FN Thomson Reuters Web of Science™ VR 1.0 PT B AU Ho, CK Christian, JM Romano, D Yellowhair, J Siegel, N AF Ho, Clifford K. Christian, Joshua M. Romano, David Yellowhair, Julius Siegel, Nathan GP ASME TI CHARACTERIZATION OF PARTICLE FLOW IN A FREE-FALLING SOLAR PARTICLE RECEIVER SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID GRANULAR SOLIDS; ORIFICES AB Falling particle receivers are being evaluated as an alternative to conventional fluid-based solar receivers to enable higher temperatures and higher efficiency power cycles with direct storage for concentrating solar power applications. This paper presents studies of the particle mass flow rate, velocity, particle-curtain opacity and density, and other characteristics of free-falling ceramic particles as a function of different discharge slot apertures. The methods to characterize the particle flow are described, and results are compared to theoretical and numerical models for unheated conditions. C1 [Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Romano, David] Polytech Univ Turin, Corso Duca Abruzzi 24, I-10129 Turin, Italy. [Siegel, Nathan] Bucknell Univ, 701 Moore Ave, Lewisburg, PA 17837 USA. RP Ho, CK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov NR 12 TC 0 Z9 0 U1 2 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A013 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400037 ER PT B AU Ortega, JD Khivsara, SD Christian, JM Ho, CK AF Ortega, Jesus D. Khivsara, Sagar D. Christian, Joshua M. Ho, Clifford K. GP ASME TI DESIGN REQUIREMENTS FOR DIRECT SUPERCRITICAL CARBON DIOXIDE RECEIVER DEVELOPMENT AND TESTING SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig [2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers. C1 [Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. [Khivsara, Sagar D.] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, KA, India. RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A019 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400043 ER PT B AU Ortega, JD Christian, JM Ho, CK AF Ortega, Jesus D. Christian, Joshua M. Ho, Clifford K. GP ASME TI STRUCTURAL ANALYSIS OF A DIRECT HEATED TUBULAR SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Closed-loop super-critical carbon dioxide (sCO(2)) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650 - 700 degrees C) and pressures (20 - 25 MPa) are required in the solar receiver. In this study, an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently, a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a similar to 2 MWth plant. The receiver will be required to provide an outlet temperature of 650 degrees C (at 25 MPa) or 700 degrees C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of similar to 10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers. C1 [Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A015 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400039 ER PT B AU Ortega, JD Khivsara, SD Christian, JM Yellowhair, JE Ho, CK AF Ortega, Jesus D. Khivsara, Sagar D. Christian, Joshua M. Yellowhair, Julius E. Ho, Clifford K. GP ASME TI COUPLED OPTICAL-THERMAL-FLUID MODELING OF A DIRECTLY HEATED TUBULAR SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID POWER; TEMPERATURE AB Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (similar to 50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by similar to 200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input similar to 2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of similar to 85%. C1 [Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. [Khivsara, Sagar D.] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, KA, India. RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 19 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A018 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400042 ER PT J AU Peskin, ME AF Peskin, Michael E. TI On the Trail of the Higgs Boson SO ANNALEN DER PHYSIK LA English DT Review ID STANDARD MODEL; FIELD-THEORIES; ELECTROWEAK MEASUREMENTS; SUPERSYMMETRY BREAKING; MASSLESS PARTICLES; BROKEN SYMMETRIES; GAUGE-INVARIANCE; SUPERCONDUCTIVITY; DIMENSIONS; COLLISIONS AB I review theoretical issues associated with the Higgs boson and the mystery of spontaneous breaking of the electroweak gauge symmetry. This essay is intended as an introduction to the special issue of Annalen der Physik, "Particle Physics after the Higgs". C1 [Peskin, Michael E.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Peskin, ME (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. EM mpeskin@slac.stanford.edu FU U.S. Department of Energy [DE-AC02-76SF00515] FX I am grateful to Halina Abramowicz, Allen Caldwell, and Brian Foster for their invitation to write for this volume, to Raymond Brock and Beate Heinemann for their encouragement, and to many colleagues at SLAC and elsewere for discussions of the issues put forward here. This work was supported by the U.S. Department of Energy under contract DE-AC02-76SF00515. NR 81 TC 2 Z9 2 U1 5 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2016 VL 528 IS 1-2 SI SI BP 20 EP 34 DI 10.1002/andp.201500225 PG 15 WC Physics, Multidisciplinary SC Physics GA DJ2NI UT WOS:000374041200003 ER PT J AU Heinemann, B AF Heinemann, Beate TI LHC - perspectives at the energy frontier SO ANNALEN DER PHYSIK LA English DT Article DE LHC; future; higgs; dark matter; supersymmetry ID DYNAMICAL SYMMETRY-BREAKING; SUPERGAUGE TRANSFORMATIONS; MASS; MODEL; SUPERSYMMETRY; PARTICLE; DIMENSIONS; HIERARCHY; FERMIONS; PIONS AB After a design and construction phase that lasted more than two decades, the Large Hadron Collider (LHC) started its first run in 2010 and after just over two years, the discovery of the Higgs boson at the LHC was announced. In the future the LHC collision energy will be increased by nearly a factor of two, and the dataset will be increased by more than a factor of 100. These improvements dramatically increase the potential for finding new physics at the weak scale via either precision measurements or direct searches or both. The LHC is in a unique position to directly explore the weak energy scale and shed light on some of the biggest puzzles in nature, e.g. the origin of Dark Matter or the hierarchy problem. C1 [Heinemann, Beate] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Heinemann, Beate] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Heinemann, B (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.; Heinemann, B (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM bheheinemann@berkeley.edu FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 75 TC 0 Z9 0 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2016 VL 528 IS 1-2 SI SI BP 123 EP 130 DI 10.1002/andp.201500212 PG 8 WC Physics, Multidisciplinary SC Physics GA DJ2NI UT WOS:000374041200015 ER PT J AU Venugopalan, R AF Venugopalan, Raju TI Why we need an electron-ion collider SO ANNALEN DER PHYSIK LA English DT Article AB We present a brief argument making the science case for an electron-ion collider. C1 [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Venugopalan, R (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM raju@bnl.gov FU DOE [de-sc0012704] FX This work was supported under DOE Contract No. de-sc0012704. I am grateful to my BNL experimental colleagues Elke Aschenauer and Thomas Ullrich, as well as Rolf Ent from Jlab, and Abhay Deshpande of Stony Brook University, who have taught me some of the EIC lore. The support of my BNL theory colleagues is always forthcoming and greatly appreciated. I would also like to thank Marco Stratmann, Steve Vigdor and Werner Vogelsang for their very useful comments on the manuscript. NR 13 TC 1 Z9 1 U1 2 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2016 VL 528 IS 1-2 SI SI BP 131 EP 137 DI 10.1002/andp.201500248 PG 7 WC Physics, Multidisciplinary SC Physics GA DJ2NI UT WOS:000374041200016 ER PT J AU Cheng, YW Choi, DW Han, KS Mueller, KT Zhang, JG Sprenkle, VL Liu, J Li, GS AF Cheng, Yingwen Choi, Daiwon Han, Kee Sung Mueller, Karl T. Zhang, Ji-Guang Sprenkle, Vincent L. Liu, Jun Li, Guosheng TI Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes SO CHEMICAL COMMUNICATIONS LA English DT Article ID RECHARGEABLE MG BATTERIES; ION BATTERY; STORAGE; INTERCALATION; PERFORMANCE; CHALLENGE; CHEMISTRY; DENSITY AB We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational control of the electrolyte chemistry, electrode materials and cell architecture. Prototype devices with a structure of Mg-Li/LiFePO4 (LFP) and Mg-Li/LiMn2O4 (LMO) have been investigated. A Mg-Li/LFP cell using a dual-salt electrolyte 0.2 M [Mg2Cl2(DME)(4)][AlCl4](2) and 1.0 M LiTFSI exhibits voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 W h kg(-1) under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries. C1 [Cheng, Yingwen; Choi, Daiwon; Zhang, Ji-Guang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng] Pacific NW Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA. [Han, Kee Sung] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Mueller, Karl T.] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA. RP Liu, J; Li, GS (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA. EM jun.liu@pnnl.gov; guosheng.li@pnnl.gov RI Choi, Daiwon/B-6593-2008; Cheng, Yingwen/B-2202-2012; OI Cheng, Yingwen/0000-0002-0778-5504; Han, Kee Sung/0000-0002-3535-1818 FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [57558]; DOE BER; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability under Contract No. 57558. NMR experiments were performed at EMSL, a DOE Office of Science user facility sponsored by the DOE BER and located at PNNL. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. NR 31 TC 5 Z9 5 U1 18 U2 65 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 31 BP 5379 EP 5382 DI 10.1039/c6cc00986g PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2KQ UT WOS:000374033700004 PM 26959513 ER PT J AU Brown, JL Gaunt, AJ King, DM Liddle, ST Reilly, SD Scott, BL Wooles, AJ AF Brown, Jessie L. Gaunt, Andrew J. King, David M. Liddle, Stephen T. Reilly, Sean D. Scott, Brian L. Wooles, Ashley J. TI Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold SO CHEMICAL COMMUNICATIONS LA English DT Article ID LIGAND MULTIPLE BONDS; CARBON-MONOXIDE; URANYL-ION; URANIUM; CHEMISTRY; SE; TE; REACTIVITY; ACTINIDE; NITRIDE AB The syntheses and characterisation of isostructural neptunium(IV) and plutonium(IV) complexes [An(IV)(TRENTIPS)(Cl)] [An = Np, Pu; TRENTIPS = {N(CH2CH2NSiPr3i)(3)}(3-)] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [An(III)(TRENTIPS)]; this chemistry provides new platforms fromwhich to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterised neptunium(IV)-amide complex. C1 [Brown, Jessie L.; Gaunt, Andrew J.; Reilly, Sean D.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [King, David M.; Liddle, Stephen T.; Wooles, Ashley J.] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. RP Gaunt, AJ (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.; Liddle, ST (reprint author), Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. EM gaunt@lanl.gov; steve.liddle@manchester.ac.uk RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Gaunt, Andrew/0000-0001-9679-6020 FU U. S. Department of Energy, Office of Science, Early Career Research Program; U. S. Department of Energy, Office of Science, Basic Energy Sciences, Heavy Element Chemistry Program; Royal Society; ERC; EPSRC; University of Nottingham; University of Manchester FX J. L. B., A. J. G., and S. D. R. thank the U. S. Department of Energy, Office of Science, Early Career Research Program for funding the neptunium chemistry and initial plutonium chemistry. A. J. G. also thanks the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Heavy Element Chemistry Program for funding completion of the plutonium chemistry and manuscript preparation. D. M. K., S. T. L., and A. J. W. thank the Royal Society, ERC, EPSRC, University of Nottingham, and University of Manchester for funding. We thank Mr Danil E. Smiles for assistance with unwrapping of multiply contained transuranic samples prior to transport to spectroscopic instrumentation and Dr Matthew S. Winston for providing an auxiliary sample of [(Li)3(TRENTIPS)] ligand. NR 33 TC 4 Z9 4 U1 3 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 31 BP 5428 EP 5431 DI 10.1039/c6cc01656a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2KQ UT WOS:000374033700017 PM 27009799 ER PT J AU Littlejohn, AJ Lu, TM Zhang, LH Kisslinger, K Wang, GC AF Littlejohn, A. J. Lu, T. -M. Zhang, L. H. Kisslinger, K. Wang, G. -C. TI Orientation epitaxy of Ge1-xSnx films grown on single crystal CaF2 substrates SO CRYSTENGCOMM LA English DT Article ID THREADING DISLOCATION DENSITIES; SURFACE ENERGIES; HOLE MOBILITY; GE; SN; TEMPERATURE; GERMANIUM; SILICON; SEMICONDUCTORS; DIFFUSIVITY AB Ge1-xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 degrees C to 400 degrees C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (theta/2 theta) scans indicate single orientation Ge1-xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 degrees C. This is the first report of (111) oriented Ge1-xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. theta/2 theta results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. Additionally, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature. C1 [Littlejohn, A. J.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. [Littlejohn, A. J.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Ctr Mat Devices & Integrated Syst, 110 8th St, Troy, NY 12180 USA. [Zhang, L. H.; Kisslinger, K.] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735,POB 5000, Upton, NY 11973 USA. RP Littlejohn, AJ (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA.; Littlejohn, AJ (reprint author), Rensselaer Polytech Inst, Ctr Mat Devices & Integrated Syst, 110 8th St, Troy, NY 12180 USA. EM littla4@rpi.edu FU NSF [DMR-1305293]; New York State Foundation of Science, Technology and Innovation (NYSTAR) through Focus Center-New York; Rensselaer; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work is supported by NSF DMR-1305293, New York State Foundation of Science, Technology and Innovation (NYSTAR) through Focus Center-New York, and Rensselaer. This research used JEOL2100F TEM and Hitachi2700C-STEM of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. We thank Robert Lord, Yu Xiang, Drs. J. K. Dash, L. Chen and Y. Yang for discussions, and Dr. Chen for taking the SEM image of the thick film for deposition rate calibration. NR 48 TC 0 Z9 0 U1 2 U2 4 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2016 VL 18 IS 15 BP 2757 EP 2769 DI 10.1039/c5ce02579f PG 13 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DJ2PJ UT WOS:000374046800020 ER PT J AU Ramalho, TC de Castro, AA Silva, DR Silva, MC Franca, TCC Bennion, BJ Kuca, K AF Ramalho, Teodorico C. de Castro, Alexandre A. Silva, Daniela R. Silva, Maria Cristina Franca, Tanos C. C. Bennion, Brian J. Kuca, Kamil TI Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides SO CURRENT MEDICINAL CHEMISTRY LA English DT Article DE Computational methods; bioremediation; organophosphates detoxification; warfare agents; pesticides; molecular docking; molecular dynamics simulations; quantum mechanics; QM/MM ID MOLECULAR-DYNAMICS SIMULATIONS; ANHYDRIDE HYDROLASE ACTIVITY; SERUM PARAOXONASE 1; DIISOPROPYL FLUOROPHOSPHATASE DFPASE; AMINO-ACID-RESIDUES; HUMAN BUTYRYLCHOLINESTERASE; BACTERIAL PHOSPHOTRIESTERASE; NERVE AGENTS; LOLIGO-VULGARIS; CHEMICAL WARFARE AB The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research. C1 [Ramalho, Teodorico C.; de Castro, Alexandre A.; Silva, Daniela R.; Silva, Maria Cristina] Univ Fed Lavras, Dept Chem, BR-37200000 Lavras, Brazil. [Ramalho, Teodorico C.; Franca, Tanos C. C.; Kuca, Kamil] Univ Hradec Kralove, Fac Informat & Management, Ctr Basic & Appl Res, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic. [Silva, Maria Cristina] Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil. [Franca, Tanos C. C.; Kuca, Kamil] Mil Inst Engn, Lab Mol Modeling Appl Chem & Biol Def, Rio De Janeiro, Brazil. [Franca, Tanos C. C.] Concordia Univ, Dept Chem & Biochem, 7141 Rue Sherbrooke W, Montreal, PQ H4B 1R6, Canada. [Bennion, Brian J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Kuca, Kamil] Univ Hosp Hradec Kralove, Biomed Res Ctr, Hradec Kralove, Czech Republic. RP Ramalho, TC (reprint author), Univ Fed Lavras, Dept Chem, BR-37200000 Lavras, Brazil.; Kuca, K (reprint author), Univ Hosp Hradec Kralove, Biomed Res Ctr, Hradec Kralove, Czech Republic. EM teodorico.ramalho@gmail.com; kamil.kuca@fnhk.cz RI Franca, Tanos/I-9519-2012; Ramalho, Teodorico /H-3204-2012 OI Ramalho, Teodorico /0000-0002-7324-1353 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [304557/2012-9, 474757/2012-9]; Fundacao de Amparo ao Ensino e Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26/102.993/2012]; Fundacao de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) [PPM-00499-13, PPM-00434-13]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Ministerio da Defesa (CAPES/MD) [PD 1782/2008]; excellence project FIM; UHHK; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors wish to thank the Brazilian financial agencies Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Grants 304557/2012-9 and 474757/2012-9), Fundacao de Amparo ao Ensino e Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant E-26/102.993/2012), Fundacao de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) (Grant no PPM-00499-13, and PPM-00434-13) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Ministerio da Defesa (CAPES/MD) (Edital PRODEFESA 2008, grant no PD 1782/2008) for financial support, and the Military Institute of Engineering (IME) and Federal University of Lavras (UFLA) for providing the physical infrastructure and working space. This work was also supported by excellence project FIM and UHHK. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release Number LLNL-JRNL-679655. NR 156 TC 0 Z9 0 U1 8 U2 16 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8673 EI 1875-533X J9 CURR MED CHEM JI Curr. Med. Chem. PY 2016 VL 23 IS 10 BP 1041 EP 1061 DI 10.2174/0929867323666160222113504 PG 21 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA DJ3QN UT WOS:000374120800004 PM 26898655 ER PT J AU Hadi, P Ning, C Kubicki, JD Mueller, K Fagan, JW Luo, ZT Weng, LT McKay, G AF Hadi, Pejman Ning, Chao Kubicki, James D. Mueller, Karl Fagan, Jonathan W. Luo, Zhengtang Weng, Lutao McKay, Gordon TI Sustainable development of a surface-functionalized mesoporous aluminosilicate with ultra-high ion exchange efficiency SO INORGANIC CHEMISTRY FRONTIERS LA English DT Article ID HEAVY-METAL IONS; COAL FLY-ASH; RAY PHOTOELECTRON-SPECTROSCOPY; AB-INITIO; AQUEOUS-SOLUTION; MAS-NMR; SYNTHETIC RESIN; ALBITE GLASSES; WASTE-WATER; SILICA-GEL AB The present work employs a facile hydroxylation technique to efficiently functionalize the surface of a waste-derived aluminosilicate for ultra-high heavy metal uptake via ion exchange. The functionalization process leads to the transformation of a nonporous hydrophobic waste material to a mesoporous hydrophilic material with a high concentration of ion exchange sites. The modification of the surface and textural characteristics of the mesoporous aluminosilicate has been thoroughly elucidated. The functionalization brings about the partial depolymerization of the aluminosilicate network and the transformation of unreactive bridging oxygens (BO) into non-bridging oxygens (NBO) as active sites as evidenced by Si-29 NMR and FTIR. The positively-charged alkali metals bound to the NBO act as facile ion exchange sites. Ultra-high heavy metal uptake capacity of the functionalized material through a combination of ion exchange and physisorption mechanisms has revealed the great potential of this aluminosilicate material for treatment of heavy metal-laden wastewater in a sustainable manner for practical applications. C1 [Hadi, Pejman; Ning, Chao; Luo, Zhengtang; Weng, Lutao; McKay, Gordon] Hong Kong Univ Sci & Technol, Chem & Biomol Engn Dept, Kowloon, Hong Kong, Peoples R China. [Kubicki, James D.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Mueller, Karl; Fagan, Jonathan W.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Mueller, Karl] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Weng, Lutao] Hong Kong Univ Sci & Technol, Mat Characterizat & Preparat Facil, Kowloon, Hong Kong, Peoples R China. [McKay, Gordon] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci Engn & Technol, Div Sustainable Dev, Doha, Qatar. RP McKay, G (reprint author), Hong Kong Univ Sci & Technol, Chem & Biomol Engn Dept, Kowloon, Hong Kong, Peoples R China.; McKay, G (reprint author), Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci Engn & Technol, Div Sustainable Dev, Doha, Qatar. EM kemckayg@ust.hk RI Kubicki, James/I-1843-2012 OI Kubicki, James/0000-0002-9277-9044 NR 77 TC 0 Z9 0 U1 2 U2 9 PU CHINESE CHEMICAL SOC PI TAIPEI PA PO BOX 1-18, NANKANG, TAIPEI 115, TAIWAN SN 2052-1553 J9 INORG CHEM FRONT JI Inorg. Chem. Front. PY 2016 VL 3 IS 4 BP 502 EP 513 DI 10.1039/c5qi00182j PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DJ2CP UT WOS:000374011600008 ER PT J AU Brabec, J Yang, C Epifanovsky, E Krylov, AI Ng, E AF Brabec, Jiri Yang, Chao Epifanovsky, Evgeny Krylov, Anna I. Ng, Esmond TI Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE coupled-cluster methods; sparsity; sparse correction; quasi-Newton; solvers ID ELECTRONIC-STRUCTURE CALCULATIONS; SINGULAR-VALUE DECOMPOSITION; INEXACT NEWTON METHODS; TRIPLES CORRECTION T; PERTURBATION-THEORY; CHOLESKY DECOMPOSITIONS; QUANTUM-CHEMISTRY; BRILLOUIN-WIGNER; DOUBLES MODEL; MULTIREFERENCE AB We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations. C1 [Brabec, Jiri; Yang, Chao; Ng, Esmond] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Epifanovsky, Evgeny; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Epifanovsky, Evgeny] Q Chem Inc, Suite 105, Pleasanton, CA 94588 USA. RP Brabec, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM jiri.brabec@jh-inst.cas.cz FU Scientific Discovery through Advanced Computing (SciDAC) program FX Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program. NR 63 TC 1 Z9 1 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PY 2016 VL 37 IS 12 BP 1059 EP 1067 DI 10.1002/jcc.24293 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2HH UT WOS:000374024200003 PM 26804120 ER PT J AU Aoun, B AF Aoun, Bachir TI Fullrmc, a rigid body reverse monte carlo modeling package enabled with machine learning and artificial intelligence SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE reverse Monte Carlo; rigid body; machine learning; pair distribution function; modeling ID DISORDERED STRUCTURES; SIMULATION; RMC AB A new Reverse Monte Carlo (RMC) package fullrmc for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. (c) 2016 Wiley Periodicals, Inc. C1 [Aoun, Bachir] Argonne Natl Labs, Joint Ctr Energy Storage Res, 9700 South Cass Ave B109, Lemont, IL USA. RP Aoun, B (reprint author), Argonne Natl Labs, Joint Ctr Energy Storage Res, 9700 South Cass Ave B109, Lemont, IL USA. EM baoun@aps.anl.gov FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences FX This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The author would like to thank B. Reinhart (ANL), P. Chupas (ANL) and K. Chapman (ANL) for the technical assistance and scientific inputs. The Tetrahydrofuran example was provided by the Joint Center for Energy Storage Research (JCESR) efforts an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. NR 19 TC 1 Z9 1 U1 4 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PY 2016 VL 37 IS 12 BP 1102 EP 1111 DI 10.1002/jcc.24304 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2HH UT WOS:000374024200007 PM 26800289 ER PT J AU Mistri, GK Aggarwal, SK Longman, D Agarwal, AK AF Mistri, Gayatri K. Aggarwal, Suresh K. Longman, Douglas Agarwal, Avinash K. TI Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID DIESEL-ENGINE; COMBUSTION CHARACTERISTICS; BIO-DIESEL; N-HEPTANE; FUEL; FLAMES; OXIDATION; PRESSURE; INJECTOR; OILS AB Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels. C1 [Mistri, Gayatri K.; Aggarwal, Suresh K.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Longman, Douglas] Argonne Natl Lab, Engine Combust Res, Lemont, IL 60439 USA. [Agarwal, Avinash K.] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India. RP Aggarwal, SK (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. EM ska@uic.edu FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; USDOE Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technology FX This manuscript has been created in collaboration with UChicago Argonne, LLC, operator of ANL (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. We gratefully acknowledge the USDOE Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technology for partially funding the reported work. NR 39 TC 0 Z9 0 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD JAN PY 2016 VL 138 IS 1 AR 011202 DI 10.1115/1.4031317 PG 13 WC Energy & Fuels SC Energy & Fuels GA DI7UA UT WOS:000373706300002 ER PT J AU Lawrie, BJ Otterstrom, N Pooser, RC AF Lawrie, B. J. Otterstrom, N. Pooser, R. C. TI Coherence area profiling in multi-spatial-mode squeezed states SO JOURNAL OF MODERN OPTICS LA English DT Article DE squeezed states; quantum optics; coherence areas ID QUANTUM LIMITS; ENTANGLEMENT; IMAGES; LIGHT AB The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. We also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach. C1 [Lawrie, B. J.; Otterstrom, N.; Pooser, R. C.] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN USA. [Otterstrom, N.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. RP Lawrie, BJ (reprint author), Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN USA. EM lawriebj@ornl.gov OI Lawrie, Ben/0000-0003-1431-066X; Pooser, Raphael/0000-0002-2922-453X FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the SULI program; Laboratory Directed Research and Development program FX This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the SULI program. B.L. and R.C.P acknowledge support from the Laboratory Directed Research and Development program. NR 28 TC 1 Z9 1 U1 2 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0340 EI 1362-3044 J9 J MOD OPTIC JI J. Mod. Opt. PY 2016 VL 63 IS 10 BP 989 EP 994 DI 10.1080/09500340.2015.1080869 PG 6 WC Optics SC Optics GA DJ0QJ UT WOS:000373909000011 ER PT J AU Leibowitz, SG Comeleo, RL Wigington, PJ Weber, MH Sproles, EA Sawicz, KA AF Leibowitz, Scott G. Comeleo, Randy L. Wigington, Parker J., Jr. Weber, Marc H. Sproles, Eric A. Sawicz, Keith A. TI Hydrologic Landscape Characterization for the Pacific Northwest, USA SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE hydrologic classification; hydrologic cycle; watersheds; rivers; streams; runoff; geospatial analysis; National Hydrography Dataset; NHD; Pacific Northwest ID CONTERMINOUS UNITED-STATES; CATCHMENT CLASSIFICATION; CLIMATE-CHANGE; FLOW REGIMES; OREGON; FRAMEWORK; STREAMS; RIVER; PRECIPITATION; TEMPERATURE AB We update the Wigington etal. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often insituations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions. C1 [Leibowitz, Scott G.; Comeleo, Randy L.; Wigington, Parker J., Jr.; Weber, Marc H.] US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA. [Sproles, Eric A.] Univ La Serena, Ctr Adv Studies Arid Zones, La Serena, Chile. [Sawicz, Keith A.] US EPA, Oak Ridge Inst Sci & Educ, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, Corvallis, OR 97333 USA. RP Leibowitz, SG (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA. EM leibowitz.scott@epa.gov OI Weber, Marc/0000-0002-9742-4744 FU U.S. Environmental Protection Agency FX We thank James Wickham and Mohammad Safeeq for providing valuable comments that improved this article. The information in this document has been funded entirely by the U.S. Environmental Protection Agency, in part through an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. This article has been subjected to Agency review and has been approved for publication. