmon-driven catalytic reactions. This single-particle surface-enhanced Raman spectroscopy (SP-SERS) technique coupled with inbuilt apparatus allow us to study the impact of reaction atmospheres and laser power on the rate of dimerization and reduction of 4NTP. Contrary to that found in previous studies, 4NTP could be transformed into 4-aminothiophenol under H2O or H-2 atmosphere. The broadening and splitting of the (CC) band during the reaction results from the frequency shift of the (CC) band that arises from different products. Our results suggest that the SP-SERS technique is ideally suited to study plasmon-driven catalytic reactions because of the possibility to monitor the reaction under controlled atmospheres in real time. C1 [Kang, Leilei; Han, Xijiang; Chu, Jiayu; He, Xiong; Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Xiong, Jie; Xu, Ping] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Han, XJ (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. EM hanxijiang@hit.edu.cn; hwang@lanl.gov; pxu@hit.edu.cn FU Natural Science Foundation of China [21471039, 21203045, 21101041]; China Postdoctoral Science Foundation [2014M560253]; Fundamental Research Funds for the Central Universities [HIT.BRETIII.201223]; Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices [KFJJ201401]; Laboratory Directed Research Development (LDRD) program, Los Alamos National Laboratory FX P.X. is grateful for support from the Natural Science Foundation of China (21471039, 21203045, 21101041), China Postdoctoral Science Foundation (2014M560253), the Fundamental Research Funds for the Central Universities (HIT.BRETIII.201223), and the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201401). H.L.W. is grateful for support from the Laboratory Directed Research Development (LDRD) program, Los Alamos National Laboratory. NR 44 TC 13 Z9 13 U1 22 U2 101 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD MAR PY 2015 VL 7 IS 6 BP 1004 EP 1010 DI 10.1002/cctc.201403032 PG 7 WC Chemistry, Physical SC Chemistry GA CD6PV UT WOS:000351212400019 ER PT J AU Ge, CN Wan, XG Pellegrin, E Hu, ZW Liang, WI Bruns, M Zou, WQ Du, YW AF Ge Chuan-Nan Wan Xian-Gang Pellegrin, Eric Hu Zhi-Wei Liang, Wen-I Bruns, Michael Zou Wen-Qin Du You-Wei TI High coercivity in large exchange-bias Co/CoO-MgO nano-granular films SO CHINESE PHYSICS B LA English DT Article DE granular films; exchange bias; coercivity ID MAGNETIC-ANISOTROPY; ENHANCEMENT; NANOSTRUCTURES; MATRIX AB We present a detailed study on the magnetic coercivity of Co/CoO-MgO core-shell systems, which exhibits a large exchange bias due to an increase of the uncompensated spin density at the interface between the CoO shell and the metallic Co core by replacing Co by Mg within the CoO shell. We find a large magnetic coercivity of 7120 Oe around the electrical percolation threshold of the Co/CoO core/shell particles, while samples with a smaller or larger Co metal volume fraction show a considerably smaller coercivity. Thus, this study may lead to a route to improving the magnetic properties of artificial magnetic material in view of potential applications. C1 [Ge Chuan-Nan; Wan Xian-Gang; Zou Wen-Qin; Du You-Wei] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Ge Chuan-Nan; Wan Xian-Gang; Zou Wen-Qin; Du You-Wei] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Ge Chuan-Nan] Jiangsu Second Normal Univ, Dept Phys, Nanjing 210013, Jiangsu, Peoples R China. [Pellegrin, Eric] CELLS ALBA Synchrotron Radiat Facil, E-08290 Cerdanyola Del Valles, Barcelona, Spain. [Hu Zhi-Wei] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Liang, Wen-I] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Haimei Zheng Lab, Berkeley, CA 94720 USA. [Bruns, Michael] KIT, IAM, D-76344 Eggenstein Leopoldshafen, Germany. RP Wan, XG (reprint author), Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. EM xgwan@nju.edu.cn RI Hu, Zhiwei/B-8635-2008; Bruns, Michael/K-9073-2013 OI Bruns, Michael/0000-0002-0462-3948 FU National Basic Research Program of China [2012CB932304]; National Natural Science Foundation of China [U1232210, 91122035, 11174124, 11374137]; Natural Science Foundation of the Jiangsu Higher Education Institutions of China [14KJB140003]; Priority Academic Program Development of Jiangsu Higher Education Institutions, China FX Project supported by the National Basic Research Program of China (Grant No. 2012CB932304), the National Natural Science Foundation of China (Grant Nos. U1232210, 91122035, 11174124, and 11374137), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 14KJB140003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China. NR 25 TC 0 Z9 0 U1 5 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 EI 1741-4199 J9 CHINESE PHYS B JI Chin. Phys. B PD MAR PY 2015 VL 24 IS 3 AR 034501 DI 10.1088/1674-1056/24/3/034501 PG 6 WC Physics, Multidisciplinary SC Physics GA CD4MH UT WOS:000351056400035 ER PT J AU Bansal, G Mascarenhas, A Chen, JH AF Bansal, Gaurav Mascarenhas, Ajith Chen, Jacqueline H. TI Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures SO COMBUSTION AND FLAME LA English DT Article DE Low temperature combustion engines; Thermal and compositional stratification; Autoignition; Direct numerical simulation ID HOMOGENEOUS CHARGE COMPRESSION; IGNITION FRONT PROPAGATION; LOW-TEMPERATURE OXIDATION; CONSTANT VOLUME; AIR MIXTURES; INHOMOGENEITIES; REGIME; FLAME AB In this paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. The computational configuration corresponds to a constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. By applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Bansal, G (reprint author), 2111 NE 25th Ave, Hillsboro, OR 97124 USA. EM gaurav2.bansal@intel.com FU Combustion Energy Frontier Research Center, an Energy Frontier Research Center - US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; DOEs Innovative and Novel Computational Impact on Theory and Experiments (INCITE) Program; U.S. Department of Energy [DE-AC04-94-AL85000]; Office of Science of the US DOE [DE-AC05-000R22725] FX The research at Sandia National Laboratories is supported by the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001198. Computer allocations were awarded by DOEs Innovative and Novel Computational Impact on Theory and Experiments (INCITE) Program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94-AL85000. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (NCCS/ORNL) which is supported by the Office of Science of the US DOE under Contract No. DE-AC05-000R22725. We thank Prof. Hongfeng Yu of University of Nebraska-Lincoln for generating some of the visualizations for the 3-D simulations. NR 40 TC 11 Z9 11 U1 3 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAR PY 2015 VL 162 IS 3 BP 688 EP 702 DI 10.1016/j.combustflame.2014.08.021 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA CD7DG UT WOS:000351250400014 ER PT J AU Kim, SO Luong, MB Chen, JH Yoo, CS AF Kim, Seung Ook Luong, Minh Bau Chen, Jacqueline H. Yoo, Chun Sang TI A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature SO COMBUSTION AND FLAME LA English DT Article DE Homogeneous charge compression ignition (HCCI); Direct numerical simulation (DNS); Primary reference fuel (PRF); Negative temperature coefficient (NTC) regime; Ignition Damkohler number ID DIRECT NUMERICAL-SIMULATION; EXPLOSIVE MODE ANALYSIS; CHARACTERISTIC BOUNDARY-CONDITIONS; HYDROGEN JET FLAME; HEATED COFLOW; FRONT PROPAGATION; CONSTANT VOLUME; N-HEPTANE; MULTISTAGE AUTOIGNITION; COUNTERFLOW FLAMES AB Two-dimensional direct numerical simulations (DNSs) of ignition of lean primary reference fuel (PRF)/air mixtures at high pressure and intermediate temperature near the negative temperature coefficient (NTC) regime were performed with a 116 species-reduced mechanism to elucidate the effects of fuel composition, thermal stratification, and turbulence on PRF homogeneous charge compression-ignition (HCCI) combustion. In the DNSs, temperature and velocity fluctuations are superimposed on the initial scalar fields with different PRF compositions. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs rapidly with increasing thermal stratification regardless of the fuel composition. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to be significantly reduced with increasing thermal stratification. Chemical explosive mode (CEM) and displacement speed analyses verified that nascent ignition kernels induced by hot spots due to a high degree of thermal stratification usually develop into deflagration waves rather than spontaneous auto-ignition at reaction fronts and as such, the mean heat release rate becomes more distributed over time. These analyses also revealed that the fuel composition effect vanishes as the degree of thermal stratification is increased because the deflagration mode of combustion, of which propagation characteristics are nearly identical for different PRF/air mixtures, becomes more prevailing with increasing degree of thermal stratification. Ignition Damkohler number was proposed to quantify the successful development of deflagration waves from nascent ignition kernels; for cases with large ignition Damkohler number, turbulence with high intensity and short timescale can advance the overall combustion by increasing the overall turbulent flame area instead of homogenizing initial mixture inhomogeneities. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kim, Seung Ook; Luong, Minh Bau; Yoo, Chun Sang] Ulsan Natl Inst Sci & Technol, Sch Mech & Nucl Engn, Ulsan 689798, South Korea. [Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Yoo, CS (reprint author), Ulsan Natl Inst Sci & Technol, Sch Mech & Nucl Engn, Ulsan 689798, South Korea. EM csyoo@unist.ac.kr RI Yoo, Chun Sang/E-5900-2010; Luong, Minh Bau/C-3620-2017 OI Yoo, Chun Sang/0000-0003-1094-4016; Luong, Minh Bau/0000-0002-7245-2968 FU Basic Science Research Program through the National Research Foundation of Korea - Ministry of Education, Science and Technology [2011-0008201]; BK21PLUS - Korea Ministry of Education; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, and Office of Advanced Scientific Computing Research of the US Department of Energy; Combustion Energy Frontier Research Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; United States Department of Energy [DEAC04-94AL85000]; Office of Science of the U.S. Department of Energy [DE-AC05-000R22725, DE-AC02-05CH11231]; National Energy Research Scientific Computing Center FX The work at Ulsan National Institute of Science and Technology was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2011-0008201). SOK and MBL were also supported by BK21PLUS funded by the Korea Ministry of Education. The work at Sandia National Laboratories was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, and Office of Advanced Scientific Computing Research of the US Department of Energy. JHC was also supported as part of the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DEAC04-94AL85000. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725 and the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 12 Z9 12 U1 7 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAR PY 2015 VL 162 IS 3 BP 717 EP 726 DI 10.1016/j.combustflame.2014.09.001 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA CD7DG UT WOS:000351250400016 ER PT J AU Barlow, RS Dunn, MJ Magnotti, G AF Barlow, Robert S. Dunn, Matthew J. Magnotti, Gaetano TI Preferential transport effects in premixed bluff-body stabilized CH4/H-2 flames SO COMBUSTION AND FLAME LA English DT Article DE Premixed flames; Preferential diffusion; Preferential transport; Bluff-body flames; Hydrogen addition ID TURBULENT FLAMES; CH4/AIR FLAMES; SCALE CLOSURE; COMBUSTION; BURNER; LES AB Recent studies of bluff-body stabilized premixed CH4/air flames, using line-imaged Raman/Rayleigh/LIF methods to measure temperature and major species, have revealed significant effects of preferential species transport on scalar structure across the flame and into the recirculation zone. The main observations were that the C/H atom ratio and the equivalence ratio increased going from reactants to products along a radial profile when the reactant flow velocity was sufficiently high to push the flame close to the boundary of the recirculation zone. This phenomenon was attributed to preferential diffusion of H-2 and H2O toward the reactants followed by convective transport of the hydrogen-species enriched fluid downstream and beyond the recirculation zone, leaving elevated levels of CO2 and the C/H and C/O atom ratios within the recirculation zone. The present work continues the investigation of this preferential transport phenomenon by considering lean premixed methane flames, with varying levels of H-2 addition, stabilized on the same bluff body burner as in the previous study. Results show similar effects of preferential transport as in the methane flames, with the measured equivalence ratio within the recirculation zone higher than in the reactant stream. However, with increasing levels of H-2 addition in the fuel, H-2 diffuses from reactants toward products rather than the other way around. For the highest level of H-2 addition (40% mole fraction) the C/H atom ratio in the products decreases relative to that in the reactants, while the C/O atom ratio still increases. This indicates that there is still preferential transport of H2O into the rapidly flowing reactant stream, causing a net loss of oxygen from products in the recirculation zone. However, differential diffusion of H-2 from the reactant stream into the flame more than compensates for this effect on the C/H atom balance. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Barlow, Robert S.; Magnotti, Gaetano] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Dunn, Matthew J.] Univ Sydney, AMME Dept, Sydney, NSW 2006, Australia. RP Barlow, RS (reprint author), Sandia Natl Labs, Reacting Flow Res Dept, MS-9051,POB 969, Livermore, CA 94551 USA. EM barlow@sandia.gov; matthew.dunn@sydney.edu; gmagnot@sandia.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. Contributions by Bob Harmon in support of these experiments are gratefully acknowledged. NR 25 TC 2 Z9 2 U1 2 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAR PY 2015 VL 162 IS 3 BP 727 EP 735 DI 10.1016/j.combustflame.2014.09.006 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA CD7DG UT WOS:000351250400017 ER PT J AU Castaneda, R Yakovenko, AA Draguta, S Fonari, MS Antipin, MY Timofeeva, TV AF Castaneda, Raul Yakovenko, Andrey A. Draguta, Sergiu Fonari, Marina S. Antipin, Mikhail Yu Timofeeva, Tatiana V. TI Structural Diversity in the Complexes of Trimeric Perfluoro-o-phenylene Mercury with Tetrathia- and Tetramethyltetraselenafulvalene SO CRYSTAL GROWTH & DESIGN LA English DT Article ID CHARGE-TRANSFER COMPLEXES; FIELD-EFFECT TRANSISTORS; COORDINATION CHEMISTRY; CRYSTAL-STRUCTURE; TRANSFER SALTS; HALOGEN BOND; TTF; ANTICROWN; DESIGN; TCNQ AB Five potential charge transfer complexes of trimeric perfluoro-o-phenylene mercury (I) with tetrathiafulvalene (TTF) and tetramethyltetraselenefulvalene (TMTSF) were grown from different solvent mixtures. The adducts (I)(2).TTF (1) and I.TTF (2) were grown by slow evaporation from the 1:1 mixture of dichloromethane (CH2Cl2, DCM) and carbon disulfide (CS2). Use of the different 1:1 solvent mixtures of dichloromethane (CH2Cl2, DCM) and dichloroethane (C2H4Cl2, DCE) has led to the crystalline adducts I.TTF (3) and I.TTF.DCE (4). Adduct I.TMTSF (5) was grown by the interface crystallization on the border of two immiscible layers, ethyl acetate, and carbon disulfide. The cocrystals differ by the donoracceptor ratio, molecular packing, and the solvent inclusion. The components in 1-5 form mixed donor-acceptor stacks. The stacks are stabilized by Hg...S and Hg...C short contacts, while the lateral interactions between stacks include F...F, CH...F, and S/Se...F short contacts. C1 [Castaneda, Raul; Draguta, Sergiu; Fonari, Marina S.; Antipin, Mikhail Yu; Timofeeva, Tatiana V.] New Mexico Highlands Univ, Dept Biol & Chem, Las Vegas, NM 87701 USA. [Yakovenko, Andrey A.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Fonari, Marina S.] Moldavian Acad Sci, Inst Appl Phys, MD-2028 Kishinev, Moldova. [Antipin, Mikhail Yu] Russian Acad Sci, AN Nesmeyanov Organoelement Cpds Inst, Moscow 119991, Russia. [Timofeeva, Tatiana V.] ITMO Univ, St Petersburg 197101, Russia. RP Timofeeva, TV (reprint author), New Mexico Highlands Univ, Dept Biol & Chem, Las Vegas, NM 87701 USA. EM tvtimofeeva@nmhu.edu FU NSF [DMR-0934212, IIA-130134] FX The authors are grateful for NSF support via DMR-0934212 (PREM) and IIA-130134. NR 34 TC 2 Z9 2 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2015 VL 15 IS 3 BP 1022 EP 1026 DI 10.1021/cg501594t PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CC8JL UT WOS:000350614400003 ER PT J AU Choquette, AK Colby, R Moon, EJ Schleputz, CM Scafetta, MD Keavney, DJ May, SJ AF Choquette, Amber K. Colby, Robert Moon, Eun Ju Schlepuetz, Christian M. Scafetta, Mark D. Keavney, David J. May, Steven J. TI Synthesis, Structure, and Spectroscopy of Epitaxial EuFeO3 Thin Films SO CRYSTAL GROWTH & DESIGN LA English DT Article ID RARE-EARTH ORTHOFERRITES; TRANSITION-METAL OXIDES; RAY ABSORPTION-SPECTROSCOPY; CATALYTIC PROPERTIES; ELECTRONIC-STRUCTURE; CRYSTAL-CHEMISTRY; PEROVSKITE; REFINEMENT; OXIDATION; METHANE AB Rare earth iron perovskites RFeO3, where R is a rare earth cation, exhibit an array of magnetic, catalytic, optical, and electrochemical properties. Here we study EuFeO3 films synthesized by molecular beam epitaxy to improve our understanding of the optical properties of ferrites. A combination of X-ray diffraction, X-ray reflectivity, Rutherford backscattering spectroscopy, and scanning transmission electron microscopy was used to characterize the film structure and cation composition. X-ray absorption spectroscopy confirms the nominal 3+ valence states of Eu and Fe. The optical properties of EuFeO3 were investigated using variable-angle spectroscopic ellipsometry between the photon energies of 1.25 and 5 eV. We find that EuFeO3 is a semiconductor with an onset of optical absorption near 2.5 eV. The absorption spectrum of EuFeO3 is blue-shifted with respect to LaFeO3 films, a result that is attributed to the structural differences between the two materials. C1 [Choquette, Amber K.; Moon, Eun Ju; Scafetta, Mark D.; May, Steven J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Colby, Robert] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Schlepuetz, Christian M.; Keavney, David J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP May, SJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM smay@coe.drexel.edu RI May, Steven/D-8563-2011; Moon, Eun Ju/C-7856-2014; Schleputz, Christian/C-4696-2008 OI May, Steven/0000-0002-8097-1549; Schleputz, Christian/0000-0002-0485-2708 FU National Science Foundation [DMR-1151649]; DOE [DE-AC02-06CH11357]; Department of Energy's Office of Biological and Environmental Research FX We thank Scott Chambers for the useful discussions. Work at Drexel University was supported by the National Science Foundation (DMR-1151649). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the DOE under Contract DE-AC02-06CH11357. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 47 TC 4 Z9 4 U1 10 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2015 VL 15 IS 3 BP 1105 EP 1111 DI 10.1021/cg501403m PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CC8JL UT WOS:000350614400014 ER PT J AU Pham, T Forrest, KA Hogan, A Tudor, B McLaughlin, K Belof, JL Eckert, J Space, B AF Pham, Tony Forrest, Katherine A. Hogan, Adam Tudor, Brant McLaughlin, Keith Belof, Jonathan L. Eckert, Juergen Space, Brian TI Understanding Hydrogen Sorption in In-soc-MOF: A Charged MetalOrganic Framework with Open-Metal Sites, Narrow Channels, and Counterions SO CRYSTAL GROWTH & DESIGN LA English DT Article ID INELASTIC NEUTRON-SCATTERING; DIPOLE INTERACTION-MODEL; ORGANIC FRAMEWORKS; FORCE-FIELD; THEORETICAL INVESTIGATIONS; ATOM POLARIZABILITIES; MATERIALS SIMULATION; MOLECULAR-MECHANICS; BUILDING-BLOCKS; BINDING-SITES AB Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in In-soc-MOF, a charged metalorganic framework (MOF) that contains In3O trimers coordinated to 5,5'-azobis(1,3-benzenedicarboxylate) linkers. The MOF contains nitrate counterions that are located in carcerand-like capsules of the framework. This MOF was shown to have a high hydrogen uptake at 77 K and 1.0 atm. The simulations were performed with a potential that includes explicit many-body polarization interactions, which were important for modeling gas sorption in a charged/polar MOF such as In-soc-MOF. The simulated hydrogen sorption isotherms were in good agreement with experiment in this challenging platform for modeling. The simulations predict a high initial isosteric heat of adsorption, Q(st), value of about 8.5 kJ mol(-1), which is in contrast to the experimental value of 6.5 kJ mol(-1) for all loadings. The difference in the Q(st) behavior between experiment and simulation is attributed to the fact that, in experimental measurements, the sorbate molecules cannot access the isolated cages containing the nitrate ions, the most energetically favorable site in the MOF, at low pressures due to an observed diffusion barrier. In contrast, the simulations were able to capture the sorption of hydrogen onto the nitrate ions at low loading due to the equilibrium nature of GCMC simulations. The experimental Q(st) values were reproduced in simulation by blocking access to all of the nitrate ions in the MOF. Furthermore, at 77 K, the sorbed hydrogen molecules were reminiscent of a dense fluid in In-soc-MOF starting at approximately 5.0 atm, and this was verified by monitoring the isothermal compressibility, beta(T), values. The favorable sites for hydrogen sorption were identified from the polarization distribution as the nitrate ions, the In3O trimers, and the azobenzene nitrogen atoms. Lastly, the two-dimensional quantum rotational levels for a hydrogen molecule sorbed about the aforementioned sites were calculated and the transitions were in good agreement with those that were observed in the experimental inelastic neutron scattering spectra. C1 [Pham, Tony; Forrest, Katherine A.; Hogan, Adam; Tudor, Brant; McLaughlin, Keith; Eckert, Juergen; Space, Brian] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. [Belof, Jonathan L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Space, B (reprint author), Univ S Florida, Dept Chem, 4202 East Fowler Ave,CHE205, Tampa, FL 33620 USA. EM brian.b.space@gmail.com RI Pham, Tony/A-3787-2014 FU National Science Foundation [CHE-1152362]; XSEDE Grant [TG-DMR090028]; King Abdullah University of Science and Technology (KAUST) [FIC/2010/06]; Space Foundation (Basic and Applied Research) FX We thank Youssef Belmabkhout and Jens Moellmer for presenting us with experimental data for high-pressure hydrogen sorption in In-soc-MOP at 77 and 298 K, respectively. This work was supported by the National Science Foundation (Award No. CHE-1152362). Computations were performed under a XSEDE Grant (No. TG-DMR090028) to B.S. This publication is also based on work supported by Award No. FIC/2010/06, made by King Abdullah University of Science and Technology (KAUST). We also thank the Space Foundation (Basic and Applied Research) for partial support. We acknowledge the use of the services provided by Research Computing at the University of South Florida. NR 90 TC 13 Z9 13 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2015 VL 15 IS 3 BP 1460 EP 1471 DI 10.1021/cg5018104 PG 12 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CC8JL UT WOS:000350614400056 ER PT J AU Koteen, LE Raz-Yaseef, N Baldocchi, DD AF Koteen, Laura E. Raz-Yaseef, Naama Baldocchi, Dennis D. TI Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply SO ECOHYDROLOGY LA English DT Article DE fine root biomass; Quercus douglasii; oak savanna; soil carbon; spatial heterogeneity; precipitation change; upscaling ID QUERCUS-DOUGLASII TREES; GRASS COEXISTENCE; ORGANIC-CARBON; BLUE OAKS; STAND AGE; WATER; FOREST; PRODUCTIVITY; VEGETATION; ECOSYSTEMS AB We sampled isolated trees and tree clusters from a blue oak, Quercus douglasii, savanna to determine the spatial heterogeneity of fine root biomass and soil carbon across the landscape as a function of tree size and configuration. We aimed to understand how fine root structure enables sustained ecosystem metabolism through a summer of limited moisture and high heat and facilitates resource acquisition during the short period of high resource supply. An additional goal was to provide a basis for upscaling root biomass and soil carbon to the landscape scale. We sampled trees of different size and tree clusters via a stratified sampling scheme that accounted for spatial heterogeneity in root biomass and soil carbon with lateral distance from the tree bole, or cluster centre, and soil depth. We upscaled these estimates using site-specific information from a lidar survey. We found that fine roots and soil carbon are spatially heterogeneous in their landscape distribution and greatly increase with tree size. We also found that Q.douglasii possesses a dimorphic fine root architecture, uniquely suited to the region's climatic constraints and exhibits morphological plasticity among trees of different size and physical setting. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Koteen, Laura E.] Univ Calif Berkeley, Agr & Nat Resources, Informat & GIS, Berkeley, CA 94720 USA. [Raz-Yaseef, Naama] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Baldocchi, Dennis D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Koteen, LE (reprint author), Univ Calif Berkeley, Agr & Nat Resources, Informat & GIS, Berkeley, CA 94720 USA. EM lkoteen@berkeley.edu RI Baldocchi, Dennis/A-1625-2009; Raz Yaseef, Naama/D-3385-2015 OI Baldocchi, Dennis/0000-0003-3496-4919; Raz Yaseef, Naama/0000-0002-7405-1607 FU US Department of Energy [DE-SC0005130]; Kearney Soil Science Foundation of the University of California FX We thank Melanie Hahn, Hanna Buechi and Joseph Verfaillie for their work in the field and lab, Martin Beland for field site expertise, and Siyan Ma for her work in the field, site expertise and excellent advice on this manuscript. We thank Russell Tonzi for the use of his ranch. We thank Peggy Chuang, Christine Han, Janet Hsiao, Joseph Ko, Cindy Lam, Debra Larsen, MinhThao Luong, LanThao Nguyen, NhatThan Nguyen, John Sanders, Erika So and Phung Ton for their assistance in the lab. We thank Sarah Bade for her artistic rendering of tree roots. This work was funded by the US Department of Energy grant DE-SC0005130 and supported by the Kearney Soil Science Foundation of the University of California. NR 69 TC 0 Z9 1 U1 5 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1936-0584 EI 1936-0592 J9 ECOHYDROLOGY JI Ecohydrology PD MAR PY 2015 VL 8 IS 2 BP 294 EP 308 DI 10.1002/eco.1508 PG 15 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA CD5PQ UT WOS:000351140700010 ER PT J AU Shinde, A Jones, RJR Guevarra, D Mitrovic, S Becerra-Stasiewicz, N Haber, JA Jin, J Gregoire, JM AF Shinde, Aniketa Jones, Ryan J. R. Guevarra, Dan Mitrovic, Slobodan Becerra-Stasiewicz, Natalie Haber, Joel A. Jin, Jian Gregoire, John M. TI High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn-Co-Ta-Sb)O (x) Composition Space SO ELECTROCATALYSIS LA English DT Article DE Solar fuels; Water splitting; High throughput; Oxygen evolution; Electrochemical stability ID WATER ELECTROLYSIS; REDUCTION ACTIVITY; METAL-OXIDES; FUEL-CELLS; THIN-FILM; COMBINATORIAL; CATALYSIS; PERFORMANCE; DISCOVERY; OXIDATION AB Solar generation of fuel is a promising future energy technology, and strong acidic conditions are highly desirable for integrated solar hydrogen generators. In particular, water splitting near pH 0 is attractive due to the availability of high theoretical efficiency, high performance hydrogen evolution catalysts, and robust ion exchange membranes. The lack of a stable, earth-abundant oxygen evolution catalyst inhibits deployment of this technology, and development of such a material is hampered by the strong anti-correlation between electrochemical stability and catalytic activity of non-precious metal oxides. High-throughput screening of mixed metal oxides offers a promising route to the identification of new stable catalysts and requires careful design of experiments to combine the concepts of rapid experimentation and long-term stability. By combining serial and parallel measurement techniques, we have created a high-throughput platform to assess the catalytic activity of material libraries in the as-prepared state and after 2 h of operation. By screening the entire (Mn-Co-Ta-Sb)O (x) composition space, we observe that the compositions with highest initial activity comprised cobalt and manganese oxides, but combinations with antimony and tantalum offer improved stability. By combining the desired properties of catalytic activity and stability, the optimal composition regions are readily identified, demonstrating the success and fidelity of this novel high-throughput screening platform. C1 [Shinde, Aniketa; Jones, Ryan J. R.; Guevarra, Dan; Mitrovic, Slobodan; Becerra-Stasiewicz, Natalie; Haber, Joel A.; Gregoire, John M.] CALTECH, Joint Ctr Artificial Photosynthesis, Pasadena, CA 91125 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. RP Gregoire, JM (reprint author), CALTECH, Joint Ctr Artificial Photosynthesis, Pasadena, CA 91125 USA. EM gregoire@caltech.edu RI Mitrovic, Slobodan/E-7847-2010; OI Mitrovic, Slobodan/0000-0001-8913-8505; Jones, Ryan/0000-0002-4629-3115 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This manuscript is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). The authors thank Dr. Chengxiang Xiang for assistance with establishing the electrochemical treatment system and Dr. Manuel Soriaga for the illuminating discussions. NR 32 TC 4 Z9 4 U1 4 U2 37 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1868-2529 EI 1868-5994 J9 ELECTROCATALYSIS-US JI Electrocatalysis PD MAR PY 2015 VL 6 IS 2 BP 229 EP 236 DI 10.1007/s12678-014-0237-7 PG 8 WC Chemistry, Physical; Electrochemistry SC Chemistry; Electrochemistry GA CD7XR UT WOS:000351309400012 ER PT J AU Tumuluru, JS Lim, CJ Bi, XTT Kuang, XY Melin, S Yazdanpanah, F Sokhansanj, S AF Tumuluru, Jaya Shankar Lim, C. Jim Bi, Xiaotao T. Kuang, Xingya Melin, Staffan Yazdanpanah, Fahimeh Sokhansanj, Shahab TI Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass SO ENERGIES LA English DT Article ID CARBON-MONOXIDE; PELLETS; TORREFACTION; DENSIFICATION; TEMPERATURE; HEADSPACE; HEARTWOOD; KINETICS; ENERGY; LIPIDS AB Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 degrees C and in a laboratory oven set at 40 degrees C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 degrees C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO2) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 degrees C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 degrees C after 11 days of storage. In the case of CO2, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO2 is highest for switchgrass and CH4 is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 degrees C. C1 [Tumuluru, Jaya Shankar] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Energy Syst & Technol Div, Idaho Falls, ID 83415 USA. [Lim, C. Jim; Bi, Xiaotao T.; Yazdanpanah, Fahimeh; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Kuang, Xingya] Dist Cent Hosp, Dept Occupat Med, Shanghai 200090, Peoples R China. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Tumuluru, JS (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Energy Syst & Technol Div, POB 1625, Idaho Falls, ID 83415 USA. EM JayaShankar.Tumuluru@inl.gov; cjlim@chbe.ubc.ca; xbi@chbe.ubc.ca; xykuang@yahoo.com; drc@dccnet.com; fyazdanpanah@chbe.ubc.ca; sokhansanjs@ornl.gov FU Wood Pellets Association of Canada; Natural Sciences and Engineering Research Council of Canada under Collaborative Research and Development Project; Department of Energy (DOE) Office of Bioenergy Technology Office; DOE Idaho Operations Office [DE-AC07-05ID14517] FX The reported experimental project was conducted at the University of British Columbia. We thankfully acknowledge the financial support of Wood Pellets Association of Canada and Natural Sciences and Engineering Research Council of Canada under a Collaborative Research and Development Project. We also acknowledge the support from the Department of Energy (DOE) Office of Bioenergy Technology Office, the author Jaya Shankar Tumuluru is an employee of Idaho National Laboratory under Energy Efficiency and Renewable Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517. The author Shahab Sokhansanj is an employee of Oak Ridge National Laboratory. Accordingly, the U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. The authors would also like to acknowledge Idaho National Laboratory's R&D Publications Support Team for their editorial and graphics assistance. NR 41 TC 2 Z9 2 U1 3 U2 27 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD MAR PY 2015 VL 8 IS 3 BP 1745 EP 1759 DI 10.3390/en8031745 PG 15 WC Energy & Fuels SC Energy & Fuels GA CE6JF UT WOS:000351942000012 ER PT J AU Lin, T Hu, SC Xu, TF AF Lin, Tee Hu, Shih-Cheng Xu, Tengfang TI Developing an innovative fan dry coil unit (FDCU) return system to improve energy efficiency of environmental control for mission critical cleanrooms SO ENERGY AND BUILDINGS LA English DT Article DE Fan filter unit (FFU); Fan dry coil unit (FDCU); Energy efficiency; Cleanroom ID CONSUMPTION; FABS AB Traditional wall-return re-circulation air systems with ceiling-supply and wall-return air grilles are fairly common in non-unidirectional airflow industrial cleanrooms. Such re-circulation systems normally have longer airflow circulation pathways, which inherently induced higher airflow resistance, resulting in higher fan power demand per unit of airflow rate delivered. To overcome the airflow resistance, Fan Filter Units (FFUs) used in the traditional wall-returned re-circulation system are designed to operate with high external pressures, which also induce high negative pressures in supply air plenums (SAP). The negative pressures within SAP can increase the risks of infiltration of outdoor air and contaminants. A longer airflow pathway corresponds to a higher level of negativity of the air pressure inside the supply air plenum, thus inducing higher risks of cross-contamination. To overcome the above-mentioned drawbacks, a new re-circulation system using fan dry coil unit (FDCU) was proposed. This new system exhibits shorter air re-circulation paths while providing effective environmental controls (e.g., removal rate of 0.1 mu m particle and temperature control) for a cleanroom. In this study, experiments were conducted in a full-scale cleanroom to investigate the energy performance of applying the innovative FDCU-return system, compared to a traditional wall-return system. Results showed that the FDCU-return system can increase energy efficiency and reduce the electric energy consumption by more than 4% compared to the wall-return system. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lin, Tee; Hu, Shih-Cheng] Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei, Taiwan. [Xu, Tengfang] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. RP Hu, SC (reprint author), Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, 1,Sect 3,Chung Hsiao E Rd, Taipei, Taiwan. EM schu.ntut@gmail.com FU National Science Council of R.O.C (Taiwan) [99-2623-E-027-005-ET]; Department of Industrial Technology, Ministry of Economic Affairs, R.O.C (Taiwan) [101-EC-17-A-15-S1-223] FX This research project benefited from funding supports from the National Science Council of R.O.C (Taiwan) (Contract number: 99-2623-E-027-005-ET) and from the Department of Industrial Technology, Ministry of Economic Affairs, R.O.C (Taiwan) (project number: 101-EC-17-A-15-S1-223 NR 28 TC 0 Z9 0 U1 8 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD MAR 1 PY 2015 VL 90 BP 94 EP 105 DI 10.1016/j.enbuild.2014.12.003 PG 12 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CD1LM UT WOS:000350836400010 ER PT J AU Fernandes, LL Lee, ES McNeil, A Jonsson, JC Nouidui, T Pang, XF Hoffmann, S AF Fernandes, Luis L. Lee, Eleanor S. McNeil, Andrew Jonsson, Jacob C. Nouidui, Thierry Pang, Xiufeng Hoffmann, Sabine TI Angular selective window systems: Assessment of technical potential for energy savings SO ENERGY AND BUILDINGS LA English DT Article DE Building energy-efficiency; Day lighting; Windows; Shading systems; Angular selective systems ID SCATTERING DISTRIBUTION-FUNCTIONS; COMPLEX FENESTRATION SYSTEMS AB Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively, without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago, WWR= 0.45). Angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance. (C) 2014 Elsevier B.V. All rights reserved. C1 [Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Fernandes, LL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, Environm Energy Technol Div, Mailstop 90-3111,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM LLFernandes@lbl.gov FU Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy [DE-AC02-05CH11231]; California Energy Commission through its Public Interest Energy Research (PIER) Program FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231 and by the California Energy Commission through its Public Interest Energy Research (PIER) Program on behalf of the citizens of California. NR 18 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD MAR 1 PY 2015 VL 90 BP 188 EP 206 DI 10.1016/j.enbuild.2014.10.010 PG 19 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CD1LM UT WOS:000350836400019 ER PT J AU Beck, DAC McTaggart, TL Setboonsarng, U Vorobev, A Goodwin, L Shapiro, N Woyke, T Kalyuzhnaya, MG Lidstrom, ME Chistoserdova, L AF Beck, David A. C. McTaggart, Tami L. Setboonsarng, Usanisa Vorobev, Alexey Goodwin, Lynne Shapiro, Nicole Woyke, Tanja Kalyuzhnaya, Marina G. Lidstrom, Mary E. Chistoserdova, Ludmila TI Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID METHYLOBACTERIUM; METHYLAMINE; METABOLISM; EXPRESSION; SEQUENCES; SEDIMENT; GENETICS; PATHWAY; CLONING; NOV. AB We sequenced the genomes of 19 methylotrophic isolates from Lake Washington, which belong to nine genera within eight families of the Alphaproteobacteria, two of the families being the newly proposed families. Comparative genomic analysis with a focus on methylotrophy metabolism classifies these strains into heterotrophic and obligately or facultatively autotrophic methylotrophs. The most persistent metabolic modules enabling methylotrophy within this group are the N-methylglutamate pathway, the two types of methanol dehydrogenase (MxaFI and XoxF), the tetrahydromethanopterin pathway for formaldehyde oxidation, the serine cycle and the ethylmalonyl-CoA pathway. At the same time, a great potential for metabolic flexibility within this group is uncovered, with different combinations of these modules present. Phylogenetic analysis of key methylotrophy functions reveals that the serine cycle must have evolved independently in at least four lineages of Alphaproteobacteria and that all methylotrophy modules seem to be prone to lateral transfers as well as deletions. C1 [Beck, David A. C.; McTaggart, Tami L.; Setboonsarng, Usanisa; Vorobev, Alexey; Lidstrom, Mary E.; Chistoserdova, Ludmila] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. [Kalyuzhnaya, Marina G.; Lidstrom, Mary E.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Beck, David A. C.] Univ Washington, eSci Inst, Seattle, WA 98195 USA. [Goodwin, Lynne] Los Alamos Natl Lab, Los Alamos, NM USA. [Shapiro, Nicole; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. [Kalyuzhnaya, Marina G.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. RP Chistoserdova, L (reprint author), Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. EM milachis@u.washington.edu OI Kalyuzhnaya, Marina/0000-0002-9058-7794 FU National Science Foundation [MCB-0950183]; U.S. Department of Energy, Office of Science and Office of Biological and Environmental Research [DE-SC-0010556]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the National Science Foundation (Grant No. MCB-0950183) and by the U.S. Department of Energy, Office of Science and Office of Biological and Environmental Research under Award No. DE-SC-0010556. Research was facilitated through the use of advanced computational storage and networking infrastructure provided by the Hyak supercomputer system supported in part by the University of Washington eScience Institute. The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 16 TC 6 Z9 6 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD MAR PY 2015 VL 17 IS 3 BP 547 EP 554 DI 10.1111/1462-2920.12736 PG 8 WC Microbiology SC Microbiology GA CD9RK UT WOS:000351435600003 PM 25683159 ER PT J AU Liu, SS Wang, F Xue, K Sun, B Zhang, YG He, ZL Van Nostrand, JD Zhou, JZ Yang, YF AF Liu, Shanshan Wang, Feng Xue, Kai Sun, Bo Zhang, Yuguang He, Zhili Van Nostrand, Joy D. Zhou, Jizhong Yang, Yunfeng TI The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CLIMATE-CHANGE; COMMUNITY COMPOSITION; AGRICULTURAL MANAGEMENT; DENITRIFYING BACTERIA; NITROGEN DEPOSITION; GENE DIVERSITY; 16S RDNA; FOOD-WEB; GRADIENT; TEMPERATURE AB Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4+-N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P<0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping. C1 [Liu, Shanshan; Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Wang, Feng; Sun, Bo] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing, Jiangsu, Peoples R China. [Wang, Feng] Univ Chinese Acad Sci, Beijing, Peoples R China. [Xue, Kai; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Sci, Inst Environm Genom, Norman, OK 73019 USA. [Zhang, Yuguang] Chinese Acad Forestry, State Forestry Adm, Key Lab Forest Ecol & Environm, Inst Forestry Ecol Environm & Protect, Beijing, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Yang, YF (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. EM yangyf@tsinghua.edu.cn RI Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 FU National Natural Science Foundation of China [41171201, 41271258]; State Key Joint Laboratory of Environment Simulation and Pollution Control [11Z03ESPCT]; National Basic Research Program of China [2011CB100506]; United States Department of Energy, Biological Systems Research on the Role of Microbial Communities in C Cycling Program [DE-SC0004601]; U.S. National Science Foundation [NSF EF-1065844]; United States Department of Agriculture through NSF-USDA Microbial Observatories Program [2007-35319-18305]; ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies through the Office of Science, Office of Biological and Environmental Research, the US Department of Energy [DE-AC02-05CH11231] FX The authors thank Hailun, Fengqiu and Yingtan Research Station staff for sampling assistance and the anonymous reviewers for constructive comments and suggestions for the improvement of this manuscript. This research was supported by grants to Yunfeng Yang from the National Natural Science Foundation of China (41171201) and State Key Joint Laboratory of Environment Simulation and Pollution Control (11Z03ESPCT); grants to Bo Sun from National Basic Research Program of China (2011CB100506) and the National Natural Science Foundation of China (41271258); and grants to Jizhong Zhou from the United States Department of Energy, Biological Systems Research on the Role of Microbial Communities in C Cycling Program (DE-SC0004601), the U.S. National Science Foundation under the contract (NSF EF-1065844) and by the United States Department of Agriculture (Project 2007-35319-18305) through NSF-USDA Microbial Observatories Program. This study made use of GeoChip and associated computational pipelines whose development was funded by ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies through the Office of Science, Office of Biological and Environmental Research, the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 68 TC 7 Z9 10 U1 20 U2 68 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD MAR PY 2015 VL 17 IS 3 BP 566 EP 576 DI 10.1111/1462-2920.12398 PG 11 WC Microbiology SC Microbiology GA CD9RK UT WOS:000351435600005 PM 24548455 ER PT J AU Handley, KM Wrighton, KC Miller, CS Wilkins, MJ Kantor, RS Thomas, BC Williams, KH Gilbert, JA Long, PE Banfield, JF AF Handley, Kim M. Wrighton, Kelly C. Miller, Christopher S. Wilkins, Michael J. Kantor, Rose S. Thomas, Brian C. Williams, Kenneth H. Gilbert, Jack A. Long, Philip E. Banfield, Jillian F. TI Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIUM; RIBOSOMAL-RNA SEQUENCES; SP-NOV.; FERRIC IRON; GEN. NOV.; DIVERSITY; SEDIMENTS; REDUCTION; ACETATE; URANIUM AB Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation. C1 [Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kantor, Rose S.] Univ Calif Berkeley, Plant & Microbial Biol, Berkeley, CA 94720 USA. [Handley, Kim M.; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Wilkins, Michael J.] PNNL, Div Biol Sci, Richland, WA USA. [Williams, Kenneth H.; Long, Philip E.] LBNL, Earth Sci Div, Berkeley, CA USA. [Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Lemont, IL USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Williams, Kenneth/O-5181-2014; Long, Philip/F-5728-2013; OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682; Miller, Christopher/0000-0002-9448-8144; Handley, Kim/0000-0003-0531-3009 FU IFRC, Subsurface Biogeochemical Research Program, Office of Science, Biological and Environmental Research, the US Department of Energy (DOE); DOE [DE-AC02-06CH11357] FX Funding was provided through the IFRC, Subsurface Biogeochemical Research Program, Office of Science, Biological and Environmental Research, the US Department of Energy (DOE). J.A. Gilbert was funded through the DOE under contract DE-AC02-06CH11357. We thank A.P. Yelton (University of California, Berkeley, UCB), D.R. Lovley (University of Massachusetts), and J.D. Coates (UCB) for experiment support/preparation; A.P. Montgomery (LBNL) for well-bore geochemical data; K.R. Frischkorn (UCB) for sequencing support; and H. O'Geen (DNA Technologies Core Facility) for sequencing. NR 85 TC 6 Z9 6 U1 3 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD MAR PY 2015 VL 17 IS 3 BP 622 EP 636 DI 10.1111/1462-2920.12467 PG 15 WC Microbiology SC Microbiology GA CD9RK UT WOS:000351435600009 PM 24674078 ER PT J AU Macdonald, CA Crawley, MJ Wright, DJ Kuczynski, J Robinson, L Knight, R Abu Al-Soud, W Sorensen, SJ Deng, Y Zhou, JZ Singh, BK AF Macdonald, Catriona A. Crawley, Michael J. Wright, Denis J. Kuczynski, Justin Robinson, Lucinda Knight, Rob Abu Al-Soud, Waleed Sorensen, Soren J. Deng, Ye Zhou, Jizhong Singh, Brajesh K. TI Identifying qualitative effects of different grazing types on below-ground communities and function in a long-term field experiment SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SOIL MICROBIAL COMMUNITY; SEMINATURAL GRASSLAND; NUTRIENT AVAILABILITY; SEEDLING RECRUITMENT; CLIMATE-CHANGE; PLANT; HERBIVORY; DIVERSITY; DEFOLIATION; ECOSYSTEMS AB Herbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore-induced changes on below-ground processes and communities is limited. Using a long-term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long-term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi-trophic interactions between above- and below-ground communities. C1 [Macdonald, Catriona A.; Singh, Brajesh K.] Univ Western Sydney, Hawkesbury Inst Environm, Penrith, NSW 1797, Australia. [Crawley, Michael J.; Wright, Denis J.] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ascot, Berks, England. [Kuczynski, Justin; Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Kuczynski, Justin; Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Kuczynski, Justin; Knight, Rob] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Robinson, Lucinda] James Hutton Inst, Aberdeen, Scotland. [Abu Al-Soud, Waleed; Sorensen, Soren J.] Univ Copenhagen, Fac Sci, Dept Biol, Copenhagen, Denmark. [Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Singh, BK (reprint author), Univ Western Sydney, Hawkesbury Inst Environm, Penrith, NSW 1797, Australia. EM b.singh@uws.edu.au RI Sorensen, Soren/J-5015-2014; Knight, Rob/D-1299-2010; Robinson, Lucinda/D-2706-2009; OI Sorensen, Soren/0000-0001-6227-9906; Robinson, Lucinda/0000-0002-2236-0651; ?, ?/0000-0002-7584-0632 FU Macaulay Development Trust; Australian Research Council [DP130104841]; Grain Research and Development Corporation FX A part of this work was funded by Macaulay Development Trust. BKS laboratory is currently funded by Australian Research Council (DP130104841), and Grain Research and Development Corporation. NR 64 TC 2 Z9 2 U1 5 U2 55 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD MAR PY 2015 VL 17 IS 3 BP 841 EP 854 DI 10.1111/1462-2920.12539 PG 14 WC Microbiology SC Microbiology GA CD9RK UT WOS:000351435600026 PM 24935069 ER PT J AU Gao, YH Li, X Leung, LR Chen, DL Xu, JW AF Gao, Yanhong Li, Xia Leung, L. Ruby Chen, Deliang Xu, Jianwei TI Aridity changes in the Tibetan Plateau in a warming climate SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE desertification; aridity; Tibetan Plateau ID POTENTIAL EVAPOTRANSPIRATION; DESERTIFICATION; VEGETATION; DROUGHT; CATCHMENT; IMPACTS; CHINA; CYCLE; RIVER; CROP AB Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman-Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979-2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring. C1 [Gao, Yanhong; Li, Xia; Xu, Jianwei] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou, Peoples R China. [Li, Xia] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Chen, Deliang] Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden. RP Gao, YH (reprint author), Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou, Peoples R China. EM gaoyh@lzb.ac.cn RI Chen, Deliang/A-5107-2013; OI Chen, Deliang/0000-0003-0288-5618; gao, yan hong/0000-0002-0403-2929 FU Ministry of Science and Technology of the People's Republic of China [2013CB956004]; National Natural Science Foundation of China [41322033]; '100-Talent' program granted by the Chinese Academy of Sciences; US Department of Energy Office of Science Regional and Global Climate Modeling program; Battelle Memorial Institute [DE-AC05-76RL01830] FX This work is jointly funded by the Ministry of Science and Technology of the People's Republic of China (2013CB956004), National Natural Science Foundation of China (41322033) and '100-Talent' program granted by the Chinese Academy of Sciences to Yanhong Gao. LRL is supported by the US Department of Energy Office of Science Regional and Global Climate Modeling program. Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 60 TC 5 Z9 5 U1 3 U2 47 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD MAR PY 2015 VL 10 IS 3 AR 034013 DI 10.1088/1748-9326/10/3/034013 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CD9KB UT WOS:000351416100015 ER PT J AU Ogle, SM Davis, K Lauvaux, T Schuh, A Cooley, D West, TO Heath, LS Miles, NL Richardson, S Breidt, FJ Smith, JE McCarty, JL Gurney, KR Tans, P Denning, AS AF Ogle, Stephen M. Davis, Kenneth Lauvaux, Thomas Schuh, Andrew Cooley, Dan West, Tristram O. Heath, Linda S. Miles, Natasha L. Richardson, Scott Breidt, F. Jay Smith, James E. McCarty, Jessica L. Gurney, Kevin R. Tans, Pieter Denning, A. Scott TI An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE greenhouse gas emissions inventory; atmospheric inversion modeling; emissions verification; carbon cycle ID UNITED-STATES; CARBON-DIOXIDE; FLUXES; SINKS; LAND; INVERSIONS; EXCHANGE; MODELS; BUDGET; SEQUESTRATION AB Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO2 concentrations and inverse modeling to verify nationally-reported biogenic CO2 emissions. The biogenic CO2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of -408 +/- 136 TgCO(2) for the entire study region, which was not statistically different from the biogenic flux of -478 +/- 146 TgCO(2) that was estimated using the atmospheric CO2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest Cstock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. C1 [Ogle, Stephen M.; Schuh, Andrew] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Ogle, Stephen M.] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Ft Collins, CO 80523 USA. [Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L.; Richardson, Scott] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Schuh, Andrew] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Cooley, Dan; Breidt, F. Jay] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA. [West, Tristram O.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Heath, Linda S.; Smith, James E.] USDA, Forest Serv, No Res Stn, Forest Sci Lab, Durham, NH 03824 USA. [McCarty, Jessica L.] Michigan Tech Res Inst, Ann Arbor, MI 48105 USA. [Gurney, Kevin R.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Tans, Pieter] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA. [Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Ogle, SM (reprint author), Colorado State Univ, Nat Resource Ecol Lab, Campus Delivery 1499, Ft Collins, CO 80523 USA. EM stephen.ogle@colostate.edu OI Ogle, Stephen/0000-0003-1899-7446 FU National Aeronautics and Space Administration (NASA), Terrestrial Ecology Program [NNX08AK08G, NNH12AU35I]; NASA; US Department of Energy; National Oceanic and Atmospheric Administration; US Department of Agriculture FX This synthesis and analysis was supported by a grant from the National Aeronautics and Space Administration (NASA), Terrestrial Ecology Program (NNX08AK08G to Colorado State University and NNH12AU35I to Department of Energy). The Mid-Continent study was supported by multiple agencies in the US government through the North American Carbon Program, particularly NASA, US Department of Energy, National Oceanic and Atmospheric Administration and US Department of Agriculture. Inventory and inversion results are archived in the NASA Distributed Active Archive Center at Oak Ridge National Laboratory. NR 67 TC 2 Z9 2 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD MAR PY 2015 VL 10 IS 3 AR 034012 DI 10.1088/1748-9326/10/3/034012 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CD9KB UT WOS:000351416100014 ER PT J AU Olson, MD DeWald, AT Prime, MB Hill, MR AF Olson, M. D. DeWald, A. T. Prime, M. B. Hill, M. R. TI Estimation of Uncertainty for Contour Method Residual Stress Measurements SO EXPERIMENTAL MECHANICS LA English DT Article DE Residual stress measurement; Contour method; Uncertainty quantification; Repeatability; Aluminum alloy 7050-T74; Quenching ID ERROR AB This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 x 76 mm, the estimated uncertainty was approximately 5 MPa (sigma/E = 7 center dot 10(-5)) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (sigma/E = 14 center dot 10(-5)). C1 [Olson, M. D.; DeWald, A. T.] Hill Engn LLC, Rancho Cordova, CA 95670 USA. [Olson, M. D.; Hill, M. R.] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Prime, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Olson, MD (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, One Shields Ave, Davis, CA 95616 USA. EM molson@ucdavis.edu RI Hill, Michael/A-2525-2016; Olson, Mitchell/A-2841-2016; OI Hill, Michael/0000-0002-9168-211X; Olson, Mitchell/0000-0002-9886-9825; Prime, Michael/0000-0002-4098-5620 FU U.S. Air Force [FA8650-14-C-5026] FX With gratitude, the authors acknowledge the U.S. Air Force for providing financial support for this work (contract FA8650-14-C-5026). The authors would also like to acknowledge helpful discussions with David Riha and John McFarland from the Southwest Research Institute related to uncertainty quantification. NR 22 TC 5 Z9 5 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD MAR PY 2015 VL 55 IS 3 BP 577 EP 585 DI 10.1007/s11340-014-9971-2 PG 9 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA CD9UP UT WOS:000351444300009 ER PT J AU Reu, P AF Reu, Phillip TI All about Speckles: Edge Sharpness SO EXPERIMENTAL TECHNIQUES LA English DT Editorial Material C1 Sandia Corp, Albuquerque, NM 87123 USA. RP Reu, P (reprint author), Sandia Corp, Albuquerque, NM 87123 USA. EM Phillip.Reu.DIC@gmail.com NR 0 TC 1 Z9 1 U1 0 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0732-8818 EI 1747-1567 J9 EXP TECHNIQUES JI Exp. Tech. PD MAR-APR PY 2015 VL 39 IS 2 BP 1 EP 2 DI 10.1111/ext.12139 PG 2 WC Engineering, Mechanical; Mechanics; Materials Science, Characterization & Testing SC Engineering; Mechanics; Materials Science GA CD9TA UT WOS:000351440000001 ER PT J AU Land, M Hauser, L Jun, SR Nookaew, I Leuze, MR Ahn, TH Karpinets, T Lund, O Kora, G Wassenaar, T Poudel, S Ussery, DW AF Land, Miriam Hauser, Loren Jun, Se-Ran Nookaew, Intawat Leuze, Michael R. Ahn, Tae-Hyuk Karpinets, Tatiana Lund, Ole Kora, Guruprased Wassenaar, Trudy Poudel, Suresh Ussery, David W. TI Insights from 20 years of bacterial genome sequencing SO FUNCTIONAL & INTEGRATIVE GENOMICS LA English DT Review DE Bacteria; Comparative genomics; Bacterial genomes; Metagenomics; Core-genome; Pan-genome; Next-generation sequencing ID 16S RIBOSOMAL-RNA; HUMAN GUT MICROBIOME; CRISPR-CAS SYSTEMS; ESCHERICHIA-COLI; PATHWAY/GENOME DATABASES; METABOLIC PATHWAYS; BIOCYC COLLECTION; METACYC DATABASE; DEFENSE SYSTEMS; ARCHAEA AB Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them. C1 [Land, Miriam; Hauser, Loren; Jun, Se-Ran; Nookaew, Intawat; Ahn, Tae-Hyuk; Karpinets, Tatiana; Poudel, Suresh; Ussery, David W.] Oak Ridge Natl Lab, Comparat Genom Grp, Biosci Div, Oak Ridge, TN 37831 USA. [Hauser, Loren; Ussery, David W.] Univ Tennessee, Joint Inst Biol Sci, Knoxville, TN 37996 USA. [Hauser, Loren] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Leuze, Michael R.; Ahn, Tae-Hyuk; Kora, Guruprased] Oak Ridge Natl Lab, Comp Sci & Math Div, Comp Sci Res Grp, Oak Ridge, TN 37831 USA. [Lund, Ole; Ussery, David W.] Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Wassenaar, Trudy] Mol Microbiol & Genom Consultants, D-55576 Zotzenheim, Germany. [Poudel, Suresh; Ussery, David W.] Univ Tennessee, Genome Sci & Technol, Knoxville, TN 37996 USA. RP Ussery, DW (reprint author), Oak Ridge Natl Lab, Comparat Genom Grp, Biosci Div, Oak Ridge, TN 37831 USA. EM usserydw@ornl.gov RI Land, Miriam/A-6200-2011; Lund, Ole/F-4437-2014; OI Land, Miriam/0000-0001-7102-0031; Lund, Ole/0000-0003-1108-0491; Ussery, David/0000-0003-3632-5512 FU US Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) as part of the Plant Microbe Interfaces Scientific Focus Area; BER's BioEnergy Science Center (BESC) at the Oak Ridge National Laboratory [DE-PS02-06ER64304]; US Department of Energy [DE-AC05-00OR22725] FX We gratefully acknowledge funding support for this research by the Genomic Science Program, US Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov) and the BER's BioEnergy Science Center (BESC) at the Oak Ridge National Laboratory (contract DE-PS02-06ER64304). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 163 TC 50 Z9 51 U1 19 U2 131 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1438-793X EI 1438-7948 J9 FUNCT INTEGR GENOMIC JI Funct. Integr. Genomics PD MAR PY 2015 VL 15 IS 2 BP 141 EP 161 DI 10.1007/s10142-015-0433-4 PG 21 WC Genetics & Heredity SC Genetics & Heredity GA CD9DN UT WOS:000351397700003 PM 25722247 ER PT J AU Leon, Y Sciau, P Passelac, M Sanchez, C Sablayrolles, R Goudeau, P Tamura, N AF Leon, Yoanna Sciau, Philippe Passelac, Michel Sanchez, Corinne Sablayrolles, Robert Goudeau, Philippe Tamura, Nobumichi TI Evolution of terra sigillata technology from Italy to Gaul through a multi-technique approach SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID SLIPS; CERAMICS AB To understand how the terra sigillata technology was transferred from Italy to Gaul, a large corpus of samples from various worskshops was studied by using standard laboratory techniques (Raman spectroscopy, SEM, electron microprobe analysis and colorimetry). Based on these results, a few representative samples were selected and investigated by synchrotron radiation at ALS on the 12.3.2 microdiffraction beamline. The beamline is very adapted to the crystallographic study of thin layers and allows us to determine precisely the mineral composition of the sigillata slips. The set of findings revealed significant differences between the Italic and Gallic slips, which suggest a modification in the manufacturing process. The transfer of the sigillata technique to Gaul is associated with an increase of the firing temperatures due to the use of more refractory clay. This change has no significant influence on their esthetic appearance (brilliance and color) but modify their mechanical properties, resulting in a stronger resistance for the Gallic slips. The implication of these results in archeological context is discussed. In particular, we will try to propose assumptions on the reason for the change in the manufacturing process. C1 [Leon, Yoanna; Sciau, Philippe] CNRS UPR 8011, CEMES, F-31055 Toulouse, France. [Leon, Yoanna] Univ Toulouse, UPS, F-31055 Toulouse, France. [Passelac, Michel; Sanchez, Corinne] Univ Montpellier 3, CNRS, UMR 5140, MCC,Archeol Soc Mediterraneennes, F-34000 Montpellier, France. [Sablayrolles, Robert] Univ Toulouse, UTM, CNRS, TRACES UMR 5608, F-31058 Toulouse, France. [Goudeau, Philippe] Univ Poitiers, ENSMA, CNRS UPR 3346, Inst Pprime, F-86962 Futuroscope, France. [Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. RP Leon, Y (reprint author), CNRS UPR 8011, CEMES, 29 Rue J Marvig, F-31055 Toulouse, France. EM leonyoanna@yahoo.fr FU Conseil Regional de Midi-Pyrenees [06001527]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE- AC02-05CH11231]; NSF through Iowa State University [0416243]; scientific program of the ARCHIMEDE Labex, program "IA" [ANR-11-LABX-0032-01] FX The authors gratefully acknowledge Silvia Vilucchi (Arezzo museum), Alain Vernhet (TRACES, Toulouse University) and Thierry Martin for the archeological samples as well as Philippe de Parseval (GET, Toulouse University) for the elemental composition measurements, Christian Roucau (CEMES, Toulouse) for TEM analysis, Ayed Ben Amara (CRPAA, Bordeaux University) for the color study and Anne Bouquillon (C2RMF, Louvre Museum, Paris) and Catherine Dejoie (ETH Zurich, Laboratory of Crystallography, Switzerland) for their help. This work was supported by the Conseil Regional de Midi-Pyrenees under contract no. 06001527 and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy who is operating ALS under contract no. DE- AC02-05CH11231. The up-grade of the ALS beam line 12.3.2 was enabled through the NSF grant # 0416243 obtained through the Iowa State University. This work is also part of the axis 3 of the scientific program of the ARCHIMEDE Labex, program "IA" ANR-11-LABX-0032-01. NR 27 TC 3 Z9 3 U1 2 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PD MAR 1 PY 2015 VL 30 IS 3 BP 658 EP 665 DI 10.1039/c4ja00367e PG 8 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA CC8XB UT WOS:000350650800011 ER PT J AU Didlake, AC Heymsfield, GM Tian, L Guimond, SR AF Didlake, Anthony C., Jr. Heymsfield, Gerald M. Tian, Lin Guimond, Stephen R. TI The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID PRECIPITATION; CONVECTION; HURRICANES; MESOSCALE; GENESIS; FIELDS AB The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High-Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward-pointing and conically scanning beams. The coplane technique interpolates radar measurements onto a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared with a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily. C1 [Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.] NASA, GSFC, Greenbelt, MD 20771 USA. [Didlake, Anthony C., Jr.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Tian, Lin] Morgan State Univ, Goddard Earth Sci Technol & Res Program, Baltimore, MD 21239 USA. [Guimond, Stephen R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Didlake, AC (reprint author), NASA, GSFC, Mail Code 612, Greenbelt, MD 20771 USA. EM anthony.didlake@nasa.gov FU NASA FX We thank Matthew McLinden, Lihua Li, Martin Perrine, Jaime Cervantes, and Ed Zenker for their engineering support and data processing for the HIWRAP radar. We thank Shuyi Chen for providing the model output used in this study. We also thank the three anonymous reviewers of this manuscript. The first author conducted this research at the NASA Goddard Space Flight Center under the support of the NASA Postdoctoral Program conducted by the Oak Ridge Associated Universities. NR 35 TC 6 Z9 6 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAR PY 2015 VL 54 IS 3 BP 605 EP 623 DI 10.1175/JAMC-D-14-0203.