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 49 TC 0 Z9 0 U1 7 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PY 2016 VL 52 IS 2 BP 473 EP 493 DI 10.1111/1752-1688.12402 PG 21 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DI9FZ UT WOS:000373808800014 ER PT J AU Klett, M Gilbert, JA Trask, SE Polzin, BJ Jansen, AN Dees, DW Abraham, DP AF Klett, Matilda Gilbert, James A. Trask, Stephen E. Polzin, Bryant J. Jansen, Andrew N. Dees, Dennis W. Abraham, Daniel P. TI Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2/Silicon-Graphite Full Cells SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION CELLS; FLUOROETHYLENE CARBONATE; VINYLENE CARBONATE; SILICON ANODES; NEGATIVE ELECTRODES; CATHODE MATERIALS; BATTERIES; PERFORMANCE; SPECTROSCOPY; LINI0.8CO0.15AL0.05O2 AB The capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2-based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials are used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a LixSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0-4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells. (C) The Author(s) 2016. Published by ECS. C1 [Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; Polzin, Bryant J.; Jansen, Andrew N.; Dees, Dennis W.; Abraham, Daniel P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Klett, M; Abraham, DP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mklett@kth.se; abraham@anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU Galo Foundation; Royal Swedish Academy of Engineering Sciences (IVA); Office of Vehicle Technologies at U.S. Department of Energy within core funding of the Applied Battery Research (ABR) for Transportation Program; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX M.K. acknowledges the generous grants from The Galo Foundation and The Royal Swedish Academy of Engineering Sciences (IVA) that enabled her research at Argonne National Laboratory. The work was also supported by the Office of Vehicle Technologies at the U.S. Department of Energy within the core funding of the Applied Battery Research (ABR) for Transportation Program. We are grateful to our many colleagues, especially K. Pupek, B. Ingram, T. Burrell, and W. Lu for their help and support during the course of this study. This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 48 TC 5 Z9 5 U1 11 U2 33 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A875 EP A887 DI 10.1149/2.0271606jes PG 13 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300052 ER PT J AU Richey, FW McCloskey, BD Luntz, AC AF Richey, Francis W. McCloskey, Bryan D. Luntz, Alan C. TI Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg-Air Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MAGNESIUM ALLOY AZ31; NONAQUEOUS LI-O-2 BATTERIES; SALINE SOLUTION; PURE MAGNESIUM; PERFORMANCE; SURFACE; ELECTROCHEMISTRY; DISSOLUTION; PROTECTION; PHOSPHATE AB Aqueous Mg-air primary batteries possess many favorable attributes for energy storage because Mg is affordable, abundant, and lightweight. However, parasitic corrosion of Mg in aqueous electrolytes generates H-2 and surprisingly increases with increasing current density during battery discharge (Mg oxidation), limiting the faradaic efficiency of aqueous Mg batteries. In this study, differential electrochemical mass spectrometry and H-2 pressure rise measurements were used to characterize Mg corrosion in Mg-air batteries employing aqueous electrolytes with salts (NaCl, NaNO3, NaPO4, and a NaCl/NaPO4 mixture) that provide various degrees of Mg passivation. H-2 evolution rates were highest in NaCl electrolytes and lowest in NaNO3 electrolytes. However, NaNO3 salts reduced the H-2-evolving corrosion rate at the expense of introducing a nitrate to nitrite corrosion reaction into the battery. The combined Mg corrosion rate in the nitrate-based electrolyte was still lowest among those electrolytes studied. The nitrate to nitrite corrosion reaction also lowered the magnitude of the Mg anodic potential and therefore decreased the overall Mg-O-2 battery voltage compared to the NaCl electrolyte. Nevertheless, Mg-O-2 batteries utilizing a NaNO3 electrolyte allowed for 60% larger discharge capacity and 50% higher Mg oxidation faradaic efficiency compared to a NaCl electrolyte. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Richey, Francis W.; McCloskey, Bryan D.; Luntz, Alan C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Richey, Francis W.; Luntz, Alan C.] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA. [Richey, Francis W.; Luntz, Alan C.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [McCloskey, Bryan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP McCloskey, BD (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; McCloskey, BD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM bmcclosk@berkeley.edu FU Danish Council for Strategic Research [11-116792]; US Department of Energy [DE-AC02-05CH11231] FX F.R. gratefully acknowledges the ReLiable project (#11-116792) funded by the Danish Council for Strategic Research for financial support. The work at University of California, Berkeley/Lawrence Berkeley National Laboratory (LBNL) was supported in part by previous work performed through the Laboratory Directed Research and Development Program of LBNL under US Department of Energy Contract DE-AC02-05CH11231. The authors are also grateful for suggestions and guidance on cell design from Tom Adams of Adams & Chittenden Scientific Glassware. NR 30 TC 2 Z9 2 U1 15 U2 36 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A958 EP A963 DI 10.1149/2.0781606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300083 ER PT J AU Siegal, MP Yelton, WG Perdue, BR Sava Gallis, DF Schwarz, HL AF Siegal, Michael P. Yelton, W. Graham Perdue, Brian R. Sava Gallis, Dorina F. Schwarz, Haiqing L. TI Nanoporous-Carbon as a Potential Host Material for Reversible Mg Ion Intercalation SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID NONAQUEOUS MAGNESIUM ELECTROCHEMISTRY; BATTERIES; ADSORPTION; GRAPHENE; PROGRESS; SURFACE; FILMS AB We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06-1.3 g/cm(3). The specific surface area of NPC increases linearly from 1,000 to 1,700 m(2)/g as mass density decreases from 1.3 to 0.26 g/cm(3), however, the surface area falls off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density similar to 0.5 g/cm(3) and BET surface area similar to 1500 m(2)/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.; Sava Gallis, Dorina F.; Schwarz, Haiqing L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Siegal, MP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mpsiega@sandia.gov RI Sava Gallis, Dorina/D-2827-2015 FU U.S. Department of Energy [DE-AC04-94AL85000]; Laboratory Directed Research and Development program at Sandia National Laboratories FX The authors thank Lyle Brunke for growing the NPC films, Chris Apblett for use of a glove box to fabricate the Mg coin cells, and Kevin Zavadil for many useful discussions. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 0 Z9 0 U1 12 U2 37 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A1030 EP A1035 DI 10.1149/2.0851606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300090 ER PT J AU Snyder, C Apblett, C Grillet, A Beechem, T Duquette, D AF Snyder, Chelsea Apblett, Christopher Grillet, Anne Beechem, Thomas Duquette, David TI Measuring Li+ Inventory Losses in LiCoO2/Graphite Cells Using Raman Microscopy SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; LICOO2 ELECTRODES; CAPACITY FADE; CATHODE; MECHANISMS AB The contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged state is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Snyder, Chelsea; Apblett, Christopher; Grillet, Anne; Beechem, Thomas] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Snyder, Chelsea; Duquette, David] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. RP Snyder, C (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Snyder, C (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM ehlerc@rpi.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Anthony McDonald for his assistance with Raman measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 2 Z9 2 U1 12 U2 20 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A1036 EP A1041 DI 10.1149/2.1111606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300091 ER PT J AU Papandrew, AB St John, S Elgammal, RA Wilson, DL Atkinson, RW Lawton, JS Arruda, TM Zawodzinski, TA AF Papandrew, Alexander B. St John, Samuel Elgammal, Ramez A. Wilson, David L., III Atkinson, Robert W., III Lawton, Jamie S. Arruda, Thomas M. Zawodzinski, Thomas A., Jr. TI Vapor-Deposited Pt and Pd-Pt Catalysts for Solid Acid Fuel Cells: Short Range Structure and Interactions with the CsH2PO4 Electrolyte SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION REACTION; ELECTROCATALYTIC PERFORMANCE; CONDUCTOR CSH2PO4; OXIDE; OXIDATION; NANOPARTICLES; SPECTROSCOPY; MONOLAYER; STABILITY; RUTHENIUM AB State-of-the-art cathodes for solid acid fuel cells (SAFCs) based on the crystalline electrolyte CsH2PO4 (CDP) are comprised of a proton-conducting CDP network coated by a vapor-deposited nanostructured catalyst. Pd-rich (85 at%Pd) Pt-Pd oxygen reduction catalysts vapor-deposited on CDP display both extraordinary activity for oxygen reduction and poor stability in cathodes for SAFCs operating at 250 degrees C. Similar catalysts with lower Pd content (57 at%Pd) are less active and more stable. Using X-ray absorption spectroscopy (XAS), we find that these catalysts are structurally similar and that structural variations are insufficient to explain the observed differences in activity. XAS and solid-state and solution nuclear magnetic resonance (NMR) also show that additional water-soluble chemical species are present in the Pd-rich electrode after fuel cell operation. We attribute the presence of these species to the reactivity of the Pd-rich catalyst with CsH2PO4 and suggest that these products are the cause of the observed deactivation. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Papandrew, Alexander B.; St John, Samuel; Elgammal, Ramez A.; Wilson, David L., III; Atkinson, Robert W., III; Lawton, Jamie S.; Zawodzinski, Thomas A., Jr.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Arruda, Thomas M.] Salve Regina Univ, Dept Chem, Newport, RI 02840 USA. [Zawodzinski, Thomas A., Jr.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Papandrew, AB (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM apapandrew@utk.edu FU National Science Foundation through TN-SCORE [NSF EPS-1004083]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Financial support for this work was provided by the National Science Foundation through TN-SCORE (NSF EPS-1004083). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors also thank Carlos Steren for his assistance with NMR measurements. NR 35 TC 0 Z9 0 U1 10 U2 26 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP F464 EP F469 DI 10.1149/2.0371606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300074 ER PT J AU Zhao, BL Huang, J Fu, Q Yang, L Zhang, JY Xiang, B AF Zhao, Benliang Huang, Jian Fu, Qi Yang, Lei Zhang, Jingyu Xiang, Bin TI MoS2/NbSe2 Hybrid Nanobelts for Enhanced Hydrogen Evolution SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MOS2 NANOSHEETS; SOLAR-CELLS; EFFICIENT; GRAPHENE; CATALYST; NANOPARTICLES; OXIDATION; H-2 AB Recently, MoS2 nanosheets have attracted extensive interest for the application in electrocatalytic hydrogen evolution reaction (HER) because of its highly active edge sites and chemical stability. However, the aggregation in nanosized MoS2 reduces the density of exposed surface edge sites, degrading its electrochemical catalytic activity. In this paper, we report a hybrid structure of MoS2/NbSe2 nanobelts with enhanced electrochemical catalytic performance. The hybrid structure feature and chemical composition were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy. With the introduction of one dimensional metallic NbSe2, the MoS2 surface edge sites were highly exposed in MoS2/NbSe2 nanobelts, resulting in an enhanced electrocatalytic performance in HER. A Tafel slope of 79.5 eV/dec was obtained in MoS2/NbSe2, much lower than that of MoS2 (137.6 eV/dec). At the over potential of -0.65 V vs. RHE, the catalytic current density of MoS2/NbSe2 nanobelts is 205 mA/cm(2), five times larger than that of MoS2 nanosheets (43 mA/cm(2)). (C) 2016 The Electrochemical Society. All rights reserved. C1 [Zhao, Benliang; Huang, Jian; Fu, Qi; Yang, Lei; Xiang, Bin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. [Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xiang, B (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. EM binxiang@ustc.edu.cn FU National Natural Science Foundation of China [21373196, 11434009]; National Program for Thousand Young Talents of China; Fundamental Research Funds for the Central Universities [WK2340000050, WK2060140014] FX This work was supported by the National Natural Science Foundation of China (21373196, 11434009), the National Program for Thousand Young Talents of China and the Fundamental Research Funds for the Central Universities (WK2340000050, WK2060140014). NR 27 TC 0 Z9 0 U1 10 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP H384 EP H387 DI 10.1149/2.0451606jes PG 4 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300114 ER PT J AU Franco, M Panas, MW Marino, ND Lee, MCW Buchholz, KR Kelly, FD Bednarski, JJ Sleckman, BP Pourmand, N Boothroyd, JC AF Franco, Magdalena Panas, Michael W. Marino, Nicole D. Lee, Mei-Chong Wendy Buchholz, Kerry R. Kelly, Felice D. Bednarski, Jeffrey J. Sleckman, Barry P. Pourmand, Nader Boothroyd, John C. TI A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation of Host Cells SO MBIO LA English DT Article ID DENSE GRANULE PROTEIN; ONCOGENIC TRANSCRIPTION FACTOR; C-MYC; PARASITOPHOROUS VACUOLE; MALARIA PARASITES; IMMUNE-RESPONSE; GENE-EXPRESSION; IN-VIVO; GONDII; INFECTION AB The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc-GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy. C1 [Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; Buchholz, Kerry R.; Kelly, Felice D.; Boothroyd, John C.] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA. [Franco, Magdalena] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. [Lee, Mei-Chong Wendy; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Bednarski, Jeffrey J.] Washington Univ, Dept Pediat, St Louis, MO 63130 USA. [Sleckman, Barry P.] Washington Univ, Dept Pathol & Immunol, St Louis, MO USA. RP Boothroyd, JC (reprint author), Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA. EM jboothr@stanford.edu FU HHS \ National Institutes of Health (NIH) [R21-AI112962, RO1-AI73756, T32-AI007328, P01-35HG000205, T32-AI007290, F31-AI120649, K08AI102946-01, S10RR025518-01, P30-NS069375]; Alex's Lemonade Stand Foundation for Childhood Cancer (ALSF); Stanford University FX HHS vertical bar National Institutes of Health (NIH) provided funding to John Boothroyd under grant numbers R21-AI112962 and RO1-AI73756. HHS vertical bar National Institutes of Health (NIH) provided funding to Magdalena Franco under grant number T32-AI007328. HHS vertical bar National Institutes of Health (NIH) provided funding to Nader Pourmand under grant number P01-35HG000205. HHS vertical bar National Institutes of Health (NIH) provided funding to Michael William Panas under grant number T32-AI007290. HHS vertical bar National Institutes of Health (NIH) provided funding to Nicole D. Marino under grant number F31-AI120649. HHS vertical bar National Institutes of Health (NIH) provided funding to Jeffrey J. Bednarski under grant number K08AI102946-01. HHS vertical bar National Institutes of Health (NIH) provided funding to Magdalena Franco under grant number S10RR025518-01. HHS vertical bar National Institutes of Health (NIH) provided funding to Michael William Panas under grant number P30-NS069375. Alex's Lemonade Stand Foundation for Childhood Cancer (ALSF) provided funding to Jeffrey J. Bednarski.; Stanford University provided the Stanford Graduate Fellowship to Nicole D. Marino. NR 54 TC 7 Z9 7 U1 2 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JAN-FEB PY 2016 VL 7 IS 1 AR e02231-15 DI 10.1128/mBio.02231-15 PG 16 WC Microbiology SC Microbiology GA DJ0ZO UT WOS:000373933100025 PM 26838724 ER PT J AU Hu, P Tom, L Singh, A Thomas, BC Baker, BJ Piceno, YM Andersen, GL Banfield, JF AF Hu, Ping Tom, Lauren Singh, Andrea Thomas, Brian C. Baker, Brett J. Piceno, Yvette M. Andersen, Gary L. Banfield, Jillian F. TI Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs SO MBIO LA English DT Article ID CRUDE-OIL; NORTH-SEA; ARCHAEOGLOBUS-FULGIDUS; PETROLEUM RESERVOIRS; DEEP SUBSURFACE; SP-NOV.; POLYSACCHARIDE HYDROLYSIS; NITROGEN-FIXATION; ORGANIC-MATTER; FIELD WATERS AB Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128m(24 to 27 degrees C) and 2,743m(80 to 83 degrees C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate-and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. IMPORTANCE The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria belonging to candidate phyla are present in some oil reservoirs and provide the first insights into their potential roles in biogeochemical processes based on several nearly complete genomes. C1 [Hu, Ping; Tom, Lauren; Piceno, Yvette M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Singh, Andrea; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Baker, Brett J.] Univ Texas Austin, Inst Marine Sci, Dept Marine Sci, Port Aransas, TX 78712 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Baker, Brett/P-1783-2014; Tom, Lauren/E-9739-2015; Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015; Hu, Ping/G-2384-2015 OI Baker, Brett/0000-0002-5971-1021; Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827; FU University of California at Berkeley, Energy Biosciences Institute under U.S. Department of Energy [DE-AC02-05CH11231]; Department of Eenergy [DE-SC0004918] FX This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute to Lawrence Berkeley National Laboratory under its U.S. Department of Energy contract DE-AC02-05CH11231. The ggkbase is supported by grant DE-SC0004918 (Systems Biology Knowledge Base Focus Area) from Department of Eenergy. NR 85 TC 6 Z9 6 U1 8 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JAN-FEB PY 2016 VL 7 IS 1 AR e01669-15 DI 10.1128/mBio.01669-15 PG 12 WC Microbiology SC Microbiology GA DJ0ZO UT WOS:000373933100035 PM 26787827 ER PT B AU Bravo, L Xue, QL Som, S Powell, C Kweon, CBM AF Bravo, Luis Xue, Qingluan Som, Sibendu Powell, Christopher Kweon, Chol-Bum M. GP ASME TI FUEL EFFECTS ON NOZZLE FLOW AND SPRAY USING FULLY COUPLED EULERIAN SIMULATIONS SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div ID X-RAY RADIOGRAPHY; SURROGATE MIXTURES; COMBUSTION; MODEL; JP-8; COMPONENTS AB The objective of this study is to examine the impact of single and multi-component surrogate fuel mixtures on the atomization and mixing characteristics of non-reacting isothermal diesel engine sprays. An Eulerian modeling approach was adopted to simulate both the internal nozzle flow dynamics and the emerging turbulent spray in the near nozzle region in a fully-coupled manner. The Volume of Fluids (VoF) methodology was utilized to treat the two-phase flow dynamics including a Homogenous Relaxation approach to account for nozzle cavitation effects. To enable accurate simulations, the nozzle geometry and in-situ multi-dimensional needle lift and off-axis motion profiles have been characterized via the X-ray phase-contrast technique at Argonne National Laboratory. The flow turbulence is treated via the classical k - epsilon Reynolds Average Navier Stoke (RANS) model with in-nozzle and near field resolution of 30 mu m. Several multi-component surrogate mixtures were implemented using linear blending rules to examine the behavior of petroleum, and alternative fuels including: JP -8, JP-5, Hydro-treated Renewable Jet (HRJ), Iso-Paraffinic Kerosene (IPK) with comparison to single component n-dodecane fuel on ECN Spray A nozzle spray dynamics. The results were validated using transient rate-of injection measurements from the Army Research Laboratory at Spray A conditions as well as projected density fields obtained from the line-of-sight measurements from X-ray radiography measurements at The Advanced Photon Source at Argonne National Laboratory. The conditions correspond to injection pressure, nominal fuel temperature, and ambient density of 1500 bar, 363 K, and 22.8 kg/m(3), respectively. The simulation results provide a unique high-fidelity contribution to the effects of fuels on the spray mixing dynamics. The results can lead to improvements in fuel mixture distributions enhancing performance of military vehicles. C1 [Bravo, Luis; Kweon, Chol-Bum M.] US Army Res Lab, Aberdeen Proving Ground, MD USA. [Xue, Qingluan; Som, Sibendu; Powell, Christopher] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Bravo, L (reprint author), US Army Res Lab, Aberdeen Proving Ground, MD USA. NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T03A012 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600032 ER PT B AU DuPont, B Azam, R Proper, S Cotilla-Sanchez, E Hoyle, C Piacenza, J Oryshchyn, D Zitney, S Bossart, S AF DuPont, Bryony Azam, Ridwan Proper, Scott Cotilla-Sanchez, Eduardo Hoyle, Christopher Piacenza, Joseph Oryshchyn, Danylo Zitney, Steve Bossart, Stephen GP ASME TI DECISION MAKING FOR THE COLLABORATIVE ENERGY SUPPLY SYSTEM OF OREGON AND WASHINGTON SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div AB As demand for electricity in the United States continues to increase, it is necessary to explore the means through which the modem power supply system can accommodate both increasing affluence (which is accompanied by increased per-capita consumption) and the continually growing global population. Though there has been a great deal of research into the theoretical optimization of large-scale power systems, research into the use of an existing power system as a foundation for this growth has yet to be fully explored. Current successful and robust power generation systems that have significant renewable energy penetration - despite not having been optimized a priori - can be used to inform the advancement of modem power systems to accommodate the increasing demand for electricity. Leveraging ongoing research projects at Oregon State University and the National Energy Technology Laboratory, this work explores how an accurate and state-of-the-art computational model of the Oregon/Washington (OR/WA) energy system can be employed as part of an overarching power systems optimization scheme that looks to inform the decision making process for next generation power supply systems. Research scenarios that explore an introductory multi-objective power flow analysis for the OR/WA grid will be shown, along with a discussion of future research directions. C1 [DuPont, Bryony; Azam, Ridwan; Proper, Scott; Cotilla-Sanchez, Eduardo; Hoyle, Christopher] Oregon State Univ, Corvallis, OR 97331 USA. [Piacenza, Joseph] Calif State Univ Fullerton, Fullerton, CA 92634 USA. [Oryshchyn, Danylo; Zitney, Steve; Bossart, Stephen] Natl Energy Technol Lab, Morgantown, WV USA. RP DuPont, B (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. NR 15 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T01A012 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600012 ER PT B AU Li, GN Li, SP Kim, GH AF Li, Genong Li, Shaoping Kim, Gi-Heon GP ASME TI TREATMENT OF ELECTRIC SHORT-CIRCUIT IN ELECTROCHEMICAL-THERMAL COUPLED BATTERY SIMULATIONS SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div ID LITHIUM-ION CELLS; MODEL AB Lithium-ion batteries have been widely used in electric vehicles (EVs). Their performance, life and safety are of great engineering importance. Using simulation tools, electric performance and thermal behavior of a battery can be computed to provide useful information in battery design. Internal short-circuit is one of the important failure modes in battery's safety study. Internal short treatment is added to the framework of the multi scale multi-dimensional (MSMD) battery modeling methodology. The method is demonstrated in the present paper by simulating a single lithium-ion battery cell. C1 [Li, Genong; Li, Shaoping] Ansys Inc, 10 Cavendish Court, Lebanon, NH 03766 USA. [Kim, Gi-Heon] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RP Li, GN (reprint author), Ansys Inc, 10 Cavendish Court, Lebanon, NH 03766 USA. NR 9 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T12A008 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600094 ER PT B AU Smith, AD Omitaomu, OA Peck, JJ AF Smith, Amanda D. Omitaomu, Olufemi A. Peck, Jaron J. GP ASME TI MODELING THE IMPACTS OF SOLAR DISTRIBUTED GENERATION ON US WATER RESOURCES SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div AB Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity. C1 [Smith, Amanda D.; Peck, Jaron J.] Univ Utah, Salt Lake City, UT USA. [Omitaomu, Olufemi A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Smith, AD (reprint author), Univ Utah, Salt Lake City, UT USA. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T02A004 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600020 ER PT J AU Yue, YF Zhang, L Chen, JH Hensley, DK Dai, S Overbury, SH AF Yue, Yanfeng Zhang, Li Chen, Jihua Hensley, Dale K. Dai, Sheng Overbury, Steven H. TI Mesoporous xEr(2)O(3)center dot CoTiO3 composite oxide catalysts for low temperature dehydrogenation of ethylbenzene to styrene using CO2 as a soft oxidant SO RSC ADVANCES LA English DT Article ID PROMOTED IRON-OXIDE; OXIDATIVE DEHYDROGENATION; CARBON-DIOXIDE; CERIA; ALUMINA; NANOSHEETS; TIO2 AB A series of mesoporous xEr(2)O(3)center dot CoTiO3 composite oxide catalysts have been prepared using a template method and tested as a newtype of catalyst for the oxidative dehydrogenation of ethylbenzene to styrene by using CO2 as a soft oxidant. Among the catalysts tested, the 0.25Er(2)O(3)center dot CoTiO3 sample with a ratio of 1 : 4 : 4 content and calcined at 600 degrees C exhibited the highest ethylbenzene conversion (58%) and remarkable styrene selectivity (95%) at low temperature (450 degrees C). C1 [Yue, Yanfeng; Zhang, Li; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Yue, Yanfeng] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA. [Chen, Jihua; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S; Overbury, SH (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dais@ornl.gov; overburysh@ornl.gov RI Chen, Jihua/F-1417-2011; Dai, Sheng/K-8411-2015 OI Chen, Jihua/0000-0001-6879-5936; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. TEM (J. C.) and SEM (D. K. H.) experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 26 TC 0 Z9 0 U1 7 U2 17 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 39 BP 32989 EP 32993 DI 10.1039/c6ra04228g PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2PA UT WOS:000374045900070 ER PT J AU Rafailovic, LD Gammer, C Srajer, J Trisovic, T Rahel, J Karnthaler, HP AF Rafailovic, L. D. Gammer, C. Srajer, J. Trisovic, T. Rahel, J. Karnthaler, H. P. TI Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide SO RSC ADVANCES LA English DT Article ID GALVANIC REPLACEMENT SYNTHESIS; SILVER DENDRITES; SERS; DISPLACEMENT; DEPOSITION; NANODENDRITES; SUBSTRATE; FOIL AB We present the application of newly developed Ag nanodendrites (Ag-ND) grown together with anodic aluminium oxide for surface-enhanced Raman scattering (SERS). The Ag-ND yield very pronounced SERS using a self-assembled monolayer (SAM). This is confirmed by simulations showing hot spots in the electromagnetic field at the surfaces of the Ag-ND. SERS measurements reusing Ag-ND demonstrate its long-term stability even after one year. C1 [Rafailovic, L. D.] CEST, Wr Neustadt, Austria. [Gammer, C.; Karnthaler, H. P.] Univ Vienna, Phys Nanostruct Mat, Vienna, Austria. [Gammer, C.] Lawrence Berkeley Natl Lab, NCEM, Mol Foundry, Berkeley, CA USA. [Srajer, J.] AIT, Biosensor Technol, Vienna, Austria. [Trisovic, T.] Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade, Serbia. [Rahel, J.] Masaryk Univ, Dept Phys Elect CEPLANT, Brno, Czech Republic. RP Rafailovic, LD (reprint author), CEST, Wr Neustadt, Austria.; Trisovic, T (reprint author), Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade, Serbia. EM lidija.rafailovic@cest.at; trisa@tmf.bg.ac.rs RI Trisovic, Tomislav/F-9994-2010; OI Trisovic, Tomislav/0000-0003-2400-5984; Rahel, Jozef/0000-0002-2850-8039; Gammer, Christoph/0000-0003-1917-4978 FU COMET program by the Austrian Research Promotion Agency (FFG); government of Lower Austria; government of Upper Austria; Austrian Science Fund (FWF) [J3397]; Molecular Foundry, Lawrence Berkeley National Laboratory - U.S. Dept of Energy [DE-AC02-05CH11231] FX We would like to thank Dr A. H. Whitehead for stimulating, very helpful discussions. We are thankful to Prof. Dr C. Kleber for his scientific support and to him and to Mag. A. Balatka for provision of lab facilities. The work at CEST was supported within the COMET program by the Austrian Research Promotion Agency (FFG) and the governments of Lower Austria and Upper Austria. C. G. acknowledges support from the Austrian Science Fund (FWF):[J3397] and the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the U.S. Dept of Energy under Contract # DE-AC02-05CH11231. NR 25 TC 0 Z9 0 U1 9 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 40 BP 33348 EP 33352 DI 10.1039/c5ra26632g PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2OS UT WOS:000374045000015 ER PT J AU Li, YY Zhang, LH Wu, YQ AF Li, Yiyu Zhang, Lihua Wu, Yiquan TI Synthesis and characterization of calcium lanthanum sulfide via a wet chemistry route followed by thermal decomposition SO RSC ADVANCES LA English DT Article ID SINGLE-SOURCE PRECURSOR; METAL ALKOXIDES; CALA2S4 POWDERS; SULFIDIZATION; DENSIFICATION; NANOPARTICLES; SULFURIZATION; CDS AB Calcium lanthanum sulfide (CaLa2S4) has been extensively studied as a promising candidate for advanced infrared optical ceramics. In the present research, we report the successful synthesis of CaLa2S4 via a wet chemistry method followed by thermal decomposition. CaLa2S4 precursor material was first prepared by a facile ethanol-based wet chemical single-source precursor route. The precursor was then thermally decomposed in argon at high temperature to form CaLa2S4. The phase composition and morphology of the synthesized CaLa2S4 powder were confirmed and observed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. Surface area and pore size analyses showed that the CaLa2S4 powder had a high specific surface due to a combined effect of small particle size and the existence of mesopores. Optical characterization revealed that the synthesized CaLa2S4 powder exhibited quantum size confinement and near-band-edge photoluminescence. C1 [Li, Yiyu; Wu, Yiquan] Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, 2 Pine St, Alfred, NY 14802 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Wu, YQ (reprint author), Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, 2 Pine St, Alfred, NY 14802 USA. EM wuy@alfred.edu FU Office of Naval Research (ONR) [N00014-14-1-0546]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX We gratefully acknowledge the Office of Naval Research (ONR) (contract N00014-14-1-0546) for funding and supporting this research. This research used JEOL2100F TEM of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 31 TC 0 Z9 0 U1 8 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 41 BP 34935 EP 34939 DI 10.1039/c6ra05912k PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2QI UT WOS:000374049700100 ER PT J AU Smith, C Dagle, VL Flake, M Ramasamy, KK Kovarik, L Bowden, M Onfroy, T Dagle, RA AF Smith, Colin Dagle, Vanessa Lebarbier Flake, Matthew Ramasamy, Karthikeyan K. Kovarik, Libor Bowden, Mark Onfroy, Thomas Dagle, Robert A. TI Conversion of syngas-derived C-2+ mixed oxygenates to C-3-C-5 olefins over ZnxZryOz mixed oxide catalysts SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID TRANSPORTATION FUELS; ACID CATALYSTS; ZINC-OXIDE; ETHANOL; ACETONE; BIOMASS; CONDENSATION; ISOBUTENE; CHEMICALS; ACETALDEHYDE AB In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C-2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C-3-C-5 mixed olefins was demonstrated when operating at 400-450 degrees C and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C-6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C-4, C-5, and C-6 branched olefins. The presence of H-2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450 degrees C provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between isobutene production and the ratio of basic/acidic sites was demonstrated. An optimized balance of active sites for isobutene production from acetone was obtained with a basic/acidic site ratio of similar to 2. This technology for the conversion of aqueous mixtures of C-2+ mixed oxygenates provides significant advantages over other presently studied catalysts in that its unique properties permit the utilization of a variety of feeds in a consistently selective manner. C1 [Smith, Colin; Dagle, Vanessa Lebarbier; Flake, Matthew; Ramasamy, Karthikeyan K.; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kovarik, Libor; Bowden, Mark] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Onfroy, Thomas] Univ Paris 06, Sorbonne Univ, UMR 7197, Lab React Surface, F-75005 Paris, France. [Onfroy, Thomas] CNRS, UMR 7197, Lab React Surface, F-75005 Paris, France. RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM Robert.Dagle@pnnl.gov RI Kovarik, Libor/L-7139-2016 FU U.S. Department of Energy (DOE) Bioenergy Technologies Office; DOE's Office of Biological and Environmental Research FX This work was financially supported by the U.S. Department of Energy (DOE) Bioenergy Technologies Office and was performed at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory, which is a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The authors would like to thank Theresa Lemmon and Marie Swita for analytical support of this project. Finally, the authors would like to thank Cary Counts of PNNL for help with technical editing of this manuscript. NR 38 TC 1 Z9 1 U1 11 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 7 BP 2325 EP 2336 DI 10.1039/c5cy01261a PG 12 WC Chemistry, Physical SC Chemistry GA DI6KS UT WOS:000373608400034 ER PT J AU Scofield, ME Koenigsmann, C Bobb-Semple, D Tao, J Tong, X Wang, L Lewis, CS Vukmirovic, MB Zhu, YM Adzic, RR Wong, SS AF Scofield, Megan E. Koenigsmann, Christopher Bobb-Semple, Dara Tao, Jing Tong, Xiao Wang, Lei Lewis, Crystal S. Vukmirovic, Miomir B. Zhu, Yimei Adzic, Radoslav R. Wong, Stanislaus S. TI Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID FUEL-CELLS; ELECTROCATALYTIC OXIDATION; PLATINUM NANOPARTICLES; SURFACE-PROPERTIES; SUPPORT MATERIALS; RUO2; ELECTROOXIDATION; ELECTRODES; NANOSTRUCTURES; NANOTUBE AB The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nano-particles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. Additionally, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material. C1 [Scofield, Megan E.; Koenigsmann, Christopher; Bobb-Semple, Dara; Wang, Lei; Lewis, Crystal S.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Tao, Jing; Zhu, Yimei; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA. [Tong, Xiao] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735, Upton, NY 11973 USA. [Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM stanislaus.wong@stonybrook.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886, DE-SC-00112704] FX Research for all authors was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Experiments for this manuscript were performed in part at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and DE-SC-00112704. NR 59 TC 1 Z9 1 U1 11 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 7 BP 2435 EP 2450 DI 10.1039/c5cy01444a PG 16 WC Chemistry, Physical SC Chemistry GA DI6KS UT WOS:000373608400046 ER PT J AU Liu, R Chen, S Baker, ES Smith, RD Zeng, XC Gong, B AF Liu, Rui Chen, Shuang Baker, Erin S. Smith, Richard D. Zeng, Xiao Cheng Gong, Bing TI Surprising impact of remote groups on the folding-unfolding and dimer-chain equilibria of bifunctional H-bonding unimers (vol 52, pg 3773, 2016) SO CHEMICAL COMMUNICATIONS LA English DT Correction C1 [Liu, Rui; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Liu, Rui; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Chen, Shuang] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Jiangsu, Peoples R China. [Baker, Erin S.; Smith, Richard D.] Pacific NW Natl Lab, Earth & Biol Sci Div, Richland, WA 99352 USA. [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Gong, B (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.; Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. EM bgong@buffalo.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 1 TC 0 Z9 0 U1 2 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 29 BP 5205 EP 5205 DI 10.1039/c6cc90142e PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA DI6SG UT WOS:000373629800030 PM 27003741 ER PT J AU Rui, Z Zhang, WJ AF Rui, Zhe Zhang, Wenjun TI Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution SO CURRENT TOPICS IN MEDICINAL CHEMISTRY LA English DT Review DE Biosynthesis; Directed evolution; High-throughput screening; Mutasynthesis; Natural product; Non-ribosomal peptide synthetase; Polyketide synthase ID NATURAL-PRODUCTS; COMBINATORIAL BIOSYNTHESIS; THIOESTERASE DOMAIN; ADENYLATION DOMAIN; CATALYTIC DOMAINS; ESCHERICHIA-COLI; SYNTHASE; SYNTHETASE; SPECIFICITY; BIOSENSORS AB Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery. C1 [Rui, Zhe; Zhang, Wenjun] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Zhang, Wenjun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Zhang, WJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Zhang, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM wjzhang@berkeley.edu FU Pew Scholars Program FX This work was financially supported by the Pew Scholars Program (to W.Z.). NR 57 TC 1 Z9 1 U1 14 U2 21 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1568-0266 EI 1873-5294 J9 CURR TOP MED CHEM JI Curr. Top. Med. Chem. PY 2016 VL 16 IS 15 BP 1755 EP 1762 DI 10.2174/1568026616666151012112045 PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA DI4VX UT WOS:000373498600008 PM 26456467 ER PT J AU Whittemore, SM Bowden, M Karkamkar, A Parab, K Neiner, D Autrey, T Ishibashi, JSA Chen, G Liu, SY Dixon, DA AF Whittemore, Sean M. Bowden, Mark Karkamkar, Abhijeet Parab, Kshitij Neiner, Doinita Autrey, Tom Ishibashi, Jacob S. A. Chen, Gang Liu, Shih-Yuan Dixon, David A. TI Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores SO DALTON TRANSACTIONS LA English DT Article ID AMMONIA-BORANE DEHYDROGENATION; FUEL-CELL APPLICATIONS; N-H COMPOUNDS; STORAGE MATERIAL; THERMAL-DECOMPOSITION; CATALYZED DEHYDROGENATION; REGENERATION; RELEASE; BORAZINE; CYCLOHEXANE AB Mixtures of hydrogen storage materials containing the elements of boron, nitrogen, carbon, i.e., isomers of BN cyclopentanes are examined to find a 'fuel blend' that remains a liquid phase throughout hydrogen release, maximizes hydrogen storage density, minimizes impurities and remains thermally stable at ambient temperatures. We find that the mixture of ammonia borane dissolved in 3-methyl-1,2-dihydro1,2-azaborolidine (compound B) provide a balance of these properties and provides ca. 5.6 wt% hydrogen. The two hydrogen storage materials decompose at a faster rate than either individually and products formed are a mixture of molecular trimers. Digestion of the product mixture formed from the decomposition of the AB i B fuel blend with methanol leads to the two corresponding methanol adducts of the starting material and not a complex mixture of adducts. The work shows the utility of using blends of materials to reduce volatile impurities and preserve liquid phase. C1 [Whittemore, Sean M.; Karkamkar, Abhijeet; Parab, Kshitij] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. [Bowden, Mark; Autrey, Tom] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Neiner, Doinita] US Borax Inc, Rio Tinto, Greenwood Village, CO 80111 USA. [Ishibashi, Jacob S. A.; Chen, Gang; Liu, Shih-Yuan] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA. [Dixon, David A.] Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA. RP Autrey, T (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM tom.autrey@pnnl.gov RI Liu, Shih-Yuan/J-7813-2012 OI Liu, Shih-Yuan/0000-0003-3148-9147 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-EE-0005658]; LaMattina Family Graduate Fellowship in Chemical Synthesis; Camille Dreyfus Teacher-Scholar Awards Program; Robert Ramsay Chair Fund of The University of Alabama FX This research was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (DE-EE-0005658). The Pacific Northwest National Laboratory is operated by Battelle for DOE. J. S. A. I. thanks the LaMattina Family Graduate Fellowship in Chemical Synthesis for support. S.-Y.L thanks the Camille Dreyfus Teacher-Scholar Awards Program for a Teacher-Scholar award. D. A. D. thanks the Robert Ramsay Chair Fund of The University of Alabama for support. NR 56 TC 1 Z9 1 U1 4 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 14 BP 6196 EP 6203 DI 10.1039/c5dt04276c PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI6SP UT WOS:000373630800039 PM 26629961 ER PT J AU Smith, AMS Talhelm, AF Kolden, CA Newingham, BA Adams, HD Cohen, JD Yedinak, KM Kremens, RL AF Smith, Alistair M. S. Talhelm, Alan F. Kolden, Crystal A. Newingham, Beth A. Adams, Henry D. Cohen, Jack D. Yedinak, Kara M. Kremens, Robert L. TI The ability of winter grazing to reduce wildfire size and fire-induced plant mortality was not demonstrated: a comment on Davies et al. (2015) SO INTERNATIONAL JOURNAL OF WILDLAND FIRE LA English DT Article DE intensity; severity; thermocouples ID BROMUS-TECTORUM; GREAT-BASIN; SAGEBRUSH STEPPE; ECOSYSTEMS; GRASSLANDS; BUNCHGRASSES; RANGELANDS; DIVERSITY; DOMINANCE; BEHAVIOR AB A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behaviour and intensity metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, we contend that the study by Davies et al. has underlying methodological errors, lacks data necessary to support their conclusions, and does not provide a thorough discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based on their observed fire behaviour metrics of maximum temperature and a term described as the heat load'. However, we contend that neither metric is appropriate for describing the heat flux impacts on plants. This lack of post-fire data, several methodological errors and the use of inappropriate thermal metrics limit the authors' ability to support their stated conclusions. C1 [Smith, Alistair M. S.; Yedinak, Kara M.] Univ Idaho, Idaho Fire Initiat Res & Educ, 975 West 6th St, Moscow, ID 83844 USA. [Smith, Alistair M. S.; Talhelm, Alan F.; Yedinak, Kara M.] Univ Idaho, Dept Forest Rangeland & Fire Sci, 975 West 6th St, Moscow, ID 83844 USA. [Talhelm, Alan F.] US Environm Protect Agcy, Natl Ctr Environm Assessment, Oak Ridge Inst Sci Educ, Res Triangle Pk, NC USA. [Kolden, Crystal A.] Univ Idaho, Dept Geog, 875 Perimeter Dr, Moscow, ID 83844 USA. [Newingham, Beth A.] USDA ARS, Great Basin Rangelands Res Unit, 920 Valley Rd, Reno, NV 89512 USA. [Adams, Henry D.] Oklahoma State Univ, Dept Bot, 104 Life Sci Bldg E, Stillwater, OK 74078 USA. [Cohen, Jack D.] US Forest Serv, Missoula Fire Sci Lab, 7557 West Broadway St, Missoula, MT 59808 USA. [Kremens, Robert L.] Rochester Inst Technol, Coll Sci, Gosnell Hall 84, Rochester, NY 14623 USA. RP Smith, AMS (reprint author), Univ Idaho, Idaho Fire Initiat Res & Educ, 975 West 6th St, Moscow, ID 83844 USA.; Smith, AMS (reprint author), Univ Idaho, Dept Forest Rangeland & Fire Sci, 975 West 6th St, Moscow, ID 83844 USA. EM alistair@uidaho.edu NR 41 TC 2 Z9 2 U1 3 U2 7 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1049-8001 EI 1448-5516 J9 INT J WILDLAND FIRE JI Int. J. Wildland Fire PY 2016 VL 25 IS 4 BP 484 EP 488 DI 10.1071/WF15163 PG 5 WC Forestry SC Forestry GA DI7VF UT WOS:000373709400012 ER PT J AU Maurice, S Clegg, SM Wiens, RC Gasnault, O Rapin, W Forni, O Cousin, A Sautter, V Mangold, N Le Deit, L Nachon, M Anderson, RB Lanza, NL Fabre, C Payre, V Lasue, J Meslin, PY Leveille, RJ Barraclough, L Beck, P Bender, SC Berger, G Bridges, JC Bridges, NT Dromart, G Dyar, MD Francis, R Frydenvang, J Gondet, B Ehlmann, BL Herkenhoff, KE Johnson, JR Langevin, Y Madsen, MB Melikechi, N Lacour, JL Le Mouelic, S Lewin, E Newsom, HE Ollila, AM Pinet, P Schroder, S Sirven, JB Tokar, RL Toplis, MJ d'Uston, C Vaniman, DT Vasavada, AR AF Maurice, S. Clegg, S. M. Wiens, R. C. Gasnault, O. Rapin, W. Forni, O. Cousin, A. Sautter, V. Mangold, N. Le Deit, L. Nachon, M. Anderson, R. B. Lanza, N. L. Fabre, C. Payre, V. Lasue, J. Meslin, P. -Y. Leveille, R. J. Barraclough, L. Beck, P. Bender, S. C. Berger, G. Bridges, J. C. Bridges, N. T. Dromart, G. Dyar, M. D. Francis, R. Frydenvang, J. Gondet, B. Ehlmann, B. L. Herkenhoff, K. E. Johnson, J. R. Langevin, Y. Madsen, M. B. Melikechi, N. Lacour, J. -L. Le Mouelic, S. Lewin, E. Newsom, H. E. Ollila, A. M. Pinet, P. Schroeder, S. Sirven, J. -B. Tokar, R. L. Toplis, M. J. d'Uston, C. Vaniman, D. T. Vasavada, A. R. TI ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID INDUCED BREAKDOWN SPECTROSCOPY; CURIOSITY ROVER; OMEGA/MARS EXPRESS; SPACE EXPLORATION; INSTRUMENT SUITE; YELLOWKNIFE BAY; CHEMISTRY; ORIGIN; ROCKS; TARGETS AB At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188 000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic Noachian crust, first observation of hydrated soil, discovery of manganese-rich coatings and fracture fills indicating strong oxidation potential in Mars' early atmosphere, characterization of soils by grain size, and wide scale mapping of sedimentary strata, conglomerates, and diagenetic materials. C1 [Maurice, S.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Lasue, J.; Meslin, P. -Y.; Berger, G.; Schroeder, S.; Toplis, M. J.; d'Uston, C.] Univ Toulouse 3, CNRS, IRAP, Obs Midi Pyrenees, 9 Av Colonel Roche, F-31400 Toulouse, France. [Clegg, S. M.; Wiens, R. C.; Lanza, N. L.; Barraclough, L.; Frydenvang, J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sautter, V.; Anderson, R. B.] Museum Natl Hist Nat, IMPMC, F-75231 Paris, France. [Mangold, N.; Le Deit, L.; Nachon, M.; Le Mouelic, S.] LPG Nantes, UMR CNRS 6112, Lab Planetol & Geodynam, Nantes, France. [Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Fabre, C.; Payre, V.] Univ Lorraine, GeoRessources, Vandoeuvre Les Nancy, France. [Leveille, R. J.] Canadian Space Agcy, St Hubert, PQ, Canada. [Leveille, R. J.] McGill Univ, Dept Nat Resource Sci, Montreal, PQ, Canada. [Beck, P.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, Grenoble, France. [Bender, S. C.; Tokar, R. L.; Vaniman, D. T.] Planetary Sci Inst, Tucson, AZ USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Bridges, N. T.; Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Dromart, G.] Univ Lyon, ENS Lyon, Lab Geol Lyon, Lyon, France. [Dyar, M. D.] Mt Holyoke Coll, Dept Astron, South Hadley, MA USA. [Francis, R.] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON, Canada. [Francis, R.; Ehlmann, B. L.; Vasavada, A. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gondet, B.; Langevin, Y.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Melikechi, N.] Delaware State Univ, Opt Sci Ctr Appl Res, Dover, DE USA. [Lacour, J. -L.; Sirven, J. -B.] Commissariat Energie Atom & Energies Alternat, DEN, Dept Phys Chem, Saclay, France. [Lewin, E.] Univ Grenoble 1, CNRS, Inst Sci Terre, Grenoble, France. [Newsom, H. E.; Ollila, A. M.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Newsom, H. E.; Ollila, A. M.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Maurice, S (reprint author), Univ Toulouse 3, CNRS, IRAP, Obs Midi Pyrenees, 9 Av Colonel Roche, F-31400 Toulouse, France. EM maurice@cesr.fr RI Frydenvang, Jens/D-4781-2013; Beck, Pierre/F-3149-2011; Sirven, Jean-Baptiste/H-5782-2013; LEWIN, Eric/F-1451-2017; OI Frydenvang, Jens/0000-0001-9294-1227; Sirven, Jean-Baptiste/0000-0002-5523-6809; Clegg, Sam/0000-0002-0338-0948 FU France by the French Space Agency (CNES); Centre National de la Recherche Scientifique (CNRS); NASA's Mars Program Office FX This work was supported in France by the French Space Agency (CNES), the Centre National de la Recherche Scientifique (CNRS), and many institutes and universities across the country. Collaboration with colleagues in the US was funded by NASA's Mars Program Office. NR 107 TC 7 Z9 7 U1 13 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2016 VL 31 IS 4 BP 863 EP 889 DI 10.1039/c5ja00417a PG 27 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DI4LC UT WOS:000373470400003 ER PT S AU Keegan, KP Glass, EM Meyer, F AF Keegan, Kevin P. Glass, Elizabeth M. Meyer, Folker BE Martin, F Uroz, S TI MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function SO MICROBIAL ENVIRONMENTAL GENOMICS (MEG) SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Metagenomics; Comparative analysis; Sequence quality; Automated pipeline; High-throughput; matR ID SEQUENCING DATA; DATABASE; ALIGNMENT; RESOURCE; QUALITY; TOOL; ANNOTATIONS; PROJECT; SEARCH; GENOME AB Approaches in molecular biology, particularly those that deal with high-throughput sequencing of entire microbial communities (the field of metagenomics), are rapidly advancing our understanding of the composition and functional content of microbial communities involved in climate change, environmental pollution, human health, biotechnology, etc. Metagenomics provides researchers with the most complete picture of the taxonomic (i.e., what organisms are there) and functional (i.e., what are those organisms doing) composition of natively sampled microbial communities, making it possible to perform investigations that include organisms that were previously intractable to laboratory-controlled culturing; currently, these constitute the vast majority of all microbes on the planet. All organisms contained in environmental samples are sequenced in a culture-independent manner, most often with 16S ribosomal amplicon methods to investigate the taxonomic or whole-genome shotgun-based methods to investigate the functional content of sampled communities. Metagenomics allows researchers to characterize the community composition and functional content of microbial communities, but it cannot show which functional processes are active; however, near parallel developments in transcriptomics promise a dramatic increase in our knowledge in this area as well. Since 2008, MG-RAST (Meyer et al., BMC Bioinformatics 9: 386, 2008) has served as a public resource for annotation and analysis of metagenomic sequence data, providing a repository that currently houses more than 150,000 data sets (containing 60+ tera-base-pairs) with more than 23,000 publically available. MG-RAST, or the metagenomics RAST (rapid annotation using subsystems technology) server makes it possible for users to upload raw metagenomic sequence data in (preferably) fastq or fasta format. Assessments of sequence quality, annotation with respect to multiple reference databases, are performed automatically with minimal input from the user (see Subheading 4 at the end of this chapter for more details). Post-annotation analysis and visualization are also possible, directly through the web interface, or with tools like matR (metagenomic analysis tools for R, covered later in this chapter) that utilize the MG-RAST API (http://api.metagenomics.anl.gov/api.html) to easily download data from any stage in the MG-RAST processing pipeline. Over the years, MG-RAST has undergone substantial revisions to keep pace with the dramatic growth in the number, size, and types of sequence data that accompany constantly evolving developments in metagenomics and related -omic sciences(e.g., metatranscriptomics). C1 [Keegan, Kevin P.; Glass, Elizabeth M.; Meyer, Folker] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Keegan, Kevin P.; Meyer, Folker] Univ Chicago, Chicago, IL 60637 USA. RP Keegan, KP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 38 TC 8 Z9 8 U1 3 U2 12 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-4939-3369-3; 978-1-4939-3367-9 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2016 VL 1399 BP 207 EP 233 DI 10.1007/978-1-4939-3369-3_13 D2 10.1007/978-1-4939-3369-3 PG 27 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Ecology; Microbiology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Microbiology GA BE5TW UT WOS:000373428100014 PM 26791506 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Macroscopic Model of Substrate-Based Cell Motility SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID ARBITRARY VISCOSITY CONTRAST; FISH EPIDERMAL KERATOCYTES; TRACTION FORCE MICROSCOPY; PHASE-FIELD MODEL; ACTIVE POLAR GELS; HELE-SHAW FLOWS; FOCAL ADHESIONS; RETROGRADE FLOW; CONTINUUM MODEL; MIGRATION SPEED C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 186 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 1 EP 67 DI 10.1007/978-3-319-24448-8_1 D2 10.1007/978-3-319-24448-8 PG 67 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800002 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Physical Models of Cell Motility Preface SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Editorial Material; Book Chapter C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP V EP VI D2 10.1007/978-3-319-24448-8 PG 2 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800001 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Cell Crawling Driven by Spontaneous Actin Polymerization Waves SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID REACTION-DIFFUSION WAVES; SELF-ORGANIZATION; LEADING-EDGE; MOTILE CELLS; DYNAMICS; PATTERNS; MICROTUBULES; LOCOMOTION; FRAGMENTS; COMPLEX C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 74 TC 0 Z9 0 U1 2 U2 3 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 69 EP 93 DI 10.1007/978-3-319-24448-8_2 D2 10.1007/978-3-319-24448-8 PG 25 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800003 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI A Modular View of the Signaling System Regulating Chemotaxis SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID EUKARYOTIC CHEMOTAXIS; DICTYOSTELIUM-DISCOIDEUM; BACTERIAL CHEMOTAXIS; CELL-MIGRATION; LEADING-EDGE; MOTILE CELLS; EXCITABLE NETWORKS; SENSORY ADAPTATION; POSITIVE-FEEDBACK; SELF-ORGANIZATION C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 119 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 95 EP 134 DI 10.1007/978-3-319-24448-8_3 D2 10.1007/978-3-319-24448-8 PG 40 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800004 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Cell Locomotion in One Dimension SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID ACTIVE POLAR GELS; MOTILITY INITIATION; SELF-POLARIZATION; CORTICAL TENSION; RETROGRADE FLOW; BROWNIAN-MOTION; CRAWLING CELLS; SOFT MATERIALS; STRESS FIBER; MYOSIN-II C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 170 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 135 EP 197 DI 10.1007/978-3-319-24448-8_4 D2 10.1007/978-3-319-24448-8 PG 63 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800005 ER PT J AU Pinera, ER Stojanoff, V AF Rudino Pinera, Enrique Stojanoff, Vivian TI Synchrotron Applications in Life Sciences SO PROTEIN AND PEPTIDE LETTERS LA English DT Editorial Material C1 [Rudino Pinera, Enrique] Univ Nacl Autonoma Mexico, Inst Biotecnol, Mexico City 04510, DF, Mexico. [Stojanoff, Vivian] Brookhaven Natl Lab, Photon Sci Directorate, Bldg745, Upton, NY 11973 USA. RP Pinera, ER (reprint author), Univ Nacl Autonoma Mexico, Inst Biotecnol, Mexico City 04510, DF, Mexico.; Stojanoff, V (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Bldg745, Upton, NY 11973 USA. EM rudino@ibt.unam.mx; vivian.stojanoff@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 200 EP 200 DI 10.2174/092986652303160215154208 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100001 PM 26795721 ER PT J AU Loutherback, K Birarda, G Chen, L Holman, HYN AF Loutherback, Kevin Birarda, Giovanni Chen, Liang Holman, Hoi-Ying N. TI Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE FTIR; live cells; microfabrication; microfluidics; synchrotron radiation ID QUANTITATIVE IR SPECTROPHOTOMETRY; WATER H2O SOLUTIONS; FOCAL-PLANE ARRAY; SINGLE-CELL TRANSCRIPTOMICS; LIVE CELLS; REAL-TIME; PEPTIDE COMPOUNDS; SACCHAROMYCES-CEREVISIAE; FLUORESCENCE MICROSCOPY; PROTEIN AGGREGATION AB A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. C1 [Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA. [Birarda, Giovanni] Elettra Synchrotron Light Lab, SS 14 Km 163-5, I-34149 Trieste, Italy. RP Holman, HYN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA. EM hyholman@lbl.gov RI Chen, Liang/F-3496-2011; Holman, Hoi-Ying/N-8451-2014 OI Holman, Hoi-Ying/0000-0002-7534-2625 FU US Department of Energy, Office of Science, and Office of Biological and Environmental Research; [DE-AC02-225 05CH11231] FX This work was performed under the Berkeley Synchrotron Infrared Structural Biology (BSISB) Program funded by the US Department of Energy, Office of Science, and Office of Biological and Environmental Research. The Advanced Light Source is supported by the Director, Office of Science, and Office of Basic Energy Sciences. Both were supported through Contract DE-AC02-225 05CH11231. NR 119 TC 1 Z9 1 U1 6 U2 13 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 273 EP 282 DI 10.2174/0929866523666160106154035 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100008 PM 26732243 ER PT J AU Northrup, P Leri, A Tappero, R AF Northrup, Paul Leri, Alessandra Tappero, Ryan TI Applications of "Tender" Energy (1-5 keV) X-Ray Absorption Spectroscopy in Life Sciences SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Calcium; EXAFS; microbeam; natural organochlorine; sulfur; tender-energy; XANES; X-ray absorption spectroscopy; X-ray