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6UV UT WOS:000351226200006 ER PT J AU Costa, LB Yang, H Vairavanathan, E Barros, A Maheshwari, K Fedak, G Katz, DS Wilde, M Ripeanu, M Al-Kiswany, S AF Costa, L. B. Yang, H. Vairavanathan, E. Barros, A. Maheshwari, K. Fedak, G. Katz, D. S. Wilde, M. Ripeanu, M. Al-Kiswany, S. TI The Case for Workflow-Aware Storage:An Opportunity Study SO JOURNAL OF GRID COMPUTING LA English DT Article DE Large-scale storage system; Workflow-aware; Storage system; Workflow runtime engine AB This article evaluates the potential gains a workflow-aware storage system can bring. Two observations make us believe such storage system is crucial to efficiently support workflow-based applications: First, workflows generate irregular and application-dependent data access patterns. These patterns render existing generic storage systems unable to harness all optimization opportunities as this often requires enabling conflicting optimizations or even conflicting design decisions at the storage system level. Second, most workflow runtime engines make suboptimal scheduling decisions as they lack the detailed data location information that is generally hidden by the storage system. This paper presents a limit study that evaluates the potential gains from building a workflow-aware storage system that supports per-file access optimizations and exposes data location. Our evaluation using synthetic benchmarks and real applications shows that a workflow-aware storage system can bring significant performance gains: up to 3x performance gains compared to a vanilla distributed storage system deployed on the same resources yet unaware of the possible file-level optimizations. C1 [Costa, L. B.; Yang, H.; Vairavanathan, E.; Ripeanu, M.; Al-Kiswany, S.] Univ British Columbia, Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. [Barros, A.] Univ Fed Campina Grande, Campina Grande, Paraiba, Brazil. [Maheshwari, K.; Katz, D. S.; Wilde, M.] Argonne Natl Lab, Lemont, IL 60439 USA. [Katz, D. S.; Wilde, M.] Univ Chicago, Lemont, IL 60439 USA. [Fedak, G.] INRIA, F-06902 Valbonne, France. RP Yang, H (reprint author), Univ British Columbia, Elect & Comp Engn, 2329 W Mall, Vancouver, BC V6T 1Z4, Canada. EM lauroc@ece.ubc.ca; haoy@ece.ubc.ca; emalayan@ece.ubc.ca; abmar@lsd.ufcg.edu.br; ketan@mcs.anl.gov; gilles.fedak@inria.fr; dsk@ci.uchicago.edu; wilde@ci.uchicago.edu; matei@ece.ubc.ca; samera@ece.ubc.ca OI Beltrao Costa, Lauro/0000-0003-2951-0752 NR 43 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 EI 1572-9184 J9 J GRID COMPUT JI J. Comput. PD MAR PY 2015 VL 13 IS 1 BP 95 EP 113 DI 10.1007/s10723-014-9307-6 PG 19 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA CD7SU UT WOS:000351293100006 ER PT J AU Grant, PM Moody, KJ Gharibyan, N Despotopulos, JD Shaughnessy, DA AF Grant, Patrick M. Moody, Kenton J. Gharibyan, Narek Despotopulos, John D. Shaughnessy, Dawn A. TI Anomalous radiochemical recovery of post-detonation gold residues at the National Ignition Facility SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Inertial confinement fusion (ICF); NIF post-detonation debris specimens; 14.1-MeV neutron reaction products; Graphite foil collectors; Cyanide solution chemistry; Au radiochemical recoveries; Anomaly of NIF equatorial versus polar chemical behavior AB Activated Au from a fragmented and dispersed NIF hohlraum is of interest to measure the induced 14.1-MeV Au198m+g/Au-196g isotope ratio as an assessment of shot performance. A radiochemical recovery procedure, based on Au complexation by cyanide in NaOH-NaCN solution, was developed to reclaim radiogold (*Au) residues from post-detonation graphite collector foils. The average overall radiochemical yield from grafoils in an equatorial position relative to the hohlraum was 88 %. However, the yield from the identical procedure applied to post-shot grafoils positioned axially (polar) was much decreased. The chemical dependency of explosion reaction products on collector position around an ostensibly symmetric fusion source is currently unexplained. C1 [Grant, Patrick M.; Moody, Kenton J.; Gharibyan, Narek; Despotopulos, John D.; Shaughnessy, Dawn A.] Lawrence Livermore Natl Lab, Div Chem Sci, Expt Nucl & Radiochem Grp, Livermore, CA 94550 USA. RP Grant, PM (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, Expt Nucl & Radiochem Grp, Livermore, CA 94550 USA. EM grant4@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [13-ERD-036] FX The authors thank the NIF Nuclear Diagnostics Group and NIF Engineering and Operations staff, in particular, Richard Zacharias, Kenn Knittel, Christopher Wlodarczyk, Justin Wright, Bowdi Helgesen, Glenn Grant, Tim Cunningham, Wayne Abreu, James Daly, Bahram Talison, and the NIF Radiation Control Technicians. The assistance of Phil Torretto and Todd Wooddy in the LLNL Nuclear Counting Facility is also gratefully acknowledged. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-ERD-036. Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 16 TC 1 Z9 1 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2015 VL 303 IS 3 BP 1851 EP 1856 DI 10.1007/s10967-014-3626-8 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CD2CL UT WOS:000350881300027 ER PT J AU Schappert, M Gallimore, D Xu, N AF Schappert, M. Gallimore, D. Xu, N. TI Ultratrace potassium determination in plutonium oxide SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Potassium; ICP-AES; Detection limit; Plutonium oxide dissolution ID SPECTROSCOPY AB A new method improving the detection limit for potassium in plutonium oxide samples in a high acid matrix was developed. Ultratrace detection limits (sub parts per million) for potassium in plutonium oxide digestate were achieved by optimizing several instrument parameters. Using the Horiba Jobin-Yvon Ultima 2 ICP-AES spectrometer different settings and conditions were examined to improve the detection limit for potassium. The optimized parameters of 0.875 L min(-1) sheath gas flow, 20/80 A mu m entrance/exit slit, 8 s MAX mode signal integration, and blank subtraction were able to lower the potassium reporting limit to 10 ng mL(-1). C1 [Schappert, M.; Gallimore, D.; Xu, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schappert, M (reprint author), Los Alamos Natl Lab, POB 1663,G740, Los Alamos, NM 87545 USA. EM schappert@lanl.gov FU National Nuclear Security Administration FX The authors would like to acknowledge the National Nuclear Security Administration for funding the Project. The authors thank the following LANL personnel for their contributions to this study: Andres Borrego, Dennis Montoya. This publication is LA-UR-14-20153. NR 11 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2015 VL 303 IS 3 BP 1911 EP 1915 DI 10.1007/s10967-014-3807-5 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CD2CL UT WOS:000350881300034 ER PT J AU Robinson, JW Dion, MP Eiden, GC Farmer, OT Liezers, M AF Robinson, John W. Dion, Michael P. Eiden, Gregory C. Farmer, Orville T. Liezers, Martin TI RadICalc: a program for estimating radiation intensity of radionuclide mixtures SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Radioactive decay calculations; Bateman equations; Radionuclide mixtures; Mass separation; Isotope separation ID HEAVY NUCLIDES AB RadICalc was developed to address the need for a computer program that could calculate the composition, activity, and measurable radiation of arbitrary radionuclide mixtures over time without significant effort from end-users. It provides an interface to perform decay calculations and can search and display the resulting data in graphical or tabular form. RadICalc can also determine radiation expected at specific masses with user-defined molecules in addition to atomic species for use in mass-based isotope separations for radiometric counting applications, a novel method under development at Pacific Northwest National Laboratory. C1 [Robinson, John W.; Dion, Michael P.; Eiden, Gregory C.; Farmer, Orville T.; Liezers, Martin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Robinson, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM john.robinson@pnnl.gov OI Dion, Michael/0000-0002-3030-0050 NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2015 VL 303 IS 3 BP 1955 EP 1960 DI 10.1007/s10967-014-3627-7 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CD2CL UT WOS:000350881300040 ER PT J AU Warren, GA Dion, MP Miller, BW Tatishvili, G AF Warren, Glen A. Dion, Michael P. Miller, Brian W. Tatishvili, Gocha TI Concepts for alpha coincidence detection SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Environmental monitoring; Alpha spectroscopy; Conversion electrons; Coincidence measurements; Radiometric measurements ID CONVERSION COEFFICIENTS; PARTICLE SPECTROMETRY; RESOLUTION AB The effectiveness of conventional measurement techniques for environmental monitoring is limited by background and other interferences. We are exploring a new measurement approach involving the detection of alpha particles in coincidence with conversion electrons as a means to simultaneously assay environmental samples for multiple actinides without chemical separation. The initial target isotopes studied in this work are Pu-238, Pu-239, Pu-240 and Am-241. We explore various aspects of the design, such as impact of the mounting of the source material, energy resolution requirements and impact of a background on isotopic uncertainties. We conclude that a dual gas-proportional counter and a dual-sided, large-area silicon detector could provide similar performance for the measurement scenario examined. C1 [Warren, Glen A.; Dion, Michael P.; Miller, Brian W.; Tatishvili, Gocha] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Warren, GA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM glen.warren@pnnl.gov OI Dion, Michael/0000-0002-3030-0050 NR 20 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2015 VL 303 IS 3 BP 2113 EP 2125 DI 10.1007/s10967-014-3780-z PG 13 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CD2CL UT WOS:000350881300057 ER PT J AU Andrews, MT Corcoran, EC Goorley, JT Kelly, DG AF Andrews, M. T. Corcoran, E. C. Goorley, J. T. Kelly, D. G. TI A system for the measurement of delayed neutrons and gammas from special nuclear materials SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Delayed neutron counting; Delayed gamma; Nuclear forensics; MCNP ID ACTIVATION-ANALYSIS; FISSILE MATERIALS; HPGE DETECTOR; MCNP6; SIGNATURES; SLOWPOKE; URANIUM; REACTOR; ENERGY; U-235 AB The delayed neutron counting system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six He-3 and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine U-233 content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively. C1 [Andrews, M. T.; Corcoran, E. C.; Kelly, D. G.] Royal Mil Coll Canada, Kingston, ON K7K 7B4, Canada. [Andrews, M. T.; Goorley, J. T.] Los Alamos Natl Lab, Monte Carlo Codes & Radiat Transport Applicat, Los Alamos, NM 87545 USA. RP Kelly, DG (reprint author), Royal Mil Coll Canada, POB 17000,Stn Forces, Kingston, ON K7K 7B4, Canada. EM Madison.Andrews@rmc.ca; david.kelly@rmc.ca OI Andrews, Madison/0000-0002-8503-1011 FU Canadian Nuclear Safety Commission Doctoral Award; Natural Sciences and Engineering Research Council of Canada FX Project funding has been provided by a Canadian Nuclear Safety Commission Doctoral Award, and Natural Sciences and Engineering Research Council of Canada. The technical work and assistance of J. Shaw, C. McEwen, K. Nielsen, K. Mattson, and D. Ferguson is much appreciated. NR 30 TC 3 Z9 3 U1 2 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2015 VL 303 IS 3 BP 2431 EP 2437 DI 10.1007/s10967-014-3786-6 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CD2CL UT WOS:000350881300093 ER PT J AU Even, J Ackermann, D Asai, M Block, M Brand, H Di Nitto, A Dullmann, CE Eichler, R Fan, FL Haba, H Hartmann, W Hubner, A Hessberger, FP Huang, MH Jager, E Kaji, D Kanaya, J Kaneya, Y Khuyagbaatar, J Kindler, B Kratz, JV Krier, J Kudou, Y Kurz, N Laatiaoui, M Lommel, B Maurer, J Miyashita, S Morimoto, K Morita, K Murakami, M Nagame, Y Nitsche, H Ooe, K Qin, Z Sato, TK Schadel, M Steiner, J Sumita, T Takeyama, M Tanaka, K Toyoshima, A Tsukada, K Turler, A Usoltsev, I Wakabayashi, Y Wang, Y Wiehl, N Yakushev, A Yamaki, S AF Even, Julia Ackermann, Dieter Asai, Masato Block, Michael Brand, Holger Di Nitto, Antonio Duellmann, Christoph E. Eichler, Robert Fan, Fangli Haba, Hiromitsu Hartmann, Willi Huebner, Annett Hessberger, Fritz P. Huang, Minqhiu Jaeger, Egon Kaji, Daiya Kanaya, Jumpei Kaneya, Yusuke Khuyagbaatar, Jadambaa Kindler, Birgit Kratz, Jens V. Krier, Joerg Kudou, Yuki Kurz, Nikolaus Laatiaoui, Mustapha Lommel, Bettina Maurer, Joachim Miyashita, Sunao Morimoto, Kouji Morita, Kosuke Murakami, Masashi Nagame, Yuichiro Nitsche, Heino Ooe, Kazuhiro Qin, Zhi Sato, Tetsuya K. Schaedel, Matthias Steiner, Jutta Sumita, Takayuki Takeyama, Mirei Tanaka, Kengo Toyoshima, Atsushi Tsukada, Kazuaki Tuerler, Andreas Usoltsev, Ilya Wakabayashi, Yasuo Wang, Yang Wiehl, Norbert Yakushev, Alexander Yamaki, Sayaka TI In situ synthesis of volatile carbonyl complexes with short-lived nuclides SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Metal carbonyl complexes; Superheavy elements; Nuclear fission products; Nuclear fusion products; Physical preseparation; Seaborgium ID SUPERHEAVY ELEMENT; TRANSITION-METAL; HEAVIEST ELEMENTS; SEPARATOR; SEABORGIUM; CHEMISTRY; ISOTOPES; SG(CO)(6); SELENIUM; FISSION AB Rapid in situ formation of metal carbonyl complexes with short-lived nuclides has been demonstrated to be feasible with recoiling ions formed in nuclear fusion and fission reactions. These carbonyl complexes are highly volatile and can be transported rapidly in a gas-stream to counting or chemistry devices. This method was already successfully applied in the chemical investigation of the superheavy element seaborgium (Z = 106) and appears promising for various fields of nuclear research. In this article, we give an overview on the current status of metal carbonyl complex studies with short-lived d-element isotopes. C1 [Even, Julia; Duellmann, Christoph E.; Khuyagbaatar, Jadambaa; Laatiaoui, Mustapha] Helmholtz Inst Mainz, D-55099 Mainz, Germany. [Ackermann, Dieter; Block, Michael; Brand, Holger; Duellmann, Christoph E.; Hartmann, Willi; Huebner, Annett; Hessberger, Fritz P.; Jaeger, Egon; Khuyagbaatar, Jadambaa; Kindler, Birgit; Krier, Joerg; Kurz, Nikolaus; Lommel, Bettina; Maurer, Joachim; Steiner, Jutta; Yakushev, Alexander] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Asai, Masato; Kaneya, Yusuke; Miyashita, Sunao; Nagame, Yuichiro; Sato, Tetsuya K.; Schaedel, Matthias; Toyoshima, Atsushi; Tsukada, Kazuaki] JAEA, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Di Nitto, Antonio; Duellmann, Christoph E.; Kratz, Jens V.; Wiehl, Norbert] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. [Eichler, Robert; Tuerler, Andreas; Usoltsev, Ilya] Univ Bern, CH-3012 Bern, Switzerland. [Eichler, Robert; Tuerler, Andreas; Usoltsev, Ilya] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Fan, Fangli; Qin, Zhi; Wang, Yang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Haba, Hiromitsu; Huang, Minqhiu; Kaji, Daiya; Kanaya, Jumpei; Kudou, Yuki; Morimoto, Kouji; Morita, Kosuke; Murakami, Masashi; Sumita, Takayuki; Takeyama, Mirei; Tanaka, Kengo; Wakabayashi, Yasuo; Yamaki, Sayaka] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Miyashita, Sunao] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Morita, Kosuke] Kyushu Univ, Higashi Ku, Fukuoka 8128581, Japan. [Murakami, Masashi; Ooe, Kazuhiro] Niigata Univ, Niigata 9502181, Japan. [Nitsche, Heino] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yamaki, Sayaka] Saitama Univ, Saitama 3388570, Japan. RP Even, J (reprint author), Helmholtz Inst Mainz, D-55099 Mainz, Germany. EM j.even@gsi.de RI Eichler, Robert/G-5130-2011; Block, Michael/I-2782-2015; U-ID, Kyushu/C-5291-2016; Di Nitto, Antonio/C-5069-2011; Even, Julia/K-1186-2016; Turler, Andreas/D-3913-2014; Laatiaoui, Mustapha/Q-6295-2016 OI Block, Michael/0000-0001-9282-8347; Di Nitto, Antonio/0000-0002-9319-366X; Even, Julia/0000-0002-6314-9094; Turler, Andreas/0000-0002-4274-1056; Laatiaoui, Mustapha/0000-0003-0105-8303 FU Reimei Research Program (Japan Atomic Energy Agency); German Federal Ministry for Education and Research [06MZ7164]; Helmholtz association [VH-NG-723]; Ministry of Education, Culture, Sports, Science, and Technology, Japan [19002005, 23750072]; Swiss National Science Foundation [200020 144511]; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Heavy Element Chemistry Program of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Natural Science Foundation of China [11079006] FX Parts of this work were performed at the RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. We thank the ion source and accelerator staff at the RIKEN Nishina Center for accelerator based research and the operators of the ion source and UNILAC at GSI, Helmholtzzentrum fur Schwerionenfroschung GmbH, Darmstadt, Germany, for providing intense and stable ion beams. The present work is partially supported by the Reimei Research Program (Japan Atomic Energy Agency), the German Federal Ministry for Education and Research contract No. 06MZ7164, the Helmholtz association contract-No. VH-NG-723, the Ministry of Education, Culture, Sports, Science, and Technology, Japan, Grant-in-Aids No. 19002005 and No. 23750072, the Swiss National Science Foundation contract No. 200020 144511, the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Heavy Element Chemistry Program of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231, and the National Natural Science Foundation of China (Grant No. 11079006) NR 53 TC 4 Z9 4 U1 0 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2015 VL 303 IS 3 BP 2457 EP 2466 DI 10.1007/s10967-014-3793-7 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CD2CL UT WOS:000350881300096 ER PT J AU Bentzel, GW Lane, NJ Vogel, SC An, K Barsoum, MW Caspi, EN AF Bentzel, Grady W. Lane, Nina J. Vogel, Sven C. An, Ke Barsoum, Michel W. Caspi, El'ad N. TI High-Temperature Neutron Diffraction Study of Nb2AlC and TiNbAlC SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID MECHANICAL-PROPERTIES; TENSILE CREEP; TI3SIC2; DIFFRACTOMETER; PHASES; OXIDATION; VULCAN; TI2ALC; RANGE; AIR AB Herein, we report on the crystal structures of Nb2AlC and TiNbAlCactual composition (Ti-0.45,Nb-0.55)(2)AlCcompounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173K temperature range. The average linear thermal expansion coefficients of a Nb2AlC sample in the a and c directions are, respectively, 7.9(5)x10(-6) and 7.7(5)x10(-6)K(-1) on one neutron diffractometer and 7.3(3)x10(-6) and 7.0(2)x10(-6)K(-1) on a second diffractometer. The respective values for the (Ti-0.45,Nb-0.55)(2)AlC compositiononly tested on one diffractometerare 8.5(3)x10(-6) and 7.5(5)x10(-6)K(-1). These values are relatively low compared to other MAX phases. Like other MAX phases, however, the atomic displacement parameters (APDs) show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and more along the basal planes than normal to them. When the predictions of the APDs obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative. C1 [Bentzel, Grady W.; Lane, Nina J.; Barsoum, Michel W.; Caspi, El'ad N.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [An, Ke] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Bentzel, GW (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM gwb29@drexel.edu RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X FU Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy; U.S. Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX The research conducted at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. The authors thank Mr. Harley Skorpenske for his technical support on ND measurements. The neutron diffraction experiments conducted at the Lujan Neutron Scattering Center at LANSCE was sponsored by the U.S. Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. NR 49 TC 3 Z9 3 U1 1 U2 41 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAR PY 2015 VL 98 IS 3 BP 940 EP 947 DI 10.1111/jace.13366 PG 8 WC Materials Science, Ceramics SC Materials Science GA CD4KC UT WOS:000351050300037 ER PT J AU Baptist, M Panagabko, C Nickels, JD Katsaras, J Atkinson, J AF Baptist, Matilda Panagabko, Candace Nickels, Jonathan D. Katsaras, John Atkinson, Jeffrey TI 2,2 '-Bis(monoacylglycero) PO4 (BMP), but Not 3,1 '-BMP, Increases Membrane Curvature Stress to Enhance alpha-Tocopherol Transfer Protein Binding to Membranes SO LIPIDS LA English DT Article DE alpha-Tocopherol transfer protein; Vitamin E; Bis(monoacylglycero)phosphate; Membrane curvature ID LIGAND TRANSFER; PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE; VITAMIN-E; CONSEQUENCES; TRAFFICKING; ENDOSOMES; LIPIDS; CTP; TTP AB Previous work revealed that alpha-tocopherol transfer protein (alpha-TTP) co-localizes with bis(monoacylglycero) phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on alpha-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. alpha-TTP binding to membranes is increased by the curvature-inducing lipid BMP. alpha-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers. C1 [Baptist, Matilda; Panagabko, Candace; Atkinson, Jeffrey] Brock Univ, Chem, St Catharines, ON L2S 3A1, Canada. [Baptist, Matilda; Panagabko, Candace; Atkinson, Jeffrey] Brock Univ, Ctr Biotechnol, St Catharines, ON L2S 3A1, Canada. [Nickels, Jonathan D.; Katsaras, John] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Atkinson, J (reprint author), Brock Univ, Chem, St Catharines, ON L2S 3A1, Canada. EM jatkin@brocku.ca RI Nickels, Jonathan/I-1913-2012 OI Nickels, Jonathan/0000-0001-8351-7846 FU Natural Sciences and Engineering Research Council (NSERC); National Institutes of Health [DK067494]; Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES) [DE-AC05 00OR2275]; U.S. DOE BES through the EPSCoR Grant [DE-FG02-08ER46528] FX This work was supported by an Natural Sciences and Engineering Research Council (NSERC) Discovery Grant (JA) and also in part by award DK067494 from the National Institutes of Health. The authors thank Samantha Morley for assistance with the vesicle binding assay. JK is supported through the Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES), under contract no. DE-AC05 00OR2275. JDN is partially supported by the U.S. DOE BES through the EPSCoR Grant No. DE-FG02-08ER46528. NR 21 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0024-4201 EI 1558-9307 J9 LIPIDS JI Lipids PD MAR PY 2015 VL 50 IS 3 BP 323 EP 328 DI 10.1007/s11745-015-3989-9 PG 6 WC Biochemistry & Molecular Biology; Nutrition & Dietetics SC Biochemistry & Molecular Biology; Nutrition & Dietetics GA CE0VS UT WOS:000351527700009 PM 25603781 ER PT J AU Asmussen, RM AF Asmussen, R. Matthew TI Stainless steel waste form alloys show promise for long-term nuclear waste storage SO MATERIALS PERFORMANCE LA English DT Editorial Material C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Asmussen, RM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM matthew.asmussen@pnnl.gov NR 2 TC 0 Z9 0 U1 1 U2 2 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0094-1492 J9 MATER PERFORMANCE JI Mater. Perform. PD MAR PY 2015 VL 54 IS 3 BP 21 EP 22 PG 2 WC Materials Science, Characterization & Testing SC Materials Science GA CD6JF UT WOS:000351194700009 ER PT J AU Basilio, LI Langston, WL Warne, LK Johnson, WA Sinclair, MB AF Basilio, Lorena I. Langston, William L. Warne, Larry K. Johnson, William A. Sinclair, Michael B. TI FULL-WAVE SIMULATION OF A THREE-DIMENSIONAL METAMATERIAL PRISM SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS LA English DT Article DE metamaterials; negative index; effective media; three-dimensional prism ID REFRACTIVE-INDEX AB In this article, a negative-index metamaterial prism based on a composite unit cell containing a split-ring resonator and a z-dipole is designed and simulated. The design approach combines simulations of a single unit cell to identify the appropriate cell design (yielding the desired negative-index behavior) together with subcell modeling (which simplifies the mesh representation of the resonator geometry and allows for a larger number of resonator cells to be handled). In addition to describing the methodology used to design a n=-1 refractive index prism, results including the effective-medium parameters, the far-field scattered patterns, and the near-zone field distributions corresponding to a normally incident plane-wave excitation of the prism are presented. (C) 2015 Wiley Periodicals, Inc. C1 [Basilio, Lorena I.; Langston, William L.; Warne, Larry K.; Johnson, William A.; Sinclair, Michael B.] Sandia Natl Labs, Electromagnet Theory, Albuquerque, NM 87185 USA. RP Basilio, LI (reprint author), Sandia Natl Labs, Electromagnet Theory, POB 5800, Albuquerque, NM 87185 USA. EM libasil@sandia.gov NR 10 TC 0 Z9 0 U1 3 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0895-2477 EI 1098-2760 J9 MICROW OPT TECHN LET JI Microw. Opt. Technol. Lett. PD MAR PY 2015 VL 57 IS 3 BP 537 EP 540 DI 10.1002/mop.28889 PG 5 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA CD4KN UT WOS:000351051400005 ER PT J AU Sanchez, JL Sanchez, JL Cooper, MJ Hiser, MJ Mancuso, JD AF Sanchez, Jose L. Sanchez, Joyce L. Cooper, Michael J. Hiser, Michelle J. Mancuso, James D. TI Tuberculosis as a Force Health Protection Threat to the United States Military SO MILITARY MEDICINE LA English DT Review ID COMMERCIALLY AVAILABLE DIAGNOSTICS; GAMMA RELEASE ASSAYS; LATENT TUBERCULOSIS; ACTIVE TUBERCULOSIS; US MILITARY; INFECTION; DEPLOYMENT; ABOARD; RESISTANCE; OUTBREAK AB Tuberculosis (TB) is a communicable disease that poses a threat to force health protection to the U.S. military. The rate of TB disease in the military is low; however, there are unique challenges for its control in this setting. As a low-risk population, TB testing in the U.S. military can be scaled back from the universal testing approach used previously. Reactivation of latent TB infection (LTBI) present at accession into service is the most important factor leading to TB disease; therefore, its diagnosis and treatment among recruits should be given a high priority. Deployment and overseas military service is an uncommon but important source of TB infection, and rigorous surveillance should be ensured. Case management of TB disease and LTBI can be improved by the use of cohort reviews at the service and installation levels and case finding and delays in the diagnosis of TB disease can be improved by education of providers, as well as increased use of molecular diagnostic tests. Program outcomes can be improved by making LTBI treatment compulsory, offering shorter treatment regimens, and increasing accountability through oversight and evaluation. The diagnosis of LTBI can be improved by implementing targeted testing in all settings and reducing confirmatory interferon-gamma release assay testing. C1 [Sanchez, Jose L.; Cooper, Michael J.; Hiser, Michelle J.] AFHSC, Silver Spring, MD 20904 USA. [Sanchez, Jose L.] Cherokee Nation Technol Solut Inc, Silver Spring, MD 20904 USA. [Sanchez, Joyce L.] Mayo Clin, Div Gen Internal Med, Rochester, MN 55905 USA. [Hiser, Michelle J.] USAPHC, ORISE, Postgrad Res Participat Program, Aberdeen Proving Ground, MD 21010 USA. [Mancuso, James D.] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Bethesda, MD 20814 USA. RP Sanchez, JL (reprint author), AFHSC, 11800 Tech Rd,Suite 220, Silver Spring, MD 20904 USA. FU Global Emerging Infections Surveillance and Response Division at the Armed Forces Health Surveillance Center FX The authors would like to acknowledge COL (Ret.) Julie Pavlin, COL James Cummings, and COL (Ret.) Joel Gaydos for their critical appraisal and review of this article contents; Alaina Halbach for her assistance with figure editing; and Sarah Wijewardena, Jennifer Rubenstein, and other administrative staff at the Armed Forces Health Surveillance Center for their assistance in its final clearance via the Department of Defense channels. This work was funded by the Global Emerging Infections Surveillance and Response Division at the Armed Forces Health Surveillance Center. NR 59 TC 2 Z9 2 U1 0 U2 0 PU ASSOC MILITARY SURG US PI BETHESDA PA 9320 OLD GEORGETOWN RD, BETHESDA, MD 20814 USA SN 0026-4075 EI 1930-613X J9 MIL MED JI Milit. Med. PD MAR PY 2015 VL 180 IS 3 BP 276 EP 284 DI 10.7205/MILMED-D-14-00433 PG 9 WC Medicine, General & Internal SC General & Internal Medicine GA CD3OI UT WOS:000350987700012 PM 25735017 ER PT J AU Knapik, JJ Jones, BH Steelman, RA AF Knapik, Joseph J. Jones, Bruce H. Steelman, Ryan A. TI Physical Training in Boots and Running Shoes: A Historical Comparison of Injury Incidence in Basic Combat Training SO MILITARY MEDICINE LA English DT Article ID SHOCK-ABSORBING INSOLES; EXERCISE-RELATED INJURIES; TIBIAL STRESS-FRACTURE; FEMALE ARMY TRAINEES; OVERUSE INJURIES; REDUCTION EFFECTIVENESS; CONTROLLED-TRIAL; PLANTAR SHAPE; RISK-FACTORS; ENERGY-COST AB For many years, U.S. Army soldiers performed physical training (PT) in a modified duty uniform and combat boots. The belief that PT in combat boots was associated with injuries lead to the introduction of running shoes for PT in 1982. A historical comparison was conducted examining injuries before and after the change to running shoes in Basic Combat Training (BCT). Searches in literature databases and other sources identified 16 studies with quantitative data on injury incidence during 8-week BCT cycles. Employing studies with similar injury definitions (n = 12), injury incidence was compared in the boot and running shoe periods using meta-analyses, chi(2) statistics, and risk ratios (RRs) with 95% confidence intervals (95% CIs). The boot and shoe periods demonstrated little difference in overall injury incidence (men: RR[boot/shoes] = 1.04, 95% CI = 0.91-1.18, p = 0.50; women: RR = 0.94, 95% CI = 0.85-1.05, p = 0.27) or in lower extremity injury incidence (men: RR[boot/shoes] = 0.91, 95% CI = 0.64-1.30, p = 0.66; women: RR = 1.06, 95% CI = 0.89-1.27, p = 0.51). These analyses provided little support for a reduction in injury risk after the switch from boots to running shoes for PT in BCT. A large randomized, prospective cohort study should be conducted to determine if injury rates are different when PT is conducted in running shoes versus boots. C1 [Knapik, Joseph J.; Jones, Bruce H.; Steelman, Ryan A.] US Army Inst Publ Hlth, Aberdeen Proving Ground, MD 21010 USA. [Knapik, Joseph J.; Steelman, Ryan A.] Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA. RP Knapik, JJ (reprint author), US Army Inst Publ Hlth, 5158 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. FU Knowledge Preservation Program at the U.S. Army Public Health Command (USAPHC); USAPHC FX This research was supported in part by an appointment to the Knowledge Preservation Program at the U.S. Army Public Health Command (USAPHC) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USAPHC. NR 57 TC 2 Z9 2 U1 0 U2 2 PU ASSOC MILITARY SURG US PI BETHESDA PA 9320 OLD GEORGETOWN RD, BETHESDA, MD 20814 USA SN 0026-4075 EI 1930-613X J9 MIL MED JI Milit. Med. PD MAR PY 2015 VL 180 IS 3 BP 321 EP 328 DI 10.7205/MILMED-D-14-00337 PG 8 WC Medicine, General & Internal SC General & Internal Medicine GA CD3OI UT WOS:000350987700019 PM 25735024 ER PT J AU Shi, D Zhao, G Jin, Z Allewell, NM Tuchman, M AF Shi, D. Zhao, G. Jin, Z. Allewell, N. M. Tuchman, M. TI Crystal structure of the n-acetyltransferase domain of human n-acetyl-L-glutamate synthase in complex with n-acetyl-L-glutamate SO MOLECULAR GENETICS AND METABOLISM LA English DT Meeting Abstract CT 38th Annual Meeting of the Society-for-Inherited-Metabolic-Disorders (SIMD) CY MAR 28-31, 2015 CL Salt Lake City, UT SP Soc Inherited Metab Disorders C1 [Shi, D.; Zhao, G.; Tuchman, M.] George Washington Univ, Childrens Natl Med Ctr, Washington, DC USA. [Jin, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. [Allewell, N. M.] Univ Maryland, College Pk, MD 20742 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7192 EI 1096-7206 J9 MOL GENET METAB JI Mol. Genet. Metab. PD MAR PY 2015 VL 114 IS 3 MA 69 BP 358 EP 358 PG 1 WC Endocrinology & Metabolism; Genetics & Heredity; Medicine, Research & Experimental SC Endocrinology & Metabolism; Genetics & Heredity; Research & Experimental Medicine GA CD6IC UT WOS:000351191800096 ER PT J AU White, M AF White, Martin TI The Zel'dovich approximation (vol 439, pg 3630, 2014) SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Correction DE errata, addenda; gravitation; galaxies: haloes; galaxies: statistics; cosmological parameters; large-scale structure of Universe C1 [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP White, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM mwhite@berkeley.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 NR 1 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2015 VL 447 IS 3 BP 2169 EP 2169 DI 10.1093/mnras/stu2625 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TP UT WOS:000350273200007 ER PT J AU Bhalerao, V Romano, P Tomsick, J Natalucci, L Smith, DM Bellm, E Boggs, SE Chakrabarty, D Christensen, FE Craig, WW Fuerst, F Hailey, CJ Harrison, FA Krivonos, RA Lu, TN Madsen, K Stern, D Younes, G Zhang, W AF Bhalerao, Varun Romano, Patrizia Tomsick, John Natalucci, Lorenzo Smith, David M. Bellm, Eric Boggs, Steven E. Chakrabarty, Deepto Christensen, Finn E. Craig, William W. Fuerst, Felix Hailey, Charles J. Harrison, Fiona A. Krivonos, Roman A. Lu, Ting-Ni Madsen, Kristin Stern, Daniel Younes, George Zhang, William TI NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE X-rays: binaries; X-rays: individual: IGR J17544-2619 ID XTE J1739-302; INTEGRAL OBSERVATIONS; SWIFT OBSERVATIONS; NEUTRON-STAR; OUTBURST; ABSORPTION; BINARIES; WINDS AB We present NuSTAR spectral and timing studies of the supergiant fast X-ray transient (SFXT) IGR J17544-2619. The spectrum is well described by an similar to 1 keV blackbody and a hard continuum component, as expected from an accreting X-ray pulsar. We detect a cyclotron line at 17 keV, confirming that the compact object in IGR J17544-2619 is indeed a neutron star. This is the first measurement of the magnetic field in an SFXT. The inferred magnetic field strength, B = (1.45 +/- 0.03) x 10(12) G (1 + z) is typical of neutron stars in X-ray binaries, and rules out a magnetar nature for the compact object. We do not find any significant pulsations in the source on time-scales of 1-2000 s. C1 [Bhalerao, Varun] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Romano, Patrizia] Ist Astrofis Spaziale & Fis Cosm, INAF, I-90146 Palermo, Italy. [Tomsick, John; Boggs, Steven E.; Craig, William W.; Krivonos, Roman A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Natalucci, Lorenzo] INAF IAPS, Ist Nazl Astrofis, I-00133 Rome, Italy. [Smith, David M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, David M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bellm, Eric; Fuerst, Felix; Harrison, Fiona A.; Lu, Ting-Ni; Madsen, Kristin] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Chakrabarty, Deepto] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lu, Ting-Ni] Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Younes, George] NSSTC, USRA, Huntsville, AL 35801 USA. [Zhang, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bhalerao, V (reprint author), Inter Univ Ctr Astron & Astrophys, PO Bag 4, Pune 411007, Maharashtra, India. EM varunb@iucaa.ernet.in RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bhalerao, Varun/0000-0002-6112-7609; Bellm, Eric/0000-0001-8018-5348 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; Italian Space Agency (ASI) by ASI/INAF [I/037/12/0-011/13]; [ASI-INAF I/004/11/0] FX This work was supported in part under NASA Contract no. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams as well as the Swift team for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). PR acknowledges contract ASI-INAF I/004/11/0. LN wishes to acknowledge the Italian Space Agency (ASI) for Financial support by ASI/INAF grant I/037/12/0-011/13. VB thanks Dipankar Bhattacharya for helpful discussions. NR 44 TC 8 Z9 8 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2015 VL 447 IS 3 BP 2274 EP 2281 DI 10.1093/mnras/stu2495 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TP UT WOS:000350273200016 ER PT J AU Sagar, DM Atkin, JM Palomaki, PKB Neale, NR Blackburn, JL Johnson, JC Nozik, AJ Raschke, MB Beard, MC AF Sagar, D. M. Atkin, Joanna M. Palomaki, Peter K. B. Neale, Nathan R. Blackburn, Jeffrey L. Johnson, Justin C. Nozik, Arthur J. Raschke, Markus B. Beard, Matthew C. TI Quantum Confined-Electron Phonon Interaction in Silicon Nanocrystals SO NANO LETTERS LA English DT Article DE Electron-phonon coupling; silicon nanocrystals; Raman spectroscopy; carrier energy relaxation; Fano-interference ID MULTIPLE EXCITON GENERATION; SEMICONDUCTOR NANOCRYSTALS; DEFORMATION POTENTIALS; RAMAN-SPECTROSCOPY; FREE-CARRIERS; DOTS; SI; SCATTERING; SPECTRUM; STRAIN AB We study the micro-Raman spectra of colloidal silicon nanocrystals as a function of size, excitation wavelength, and excitation intensity. We find that the longitudinal optical (LO) phonon spectrum is asymmetrically broadened toward the low energy side and exhibits a dip or antiresonance on the high-energy side, both characteristics of a Fano line shape. The broadening depends on both nanocrystal size and Raman excitation wavelength: We propoae that the Fano line shape results from interference of the optical phonon response with a continuum of electronic State a that become populated by intraband photoexcitation of carriers. The asymmetry exhibits progressive enhancement with decreasing particle size and with increasing excitation energy for a given particle size. We compare our observations with those reported for p- and n-doped bulk Si, where Fano interference has also been observed, but we find opposite wavelength dependence of the asymmetry for the bulk and nanocrystalline Si. Our results have important implications for potentially controlling carrier energy relaxation channels in strongly confined Si nanocrystals. C1 [Sagar, D. M.; Palomaki, Peter K. B.; Neale, Nathan R.; Blackburn, Jeffrey L.; Johnson, Justin C.; Nozik, Arthur J.; Beard, Matthew C.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Atkin, Joanna M.; Nozik, Arthur J.; Raschke, Markus B.] Univ Colorado, Dept Phys, Dept Chem, Boulder, CO 80309 USA. [Atkin, Joanna M.; Nozik, Arthur J.; Raschke, Markus B.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Nozik, Arthur J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Sagar, DM (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM manjunatha.dodderi@nrel.gov; matt.beard@nrel.gov RI Beard, MATTHEW/E-4270-2015; Raschke, Markus/F-8023-2013; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 OI Beard, MATTHEW/0000-0002-2711-1355; FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Solar Photochemistry program within the division of Chemical Sciences, Geosciences, and Biosciences [DE-AC36-08GO28308]; National Science Foundation (NSF) [CHE1306398] FX We are thankful for helpful discussions with Dimitry Reznik. Work at NREL was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Solar Photochemistry program within the division of Chemical Sciences, Geosciences, and Biosciences under contract number DE-AC36-08GO28308. M.R. and J.A. acknowledge support from the National Science Foundation (NSF grant no. CHE1306398). NR 34 TC 16 Z9 16 U1 12 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 1511 EP 1516 DI 10.1021/nl503671n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000010 PM 25626139 ER PT J AU Wen, CY Reuter, MC Su, D Stach, EA Ross, FM AF Wen, Cheng-Yen Reuter, Mark C. Su, Dong Stach, Eric A. Ross, Frances M. TI Strain and Stability of Ultrathin Ge Layers in Si/Ge/Si Axial Heterojunction Nanowires SO NANO LETTERS LA English DT Article DE Nanowire heterostructures; silicon; germanium; abrupt interfaces; strain distribution; structural instability ID INTERFACIAL ABRUPTNESS; GROWTH; HETEROSTRUCTURES; SILICON; DIFFUSION; EPITAXY; PRESSURE; SI AB The formation of abrupt Si/Ge heterointerfaces in nanowires presents useful possibilities for bandgap engineering. We grow Si nanowires containing thick Ge layers and sub-1 nm thick Ge "quantum wells" and measure the interfacial strain fields using geometric phase analysis. Narrow Ge layers show radial compressive strains of several percent, while stress at the Si/Ge interface causes lattice rotation. High strains can be achieved in these heterostructures, but we show that they are unstable to interdiffusion. C1 [Wen, Cheng-Yen] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. [Reuter, Mark C.; Ross, Frances M.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Su, Dong; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ross, FM (reprint author), IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM fmross@us.ibm.com RI Stach, Eric/D-8545-2011; Su, Dong/A-8233-2013; Ross, Frances/P-8919-2015 OI Stach, Eric/0000-0002-3366-2153; Su, Dong/0000-0002-1921-6683; Ross, Frances/0000-0003-0838-9770 FU NSF [DMR-0907483]; Ministry of Science and Technology of Taiwan [NSC 100-2112-M-002-019-MY3]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We acknowledge A. W. Ellis for technical assistance with the UHV-TEM. C.Y.W. acknowledges funding support from the NSF under Grant DMR-0907483 and from the Ministry of Science and Technology of Taiwan under Grant NSC 100-2112-M-002-019-MY3. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 45 TC 4 Z9 4 U1 6 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 1654 EP 1659 DI 10.1021/nl504241g PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000032 PM 25654579 ER PT J AU Bayn, I Chen, EH Trusheim, ME Li, LZ Schroder, T Gaathon, O Lu, M Stein, A Liu, MZ Kisslinger, K Clevenson, H Englund, D AF Bayn, Igal Chen, Edward H. Trusheim, Matthew E. Li, Luozhou Schroeder, Tim Gaathon, Ophir Lu, Ming Stein, Aaron Liu, Mingzhao Kisslinger, Kim Clevenson, Hannah Englund, Dirk TI Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks SO NANO LETTERS LA English DT Article DE implantation mask; nanoaperture; diamond color centers; nitrogen vacancy; spin chain; quantum computing ID SPIN COHERENCE TIME; ROOM-TEMPERATURE; SINGLE SPINS; DIAMOND; ENTANGLEMENT; CENTERS; RESOLUTION; QUBITS AB A central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below similar to 20 nrn to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with b. thickness of 270 nm and feature sizes down to similar to 1 run. Superresolution imaging resolves NVs with a full-width maximum distribution of 26 +/- 7 nm and a distribution of NV-NV separations of 16 +/- 5 nm. C1 [Bayn, Igal; Chen, Edward H.; Trusheim, Matthew E.; Li, Luozhou; Schroeder, Tim; Gaathon, Ophir; Clevenson, Hannah; Englund, Dirk] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Bayn, Igal; Chen, Edward H.; Trusheim, Matthew E.; Li, Luozhou; Schroeder, Tim; Gaathon, Ophir; Clevenson, Hannah; Englund, Dirk] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Bayn, Igal; Gaathon, Ophir] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Lu, Ming; Stein, Aaron; Liu, Mingzhao; Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Englund, D (reprint author), MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave,Bldg 36-575, Cambridge, MA 02139 USA. EM englund@mit.edu RI Kisslinger, Kim/F-4485-2014; Liu, Mingzhao/A-9764-2011; Schroder, Tim/M-8624-2014; OI Liu, Mingzhao/0000-0002-0999-5214; Schroder, Tim/0000-0001-9017-0254; Stein, Aaron/0000-0003-4424-5416 FU W.M. Keck Foundation; GTech MURI; AFOSR PECASE; NASA Office of the Chief Technologist's Space Technology Research Fellowship; NSF IGERT program Interdisciplinary Quantum Information Science and Engineering; Alexander von Humboldt foundation; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Financial support was provided in part by the W.M. Keck Foundation, GTech MURI, and AFOSR PECASE. E.H.C. and H.C. were supported by the NASA Office of the Chief Technologist's Space Technology Research Fellowship. M.T. was funded by the NSF IGERT program Interdisciplinary Quantum Information Science and Engineering. T.S. acknowledges support by the Alexander von Humboldt foundation. The authors would like to thank Alexey Tkachenko for insightful discussions and Xinwen Yao and Nathalie de Leon for help in diamond preparation. This research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 39 TC 8 Z9 8 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 1751 EP 1758 DI 10.1021/nl504441m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000047 PM 25621759 ER PT J AU Ihlefeld, JF Foley, BM Scrymgeour, DA Michael, JR McKenzie, BB Medlin, DL Wallace, M Trolier-McKinstry, S Hopkins, PE AF Ihlefeld, Jon F. Foley, Brian M. Scrymgeour, David A. Michael, Joseph R. McKenzie, Bonnie B. Medlin, Douglas L. Wallace, Margeaux Trolier-McKinstry, Susan Hopkins, Patrick E. TI Room-Temperature Voltage Tunable Phonon Thermal Conductivity via Reconfigurable Interfaces in Ferroelectric Thin Films SO NANO LETTERS LA English DT Article DE Thermal conductivity; tunable; time domain thermoreflectance; ferroelectric; nano domain ID ELECTRIC-FIELD; DOMAIN-WALLS; HEAT-FLOW; TRANSPORT; CERAMICS; DYNAMICS; KH2PO4; STATE AB Dynamic control of thermal transport in solid-state systems is a transformative capahility with the promise to propel technologies including phonornt-logic, thermal managernent, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific corrithuriity. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoScale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O-3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%. C1 [Ihlefeld, Jon F.; Scrymgeour, David A.; Michael, Joseph R.; McKenzie, Bonnie B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Foley, Brian M.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Medlin, Douglas L.] Sandia Natl Labs, Livermore, CA 94550 USA. [Wallace, Margeaux; Trolier-McKinstry, Susan] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Ihlefeld, JF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jihlefe@sandia.gov; phopkins@virginia.edu RI Scrymgeour, David/C-1981-2008; OI Trolier-McKinstry, Susan/0000-0002-7267-9281 FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; Air Force Office of Scientific Research [FA9550-13-1-0067]; National Science Foundation [CBET-1339436]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories, the Air Force Office of Scientific Research (FA9550-13-1-0067), and the National Science Foundation (CBET-1339436). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors wish to acknowledge the technical assistance of Mia Blea-Kirby, Garry Bryant, Benjamin Griffin, and John T. Gaskins. Critical review of this manuscript by Paul G. Clem, Thomas E. Beechem, and Jon-Paul Maria is greatly appreciated. NR 35 TC 10 Z9 10 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 1791 EP 1795 DI 10.1021/nl504505t PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000053 PM 25695423 ER PT J AU Benz, A Campione, S Klem, JF Sinclair, MB Brener, I AF Benz, Alexander Campione, Salvatore Klem, John F. Sinclair, Michael B. Brener, Igal TI Control of Strong Light-Matter Coupling Using the Capacitance of Metamaterial Nanocavities SO NANO LETTERS LA English DT Article DE Metamaterial; nanocavity; strong light-matter interaction; intersubhand transitions; mid-infrared; plasmonics ID SEMICONDUCTOR QUANTUM-WELLS; POLARITON CONDENSATE; ELECTRIC-FIELD; INTERSUBBAND TRANSITIONS; OPTICAL-PROPERTIES; ROOM-TEMPERATURE; MICROCAVITY; EMISSION; MODEL; LIMIT AB Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. This collocation and interaction often leads to strong coupling. Here, we present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. The system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled tor intersubband transitions in quantum wells. C1 [Benz, Alexander; Campione, Salvatore; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. [Benz, Alexander; Campione, Salvatore; Klem, John F.; Sinclair, Michael B.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brener, I (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, POB 5800, Albuquerque, NM 87185 USA. EM ibrener@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 58 TC 7 Z9 7 U1 6 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 1959 EP 1966 DI 10.1021/nl504815c PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000078 PM 25625404 ER PT J AU Sacci, RL Black, JM Balke, N Dudney, NJ More, KL Unocic, RR AF Sacci, Robert L. Black, Jennifer M. Balke, Nina Dudney, Nancy J. More, Karren L. Unocic, Raymond R. TI Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters SO NANO LETTERS LA English DT Article DE In situ ec-S/TEM; Li-ion batteries; solid electrolyte interface; Li deposition; electron microscopy; Li dendrites ID IN-SITU TEM; LITHIATED GRAPHITE; ION BATTERIES; UNDERPOTENTIAL DEPOSITION; LITHIUM/POLYMER CELLS; DIRECT VISUALIZATION; DENDRITIC GROWTH; LEAD DENDRITES; MICROSCOPY; ANODES AB The performance charactetistics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SET) formation and to track nucleation and growth mechanisms, from a standard organic. battery electrolyte (LiPF6, in EC:DMC), we used situ, electrochemical scanning transmission electron microscopy (et-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting, from eletrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SET and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries. C1 [Sacci, Robert L.; Dudney, Nancy J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Black, Jennifer M.; Balke, Nina; More, Karren L.; Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Sacci, RL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM saccirl@ornl.gov; unocicrr@ornl.gov RI Balke, Nina/Q-2505-2015; More, Karren/A-8097-2016; Dudney, Nancy/I-6361-2016 OI Unocic, Raymond/0000-0002-1777-8228; Balke, Nina/0000-0001-5865-5892; More, Karren/0000-0001-5223-9097; Dudney, Nancy/0000-0001-7729-6178 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This effort was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Electron microscopy was conducted as part of a user proposal at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy Office of Science User Facility. NR 51 TC 26 Z9 26 U1 54 U2 283 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 2011 EP 2018 DI 10.1021/nl5048626 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000086 PM 25706693 ER PT J AU Wang, EY Tang, PZ Wan, GL Fedorov, AV Miotkowski, I Chen, YP Duan, WH Zhou, SY AF Wang, Eryin Tang, Peizhe Wan, Guoliang Fedorov, Alexei V. Miotkowski, Ireneusz Chen, Yong P. Duan, Wenhui Zhou, Shuyun TI Robust Gap less Surface State and Rashba-Splitting Bands upon Surface Deposition of Magnetic Cr on Bi2Se3 SO NANO LETTERS LA English DT Article DE topological insulator; time-reversal symmetry; ferromagnetism; angle-resolved photoemission spectroscopy (ARPES) ID AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; TOPOLOGICAL INSULATORS; SADDLE-POINTS; NANORIBBONS; TRANSITION; MONOLAYERS; ANISOTROPY; FILM AB The interaction between magnetic impurities and the gapless surface state is of Critical importance for realizing novel quantum phenomena and new functionalities. in topological insulators. By combining angle-resolved photoemission-spectroscopic experiments with density functional theory calculations; we show that surface deposition of Cr atoms on Bi2Se3 does not lead to gap opening of the surface state at the Dirac point, indicating the absence :Of long-range out-of-plane ferromagnetism down to our measurement temperature of 15 K. This is in sharp contrast to bulk Cr doping; and the origin is attributed to different Cr occupation sites. These results highlight the importance of nanoscale configuration of doped magnetic impurities in determining the electronic and magnetic properties of topological insulators. C1 [Wang, Eryin; Tang, Peizhe; Wan, Guoliang; Duan, Wenhui; Zhou, Shuyun] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Wang, Eryin; Tang, Peizhe; Wan, Guoliang; Duan, Wenhui; Zhou, Shuyun] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Fedorov, Alexei V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Miotkowski, Ireneusz; Chen, Yong P.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Chen, Yong P.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Chen, Yong P.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Duan, Wenhui] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China. [Duan, Wenhui; Zhou, Shuyun] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. RP Duan, WH (reprint author), Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. EM dwh@phys.tsinghua.edu.cn; syzhou@mail.tsinghua.edu.cn RI Tang, peizhe/P-4289-2014; Duan, Wenhui /H-4992-2011; Zhou, Shuyun/A-5750-2009; Chen, Yong/K-7017-2012 OI Tang, peizhe/0000-0002-6345-5809; Duan, Wenhui /0000-0001-9685-2547; Chen, Yong/0000-0002-7356-4179 FU National Natural Science Foundation of China [11274191, 11334006]; Ministry of Education of China [20121087903, 20121778394]; Advanced Light Source doctoral fellowship program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; DARPA MESO program [N66001-11-1-4107] FX This work is supported by the National Natural Science Foundation of China (Grant Nos. 11274191 and 11334006) and Ministry of Education of China (20121087903, 20121778394). E.Y.W. acknowledges support from the Advanced Light Source doctoral fellowship program. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The crystal growth work at Purdue was supported by the DARPA MESO program (Grant No. N66001-11-1-4107) NR 43 TC 9 Z9 9 U1 9 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 2031 EP 2036 DI 10.1021/nl504900s PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000089 PM 25710329 ER PT J AU Mehdi, BL Qian, J Nasybulin, E Park, C Welch, DA Faller, R Mehta, H Henderson, WA Xu, W Wang, CM Evans, JE Liu, J Zhang, JG Mueller, KT Browning, ND AF Mehdi, B. L. Qian, J. Nasybulin, E. Park, C. Welch, D. A. Faller, R. Mehta, H. Henderson, W. A. Xu, W. Wang, C. M. Evans, J. E. Liu, J. Zhang, J-G. Mueller, K. T. Browning, N. D. TI Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM SO NANO LETTERS LA English DT Article DE Operando scanning transmission electron microscopy; SEI layer; in situ electrochemical liquid cell; Li batteries; Li dendrite formation; Li deposition/dissolution ID TRANSMISSION ELECTRON-MICROSCOPY; ION BATTERIES; LIQUID-CELL; GROWTH; NANOPARTICLES; CHALLENGES; ANODES; SAFETY; ISSUES; COST AB An operando electrochemical stage for the transmission electron microscope has been configured to form a Li battery that is used to quantify the electrochemical processes that occur at the anode during charge/discharge cycling. Of particular importance for these observations is the identification of an image contrast reversal that originates from solid Li being less dense than the surrounding liquid electrolyte and electrode surface. This contrast allows Li to be identified from Li-containing compounds that make up the solid-electrolyte interphase (SEI) layer. By correlating images showing the sequence of Li electrodeposition and the evolution of the SEI layer with simultaneously acquired and calibrated cyclic voltammograms, electrodeposition, and electrolyte breakdown processes can be quantified directly on the nanoscale. This approach opens up intriguing new possibilities to rapidly visualize and test the electrochemical performance of a wide range of electrode/electrolyte combinations for next generation battery systems. C1 [Mehdi, B. L.; Browning, N. D.] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Qian, J.; Nasybulin, E.; Henderson, W. A.; Xu, W.; Liu, J.; Zhang, J-G.] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Energy & Environm Directorate, Richland, WA 99352 USA. [Park, C.] Florida State Univ, Dept Ind & Mfg Engn, Tallahassee, FL 32306 USA. [Welch, D. A.; Faller, R.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Mehta, H.; Wang, C. M.; Evans, J. E.; Mueller, K. T.] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Environm Mol Sci Lab, Richland, WA 99352 USA. [Mueller, K. T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. RP Mehdi, BL (reprint author), Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM layla.mehdi@pnnl.gov RI Mueller, Karl/A-3637-2010; OI Browning, Nigel/0000-0003-0491-251X; Xu, Wu/0000-0002-2685-8684 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research at PNNL; National Science Foundation [NSF-1334012]; Chemical Imaging Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) FX This work was primarily supported by Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the Department of Energy, Office of Science, Basic Energy Sciences. The development of the operando stage was supported by the Chemical Imaging Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. The development of the multitarget tracking algorithm is supported by the National Science Foundation under NSF-1334012. NR 29 TC 22 Z9 22 U1 19 U2 167 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2015 VL 15 IS 3 BP 2168 EP 2173 DI 10.1021/acs.nanolett.5b00175 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CD6GQ UT WOS:000351188000111 PM 25705928 ER PT J AU McCutchan, EA AF McCutchan, E. A. TI Nuclear Data Sheets for A=83 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; SOLENOID RETARDING SPECTROMETER; NEUTRON EMISSION PROBABILITIES; ISOBARIC-ANALOG RESONANCES; GAMMA-RAY SPECTROSCOPY; HYPERFINE-STRUCTURE; LEVEL STRUCTURE; HALF-LIVES; ISOTOPE SHIFTS; LIFETIME MEASUREMENTS AB Spectroscopic data for all nuclei with mass number A=83 have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. A significant amount of new data has been added since the prior evaluation (2001Wu02). While excited state data are still not currently available for Zn-83, Ga-83, and Mo-83, new measurements on their ground state half-lives have been performed. Excited state data have become available for Ge-83 and new high-spin data has been measured for As-83 and Se-83. Improved measurements on the decay of Se-83 and Sr-83 have been performed. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP McCutchan, EA (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 229 TC 1 Z9 1 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAR-APR PY 2015 VL 125 BP 201 EP 393 DI 10.1016/j.nds.2015.02.002 PG 193 WC Physics, Nuclear SC Physics GA CD8BP UT WOS:000351320500002 ER PT J AU Nesaraja, CD AF Nesaraja, C. D. TI Nuclear Data Sheets for A=247 SO NUCLEAR DATA SHEETS LA English DT Article ID ALPHA-DECAY PROPERTIES; QUASI-PARTICLE STATES; FISSION HALF-LIVES; EINSTEINIUM ISOTOPES; HEAVIEST NUCLEI; ACTINIDE PRODUCTION; ELECTRON-CAPTURE; PROTON STATES; GROUND-STATE; HEAVY-NUCLEI AB Available information pertaining to the nuclear structure of all nuclei with mass numbers A=247 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 ((247)pu, Am-247, Cm-247, Bk-243, Cr-247), 2011Me01 (Es-247), and 2013Th02 (Fm-247, Md-247) C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Nesaraja, CD (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. OI Nesaraja, Caroline/0000-0001-5571-8341 FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC05-00OR22725] FX Research sponsored by the Office of Nuclear Physics, Office of Science, US Department of Energy under contract DE-AC05-00OR22725. NR 101 TC 1 Z9 1 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAR-APR PY 2015 VL 125 BP 395 EP 435 DI 10.1016/j.nds.2015.02.003 PG 41 WC Physics, Nuclear SC Physics GA CD8BP UT WOS:000351320500003 ER PT J AU Troy, RS Tompson, RV Ghosh, TK Loyalka, SK Gallego, NC AF Troy, Raymond S. Tompson, Robert V. Ghosh, Tushar K. Loyalka, Sudarshan K. Gallego, Nidia C. TI GENERATION OF GRAPHITE PARTICLES BY SLIDING ABRASION AND THEIR CHARACTERIZATION SO NUCLEAR TECHNOLOGY LA English DT Article DE graphite dust; abrasion; graphite particle characterization ID PEBBLE BED REACTORS; DUST PRODUCTION; WEAR; ENVIRONMENT; CARBON; TEMPERATURE; PREDICTION; FRICTION; SURFACE; BEHAVIOR AB Characterization of graphite particles (dust) produced by abrasion that would occur in a pebble bed reactor is of interest for reasons of safety, operation, and maintenance. To better understand this abrasion and particle generation, we have built a test apparatus to produce particles by sliding abrasion in a 1% to 5% relative humidity air environment. We have used a commercial-grade graphite in our experiments and have generated size distributions for the abraded particles. We have also fit lognormal functions to those size distributions (for use in computer codes); determined particle shapes; measured temperature and humidity during the tests; measured and calculated wear rates; and measured the surface roughness of both pretest and posttest samples, particle surface areas, pore volumes, and pore volume distributions of particles produced during abrasion of graphite surfaces under different loadings and sliding speeds. The experiments showed that as loading (analogous to pebble depth in the reactor) and sliding speed increase, so do the wear rates and numbers of particles produced, while surface roughness decreases, increases, and then decreases. Brunauer-Emmett-Teller measurements show that abrasion increases surface area from 0.583 m(2)/g in the bulk material to 555 m(2)/g in material abraded at high loading and high sliding speed. Wear rates range from 0.005 to 0.991 g/m per contact site. The size of the particles observed was <4000 nm. In all, our research shows that pebble abrasion is a complex process that is not constant during operation and thus should be considered for future work. C1 [Troy, Raymond S.; Tompson, Robert V.; Ghosh, Tushar K.; Loyalka, Sudarshan K.] Univ Missouri, Nucl Sci & Engn Inst, Particulate Syst Res Ctr, Columbia, MO 65211 USA. [Gallego, Nidia C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Troy, RS (reprint author), Univ Missouri, Nucl Sci & Engn Inst, Particulate Syst Res Ctr, Columbia, MO 65211 USA. EM LoyalkaS@missouri.edu OI Gallego, Nidia/0000-0002-8252-0194 FU Nuclear Energy Initiative (NERI-C) of the U.S. Department of Energy [DE-FG07-07IDI4892, 08-043]; U.S. Nuclear Regulatory Commission FX This research has been supported by a Nuclear Energy Initiative (NERI-C; grant DE-FG07-07IDI4892, 08-043) grant of the U.S. Department of Energy. Partial support for R. S. Troy was provided by a U.S. Nuclear Regulatory Commission fellowship. We would also like to thank B. Samuels, M. Simmones, M. Havelick, and N. C. Gallego of the Materials Science and Technology Division of Oak Ridge National Laboratory and personnel at the interlibrary loan department at the University of Missouri for their help with various aspects of the work. We also thank the reviewers of the manuscript for their helpful comments. NR 35 TC 5 Z9 6 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2015 VL 189 IS 3 BP 241 EP 257 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD8FX UT WOS:000351331700002 ER PT J AU Heifetz, A Vilim, R AF Heifetz, Alexander Vilim, Richard TI TURBINE BYPASS, MASS INVENTORY, AND MIXED-MODE GENERATOR POWER CONTROL OF S-CO2 RECOMPRESSION CYCLE SO NUCLEAR TECHNOLOGY LA English DT Article DE supercritical carbon dioxide cycle; generator power control; advanced reactors AB The supercritical carbon dioxide (S-CO2) recompression cycle is a power conversion cycle compatible with intermediate-temperature nuclear reactors. The main advantage of the S-CO2 cycle is relatively high efficiency (similar to 47% at the turbine inlet temperature of 650 degrees C). The dynamic characteristics and control of this cycle remain areas of active research because of the cycle's unique features, in particular, large fluid property changes near the critical point. This paper reports the conceptual development of a dynamic S-CO2 recompression cycle controller designed to efficiently respond to a demand for reduction of generator electric power. The S-CO2 cycle generator electric power production can be controlled using either turbine bypass (TB) or mass inventory (MI) controllers. Turbine bypass is a fast response controller, which reduces generator power by opening the TB valve. Mass inventory is a slow response controller, with a time constant an order of magnitude larger than that of the TB controller. The MI controller reduces generator electric power through decreasing the inventory of CO2 gas in the cycle by pumping some of the gas into a storage reservoir. Both TB and MI controllers operate in conjunction with a precooler temperature controller, which maintains compressor inlet conditions near the critical point. Although using a TB controller allows for quick reduction of the generator electric power, S-CO2 cycle thermal efficiency is reduced during the steady-state operation. C1 [Heifetz, Alexander; Vilim, Richard] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Heifetz, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aheifetz@anl.gov FU U.S. Department of Energy Office of Nuclear Energy Advanced Reactor Concepts Program FX This work was supported by funding from the U.S. Department of Energy Office of Nuclear Energy Advanced Reactor Concepts Program. NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2015 VL 189 IS 3 BP 268 EP 277 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD8FX UT WOS:000351331700004 ER PT J AU Tripp, JL Law, JD Smith, TE Rutledge, VJ Bauer, WF Ball, RD Hahn, PA AF Tripp, J. L. Law, J. D. Smith, T. E. Rutledge, V. J. Bauer, W. F. Ball, R. D. Hahn, P. A. TI MICROFLUIDIC-BASED SAMPLE CHIPS FOR RADIOACTIVE SOLUTIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE microfluidics; sampling; microcapillary ID SEPARATION; EXTRACTION AB Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter sample volumes coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply microliter sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis. C1 [Tripp, J. L.; Law, J. D.; Rutledge, V. J.; Bauer, W. F.; Ball, R. D.; Hahn, P. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Smith, T. E.] Savannah River Remediat LLC, Aiken, SC 29808 USA. RP Tripp, JL (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jack.law@inl.gov RI Ball, Richard/B-8150-2017; Bauer, William/B-8357-2016; OI Ball, Richard/0000-0002-4798-6044; Bauer, William/0000-0002-7190-9700; Law, Jack/0000-0001-7085-7542 FU U.S. Department of Energy, Office of Nuclear Energy, Science and Technology [DE-AC07-05ID14517] FX This work was performed under the auspices and financial support of the U.S. Department of Energy, Office of Nuclear Energy, Science and Technology, through contract DE-AC07-05ID14517. We wish to thank L. Macaluso of Advanced Machine Design for the plastic chip design and fabrication. NR 12 TC 0 Z9 0 U1 0 U2 14 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2015 VL 189 IS 3 BP 301 EP 311 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD8FX UT WOS:000351331700007 ER PT J AU Maalouf, J Barron, J Gunn, JP Yuan, KM Perrine, CG Cogswell, ME AF Maalouf, Joyce Barron, Jessica Gunn, Janelle P. Yuan, Keming Perrine, Cria G. Cogswell, Mary E. TI Iodized Salt Sales in the United States SO NUTRIENTS LA English DT Article ID IODINE STATUS; NATIONAL-HEALTH; NUTRITION; DEFICIENCY; OUTCOMES; CHILDREN; FOODS AB Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt. C1 [Maalouf, Joyce; Gunn, Janelle P.; Yuan, Keming; Cogswell, Mary E.] Ctr Dis Control & Prevent, Div Heart Dis & Stroke Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30341 USA. [Maalouf, Joyce] IHRC Inc, Atlanta, GA 30346 USA. [Barron, Jessica] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Perrine, Cria G.] Ctr Dis Control & Prevent, Div Nutr Phys Act & Obes, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30341 USA. RP Maalouf, J (reprint author), Ctr Dis Control & Prevent, Div Heart Dis & Stroke Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30341 USA. EM JMaalouf@cdc.gov; jessylbarron@gmail.com; JPeralezGunn@cdc.gov; KYuan@cdc.gov; CPerrine@cdc.gov; MCogswell@cdc.gov FU CDC FX This project was funded by the CDC. There were no external funding sources for this article. NR 19 TC 4 Z9 4 U1 0 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-6643 J9 NUTRIENTS JI Nutrients PD MAR PY 2015 VL 7 IS 3 BP 1691 EP 1695 DI 10.3390/nu7031691 PG 5 WC Nutrition & Dietetics SC Nutrition & Dietetics GA CE6EU UT WOS:000351930200016 PM 25763528 ER PT J AU Gavrin, V Cleveland, B Danshin, S Elliott, S Gorbachev, V Ibragimova, T Kalikhov, A Knodel, T Kozlova, Y Malyshkin, Y Matveev, V Mirmov, I Nico, J Robertson, RGH Shikhin, A Sinclair, D Veretenkin, E Wilkerson, J AF Gavrin, V. Cleveland, B. Danshin, S. Elliott, S. Gorbachev, V. Ibragimova, T. Kalikhov, A. Knodel, T. Kozlova, Yu Malyshkin, Yu Matveev, V. Mirmov, I. Nico, J. Robertson, R. G. H. Shikhin, A. Sinclair, D. Veretenkin, E. Wilkerson, J. TI Current status of new SAGE project with Cr-51 neutrino source SO PHYSICS OF PARTICLES AND NUCLEI LA English DT Article ID GALLEX AB A very short-baseline neutrino oscillation experiment with an intense Cr-51 neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial Cr-51 neutrino source with activity similar to 3 MCi to search for transitions of active neutrinos to sterile states with Delta m (2) similar to 1 eV(2). The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The average path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense Cr-51 source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. To check the new facilities they will first be used for SAGE solar neutrino measurements. C1 [Gavrin, V.; Danshin, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Knodel, T.; Kozlova, Yu; Malyshkin, Yu; Matveev, V.; Mirmov, I.; Shikhin, A.; Veretenkin, E.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Cleveland, B.] SNOLAB, Lively, ON P3Y 1N2, Canada. [Elliott, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Matveev, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Nico, J.] NIST, Gaithersburg, MD 20899 USA. [Robertson, R. G. H.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Sinclair, D.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Wilkerson, J.] Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA. RP Gavrin, V (reprint author), Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. EM gavrin@inr.ru FU Program of Basic Research "Fundamental Properties of Matter and Astrophysics" of the Presidium RAS; Russian Foundation for Basic Research [11-02-00806-a, 11-02-12130-ofi-m-2011, 13-02-12075-ofi-m-2013]; Russian Federation [NS-871.2012.2] FX This work was supported in part by the Program of Basic Research "Fundamental Properties of Matter and Astrophysics" of the Presidium RAS, by the Russian Foundation for Basic Research grants 11-02-00806-a, 11-02-12130-ofi-m-2011, 13-02-12075-ofi-m-2013 and by the grant of the President of the Russian Federation NS-871.2012.2. NR 26 TC 7 Z9 7 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7796 EI 1531-8559 J9 PHYS PART NUCLEI+ JI Phys. Part. Nuclei PD MAR PY 2015 VL 46 IS 2 BP 131 EP 137 DI 10.1134/S1063779615020100 PG 7 WC Physics, Particles & Fields SC Physics GA CD7SR UT WOS:000351292700002 ER PT J AU Tsabari, O Nevo, R Meir, S Carrillo, LR Kramer, DM Reich, Z AF Tsabari, Onie Nevo, Reinat Meir, Sagit Carrillo, L. Ruby Kramer, David M. Reich, Ziv TI Differential effects of ambient or diminished CO2 and O-2 levels on thylakoid membrane structure in light-stressed plants SO PLANT JOURNAL LA English DT Article DE thylakoid membranes; photooxidative stress; regulation of photosynthesis; cyclic electron transport; parsing of proton-motive force; electron microscopy and tomography ID CYCLIC ELECTRON-TRANSPORT; PHOTOSYSTEM-II; PHOTOSYNTHETIC MEMBRANES; IN-VIVO; C-3 PLANTS; SPINACH-CHLOROPLASTS; QUALITY-CONTROL; ATP SYNTHASE; C3 PLANTS; PHOTOINHIBITION AB Over-reduction of the photosynthetic electron transport chain may severely damage the photosynthetic apparatus as well as other constituents of the chloroplast and the cell. Here, we exposed Arabidopsis leaves to saturating light either under normal atmospheric conditions or under CO2- and O-2-limiting conditions, which greatly increase excitation and electron pressures by draining terminal electron acceptors. The two treatments were found to have very different, often opposing, effects on the structure of the thylakoid membranes, including the width of the granal lumenal compartment. Modulation of the latter is proposed to be related to movements of ions across the thylakoid membrane, which alter the relative osmolarity of the lumen and stroma and affect the partitioning of the proton motive force into its electrical and osmotic components. The resulting changes in thylakoid organization and lumenal width should facilitate the repair of photodamaged photosystem II complexes in response to light stress under ambient conditions, but are expected to inhibit the repair cycle when the light stress occurs concurrently with CO2 and O-2 depletion. Under the latter conditions, the changes in thylakoid structure are predicted to complement other processes that restrict the flow of electrons into the high-potential chain, thus moderating the production of deleterious reactive oxygen species at photosystemI. Significance Statement In this study we show that exposing leaves to high light stress with or without the additional stress of diminished CO2/O2 levels have very different effects on the ultrastructure and organization of the thylakoid membranes. These in turn are expected to have differential functional consequences that facilitate adaptation to different stress conditions. C1 [Tsabari, Onie; Nevo, Reinat; Reich, Ziv] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. [Meir, Sagit] Weizmann Inst Sci, Dept Plant Sci, IL-76100 Rehovot, Israel. [Carrillo, L. Ruby; Kramer, David M.] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. RP Reich, Z (reprint author), Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. EM ziv.reich@weizmann.ac.il FU Israel Science Foundation [1034/12]; Minerva Foundation [710819]; Carolito Stiftung; Photosynthetic Systems program of the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-11ER16220]; [DE-FG02-91ER20021] FX We thank Asaph Aharoni for his assistance with determination of zeaxanthin levels in the leaves, and Alfred Holzwarth for providing a protocol for the initial separation of the pigments. The electron microscopy studies were performed at the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging at the Weizmann Institute of Science. Work at the Weizmann Institute of Science was supported by grants (to Z.R.) from the Israel Science Foundation (1034/12), the Minerva Foundation (710819) and the Carolito Stiftung. Work performed at Michigan State University on the thylakoid pmf was funded by grant DE-FG02-11ER16220 from the Photosynthetic Systems program of the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (to D.M.K.), with support for development of the instrumentation from DE-FG02-91ER20021. NR 68 TC 4 Z9 4 U1 5 U2 41 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD MAR PY 2015 VL 81 IS 6 BP 884 EP 894 DI 10.1111/tpj.12774 PG 11 WC Plant Sciences SC Plant Sciences GA CD7BU UT WOS:000351246000005 PM 25619921 ER PT J AU Pankievicz, VCS do Amaral, FP Santos, KFDN Agtuca, B Xu, YW Schueller, MJ Arisi, ACM Steffens, MBR de Souza, EM Pedrosa, FO Stacey, G Ferrieri, RA AF Pankievicz, Vania C. S. do Amaral, Fernanda P. Santos, Karina F. D. N. Agtuca, Beverly Xu, Youwen Schueller, Michael J. Arisi, Ana Carolina M. Steffens, Maria B. R. de Souza, Emanuel M. Pedrosa, Fabio O. Stacey, Gary Ferrieri, Richard A. TI Robust biological nitrogen fixation in a model grass-bacterial association SO PLANT JOURNAL LA English DT Article DE Setaria; nitrogen fixation; Azospirillum brasilense; Herbaspirillum seropedicae; plant growth promotion; radioisotope; endophyte; rhizosphere ID SP STRAIN BH72; HERBASPIRILLUM-SEROPEDICAE; AZOSPIRILLUM-BRASILENSE; PLANT-GROWTH; SUGAR-CANE; NIF GENES; ACETOBACTER-DIAZOTROPHICUS; GRAMINEOUS PLANTS; FIXING BACTERIUM; SETARIA-VIRIDIS AB Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C-4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. C-11-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S.viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. Significance Statement The results indicate that, under the appropriate conditions, the C4 model grass species, Setaria viridis, can obtain 100% of its nitrogen needs from biological nitrogen fixation, as a result of inoculation with plant growth promoting bacteria. The work supports the future use of S. viridis as a model system to explore the mechanistic aspects of associative nitrogen fixation with the goal of transferring this knowledge to important crop species, such as corn. C1 [Pankievicz, Vania C. S.; Santos, Karina F. D. N.; Steffens, Maria B. R.; de Souza, Emanuel M.; Pedrosa, Fabio O.] Univ Fed Parana, Dept Biochem & Mol Biol, BR-81531980 Curitiba, Parana, Brazil. [do Amaral, Fernanda P.; Arisi, Ana Carolina M.] Univ Fed Santa Catarina, Dept Food Sci & Technol, BR-88034001 Florianopolis, SC, Brazil. [Agtuca, Beverly] SUNY Coll Environm Sci & Forestry, Dept Environm Biol, Syracuse, NY 13210 USA. [Xu, Youwen; Schueller, Michael J.; Ferrieri, Richard A.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Stacey, Gary] Univ Missouri, Div Plant Sci, CS Bond Life Sci Ctr, Columbia, MO 65211 USA. [Stacey, Gary] Univ Missouri, Div Biochem, CS Bond Life Sci Ctr, Columbia, MO 65211 USA. RP Stacey, G (reprint author), Univ Missouri, Div Plant Sci, CS Bond Life Sci Ctr, Columbia, MO 65211 USA. EM staceyg@missouri.edu RI ARISI, ANA CAROLINA/A-8311-2008 OI ARISI, ANA CAROLINA/0000-0001-6077-7960 FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; US Department of Energy (DOE); National Institute of Science and Technology-Biological Nitrogen Fixation, INCT-FBN, through the Brazilian Research Council - CNPq/MCT; Ciencia Sem Fronteiras Program, Brazil; Department of Energy, Office of Biological and Environmental Research [DE-FOA-0000223]; SUNY School of Environmental Science and Forestry Honors Internship Program FX This article has been authored by Brookhaven Science Associates, LLC under contract number DE-AC02-98CH10886 with the US Department of Energy (DOE) which supported R.A.F. and the BNL team in this effort. Furthermore, this was financially supported by the National Institute of Science and Technology-Biological Nitrogen Fixation, INCT-FBN, through the Brazilian Research Council - CNPq/MCT and the Ciencia Sem Fronteiras Program, Brazil (fellowships supporting V.C.S.P., F.P.A. and K.F.S.). Support was also provided by grant DE-FOA-0000223 (to G.S.) from the Department of Energy, Office of Biological and Environmental Research. Additional support was provided by SUNY School of Environmental Science and Forestry Honors Internship Program (supporting B.A.). We gratefully acknowledge the technical support of Dr Aleksandr Jurkevic from the University of Missouri molecular cytology core and Israel H. Bini from the Federal University of Parana for assisting with the microscopy, and Dr Carolina Galvao from UEPG, Brazil for the A. brasilense strain FP2-7. NR 59 TC 17 Z9 17 U1 16 U2 84 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD MAR PY 2015 VL 81 IS 6 BP 907 EP 919 DI 10.1111/tpj.12777 PG 13 WC Plant Sciences SC Plant Sciences GA CD7BU UT WOS:000351246000007 PM 25645593 ER PT J AU Lin, CD Anderson-Cook, CM Hamada, MS Moore, LM Sitter, RR AF Lin, C. Devon Anderson-Cook, Christine M. Hamada, Michael S. Moore, Leslie M. Sitter, Randy R. TI Using Genetic Algorithms to Design Experiments: A Review SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Review DE design criteria; design representation; optimization algorithm; orthogonal array; response surface design; screening design; search algorithm ID LATIN HYPERCUBE DESIGN; EVOLUTIONARY ALGORITHM; SUPERSATURATED DESIGNS; REGRESSION-MODELS; CUBOIDAL REGIONS; CONSTRUCTION; OPTIMIZATION; MICROARRAY AB Genetic algorithms (GAs) have been used in many disciplines to optimize solutions for a broad range of problems. In the last 20 years, the statistical literature has seen an increase in the use and study of this optimization algorithm for generating optimal designs in a diverse set of experimental settings. These efforts are due in part to an interest in implementing a novel methodology as well as the hope that careful application of elements of the GA framework to the unique aspects of a designed experiment problem might lead to an efficient means of finding improved or optimal designs. In this paper, we explore the merits of using this approach, some of the aspects of design that make it a unique application relative to other optimization scenarios, and discuss elements which should be considered for an effective implementation. We conclude that the current GA implementations can, but do not always, provide a competitive methodology to produce substantial gains over standard optimal design strategies. We consider both the probability of finding a globally optimal design as well as the computational efficiency of this approach. Copyright (C) 2014 John Wiley & Sons, Ltd. C1 [Lin, C. Devon] Queens Univ, Kingston, ON, Canada. [Anderson-Cook, Christine M.; Hamada, Michael S.; Moore, Leslie M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sitter, Randy R.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. RP Lin, CD (reprint author), Queens Univ, Kingston, ON, Canada. EM cdlin@mast.queensu.ca FU Natural Sciences and Engineering Research Council of Canada FX We thank C.C. Essix for her encouragement and support of this paper. We note with deep regret that our dear colleague Randy Sitter was tragically lost at sea on September 19, 2007. Lin is supported by the Natural Sciences and Engineering Research Council of Canada. NR 46 TC 5 Z9 5 U1 5 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD MAR PY 2015 VL 31 IS 2 BP 155 EP 167 DI 10.1002/qre.1591 PG 13 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA CD9QV UT WOS:000351433900002 ER PT J AU Ahmed, AS Benmerrouche, M Cubbon, G AF Ahmed, Asm Sabbir Benmerrouche, M. Cubbon, Grant TI Monte Carlo simulation study to calculate radiation dose under beam-loss scenarios in Top-up operation mode for HXMA beamline at Canadian Light Source SO RADIATION MEASUREMENTS LA English DT Article DE Monte Carlo simulation; Radiation dose; FLUKA; Top-up operation; Synchrotron; Accelerator ID OFF OPERATION AB This study was conducted to analyze the radiological impact in the experimental area of the Hard X-Ray beamline at Canadian Light Source under beam loss scenario during Top-up injection. The radiation doses were calculated using Monte Carlo code: FLUKA. The physical size, location, and material of the beamline components were adopted from the technical drawings and were incorporated in the FLUKA model. Three (03) beam loss scenarios were simulated: (i) Beam was miss-steered in the storage ring (ii) Beam hit misaligned components inside the ring and (iii) Beam was lost inside the primary optical enclosure (POE). Total ambient dose was calculated at several observation points for each scenario considering the injected beam as the primary source. The results and impacts were discussed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ahmed, Asm Sabbir; Cubbon, Grant] Canadian Light Source, Saskatoon, SK S7N 2V3, Canada. [Benmerrouche, M.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. RP Ahmed, AS (reprint author), Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada. EM sabbir@asmsahmed.info; benmerrouche@bnl.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD MAR PY 2015 VL 74 BP 31 EP 38 DI 10.1016/j.radmeas.2015.01.009 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CE2KM UT WOS:000351644500006 ER PT J AU Dreger, DS Huang, MH Rodgers, A Taira, T Wooddell, K AF Dreger, Douglas S. Huang, Mong-Han Rodgers, Arthur Taira, Taka'aki Wooddell, Kathryn TI Kinematic Finite-Source Model for the 24 August 2014 South Napa, California, Earthquake from Joint Inversion of Seismic, GPS, and InSAR Data SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID FRANCISCO BAY AREA; 7.1 HECTOR MINE; GROUND-MOTION; GEODETIC DATA; WAVE C1 [Dreger, Douglas S.; Huang, Mong-Han; Taira, Taka'aki; Wooddell, Kathryn] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Rodgers, Arthur] Lawrence Livermore Natl Lab, Geophys Monitoring Program, Livermore, CA 95441 USA. RP Dreger, DS (reprint author), Univ Calif Berkeley, Berkeley Seismol Lab, 215 McCone Hall, Berkeley, CA 94720 USA. EM ddreger@berkeley.edu RI Taira, Taka'aki/L-5839-2013; Rodgers, Arthur/E-2443-2011; OI Taira, Taka'aki/0000-0002-6170-797X; Huang, Mong-Han/0000-0003-2331-3766 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Jessica Murray and Ingrid Johansson for advice pertaining to Global Positioning System (GPS) solutions. The interferograms used in this study are processed by the Jet Propulsion Laboratory (JPL) Caltech/National Aeronautics and Space Administration. Waveform data were obtained from the Northern California Earthquake Data Center (NCEDC) with help from Douglas Neuhauser (NCEDC, 2014). Broadband waveforms were obtained from the Berkeley Digital Seismic Network and Northern Hayward Fault Network, operated by the Berkeley Seismological Laboratory (BSL), University of California, Berkeley. Strong-motion data were obtained from the Northern California Seismic Network, operated by the U.S. Geological Survey, Menlo Park. We used the open-source SW4 anelastic finite-difference code distributed by the Computational Infrastructure for Geodynamics (CIG, 2014). 3D ground-motion simulations were performed on the Cab Linux cluster operated by Livermore Computing, Lawrence Livermore National Laboratory. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is BSL Contribution Number 2015-01. NR 16 TC 22 Z9 22 U1 1 U2 15 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD MAR-APR PY 2015 VL 86 IS 2 BP 327 EP 334 DI 10.1785/0220140244 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CD8EK UT WOS:000351327800007 ER PT J AU Ulbrich, C Jordan, DC Kurtz, SR Gerber, A Rau, U AF Ulbrich, Carolin Jordan, Dirk C. Kurtz, Sarah R. Gerber, Andreas Rau, Uwe TI Direct analysis of the current density vs. voltage curves of a CdTe module during outdoor exposure SO SOLAR ENERGY LA English DT Article DE Current-voltage characteristic; Degradation; Monitoring; CdTe; Diode ideality factor; Reliability ID SILICON SOLAR-CELLS; J-V MODEL; PHOTOVOLTAIC MODULES; PERFORMANCE AB Current density-voltage (JV) curves of a CdTe photovoltaic module measured during 2.5 years of outdoor operation are analyzed using a phenomenological four-parameter equation. This approach is shown to be more accurate than fitting the same data set to the conventional five parameter diode equation. The four extracted parameters are the short-circuit current density J(sc), open-circuit voltage V-oc, and the differential resistances R-sc and R-oc, i.e., the reciprocal slopes of the JV curves at short circuit and open circuit, respectively. The dependencies of all four parameters on module temperature and irradiation intensities are analyzed in terms of physically motivated models. The coefficients derived from these models are then used to transform the photovoltaic parameters to reference conditions and to investigate the degradation of the module. The models for R-sc and R-oc involve voltage-dependent carrier collection. This feature appears prominent already in the initial JV curves, but becomes even more dominant with increasing exposure time. Voltage-dependent carrier collection also explains that the diode ideality factor determined from V-oc vs. J(sc) curves is different from that determined using R-oc vs. 1/J(sc) plots. The degradation of the module is essentially reflected in fill factor losses caused by a decrease of R-sc and an increase of R-oc. Additionally, the V-oc vs. log(J(sc)) curves of the module behavior at low irradiation unveil an increasing influence of a double-exponential diode behavior. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ulbrich, Carolin; Gerber, Andreas; Rau, Uwe] Forschungszentrum Julich, Photovolta IEK5, D-52428 Julich, Germany. [Jordan, Dirk C.; Kurtz, Sarah R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ulbrich, C (reprint author), Forschungszentrum Julich, Photovolta IEK5, Wilhelm Johnen Str, D-52428 Julich, Germany. EM c.ulbrich@fz-juelich.de; dirk.jordan@nrel.gov; sarah.kurtz@nrel.gov; a.gerber@fz-juelich.de; u.rau@fz-juelich.de RI Rau, Uwe/G-2256-2011 OI Rau, Uwe/0000-0003-3526-3081 FU 'Helmhotz-NREL Solar Energy Initiative' (HNSEI) [SO-075]; German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety ('PV Klima,') [0325517C]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was funded by SO-075 'Helmhotz-NREL Solar Energy Initiative' (HNSEI). Financial support by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety ('PV Klima,' Project Number 0325517C) is also acknowledged. Furthermore, this work was also supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors give special thanks to David Albin (NREL) for valuable discussions. NR 35 TC 2 Z9 2 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD MAR PY 2015 VL 113 BP 88 EP 100 DI 10.1016/j.solener.2014.12.004 PG 13 WC Energy & Fuels SC Energy & Fuels GA CD2VU UT WOS:000350937900010 ER PT J AU Godeke, A Hartman, MHC Mentink, MGT Jiang, J Matras, M Hellstrom, EE Larbalestier, DC AF Godeke, A. Hartman, M. H. C. Mentink, M. G. T. Jiang, J. Matras, M. Hellstrom, E. E. Larbalestier, D. C. TI Critical current of dense Bi-2212 round wires as a function of axial strain SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE Bi-2212; overpressure; strain; wire ID 30 T; DEPENDENCE AB The critical current (I-c) of dense Bi2Sr2CaCu2O8+x (Bi-2212) round wires with Ag-alloy matrices was measured as a function of axial applied strain (epsilon(a)), to determine whether the I-c(epsilon(a)) behavior is improved in comparison to wires with a large (30-50%) void fraction in the Bi-2212 filaments. Wires were reacted at approximately 890 degrees C under a 1% O-2 in Ar gas mixture at 100 bar pressure to densify the Bi-2212 fraction during the partial melt reaction. After measurement of the I-c at 4.2 K and 5 T at Florida State University, wire sections were sent to Lawrence Berkeley National Laboratory where I-c(epsilon(a)) was measured at 4.2 K at 5 and 15 T using a U-shaped bending spring. We found that I-c(epsilon(a)) has a 0.3% wide linear reversible strain range. An unexpected result is that the width of this reversible range seems comparable to that found for porous samples reacted at only 1 bar, apparently negating an earlier plausible supposition that fuller density samples would be more resilient. C1 [Godeke, A.; Hartman, M. H. C.; Mentink, M. G. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Godeke, A.; Jiang, J.; Matras, M.; Hellstrom, E. E.; Larbalestier, D. C.] Florida State Univ, Ctr Appl Superconduct, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Godeke, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM agodeke@magnet.fsu.edu RI Larbalestier, David/B-2277-2008; Jiang, Jianyi/F-2549-2017 OI Larbalestier, David/0000-0001-7098-7208; Jiang, Jianyi/0000-0002-1094-2013 FU Office of Science, High Energy Physics, US Department of Energy [DE-AC02-05CH11231]; Department of Energy, Office of High Energy Physics [DE-SC0010421]; National High Magnetic Field Laboratory; National Science Foundation [NSF/DMR-1157490]; State of Florida FX Work at LBNL was supported by the Director, Office of Science, High Energy Physics, US Department of Energy under contract No. DE-AC02-05CH11231. Work at the NHMFL was supported by the Department of Energy, Office of High Energy Physics under contract No. DE-SC0010421, and by the National High Magnetic Field Laboratory, which is supported by the National Science Foundation under NSF/DMR-1157490 and by the State of Florida. NR 19 TC 9 Z9 9 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2015 VL 28 IS 3 AR 032001 DI 10.1088/0953-2048/28/3/032001 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CD4IT UT WOS:000351046700001 ER PT J AU Vlasko-Vlasov, VK Palacious, E Rosenmann, D Pearson, J Jia, Y Wang, YL Welp, U Kwok, WK AF Vlasko-Vlasov, V. K. Palacious, E. Rosenmann, D. Pearson, J. Jia, Y. Wang, Y. L. Welp, U. Kwok, W-K TI Self-healing patterns in ferromagnetic-superconducting hybrids SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE magnetic pinning; magnetic-superconducting hybrid; self-healing pattern ID HIGH-TEMPERATURE SUPERCONDUCTORS; PINNING ENHANCEMENT; MAGNETIC NANOSTRUCTURES; NB FILMS; ARRAYS; BILAYER; MULTILAYERS AB We study magnetic flux dynamic effects in a superconducting (SC) bridge with thin soft magnetic stripes placed either on top or under the bridge. Voltage-current (VI) measurements reveal that the edges of magnetic stripes oriented transvers or along the bridge introduce channels or barriers for vortex motion, resulting in the decrease or increase of the critical current, respectively. We propose a self-healing mechanism for the hybrid with longitudinal stripes whereby the magnetic pinning strength increases with current. The self-field of the current polarizes the magnetic stripes across their length, which enhances the stray fields at their long edges and creates a dynamic vortex pinning landscape to impede vortex flow. We show a qualitative confirmation of the proposed mechanism which offers new strategies to engineer adaptive pinning topologies in SC-ferromagnetic hybrids. C1 [Vlasko-Vlasov, V. K.; Palacious, E.; Pearson, J.; Jia, Y.; Wang, Y. L.; Welp, U.; Kwok, W-K] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rosenmann, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Vlasko-Vlasov, VK (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vlasko-vlasov@anl.gov OI Wang, Yong-Lei/0000-0003-0391-7757 FU US Department of Energy, Office of Science, Materials Sciences and Engineering Division; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials in this work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 47 TC 0 Z9 0 U1 4 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2015 VL 28 IS 3 AR 035006 DI 10.1088/0953-2048/28/3/035006 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CD4IT UT WOS:000351046700012 ER PT J AU Balatsky, AV Balatsky, GI Borysov, SS AF Balatsky, Alexander V. Balatsky, Galina I. Borysov, Stanislav S. TI Resource Demand Growth and Sustainability Due to Increased World Consumption SO SUSTAINABILITY LA English DT Article ID ENERGY-CONSUMPTION; ECONOMIC-GROWTH; ISSUES AB The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet's limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels. C1 [Balatsky, Alexander V.; Borysov, Stanislav S.] NORDITA, S-10691 Stockholm, Sweden. [Balatsky, Alexander V.; Balatsky, Galina I.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. [Borysov, Stanislav S.] KTH Royal Inst Technol, Nanostruct Phys, SE-10691 Stockholm, Sweden. RP Balatsky, AV (reprint author), NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. EM stanislav@smart.mit.edu; gbala200@gmail.com; borysov@kth.se FU Nordita FX This work was supported by Nordita. We are grateful to Yasser Roudi and Alexander Lipton for useful discussions. NR 34 TC 3 Z9 3 U1 3 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD MAR PY 2015 VL 7 IS 3 BP 3430 EP 3440 DI 10.3390/su7033430 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA CE5AZ UT WOS:000351843400057 ER PT J AU Baugh, L Phan, I Begley, DW Clifton, MC Armour, B Dranow, DM Taylor, BM Muruthi, MM Abendroth, J Fairman, JW Fox, D Dieterich, SH Staker, BL Gardberg, AS Choi, R Hewitt, SN Napuli, AJ Myers, J Barrett, LK Zhang, Y Ferrell, M Mundt, E Thompkins, K Tran, N Lyons-Abbott, S Abramov, A Sekar, A Serbzhinskiy, D Lorimer, D Buchko, GW Stacy, R Stewart, LJ Edwards, TE Van Voorhis, WC Myler, PJ AF Baugh, Loren Phan, Isabelle Begley, Darren W. Clifton, Matthew C. Armour, Brianna Dranow, David M. Taylor, Brandy M. Muruthi, Marvin M. Abendroth, Jan Fairman, James W. Fox, David, III Dieterich, Shellie H. Staker, Bart L. Gardberg, Anna S. Choi, Ryan Hewitt, Stephen N. Napuli, Alberto J. Myers, Janette Barrett, Lynn K. Zhang, Yang Ferrell, Micah Mundt, Elizabeth Thompkins, Katie Ngoc Tran Lyons-Abbott, Sally Abramov, Ariel Sekar, Aarthi Serbzhinskiy, Dmitri Lorimer, Don Buchko, Garry W. Stacy, Robin Stewart, Lance J. Edwards, Thomas E. Van Voorhis, Wesley C. Myler, Peter J. TI Increasing the structural coverage of tuberculosis drug targets SO TUBERCULOSIS LA English DT Article DE Drug discovery; Homolog-rescue; Structural genomics; Enzyme active site ID COLI CMP KINASE; MYCOBACTERIUM-TUBERCULOSIS; INFECTIOUS-DISEASE; CRYSTAL-STRUCTURES; PROTEIN CONSTRUCT; SALVAGE PATHWAY; GENOMICS CENTER; GENE COMPOSER; DESIGN; INHIBITORS AB High-resolution three-dimensional structures of essential Mycobacteriumtuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including super-position of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Ca RMSD <1 angstrom, >85% side chain identity, and >80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Baugh, Loren; Phan, Isabelle; Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Staker, Bart L.; Gardberg, Anna S.; Choi, Ryan; Hewitt, Stephen N.; Napuli, Alberto J.; Myers, Janette; Barrett, Lynn K.; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Ngoc Tran; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Lorimer, Don; Buchko, Garry W.; Stacy, Robin; Stewart, Lance J.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA. [Baugh, Loren; Phan, Isabelle; Staker, Bart L.; Zhang, Yang; Ferrell, Micah; Mundt, Elizabeth; Thompkins, Katie; Ngoc Tran; Lyons-Abbott, Sally; Abramov, Ariel; Sekar, Aarthi; Serbzhinskiy, Dmitri; Stacy, Robin] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Begley, Darren W.; Clifton, Matthew C.; Armour, Brianna; Dranow, David M.; Taylor, Brandy M.; Muruthi, Marvin M.; Abendroth, Jan; Fairman, James W.; Fox, David, III; Dieterich, Shellie H.; Gardberg, Anna S.; Lorimer, Don; Stewart, Lance J.; Edwards, Thomas E.] Beryllium, Bainbridge Isl, WA 98110 USA. [Gardberg, Anna S.] EMD Serono Res & Dev Inst Inc, Billerica, MA 01821 USA. [Choi, Ryan; Hewitt, Stephen N.; Napuli, Alberto J.; Myers, Janette; Barrett, Lynn K.; Van Voorhis, Wesley C.] Univ Washington, Div Allergy & Infect Dis, Dept Med, Seattle, WA 98109 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Stewart, Lance J.] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA. [Van Voorhis, Wesley C.; Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Van Voorhis, Wesley C.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA 98195 USA. RP Myler, PJ (reprint author), Seattle Biomed Res Inst, 307 Westlake Ave N,Suite 500, Seattle, WA 98109 USA. EM peter.myler@seattlebiomed.org RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services [HHSN272200700057C, HHSN272201200025C] FX This research was funded under Federal Contracts HHSN272200700057C and HHSN272201200025C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services. Research conducted at Pacific Northwest National Laboratory was performed in the Environmental and Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research program. NR 41 TC 20 Z9 22 U1 2 U2 12 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 1472-9792 J9 TUBERCULOSIS JI Tuberculosis PD MAR PY 2015 VL 95 IS 2 BP 142 EP 148 DI 10.1016/j.tube.2014.12.003 PG 7 WC Immunology; Microbiology; Respiratory System SC Immunology; Microbiology; Respiratory System GA CD5GD UT WOS:000351115000009 PM 25613812 ER PT J AU Vesper, DJ Edenborn, HM Billings, AA Moore, JE AF Vesper, Dorothy J. Edenborn, Harry M. Billings, Anthony A. Moore, Johnathan E. TI A Field-Based Method for Determination of Dissolved Inorganic Carbon in Water Based on CO2 and Carbonate Equilibria SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Dissolved inorganic carbon (DIC); Dissolved carbon dioxide (CO2); Carbonate geochemistry ID GROUNDWATER; DEVICE AB The processing, storage, and flux of inorganic carbon in rivers and streams play an influential role in the lateral transfer of atmospheric and terrestrial carbon to the marine environment. Quantifying and understanding this transfer requires a rapid and accurate means of measuring representative concentrations of dissolved inorganic carbon (DIC) and CO2 in field settings. This paper describes a field method for the determination of DIC based on the direct measurement of dissolved CO2 using a commercial carbonation meter. A 100-mL water sample is combined with 10 mL of a high ionic strength, low-pH, citrate buffer, mixed well, and the dissolved CO2 concentration is measured directly. The DIC is then calculated based on the dissolved CO2 concentration, buffer-controlled ionic strength, pH, and temperature of the mixture. The method was accurate, precise, and comparable to standard laboratory analytical methods when tested using prepared sodium bicarbonate solutions up to 40 mM DIC, North Atlantic seawater, commercial bottled waters, and carbonate spring waters. Coal mine drainage waters were also tested and often contained higher DIC concentrations in the field than in subsequent laboratory measurements; the greatest discrepancy was for the high-CO2 samples, suggesting that degassing occurred after sample collection. For chemically unstable waters and low-pH waters, such as those from high-CO2 mine waters, the proposed field DIC method may enable the collection of DIC data that are more representative of natural settings. C1 [Vesper, Dorothy J.] W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. [Edenborn, Harry M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Billings, Anthony A.] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA. [Moore, Johnathan E.] US DOE, URS, Morgantown, WV 26507 USA. RP Vesper, DJ (reprint author), W Virginia Univ, Dept Geol & Geog, 330 Brooks Hall, Morgantown, WV 26506 USA. EM djvesper@mail.wvu.edu FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a initiative of the NETL, under the RES [DE-FE0004000] FX The authors thank Jill Riddell for help in collecting field data. This work was performed as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, under the RES contract DE-FE0004000. NR 25 TC 1 Z9 1 U1 7 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 EI 1573-2932 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD MAR PY 2015 VL 226 IS 3 AR 28 DI 10.1007/s11270-015-2348-z PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA CD5BO UT WOS:000351102400052 ER PT J AU Mitrovic, S Soedarmadji, E Newhouse, PF Suram, SK Haber, JA Jin, J Gregoire, JM AF Mitrovic, Slobodan Soedarmadji, Edwin Newhouse, Paul F. Suram, Santosh K. Haber, Joel A. Jin, Jian Gregoire, John M. TI Colorimetric Screening for High-Throughput Discovery of Light Absorbers SO ACS COMBINATORIAL SCIENCE LA English DT Article DE high-throughput; colorimetry; light absorbers; solar fuels ID CATALYST AB High-throughput screening is a powerful approach for identifying new functional materials in unexplored material spaces. With library synthesis capable of producing 105 to 106 samples per day, methods for material screening at rates greater than 1 Hz must be developed. For the discovery of new solar light absorbers, this throughput cannot be attained using standard instrumentation. Screening certain properties, such as the bandgap, are of interest only for phase pure materials, which comprise a small fraction of the samples in a typical solid-state material library. We demonstrate the utility of colorimetric screening based on processing photoscanned images of combinatorial libraries to quickly identify distinct phase regions, isolate samples with desired bandgap, and qualitatively identify samples that are suitable for complementary measurements. Using multiple quaternary oxide libraries containing thousands of materials, we compare colorimetric screening and UV-vis spectroscopy results, demonstrating successful identification of compounds with bandgap suitable for solar applications. C1 [Mitrovic, Slobodan; Soedarmadji, Edwin; Newhouse, Paul F.; Suram, Santosh K.; Haber, Joel A.; Gregoire, John M.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. RP Mitrovic, S (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM mitrovic@caltech.edu; gregoire@caltech.edu RI Mitrovic, Slobodan/E-7847-2010 OI Mitrovic, Slobodan/0000-0001-8913-8505 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX The authors thank Ryan J.R. Jones for assistance with the experiments. This manuscript is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (award no. DE-SC0004993). NR 13 TC 1 Z9 1 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2156-8952 EI 2156-8944 J9 ACS COMB SCI JI ACS Comb. Sci. PD MAR PY 2015 VL 17 IS 3 BP 176 EP 181 DI 10.1021/co500151u PG 6 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA CD1NG UT WOS:000350841000005 PM 25548825 ER PT J AU Cheng, C Fu, DY Liu, K Guo, H Xu, SG Ryu, SG Ho, O Zhou, J Fan, W Bao, W Salmeron, M Wang, N Grigoropoulos, CP Wu, JQ AF Cheng, Chun Fu, Deyi Liu, Kai Guo, Hua Xu, Shuigang Ryu, Sang-Gil Ho, Otto Zhou, Jian Fan, Wen Bao, Wei Salmeron, Miquel Wang, Ning Grigoropoulos, Costas P. Wu, Junqiao TI Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal-Insulator Transition in VO2 SO ADVANCED OPTICAL MATERIALS LA English DT Article ID VANADIUM DIOXIDE NANOBEAMS; PHASE-TRANSITION; THERMAL-CONDUCTIVITY; ORGANIZATION; DOMAINS C1 [Cheng, Chun; Fu, Deyi; Liu, Kai; Ho, Otto; Zhou, Jian; Fan, Wen; Bao, Wei; Salmeron, Miquel; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cheng, Chun] South Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China. [Cheng, Chun; Liu, Kai; Guo, Hua; Bao, Wei; Salmeron, Miquel; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cheng, Chun; Ryu, Sang-Gil; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Xu, Shuigang; Wang, Ning] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wang, Ning/B-5436-2011; Liu, Kai/A-4754-2012; Wu, Junqiao/G-7840-2011; Bao, Wei/B-4520-2014; Fu, Deyi/C-6624-2011; OI Liu, Kai/0000-0002-0638-5189; Wu, Junqiao/0000-0002-1498-0148; Fu, Deyi/0000-0003-1365-8963; Wang, Ning/0000-0002-4902-5589 FU National Science Foundation (NSF) [ECCS-1101779]; National Natural Science Foundation of China [51406075]; South University of Science and Technology of China; Hong Kong Research Grants Council through RGC projects [FSGRF14SC31, WMINST11SC04] FX The authors thank Prof. Jie Yao for helpful discussions. This work was supported by the National Science Foundation (NSF) under Grant No. ECCS-1101779. C.C. is partially supported by National Natural Science Foundation of China (Grant No. 51406075), startup grants from the South University of Science and Technology of China, and the Hong Kong Research Grants Council through RGC projects (FSGRF14SC31 and WMINST11SC04). NR 26 TC 2 Z9 2 U1 7 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD MAR PY 2015 VL 3 IS 3 BP 336 EP 341 DI 10.1002/adom.201400483 PG 6 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA CD6SF UT WOS:000351218800004 ER PT J AU Dominy, NJ Ikram, S Moritz, GL Christensen, JN Wheatley, PV Chipman, JW AF Dominy, Nathaniel J. Ikram, Salima Moritz, Gillian L. Christensen, John N. Wheatley, Patrick V. Chipman, Jonathan W. TI Mummified baboons clarify ancient Red Sea trade routes SO AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY LA English DT Meeting Abstract CT 84th Annual Meeting of the American-Association-of-Physical-Anthropologists CY MAR 25-28, 2015 CL St Louis, MO SP Amer Assoc Phys Anthropologists C1 [Dominy, Nathaniel J.] Dartmouth Coll, Anthropol, Hanover, NH 03755 USA. [Ikram, Salima] Amer Univ, Sociol Anthropol Psychol & Egyptol, Cairo, Egypt. [Dominy, Nathaniel J.; Moritz, Gillian L.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA. [Christensen, John N.; Wheatley, Patrick V.] Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA USA. [Chipman, Jonathan W.] Dartmouth Coll, Dept Geog, Hanover, NH 03755 USA. RI Christensen, John/D-1475-2015 NR 0 TC 0 Z9 0 U1 3 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-9483 EI 1096-8644 J9 AM J PHYS ANTHROPOL JI Am. J. Phys. Anthropol. PD MAR PY 2015 VL 156 SU 60 SI SI BP 122 EP 123 PG 2 WC Anthropology; Evolutionary Biology SC Anthropology; Evolutionary Biology GA CC8CE UT WOS:000350594900227 ER PT J AU Warner, MM Herrmann, NP Li, ZH Trask, WR Regan, LA Jantz, RL AF Warner, Monica M. Herrmann, Nicholas P. Li, Zheng-Hua Trask, Willa R. Regan, Laura A. Jantz, Richard L. TI The consequence of the global supermarket on the isotope signatures of modern humans SO AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY LA English DT Meeting Abstract CT 84th Annual Meeting of the American-Association-of-Physical-Anthropologists CY MAR 25-28, 2015 CL St Louis, MO SP Amer Assoc Phys Anthropologists C1 [Warner, Monica M.; Herrmann, Nicholas P.] Mississippi State Univ, Dept Anthropol & Middle Eastern Cultures, Mississippi State, MS 39762 USA. [Li, Zheng-Hua] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Trask, Willa R.] Texas A&M Univ, Dept Anthropol, College Stn, TX 77843 USA. [Regan, Laura A.] US Air Force, Off Armed Forces Med Examiner, Washington, DC USA. [Jantz, Richard L.] Univ Tennessee, Dept Anthropol, Knoxville, TN 37996 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-9483 EI 1096-8644 J9 AM J PHYS ANTHROPOL JI Am. J. Phys. Anthropol. PD MAR PY 2015 VL 156 SU 60 SI SI BP 319 EP 320 PG 2 WC Anthropology; Evolutionary Biology SC Anthropology; Evolutionary Biology GA CC8CE UT WOS:000350594902194 ER PT J AU Christofidou-Solomidou, M Pietrofesa, RA Arguiri, E Schweitzer, KS Berdyshev, EV McCarthy, M Corbitt, A Alwood, JS Yu, YJ Globus, RK Solomides, CC Ullrich, RL Petrache, I AF Christofidou-Solomidou, Melpo Pietrofesa, Ralph A. Arguiri, Evguenia Schweitzer, Kelly S. Berdyshev, Evgeny V. McCarthy, Maureen Corbitt, Astrid Alwood, Joshua S. Yu, Yongjia Globus, Ruth K. Solomides, Charalambos C. Ullrich, Robert L. Petrache, Irina TI Space radiation-associated lung injury in a murine model SO AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY LA English DT Article DE Fe-56; Si-28; protons; gamma radiation; emphysema; oxidative stress; senescence; lung injury; inflammation; hypoxemia ID OBSTRUCTIVE PULMONARY-DISEASE; SMOKE-INDUCED EMPHYSEMA; SPHINGOSINE 1-PHOSPHATE; ANTIOXIDANT DEFENSES; PREMATURE SENESCENCE; IONIZING-RADIATION; OXIDATIVE STRESS; MOUSE MODEL; FIBROSIS; APOPTOSIS AB Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to Cs-137 gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u Fe-56 ions, or 350 MeV/u Si-28 ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy Fe-56 or Si-28 ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective counter-measures for manned deep space missions. C1 [Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A.; Arguiri, Evguenia] Univ Penn, Perelman Sch Med, Dept Med, Pulm Allergy & Crit Care Div, Philadelphia, PA 19104 USA. [Schweitzer, Kelly S.; Petrache, Irina] Indiana Univ, Sch Med, Dept Med, Div Pulm & Crit Care, Indianapolis, IN 46204 USA. [Berdyshev, Evgeny V.] Univ Illinois, Dept Med, Chicago, IL USA. [McCarthy, Maureen; Corbitt, Astrid; Yu, Yongjia; Ullrich, Robert L.] Univ Texas Med Branch, Galveston, TX 77555 USA. [Alwood, Joshua S.] NASA, Postdoctoral Program, Oak Ridge Associated Univ, Moffett Field, CA USA. [Globus, Ruth K.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Solomides, Charalambos C.] Jefferson Univ Hosp, Dept Pathol, Philadelphia, PA USA. [Petrache, Irina] Richard L Roudebush VA Med Ctr, Indianapolis, IN USA. RP Christofidou-Solomidou, M (reprint author), Univ Penn, Dept Med, Pulm Allergy & Crit Care Div, 3615 Civ Ctr Blvd,Abramson Res Bldg,Suite 1016C, Philadelphia, PA 19104 USA. EM melpo@mail.med.upenn.edu FU NASA [NNX09AM08G]; DOE-NASA Interagency Award - Office of Science (Biological and Environmental Research), US Department of Energy [DE-SC0001507]; [NIH-R01 CA133470]; [NIH-RC1AI081251]; [NASA-NNJ11ZSA002NA]; [NIH-RO1HL077328] FX This work was funded by NIH-R01 CA133470 (M. Christofidou-Solomidou), NIH-RC1AI081251 (M. Christofidou-Solomidou), NASA-NNJ11ZSA002NA (M. Christofidou-Solomidou), NIH-RO1HL077328 (I. Petrache), and NASA NNX09AM08G (R. L. Ullrich) and DOE-NASA Interagency Award no. DE-SC0001507, supported by the Office of Science (Biological and Environmental Research), US Department of Energy (R. K. Globus). NR 70 TC 8 Z9 8 U1 2 U2 12 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 1040-0605 EI 1522-1504 J9 AM J PHYSIOL-LUNG C JI Am. J. Physiol.-Lung Cell. Mol. Physiol. PD MAR 1 PY 2015 VL 308 IS 5 BP L416 EP L428 DI 10.1152/ajplung.00260.2014 PG 13 WC Physiology; Respiratory System SC Physiology; Respiratory System GA CD4OD UT WOS:000351062000002 PM 25526737 ER PT J AU Rothenbach, CA Kravchenko, II Gupta, MC AF Rothenbach, Christian A. Kravchenko, Ivan I. Gupta, Mool C. TI Optical diffraction properties of multimicrogratings SO APPLIED OPTICS LA English DT Article ID SURFACE-RELIEF GRATINGS; COUPLED-WAVE ANALYSIS; FABRICATION; RULER AB This paper presents the results of optical diffraction properties of multimicrograting structures fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the individual effects of the several periodic elements of multimicrogratings. The observed optical diffraction pattern is shown to be the combined effect of the periodic and non-periodic elements that define the multimicrogratings and the interaction between different elements. We measured the total transverse electric (TE) diffraction efficiency of multimicrogratings and found it to be 32.1%, which is closely related to the diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor technique. Interference fringes were observed under certain conditions formed by multimicrograting beams interfering with each other. These diffraction structures may find applications in sensing, nanometrology, and optical interconnects. (C) 2015 Optical Society of America C1 [Rothenbach, Christian A.; Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Gupta, MC (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. EM mgupta@virginia.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU NSF I/UCRC; NASA Langley Professor programs FX The authors would like to thank NSF I/UCRC and NASA Langley Professor programs for the partial financial support to this project. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 18 TC 1 Z9 1 U1 3 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 1 PY 2015 VL 54 IS 7 BP 1808 EP 1818 DI 10.1364/AO.54.001808 PG 11 WC Optics SC Optics GA CC3QC UT WOS:000350263000034 ER PT J AU Willingham, D Naes, BE Burns, KA Reid, BD AF Willingham, D. Naes, B. E. Burns, K. A. Reid, B. D. TI Secondary ion mass spectrometry signatures for verifying declarations of fissile-material production SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Secondary ion mass spectrometry; Signatures; Isotope ratios; Uranium enrichment; Nuclear archeology ID URANIUM HEXAFLUORIDE; CAMECA IMS-4F; TOF-SIMS; TREATY; CORROSION; XPS AB Direct analysis of uranium enrichment facility components were performed using secondary ion mass spectrometry (SIMS). A standard protocol was developed to enable preparation of SIMS samples from a corroded pipe piece without disturbing the corrosion layer. Unique uranium, oxygen and fluorine containing signatures were discovered in the corrosion layer by performing a mass scan of the region of interest from 230 to 280 amu. These signatures identified the source of the corrosion layer as uranium hexafluoride (UF6) or an associated hydrolysis product. Isotopic analysis of the corrosion layer determined enrichment of U-235 to a value of 0.0116 +/- 0.0019 for the U-235/U-238 isotopic ratio as compared to the NIST traceable standard (CRM 112-A) with a natural U-235/U-238 isotopic ratio of 0.007254 +/- 0.000004. SIMS depth analysis revealed that the corrosion layer was isotopically homogenous to a depth of similar to 23.5 mu m. Optical profilometry measurements prior to and following SIMS depth analysis were used to determine a sputter rate of 0.48 nm/s for 18.5 keV O- ion bombardment of the corrosion layer. The data presented is conclusive evidence that SIMS depth analysis can be used to identify novel nuclear archeology signatures from uranium enrichment components and perform meaningful isotopic analysis of these signatures. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Willingham, D.; Naes, B. E.; Burns, K. A.; Reid, B. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Willingham, D (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. OI Willingham, David/0000-0002-7166-8994 NR 26 TC 0 Z9 0 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAR PY 2015 VL 97 BP 125 EP 129 DI 10.1016/j.apradiso.2014.12.015 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CC7AQ UT WOS:000350520500021 PM 25575376 ER PT J AU Comparat, J Richard, J Kneib, JP Ilbert, O Gonzalez-Perez, V Tresse, L Zoubian, J Arnouts, S Brownstein, JR Baugh, C Delubac, T Ealet, A Escoffier, S Ge, J Jullo, E Lacey, C Ross, NP Schlegel, D Schneider, DP Steele, O Tasca, L Yeche, C Lesser, M Jiang, ZJ Jing, YP Fan, Z Fan, XH Ma, J Nie, JD Wang, JL Wu, ZY Zhang, TM Zhou, X Zhou, ZM Zou, H AF Comparat, Johan Richard, Johan Kneib, Jean-Paul Ilbert, Olivier Gonzalez-Perez, Violeta Tresse, Laurence Zoubian, Julien Arnouts, Stephane Brownstein, Joel R. Baugh, Carlton Delubac, Timothee Ealet, Anne Escoffier, Stephanie Ge, Jian Jullo, Eric Lacey, Cedric Ross, Nicholas P. Schlegel, David Schneider, Donald P. Steele, Oliver Tasca, Lidia Yeche, Christophe Lesser, Michael Jiang, Zhaoji Jing, Yipeng Fan, Zhou Fan, Xiaohui Ma, Jun Nie, Jundan Wang, Jiali Wu, Zhenyu Zhang, Tianmeng Zhou, Xu Zhou, Zhimin Zou, Hu TI The 0.1 < z < 1.65 evolution of the bright end of the [O II] luminosity function SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE catalogs; surveys; galaxies: luminosity function, mass function; cosmology: observations; galaxies: statistics; galaxies: evolution ID STAR-FORMATION RATE; DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; HIERARCHICAL GALAXY FORMATION; SIMILAR-TO 1; PHOTOMETRIC REDSHIFTS; FORMING GALAXIES; DEEP SURVEY; SDSS-III; H-ALPHA AB We present the [O II] (lambda lambda 3729; 3726) luminosity function measured in the redshift range 0.1 < z < 1.65 with unprecedented depth and accuracy. Our measurements are based on medium resolution flux-calibrated spectra of emission line galaxies with the visual and near UV FOcal Reducer and low dispersion Spectrograph (FORS2) for the Very Large Telescope (VLT) of the European Southern Observatory (ESO) and with the SDSS-III/BOSS spectrograph. The FORS2 spectra and the corresponding catalog containing redshifts and line fluxes are released along with this paper. In this work we use a novel method to combine these surveys with GAMA, zCOSMOS, and VVDS, which have di ff erent target selection, producing a consistent weighting scheme to derive the [O II] luminosity function. The [O II] luminosity function is in good agreement with previous independent estimates. The comparison with two stateof- the-art semi-analytical models is good, which is encouraging for the production of mock catalogs of [O II] flux limited surveys. We observe the bright end evolution over 8.5 Gyr: we measure the decrease of log L-* from 42.4 erg/s at redshift 1.44 to 41.2 at redshift 0.165 and we find that the faint end slope flattens when redshift decreases. This measurement confirms the feasibility of the target selection of future baryonic acoustic oscillation surveys aiming at observing [OII] flux limited samples. C1 [Comparat, Johan] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Comparat, Johan] UAM, CSIC, Inst Fis Teor, Madrid, Spain. [Ilbert, Olivier; Tresse, Laurence; Arnouts, Stephane; Jullo, Eric; Tasca, Lidia] Univ Aix Marseille, LAM, F-13388 Marseille 13, France. [Ilbert, Olivier; Tresse, Laurence; Arnouts, Stephane; Jullo, Eric; Tasca, Lidia] CNRS, UMR 7326, F-13388 Marseille 13, France. [Richard, Johan] Univ Lyon 1, Observ Lyon, CRAL, F-69561 St Genis Laval, France. [Kneib, Jean-Paul; Delubac, Timothee] EPFL, Lab Astrophys, Observ Sauverny, CH-1290 Versoix, Switzerland. [Gonzalez-Perez, Violeta; Zoubian, Julien; Ealet, Anne; Escoffier, Stephanie] Univ Aix Marseille, CPPM, CNRS, IN2P3, Marseille, France. [Gonzalez-Perez, Violeta; Baugh, Carlton; Lacey, Cedric] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schlegel, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Steele, Oliver] Univ Portsmouth, ICG, Portsmouth PO1 3FX, Hants, England. [Yeche, Christophe] CEA, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Ge, Jian] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Jiang, Zhaoji; Fan, Zhou; Ma, Jun; Nie, Jundan; Wang, Jiali; Wu, Zhenyu; Zhang, Tianmeng; Zhou, Xu; Zhou, Zhimin; Zou, Hu] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100012, Peoples R China. [Lesser, Michael; Fan, Xiaohui] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Jing, Yipeng] Shangai Jiao Tong Univ, Dept Phys & Astron, Ctr Astron & Astrophys, Shanghai 200240, Peoples R China. RP Comparat, J (reprint author), Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. EM johan.comparat@uam.es RI Kneib, Jean-Paul/A-7919-2015; Baugh, Carlton/A-8482-2012; EPFL, Physics/O-6514-2016; OI Kneib, Jean-Paul/0000-0002-4616-4989; Baugh, Carlton/0000-0002-9935-9755; Escoffier, Stephanie/0000-0002-2847-7498; Jullo, Eric/0000-0002-9253-053X FU MINECO (Spain) [AYA2012-31101]; ERC starting grant CALENDS; LIDA ERC; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Agence Nationale de la Recherche [ANR-08-BLAN-0222]; BIS National E-infrastructure [ST/K00042X/1]; STFC [ST/H008519/1]; STFC DiRAC Operations [ST/K003267/1]; Durham University; European Research Council [DEGAS-259586]; Science and Technology Facilities Council [ST/F001166/1]; CFHT; CEA/DAPNIA; Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences [KJCX2-EW-T06]; National Astronomical Observatories; Chinese Academy of Sciences and Steward Observatory, University of Arizona, USA; STFC (UK); ARC (Australia); AAO FX We thank Alvaro Orsi for sending us his model predictions and for the useful discussion. We thank the referee for constructive and insightful comments on the draft. J.C. acknowledges financial support from MINECO (Spain) under project number AYA2012-31101. J.R. acknowledges support from the ERC starting grant CALENDS. J.P.K. and T.D. acknowledge support from the LIDA ERC advanced grant. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. The BOSS French Participation Group is supported by Agence Nationale de la Recherche under grant ANR-08-BLAN-0222. This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, and STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. V.G.P. acknowledges support from a European Research Council Starting Grant (DEGAS-259586) and the Science and Technology Facilities Council (grant number ST/F001166/1). Based on observations obtained with MegaPrime/Megacam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The SCUSS is funded by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (No. KJCX2-EW-T06). It is also an international cooperative project between National Astronomical Observatories, Chinese Academy of Sciences and Steward Observatory, University of Arizona, USA. Technical supports and observational assistances of the Bok telescope are provided by Steward Observatory. The project is managed by the National Astronomical Observatory of China and Shanghai Astronomical Observatory. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalog is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey.; Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org. NR 69 TC 18 Z9 18 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2015 VL 575 AR UNSP A40 DI 10.1051/0004-6361/201424767 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3LA UT WOS:000350249100040 ER PT J AU Sawvel, EJ Willis, R West, RR Casuccio, GS Norris, G Kumar, N Hammond, D Peters, TM AF Sawvel, Eric J. Willis, Robert West, Roger R. Casuccio, Gary S. Norris, Gary Kumar, Naresh Hammond, Davyda Peters, Thomas M. TI Passive sampling to capture the spatial variability of coarse particles by composition in Cleveland, OH SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE PM10-2.5, particulate matter; Computer controlled scanning electron microscopy; Single particle analysis ID LOS-ANGELES AREA; PARTICULATE MATTER; AIR-POLLUTION; TEMPORAL VARIABILITY; CHEMICAL-COMPOSITION; AMBIENT PARTICULATE; URBAN AREA; PM10-2.5; AEROSOL; MASS AB Passive samplers deployed at 25 sites for three, week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles determined using computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM-EDS) was then used to estimate PM10-2.5 concentrations (mu g m(-3)) and its components in 13 particle classes. The highest PM10-2.5 mean mass concentrations were observed at three central industrial sites (35 mu g m(-3), 43 mu g m(-3), and 48 mu g m(-3)) whereas substantially lower mean concentrations were observed to the west and east of this area at suburban background sites (13 mu g m(-3) and 15 mu g m(-3)). PM10-2.5 mass and components associated with steel and cement production (Fe-oxide and Ca-rich) exhibited substantial heterogeneity with elevated concentrations observed in the river valley, stretching from Lake Erie south through the central industrial area and in the case of Fe-oxide to a suburban valley site. Other components (e.g., Si/Al-rich typical of crustal material) were considerably less heterogeneous. This work shows that some species of coarse particles are considerably more spatially heterogeneous than others in an urban area with a strong industrial core. It also demonstrates that passive sampling coupled with analysis by CCSEM-EDS is a useful tool to assess the spatial variability of particulate pollutants by composition. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license C1 [Sawvel, Eric J.; Peters, Thomas M.] Univ Iowa, Iowa City, IA 52242 USA. [Willis, Robert; Norris, Gary] US EPA, Off Res & Dev, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [West, Roger R.; Casuccio, Gary S.] RJ Lee Grp Inc, Monroeville, PA USA. [Kumar, Naresh] Univ Miami, Miami, FL USA. [Hammond, Davyda] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Peters, TM (reprint author), Univ Iowa, 145 N Riverside Dr,S331 CPHB, Iowa City, IA 52242 USA. EM thomas-m-peters@uiowa.edu FU United States Environmental Protection Agency through Office of Research and Development [EP09D000463, EP11D000010] FX The authors thank the numerous support staff of EPA Region 5, Cleveland Department of Air Quality, and Alion Science and Technology that were involved in deployment and retrieval of passive samplers. The United States Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described here under contracts EP09D000463 and EP11D000010 to the University of Iowa. It has been subjected to Agency review and approved for publication. NR 31 TC 6 Z9 6 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAR PY 2015 VL 105 BP 61 EP 69 DI 10.1016/j.atmosenv.2015.01.030 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CD0QW UT WOS:000350780000009 ER PT J AU Gelfand, I Robertson, GP AF Gelfand, Ilya Robertson, G. Philip TI A reassessment of the contribution of soybean biological nitrogen fixation to reactive N in the environment SO BIOGEOCHEMISTRY LA English DT Article DE Nitrogen uptake; N-15 natural abundance; Legumes; Roots; Yield response; Irrigation ID N-2 FIXATION; LEGUMES; FUTURE AB The expansion of soybean (Glycine max (L.) Merr) acreage, increasing yields, and recent nitrogen (N) fertilization recommendations could have a major effect on the contribution of biological N fixation (BNF) in soybeans to reactive nitrogen (N-r) in the environment. We used N-15 natural abundance to separate fixed N into grain, aboveground vegetative biomass, and roots along a 9-point N-fertilizer gradient to ask: 1) is the belowground BNF contribution sufficiently different from aboveground to affect regional estimates of soybean N-r production based on harvested biomass, and 2) how does N fertilizer affect soybean yield and BNF's contribution to different tissues? The contribution of root and vegetative biomass to overall plant BNF was five times lower than that for grain. Including this difference in BNF extrapolations translates to 3.5 +/- A 0.5 Tg N-r yr(-1) for total US soybean production, similar to 37 % lower than earlier estimates that did not differentiate tissue source. Production of N-r ranged between 35 +/- A 11 and 73 +/- A 5 g Nr kg(-1) grain and was affected by both fertilization and irrigation. In all cases N credits to the next rotational crop were minor. N-fertilization at even very low levels (17-50 kg N ha(-1)) did not affect yield, but grain N content increased with fertilizer level. The percent BNF contributed to plant N decreased linearly with increasing fertilization, in grain from 49 +/- A 8 % in unfertilized plots to a plateau of 16 +/- A 6 % at fertilization a parts per thousand yen85 kg N ha(-1); in aboveground vegetative biomass from 77 +/- A 4 % to a plateau of 11 +/- A 11 % at 146 kg N ha(-1); and in roots from 88 +/- A 12 % to a plateau of 41 +/- A 6 % at 146 kg N ha(-1). The average whole-plant BNF contribution decreased from similar to 84 % in unfertilized plots to a plateau of similar to 34 % at fertilization rates greater than 84 kg ha(-1). Results underscore the unnecessary expense and environmental burden of adding N fertilizer to modern soybean varieties, and provide a refined lower estimate for the contribution of soybean N fixation to the US and global N-r budgets of 3.5 and 10.4 Tg Nr yr(-1), respectively. C1 [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Robertson, G. Philip] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. RP Gelfand, I (reprint author), Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. EM ilya.gelfand@kbs.msu.edu RI Gelfand, Ilya/J-9017-2012; OI Gelfand, Ilya/0000-0002-8576-0978; Robertson, G/0000-0001-9771-9895 FU DOE Office of Science [DE-FC02-07ER64494, KP1601050]; Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830, OBP 20469-19145]; US National Science Foundation LTER program [DEB 1027253]; MSU AgBioResearch FX We thank E.K. Peregrine (USDA ARS, Urbana, IL) for providing non-nodulating germplasm and J. Simmons for agronomic field assistance. We also thank GreenCare Fertilizers, Chicago, IL, for providing the N-free micronutrient solution. Financial support for this work was provided by the DOE Office of Science (DE-FC02-07ER64494, KP1601050) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830, OBP 20469-19145), the US National Science Foundation LTER program (DEB 1027253), and MSU AgBioResearch. NR 20 TC 4 Z9 5 U1 5 U2 49 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD MAR PY 2015 VL 123 IS 1-2 BP 175 EP 184 DI 10.1007/s10533-014-0061-4 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CC9GC UT WOS:000350675300011 ER PT J AU Allenby, BR AF Allenby, Braden R. TI The paradox of dominance: The age of civilizational conflict SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE civilizational conflict; civil-military relationships; fourth generation warfare; Islamic State; ISIS; new generation warfare; unrestricted warfare AB American dominance of conventional military capabilities has forced potential competitors to explore asymmetric responses. Some of these, such as cyber conflict capabilities, may appear primarily tactical, but taken together with emerging strategic doctrines such as Russian new generation warfare or Chinese unrestricted warfare and unpredictable and potent technological evolution, an arguably new form of warfarecivilizational conflictis emerging. This does not mean that current strategic and operational doctrine and activities are obsolete, but it does mean that a new conceptual framework for conflict among cultures is required, within which such more traditional operations are developed and deployed. C1 [Allenby, Braden R.] Arizona State Univ, Mil Operat & Natl Secur, Engn & Eth, Tempe, AZ 85287 USA. [Allenby, Braden R.] Arizona State Univ, Mil Operat & Natl Secur, Civil Environm & Sustainable Engn, Tempe, AZ 85287 USA. [Allenby, Braden R.] Arizona State Univ, Mil Operat & Natl Secur, Consortium Emerging Technol, Tempe, AZ 85287 USA. [Allenby, Braden R.] AAAS, Washington, DC USA. [Allenby, Braden R.] US Naval Acad, Annapolis, MD 21402 USA. [Allenby, Braden R.] Lawrence Livermore Natl Lab, Energy & Environm Syst, Livermore, CA USA. [Allenby, Braden R.] Natl Acad Engn, Washington, DC 20418 USA. RP Allenby, BR (reprint author), Arizona State Univ, Mil Operat & Natl Secur, Engn & Eth, Tempe, AZ 85287 USA. FU Lincoln Center for Applied Ethics at Arizona State University, USA FX The author would like to thank the Lincoln Center for Applied Ethics at Arizona State University, USA for its support of his work in the applied ethics of emerging military and security technologies. NR 12 TC 0 Z9 0 U1 0 U2 11 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 EI 1938-3282 J9 B ATOM SCI JI Bull. Atom. Scient. PD MAR-APR PY 2015 VL 71 IS 2 BP 60 EP 74 DI 10.1177/0096340215571911 PG 15 WC International Relations; Social Issues SC International Relations; Social Issues GA CD0JJ UT WOS:000350757800009 ER PT J AU Guo, CP Shang, SL Du, ZM Jablonski, PD Gao, MC Liu, ZK AF Guo, Cuiping Shang, ShunLi Du, Zhenmin Jablonski, Paul D. Gao, Michael C. Liu, Zi-Kui TI Thermodynamic modeling of the CaO-CaF2-Al2O3 system aided by first-principles calculations SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article DE CaO-CaF2-Al2O3; Thermodynamic modeling; First-principles calculations ID GENERALIZED GRADIENT APPROXIMATION; PHASE EQUILIBRIUM DIAGRAM; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CALCIUM-FLUORIDE; ELASTIC CONSTANTS; ELECTRICAL CONDUCTIVITY; SLAGS; CAO; CAF2 AB The CaO-CaF2, Al2O3-CaF2, and CaO-CaF2-Al2O3 systems are modeled using the CALculation of PHAse Diagram (CALPHAD) approach. The liquid phase is described by a two-sublattice ionic model (Al+3, Ca+2)(p)(F-, O-2, AlO3/2)(q). The compounds Al2O3, CaF2, and CaO are treated as stoichiometric phases. The Gibbs energy of formation of (CaO)(11)(Al2O3)(7)(CaF2) is predicted by means of first-principles calculations. Phase diagrams of the CaO-CaF2 and Al2O3-CaF2 quasibinaries as well as the isothermal and vertical sections and the liquid surface projection of the CaO-CaF2-Al2O3 system are calculated, showing favorable accord with available experiments in the literature. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Guo, Cuiping; Shang, ShunLi; Liu, Zi-Kui] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Guo, Cuiping; Du, Zhenmin] Univ Sci & Technol Beijing, Dept Mat Sci & Engn, Beijing 100083, Peoples R China. [Jablonski, Paul D.] Dept Energy, Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, Michael C.] URS Corp, Albany, OR 97321 USA. RP Guo, CP (reprint author), Univ Sci & Technol Beijing, Dept Mat Sci & Engn, Xueyuan Rd 30, Beijing 100083, Peoples R China. EM cpguo2003@sina.com RI Shang, Shun-Li/A-6564-2009; Liu, Zi-Kui/A-8196-2009 OI Shang, Shun-Li/0000-0002-6524-8897; Liu, Zi-Kui/0000-0003-3346-3696 FU National Energy Technology Laboratory [2010-SC-RES-30033026] FX This work was financially supported by the National Energy Technology Laboratory (under Grant no. 2010-SC-RES-30033026 and the RES Contract DE-FE00400 in Turbines) in the United States. First-principles calculations were carried out on the LION clusters at the Pennsylvania State University supported by the Materials Simulation Center and the Research Computing and Cyberinfrastructure unit at the Pennsylvania State University. Calculations were also carried out on the CyberStar cluster funded by NSF through Grant OCI-0821527. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 70 TC 0 Z9 0 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 EI 1873-2984 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD MAR PY 2015 VL 48 BP 113 EP 122 DI 10.1016/j.calphad.2014.12.002 PG 10 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CD0SP UT WOS:000350784500013 ER PT J AU Zhao, FZ Liu, ZY Xu, WQ Yao, SY Si, R Johnston-Peck, AC Martinez-Arias, A Hanson, JC Senanayake, SD Rodriguez, JA AF Zhao, Fuzhen Liu, Zongyuan Xu, Wenqian Yao, Siyu Si, Rui Johnston-Peck, Aaron C. Martinez-Arias, Arturo Hanson, Jonathan C. Senanayake, Sanjaya D. Rodriguez, Jos A. TI Pulse Studies to Decipher the Role of Surface Morphology in CuO/CeO2 Nanocatalysts for the Water Gas Shift Reaction SO CATALYSIS LETTERS LA English DT Article DE CuO/CeO2; Nanospheres; Nanocubes; Water-gas shift reaction; Transient studies ID IN-SITU CHARACTERIZATION; CATALYTIC-ACTIVITY; CO OXIDATION; CU; HYDROGEN AB The water-gas shift reaction (WGS, CO + H2O -> H-2 + CO2) was studied over CuO/CeO2 catalysts with two different ceria particle morphologies, in the form of nanospheres (ns) and nanocubes (nc). To understand the strong dependence of the WGS reaction activity on the ceria nanoshapes, pulses of CO (without and with water vapor) were employed during in situ X-ray diffraction and X-ray absorption near edge structure measurements done to characterize the catalysts. The results showed that CuO/CeO2 (ns) exhibited a substantially better activity than CuO/CeO2 (nc). The higher activity was associated with the unique properties of CuO/CeO2 (ns), such as the easier reduction of highly dispersed CuO to metallic Cu, the stability of metallic Cu and a larger concentration of Ce3+ in CeO2 (ns). C1 [Zhao, Fuzhen] South Cent Univ Nationalities, State Ethn Affairs Commiss, Key Lab Catalysis & Mat Sci, Wuhan 430074, Hubei, Peoples R China. [Zhao, Fuzhen] South Cent Univ Nationalities, Minist Educ, Coll Chem & Mat, Wuhan 430074, Hubei, Peoples R China. [Zhao, Fuzhen; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Si, Rui; Hanson, Jonathan C.; Senanayake, Sanjaya D.; Rodriguez, Jos A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Johnston-Peck, Aaron C.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Martinez-Arias, Arturo] CSIC, ICP, E-28049 Madrid, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI COST, CM1104/I-8057-2015; Hanson, jonathan/E-3517-2010; Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program [DE-AC02-98CH10886]; National Natural Science Foundation of China [21303272]; MINECO [CTQ2012-32928]; EU COST CM1104 action FX The work performed at Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program under contract DE-AC02-98CH10886 contract. This work used resources of the National Synchrotron Light Source, which is a DOE Office of Science User Facility. The financial support from the National Natural Science Foundation of China (Grant 21303272) is gratefully acknowledged. Financial support from MINECO (CTQ2012-32928 project) and EU COST CM1104 action is also acknowledged. NR 25 TC 3 Z9 3 U1 10 U2 52 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD MAR PY 2015 VL 145 IS 3 BP 808 EP 815 DI 10.1007/s10562-015-1482-y PG 8 WC Chemistry, Physical SC Chemistry GA CC9GS UT WOS:000350677000009 ER PT J AU Pendyala, VRR Shafer, WD Jacobs, G Graham, UM Khalid, S Davis, BH AF Pendyala, Venkat Ramana Rao Shafer, Wilson D. Jacobs, Gary Graham, Uschi M. Khalid, Syed Davis, Burtron H. TI Fischer-Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts SO CATALYSIS LETTERS LA English DT Article DE Aqueous-phase; Fischer-Tropsch synthesis; Ruthenium nanoparticle; Reducing agent; Activity; Product selectivity; Supported catalysts ID WATER-GAS SHIFT; LIQUID-PHASE; CO; SELECTIVITY; MECHANISM; HYDROCARBONS; SPECTROSCOPY; TEMPERATURE; INTERFACE; ALCOHOLS AB The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer-Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in this study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. Nevertheless, the activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. The hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C-5+ selectivity and lower selectivity to methane) than all other catalysts tested. C1 [Pendyala, Venkat Ramana Rao; Shafer, Wilson D.; Jacobs, Gary; Graham, Uschi M.; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Khalid, Syed] Brookhaven Natl Labs, NSLS, Upton, NY 11973 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu RI Jacobs, Gary/M-5349-2015 OI Jacobs, Gary/0000-0003-0691-6717 FU Commonwealth of Kentucky; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the Commonwealth of Kentucky, and also in part at the National Synchrotron Light Source, Brookhaven National Laboratory, which was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 38 TC 2 Z9 2 U1 8 U2 65 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD MAR PY 2015 VL 145 IS 3 BP 893 EP 904 DI 10.1007/s10562-014-1462-7 PG 12 WC Chemistry, Physical SC Chemistry GA CC9GS UT WOS:000350677000019 ER PT J AU Jeong, ES Park, CI Jin, ZL Hwang, IH Son, JK Kim, MY Choi, JS Han, SW AF Jeong, E-S Park, C-I Jin, Zhenlan Hwang, I. -H. Son, J. -K. Kim, Mi-Young Choi, Jae-Soon Han, Sang-Wook TI Temperature-Dependent Local Structural Properties of Redox Pt Nanoparticles on TiO2 and ZrO2 Supports SO CATALYSIS LETTERS LA English DT Article DE Metal support interaction; Oxidation catalysts; EXAFS, XANES; Pt catalysts; SiO2, TiO2, ZrO2 ID ABSORPTION FINE-STRUCTURE; X-RAY; PLATINUM NANOPARTICLES; HYDROGEN CHEMISORPTION; PARTICLE-SIZE; CO OXIDATION; METAL; CATALYSTS; SPECTROSCOPY; EXAFS AB This study examined the local structural properties of Pt nanoparticles on SiO2, TiO2-SiO2, and ZrO2-SiO2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L-3-edge in a temperature range from 300 to 700 K in He, H-2, and O-2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO2-SiO2 and ZrO2-SiO2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO2 supports. Contrary to the SiO2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO2-SiO2 and ZrO2-SiO2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO2 or ZrO2 on the surface of SiO2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt-Ti and Pt-Zr bonds. C1 [Jeong, E-S; Park, C-I; Jin, Zhenlan; Hwang, I. -H.; Son, J. -K.; Han, Sang-Wook] Chonbuk Natl Univ, Dept Phys Educ, Jeonju 561756, South Korea. [Jeong, E-S; Park, C-I; Jin, Zhenlan; Hwang, I. -H.; Son, J. -K.; Han, Sang-Wook] Chonbuk Natl Univ, Inst Fus Sci, Jeonju 561756, South Korea. [Kim, Mi-Young; Choi, Jae-Soon] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Han, SW (reprint author), Chonbuk Natl Univ, Dept Phys Educ, Jeonju 561756, South Korea. EM shan@jbnu.ac.kr OI Choi, Jae-Soon/0000-0002-8162-4207 FU Basic Science Research Program through the National Research Foundation of Korea government (NRF) Grant - Korean Ministry of Education (MOE) [2012R1A1A4A01007669]; Ministry of Science, ICT and Future Planning (MOSIP) [2014M2B2A4030495]; PAL-XFEL project, Korea; U.S. Department of Energy (DOE) Vehicle Technologies Office FX The work at the Chonbuk National University was conducted under the auspices of the Basic Science Research Program through the National Research Foundation of Korea government (NRF) Grant funded by the Korean Ministry of Education (MOE) (No. 2012R1A1A4A01007669), the Ministry of Science, ICT and Future Planning (MOSIP) (No. 2014M2B2A4030495), and the PAL-XFEL project, Korea. The XAFS data were collected at the 9BM of APS and at the 8C and the 10C beamlines of PLS. The work at the Oak Ridge National Laboratory was supported by the U.S. Department of Energy (DOE) Vehicle Technologies Office. The authors gratefully acknowledge the support and guidance of program managers Gurpreet Singh, Ken Howden, and Leo Breton at DOE. NR 34 TC 4 Z9 4 U1 7 U2 36 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD MAR PY 2015 VL 145 IS 3 BP 971 EP 983 DI 10.1007/s10562-015-1483-x PG 13 WC Chemistry, Physical SC Chemistry GA CC9GS UT WOS:000350677000028 ER PT J AU Yang, B Zhang, YC Qian, Y Huang, AN Yan, HP AF Yang, Ben Zhang, Yaocun Qian, Yun Huang, Anning Yan, Huiping TI Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation SO CLIMATE DYNAMICS LA English DT Article DE Parameter calibration; The East Asian summer monsoon precipitation; Convection scheme; WRF model simulation ID REGIONAL CLIMATE MODEL; HUAI RIVER VALLEY; PART I; UNCERTAINTY QUANTIFICATION; MERIDIONAL TELECONNECTION; INTRASEASONAL VARIATIONS; RADIATIVE-TRANSFER; DIURNAL CYCLE; WESTERLY JET; PLUME MODEL AB Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian summer monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved. The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. By using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved. C1 [Yang, Ben; Zhang, Yaocun; Huang, Anning] Nanjing Univ, Sch Atmospher Sci, Nanjing 210093, Jiangsu, Peoples R China. [Qian, Yun; Yan, Huiping] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yan, Huiping] Lanzhou Univ, Sch Atmospher Sci, Lanzhou 730000, Peoples R China. RP Zhang, YC (reprint author), Nanjing Univ, Sch Atmospher Sci, Nanjing 210093, Jiangsu, Peoples R China. EM yczhang@nju.edu.cn RI qian, yun/E-1845-2011; Yang, Ben/O-8548-2015 FU National Natural Science Foundation of China [41305084, 41175086]; Special Program for China Meteorology Trade [GYHY201306020]; National Basic Research Program of China (973 Program) [2012CB955901]; Jiangsu Collaborative Innovation Center for Climate Change; U.S. Department of Energy's Office of Science, Regional and Global Climate Modeling Program; DOE [DE-AC05-76RL01830] FX The authors acknowledge two anonymous reviewers and the editor for their constructive comments and suggestions. This work is jointly supported by the National Natural Science Foundation of China (41305084 and 41175086), Special Program for China Meteorology Trade (GYHY201306020), the National Basic Research Program of China (973 Program, 2012CB955901) and the Jiangsu Collaborative Innovation Center for Climate Change. The contribution of Yun Qian in this study is supported by the U.S. Department of Energy's Office of Science as part of the Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 93 TC 8 Z9 8 U1 3 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAR PY 2015 VL 44 IS 5-6 BP 1661 EP 1684 DI 10.1007/s00382-014-2118-4 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CC4ZC UT WOS:000350364500029 ER PT J AU Van Essen, B Hsieh, H Ames, S Pearce, R Gokhale, M AF Van Essen, Brian Hsieh, Henry Ames, Sasha Pearce, Roger Gokhale, Maya TI DI-MMAP-a scalable memory-map runtime for out-of-core data-intensive applications SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS LA English DT Article DE Data-intensive; Memory-map runtime; Memory architecture; NVRAM AB We present DI-MMAP, a high-performance runtime that memory-maps large external data sets into an application's address space and shows significantly better performance than the Linux mmap system call. Our implementation is particularly effective when used with high performance locally attached Flash arrays on highly concurrent, latency-tolerant data-intensive HPC applications. We describe the kernel module and show performance results on a benchmark test suite, a new bioinformatics metagenomic classification application, and on a level-asynchronous Breadth-First Search (BFS) graph traversal algorithm. Using DI-MMAP, the metagenomics classification application performs up to 4x better than standard Linux mmap. A fully external memory configuration of BFS executes up to 7.44x faster than traditional mmap. Finally, we demonstrate that DI-MMAP shows scalable out-of-core performance for BFS traversal in main memory constrained scenarios. Such scalable memory constrained performance would allow a system with a fixed amount of memory to solve a larger problem as well as provide memory QoS guarantees for systems running multiple data-intensive applications. C1 [Van Essen, Brian; Hsieh, Henry; Ames, Sasha; Pearce, Roger; Gokhale, Maya] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Hsieh, Henry] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA. [Pearce, Roger] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA. RP Van Essen, B (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM vanessen1@llnl.gov; hsieh7@llnl.gov; ames4@llnl.gov; pearce7@llnl.gov; gokhale2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-612114)]; LDRD [11-ERD-008, 12-ERD-033]; ASCR DAMASC project FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-612114). Funding partially provided by LDRD 11-ERD-008, LDRD 12-ERD-033, and the ASCR DAMASC project. The metagenomic classification algorithm was developed by Jonathan Allen, David Hysom, and Sasha Ames, all of LLNL. Portions of experiments were performed at the Livermore Computing facility resources, with special thanks to Dave Fox and Ramon Newton. NR 14 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1386-7857 EI 1573-7543 J9 CLUSTER COMPUT JI Cluster Comput. PD MAR PY 2015 VL 18 IS 1 BP 15 EP 28 DI 10.1007/s10586-013-0309-0 PG 14 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA CC5JS UT WOS:000350395500002 ER PT J AU Mroue, R Inman, J Mott, J Budunova, I Bissell, MJ AF Mroue, Rana Inman, Jamie Mott, Joni Budunova, Irina Bissell, Mina J. TI Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland SO DEVELOPMENTAL BIOLOGY LA English DT Article DE Mammary gland; Myoepithelial; Connexin; Gap junctions; Contraction; Lactation ID GAP JUNCTIONAL COMMUNICATION; TRAFFICKING PATHWAYS; MOUSE; CHANNELS; DIFFERENTIATION; CX43; MORPHOGENESIS; PHENOTYPE; MICE; OVEREXPRESSION AB Intercellular communication is essential for glandular functions and tissue homeostasis. Gap junctions couple cells homotypically and heterotypically and co-ordinate reciprocal responses between the different cell types. Connexins (Cxs) are the main mammalian gap junction proteins, and the distribution of some Cx subtypes in the heterotypic gap junctions is not symmetrical; in the murine mammary gland, Cx26, Cx30 and Cx32 are expressed only in the lumina] epithelial cells and Cx43 is expressed only in myoepithelial cells. Expression of all four Cxs peaks during late pregnancy and throughout lactation suggesting essential roles for these proteins in the functional secretory activity of the gland. Transgenic (Tg) mice over-expressing Cx26 driven by keratin 5 promoter had an unexpected mammary phenotype: the mothers were unable to feed their pups to weaning age leading to litter starvation and demise in early to mid-lactation. The mammary gland of K5-Cx26 female mice developed normally and produced normal levels of milk protein, suggesting a defect in delivery rather than milk production. Because the mammary gland of K5-Cx26 mothers contained excessive milk, we hypothesized that the defect may be in an inability to eject the milk. Using ex vivo three-dimensional mammary organoid cultures, we showed that tissues isolated from wild-type FVB females contracted upon treatment with oxytocin, whereas, organoids from Tg mice failed to do so. Unexpectedly, we found that ectopic expression of Cx26 in myoepithelial cells altered the expression of endogenous Cx43 resulting in impaired gap junction communication, demonstrated by defective dye coupling in mammary epithelial cells of Tg mice. Inhibition of gap junction communication or knock-down of Cx43 in organoids from wild-type mice impaired contraction in response to oxytocin, recapitulating the observations from the mammary glands of Tg mice. We conclude that Cx26 acts as a trans-dominant negative for Cx43 function in myoepithelial cells, highlighting the importance of cell type-specific expression of Cxs for optimal contractile function of the mammary myoepithelium. (C) 2014 Elsevier Inc. All rights reserved. C1 [Inman, Jamie; Mott, Joni; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Budunova, Irina] Northwestern Univ, Feinberg Sch Med, Dept Dermatol, Chicago, IL 60611 USA. [Mroue, Rana] UCSF, Helen Diller Family Canc Res Ctr, San Francisco, CA 94158 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, One Cyclotron Rd,MS 977, Berkeley, CA 94720 USA. EM MJBissell@lbl.gov FU U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Cancer Institute [R37CA064786, R01CA057621, U54CA143836]; Breast Cancer Research Foundation; U.S. Department of Defense [BC113176]; Department of Defense Predoctoral Fellowship [W81XWH-08-1-0481]; [R01 CA/AR 82718-01A1] FX We thank Kandice Tanner, Jamie L. Bascom, Hidetoshi Mori, Irene Kuhn, and all members of the M.J.B. laboratory for excellent technical advice and/or fruitful discussions. We thank Rabih Talhouk for invaluable insight and advice, and for critical reading of the manuscript. M.J. Bissells's laboratory was supported by grants from the U.S. Department of Energy, Office of Biological and Environmental Research (contract number DE-AC02-05CH11231); by the National Cancer Institute (R37CA064786, R01CA057621, and U54CA143836); by a grant from Breast Cancer Research Foundation; and from the U.S. Department of Defense (BC113176). I. Budunova's laboratory where the mice where generated was supported by R01 CA/AR 82718-01A1. R.M was supported by a Department of Defense Predoctoral Fellowship (W81XWH-08-1-0481). NR 56 TC 1 Z9 1 U1 3 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0012-1606 EI 1095-564X J9 DEV BIOL JI Dev. Biol. PD MAR 1 PY 2015 VL 399 IS 1 BP 15 EP 26 DI 10.1016/j.ydbio.2014.11.026 PG 12 WC Developmental Biology SC Developmental Biology GA CC9RS UT WOS:000350709300003 PM 25500615 ER PT J AU Cao, PQ Wang, LC Xu, YJ Fu, YB Ma, XH AF Cao, Peiqi Wang, Lincai Xu, Yanjie Fu, Yanbao Ma, Xiaohua TI Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor SO ELECTROCHIMICA ACTA LA English DT Article DE Nickel oxide; Reduced graphene oxide; Mesoporous structure; Energy storage ID CARBON NANOTUBE/MNO2 COMPOSITES; ELECTRODE MATERIAL; GRAPHITE OXIDE; THIN-FILM; NIO; HYBRID; MNO2; NANOSTRUCTURES; STORAGE; NANOPLATELETS AB Mesoporous NiO/reduced graphene oxide composites are successfully synthesized by a facile hydrothermal route. The XRD, FT-IR, Raman, SEM, TEM, and BET analysis are performed for characterizing the microstructure of the as-prepared composites. It can be found that the NiO particles with mesoporous structure are randomly anchored onto the surface of graphene sheets. The electrochemical performance is evaluated by CV, EIS and galvanostatic charge-discharge tests. Experimental data show that the NiO/RGO composites exhibit very high specific capacitance (1016.6 F g (1)) and excellent cycling stability (94.9% capacitance retention after 5000 cycles), which are due to the 3D graphene conductive network and the meosporous structure promoting efficient charge transport and electrolyte diffusion. The results suggest that the NiO/RGO composites are a promising supercapacitor electrode material. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Cao, Peiqi; Wang, Lincai; Xu, Yanjie; Ma, Xiaohua] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Fu, Yanbao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Energy & Environm, Berkeley, CA 94720 USA. RP Ma, XH (reprint author), 220 Handan Rd, Shanghai 200433, Peoples R China. EM xhma@fudan.edu.cn RI Fu, Yanbao/F-9583-2011 OI Fu, Yanbao/0000-0001-7752-680X FU Shanghai Leading Academic Discipline Project [B113] FX This work was supported by Shanghai Leading Academic Discipline Project, Project Number: B113. NR 54 TC 18 Z9 18 U1 14 U2 157 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD MAR 1 PY 2015 VL 157 BP 359 EP 368 DI 10.1016/j.electacta.2014.12.107 PG 10 WC Electrochemistry SC Electrochemistry GA CC5ZZ UT WOS:000350445500046 ER PT J AU Flynn, RW Scott, DE Kuhne, W Soteropoulos, D Lance, SL AF Flynn, R. Wesley Scott, David E. Kuhne, Wendy Soteropoulos, Diana Lance, Stacey L. TI LETHAL AND SUBLETHAL MEASURES OF CHRONIC COPPER TOXICITY IN THE EASTERN NARROWMOUTH TOAD, GASTROPHRYNE CAROLINENSIS SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Gastrophryne; Metal toxicity; Ecotoxicology; Survival; Delayed development ID STAGE-DEPENDENT SUSCEPTIBILITY; ANAXYRUS-TERRESTRIS; MULTIPLE STRESSORS; LARVAL AMPHIBIANS; ARENARUM EMBRYOS; WATER HARDNESS; METAL TOXICITY; SOUTHERN TOADS; XENOPUS-LAEVIS; RANA-ARVALIS AB Many metals are acutely toxic to aquatic organisms at high concentrations and for some metals, such as copper (Cu), even low-level chronic contamination may be cause for conservation concern. Amphibian susceptibility to Cu has been examined in only a few species, and susceptibility is highly variable. The lethal and sublethal effects were examined of chronic aqueous Cu exposure on embryonic and larval eastern narrowmouth toads, Gastrophryne carolinensis. Copper levels as low as 10g Cu/L reduced embryonic and larval survival. Embryonic survivorship varied within- and between-source populations, with embryos derived from uncontaminated-wetland parents having greater survival at lower Cu levels than embryos from parents from a metal-contaminated constructed wetland. At 30g/L, embryos from the contaminated site had greater survival. Overall survival from oviposition to metamorphosis was 68.9% at 0g/L and 5.4% at 10g/L. Similarly, embryos exposed to 50g/L demonstrated developmental delays in transition from embryo to free-swimming larva. These results demonstrate a negative population-specific response to environmentally relevant levels of Cu. Environ Toxicol Chem 2015;34:575-582. (c) 2014 SETAC C1 [Flynn, R. Wesley; Scott, David E.; Soteropoulos, Diana] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29808 USA. [Kuhne, Wendy] Univ Georgia, Savannah River Natl Lab, Dept Energy, Aiken, SC USA. [Kuhne, Wendy; Lance, Stacey L.] Univ S Carolina, Dept Biol, Aiken, SC USA. RP Flynn, RW (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29808 USA. EM wflynn@srel.uga.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU US Department of Energy (DOE) [DE-FC09-07SR22506]; DOE National Nuclear Security Administration FX We thank G. Mills and J. Seaman for assistance with metals analysis and comments on an earlier version of the manuscript. The present study was partially supported by the US Department of Energy (DOE) under Award DE-FC09-07SR22506 to the University of Georgia Research Foundation, and was also made possible by the status of the Savannah River Site as a National Environmental Research Park (NERP), as well as the protection of research wetlands in the Savannah River site Set-Aside Program. Project funding was provided by the DOE National Nuclear Security Administration. Animals were collected under SCDNR permit G-09-03 following the Institutional Animal Care and Use Committee procedures (AUP A2009 10-175-Y2-A0) of the University of Georgia. This manuscript was improved by comments from E. Abernethy, C. Love, C. Rumrill, and M. Winzeler, as well as 2 anonymous reviewers. NR 53 TC 4 Z9 4 U1 2 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD MAR PY 2015 VL 34 IS 3 BP 575 EP 582 DI 10.1002/etc.2835 PG 8 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA CC3XH UT WOS:000350284100012 PM 25475581 ER PT J AU Lomperski, S Gerardi, C Pointer, WD AF Lomperski, S. Gerardi, C. Pointer, W. D. TI Fiber optic distributed temperature sensor mapping of a jet-mixing flow field SO EXPERIMENTS IN FLUIDS LA English DT Article ID FILTERED RAYLEIGH-SCATTERING; INFRARED THERMOGRAPHY; THERMAL FATIGUE; DOMAIN REFLECTOMETRY; DIODE-LASER; FLAMES; VISUALIZATION; SPECTROSCOPY; VELOCIMETRY; THERMOMETRY AB This paper introduces the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70 degrees C discharging from 136 mm hexagonal channels into a 1 x 1 x 1.7 m tank at atmospheric pressure. A 40 m-long, phi 155 mu m fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 x 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. Sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both. C1 [Lomperski, S.; Gerardi, C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Pointer, W. D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Lomperski, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lomperski@anl.gov; cgerardi@anl.gov; pointerwd@ornl.gov OI Pointer, W. David/0000-0003-0946-7937 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Nuclear Energy FX The authors would like to thank Tyler Gorney at Luna Inc. for consultation and invaluable technical exchanges. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was supported by the U.S. Department of Energy, Office of Nuclear Energy. NR 47 TC 3 Z9 3 U1 3 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD MAR PY 2015 VL 56 IS 3 AR 55 DI 10.1007/s00348-015-1918-6 PG 16 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CC9KF UT WOS:000350688000008 ER PT J AU Wagner, JL Casper, KM Beresh, SJ Henfling, JF Spillers, RW Pruett, BO AF Wagner, Justin L. Casper, Katya M. Beresh, Steven J. Henfling, John F. Spillers, Russell W. Pruett, Brian O. TI Mitigation of wind tunnel wall interactions in subsonic cavity flows SO EXPERIMENTS IN FLUIDS LA English DT Article ID COMPRESSIBLE FLOW; OSCILLATIONS AB The flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity-tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6-0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. An acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls. C1 [Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wagner, JL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwagner@sandia.gov FU Sandia National Laboratories; United States Department of Energy; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Srini Arunajatesen and Matthew Barone for very helpful discussions on cavity-tunnel interactions. They are also grateful to Tom Grasser who designed the acoustic liner and cavity hardware. Finally, the authors thank Professor Lawrence Ukeiley of the University of Florida and Professor Louis Cattafesta of Florida State University for sharing their significant insight and experience on mitigating wind tunnel modes and their suggestions for acoustic liner design and evaluation. This work is supported by Sandia National Laboratories and the United States Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 38 TC 5 Z9 5 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD MAR PY 2015 VL 56 IS 3 AR 59 DI 10.1007/s00348-015-1924-8 PG 12 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CC9KF UT WOS:000350688000012 ER PT J AU Klein, JE Estochen, EG AF Klein, J. E. Estochen, E. G. TI THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED (TECH MOD) TRITIUM HYDRIDE BED DEVELOPMENT PART I - DESIGN AND FABRICATION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Conference on Tritium Science and Technology CY OCT 21-25, 2013 CL Nice Acropolis, FRANCE ID FISH BED; STORAGE AB The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) LaNi4.25Al0.75 (LANA(0.75)) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3rd generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.7 5 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed C1 [Klein, J. E.; Estochen, E. G.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Klein, JE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM james.klein@srnl.doe.gov FU U.S. Department of Energy [DEAC09-08SR22470] FX The authors would like to thank Paul Foster and Gregg Morgan for their contributions to this work. This manuscript has been authored by Savannah River Nuclear Solutions, LLC under contract No. DEAC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAR PY 2015 VL 67 IS 2 BP 371 EP 374 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD0PR UT WOS:000350776900033 ER PT J AU Heroux, KJ Morgan, GA AF Heroux, K. J. Morgan, G. A. TI THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TRITIUM HYDRIDE BED DEVELOPMENT PART II - EXPERIMENTAL VALIDATION OF KEY CONCEPTUAL DESIGN FEATURES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Conference on Tritium Science and Technology CY OCT 21-25, 2013 CL Nice Acropolis, FRANCE AB The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the Is' generation (Gen 1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. Three new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H-2) absorption/desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H2 storage/release properties compared to those of the Gen I bed. Inert gas expansions before, during, and after H2 flow tests were used to monitor changes in gas transfer rates with repeated hydriding/dehydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen I bed with the added enhancements expected from the advanced design features. C1 [Heroux, K. J.; Morgan, G. A.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Heroux, KJ (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM katie.heroux@srnl.doe.gov FU U.S. Department of Energy [DEAC09-08SR22470] FX The authors would like to thank James Klein, Edwin Estochen, Henry Sessions, Devin Staack, Behzad Torkian, and Yanina Breakiron for their contributions to this work. This manuscript has been authored by Savannah River Nuclear Solutions, LLC under contract No. DEAC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 5 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAR PY 2015 VL 67 IS 2 BP 375 EP 378 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD0PR UT WOS:000350776900034 ER PT J AU Klein, JE AF Klein, J. E. TI INERT BLANKETING OF A HYDRIDE BED USING TYPICAL GRADE PROTIUM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Conference on Tritium Science and Technology CY OCT 21-25, 2013 CL Nice Acropolis, FRANCE ID URANIUM; TRITIUM AB The reduction in hydride absorption rate due to "blanketing" can be explained in terms of a reduced hydrogen partial pressure in the bed due to the accumulation of inerts (i.e. non-hydrogen isotopes) in the bed void volume. Literature results show reduced absorption rates when protium for bed absorption contains helium with low-end inert compositions in the 0.6 to 1% range. A hydride bed containing 9.66 kg of LaNi4.25Al0.75 (LANA0.75) metal hydride - a nominal capacity of 1400 STP-L, was cycled repeatedly to decrepitate the hydride material into smaller particles for bed strain measurement. The hydride cycles added and removed nominally 1000 to 1100 STP-L of protium per hydride cycle. Consistent and repeatable absorptions results were observed for different absorption cycles. During one of the absorption tests, slower absorption results were obtained due to the use of typical grade (500 ppm inerts), instead of research grade, protium which blanketed the bed. The impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Klein, JE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM james.klein@srnl.doe.gov FU U.S. Department of Energy [DEAC09-08SR22470] FX The authors would like to thank Jody Dye for her contributions to this work. This manuscript has been authored by Savannah River Nuclear Solutions, LLC under contract No. DEAC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAR PY 2015 VL 67 IS 2 BP 416 EP 419 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD0PR UT WOS:000350776900044 ER PT J AU Klein, JE Clark, EA Harvel, CD Farmer, DA Moore, ML Tovo, LL Poore, AS AF Klein, J. E. Clark, E. A. Harvel, C. D. Farmer, D. A. Moore, M. L. Tovo, L. L. Poore, A. S. TI TRITIUM ACCOUNTANCY IN FUSION SYSTEMS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Conference on Tritium Science and Technology CY OCT 21-25, 2013 CL Nice Acropolis, FRANCE AB The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of "net" tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. C1 [Klein, J. E.; Clark, E. A.; Harvel, C. D.; Farmer, D. A.; Tovo, L. L.; Poore, A. S.