spectromicroscopy ID WEATHERING PLANT-MATERIAL; OXALATE CRYSTAL-FORMATION; MEDICAGO-TRUNCATULA; ORGANIC-MATTER; CALCIUM; SULFUR; XANES; SOIL; SPECIATION; CHLORINE AB The "tender" energy range of 1 to 5 keV, between the energy ranges of most "hard" (>5 keV) and "soft" (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. This brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences. C1 [Northrup, Paul; Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Northrup, Paul] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11974 USA. [Leri, Alessandra] Marymount Manhattan Coll, Dept Nat Sci, 221 E 71st St, New York, NY 10021 USA. RP Northrup, P (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM northrup@bnl.gov FU DOE [DE-AC02-98CH10886 (NSLS), DE-FG02-12ER16342 (X15B)]; NSF [EAR-1128957]; NASA [NNX13AD12G] FX The authors are grateful to Vivian Stojanoff for providing the lysozyme crystal measured, Cindy Lee of Stony Brook University for providing sediment trap material and Tracy Punshon for the Medicago leaves. Measurements at the NSLS were supported by DOE contracts DE-AC02-98CH10886 (NSLS) and DE-FG02-12ER16342 (X15B, PN), NSF Grant EAR-1128957 (PN) and NASA NNX13AD12G (PN). Two reviewers contributed valuable advice on the manuscript. NR 29 TC 1 Z9 1 U1 4 U2 8 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 300 EP 308 DI 10.2174/0929866523666160107114505 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100011 PM 26740327 ER PT J AU Gupta, S Feng, J Chance, M Ralston, C AF Gupta, Sayan Feng, Jun Chance, Mark Ralston, Corie TI Recent Advances and Applications in Synchrotron X-Ray Protein Footprinting for Protein Structure and Dynamics Elucidation SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Hydroxyl radical labeling; mass spectrometry; protein conformation; protein modification bound water ID ORANGE CAROTENOID PROTEIN; BURIED WATER-MOLECULES; ZINC TRANSPORTER YIIP; HEART CYTOCHROME-C; MASS-SPECTROMETRY; MEMBRANE-PROTEINS; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; CROSS-LINKING; ELECTRON CRYSTALLOGRAPHY AB Synchrotron X-ray Footprinting is a powerful in situ hydroxyl radical labeling method for analysis of protein structure, interactions, folding and conformation change in solution. In this method, water is ionized by high flux density broad band synchrotron X-rays to produce a steady-state concentration of hydroxyl radicals, which then react with solvent accessible side-chains. The resulting stable modification products are analyzed by liquid chromatography coupled to mass spectrometry. A comparative reactivity rate between known and unknown states of a protein provides local as well as global information on structural changes, which is then used to develop structural models for protein function and dynamics. In this review we describe the XF-MS method, its unique capabilities and its recent technical advances at the Advanced Light Source. We provide a comparison of other hydroxyl radical and mass spectrometry based methods with XF-MS. We also discuss some of the latest developments in its usage for studying bound water, transmembrane proteins and photosynthetic protein components, and the synergy of the method with other synchrotron based structural biology methods. C1 [Gupta, Sayan; Ralston, Corie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Feng, Jun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Expt Syst, Berkeley, CA 94720 USA. [Chance, Mark] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA. RP Ralston, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. EM cyralston@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB [P30-EB0966] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The Center for Synchrotron Biosciences at the National Synchrotron Light Sources is supported by NIBIB under P30-EB0966. NR 112 TC 0 Z9 0 U1 0 U2 2 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 309 EP 322 DI 10.2174/0929866523666160201150057 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100012 PM 26833224 ER PT J AU Di, ZC Leyffer, S Wild, SM AF Di, Zichao (Wendy) Leyffer, Sven Wild, Stefan M. TI Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion SO SIAM JOURNAL ON IMAGING SCIENCES LA English DT Article DE tomographic reconstruction; X-ray fluorescence; X-ray transmission; joint inversion; nonlinear optimization; truncated-Newton method ID LIKELIHOOD IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; ALGORITHM; REGULARIZATION; CONSTRAINTS; MICROSCOPY AB Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematically speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples. C1 [Di, Zichao (Wendy); Leyffer, Sven; Wild, Stefan M.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Di, ZC; Leyffer, S; Wild, SM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wendydi@anl.gov; leyffer@anl.gov; wild@anl.gov RI Wild, Stefan/P-4907-2016 OI Wild, Stefan/0000-0002-6099-2772 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Copyright is owned by SIAM to the extent not limited by these rights. NR 48 TC 0 Z9 0 U1 1 U2 2 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1936-4954 J9 SIAM J IMAGING SCI JI SIAM J. Imaging Sci. PY 2016 VL 9 IS 1 BP 1 EP 23 DI 10.1137/15M1021404 PG 23 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Mathematics, Applied; Imaging Science & Photographic Technology SC Computer Science; Mathematics; Imaging Science & Photographic Technology GA DI6SD UT WOS:000373629500001 ER PT J AU Xi, YZ Li, RP Saad, Y AF Xi, Yuanzhe Li, Ruipeng Saad, Yousef TI AN ALGEBRAIC MULTILEVEL PRECONDITIONER WITH LOW-RANK CORRECTIONS FOR SPARSE SYMMETRIC MATRICES SO SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS LA English DT Article DE low-rank approximation; Schur complements; multilevel preconditioner; domain decomposition; incomplete factorization; Krylov subspace methods; Nested Dissection ordering ID NONSYMMETRIC LINEAR-SYSTEMS; DEGREE ORDERING ALGORITHM; DIRECT SOLVER; INTEGRAL-EQUATIONS; ILU PRECONDITIONER; H-MATRICES; FACTORIZATION; DIMENSIONS; CONVECTION; SUPERFAST AB This paper describes a multilevel preconditioning technique for solving sparse symmetric linear systems of equations. This "Multilevel Schur Low-Rank" (MSLR) preconditioner first builds a tree structure T based on a hierarchical decomposition of the matrix and then computes an approximate inverse of the original matrix level by level. Unlike classical direct solvers, the construction of the MSLR preconditioner follows a top-down traversal of T and exploits a low-rank property that is satisfied by the difference between the inverses of the local Schur complements and specific blocks of the original matrix. A few steps of the generalized Lanczos tridiagonalization procedure are applied to capture most of this difference. Numerical results are reported to illustrate the efficiency and robustness of the MSLR preconditioner with both two-and three-dimensional discretized PDE problems and with publicly available test problems. C1 [Xi, Yuanzhe; Saad, Yousef] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. [Li, Ruipeng] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Xi, YZ; Saad, Y (reprint author), Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.; Li, RP (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM yxi@cs.umn.edu; li50@llnl.gov; saad@cs.umn.edu FU NSF [DMS-1216366, DMS-1521573]; Minnesota Supercomputing Institute; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-680317)] FX This work was supported by the NSF under grants DMS-1216366 and DMS-1521573 and by the Minnesota Supercomputing Institute. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.; This author's work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-JRNL-680317). NR 47 TC 1 Z9 1 U1 2 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0895-4798 EI 1095-7162 J9 SIAM J MATRIX ANAL A JI SIAM J. Matrix Anal. Appl. PY 2016 VL 37 IS 1 BP 235 EP 259 DI 10.1137/15M1021830 PG 25 WC Mathematics, Applied SC Mathematics GA DI6TP UT WOS:000373633400011 ER PT J AU Kouri, DP Surowiec, TM AF Kouri, D. P. Surowiec, T. M. TI RISK-AVERSE PDE-CONSTRAINED OPTIMIZATION USING THE CONDITIONAL VALUE-AT-RISK SO SIAM JOURNAL ON OPTIMIZATION LA English DT Article DE PDE optimization; conditional value-at-risk; uncertainty quantification ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; RANDOM INPUT DATA; MINIMIZATION; UNCERTAINTY; INTEGRATION AB Uncertainty is inevitable when solving science and engineering application problems. In the face of uncertainty, it is essential to determine robust and risk-averse solutions. In this work, we consider a class of PDE-constrained optimization problems in which the PDE coefficients and inputs may be uncertain. We introduce two approximations for minimizing the conditional value-at-risk (CVaR) for such PDE-constrained optimization problems. These approximations are based on the primal and dual formulations of CVaR. For the primal problem, we introduce a smooth approximation of CVaR in order to utilize derivative-based optimization algorithms and to take advantage of the convergence properties of quadrature-based discretizations. For this smoothed CVaR, we prove differentiability as well as consistency of our approximation. For the dual problem, we regularize the inner maximization problem, rigorously derive optimality conditions, and demonstrate the consistency of our approximation. Furthermore, we propose a fixed-point iteration that takes advantage of the structure of the regularized optimality conditions and provides a means of calculating worst-case probability distributions based on the given probability level. We conclude with numerical results. C1 [Kouri, D. P.] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS 1320, Albuquerque, NM 87185 USA. [Kouri, D. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Surowiec, T. M.] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany. RP Kouri, DP (reprint author), Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS 1320, Albuquerque, NM 87185 USA.; Surowiec, TM (reprint author), Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany. EM dpkouri@sandia.gov; surowiec@math.hu-berlin.de FU NNSA-ASC program; J. H. Wilkinson Fellowship; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DUG Research Center MATHEON Project [C28] FX This author's research was sponsored in part by the NNSA-ASC program. This research was partially performed at Argonne National Laboratory and was sponsored by the J. H. Wilkinson Fellowship. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; The author gratefully acknowledges the support by the DUG Research Center MATHEON Project C28. NR 45 TC 1 Z9 1 U1 1 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1052-6234 EI 1095-7189 J9 SIAM J OPTIMIZ JI SIAM J. Optim. PY 2016 VL 26 IS 1 BP 365 EP 396 DI 10.1137/140954556 PG 32 WC Mathematics, Applied SC Mathematics GA DI6SW UT WOS:000373631500014 ER PT S AU Morozovska, AN Eliseev, EA Kalinin, SV AF Morozovska, Anna N. Eliseev, Eugene A. Kalinin, Sergei V. BE Seidel, J TI Topological Defects in Ferroic Materials SO TOPOLOGICAL STRUCTURES IN FERROIC MATERIALS: DOMAIN WALLS, VORTICES AND SKYRMIONS SE Springer Series in Materials Science LA English DT Article; Book Chapter ID SOLID-SOLUTION SYSTEM; DOMAIN-WALLS; THIN-FILMS; FLEXOELECTRIC POLARIZATION; ELECTRIC POLARIZATION; DIELECTRIC-PROPERTIES; THERMODYNAMIC THEORY; FERROELECTRICS; CRYSTALS; TITANATE AB Using Landau-Ginzburg-Devonshire theory we explore unusual electronic, structural and polar properties of the topological defects inherent in ferroics, such as ferroelectric and ferroelastic domain walls, which can have rich and tunable internal structure. Also we underline that the existence of 2D defects in ferroelectrics is similar to the cross-tie defects in the ferromagnetic Bloch domain walls. The seeding for the modulated phase can be a topological defect, such as a structural domain wall. C1 [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Phys, 46 Pr Nauki, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, 3 Krjijanovskogo, UA-03142 Kiev, Ukraine. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Phys, 46 Pr Nauki, UA-03028 Kiev, Ukraine. EM anna.n.morozovska@gmail.com; eugene.a.eliseev@gmail.com; sergei2@ornl.gov NR 94 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-25301-5; 978-3-319-25299-5 J9 SPRINGER SER MATER S PY 2016 VL 228 BP 181 EP 197 DI 10.1007/978-3-319-25301-5_8 D2 10.1007/978-3-319-25301-5 PG 17 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA BE4BP UT WOS:000371484800009 ER PT S AU Banerjee, P Qian, YZ Heger, A Haxton, W AF Banerjee, Projjwal Qian, Yong-Zhong Heger, Alexander Haxton, Wick BE Liu, WP Li, ZH Wang, YB Guo, B Shen, YP TI Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG) CY JUN 24-27, 2015 CL Beijing, PEOPLES R CHINA ID METAL-POOR STARS; BERYLLIUM ABUNDANCES; MASSIVE STARS; EARLY GALAXY; R-PROCESS; EVOLUTION; ELEMENTS AB We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z less than or similar to 10(-3) Z(circle dot). We find that for progenitors of similar to 11-15M(circle dot), the neutrons released by He-4((nu) over bar (e), e(+)n)H-3 in He shells can be captured to produce nuclei with mass numbers up to A similar to 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of Be-9 in He shells. The first mechanism produces Be-9 via Li-7(n,gamma) Li-8(n,gamma)Li-9(e(-)(nu) over bar (e))Be-9 and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of similar to 8M(circle dot), where Be-9 can be produced directly via Li-7(H-3,n(0))Be-9 during the rapid expansion of the shocked He-shell material. The light nuclei Li-7 and H-3 involved in these mechanisms are produced by neutrino interactions with He-4. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars. C1 [Banerjee, Projjwal; Qian, Yong-Zhong] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Haxton, Wick] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94620 USA. [Haxton, Wick] Lawrence Berkeley Natl Lab, Berkeley, CA 94620 USA. [Qian, Yong-Zhong; Heger, Alexander] Shanghai Jiao Tong Univ, Dept Phys & Astron, INPAC, Ctr Nucl Astrophys, Shanghai 200240, Peoples R China. RP Banerjee, P (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. EM banerjee@physics.umn.edu NR 19 TC 0 Z9 0 U1 5 U2 5 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 109 AR 06001 DI 10.1051/epjconf/201610906001 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE5FS UT WOS:000372789800022 ER PT S AU Rehm, KE AF Rehm, K. E. BE Liu, WP Li, ZH Wang, YB Guo, B Shen, YP TI Reactions on the surface and inside of neutron stars SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG) CY JUN 24-27, 2015 CL Beijing, PEOPLES R CHINA ID IONIZATION-CHAMBER MUSIC; RELATIVISTIC HEAVY-IONS; RAY BURSTS; BEAMS; DISCOVERY; FUSION AB Measurements from orbiting X-ray satellites during the last decades have provided us with a wealth of information about nuclear reactions thought to occur in the extreme, high-density environment of neutron stars. With radioactive ion beams from first-generation facilities we have begun to study some of these processes in the laboratory. In this contribution I report on experiments performed with radioactive beams from the ATLAS accelerator at Argonne. I will discuss the nuclear physics of X-ray bursts and super-bursts, the production of in-flight radioactive beams, as well as novel detectors which are used in these experiments. C1 [Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Rehm, KE (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM rehm@anl.gov NR 25 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 109 AR 04001 DI 10.1051/epjconf/201610904001 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE5FS UT WOS:000372789800005 ER PT S AU Tang, XD Bucher, B Fang, X Heger, A Almaraz-Calderon, S Alongi, A Ayangeakaa, AD Beard, M Best, A Browne, J Cahillane, C Couder, M deBoer, RJ Kontos, A Lamm, L Li, YJ Long, A Lu, W Lyons, S Notani, M Patel, D Paul, N Pignatari, M Roberts, A Robertson, D Smith, K Stech, E Talwar, R Tan, WP Wiescher, M Woosley, SE AF Tang, X. D. Bucher, B. Fang, X. Heger, A. Almaraz-Calderon, S. Alongi, A. Ayangeakaa, A. D. Beard, M. Best, A. Browne, J. Cahillane, C. Couder, M. deBoer, R. J. Kontos, A. Lamm, L. Li, Y. J. Long, A. Lu, W. Lyons, S. Notani, M. Patel, D. Paul, N. Pignatari, M. Roberts, A. Robertson, D. Smith, K. Stech, E. Talwar, R. Tan, W. P. Wiescher, M. Woosley, S. E. BE Liu, WP Li, ZH Wang, YB Guo, B Shen, YP TI First direct measurement of C-12(C-12,n)Mg-23 at stellar energies SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG) CY JUN 24-27, 2015 CL Beijing, PEOPLES R CHINA ID MASSIVE STARS; NUCLEOSYNTHESIS; SIGNATURE; EVOLUTION; NUCLEAR AB Neutrons produced by the carbon fusion reaction C-12(C-12,n)Mg-23 play an important role in stellar nucleosynthesis. Past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement which extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction C-12(C-12,p)Na-23. The new reaction rate has been determined with a well-defined uncertainty which exceeds the precision required by astrophysics models. Using our constrained rate, we find that C-12(C-12,n)Mg-23 is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. C1 [Tang, X. D.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China. [Bucher, B.; Fang, X.; Almaraz-Calderon, S.; Alongi, A.; Ayangeakaa, A. D.; Beard, M.; Best, A.; Browne, J.; Cahillane, C.; Couder, M.; deBoer, R. J.; Kontos, A.; Lamm, L.; Long, A.; Lu, W.; Lyons, S.; Notani, M.; Patel, D.; Paul, N.; Roberts, A.; Robertson, D.; Smith, K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.] Univ Notre Dame, Joint Inst Nucl Astrophys, Inst Struct & Nucl Astrophys, Notre Dame, IN 46556 USA. [Bucher, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Heger, A.] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Heger, A.] Shanghai Jiao Tong Univ, Ctr Nucl Astrophys, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Heger, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Li, Y. J.] China Inst Atom Energy, Beijing 102413, Peoples R China. [Pignatari, M.] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, Konkoly Thege Miklosut 15-17, H-1121 Budapest, Hungary. [Pignatari, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Tang, XD (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China.; Bucher, B (reprint author), Univ Notre Dame, Joint Inst Nucl Astrophys, Inst Struct & Nucl Astrophys, Notre Dame, IN 46556 USA.; Bucher, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM xtang@impcas.ac.cn; bucher3@llnl.gov RI Tang, Xiaodong /F-4891-2016; Couder, Manoel/B-1439-2009; Tan, Wanpeng/A-4687-2008 OI Couder, Manoel/0000-0002-0636-744X; Tan, Wanpeng/0000-0002-5930-1823 NR 21 TC 0 Z9 0 U1 2 U2 9 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 109 AR 04009 DI 10.1051/epjconf/201610904009 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE5FS UT WOS:000372789800013 ER PT S AU Avakian, H AF Avakian, H. BE Marquet, C Pire, B Sabatie, F TI Studies of the nucleon structure in back-to-back SIDIS SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID DEEP-INELASTIC SCATTERING; PROTON SPIN PUZZLE; PION ELECTROPRODUCTION; FRAGMENTATION FUNCTIONS; TRANSVERSE-MOMENTUM; ASYMMETRIES; TARGET AB The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions. C1 [Avakian, H.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave Suite 5, Newport News, VA 23606 USA. RP Avakian, H (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave Suite 5, Newport News, VA 23606 USA. EM avakian@jlab.org NR 53 TC 0 Z9 0 U1 7 U2 7 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01003 DI 10.1051/epjconf/201611201003 PG 8 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100003 ER PT S AU Balitsky, I AF Balitsky, Ian BE Marquet, C Pire, B Sabatie, F TI Rapidity evolution of gluon TMD from low to moderate x SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB I discuss how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small x << 1 to linear evolution at moderate x similar to 1. C1 [Balitsky, Ian] JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Balitsky, Ian] Old Dominion Univ, Dept Phys, 1600 Elkhorn Ave, Norfolk, VA 23529 USA. RP Balitsky, I (reprint author), JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA.; Balitsky, I (reprint author), Old Dominion Univ, Dept Phys, 1600 Elkhorn Ave, Norfolk, VA 23529 USA. EM balitsky@jlab.org NR 18 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 02002 DI 10.1051/epjconf/201611202002 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100025 ER PT S AU Boer, M AF Boer, Marie BE Marquet, C Pire, B Sabatie, F TI Timelike Compton Scattering off the nucleon: observables and experimental perspectives for JLab at 12 GeV SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID GENERALIZED PARTON DISTRIBUTIONS; ELECTROPRODUCTION; PHOTONS; MESONS AB Hard exclusive processes such as photoproduction or electroproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs), in the regime where the scattering amplitude is factorized into a hard and a soft part. GPDs contain the correlation between the longitudinal momentum fraction and the transverse spatial densities of quarks and gluons in the nucleon. Timelike Compton Scattering (TCS) correspond to the reaction gamma N -> gamma*N -> e(+) e(-) N, where the photon is scattered off a quark. It is measured through its interference with the associated Bethe-Heitler process, which has the same final state. TCS allows to access the GPDs and test their universality by comparison to the results obtained with the DVCS process (eN -> e gamma N). Also, results obtained with TCS provide additional independent constrains to the GPDs parameterization. We will present the physical motivations for TCS, with our theoretical predictions for TCS observables and their dependencies. We calculated for JLab 12 GeV energies all the single and double beam and/or target polarization observables off the proton and off the neutron. We will also present the experimental perspectives for the next years at JLab. Two proposals were already accepted at JLab: in Hall B, with the CLAS12 spectrometer, in order to measure the unpolarized cross section and in Hall A, with the SoLID spectrometer, in order to measure the unpolarized cross section and the beam spin asymmetry at high intensity. A Letter Of Intent was also submitted in order to measure the transverse target spin asymmetries in Hall C. We will discuss the merits of this different experiments and present some of the expected results. C1 [Boer, Marie] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Boer, Marie] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France. [Boer, Marie] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Phys Theor Lab, F-91406 Orsay, France. RP Boer, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.; Boer, M (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.; Boer, M (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Phys Theor Lab, F-91406 Orsay, France. EM mboer@jlab.org NR 17 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01005 DI 10.1051/epjconf/201611201005 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100005 ER PT S AU Camsonne, A AF Camsonne, Alexandre BE Marquet, C Pire, B Sabatie, F TI The low Q(2) chicane and Compton polarimeter at the JLab EIC SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB The JLAB EIC (JLEIC) design includes a chicane after the interaction point to detect electron associated with production of quasi-real photon at the interaction. This chicane layout can also be used for Compton polarimetry to measure the electron beam polarization. This proceeding will present the layout of the low Q(2) chicane and the implementation and current R&D of a Compton polarimeter which would be located in the middle of this chicane. C1 [Camsonne, Alexandre] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Camsonne, A (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM camsonne@jlab.org NR 4 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01007 DI 10.1051/epjconf/201611201007 PG 10 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100007 ER PT S AU Cosyn, W Guzey, V Sargsian, M Strikman, M Weiss, C AF Cosyn, W. Guzey, V. Sargsian, M. Strikman, M. Weiss, C. BE Marquet, C Pire, B Sabatie, F TI Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID HARD PROCESSES; NUCLEI AB An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging"). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) and report about on-going developments. C1 [Cosyn, W.] Univ Ghent, B-9000 Ghent, Belgium. [Guzey, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Sargsian, M.] Florida Int Univ, Miami, FL 33199 USA. [Strikman, M.] Penn State Univ, University Pk, PA 16802 USA. [Weiss, C.] Jefferson Lab, Newport News, VA 23606 USA. RP Cosyn, W (reprint author), Univ Ghent, B-9000 Ghent, Belgium. NR 23 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01022 DI 10.1051/epjconf/201611201022 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100022 ER PT S AU Engelhardt, M Musch, B Bhattacharya, T Green, JR Gupta, R Hagler, P Krieg, S Negele, J Pochinsky, A Schafer, A Syritsyn, S Yoon, B AF Engelhardt, M. Musch, B. Bhattacharya, T. Green, J. R. Gupta, R. Haegler, P. Krieg, S. Negele, J. Pochinsky, A. Schaefer, A. Syritsyn, S. Yoon, B. BE Marquet, C Pire, B Sabatie, F TI Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB An ongoing program of evaluating TMD observables within Lattice QCD is reviewed, summarizing recent progress with respect to several challenges faced by such calculations. These lattice calculations are based on a definition of TMDs through hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for a lattice calculation. Data on the naively T-odd Sivers and Boer-Mulders effects as well as the transversity TMD are presented. C1 [Engelhardt, M.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Musch, B.; Haegler, P.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Bhattacharya, T.; Gupta, R.; Yoon, B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Green, J. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Krieg, S.] Berg Univ Wuppertal, Fachbereich 9, D-42119 Wuppertal, Germany. [Krieg, S.] Forschungszentrum Julich, Julich Supercomp Ctr, IAS, D-52425 Julich, Germany. [Negele, J.; Pochinsky, A.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Syritsyn, S.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Engelhardt, M (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. EM engel@nmsu.edu OI Krieg, Stefan/0000-0002-8417-9823; Gupta, Rajan/0000-0003-1784-3058 NR 13 TC 1 Z9 1 U1 1 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01008 DI 10.1051/epjconf/201611201008 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100008 ER PT S AU Kumar, KS Deshpande, A Huang, J Riordan, S Zhao, YX AF Kumar, K. S. Deshpande, A. Huang, J. Riordan, S. Zhao, Y. X. BE Marquet, C Pire, B Sabatie, F TI Electroweak and BSM Physics at the EIC SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID SCATTERING; VIOLATION AB We discuss the QCD and electroweak physics that becomes accessible by the analysis of semi-leptonic neutral weak amplitudes in polarized electron-light ion collisions at an EIC. Specifically, we discuss the reach for precise weak mixing angle measurements at much higher Q(2) than fixed target measurements, new neutral current spin-independent and -dependent interference structure functions, and searches for e-tau charged lepton flavor violation. C1 [Kumar, K. S.; Deshpande, A.; Riordan, S.; Zhao, Y. X.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Huang, J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kumar, KS (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM krishna.kumar@stonybrook.edu NR 20 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 03004 DI 10.1051/epjconf/201611203004 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100043 ER PT S AU Petti, R AF Petti, R. BE Marquet, C Pire, B Sabatie, F TI Interaction region design and auxiliary detector systems for an EIC SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q(2)-tagger into the interaction region for eRHIC. C1 [Petti, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. RP Petti, R (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. EM rpetti@bnl.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 02011 DI 10.1051/epjconf/201611202011 PG 6 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100034 ER PT J AU Guryn, W AF Guryn, Wlodek TI CENTRAL EXCLUSIVE PARTICLE PRODUCTION IN DPE PROCESS: SEARCH FOR GLUEBALLS ETC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 55th Cracow-School-of-Theoretical-Physics on Particles and Resonances of the Standard Model and Beyond CY JUN 20-28, 2015 CL Zakopane, POLAND SP Jagiellonian Univ, M Smoluchowski Inst Phys, Polish Acad Arts & Sci, PAN, H Niewodniczanski Inst Nucl Phys, AGH Univ Sci & Technol, Polish Acad Sci, Comm Phys, Polish Minist Sci & Higher Educ ID REACTION POMERON-POMERON; 450 GEV/C AB We shall discuss resonance production in the process of Central Exclusive Production (CEP) at hadron colliders. The corresponding program of glueball search in Double Pomeron Exchange (DPE) process shall also be discussed. As an exercise, we shall "construct" an experiment to measure CEP using the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where this program is currently under way. Preliminary pi(+)pi(-) mass spectra (dN/dM(X)) from the Central Exclusive Production (CEP) measured in the STAR detector shall be presented. For this measurement, one proton on each side of STAR was detected in the Roman Pots and the charged particle recoil system was measured in the Time Projection Chamber (TPC) of STAR. C1 [Guryn, Wlodek] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Guryn, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU JAGIELLONIAN UNIV PRESS PI KRAKOW PA UL MICHALOWSKIEGO 9-2, KRAKOW, 31126, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JAN PY 2016 VL 47 IS 1 BP 53 EP 58 DI 10.5506/APhysPolB.47.53 PG 6 WC Physics, Multidisciplinary SC Physics GA DH4OS UT WOS:000372765900002 ER PT J AU Wang, YF AF Wang, Yifeng TI Untitled SO AIMS ENVIRONMENTAL SCIENCE LA English DT Editorial Material C1 [Wang, Yifeng] Sandia Natl Labs, POB 5800,Mail Stop 0779, Albuquerque, NM 87185 USA. RP Wang, YF (reprint author), Sandia Natl Labs, POB 5800,Mail Stop 0779, Albuquerque, NM 87185 USA. EM ywang@sandia.gov NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 2372-0344 EI 2372-0352 J9 AIMS ENVIRON SCI JI AIMS Environ. Sci. PY 2016 VL 3 IS 1 BP 140 EP 140 DI 10.3934/environsci.2016.1.140 PG 1 WC Environmental Sciences SC Environmental Sciences & Ecology GA DG5NT UT WOS:000372125800009 ER PT J AU Kipling, Z Stier, P Johnson, CE Mann, GW Bellouin, N Bauer, SE Bergman, T Chin, M Diehl, T Ghan, SJ Iversen, T Kirkevag, A Kokkola, H Liu, XH Luo, G van Noije, T Pringle, KJ von Salzen, K Schulz, M Seland, O Skeie, RB Takemura, T Tsigaridis, K Zhang, K AF Kipling, Zak Stier, Philip Johnson, Colin E. Mann, Graham W. Bellouin, Nicolas Bauer, Susanne E. Bergman, Tommi Chin, Mian Diehl, Thomas Ghan, Steven J. Iversen, Trond Kirkevag, Alf Kokkola, Harri Liu, Xiaohong Luo, Gan van Noije, Twan Pringle, Kirsty J. von Salzen, Knut Schulz, Michael Seland, Oyvind Skeie, Ragnhild B. Takemura, Toshihiko Tsigaridis, Kostas Zhang, Kai TI What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LOG-NORMAL APPROXIMATION; CHEMISTRY-CLIMATE MODEL; BLACK CARBON; AIRCRAFT OBSERVATIONS; SIZE DISTRIBUTIONS; ABSORBING AEROSOLS; SULFUR EMISSIONS; UNIFIED MODEL; MINERAL DUST; GLOMAP-MODE AB The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions. C1 [Kipling, Zak; Stier, Philip] Univ Oxford, Dept Phys, Oxford, England. [Johnson, Colin E.] Met Off Hadley Ctr, Exeter, Devon, England. [Mann, Graham W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Mann, Graham W.; Pringle, Kirsty J.] Univ Leeds, Inst Climate & Atmospher Sci, Sch Earth & Environm, Leeds, W Yorkshire, England. [Bellouin, Nicolas] Univ Reading, Dept Meteorol, Reading, Berks, England. [Bauer, Susanne E.; Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Bauer, Susanne E.; Tsigaridis, Kostas] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bergman, Tommi; Kokkola, Harri] Atmospher Res Ctr Eastern Finland, Finnish Meteorol Inst, Kuopio, Finland. [Chin, Mian] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Diehl, Thomas] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Climate Risk Management Unit, Ispra, Italy. [Ghan, Steven J.; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA. [Iversen, Trond; Kirkevag, Alf; Schulz, Michael; Seland, Oyvind] Norwegian Meteorol Inst, Oslo, Norway. [Iversen, Trond] Univ Oslo, Dept Geosci, Oslo, Norway. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Luo, Gan] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [van Noije, Twan] Royal Netherlands Meteorol Inst, POB 201, NL-3730 AE De Bilt, Netherlands. [von Salzen, Knut] Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada. [Skeie, Ragnhild B.] Ctr Int Climate & Environm Res Oslo, Oslo, Norway. [Takemura, Toshihiko] Kyushu Univ, Appl Mech Res Inst, Fukuoka 812, Japan. [Zhang, Kai] Max Planck Inst Meteorol, Bundesstr 55, D-20146 Hamburg, Germany. RP Kipling, Z (reprint author), Univ Oxford, Dept Phys, Oxford, England. EM zak.kipling@physics.ox.ac.uk RI Ghan, Steven/H-4301-2011; Takemura, Toshihiko/C-2822-2009; Kyushu, RIAM/F-4018-2015; Stier, Philip/B-2258-2008; Zhang, Kai/F-8415-2010; Skeie, Ragnhild/K-1173-2015; Bergman, Tommi/C-2445-2009; Chin, Mian/J-8354-2012; Liu, Xiaohong/E-9304-2011; Kokkola, Harri/J-5993-2014 OI Bellouin, Nicolas/0000-0003-2109-9559; Ghan, Steven/0000-0001-8355-8699; Takemura, Toshihiko/0000-0002-2859-6067; Stier, Philip/0000-0002-1191-0128; Zhang, Kai/0000-0003-0457-6368; Skeie, Ragnhild/0000-0003-1246-4446; Bergman, Tommi/0000-0002-6133-2231; Liu, Xiaohong/0000-0002-3994-5955; FU Natural Environment Research Council [NE/J022624/1]; Met Office; European Research Council under the European Union/ERC [FP7-280025]; Natural Environment Research Council (NERC) through the National Centre for Atmospheric Science (NCAS); Academy of Finland Centre of Excellence [272041]; US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) programme; DOE [DE-AC06-76RLO 1830]; Research Council of Norway through the EarthClim [207711/E10]; EVA [229771]; NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE; EU; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Environment Canada; Research Council of Norway; supercomputer system of the National Institute for Environmental Studies, Japan; Ministry of the Environment, Japan [S-12-3]; JSPS KAKENHI [15H01728, 15K12190]; NASA-MAP (NASA) [NNX09AK32G]; Max Planck Society FX This work was supported by the Natural Environment Research Council project GASSP (grant number NE/J022624/1) and the Met Office. P. Stier would like to acknowledge funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. FP7-280025. G. W. Mann was supported by the Natural Environment Research Council (NERC) through the National Centre for Atmospheric Science (NCAS). T. Bergman and H. Kokkola were supported by the Academy of Finland Centre of Excellence (project no. 272041). S. Ghan and X. Liu were supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) programme. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. A. Kirkevag, T. Iversen and O. Seland (CAM4-Oslo) were supported by the Research Council of Norway through the EarthClim (207711/E10), EVA (229771) and NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE, and through the EU projects PEGASOS and ACCESS. K. von Salzen was supported by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) and Environment Canada. R. B. Skeie (OsloCTM2) was supported by the Research Council of Norway, through the grants SLAC, AEROCOM-P3 and ClimSense. T. Takemura was supported by the supercomputer system of the National Institute for Environmental Studies, Japan, the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan, and JSPS KAKENHI (grant numbers 15H01728 and 15K12190). K. Tsigaridis and S. E. Bauer were supported by NASA-MAP (NASA award number: NNX09AK32G). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. K. Zhang was supported by funding from the Max Planck Society. Simulations with ECHAM5-HAM2 were performed at the German Climate Computing Center (Deutsches Klimarechenzentrum GmbH, DKRZ). NR 90 TC 4 Z9 4 U1 3 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 4 BP 2221 EP 2241 DI 10.5194/acp-16-2221-2016 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7KC UT WOS:000372971500023 ER PT J AU Bingol, K Bruschweiler-Li, L Li, DW Zhang, B Xie, MZ Bruschweiler, R AF Bingol, Kerem Bruschweiler-Li, Lei Li, Dawei Zhang, Bo Xie, Mouzhe Brueschweiler, Rafael TI Emerging new strategies for successful metabolite identification in metabolomics SO BIOANALYSIS LA English DT Review DE complex mixture analysis; metabolite databases; metabolomics; MS of metabolite mixtures; nanoparticle; assisted metabolomics; NMR of metabolite mixtures; paramagnetic relaxation enhancement ID NUCLEAR-MAGNETIC-RESONANCE; NMR-BASED METABOLOMICS; MASS-SPECTROMETRY; C-13 NMR; COMPLEX-MIXTURES; HUMAN URINE; STATISTICAL HETEROSPECTROSCOPY; CORRELATION SPECTROSCOPY; QUANTITATIVE-ANALYSIS; NATURAL-ABUNDANCE AB This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical chemical properties. C1 [Bingol, Kerem] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bruschweiler-Li, Lei; Li, Dawei; Brueschweiler, Rafael] Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA. [Zhang, Bo; Xie, Mouzhe; Brueschweiler, Rafael] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Brueschweiler, Rafael] Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA. RP Bruschweiler, R (reprint author), Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA. EM bruschweiler.1@osu.edu RI Li, Da-Wei/F-7233-2010 OI Li, Da-Wei/0000-0002-3266-5272 FU NIH [R01 GM 066041]; NIH (SECIM grant) [U24 DK097209-01A1] FX This work was supported by the NIH ( grant R01 GM 066041 and SECIM grant U24 DK097209-01A1). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. NR 81 TC 7 Z9 7 U1 12 U2 36 PU FUTURE SCI LTD PI LONDON PA UNITED HOUSE, 2 ALBERT PL, LONDON, N3 1QB, ENGLAND SN 1757-6180 EI 1757-6199 J9 BIOANALYSIS JI Bioanalysis PY 2016 VL 8 IS 6 BP 557 EP 573 DI 10.4155/bio-2015-0004 PG 17 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA DI1CZ UT WOS:000373234900008 PM 26915807 ER PT J AU Baylon, RAL Sun, JM Martin, KJ Venkitasubramanian, P Wang, Y AF Baylon, Rebecca A. L. Sun, Junming Martin, Kevin J. Venkitasubramanian, Padmesh Wang, Yong TI Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs SO CHEMICAL COMMUNICATIONS LA English DT Article ID CATALYTIC CONVERSION; HZSM-5 ZEOLITE; MIXED OXIDES; ACETIC-ACID; BIO-ETHANOL; ACETONE; ISOBUTENE; BIOMASS; CHEMISTRY; ZNXZRYOZ AB We report the direct conversion of mixed carboxylic acids to C-3(=)-C-6(=) olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins. C1 [Baylon, Rebecca A. L.; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Martin, Kevin J.; Venkitasubramanian, Padmesh] Archer Daniels Midland Co, 1001 N Brush Coll Rd, Decatur, IL 62521 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Sun, JM; Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.; Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM junming.sun@wsu.edu; yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011 OI Sun, Junming/0000-0002-0071-9635 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC05-RL01830, FWP-47319]; Archer Daniels Midland Company (ADM) FX We acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (DE-AC05-RL01830, FWP-47319) and Archer Daniels Midland Company (ADM). NR 25 TC 2 Z9 2 U1 16 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 28 BP 4975 EP 4978 DI 10.1039/c5cc10528e PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH9EL UT WOS:000373099100003 PM 26898532 ER PT J AU Zhang, RH Cho, S Lim, DG Hu, XY Stach, EA Handwerker, CA Agrawal, R AF Zhang, Ruihong Cho, Seonghyuk Lim, Daw Gen Hu, Xianyi Stach, Eric A. Handwerker, Carol A. Agrawal, Rakesh TI Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices SO CHEMICAL COMMUNICATIONS LA English DT Article ID CU2ZNSN(S,SE)(4) SOLAR-CELLS; LIGHT-EMITTING-DIODES; CU2ZNSNS4 NANOCRYSTALS; SOLVENT MIXTURE; RAMAN-SPECTRA; QUANTUM DOTS; EFFICIENCY; SEMICONDUCTORS; SNS; DISSOLUTION AB Bulk metals and metal chalcogenides are found to dissolve in primary amine-dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(S-x, Se1-x)(3), and Cu2ZnSn(SxSe1-x)(4) (0 <= x <= 1) were deposited using the as-dissolved solutions. Cu2ZnSn(SxSe1-x)(4) solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively. C1 [Zhang, Ruihong; Lim, Daw Gen; Hu, Xianyi; Handwerker, Carol A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Cho, Seonghyuk; Agrawal, Rakesh] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Agrawal, R (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM ruihong.zhang.1@purdue.edu; estachbnl@gmail.com; handwerker@purdue.edu; agrawalr@purdue.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU NSF Solar Economy IGERT program [0903670-DGE]; Center for Functional Nanomaterials, U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX The authors acknowledge C. K. Miskin, R. Boyne, P. Murria, L. Cain and Professor H. Kenttamaa, for assisting in the solution analysis. The authors also want to thank M. Koeper for performing quantum efficiency measurement, K. Brew and B. Graeser for preparing Mo-coated soda lime glass. This research was funded by NSF Solar Economy IGERT program (0903670-DGE). This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 36 TC 4 Z9 4 U1 17 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 28 BP 5007 EP 5010 DI 10.1039/c5cc09915c PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH9EL UT WOS:000373099100011 PM 26981781 ER PT J AU Jorda, J Leibly, DJ Thompson, MC Yeates, TO AF Jorda, J. Leibly, D. J. Thompson, M. C. Yeates, T. O. TI Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein SO CHEMICAL COMMUNICATIONS LA English DT Article ID PDU MICROCOMPARTMENT; DESIGN; ORGANELLES; CAGE; NANOMATERIALS; EVOLUTION; SYMMETRY; INSIGHTS AB We report the crystal structure of a novel 60-subunit dodecahedral cage that results from self-assembly of a re-engineered version of a natural protein (PduA) from the Pdu microcompartment shell. Biophysical data illustrate the dependence of assembly on solution conditions, opening up new applications in microcompartment studies and nanotechnology. C1 [Jorda, J.; Leibly, D. J.; Yeates, T. O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Leibly, D. J.; Thompson, M. C.; Yeates, T. O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU NSF [CHE-1332907]; NIH [AI081146, RR-15301]; Ruth L. Kirschstein National Research Service Award [T32GM007185]; DOE [DE-FC03-02ER63421]; DOE, Office of Basic Energy Sciences [DE-AC02 06CH11357] FX This work was supported by NSF grant CHE-1332907 and NIH grant AI081146. D. J. L. was supported by Ruth L. Kirschstein National Research Service Award T32GM007185. The authors thank Michael R. Sawaya, Duilio Cascio, and Dan McNamara for X-ray data collection at APS beamline 24-ID-C, and Joshuah Laniado for helpful suggestions. X-ray core facilities at UCLA are supported by DOE Grant DE-FC03-02ER63421. The NECAT beamlines of the Advanced Photon Source are supported by NIH Grant RR-15301 (NCRR). Use of the Advanced Photon Source is supported by the DOE, Office of Basic Energy Sciences, under Contract DE-AC02 06CH11357. NR 29 TC 0 Z9 0 U1 11 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 28 BP 5041 EP 5044 DI 10.1039/c6cc00851h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH9EL UT WOS:000373099100020 PM 26988700 ER PT J AU Luo, YQ Ahlstrom, A Allison, SD Batjes, NH Brovkin, V Carvalhais, N Chappell, A Ciais, P Davidson, EA Finzi, AC Georgiou, K Guenet, B Hararuk, O Harden, JW He, YJ Hopkins, F Jiang, LF Koven, C Jackson, RB Jones, CD Lara, MJ Liang, JY McGuire, AD Parton, W Peng, CH Randerson, JT Salazar, A Sierra, CA Smith, MJ Tian, HQ Todd-Brown, KEO Torn, M van Groenigen, KJ Wang, YP West, TO Wei, YX Wieder, WR Xia, JY Xu, X Xu, XF Zhou, T AF Luo, Yiqi Ahlstrom, Anders Allison, Steven D. Batjes, Niels H. Brovkin, Victor Carvalhais, Nuno Chappell, Adrian Ciais, Philippe Davidson, Eric A. Finzi, Adrien C. Georgiou, Katerina Guenet, Bertrand Hararuk, Oleksandra Harden, Jennifer W. He, Yujie Hopkins, Francesca Jiang, Lifen Koven, Charlie Jackson, Robert B. Jones, Chris D. Lara, Mark J. Liang, Junyi McGuire, A. David Parton, William Peng, Changhui Randerson, James T. Salazar, Alejandro Sierra, Carlos A. Smith, Matthew J. Tian, Hanqin Todd-Brown, Katherine E. O. Torn, Margaret van Groenigen, Kees Jan Wang, Ying Ping West, Tristram O. Wei, Yaxing Wieder, William R. Xia, Jianyang Xu, Xia Xu, Xiaofeng Zhou, Tao TI Toward more realistic projections of soil carbon dynamics by Earth system models SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID NET PRIMARY PRODUCTION; ORGANIC-MATTER MODELS; GLOBAL CLIMATE-CHANGE; DATA-ASSIMILATION; TERRESTRIAL ECOSYSTEMS; INCUBATION DATA; UNITED-STATES; LAND MODEL; HETEROTROPHIC RESPIRATION; TEMPERATURE SENSITIVITY AB Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields. C1 [Luo, Yiqi; Jiang, Lifen; Liang, Junyi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Luo, Yiqi] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Ahlstrom, Anders; Jackson, Robert B.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Ahlstrom, Anders] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden. [Allison, Steven D.] Univ Calif Irvine, Dept Ecol & Evolut Biol, Irvine, CA USA. [Allison, Steven D.; He, Yujie; Hopkins, Francesca; Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92717 USA. [Batjes, Niels H.] ISRIC World Soil Informat, Wageningen, Netherlands. [Brovkin, Victor] Max Planck Inst Meteorol, Hamburg, Germany. [Carvalhais, Nuno; Sierra, Carlos A.] Max Planck Inst Biogeochem, Jena, Germany. [Carvalhais, Nuno] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Ciencias & Engn Ambiente, CENSE, Caparica, Portugal. [Chappell, Adrian] CSIRO Land & Water Natl Res Flagship, Canberra, ACT, Australia. [Ciais, Philippe; Guenet, Bertrand] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Davidson, Eric A.] Univ Maryland, Ctr Environm Sci, Appalachian Lab, Frostburg, MD USA. [Finzi, Adrien C.] Boston Univ, Dept Biol, Boston, MA 02215 USA. [Georgiou, Katerina] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Georgiou, Katerina; Koven, Charlie; Torn, Margaret] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hararuk, Oleksandra] Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC, Canada. [Harden, Jennifer W.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Jones, Chris D.] Hadley Ctr, Met Off, Exeter, Devon, England. [Lara, Mark J.; McGuire, A. David] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA. [McGuire, A. David] US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK USA. [Parton, William] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Peng, Changhui] Univ Quebec, Inst Environm Sci, Montreal, PQ H3C 3P8, Canada. [Salazar, Alejandro] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Smith, Matthew J.] Microsoft Res, Sci Computat Lab, Cambridge, England. [Tian, Hanqin] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Todd-Brown, Katherine E. O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [van Groenigen, Kees Jan] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA. [Wang, Ying Ping] CSIRO Ocean & Atmosphere Flagship, Aspendale, Vic, Australia. [West, Tristram O.] Joint Global Change Res Inst, College Pk, MD USA. [Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Wieder, William R.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Xia, Jianyang] E China Normal Univ, Sch Ecol & Environm Sci, Shanghai 200062, Peoples R China. [Xu, Xia] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA USA. [Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. [Zhou, Tao] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. RP Luo, YQ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Luo, YQ (reprint author), Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. EM yluo@ou.edu RI Torn, Margaret/D-2305-2015; He, Yujie/E-2514-2017; Ahlstrom, Anders/F-3215-2017; Liang, Junyi/H-3203-2016; Davidson, Eric/K-4984-2013; Koven, Charles/N-8888-2014; Brovkin, Victor/C-2803-2016; Batjes, Niels/F-7195-2010; Allison, Steven/E-2978-2010; Xu, Xiaofeng/B-2391-2008; Smith, Melinda/J-8987-2014; Jones, Chris/I-2983-2014; wang, yp/A-9765-2011 OI van groenigen, kees jan/0000-0002-9165-3925; WIEDER, WILLIAM/0000-0001-7116-1985; He, Yujie/0000-0001-8261-5399; Ahlstrom, Anders/0000-0003-1642-0037; Liang, Junyi/0000-0001-8252-5502; Davidson, Eric/0000-0002-8525-8697; Koven, Charles/0000-0002-3367-0065; Brovkin, Victor/0000-0001-6420-3198; Batjes, Niels/0000-0003-2367-3067; Allison, Steven/0000-0003-4629-7842; Xu, Xiaofeng/0000-0002-6553-6514; FU United States National Science Foundation Research Coordination (RCN) grant [DEB 0840964]; Department of Energy [DE SC0008270]; U.S. Department of Energy [DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, DE-SC0010715]; U.S. National Science Foundation (NSF) [DEB 0840964, DBI 0850290, EPS 0919466, EF 1137293]; Joint DECC/Defra Met Office Hadley Centre Climate Program [GA01101]; [UID/AMB/04085/2013] FX The paper stemmed from a workshop "Representing soil carbon dynamics in global land models to improve future IPCC assessments" held at Breckenridge, CO, USA on 12-14 June 2014. The workshop was financially supported by the United States National Science Foundation Research Coordination (RCN) grant DEB 0840964 and Department of Energy DE SC0008270. Y.L. was financially supported by U.S. Department of Energy grants DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, and DE-SC0010715 and U.S. National Science Foundation (NSF) grants DBI 0850290, EPS 0919466, DEB 0840964, and EF 1137293; N.C. by Project UID/AMB/04085/2013; CDJ by the Joint DECC/Defra Met Office Hadley Centre Climate Program (GA01101). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Please contact the corresponding author at yluo@ou.edu for details of the data used in this work. NR 149 TC 15 Z9 15 U1 38 U2 77 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD JAN PY 2016 VL 30 IS 1 BP 40 EP 56 DI 10.1002/2015GB005239 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA DH7HR UT WOS:000372964300003 ER PT J AU Dagle, VL Smith, C Flake, M Albrecht, KO Gray, MJ Ramasamy, KK Dagle, RA AF Dagle, Vanessa Lebarbier Smith, Colin Flake, Matthew Albrecht, Karl O. Gray, Michel J. Ramasamy, Karthikeyan K. Dagle, Robert A. TI Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels SO GREEN CHEMISTRY LA English DT Article ID ZNXZRYOZ MIXED OXIDES; ACID CATALYSTS; ISOBUTENE; ETHANOL; OLIGOMERIZATION; ACETONE; CHEMISTRY; ALCOHOLS; SITES AB Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. This novel process represents an alternative to conventional fuel synthesis routes (e.g., Fischer-Tropsch, Methanol-to-Gasoline) that have drawbacks, particularly at the scale of biomass. Composition of the resulting hydrocarbon fuel can be modulated to produce predominantly middle distillates, which is constantly increasing in demand compared to gasoline fraction. In this process biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C-2(+) oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C-7(+)) is finally sent to a fourth reactor required for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that similar to 75% of the hydrocarbons (iso-paraffins and cyclic compounds) are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. Overall, we demonstrate approximately 41% carbon efficiency for converting syngas into jet-range hydrocarbons. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters. C1 [Dagle, Vanessa Lebarbier; Smith, Colin; Flake, Matthew; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Energy & Environm Directorate, Richland, WA 99352 USA. RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Energy & Environm Directorate, Richland, WA 99352 USA. EM Robert.Dagle@pnnl.gov FU U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO); DOE's Office of Biological and Environmental Research FX This work was financially supported by the U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) and performed at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The authors would like to thank Teresa Lemmon and Marie Swita for analytical support of this project. Finally, the authors would also like to thank Cary Counts for help with technical editing of this manuscript. NR 42 TC 2 Z9 2 U1 11 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 7 BP 1880 EP 1891 DI 10.1039/c5gc02298c PG 12 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DH7NR UT WOS:000372981400008 ER PT J AU Wang, YH Comes, RB Wolf, SA Lu, JW AF Wang, Yuhan Comes, Ryan B. Wolf, Stuart A. Lu, Jiwei TI Threshold Switching Characteristics of Nb/NbO2/TiN Vertical Devices SO IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY LA English DT Article DE Niobium dioxide; threshold switching; metal-insulator transition ID NIOBIUM DIOXIDE; NBO2 AB We have observed threshold switching (TS) with minimal hysteresis and a small threshold electric field (60-90 kV/cm) in Nb/NbO2/TiN structures. The TS was unipolar with certain repeatability. A less sharp but still sizable change in the device resistance can be observed up to 150 degrees C. The TS without Nb capping layer exhibited hysteretic characteristics. It was proposed that the surface Nb2O5 layer on NbO2 could significantly modify the TS in this vertical device. This understanding of the surface effect will allow further control of the non-linear IV characteristics for NbO2-based switches or selector devices. C1 [Wang, Yuhan; Wolf, Stuart A.; Lu, Jiwei] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Comes, Ryan B.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Wolf, Stuart A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Wang, YH (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM yw9ep@virginia.edu NR 23 TC 3 Z9 3 U1 7 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6734 J9 IEEE J ELECTRON DEVI JI IEEE J. Electron Devices Soc. PD JAN PY 2016 VL 4 IS 1 BP 11 EP 14 DI 10.1109/JEDS.2015.2503922 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA DH8PC UT WOS:000373055600003 ER PT J AU Davis, SJ Edwards, SB Teper, GE Bassett, DG McCarthy, MJ Johnson, SC Lawton, CR Hoffman, MJ Shelton, L Henry, SM Melander, DJ Muldoon, FM Alford, BD Rice, RE AF Davis, Scott J. Edwards, Shatiel B. Teper, Gerald E. Bassett, David G. McCarthy, Michael J. Johnson, Scott C. Lawton, Craig R. Hoffman, Matthew J. Shelton, Liliana Henry, Stephen M. Melander, Darryl J. Muldoon, Frank M. Alford, Brian D. Rice, Roy E. TI Maximizing the US Army's Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT) SO INTERFACES LA English DT Article DE US Army; ground combat systems; portfolio optimization; fleet scheduling; decision support; mixed-integer linear programming AB Recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25-35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning using a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army's acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. More than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs. C1 [Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.; Bassett, David G.; McCarthy, Michael J.; Johnson, Scott C.] United States Army, Warren, MI 48397 USA. [Lawton, Craig R.; Hoffman, Matthew J.; Shelton, Liliana; Henry, Stephen M.; Melander, Darryl J.; Muldoon, Frank M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Alford, Brian D.] Booz Allen Hamilton, Huntsville, AL 35806 USA. [Rice, Roy E.] Teledyne Brown Engn Inc, Huntsville, AL 35805 USA. RP Davis, SJ; Edwards, SB; Teper, GE; Bassett, DG; McCarthy, MJ; Johnson, SC (reprint author), United States Army, Warren, MI 48397 USA.; Lawton, CR; Hoffman, MJ; Shelton, L; Henry, SM; Melander, DJ; Muldoon, FM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Alford, BD (reprint author), Booz Allen Hamilton, Huntsville, AL 35806 USA.; Rice, RE (reprint author), Teledyne Brown Engn Inc, Huntsville, AL 35805 USA. EM scott.j.davis.civ@mail.mil; shatiel.b.edwards.civ@mail.mil; gerald.e.teper.civ@mail.mil; david.g.bassett.mil@mail.mil; michael.j.mccarthy.civ@mail.mil; scott.c.johnson98.civ@mail.mil; crlawto@sandia.gov; mjhoffm@sandia.gov; lshelto@sandia.gov; smhenry@sandia.gov; djmelan@sandia.gov; fmmuldo@sandia.gov; alford_brian@bah.com; roy.rice@teledyne.com FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank the Edelman selection committee, their coaches Randy Robinson and Greg Parlier, John Milne and Alice Mack for their valuable editorial feedback, Brent Peterson for his outstanding video production work, and David Cunnington and Daniel Thompson for their graphics and presentation expertise. The authors especially thank the Honorable Ms. Heidi Shyu and Lt. Gen. Michael Williamson for their video remarks supporting the impacts of the CPAT project. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration [Contract DE-AC04-94AL85000]. NR 12 TC 0 Z9 0 U1 2 U2 5 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0092-2102 EI 1526-551X J9 INTERFACES JI Interfaces PD JAN-FEB PY 2016 VL 46 IS 1 SI SI BP 91 EP 108 DI 10.1287/inte.2015.0824 PG 18 WC Management; Operations Research & Management Science SC Business & Economics; Operations Research & Management Science GA DH9QN UT WOS:000373130900007 ER PT S AU Kocheva, D Stegmann, R Rainovski, G Jolie, J Pietralla, N Stahl, C Petkov, P Blazhev, A Hennig, A Bauer, C Braunroth, T Carpenter, MP Cortes, L Dewald, A Djongolov, M Fransen, C Gladnishki, K Janssens, RVF Karayonchev, V Lettmann, M Lister, CJ Litzinger, J Moller, T Muller-Gatermann, C Scheck, M Scholz, P Schramm, C Thoele, P Werner, V Woelk, D Zhu, S Van Isacker, P AF Kocheva, D. Stegmann, R. Rainovski, G. Jolie, J. Pietralla, N. Stahl, C. Petkov, P. Blazhev, A. Hennig, A. Bauer, C. Braunroth, Th. Carpenter, M. P. Cortes, L. Dewald, A. Djongolov, M. Fransen, C. Gladnishki, K. Janssens, R. V. F. Karayonchev, V. Lettmann, M. Lister, C. J. Litzinger, J. Moeller, Th. Mueller-Gatermann, C. Scheck, M. Scholz, Ph. Schramm, C. Thoele, P. Werner, V. Woelk, D. Zhu, S. Van Isacker, P. BE Andreev, A Arsenyev, N Ershov, S Sargsyan, V Vdovin, A TI Search formixed-symmetry states of nuclei in the vicinity of the double-magic nucleus Pb-208 SO INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE AND RELATED TOPICS (NSRT15) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 7th International Conference on Nuclear Structure and Related Topics (NSRT) CY JUL 14-18, 2015 CL Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, RUSSIA HO Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys ID COLLECTIVE MODES; SPECTROSCOPY; EXCITATIONS; PO-212; SCATTERING; BEAM AB In this work we present the results from two experiments dedicated to search for quadrupole-collective isovector valence-shell excitation, the states with so-called mixed proton-neutron symmetry (MSS), in nuclei around the doubly magic nucleus Pb-208. Po-212 was studied in an alpha-transfer reaction. Hg-204 was studied in an inverse kinematics Coulomb excitation reaction on a carbon target. Both experiments provide indications for existence of one-phonon MSSs. Those are the first experimentally identified MSSs in the mass A approximate to 208 region. C1 [Kocheva, D.; Rainovski, G.; Djongolov, M.; Gladnishki, K.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. [Stegmann, R.; Pietralla, N.; Stahl, C.; Bauer, C.; Cortes, L.; Lettmann, M.; Moeller, Th.; Scheck, M.; Schramm, C.; Werner, V.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Jolie, J.; Blazhev, A.; Hennig, A.; Braunroth, Th.; Dewald, A.; Fransen, C.; Karayonchev, V.; Litzinger, J.; Mueller-Gatermann, C.; Scholz, Ph.; Thoele, P.; Woelk, D.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Petkov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. [Van Isacker, P.] CEA, CNRS, IN2P3, Grand Accelerateur Natl Lons Lourds,DSM, BP 55027, F-14076 Caen 5, France. [Scheck, M.] Univ West Scotland, Paisley PA1 2BE, Renfrew, Scotland. [Scheck, M.] Scottish Univ Phys Alliance, Glasgow G12 8QQ, Lanark, Scotland. RP Rainovski, G (reprint author), Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. EM rig@phys.uni-sofia.bg RI Kocheva, Diana/K-1388-2016; Rainovski, Georgi/A-3450-2008 OI Rainovski, Georgi/0000-0002-1729-0249 NR 42 TC 1 Z9 1 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 107 AR 03004 DI 10.1051/epjconf/201610703004 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FQ UT WOS:000372781500011 ER PT S AU Somov, A Somov, S Tolstukhin, I AF Somov, A. Somov, S. Tolstukhin, I. GP IOP TI Performance of the pair spectrometer of the GlueX experiment SO INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS (ICPPA-2015), PTS 1-4 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Particle Physics and Astrophysics (ICPPA) CY OCT 05-10, 2015 CL Moscow, RUSSIA SP Natl Res Nucl Univ MEPhI, Ctr Fundamental Res & Particle Phys AB The description of the pair spectrometer of the GlueX detector at Jefferson Lab and its performance during the first beam commissioning runs are presented. We measured the amount of light collected from each channel of the pair spectrometer hodoscopes and the time resolution of the pair spectrometer counters. C1 [Somov, A.] Thomas Jefferson Natl Accelerator Facil, Jefferson Ave 12000, Newport News, VA 23606 USA. [Somov, S.; Tolstukhin, I.] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Highway 31, Moscow 115409, Russia. RP Tolstukhin, I (reprint author), Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Highway 31, Moscow 115409, Russia. EM somov@jlab.org; s.v.somov@mail.ru; ivantol@jlab.org NR 2 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 675 AR 042022 DI 10.1088/1742-6596/675/4/042022 PG 3 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA BE5AH UT WOS:000372460100131 ER PT S AU Amiri, BW Foster, JP Greenwood, LR AF Amiri, Benjamin W. Foster, John P. Greenwood, Larry R. BE Lyoussi, A TI Dosimetry Evaluation of In-Core and Above-Core Zirconium Alloy Samples in a PWR SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB A description of the neutron fluence analysis of activated zirconium alloys samples at a Westinghouse 3-loop reactor is presented. These samples were irradiated in the core and in the fuel plenum region, where dosimetry measurements are relatively rare compared with regions radially outward of the core. Dosimetry measurements performed by Batelle/PNNL are compared to the calculational models. Good agreement is shown with the in-core measurements when using analysis conditions expected to best represent this region, such as an assembly-specific axial power distribution. However, the use of these conditions to evaluate dosimetry in the fuel plenum region can lead to significant underestimation of the fluence. The use of a flat axial power distribution, however, does not underestimate the fluence in the fuel plenum region. C1 [Amiri, Benjamin W.] Westinghouse Elect Co LLC, Radiat Engn & Anal, Cranberry Township, PA 16066 USA. [Foster, John P.] Westinghouse Elect Co LLC, Nucl Fuel, Hopkins, SC 29061 USA. [Greenwood, Larry R.] Battelle Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Amiri, BW (reprint author), Westinghouse Elect Co LLC, Radiat Engn & Anal, Cranberry Township, PA 16066 USA. RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 NR 8 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 02005 DI 10.1051/epjconf/201610602005 PG 6 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700014 ER PT S AU Carlson, AD Pronyaev, VG Capote, R Hale, GM Hambsch, FJ Kawano, T Kunieda, S Mannhart, W Nelson, RO Neudecker, D Schillebeeckx, P Simakov, S Smith, DL Talou, P Tao, X Wallner, A Wang, W AF Carlson, A. D. Pronyaev, V. G. Capote, R. Hale, G. M. Hambsch, F. -J. Kawano, T. Kunieda, S. Mannhart, W. Nelson, R. O. Neudecker, D. Schillebeeckx, P. Simakov, S. Smith, D. L. Talou, P. Tao, X. Wallner, A. Wang, W. BE Lyoussi, A TI Toward a New Evaluation of Neutron Standards SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse ID CAPTURE CROSS-SECTION; UNCERTAINTY QUANTIFICATION; N-TOF; SPECTRA; FACILITY; ENERGY; GELINA; CERN AB Measurements related to neutron cross section standards and certain prompt neutron fission spectra are being evaluated. In addition to the standard cross sections, investigations of reference data that are not as well known as the standards are being considered. Procedures and codes for performing this work are discussed. A number of libraries will use the results of this standards evaluation for new versions of their libraries. Most of these data have applications in neutron dosimetry. C1 [Carlson, A. D.] NIST, 100 Bur Dr,Stop 8463, Gaithersburg, MD 20899 USA. [Pronyaev, V. G.] IPPE, Bondarenko Sq 1, Obninsk 249033, Kaluga Region, Russia. [Capote, R.; Simakov, S.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria. [Hale, G. M.; Kawano, T.; Nelson, R. O.; Neudecker, D.; Talou, P.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Hambsch, F. -J.; Schillebeeckx, P.] EC, JRC, IRMM, Retieseweg 111, B-2440 Geel, Belgium. [Kunieda, S.] Japan Atom Energy Agcy, Nucl Data Ctr, 2-4 Shirane Shirakata, Tokai, Ibaraki 3191195, Japan. [Mannhart, W.] Phys Tech Bundesanstalt, Org 6 4, Bundesallee 100, D-38116 Braunschweig, Germany. [Smith, D. L.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tao, X.; Wang, W.] CNDC, China Inst Atom Energy, POB 275 41, Beijing 102413, Peoples R China. [Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Nucl Phys, Bldg 57, Canberra, ACT 0200, Australia. RP Carlson, AD (reprint author), NIST, 100 Bur Dr,Stop 8463, Gaithersburg, MD 20899 USA. EM carlson@nist.gov RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 NR 47 TC 0 Z9 0 U1 1 U2 5 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04002 DI 10.1051/epjconf/201610604002 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700038 ER PT S AU Coburn, J Luker, SM Parma, EJ DePriest, KR AF Coburn, Jonathan Luker, S. Michael Parma, Edward J. DePriest, K. Russell BE Lyoussi, A TI Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimenters SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ) or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks) before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR) central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time. C1 [Coburn, Jonathan] N Carolina State Univ, Appl Nucl Technol, Sandia Natl Labs, Albuquerque, NM USA. [Luker, S. Michael; Parma, Edward J.; DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. RP Luker, SM (reprint author), Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. EM smluker@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 05001 DI 10.1051/epjconf/201610605001 PG 10 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700053 ER PT S AU Greenwood, LR Johnson, CD AF Greenwood, L. R. Johnson, C. D. BE Lyoussi, A TI Least-Squares Neutron Spectral Adjustment with STAYSL PNNL SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator workbook for use in correcting the measured activities. Output from the SigPhi Calculator is automatically produced, and consists of a portion of the STAYSL PNNL input file data that is required to run the spectral adjustment calculations. Within STAYSL PNNL, the least-squares process is performed in one step, without iteration, and provides rapid results on PC platforms. STAYSL PNNL creates multiple output files with tabulated results, data suitable for plotting, and data formatted for use in subsequent radiation damage calculations using the SPECTER computer code (which is not included in the STAYSL PNNL suite). All components of the software suite have undergone extensive testing and validation prior to release and test cases are provided with the package. [GRAPHICS] . C1 [Greenwood, L. R.; Johnson, C. D.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RP Greenwood, LR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM larry.greenwood@pnnl.gov RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 NR 9 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 07001 DI 10.1051/epjconf/201610607001 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700071 ER PT S AU Griffin, P AF Griffin, Patrick BE Lyoussi, A TI Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the Cf-252 spontaneous fission standard neutron benchmark field, the U-235 thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields. C1 [Griffin, Patrick] Sandia Natl Labs, Radiat Effects Sci & Applicat Dept, POB 5800, Albuquerque, NM 87185 USA. RP Griffin, P (reprint author), Sandia Natl Labs, Radiat Effects Sci & Applicat Dept, POB 5800, Albuquerque, NM 87185 USA. EM pjgriff@sandia.gov NR 9 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04001 DI 10.1051/epjconf/201610604001 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700037 ER PT S AU Hehr, BD Parma, EJ Peters, CD Naranjo, GE Luker, SM AF Hehr, Brian D. Parma, Edward J. Peters, Curtis D. Naranjo, Gerald E. Luker, S. Michael BE Lyoussi, A TI Characterization of Novel Calorimeters in the Annular Core Research Reactor SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n, gamma) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n, gamma) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. C1 [Hehr, Brian D.; Parma, Edward J.; Luker, S. Michael] Sandia Natl Labs, Appl Nucl Technol Dept, POB 5800, Albuquerque, NM 87185 USA. [Peters, Curtis D.; Naranjo, Gerald E.] Sandia Natl Labs, Adv Nucl Concepts Dept, POB 5800, Albuquerque, NM 87185 USA. RP Hehr, BD (reprint author), Sandia Natl Labs, Appl Nucl Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM bdhehr@sandia.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01001 DI 10.1051/epjconf/201610601001 PG 8 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700001 ER PT S AU Holden, NE AF Holden, N. E. BE Lyoussi, A TI 2013 Review of Neutron and Non-Neutron Nuclear Data SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and long-lived nuclides, some alpha decay and double beta decay measurements for quasi-stable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from new measurements on the very heavy (transmeitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated. C1 [Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Holden, NE (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04003 DI 10.1051/epjconf/201610604003 PG 8 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700039 ER PT S AU Hu, JP Holden, NE Reciniello, RN AF Hu, J. -P. Holden, N. E. Reciniello, R. N. BE Lyoussi, A TI Dosimetry in Thermal Neutron Irradiation Facility at BMRR SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6-10% lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described. C1 [Hu, J. -P.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Reciniello, R. N.] Brookhaven Natl Lab, Radiol Control Div, Upton, NY 11973 USA. RP Hu, JP (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. NR 12 TC 0 Z9 0 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01002 DI 10.1051/epjconf/201610601002 PG 10 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700002 ER PT S AU Kahler, AC MacInnes, M Chadwick, MB AF Kahler, A. C. MacInnes, M. Chadwick, M. B. BE Lyoussi, A TI A Re-Analysis of Historical Los Alamos Critical Assembly Reaction Rate Measurements SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Starting in the 1950s and continuing into the early 1970s, a number of foil irradiations and fission chamber measurements were made in a variety of Fast critical assemblies at Los Alamos National Laboratory. These include (i) Godiva, a bare HEU spherical assembly; (ii) Flattop-25, a spherical assembly consisting of an HEU core and a natural uranium reflector; (iii) Jezebel, a bare Pu-239 assembly; and (iv) Flattop-Pu, a spherical assembly consisting of a Pu-239 core and a natural uranium reflector. In most instances the irradiations occur at or near the center of the assembly, but in selected instances data were obtained for a radial traverse extending into the Flattop reflector region. Measurements were made for a number of threshold reactions, including Sc-45(n, 2n) (44)mSc, V-51(n, alpha) 48Sc, As-75(n, 2n) As-74, Y-89(n, 2n) Y-88, Zr-90(n, 2n) Zr-89, Rh-103(n, 2n) (102)gRh, Ag-107(n, 2n) (106)mAg, Tm-169(n, 2n) Tm-168, Lu-175(n, 2n) Lu-174, Ir-191(n, 2n) Ir-190, Au-197(n, 2n) Au-196, Tl-203(n, 2n) Tl-202, Pb-204(n, 2n) Pb-203 and U-238(n, 2n) U-237. Fission ratio data for U-238(n, f)/U-235(n, f) and Pu-239(n, f)/U-235(n, f) were also obtained. We report C/E values from MCNP6 calculations using ENDF/B-VII. 1 and IRDFF-v1.03 cross section data. C1 [Kahler, A. C.; MacInnes, M.; Chadwick, M. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Kahler, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM akahler@lanl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04007 DI 10.1051/epjconf/201610604007 PG 7 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700043 ER PT S AU Kaiser, K Nowlen, KC DePriest, KR AF Kaiser, Krista Nowlen, K. Chantel DePriest, K. Russell BE Lyoussi, A TI Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures. C1 [Kaiser, Krista] Sandia Natl Labs, Nucl Facil Operat, POB 5800,MS1142, Albuquerque, NM 87185 USA. [Nowlen, K. Chantel] Sandia Natl Labs, Nucl Engn & Maintenance, POB 5800,MS1142, Albuquerque, NM 87185 USA. [DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800,MS1146, Albuquerque, NM 87185 USA. RP Kaiser, K (reprint author), Sandia Natl Labs, Nucl Facil Operat, POB 5800,MS1142, Albuquerque, NM 87185 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01005 DI 10.1051/epjconf/201610601005 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700005 ER PT S AU Kulesza, JA Franceschini, F Evans, TM Gehin, JC AF Kulesza, Joel A. Franceschini, Fausto Evans, Thomas M. Gehin, Jess C. BE Lyoussi, A TI Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL) SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed. C1 [Kulesza, Joel A.; Franceschini, Fausto] Westinghouse Elect Co LLC, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA. [Evans, Thomas M.; Gehin, Jess C.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Kulesza, JA (reprint author), Westinghouse Elect Co LLC, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA. EM kuleszj@westinghouse.com NR 5 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 03002 DI 10.1051/epjconf/201610603002 PG 7 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700027 ER PT S AU Parma, EJ Naranjo, GE Lippert, LL Vehar, DW AF Parma, Edward J. Naranjo, Gerald E. Lippert, Lance L. Vehar, David W. BE Lyoussi, A TI Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters. C1 [Parma, Edward J.; Vehar, David W.] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. [Naranjo, Gerald E.] Sandia Natl Labs, Adv Nucl Concepts, POB 5800, Albuquerque, NM 87185 USA. [Lippert, Lance L.] Sandia Natl Labs, Nucl Facil Operat, POB 5800, Albuquerque, NM 87185 USA. RP Parma, EJ (reprint author), Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. EM ejparma@sandia.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01003 DI 10.1051/epjconf/201610601003 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700003 ER PT S AU Remec, I Rosseel, TM Field, KG Le Pape, Y AF Remec, Igor Rosseel, Thomas M. Field, Kevin G. Le Pape, Yann BE Lyoussi, A TI Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradationa SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. C1 [Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Remec, I (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM remeci@ornl.gov RI Rosseel, Thomas/J-4086-2016 OI Rosseel, Thomas/0000-0001-9917-7073 NR 14 TC 1 Z9 1 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 02002 DI 10.1051/epjconf/201610602002 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700011 ER PT S AU Risner, JM Blakeman, ED AF Risner, J. M. Blakeman, E. D. BE Lyoussi, A TI Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse ID VARIANCE REDUCTION AB The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%. C1 [Risner, J. M.; Blakeman, E. D.] Oak Ridge Natl Lab, POB 2008,MS 6170, Oak Ridge, TN 37831 USA. RP Risner, JM (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6170, Oak Ridge, TN 37831 USA. EM risnerjm@ornl.gov NR 13 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 03003 DI 10.1051/epjconf/201610603003 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700028 ER PT S AU Simakov, S Capote, R Greenwood, L Griffin, P Kahler, A Pronyaev, V Trkov, A Zolotarev, K AF Simakov, Stanislav Capote, Roberto Greenwood, Lawrence Griffin, Patrick Kahler, Albert Pronyaev, Vladimir Trkov, Andrej Zolotarev, Konstantin BE Lyoussi, A TI Validation of IRDFF in Cf-252 Standard and IRDF-2002 Reference Neutron Fields SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse ID CROSS-SECTIONS; FISSION; SPECTRUM AB The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard Cf-252(s. f.) and reference U-235(nth, f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the Cf-252 standard spontaneous fission spectrum; that was not the case for the current recommended spectra for U-235(nth, f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI. C1 [Simakov, Stanislav; Capote, Roberto; Trkov, Andrej] IAEA, POB 100, A-1400 Vienna, Austria. [Greenwood, Lawrence] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. [Griffin, Patrick] Sandia Natl Labs, Org 1340,MS 1146,POB 5800, Albuquerque, NM USA. [Kahler, Albert] Los Alamos Natl Lab, Bikini Atoll Blvd,POB 1663, Los Alamos, NM USA. [Pronyaev, Vladimir; Zolotarev, Konstantin] Obninsk Phys & Power Engn Inst, Obninsk 249020, Russia. RP Simakov, S (reprint author), IAEA, POB 100, A-1400 Vienna, Austria. EM s.simakov@iaea.org RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 NR 22 TC 0 Z9 0 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04011 DI 10.1051/epjconf/201610604011 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700047 ER PT S AU Vargas, D Kurwitz, RC Carron, I DePriest, KR AF Vargas, Danilo Kurwitz, R. Cable Carron, Igor DePriest, K. Russell BE Lyoussi, A TI Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A) consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n x 1) and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement. C1 [Vargas, Danilo] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Kurwitz, R. Cable] Texas A&M Univ, Dept Nucl Engn, Syst Engn Initiat, College Stn, TX 77843 USA. [Carron, Igor] Nuit Blanche, Paris, France. [DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. RP Kurwitz, RC (reprint author), Texas A&M Univ, Dept Nucl Engn, Syst Engn Initiat, College Stn, TX 77843 USA. EM kurwitz@tamu.edu NR 12 TC 0 Z9 0 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 07002 DI 10.1051/epjconf/201610607002 PG 8 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700072 ER PT J AU Agnoli, S Favaro, M AF Agnoli, Stefano Favaro, Marco TI Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Review ID OXYGEN REDUCTION REACTION; CHEMICAL-VAPOR-DEPOSITION; NITROGEN-DOPED GRAPHENE; LITHIUM ION BATTERIES; METAL-FREE CATALYST; FUEL-CELL CATHODE; QUANTUM DOTS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC ACTIVITY AB Graphene based materials can be effectively modified by doping in order to specifically tailor their properties toward specific applications. So far the most used and widely investigated dopant heteroatom is probably nitrogen. However, boron is also an equally important element that can induce novel and complementary properties leading to specific implementation in alternative devices and technologies. In this paper, we survey the most recent preparation methods of boron doped graphene, including materials with specific morphology such as nanoribbons, quantum dots and 3D interconnected systems. We illustrate the results of theoretical and experimental studies dealing with the description and understanding of the main structural, electronic and chemical properties of this material. The emerging applications of boron doped graphene in several technological fields such as electrochemistry, sensors, photovoltaics, catalysis and biology are extensively reviewed. C1 [Agnoli, Stefano] Univ Padua, Dept Chem Sci, Via F Marzolo 1, I-35131 Padua, Italy. [Favaro, Marco] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Agnoli, S (reprint author), Univ Padua, Dept Chem Sci, Via F Marzolo 1, I-35131 Padua, Italy. EM stefano.agnoli@unipd.it OI Favaro, Marco/0000-0002-3502-8332 FU Italian MIUR through the national grant Futuro in Ricerca "Beyond graphene: tailored C-layers for novel catalytic materials and green chemistry" [RBFR128BEC]; University of Padova [CPDA128318/12]; Office of Science, Office of Basic Energy Science (BES) of the U.S. Department of Energy (DOE) [DE-SC0004993] FX This work was partially supported by the Italian MIUR through the national grant Futuro in Ricerca 2012 RBFR128BEC "Beyond graphene: tailored C-layers for novel catalytic materials and green chemistry" and by the University of Padova funded project CPDA128318/12, "Study of the catalytic activity of complex graphene nanoarchitectures from ideal to real conditions". MF thanks the support from the Office of Science, Office of Basic Energy Science (BES) of the U.S. Department of Energy (DOE) under award no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis (JCAP). NR 132 TC 10 Z9 10 U1 84 U2 185 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 14 BP 5002 EP 5025 DI 10.1039/c5ta10599d PG 24 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DH9MF UT WOS:000373119500002 ER PT J AU Maiti, D Daza, YA Yung, MM Kuhn, JN Bhethanabotla, VR AF Maiti, Debtanu Daza, Yolanda A. Yung, Matthew M. Kuhn, John N. Bhethanabotla, Venkat R. TI Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1-x)SrxFe(1-y)CoyO(3-delta) perovskite oxides for CO2 conversion SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID THERMOCHEMICAL FUEL PRODUCTION; STRONTIUM SEGREGATION; FORMATION ENERGETICS; CARBON-DIOXIDE; CERIA SURFACES; ELECTRON-GAS; THIN-FILMS; ENERGY; DESCRIPTORS; TEMPERATURE AB Density functional theory (DFT) based investigation of two parameters of prime interest - oxygen vacancy and surface terminations along (100) and (110) planes - has been conducted for La(1-x)SrxFe(1-y)CoyO(3-delta) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO2 adsorption strength. The theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography. C1 [Maiti, Debtanu; Daza, Yolanda A.; Kuhn, John N.; Bhethanabotla, Venkat R.] Univ S Florida, Tampa, FL 33620 USA. [Yung, Matthew M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bhethanabotla, VR (reprint author), Univ S Florida, Tampa, FL 33620 USA. EM bhethana@usf.edu FU NSF [CBET-1335817, CHE-1531590]; Office of Graduate Studies, USF; USF School of Graduate Studies; Florida Education Fund; NASA Florida Space Grant Consortium FX The authors acknowledge NSF award CBET-1335817 and CHE-1531590 for financial support and USF Research Computing. DM acknowledges the Office of Graduate Studies, USF for the USF Graduate Fellowship. YAD acknowledges the USF School of Graduate Studies for the Graduate Student Success Fellowship, the Florida Education Fund for the McKnight Dissertation Fellowship and the NASA Florida Space Grant Consortium for the Dissertation Improvement Fellowship. The authors thank Ryan A. Kent for his help with synthesis of the samples. NR 68 TC 1 Z9 1 U1 6 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 14 BP 5137 EP 5148 DI 10.1039/c5ta10284g PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DH9MF UT WOS:000373119500018 ER PT J AU Yang, X Tang, Y Cai, D Zhang, L Du, Y Zhou, S AF Yang, X. Tang, Y. Cai, D. Zhang, L. Du, Y. Zhou, S. TI COMPARATIVE ANALYSIS OF DIFFERENT NUMERICAL SCHEMES IN SOLUTE TRAPPING SIMULATIONS BY USING THE PHASE-FIELD MODEL WITH FINITE INTERFACE DISSIPATION SO JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY LA English DT Article DE Phase-field modeling; Solute trapping; Rapid solidification; Numerical scheme ID RAPID SOLIDIFICATION; LOCAL-NONEQUILIBRIUM; BINARY-ALLOYS; DIFFUSION; GROWTH; MOTION AB Two different numerical schemes, the standard explicit scheme and the time-elimination relaxation one, in the framework of phase-field model with finite interface dissipation were employed to investigate the solute trapping effect in a Si-4.5 at.% As alloy during rapid solidification. With the equivalent input, a unique solute distribution under the steady state can be obtained by using the two schemes without restriction to numerical length scale and interface velocity. By adjusting interface width and interface permeability, the experimental solute segregation coefficients can be well reproduced. The comparative analysis of advantages and disadvantages in the two numerical schemes indicates that the time-elimination relaxation scheme is preferable in one-dimensional phase-field simulation, while the standard explicit scheme seems to be the only choice for two- or three dimensional phase-field simulation. Furthermore, the kinetic phase diagrams in the Si-As system were predicted by using the phase-field simulation with the time-elimination relaxation scheme. C1 [Yang, X.; Tang, Y.; Cai, D.; Zhang, L.; Du, Y.] Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China. [Zhou, S.