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Moore, M. L.] Savannah River Nucl Solut, Aiken, SC USA. RP Klein, JE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM james.klein@srnl.doe.gov FU U.S. Department of Energy [DEAC09-08SR22470] FX This manuscript has been authored by Savannah River Nuclear Solutions, LLC under contract No. DEAC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAR PY 2015 VL 67 IS 2 BP 420 EP 423 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD0PR UT WOS:000350776900045 ER PT J AU Klein, JE Shanahan, KL Foster, PJ Baker, RA AF Klein, J. E. Shanahan, K. L. Foster, P. J. Baker, R. A. TI A LOW TRITIUM HYDRIDE BED INVENTORY ESTIMATION TECHNIQUE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Conference on Tritium Science and Technology CY OCT 21-25, 2013 CL Nice Acropolis, FRANCE ID PACE BED; ACCOUNTABILITY AB A nominal 1500 STP-L Passively Cooled, Electrically heated hydride (PACE) Bed was developed and deployed into tritium service in Savannah River Site (SRS) Tritium Facilities. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method: In-Bed Accountability (IBA). In some instances, two physical beds, or canisters, were joined together with one process line connection, creating a bed with a total capacity of nominally 3000 STP-L or up to 815 grams of tritium. The IBA detection limit for these beds was estimated to be 9.75 grams tritium. After deployment of these low tritium beds, the need arose to estimate tritium inventories of these beds without installation of IBA instrumentation. Two methods have been developed to estimate the tritium inventory of these low tritium content beds. The first approach assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory. C1 [Klein, J. E.; Shanahan, K. L.; Baker, R. A.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Foster, P. J.] Savannah River Nucl Solut, Aiken, SC USA. RP Klein, JE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM james.klein@srnl.doe.gov FU U.S. Department of Energy [DEAC09-08SR22470] FX The authors would like to thank Chuck Harvel and Marlene Moore for their contributions to this work. This manuscript has been authored by Savannah River Nuclear Solutions, LLC under contract No. DEAC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 5 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAR PY 2015 VL 67 IS 2 BP 424 EP 427 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD0PR UT WOS:000350776900046 ER PT J AU Weaver, WW AF Weaver, William W. TI FORTHCOMING REVISION TO THE DEPARTMENT OF ENERGY TRITIUM HANDLING AND SAFE STORAGE GUIDE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Conference on Tritium Science and Technology CY OCT 21-25, 2013 CL Nice Acropolis, FRANCE AB Once every five years, the US. Department of Energy (DOE) requires, via DOE Order (O) 252.1A, Technical Standards Program, that each of its Standards and Handbooks undergo a maintenance review (also known as "sunset reviews'). There are three possible outcomes of a maintenance review: (I) reaffirmation as current, accurate, and of continuing value to the Department; (2) revision to be current, accurate, and of continuing value; or (3) cancellation. DOE-HDBK-1129-2008, Tritium Handling and Safe Storage, is following option (2) above; the required justification of continuing value was demonstrated by a lack of comparable technical breadth and depth available in other publications. This paper gives an overview of the updates that the Tritium Handling and Safe Storage Guide will undergo. It is expected that the update will be completed in early 2014. C1 US DOE, Washington, DC 20585 USA. RP Weaver, WW (reprint author), US DOE, Washington, DC 20585 USA. EM bill.weaver@hq.doe.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAR PY 2015 VL 67 IS 2 BP 432 EP 434 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CD0PR UT WOS:000350776900048 ER PT J AU Brundlinger, R Strasser, T Lauss, G Hoke, A Chakraborty, S Martin, G Kroposki, B Johnson, J de Jong, E AF Bruendlinger, Roland Strasser, Thomas Lauss, Georg Hoke, Andy Chakraborty, Sudipta Martin, Greg Kroposki, Benjamin Johnson, Jay de Jong, Erik TI Lab Tests Verifying That Smart Grid Power Converters Are Truly Smart SO IEEE POWER & ENERGY MAGAZINE LA English DT Article DE Reactive power; Inverters; Standards; Laboratories; Power system stability; Voltage control; Frequency control C1 [Bruendlinger, Roland; Strasser, Thomas; Lauss, Georg] AIT, Vienna, Austria. [Hoke, Andy; Chakraborty, Sudipta; Martin, Greg; Kroposki, Benjamin] NREL, Golden, CO USA. [Johnson, Jay] Sandia Natl Labs, Albuquerque, NM 87185 USA. [de Jong, Erik] DNV GL, Arnhem, Netherlands. RP Brundlinger, R (reprint author), AIT, Vienna, Austria. RI Strasser, Thomas/K-6698-2012 OI Strasser, Thomas/0000-0002-6415-766X FU DOE [DE-AC36-08-GO28308]; DOE's Office of Electricity Delivery and Energy Reliability; DOE's Office of Energy Efficiency and Renewable Energy; Austrian Ministry for Transport, Innovation, and Technology [FFG 839566]; DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE's Office of International Affairs; DOE's Office of Electricity FX NREL's portion of this work was supported by the DOE under contract number DE-AC36-08-GO28308. NREL gratefully acknowledges the support of Dan Ton of the DOE's Office of Electricity Delivery and Energy Reliability and Alvin Razon, Ranga Pitchumani, and Kevin Lynn of the DOE's Office of Energy Efficiency and Renewable Energy.; The participation of AIT within ISGAN-SIRFN is funded as part of the IEA's Research Cooperation program by the Austrian Ministry for Transport, Innovation, and Technology under contract number FFG 839566.; Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the DOE's National Nuclear Security Administration under contract number DE-AC04-94AL85000. This work was sponsored by the DOE's Office of International Affairs and Office of Electricity. NR 5 TC 10 Z9 10 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 EI 1558-4216 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAR-APR PY 2015 VL 13 IS 2 BP 30 EP 42 DI 10.1109/MPE.2014.2379935 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA CD0FL UT WOS:000350745900003 ER PT J AU Mather, B Shah, S AF Mather, Barry Shah, Sunil TI In Divergence There Is Strength Measuring and Mitigating Solar PV Impacts in Southern California Using Power Factors Other than One SO IEEE POWER & ENERGY MAGAZINE LA English DT Article DE Integrated circuit interconnections; Reactive power; Integrated circuit modeling; Inverters; Automatic voltage control; Capacitors C1 [Mather, Barry] NREL, Golden, CO 80401 USA. [Shah, Sunil] SCE, Westminster, CA USA. RP Mather, B (reprint author), NREL, Golden, CO 80401 USA. FU Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy (DOE); Research, Development, Demonstration, and Deployment program of the California Solar Initiative; DOE [DE-AC36-08-GO28308] FX This work was conducted under the dual support of the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy (DOE) and the Research, Development, Demonstration, and Deployment program of the California Solar Initiative. The authors wish to acknowledge the support of Alvin Razon, Ranga Pitchumani, and Kevin Lynn of the DOE and Stephan Barsun and Ann Peterson of iTron. NREL's portion of this work was supported by the DOE under contract number DE-AC36-08-GO28308. NR 3 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 EI 1558-4216 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAR-APR PY 2015 VL 13 IS 2 BP 62 EP 70 DI 10.1109/MPE.2014.2380011 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CD0FL UT WOS:000350745900006 ER PT J AU Kisacikoglu, MC Kesler, M Tolbert, LM AF Kisacikoglu, Mithat C. Kesler, Metin Tolbert, Leon M. TI Single-Phase On-Board Bidirectional PEV Charger for V2G Reactive Power Operation SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Battery charger; plug-in electric vehicle (PEV); reactive power; vehicle-to-grid (V2G) ID ELECTRIC VEHICLES; ENERGY-STORAGE AB This paper presents the design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery. The topology consists of two-stages: 1) a full-bridge ac-dc boost converter; and 2) a half-bridge bidirectional dc-dc converter. The charger operates in two quadrants in the active-reactive power (PQ) power plane with five different operation modes (i.e., charging-only, charging-capacitive, charging-inductive, capacitive-only, and inductive-only). This paper also presents a unified controller to follow utility PQ commands in a smart grid environment. The cascaded two-stage system controller receives active and reactive power commands from the grid, and results in line current and battery charging current references while also providing a stable dynamic response. The vehicle's battery is not affected during reactive power operation in any of the operation modes. Testing the unified system controller with a 1.44 kVA experimental charger design demonstrates the successful implementation of reactive power support functionality of PEVs for future smart grid applications. C1 [Kisacikoglu, Mithat C.] Hacettepe Univ, Coll Engn, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey. [Kesler, Metin] Bilecik Seyh Edebali Univ, Dept Comp Engn, TR-11210 Bilecik, Turkey. [Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Oak Ridge, TN 37381 USA. RP Kisacikoglu, MC (reprint author), Hacettepe Univ, Coll Engn, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey. EM mkisacik@hacettepe.edu.tr OI Tolbert, Leon/0000-0002-7285-609X FU Engineering Research Center Program of the National Science Foundation (NSF); Department of Energy under NSF [EEC-1041877]; CURENT Industry Partnership Program; Scientific and Technological Research Council of Turkey [2219, 2232] FX This work was supported in part by the Engineering Research Center Program of the National Science Foundation (NSF), in part by the Department of Energy under NSF Award EEC-1041877, in part by the CURENT Industry Partnership Program, and in part by the Scientific and Technological Research Council of Turkey 2219 and 2232 Award Programs. Paper no. TSG-00158-2014. NR 30 TC 9 Z9 9 U1 4 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2015 VL 6 IS 2 BP 767 EP 775 DI 10.1109/TSG.2014.2360685 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CC4QN UT WOS:000350338100028 ER PT J AU Lee, C Liu, C Mehrotra, S Bie, ZH AF Lee, Changhyeok Liu, Cong Mehrotra, Sanjay Bie, Zhaohong TI Robust Distribution Network Reconfiguration SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Distribution network; minimum loss; mixed-integer second-order cone program (MISOCP); reconfiguration; robust optimization ID HYBRID DIFFERENTIAL EVOLUTION; DISTRIBUTION-SYSTEMS; LOSS REDUCTION; LOSS MINIMIZATION; SEARCH ALGORITHM; SENSITIVITY; GENERATION; MODEL AB We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss under the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set. C1 [Lee, Changhyeok; Liu, Cong] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Lee, Changhyeok; Mehrotra, Sanjay] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA. [Bie, Zhaohong] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China. [Bie, Zhaohong] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China. RP Liu, C (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM liuc@anl.gov RI Mehrotra, Sanjay/B-7477-2009; OI Bie, Zhaohong/0000-0002-8458-0887 FU UChicago Argonne, LLC, Operator of Argonne National Laboratory, U.S. Department of Energy Office of Science Laboratory [DEAC02-06CH11357]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability [DOESP0011568] FX This work was supported in part by UChicago Argonne, LLC, Operator of Argonne National Laboratory, U.S. Department of Energy Office of Science Laboratory under Contract DEAC02-06CH11357; and in part by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability under Grant DOESP0011568. Paper no. TSG-00054-2014. NR 30 TC 6 Z9 8 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2015 VL 6 IS 2 BP 836 EP 842 DI 10.1109/TSG.2014.2375160 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA CC4QN UT WOS:000350338100035 ER PT J AU Smith, TJ Hill, KK Xie, G Foley, BT Williamson, CHD Foster, JT Johnson, SL Chertkov, O Teshima, H Gibbons, HS Johnsky, LA Karavis, MA Smith, LA AF Smith, Theresa J. Hill, Karen K. Xie, Gary Foley, Brian T. Williamson, Charles H. D. Foster, Jeffrey T. Johnson, Shannon L. Chertkov, Olga Teshima, Hazuki Gibbons, Henry S. Johnsky, Lauren A. Karavis, Mark A. Smith, Leonard A. TI Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes SO INFECTION GENETICS AND EVOLUTION LA English DT Article DE Clostridium botulinum; Clostridium argentinense; Clostridium baratii; Botulinum neurotoxin ID INFANT BOTULISM; UNITED-STATES; COMPLEX GENES; TOXIN; CLUSTERS; PLASMID; IDENTIFICATION; PERFORMANCE; ANNOTATION; ALGORITHMS AB The whole genomes for six botulinum neurotoxin-producing clostridial strains were sequenced to provide references for under-represented toxin types, bivalent strains or unusual toxin complexes associated with a bont gene. The strains include three Clostridium botulinum Group I strains (CDC 297, CDC 1436, and Prevot 594), a Group II C. botulinum strain (Eklund 202F), a Group IV Clostridium argentinense strain (CDC 2741), and a Group V Clostridium baratii strain (Sullivan). Comparisons of the Group I genomic sequences revealed close relationships and conservation of toxin gene locations with previously published Group I C. botulinum genomes. The bont/F6 gene of strain Eklund 202F was determined to be a chimeric toxin gene composed of bont/F1 and bont/F2. The serotype G strain CDC 2741 remained unfinished in 20 contigs with the bont/G located within a 1.15 Mb contig, indicating a possible chromosomal location for this toxin gene. Within the genome of C. baratii Sullivan strain, direct repeats of IS1182 insertion sequence (IS) elements were identified flanking the bont/F7 toxin complex that may be the mechanism of bont insertion into C. baratii. Highlights of the six strains are described and release of their genomic sequences will allow further study of unusual neurotoxin-producing clostridial strains. Published by Elsevier B.V. C1 [Smith, Theresa J.] US Army Med Res Inst Infect Dis, Mol & Translat Sci Div, Ft Detrick, MD 21702 USA. [Hill, Karen K.; Xie, Gary; Johnson, Shannon L.; Chertkov, Olga; Teshima, Hazuki] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Foley, Brian T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Williamson, Charles H. D.; Foster, Jeffrey T.] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. [Gibbons, Henry S.; Johnsky, Lauren A.; Karavis, Mark A.] Edgewood Chem Biol Ctr, Biosci Div, Aberdeen Proving Ground, MD 21010 USA. [Smith, Leonard A.] US Army Med Res Inst Infect Dis, US Army Med Res & Mat Command, Med Countermeasures Technol, Ft Detrick, MD 21702 USA. RP Smith, TJ (reprint author), US Army Med Res Inst Infect Dis, Mol & Translat Sci Div, 1425 Porter St, Ft Detrick, MD 21702 USA. EM theresa.j.smith.civ@mail.mil OI Foley, Brian/0000-0002-1086-0296; Foster, Jeffrey/0000-0001-8235-8564; xie, gary/0000-0002-9176-924X FU Department of Homeland Security, Science and Technology Directorate; National Institute of Allergy and Infectious Diseases [U01AI056493] FX Funding for this research was provided by the Department of Homeland Security, Science and Technology Directorate and also supported by U01AI056493 from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. We also thank the Department of Energy Joint Genome Institute for their support in providing technical assistance and facilities for DNA sequencing. Opinions, interpretations, conclusions and recommendations are those of the authors and not necessarily endorsed by the U.S. Army. NR 63 TC 20 Z9 20 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 EI 1567-7257 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD MAR PY 2015 VL 30 BP 102 EP 113 DI 10.1016/j.meegid.2014.12.002 PG 12 WC Infectious Diseases SC Infectious Diseases GA CC7CN UT WOS:000350525400015 PM 25489752 ER PT J AU Johnson, N Wehr, G Hoar, E Xian, SY Akgun, U Feller, S Affatigato, M Repond, J Xia, L Bilki, B Onel, Y AF Johnson, Nicole Wehr, Gene Hoar, Eric Xian, Siyu Akgun, Ugur Feller, Steve Affatigato, Mario Repond, Jose Xia, Lei Bilki, Burak Onel, Yasar TI Electronically Conductive Vanadate Glasses for Resistive Plate Chamber Particle Detectors SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID DC CONDUCTIVITY; IR AB Particle detectors are constantly being built and refitted with new technology to improve the spatial resolution, radiation hardness, and speed at which the detector can capture particle events. One of the most crucial components of a modern collider experiment is the hadron calorimeter. One of the proposed improvements on future hadron calorimeters is to utilize resistive plate chambers (RPCs). They provide the spatial and energy resolution as well as could provide speed and radiation hardness. RPCs depend on manufacturing electrically conductive glasses that are mechanically strong, durable, radiation resistant, and not ionically conductive. To achieve such requirements, vanadate glasses were developed as alternatives to current prototypes which use soda lime silicate glasses. The conductivity, oxidation states of vanadium, radiation hardness, as well as the prototype performance, were tested on vanadate glasses. The prototype tests show that using 0.40ZnO-0.40TeO(2)-0.20V(2)O(5) can improve the RPC detector rate up to 100 times. C1 [Johnson, Nicole; Wehr, Gene; Hoar, Eric; Xian, Siyu; Akgun, Ugur; Feller, Steve; Affatigato, Mario] Coe Coll, Ctr Study Glass, Cedar Rapids, IA 52402 USA. [Repond, Jose; Xia, Lei] Argonne Natl Lab, Lemont, IL 60439 USA. [Bilki, Burak; Onel, Yasar] Univ Iowa, Iowa City, IA 52242 USA. RP Johnson, N (reprint author), Coe Coll, Ctr Study Glass, 1220 1st Ave NE, Cedar Rapids, IA 52402 USA. EM maffatig@coe.edu OI Bilki, Burak/0000-0001-9515-3306 FU NSF REU [1358968]; Argonne National Lab [2F-31501] FX The authors are grateful to Brittney Hauke, Arron Potter, Jessica Vincent, Tim Ahline, Dakota Stiles, and Mauro Zapparoli. Also, financial support of the NSF REU 1358968 and Argonne National Lab under contract 2F-31501 is recognized. NR 17 TC 2 Z9 2 U1 0 U2 0 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD MAR PY 2015 VL 6 IS 1 SI SI BP 26 EP 33 DI 10.1111/ijag.12109 PG 8 WC Materials Science, Ceramics SC Materials Science GA CC8ZH UT WOS:000350656600005 ER PT J AU Zhang, HB Lei, Y Kropf, AJ Zhang, GH Elam, JW Miller, JT Sollberger, F Ribeiro, F Akatay, MC Stach, EA Dumesic, JA Marshall, CL AF Zhang, Hongbo Lei, Yu Kropf, A. Jeremy Zhang, Guanghui Elam, Jeffrey W. Miller, Jeffrey T. Sollberger, Fred Ribeiro, Fabio Akatay, M. Cem Stach, Eric A. Dumesic, James A. Marshall, Christopher L. TI Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating (vol 317, pg 284, 2014) SO JOURNAL OF CATALYSIS LA English DT Correction C1 [Zhang, Hongbo; Kropf, A. Jeremy; Zhang, Guanghui; Miller, Jeffrey T.; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lei, Yu; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Sollberger, Fred; Ribeiro, Fabio] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Akatay, M. Cem] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Marshall, CL (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM marshall@anl.gov RI Stach, Eric/D-8545-2011; ID, MRCAT/G-7586-2011; BM, MRCAT/G-7576-2011 OI Stach, Eric/0000-0002-3366-2153; NR 1 TC 1 Z9 1 U1 3 U2 34 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD MAR PY 2015 VL 323 BP 165 EP 165 DI 10.1016/j.jcat.2015.01.007 PG 1 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA CD0PY UT WOS:000350777600016 ER PT J AU Tussupbayev, S Govind, N Lopata, K Cramer, CJ AF Tussupbayev, Samat Govind, Niranjan Lopata, Kenneth Cramer, Christopher J. TI Comparison of Real-Time and Linear-Response Time-Dependent Density Functional Theories for Molecular Chromophores Ranging from Sparse to High Densities of States SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID POLARIZABLE CONTINUUM MODEL; CIRCULAR-DICHROISM SPECTRA; TRANSITION-ELEMENTS; TRANSFER DYNAMICS; HARTREE-FOCK; BASIS-SETS; ABSORPTION; APPROXIMATION; ACCURACY; EXCHANGE AB We assess the performance of real-time time-dependent density functional theory (RT-TDDFT) for the calculation of absorption spectra of 12 organic dye molecules relevant to photovoltaics and dye-sensitized solar cells with 8 exchange-correlation functionals (3 traditional, 3 global hybrids, and 2 range-separated hybrids). We compare the calculations with traditional linear-response (LR) TDDFT and experimental spectra. In addition, we demonstrate the efficacy of the RT-TDDFT approach to calculate wide absorption spectra of two large chromophores relevant to photovoltaics and molecular switches. RT-TDDFT generally requires longer simulation times, compared to LR-TDDFT, for absorption spectra of small systems. However, it becomes more effective for the calculation of wide absorption spectra of large molecular complexes and systems with very high densities of states. C1 [Tussupbayev, Samat; Cramer, Christopher J.] Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA. [Tussupbayev, Samat; Cramer, Christopher J.] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Govind, Niranjan] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99338 USA. [Lopata, Kenneth] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Lopata, Kenneth] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. RP Govind, N (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99338 USA. EM niri.govind@pnnl.gov; cramer@umn.edu RI Cramer, Christopher/B-6179-2011; OI Cramer, Christopher/0000-0001-5048-1859; Tussupbayev, Samat/0000-0003-3470-1510 FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program [DE-SC0008666]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; LSU Office of Research and Development; Louisiana Board of Regents Research Competitiveness Subprogram [LEQSF(2014-17)-RD-A-03]; Office of Biological and Environmental Research FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program, under Award No. DE-SC0008666. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. K.L. gratefully acknowledges support from the LSU Office of Research and Development, as well as the Louisiana Board of Regents Research Competitiveness Subprogram, under Contract No. LEQSF(2014-17)-RD-A-03. N.G. thanks Jeffrey Reimers for useful discussions regarding the P3B2 and f-coronene molecular systems. A portion of the research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 68 TC 18 Z9 18 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAR PY 2015 VL 11 IS 3 BP 1102 EP 1109 DI 10.1021/ct500763y PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD2OG UT WOS:000350918300028 PM 26579760 ER PT J AU Haxton, TK AF Haxton, Thomas K. TI High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; RESIDUE FORCE-FIELD; FOLD RECOGNITION; STATISTICAL POTENTIALS; MULTISCALE SIMULATIONS; ATOMISTIC DESCRIPTION; COMPUTER-SIMULATION; PROTEIN STRUCTURES; MONTE-CARLO; SYSTEMS AB We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 angstrom on average during the roundtrip mapping, while hydrogens move 0.179 angstrom on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Haxton, TK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM tomhaxton@gmail.com RI Foundry, Molecular/G-9968-2014 FU Defense Threat Reduction Agency [IACRO-B1144571]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Ed Lyman for useful discussions, Michael Feig for providing the test set used in ref 64 to test the PRIMO model, and Ranjan Mannige for useful comments on the manuscript. This project was funded by the Defense Threat Reduction Agency under Contract No. IACRO-B1144571. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 85 TC 2 Z9 2 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAR PY 2015 VL 11 IS 3 BP 1244 EP 1254 DI 10.1021/ct500881x PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CD2OG UT WOS:000350918300040 PM 26579771 ER PT J AU Zhou, XL Kollias, P Lewis, ER AF Zhou, Xiaoli Kollias, Pavlos Lewis, Ernie R. TI Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign SO JOURNAL OF CLIMATE LA English DT Article ID LOWER-TROPOSPHERIC STABILITY; STRATOCUMULUS CLOUDS; CUMULUS TRANSITION; VOCALS-REX; SIMULATION; ENTRAINMENT; MODELS; DEPTH; ASTEX AB The recent ship-based Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporated before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. C1 [Zhou, Xiaoli; Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Lewis, Ernie R.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. RP Zhou, XL (reprint author), Dept Atmospher & Ocean Sci, Burnside Hall,Room 945,805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada. EM xiaoli.zhou@mail.mcgill.ca FU U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program Climate Research Facility; DOE Atmospheric System Research (ASR) Program (Office of Science, OBER); ASR Program [DE-AC02-98CH10886] FX The MAGIC deployment was supported and undertaken by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program Climate Research Facility. The current research was supported by the DOE Atmospheric System Research (ASR) Program (Office of Science, OBER). ERL was supported by the ASR Program under Contract DE-AC02-98CH10886. Data used for the analyses were downloaded from the ARM archive (www.arm.gov) except for the MARMET and MARFLUX data, which were provided by Dr. Michael Reynolds of RMR Co. We thank David Painemal of NASA Langley Research Center for providing surface cloud condensation nuclei (CCN) data. We acknowledge the team of scientists and technicians who made this work possible by collecting the data and maintaining the instruments, and especially Horizon Lines and the captain and crew of the Horizon Spirit for their hospitality. Special thanks go to the cloud research group at McGill University (www.clouds.mcgill.ca) for their helpful comments and constructive criticism. NR 35 TC 12 Z9 12 U1 1 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2015 VL 28 IS 6 BP 2420 EP 2442 DI 10.1175/JCLI-D-14-00320.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD3MV UT WOS:000350983700019 ER PT J AU Seeley, JT Romps, DM AF Seeley, Jacob T. Romps, David M. TI The Effect of Global Warming on Severe Thunderstorms in the United States SO JOURNAL OF CLIMATE LA English DT Article ID TORNADO FORECAST PARAMETERS; SEVERE LOCAL STORMS; CONVECTIVE ENVIRONMENTS; CLIMATE; PRECIPITATION; SUPERCELL; TRENDS AB How will warming temperatures influence thunderstorm severity? This question can be explored by using climate models to diagnose changes in large-scale convective instability (CAPE) and wind shear, conditions that are known to be conducive to the formation of severe thunderstorms. First, an ensemble of climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated on its ability to reproduce a radiosonde climatology of such storm-favorable conditions in the current climate's spring and summer seasons, focusing on the contiguous United States (CONUS). Of the 11 climate models evaluated, a high-performing subset of four (GFDL CM3, GFDL-ESM2M, MRI-CGCM3, and NorESM1-M) is identified. Second, the twenty-first-century changes in the frequency of environments favorable to severe thunderstorms are calculated in these high-performing models as they are forced by the RCP4.5 and RCP8.5 emissions pathways. For the RCP8.5 scenario, the models predict consistent CONUS-mean fractional springtime increases in the range of 50%-180% by the end of the twenty-first century; for the summer, three of the four models predict increases in the range of 40%-120% and one model predicts a small decrease. This disagreement between the models is traced to divergent projections for future CAPE and boundary layer humidity in the Great Plains. This paper also explores the sensitivity of the results to the relative weight given to wind shear in determining how "favorable'' a large-scale environment is for the development of severe thunderstorms, and it is found that this weighting is not the dominant source of uncertainty in projections of future thunderstorm severity. C1 [Seeley, Jacob T.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Seeley, JT (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 449 McCone Hall,Haviland Rd, Berkeley, CA 94720 USA. EM jseeley@berkeley.edu RI Romps, David/F-8285-2011; OI Seeley, Jacob/0000-0003-0769-292X FU U.S. Department of Energy's Earth System Modeling, an Office of Science, Office of Biological and Environmental Research program [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship [DGE1106400] FX This work was supported by the U.S. Department of Energy's Earth System Modeling, an Office of Science, Office of Biological and Environmental Research program under Contract DE-AC02-05CH11231. JTS acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant DGE1106400. Thanks are due to the SPARC data center for the radiosonde data. We also acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Thanks are due to three anonymous reviewers whose suggestions improved the manuscript. NR 41 TC 5 Z9 5 U1 3 U2 35 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR PY 2015 VL 28 IS 6 BP 2443 EP 2458 DI 10.1175/JCLI-D-14-00382.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD3MV UT WOS:000350983700020 ER PT J AU Chimalgi, V Kharche, N Ahmed, S AF Chimalgi, Vinay Kharche, Neerav Ahmed, Shaikh TI Erratum to: Effects of substrate orientation on opto-electronic properties in self-assembled InAs/GaAs quantum dots (vol 13, pg 1026, 2014) SO JOURNAL OF COMPUTATIONAL ELECTRONICS LA English DT Correction C1 [Chimalgi, Vinay; Ahmed, Shaikh] So Illinois Univ, Dept Elect & Comp Engn, Carbondale, IL 62901 USA. [Kharche, Neerav] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Ahmed, S (reprint author), So Illinois Univ, Dept Elect & Comp Engn, 1230 Lincoln Dr, Carbondale, IL 62901 USA. EM ahmed@siu.edu RI Kharche, Neerav/F-4331-2015 OI Kharche, Neerav/0000-0003-1014-6022 NR 1 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1569-8025 J9 J COMPUT ELECTRON JI J. Comput. Electron. PD MAR PY 2015 VL 14 IS 1 SI SI BP 380 EP 380 DI 10.1007/s10825-014-0654-0 PG 1 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CC7NG UT WOS:000350554200041 ER PT J AU Spotts, R Chumbley, LS Ekstrand, L Zhang, S Kreiser, J AF Spotts, Ryan Chumbley, L. Scott Ekstrand, Laura Zhang, Song Kreiser, James TI Optimization of a Statistical Algorithm for Objective Comparison of Toolmarks SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; toolmark; algorithm; statistical comparison; pliers; striae; quasi-striated; shear cutter ID GROOVE PLIERS; VALIDATION; TONGUE AB Due to historical legal challenges, there is a driving force for the development of objective methods of forensic toolmark identification. This study utilizes an algorithm to separate matching and nonmatching shear cut toolmarks created using fifty sequentially manufactured pliers. Unlike previously analyzed striated screwdriver marks, shear cut marks contain discontinuous groups of striations, posing a more difficult test of algorithm applicability. The algorithm compares correlation between optical 3D toolmark topography data, producing a Wilcoxon rank sum test statistic. Relative magnitude of this metric separates the matching and nonmatching toolmarks. Results show a high degree of statistical separation between matching and nonmatching distributions. Further separation is achieved with optimized input parameters and implementation of a leash preventing a previous source of outliershowever complete statistical separation was not achieved. This paper represents further development of objective methods of toolmark identification and further validation of the assumption that toolmarks are identifiably unique. C1 [Spotts, Ryan; Chumbley, L. Scott; Ekstrand, Laura; Zhang, Song] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kreiser, James] Illinois State Police, Springfield, IL 62712 USA. RP Spotts, R (reprint author), Iowa State Univ, Ames Lab, 2220 Hoover, Ames, IA 50011 USA. EM rspotts@iastate.edu RI Zhang, Song/C-5294-2012 OI Zhang, Song/0000-0001-8452-4837 FU National Institute of Justice; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE by Iowa State University [DE-AC02-07CH11358]; National Institute of Justice [2009-DNR-119] FX Supported by the National Institute of Justice and the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract number DE-AC02-07CH11358. Funding was provided by award number 2009-DNR-119 from the National Institute of Justice. NR 11 TC 2 Z9 2 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD MAR PY 2015 VL 60 IS 2 BP 303 EP 314 DI 10.1111/1556-4029.12642 PG 12 WC Medicine, Legal SC Legal Medicine GA CD0LM UT WOS:000350764300005 PM 25425426 ER EF