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Zhang, L (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China. EM lijun.zhang@csu.edu.cn FU National Natural Science Foundation for Youth of China [51301208]; National Natural Science Foundation of China [51474239]; Hunan Provincial Natural Science Foundation for Youth of China [2015JJ3146]; Innovation Foundation For Postgraduate of Central South University, Changsha, People's Republic of China; Fundamental Research Funds of Central South University, Changsha, People's Republic of China [2015zzts030]; China Scholarship Council [201506370114]; Central South University, Changsha, P.R. China FX The authors would like to acknowledge financial support from National Natural Science Foundation for Youth of China under Grant No. 51301208, National Natural Science Foundation of China under Grant No. 51474239, Hunan Provincial Natural Science Foundation for Youth of China under Grant No. 2015JJ3146, Innovation Foundation For Postgraduate and Fundamental Research Funds of Central South University (Grant No. 2015zzts030),Changsha, People's Republic of China and the State Scholarship Fund from China Scholarship Council (No.201506370114). Lijun Zhang acknowledges support from Shenghua Scholar Program of Central South University, Changsha, P.R. China. NR 32 TC 2 Z9 2 U1 0 U2 2 PU TECHNICAL FACULTY, BOR-SERBIA PI BOR PA UNIV BELGRADE, VOJSKE JUGOSLAVIJE 12, BOR, 19210, SERBIA SN 1450-5339 J9 J MIN METALL B JI J. Min. Metall. Sect. B-Metall. PY 2016 VL 52 IS 1 BP 77 EP 85 DI 10.2298/JMMB150716010Y PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA DH4QW UT WOS:000372771500011 ER PT J AU Chen, AP Chu, YH Li, RW Fix, T Hu, JM AF Chen, Aiping Chu, Ying-Hao Li, Run-Wei Fix, Thomas Hu, Jia-Mian TI Functional Oxide Thin Films and Nanostructures: Growth, Interface, and Applications SO JOURNAL OF NANOMATERIALS LA English DT Editorial Material ID NANOCOMPOSITE C1 [Chen, Aiping] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Li, Run-Wei] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Magnet Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China. [Fix, Thomas] Univ Strasbourg, CNRS, Lab ICube, F-67037 Strasbourg, France. [Hu, Jia-Mian] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Chen, AP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM apchen@lanl.gov RI Ying-Hao, Chu/A-4204-2008; Chen, Aiping/F-3212-2011; Xia, YuQing/C-9724-2017 OI Ying-Hao, Chu/0000-0002-3435-9084; Chen, Aiping/0000-0003-2639-2797; NR 9 TC 0 Z9 0 U1 7 U2 14 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-4110 EI 1687-4129 J9 J NANOMATER JI J. Nanomater. PY 2016 AR 7198726 DI 10.1155/2016/7198726 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DI4UE UT WOS:000373494100001 ER PT J AU Ha, J Chae, S Chou, KW Tyliszczak, T Monteiro, PJM AF Ha, J. Chae, S. Chou, K. W. Tyliszczak, T. Monteiro, P. J. M. TI Characterization of Class F Fly Ash Using STXM: Identifying Intraparticle Heterogeneity at Nanometer Scale SO JOURNAL OF NANOMATERIALS LA English DT Article ID BURNING POWER-PLANTS; POZZOLANIC REACTIVITY; MAS NMR; SEM-EDS; ZEOLITES; ALUMINUM; CONCRETE; CEMENT; MICROSTRUCTURE; GEOPOLYMERS AB Chemical and physical characterization of fly ash particles were conducted using scanning transmission X-ray microscopy (STXM). Compositional and spatial investigation and correlation among the main elemental constituents of fly ash (Al, Si, and Fe) were conducted based on microscopic and NEXAFS spectral analysis. Homogeneous oxidation and coordination state of Al and Fe were observed whereas Si shows spatial variation in its chemical state. We also identified that Si and Al are spatially correlated at nanometer scale in which high concentration of Si and Al was concurrently and consistently observed within the 30 nm resolution whereas Fe distribution did not show any specific correlation to Al and Si. Results of this study indicate that fly ash chemical composition has heterogeneous distribution depending on the elements which would determine and result in the differences in the reactivity. C1 [Ha, J.] Kean Univ, Sch Environm & Sustainabil Sci, Union, NJ 07083 USA. [Chae, S.; Monteiro, P. J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Chou, K. W.; Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chou, K. W.] Henkel Iberica SA, Edificio Eureka,Campus UAB, Barcelona 08193, Spain. RP Ha, J (reprint author), Kean Univ, Sch Environm & Sustainabil Sci, Union, NJ 07083 USA. EM haj@kean.edu FU Republic of Singapore's National Research Foundation; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This research is funded by the Republic of Singapore's National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. The authors also wish to acknowledge Professor Wenk at University of California at Berkeley who helped them prepare STXM samples and Timothy Teague at University of California at Berkeley with his help on sample preparation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 44 TC 0 Z9 0 U1 2 U2 4 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-4110 EI 1687-4129 J9 J NANOMATER JI J. Nanomater. PY 2016 AR 8072518 DI 10.1155/2016/8072518 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DH7XP UT WOS:000373007700001 ER PT J AU Lu, XJ Xia, BY Liu, CM Yang, YF Tang, H AF Lu, Xujie Xia, Baoyu Liu, Cunming Yang, Yefeng Tang, Hao TI TiO2-Based Nanomaterials for Advanced Environmental and Energy-Related Applications SO JOURNAL OF NANOMATERIALS LA English DT Editorial Material ID PEROVSKITE SOLAR-CELLS; PHOTOCATALYTIC ACTIVITY; TIO2 FILMS; EFFICIENCY; STRATEGY; SPHERES C1 [Lu, Xujie] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. [Xia, Baoyu] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore. [Liu, Cunming] Univ S Florida, Dept Phys, 4202 East Fowler Ave, Tampa, FL 33620 USA. [Yang, Yefeng] Zhejiang Sci Tech Univ, Dept Mat Engn, Coll Mat & Text, Hangzhou 310018, Zhejiang, Peoples R China. [Tang, Hao] Rutgers State Univ, Dept Chem, 73 Warren St, Newark, NJ 07102 USA. RP Lu, XJ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM xujie@lanl.gov RI Liu, Cunming/K-2976-2014; Tang, Hao/D-6482-2013; Lu, Xujie/L-9672-2014 OI Tang, Hao/0000-0003-1063-881X; Lu, Xujie/0000-0001-8402-7160 NR 18 TC 0 Z9 0 U1 6 U2 19 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-4110 EI 1687-4129 J9 J NANOMATER JI J. Nanomater. PY 2016 AR 8735620 DI 10.1155/2016/8735620 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DH7YB UT WOS:000373008900001 ER PT S AU De, K Klimentov, A Maeno, T Mashinistov, R Nilsson, P Oleynik, D Panitkin, S Ryabinkin, E Wenaus, T AF De, K. Klimentov, A. Maeno, T. Mashinistov, R. Nilsson, P. Oleynik, D. Panitkin, S. Ryabinkin, E. Wenaus, T. BE Adam, GH Busa, J Hnatic, M TI Accelerating Science Impact through Big Data Workflow Management and Supercomputing SO MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on Mathematical Modeling and Computational Physics (MMCP) CY JUL 13-17, 2015 CL Acad Congress Ctr, Stara Lesna, SLOVAKIA SP Joint Inst Nucl Res, Inst Experimental Phys SAS, Slovak Phys Soc, Univ Pavol Jozef Safarik, Tech Univ, IFIN HH HO Acad Congress Ctr AB The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed Analysis) Workload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF), is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF's Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing. C1 [De, K.; Oleynik, D.] Univ Texas Arlington, Phys Dept, 502 Yates St, Arlington, TX 76019 USA. [Klimentov, A.; Maeno, T.; Nilsson, P.; Panitkin, S.; Wenaus, T.] Brookhaven Natl Lab, Phys Dept, Long Isl City, NY 11973 USA. [Klimentov, A.; Mashinistov, R.; Ryabinkin, E.] IV Kurchatov Atom Energy Inst, Natl Res Ctr, Kurchatov Complex NBIC Technol, 1 Akad Kurchatova Pl, Moscow 123182, Russia. [Oleynik, D.] Joint Inst Nucl Res, Lab Informat Technol, Dubna 141980, Moscow Region, Russia. RP Mashinistov, R (reprint author), IV Kurchatov Atom Energy Inst, Natl Res Ctr, Kurchatov Complex NBIC Technol, 1 Akad Kurchatova Pl, Moscow 123182, Russia. EM Ruslan.Mashinistov@cern.ch RI Mashinistov, Ruslan/M-8356-2015 OI Mashinistov, Ruslan/0000-0001-7925-4676 NR 12 TC 0 Z9 0 U1 0 U2 7 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1944-7 J9 EPJ WEB CONF PY 2016 VL 108 AR 01003 DI 10.1051/epjconf/201610801003 PG 9 WC Physics, Mathematical SC Physics GA BE5FR UT WOS:000372783700003 ER PT S AU Megino, FB Bejar, JC De, K Hover, J Klimentov, A Maeno, T Nilsson, P Oleynik, D Padolski, S Panitkin, S Petrosyan, A Wenaus, T AF Megino, Fernando Barreiro Bejar, Jose Caballero De, Kaushik Hover, John Klimentov, Alexei Maeno, Tadashi Nilsson, Paul Oleynik, Danila Padolski, Siarhei Panitkin, Sergey Petrosyan, Artem Wenaus, Torre CA ATLAS Collaboration BE Adam, GH Busa, J Hnatic, M TI PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC SO MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on Mathematical Modeling and Computational Physics (MMCP) CY JUL 13-17, 2015 CL Acad Congress Ctr, Stara Lesna, SLOVAKIA SP Joint Inst Nucl Res, Inst Experimental Phys SAS, Slovak Phys Soc, Univ Pavol Jozef Safarik, Tech Univ, IFIN HH HO Acad Congress Ctr AB After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA. C1 [Megino, Fernando Barreiro; De, Kaushik; Oleynik, Danila] Univ Texas Arlington, 502 Yates St, Arlington, TX 76019 USA. [Bejar, Jose Caballero; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre] Brookhaven Natl Lab, Long Isl City, NY 11973 USA. [Oleynik, Danila; Petrosyan, Artem] Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Russia. RP Megino, FB (reprint author), Univ Texas Arlington, 502 Yates St, Arlington, TX 76019 USA. EM barreiro@uta.edu NR 19 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1944-7 J9 EPJ WEB CONF PY 2016 VL 108 AR 01001 DI 10.1051/epjconf/201610801001 PG 12 WC Physics, Mathematical SC Physics GA BE5FR UT WOS:000372783700001 ER PT J AU Choi, JJ Billinge, SJL AF Choi, Joshua J. Billinge, Simon J. L. TI Perovskites at the nanoscale: from fundamentals to applications SO NANOSCALE LA English DT Editorial Material ID HIGH-PERFORMANCE; SOLAR-CELLS; HALIDE PEROVSKITES; SINGLE-CRYSTALS; CH3NH3PBI3; DIFFUSION; LENGTHS C1 [Choi, Joshua J.] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Choi, JJ (reprint author), Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA.; Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Billinge, SJL (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jjc6z@virginia.edu; sb2896@columbia.edu NR 17 TC 2 Z9 2 U1 4 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 12 BP 6206 EP 6208 DI 10.1039/c6nr90040b PG 3 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH5SG UT WOS:000372851500001 PM 26949130 ER PT J AU Zhou, YY Yang, MJ Kwun, J Game, OS Zhao, YX Pang, SP Padture, NP Zhu, K AF Zhou, Yuanyuan Yang, Mengjin Kwun, Joonsuh Game, Onkar S. Zhao, Yixin Pang, Shuping Padture, Nitin P. Zhu, Kai TI Intercalation crystallization of phase-pure alpha-HC-(NH2)(2)PbI3 upon microstructurally engineered PbI2 thin films for planar perovskite solar cells SO NANOSCALE LA English DT Article ID FORMAMIDINIUM LEAD TRIHALIDE; HOLE-CONDUCTOR-FREE; PERFORMANCE; IODIDE; LIGHT AB The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (alpha-HC(NH2)(2)PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure alpha-HC(NH2)(2)PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.8%. C1 [Zhou, Yuanyuan; Kwun, Joonsuh; Game, Onkar S.; Padture, Nitin P.] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Yang, Mengjin; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Pang, Shuping] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China. RP Padture, NP (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA.; Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM nitin_padture@brown.edu; kai.zhu@nrel.gov RI Zhao, Yixin/D-2949-2012; Zhou, Yuanyuan/G-2173-2011; Padture, Nitin/A-9746-2009 OI Zhou, Yuanyuan/0000-0002-8364-4295; Padture, Nitin/0000-0001-6622-8559 FU National Science Foundation [DMR-1305913, OIA-1538893]; U.S. Department of Energy SunShot Initiative under Next Generation Photovoltaics 3 program [DE-FOA-0000990, DE-AC36-08-GO28308] FX Y. Z., J. K., O. S. G. and N. P. P acknowledge the support from the National Science Foundation (award nos. DMR-1305913 and OIA-1538893). M. Y. and K. Z. acknowledge the support from the U.S. Department of Energy SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990) for the work performed at the National Renewable Energy Laboratory (contract no. DE-AC36-08-GO28308). NR 32 TC 10 Z9 11 U1 10 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 12 BP 6265 EP 6270 DI 10.1039/c5nr06189j PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH5SG UT WOS:000372851500007 PM 26549434 ER PT J AU Zhou, M Qian, HF Sfeir, MY Nobusada, K Jin, RC AF Zhou, Meng Qian, Huifeng Sfeir, Matthew Y. Nobusada, Katsuyuki Jin, Rongchao TI Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)(18) (M = Pd, Pt) nanoclusters SO NANOSCALE LA English DT Article ID RELAXATION DYNAMICS; OPTICAL-PROPERTIES; GOLD NANOCLUSTERS; AU-25 NANOCLUSTERS; CRYSTAL-STRUCTURE; AU NANOCLUSTERS; CLUSTERS; SPECTROSCOPY; LIGHT; NANOSTRUCTURES AB Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M-1@Au-24(SR)(18) (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au-25(SR)(18) cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications. C1 [Zhou, Meng; Qian, Huifeng; Jin, Rongchao] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Nobusada, Katsuyuki] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. [Nobusada, Katsuyuki] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Katsura, Kyoto 6158520, Japan. RP Jin, RC (reprint author), Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. EM rongchao@andrew.cmu.edu FU Air Force Office of Scientific Research under AFOSR Award [FA9550-15-1-9999 (FA9550-15-1-0154)]; JSPS KAKENHI [25288012]; Elements Strategy Initiative for Catalysts & Batteries (ESICB); Strategic Programs for Innovative Research (SPIRE), MEXT Japan; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX R. J. acknowledges financial support from the Air Force Office of Scientific Research under AFOSR Award no. FA9550-15-1-9999 (FA9550-15-1-0154). K. N. acknowledges financial support by JSPS KAKENHI Grant Number 25288012, Elements Strategy Initiative for Catalysts & Batteries (ESICB), the Strategic Programs for Innovative Research (SPIRE), MEXT Japan. The femtosecond experiments used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 52 TC 6 Z9 6 U1 12 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 13 BP 7163 EP 7171 DI 10.1039/c6nr01008c PG 9 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH8QO UT WOS:000373060600028 PM 26967673 ER PT J AU Zhong, CY Chen, YP Xie, YE Yang, SYA Cohen, ML Zhang, SB AF Zhong, Chengyong Chen, Yuanping Xie, Yuee Yang, Shengyuan A. Cohen, Marvin L. Zhang, S. B. TI Towards three-dimensional Weyl-surface semimetals in graphene networks SO NANOSCALE LA English DT Article ID CARBON ALLOTROPES; FERMI ARCS; PHASE; DISCOVERY; POINTS; TAAS AB Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain. C1 [Zhong, Chengyong; Chen, Yuanping; Xie, Yuee] Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China. [Yang, Shengyuan A.] Singapore Univ Technol & Design, Res Lab Quantum Mat, Singapore 487372, Singapore. [Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys, Appl Phys & Astron, Troy, NY 12180 USA. RP Chen, YP; Xie, YE (reprint author), Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China.; Zhang, SB (reprint author), Rensselaer Polytech Inst, Dept Phys, Appl Phys & Astron, Troy, NY 12180 USA. EM chenyp@xtu.edu.cn; xieyech@xtu.edu.cn; zhangs9@rpi.edu RI Yang, Shengyuan/L-2848-2014 OI Yang, Shengyuan/0000-0001-6003-1501 FU National Natural Science Foundation of China [51176161, 51376005, 11474243]; Hunan Provincial Innovation Foundation for Post-graduate [CX2015B211]; Lawrence Berkeley National Lab through the Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR15-1508412]; US DOE [DE-SC0002623]; [SUTD-SRG-EPD2013062]; [SUTD-T1-2015004] FX This work was supported by the National Natural Science Foundation of China (No. 51176161, 51376005 and, 11474243) and the Hunan Provincial Innovation Foundation for Post-graduate (No. CX2015B211). SAY was supported by SUTD-SRG-EPD2013062 and SUTD-T1-2015004. MLC was supported by the sp2 bonded materials program at the Lawrence Berkeley National Lab through the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Science Foundation under Grant No. DMR15-1508412. SBZ acknowledges support by US DOE under Grant No. DE-SC0002623. NR 48 TC 4 Z9 4 U1 11 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 13 BP 7232 EP 7239 DI 10.1039/c6nr00882h PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH8QO UT WOS:000373060600037 PM 26971563 ER PT J AU Hedrick, PW Hellsten, U Grattapaglia, D AF Hedrick, Philip W. Hellsten, Uffe Grattapaglia, Dario TI Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis SO NEW PHYTOLOGIST LA English DT Article DE Eucalyptus grandis; heterozygosity; heterozygote advantage; linkage disequilibrium; pseudo-overdominance; tree; viability ID GLOBULUS; GROWTH AB The genome-wide heterozygosity at 9590 genes, all heterozygous in a single Eucalyptus grandis parent tree, was examined in a group of 28 S-1 offspring. Heterozygosity ranged from 52-79%, averaging 65.5%, much higher than the 50% expected under random segregation, supporting the occurrence of strong (47%) selection against homozygosity. The expected pattern of heterozygosity from theoretical calculations and simulations for recessive detrimentals (pseudo-overdominance) and intrinsic heterozygote advantage was examined and compared with that observed. The observed patterns are consistent with at least several detrimental loci with large effects on both parental chromosomes of the 11 pairs. It is likely that 100 or more genes, many with substantial effects on viability, are contributing to this inbreeding depression. Although our genome-wide analysis of nearly 10 000 genes strongly suggested that pseudo-overdominance was responsible for the observed high inbreeding depression, heterozygote advantage could not be excluded. Finding inconvertible evidence of the cause of inbreeding depression still presents a difficult challenge. This study is the first theoretical examination of the genomic effect of inbreeding in a forest tree and provides an approach to analyze these data to determine the extent and cause of inbreeding depression across other plant genomes. C1 [Hedrick, Philip W.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Hellsten, Uffe] US Dept Energy Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Grattapaglia, Dario] PqEB, EMBRAPA Recursos Genet & Biotecnol, Lab Genet Vegetal, BR-70770970 Brasilia, DF, Brazil. [Grattapaglia, Dario] Univ Catolica Brasilia, Programa Ciencias Genom & Biotecnol, SGAN 916, BR-70790160 Brasilia, DF, Brazil. RP Hedrick, PW (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM philip.hedrick@asu.edu FU University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy's Office of Science, Biological and Environmental Research Program; Los Alamos National Laboratory [DE-AC02-06NA25396]; Brazilian Ministry of Science, Technology and Innovation through its agency CNPq; Brazilian Federal District Research Foundation (FAP-DF) FX P.W.H. thanks the Ullman Professorship for partial support. Sequencing and sequence analysis were performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. DG thanks the Brazilian Ministry of Science, Technology and Innovation through its agency CNPq and the Brazilian Federal District Research Foundation (FAP-DF) for support. We appreciate the comments of M. Bruford, D. Charlesworth, A. Garcia-Dorado, D. Hedgecock, O. Savolainen, J. Wang and several anonymous reviewers on earlier versions of the manuscript and the effort by D. Hedgecock to identify vQTLs. NR 22 TC 8 Z9 8 U1 5 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JAN PY 2016 VL 209 IS 2 BP 600 EP 611 DI 10.1111/nph.13639 PG 12 WC Plant Sciences SC Plant Sciences GA DI3CT UT WOS:000373376500018 PM 26356869 ER PT J AU Coleman-Derr, D Desgarennes, D Fonseca-Garcia, C Gross, S Clingenpeel, S Woyke, T North, G Visel, A Partida-Martinez, LP Tringe, SG AF Coleman-Derr, Devin Desgarennes, Damaris Fonseca-Garcia, Citlali Gross, Stephen Clingenpeel, Scott Woyke, Tanja North, Gretchen Visel, Axel Partida-Martinez, Laila P. Tringe, Susannah G. TI Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species SO NEW PHYTOLOGIST LA English DT Article DE Agave; biogeography; cultivation; desert; iTags; microbial diversity; plant microbiome; plant-microbe interactions ID CRASSULACEAN ACID METABOLISM; BACTERIAL ROOT MICROBIOTA; FUNGAL COMMUNITY ANALYSIS; RHIZOSPHERE MICROBIOME; BIOFUEL FEEDSTOCK; DIVERSITY; SEQUENCES; MICROORGANISMS; EFFICIENCY; CONVERSION AB Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. C1 [Coleman-Derr, Devin; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; Visel, Axel; Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Coleman-Derr, Devin; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; Visel, Axel; Tringe, Susannah G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Coleman-Derr, Devin] USDA ARS, Ctr Plant Gene Express, Albany, CA 94710 USA. [Desgarennes, Damaris; Fonseca-Garcia, Citlali; Partida-Martinez, Laila P.] Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Irapuato 36821, Mexico. [North, Gretchen] Occidental Coll, Dept Biol, Los Angeles, CA 90041 USA. [Visel, Axel] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA. RP Visel, A; Tringe, SG (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.; Visel, A; Tringe, SG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.; Partida-Martinez, LP (reprint author), Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Irapuato 36821, Mexico.; Visel, A (reprint author), Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA. EM avisel@lbl.gov; laila.partida@ira.cinvestav.mx; sgtringe@lbl.gov RI Partida-Martinez, Laila/A-5935-2009; Visel, Axel/A-9398-2009; OI Partida-Martinez, Laila/0000-0001-8037-2856; Visel, Axel/0000-0002-4130-7784; Gross, Stephen/0000-0003-0711-787X FU JGI Community Science Program (CSP); US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231]; Consejo Nacional de Ciencia y Tecnologia in Mexico (CONACyT) [CB-2010-01-151007, INFR-2012-01-197799] FX We thank Kanwar Singh (Joint Genome Institute) for technical assistance during library construction, Derek Lundberg (Department of Biology, UNC) for support with the PNA protocol for 16S amplification, Edward Kirton (Joint Genome Institute) for bioinformatic and analytical support, Susanna Theroux (Joint Genome Institute) for editorial support in the preparation of the manuscript, and Carly Phillips and Walter Woodside for assistance in the harvesting of A. deserti samples from the Boyd Deep Canyon Desert Reserve. This project was supported by the JGI Community Science Program (CSP); the work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under contract no. DE-AC02-05CH11231. L.P.P-M. acknowledges also Consejo Nacional de Ciencia y Tecnologia in Mexico (CONACyT), which supported this project with two grants: CB-2010-01-151007 and INFR-2012-01-197799. The authors declare no conflict of interest. NR 66 TC 23 Z9 24 U1 21 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JAN PY 2016 VL 209 IS 2 BP 798 EP 811 DI 10.1111/nph.13697 PG 14 WC Plant Sciences SC Plant Sciences GA DI3CT UT WOS:000373376500033 PM 26467257 ER PT J AU Hunke, EC AF Hunke, E. C. TI Weighing the importance of surface forcing on sea ice: a September 2007 modelling study SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE sea ice model; Arctic; September 2007; melt ponds; CICE ID MELT PONDS; RADIATION; CICE AB The sea ice minimum of September 2007 is represented in a 50-year simulation using the Los Alamos Sea Ice Model, CICE, in spite of the fact that only four atmospheric forcing fields vary interannually in the model simulation; all other atmospheric and oceanic forcing data are monthly mean climatologies. Simulation results support prior conclusions that an anomalous pressure pattern, ice-ocean albedo feedback effects on sea surface temperature, and the long-term sea ice thinning trend are primarily responsible for the sea ice minimum of 2007. In addition, the simulation indicates that cloudiness, precipitation, and other forcing quantities were of secondary importance. Here we explore the importance of applied atmospheric and oceanic surface forcing for the 2007 sea ice minimum event, along with a group of model parameterizations that control the surface radiation budget in sea ice (melt ponds). Of the oceanic forcing fields acting on sea ice, only the sea surface temperature varied interannually for simulating the 2007 event. Interannual variations of temperature and humidity play a role in the radiation balance applied at the snow and ice surface, and they both have the potential to significantly affect the ice edge. However, humidity (exclusive of clouds) is far less influential on ice volume than is air temperature. The inclusion of albedo changes due to melt ponding is also crucial for determining the radiation forcing experienced by the ice. We compare the effects of four different pond parameterizations now available in CICE for the September 2007 case, and find that while details may differ, they all are able to represent the 2007 event. The impact of feedbacks associated with the radiation balance differs among the pond simulations, presenting a key topic for future study. C1 [Hunke, E. C.] Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA. RP Hunke, EC (reprint author), Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA. EM eclare@lanl.gov FU Biological and Environmental Research division of the US Department of Energy Office of Science; [DE-AC52-06NA25396] FX This work was performed within the Climate, Ocean and Sea Ice Modeling (COSIM) program at Los Alamos National Laboratory, whose funding from the Biological and Environmental Research division of the US Department of Energy Office of Science is gratefully acknowledged. Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the US Department of Energy under contract no. DE-AC52-06NA25396. I have no conflict of interest to declare with regard to the research presented in this article. NR 29 TC 2 Z9 2 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2016 VL 142 IS 695 BP 539 EP 545 DI 10.1002/qj.2353 PN B PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7DJ UT WOS:000372951300002 ER PT J AU Jeevanjee, N Romps, DM AF Jeevanjee, Nadir Romps, David M. TI Effective buoyancy at the surface and aloft SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE buoyancy; convection; Archimedean bouyancy; effective buoyancy; large-eddy simulations ID CUMULUS CONVECTION; PARAMETERIZATION AB It is shown here that a wide, buoyant parcel of air at the surface accelerates far less rapidly than it does aloft. In particular, analytical formulae are derived for the effective buoyancy (i.e. the net vertical acceleration due to parcel buoyancy and environmental response) of idealized cylinders of diameter D and height H, located in free space and at the surface. These formulae quantify the decrease of effective buoyancy with increasing aspect ratio D/H, and show that this effect is more pronounced for surface cylinders, especially when D/H > 1. We gain intuition for these results by considering the pressure fields generated by these buoyant parcels, and we test our results with large-eddy simulations. Our formulae can inform parametrizations of the vertical velocity equation for clouds, and also provide a quantitative map of the grey zone' in numerical modelling between hydrostatic and non-hydrostatic regimes. C1 [Jeevanjee, Nadir] Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. [Jeevanjee, Nadir; Romps, David M.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA. [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Jeevanjee, N (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. EM jeevanje@berkeley.edu FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the US Department of Energy; National Science Foundation [ACI-1053575] FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research under contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy, and resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. We thank two anonymous referees for detailed and constructive reviews, and NJ thanks Wolfgang Langhans for discussions. NR 26 TC 2 Z9 2 U1 3 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2016 VL 142 IS 695 BP 811 EP 820 DI 10.1002/qj.2683 PN B PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7DJ UT WOS:000372951300024 ER PT J AU Liu, J Krishna, KS Kumara, C Chattopadhyay, S Shibata, T Dass, A Kumar, CSSR AF Liu, Jing Krishna, Katla Sai Kumara, Chanaka Chattopadhyay, Soma Shibata, Tomohiro Dass, Amala Kumar, Challa S. S. R. TI Understanding Au similar to 98Ag similar to 46(SR)(60) nanoclusters through investigation of their electronic and local structure by X-ray absorption fine structure SO RSC ADVANCES LA English DT Article ID PROTECTED AU-25 NANOCLUSTERS; GOLD CLUSTERS; CHARGE REDISTRIBUTION; ALLOY NANOMOLECULES; CRYSTAL-STRUCTURE; AG ALLOYS; NANOPARTICLES; SPECTROSCOPY; PERSPECTIVE; STABILITY AB Here we report the electronic and local atomic structure of thiol-stabilized Au similar to 98Ag similar to 46(SR)(60) nanoclusters investigated by synchrotron radiation-based X-ray absorption fine structure (XAFS). Au L-3-edge X-ray absorption near edge fine structure (XANES) was used to examine the d band character of Au, which is highly related to the electronic, magnetic and catalytic activities of Au. It was observed that the d band hole population of Au in Au similar to 98Ag similar to 46(SR)(60) was higher than that of bulk Au. The formation of the AuAg alloy was confirmed by extended X-ray absorption fine structure (EXAFS). The EXAFS results also suggested that Au atoms in Au similar to 98Ag similar to 46(SR)(60) nanoclusters preferred to occupy the metal core sites, while the Ag atoms were mainly on the surface. C1 [Liu, Jing; Krishna, Katla Sai; Kumar, Challa S. S. R.] Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA. [Liu, Jing; Krishna, Katla Sai; Kumar, Challa S. S. R.] Louisiana State Univ, Cain Dept Chem Engn, Ctr Atom Level Catalyst Design, Chem Engn 110, 324,South Stadium Rd, Baton Rouge, LA 70803 USA. [Kumara, Chanaka; Dass, Amala] Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA. [Chattopadhyay, Soma] CSRRI IIT, Sect 10 ID, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA. [Shibata, Tomohiro] Kennametal Inc, Mat Sci, 1600 Technol Way, Latrobe, PA 15650 USA. [Kumar, Challa S. S. R.] Rowland Inst Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142 USA. [Krishna, Katla Sai] Univ Texas El Paso, Dept Chem, El Paso, TX 79902 USA. [Chattopadhyay, Soma] Elgin Community Coll, Dept Phys Sci, 1700 Spartan Dr, Elgin, IL 60123 USA. RP Kumar, CSSR (reprint author), Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA.; Kumar, CSSR (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Ctr Atom Level Catalyst Design, Chem Engn 110, 324,South Stadium Rd, Baton Rouge, LA 70803 USA.; Kumar, CSSR (reprint author), Rowland Inst Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142 USA. EM challa@fas.harvard.edu FU Center for Atomic Level Catalyst Design, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. We are grateful to Dr Tianpin Wu of CSE division of Argonne National Laboratory for her help during EXAFS measurements of Au L3-edge. NR 39 TC 0 Z9 0 U1 4 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 30 BP 25368 EP 25374 DI 10.1039/c5ra27396j PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DG7GL UT WOS:000372252700065 ER PT J AU Zhang, W Sathitsuksanoh, N Simmons, BA Frazier, CE Barone, JR Renneckar, S AF Zhang, Wei Sathitsuksanoh, Noppadon Simmons, Blake A. Frazier, Charles E. Barone, Justin R. Renneckar, Scott TI Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis SO RSC ADVANCES LA English DT Article ID THERMOGRAVIMETRY MASS-SPECTROMETRY; DIFFERENTIAL SCANNING CALORIMETRY; NUCLEAR-MAGNETIC-RESONANCE; EUCALYPTUS-GLOBULUS WOOD; P-31 NMR-SPECTROSCOPY; CHAIN HYDROXYL-GROUPS; MULTIPHASE MATERIALS; PYROLYTIC CLEAVAGE; STEAM EXPLOSION; MODEL COMPOUNDS AB Woody biomass was treated in glycerol between 200 and 240 degrees C in an anhydrous environment to denature the biomass for biopolymer fractionation. After glycerol thermal processing (GTP), up to 41% of the initial Klason lignin of the starting biomass was recovered in a powdered form through a room temperature dioxane extraction followed by precipitation. P-31-nuclear magnetic resonance (NMR) of the GTP lignin revealed the syringyl phenolic functionality increased linearly with the log of the severity parameter establishing the impact of the thermal processing on structure. Further structural analysis via thioacidolysis and two-dimensional (2D) C-13-H-1 heteronuclear single quantum coherence (HSQC) NMR of the isolated lignin indicated GTP caused extensive beta-O-4 bond decomposition and the liberated phenolic OH did not undergo further coupling. At the same time, condensation occurred on the aromatic C-5 position of the phenylpropane units to yield GTP lignin with a relatively high molecular weight, comparable to that of enzymatic mild acidolysis lignin from non-thermally treated fibers. The recovered GTP lignin was more thermally stable compared to nearly all other lignin found in the literature. Additionally, the glass transition temperature was invariant to the processing severity parameters. These structural changes indicate lignin is highly sensitive to moderately high temperatures common to thermoplastic polymer processing conditions. C1 [Zhang, Wei; Frazier, Charles E.; Renneckar, Scott] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Zhang, Wei; Frazier, Charles E.; Renneckar, Scott] Virginia Polytech Inst & State Univ, Dept Sustainable Biomat, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA. [Sathitsuksanoh, Noppadon] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA. [Sathitsuksanoh, Noppadon; Simmons, Blake A.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Simmons, Blake A.] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA 94551 USA. [Barone, Justin R.] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Barone, Justin R.] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Renneckar, Scott] Univ British Columbia, Forest Sci Ctr 4034, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. RP Renneckar, S (reprint author), Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA.; Renneckar, S (reprint author), Virginia Polytech Inst & State Univ, Dept Sustainable Biomat, Blacksburg, VA 24061 USA.; Renneckar, S (reprint author), Univ British Columbia, Forest Sci Ctr 4034, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM scott.renneckar@ubc.ca FU USDA NIFA [2010-65504-20429]; Institute for Critical Technology and Science at Virginia Tech; Virginia Tech Graduate School; Office of Science, Office of Biological and Environmental Research, of the U.S. DOE [DE-AC02-05CH11231]; National Science Foundation [1355438]; Canada Research Chairs program FX The authors greatly acknowledge financial support from USDA NIFA 2010-65504-20429 for the work along with support from the Institute for Critical Technology and Science at Virginia Tech and the Virginia Tech Graduate School. Additionally, a portion of the work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. DOE under contract no. DE-AC02-05CH11231. NS was supported by the National Science Foundation under Cooperative Agreement No. 1355438. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program. NR 84 TC 1 Z9 1 U1 5 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 36 BP 30234 EP 30246 DI 10.1039/c6ra00745g PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA DH8QU UT WOS:000373061600044 ER PT J AU Ling, Y Li, WZ Wang, BY Gan, WJ Zhu, CH Brady, MA Wang, C AF Ling, Yang Li, Weizhen Wang, Baoyu Gan, Wenjun Zhu, Chenhui Brady, Michael A. Wang, Cheng TI Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness SO RSC ADVANCES LA English DT Article ID SURFACE-INITIATED POLYMERIZATION; GRAPHENE OXIDE NANOSHEETS; DOPAMINE-MODIFIED CLAY; MECHANICAL-PROPERTIES; MULTIFUNCTIONAL COATINGS; CROSS-LINKING; STEM-CELLS; FUNCTIONALIZATION; COMPOSITES; DIFFERENTIATION AB Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreement with this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix. C1 [Ling, Yang; Li, Weizhen; Wang, Baoyu; Gan, Wenjun] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China. [Li, Weizhen] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China. [Zhu, Chenhui; Brady, Michael A.; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Li, WZ; Gan, WJ (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China.; Li, WZ (reprint author), Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China.; Wang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM liweizhen@sues.edu.cn; wjgan@sues.edu.cn; cwang2@lbl.gov RI Wang, Cheng/A-9815-2014 FU Shanghai Municipal Education Commission [20120407]; Shanghai Young Teachers' Training [ZZGJD13018]; Shanghai University of Engineering Science Developing funding [2011XZ04]; Interdisciplinary Subject Construction funding [2012SCX005]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank the Shanghai Municipal Education Commission (Overseas Visiting Scholar Project 20120407); Shanghai Young Teachers' Training-funded Projects (ZZGJD13018); Shanghai University of Engineering Science Developing funding (grant 2011XZ04) and Interdisciplinary Subject Construction funding (grant 2012SCX005). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 0 Z9 0 U1 15 U2 43 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 37 BP 31037 EP 31045 DI 10.1039/c5ra26539h PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DH9LS UT WOS:000373118200033 ER PT J AU Wang, Z Ren, Y Ma, TY Zhuang, WD Lu, SG Xu, GL Abouimrane, A Amine, K Chen, ZH AF Wang, Zhong Ren, Yang Ma, Tianyuan Zhuang, Weidong Lu, Shigang Xu, Guiliang Abouimrane, Ali Amine, Khalil Chen, Zonghai TI Probing cation intermixing in Li2SnO3 SO RSC ADVANCES LA English DT Article ID LITHIUM-ION BATTERIES; SOLID-STATE NMR; CATHODE MATERIALS; VOLTAGE-FADE; STRUCTURAL-CHANGES; OXIDE ELECTRODES; MANGANESE OXIDES; ENERGY-DENSITY; 1ST PRINCIPLES; LI2MNO3 AB Li2MnO3 holds great promise as a key component for lithium-manganese-rich oxides as high-capacity and high-energy-density cathode materials for lithium-ion batteries. However, its structural complexity remains an unresolved puzzle, hindering the further development of this class of cathode materials. In this work, the structure of Li2SnO3 was investigated as a model of Li2MnO3. Specifically, the structural evolution of materials during the solid-state synthesis of Li2SnO3 was studied using in situ high-energy X-ray diffraction. It was confirmed that Li2SnO3 with a C2/c structure was formed using the solid-state process. However, the severe intralayer intermixing between Li and Sn was found to lead to several weakening or vanishing reflection peaks. C1 [Wang, Zhong; Zhuang, Weidong; Lu, Shigang] Gen Res Inst Nonferrous Met, 2 Xinjiekou Wai St, Beijing 100088, Peoples R China. [Wang, Zhong; Zhuang, Weidong; Lu, Shigang] China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China. [Ren, Yang] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ma, Tianyuan; Xu, Guiliang; Abouimrane, Ali; Amine, Khalil; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Abouimrane, Ali] Qatar Environm & Energy Res Inst, Qatar Fdn, POB 5825, Doha, Qatar. RP Wang, Z (reprint author), Gen Res Inst Nonferrous Met, 2 Xinjiekou Wai St, Beijing 100088, Peoples R China.; Wang, Z (reprint author), China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China.; Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wangzhong@glabat.com; Zonghai.Chen@anl.gov RI XU, GUILIANG/F-3804-2017 FU National Nature Science Foundation of China [51302017]; Science and Technology Commission of Beijing, U.S. Department of Energy (DOE), Vehicle Technologies Office [Z121100006712002]; US Department of Energy by U Chicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research was funded by the National Nature Science Foundation of China (No. 51302017), and the Science and Technology Commission of Beijing (No. Z121100006712002), U.S. Department of Energy (DOE), Vehicle Technologies Office. Support from Tien Duong and Peter Faguy of the U.S. DOE's Office of Vehicle Technologies Program, is gratefully acknowledged. Argonne National Laboratory operates for the US Department of Energy by U Chicago Argonne, LLC, under contract DE-AC02-06CH11357. Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 37 TC 1 Z9 1 U1 6 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 37 BP 31559 EP 31564 DI 10.1039/c6ra00977h PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DH9LS UT WOS:000373118200098 ER PT J AU Chowdhary, K Najm, HN AF Chowdhary, K. Najm, H. N. TI Data free inference with processed data products SO STATISTICS AND COMPUTING LA English DT Article DE Uncertainty quantification; Bayesian inference; Markov Chain Monte Carlo; Approximate Bayesian computation; Maximum entropy; Missing information ID PARAMETERS AB We consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics. C1 [Chowdhary, K.; Najm, H. N.] Sandia Natl Labs, Livermore, CA USA. RP Chowdhary, K (reprint author), Sandia Natl Labs, Livermore, CA USA. EM kennychowdhary@gmail.com FU Scientific Discovery through Advanced Computing (SciDAC) program by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL85000 NR 18 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3174 EI 1573-1375 J9 STAT COMPUT JI Stat. Comput. PD JAN PY 2016 VL 26 IS 1-2 BP 149 EP 169 DI 10.1007/s11222-014-9484-y PG 21 WC Computer Science, Theory & Methods; Statistics & Probability SC Computer Science; Mathematics GA DI2RX UT WOS:000373347100011 ER PT J AU Dib, G Udpa, L AF Dib, Gerges Udpa, Lalita TI Design and performance of optimal detectors for guided wave structural health monitoring SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Review DE Ultrasonic guided waves; structural health monitoring; theory of detection; maximum likelihood; diversity ID PIEZOELECTRIC SENSOR/ACTUATOR NETWORK; LAMB WAVES; DIAGNOSTICS AB Ultrasonic guided wave measurements in structural health monitoring systems are affected over a long term by measurement noise, environmental conditions, transducer aging, and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This article derives the optimal detector structure, within the framework of detection theory, based on reducing a guided wave signal at the sensor into a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure's complexity: (a) simple structures where defect reflections can be identified without the need for baseline data; (b) simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; and (c) complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model that simulates guided wave inspection is used in a Monte-Carlo procedure to quantify the effects of environmental variability in terms of defect probability of detection. Results demonstrate that the problems of structural complexity and environmental variability introduce temporal diversity in the signals, which can be exploited to improve detection performance. C1 [Dib, Gerges] Pacific NW Natl Lab, 2400 Stevens Dr, Richland, WA 99354 USA. [Udpa, Lalita] Michigan State Univ, E Lansing, MI 48824 USA. RP Dib, G (reprint author), Pacific NW Natl Lab, 2400 Stevens Dr, Richland, WA 99354 USA. EM gerges.dib@pnnl.gov NR 23 TC 0 Z9 0 U1 4 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 EI 1741-3168 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD JAN PY 2016 VL 15 IS 1 BP 21 EP 37 DI 10.1177/1475921715620003 PG 17 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DH6MU UT WOS:000372905600002 ER PT J AU Wainwright, HM Orozco, AF Bucker, M Dafflon, B Chen, J Hubbard, SS Williams, KH AF Wainwright, Haruko M. Orozco, Adrian Flores Buecker, Matthias Dafflon, Baptiste Chen, Jinsong Hubbard, Susan S. Williams, Kenneth H. TI Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging SO WATER RESOURCES RESEARCH LA English DT Article ID SPECTRAL INDUCED POLARIZATION; URANIUM-CONTAMINATED AQUIFER; DISSOLVED ORGANIC-CARBON; BACTERIAL TRANSPORT SITE; GEOPHYSICAL-DATA; ZONE; DENITRIFICATION; BIOREMEDIATION; INVERSION; STREAM AB In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this study, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys and drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain. C1 [Wainwright, Haruko M.; Dafflon, Baptiste; Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Orozco, Adrian Flores; Buecker, Matthias] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria. [Buecker, Matthias] Univ Bonn, Dept Geophys, Steinmann Inst, Bonn, Germany. RP Wainwright, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hmwainwright@lbl.gov RI Chen, Jinsong/A-1374-2009; Hubbard, Susan/E-9508-2010; Williams, Kenneth/O-5181-2014; Wainwright, Haruko/A-5670-2015; Dafflon, Baptiste/G-2441-2015; OI Williams, Kenneth/0000-0002-3568-1155; Wainwright, Haruko/0000-0002-2140-6072; Bucker, Matthias/0000-0003-4367-5131 FU Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area (SFA); U.S. Department of Energy (DOE), Office of Science, and Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is partially based upon work supported through the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area (SFA). The U.S. Department of Energy (DOE), Office of Science, and Office of Biological and Environmental Research funded the work under contract DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory; operated by the University of California). We would like to thank Joel Rowland at Los Alamos National Laboratory for providing advice that helped to strengthen the conceptual model of floodplain-related hot spots. Data sets are available upon request by contacting the corresponding author (Haruko M. Wainwright, hmwainwright@lbl.gov). NR 85 TC 6 Z9 6 U1 6 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN PY 2016 VL 52 IS 1 BP 533 EP 551 DI 10.1002/2015WR017763 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DH9LO UT WOS:000373117800031 ER PT J AU Martinez, MJ Hesse, MA AF Martinez, M. J. Hesse, M. A. TI Two-phase convective CO2 dissolution in saline aquifers SO WATER RESOURCES RESEARCH LA English DT Article ID CAPILLARY TRANSITION ZONE; DIFFUSIVE BOUNDARY-LAYER; LONG-TERM STORAGE; POROUS-MEDIUM; MULTIPHASE FLOW; CARBON-DIOXIDE; STABILITY; SEQUESTRATION; PERFORMANCE; MEDIA AB Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions. C1 [Martinez, M. J.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Hesse, M. A.] Univ Texas Austin, Dept Geol Sci, Austin, TX USA. RP Martinez, MJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM mjmarti@sandia.gov RI Hesse, Marc/B-4914-2011 OI Hesse, Marc/0000-0002-2532-3274 FU Center for Frontiers of Subsurface Energy Security an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001114. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Data used in line plots are available on contact of the corresponding author. NR 46 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN PY 2016 VL 52 IS 1 BP 585 EP 599 DI 10.1002/2015WR017085 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DH9LO UT WOS:000373117800034 ER PT S AU Denis-Petit, D Roig, O Meot, V Jandel, M Vieira, DJ Bond, EM Bredeweg, TA Couture, AJ Haight, RC Keksis, AL Rundberg, RS Ullmann, JL AF Denis-Petit, D. Roig, O. Meot, V. Jandel, M. Vieira, D. J. Bond, E. M. Bredeweg, T. A. Couture, A. J. Haight, R. C. Keksis, A. L. Rundberg, R. S. Ullmann, J. L. BE Serot, O TI Isomeric ratio measurements for the radiative neutron capture Lu-176(n,gamma) at DANCE SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID CROSS-SECTION; STELLAR INTERIORS; COSMIC CLOCK; LU-176; ABUNDANCES; DETECTOR; SOLAR; DECAY AB The isomeric ratio for the neutron capture reaction Lu-176(n,gamma) on the J(pi) = 5/2(-), 761.7 keV, T-1/2 = 32.8 ns level of Lu-177m, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory. C1 [Denis-Petit, D.; Roig, O.; Meot, V.] CEA, DAM, DIF, F-91297 Arpajon, France. [Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Denis-Petit, D (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM david.denis-petit@cea.fr NR 28 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 02004 DI 10.1051/epjconf/201611102004 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000006 ER PT S AU Diakaki, M Audouin, L Berthoumieux, E Calviani, M Colonna, N Dupont, E Duran, I Gunsing, F Leal-Cidoncha, E Le Naour, C Leong, LS Mastromarco, M Paradela, C Tarrio, D Tassan-Got, L Aerts, G Altstadt, S Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Badurek, G Barbagallo, M Baumann, P Becares, V Becvar, F Belloni, F Berthier, B Billowes, J Boccone, V Bosnar, D Brugger, M Calvino, F Cano-Ott, D Capote, R Carrapio, C Cennini, P Cerutti, F Chiaveri, E Chin, M Cortes, G Cortes-Giraldo, MA Cosentino, L Couture, A Cox, J David, S Dillmann, I Domingo-Pardo, C Dressler, R Dridi, W Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Finocchiaro, P Fraval, K Fujii, K Furman, W Ganesan, S Garcia, AR Giubrone, G Gomez-Hornillos, MB Goncalves, IF Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gurusamy, P Haight, R Heil, M Heinitz, S Igashira, M Isaev, S Jenkins, DG Jericha, E Kadi, Y Kaeppeler, F Karadimos, D Karamanis, D Kerveno, M Ketlerov, V Kivel, N Kokkoris, M Konovalov, V Krticka, M Kroll, J Lampoudis, C Langer, C Lederer, C Leeb, H Lo Meo, S Losito, R Lozano, M Manousos, A Marganiec, J Martinez, T Marrone, S Massimi, C Mastinu, P Mendoza, E Mengoni, A Milazzo, PM Mingrone, F Mirea, M Mondelaers, W Moreau, C Mosconi, M Musumarra, A O'Brien, S Pancin, J Patronis, N Pavlik, A Pavlopoulos, P Perkowski, J Perrot, L Pigni, MT Plag, R Plompen, A Plukis, L Poch, A Pretel, C Praena, J Quesada, J Rauscher, T Reifarth, R Riego, A Roman, F Rudolf, G Rubbia, C Rullhusen, P Salgado, J Santos, C Sarchiapone, L Sarmento, R Saxena, A Schillebeeckx, P Schmidt, S Schumann, D Stephan, C Tagliente, G Tain, JL Tavora, L Terlizzi, R Tsinganis, A Valenta, S Vannini, G Variale, V Vaz, P Ventura, A Versaci, R Vermeulen, MJ Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Wallner, A Walter, S Ware, T Weigand, M Weiss, C Wiesher, M Wisshak, K Wright, T Zugec, P AF Diakaki, M. Audouin, L. Berthoumieux, E. Calviani, M. Colonna, N. Dupont, E. Duran, I. Gunsing, F. Leal-Cidoncha, E. Le Naour, C. Leong, L. S. Mastromarco, M. Paradela, C. Tarrio, D. Tassan-Got, L. Aerts, G. Altstadt, S. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Badurek, G. Barbagallo, M. Baumann, P. Becares, V. Becvar, F. Belloni, F. Berthier, B. Billowes, J. Boccone, V. Bosnar, D. Brugger, M. Calvino, F. Cano-Ott, D. Capote, R. Carrapio, C. Cennini, P. Cerutti, F. Chiaveri, E. Chin, M. Cortes, G. Cortes-Giraldo, M. A. Cosentino, L. Couture, A. Cox, J. David, S. Dillmann, I. Domingo-Pardo, C. Dressler, R. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Finocchiaro, P. Fraval, K. Fujii, K. Furman, W. Ganesan, S. Garcia, A. R. Giubrone, G. Gomez-Hornillos, M. B. Goncalves, I. F. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gurusamy, P. Haight, R. Heil, M. Heinitz, S. Igashira, M. Isaev, S. Jenkins, D. G. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Karamanis, D. Kerveno, M. Ketlerov, V. Kivel, N. Kokkoris, M. Konovalov, V. Krticka, M. Kroll, J. Lampoudis, C. Langer, C. Lederer, C. Leeb, H. Lo Meo, S. Losito, R. Lozano, M. Manousos, A. Marganiec, J. Martinez, T. Marrone, S. Massimi, C. Mastinu, P. Mendoza, E. Mengoni, A. Milazzo, P. M. Mingrone, F. Mirea, M. Mondelaers, W. Moreau, C. Mosconi, M. Musumarra, A. O'Brien, S. Pancin, J. Patronis, N. Pavlik, A. Pavlopoulos, P. Perkowski, J. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, L. Poch, A. Pretel, C. Praena, J. Quesada, J. Rauscher, T. Reifarth, R. Riego, A. Roman, F. Rudolf, G. Rubbia, C. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Sarmento, R. Saxena, A. Schillebeeckx, P. Schmidt, S. Schumann, D. Stephan, C. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Tsinganis, A. Valenta, S. Vannini, G. Variale, V. Vaz, P. Ventura, A. Versaci, R. Vermeulen, M. J. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Wallner, A. Walter, S. Ware, T. Weigand, M. Weiss, C. Wiesher, M. Wisshak, K. Wright, T. Zugec, P. BE Serot, O TI Towards the high-accuracy determination of the U-238 fission cross section at the threshold region at CERN - n_TOF SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID ANGULAR-DISTRIBUTION; FACILITY; PERFORMANCE AB The U-238 fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The U-238 fission cross section has been measured relative to the U-235 fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards. C1 [Diakaki, M.; Berthoumieux, E.; Dupont, E.; Gunsing, F.; Aerts, G.; Andriamonje, S.; Dridi, W.; Fraval, K.; Pancin, J.; Perrot, L.; Plukis, L.] CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. [Audouin, L.; Le Naour, C.; Leong, L. S.; Tassan-Got, L.; Berthier, B.; David, S.; Ferrant, L.; Isaev, S.; Stephan, C.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Calviani, M.; Gunsing, F.; Boccone, V.; Brugger, M.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Losito, R.; Pavlopoulos, P.; Roman, F.; Rubbia, C.; Sarchiapone, L.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland. [Colonna, N.; Mastromarco, M.; Barbagallo, M.; Marrone, S.; Tagliente, G.; Terlizzi, R.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Duran, I.; Leal-Cidoncha, E.; Paradela, C.; Tarrio, D.; Alvarez, H.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Leong, L. S.] JAEA, Tokyo, Japan. [Paradela, C.; Belloni, F.; Mondelaers, W.; Plompen, A.; Rullhusen, P.; Schillebeeckx, P.] EC JRC, IRMM, Geel, Belgium. [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Alvarez-Velarde, F.; Becares, V.; Cano-Ott, D.; Embid-Segura, M.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Villamarin, D.; Vincente, M. C.] CIEMAT, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Badurek, G.; Griesmayer, E.; Jericha, E.; Leeb, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Sydney, NSW, Australia. [Baumann, P.; Kerveno, M.; Rudolf, G.] CNRS, IN2P3, IPHC, Strasbourg, France. [Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic. [Billowes, J.; Ware, T.; Wright, T.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Bosnar, D.; Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Calvino, F.; Poch, A.; Pretel, C.] Univ Politecn Madrid, E-28040 Madrid, Spain. [Capote, R.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Carrapio, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Sarmento, R.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal. [Cortes, G.; Gomez-Hornillos, M. B.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain. [Cortes-Giraldo, M. A.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, Seville, Spain. [Cosentino, L.; Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Couture, A.; Cox, J.; O'Brien, S.; Wiesher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Karlsruhe, Germany. [Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.] PSI, Villigen, Switzerland. [Eleftheriadis, C.; Lampoudis, C.; Manousos, A.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Furman, W.] JINR, Dubna, Russia. [Ganesan, S.; Gurusamy, P.; Saxena, A.] BARC, Bombay, Maharashtra, India. [Goverdovski, A.; Ketlerov, V.; Konovalov, V.] IPPE, Obninsk, Russia. [Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Haight, R.] LANL, Los Alamos, NM USA. [Igashira, M.] Tokyo Inst Technol, Tokyo, Japan. [Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England. [Karadimos, D.; Karamanis, D.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Lo Meo, S.; Mengoni, A.] ENEA, Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.; Ventura, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.; Ventura, A.] Sez INFN Bologna, Bologna, Italy. [Mirea, M.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Musumarra, A.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Musumarra, A.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Rauscher, T.] Univ Hertfordshire, Ctr Astrophys Res, Sch Phys Astron Math, Hatfield AL10 9AB, Herts, England. [Rauscher, T.] Univ Basel, Dept Phys, CH-4003 Basel, Switzerland. [Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. RP Diakaki, M (reprint author), CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. EM maria.diakaki@cea.fr RI Vaz, Pedro/K-2464-2013; Mirea, Mihail/C-2297-2011; Rauscher, Thomas/D-2086-2009; Mendoza Cembranos, Emilio/K-5789-2014; Chin, Mary Pik Wai/B-6644-2012; Calvino, Francisco/K-5743-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/K-2008-2015; Martinez, Trinitario/K-6785-2014; OI Vaz, Pedro/0000-0002-7186-2359; Mirea, Mihail/0000-0002-9333-6595; Rauscher, Thomas/0000-0002-1266-0642; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Chin, Mary Pik Wai/0000-0001-5176-9723; Calvino, Francisco/0000-0002-7198-4639; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0003-2499-5586; Martinez, Trinitario/0000-0002-0683-5506; Tarrio, Diego/0000-0002-9858-3341; Garcia Rios, Aczel Regino/0000-0002-7955-1475 NR 20 TC 1 Z9 1 U1 13 U2 25 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 02002 DI 10.1051/epjconf/201611102002 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000004 ER PT S AU Diez, CJ Michel-Sendis, F Cabellos, O Wiarda, D Dunn, ME AF Diez, C. J. Michel-Sendis, F. Cabellos, O. Wiarda, D. Dunn, M. E. BE Serot, O TI On the processing of JEFF-3.2 neutron data library with AMPX 6.2 for its use with the SCALE tool suite SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB New processing capabilities are under development at the NEA Data Bank (DB) that aim to provide enlarged and enhanced nuclear data services to member countries in the framework of processing, verification and benchmarking of evaluated nuclear data. Within the context of the Joint Evaluated Fission and Fusion Nuclear Data Library Project (JEFF), we undertake to generate, with the latest version of AMPX processing code, a JEFF-3.2 incident-neutron nuclear data application library for the SCALE tool suite. In this paper we describe the requirements, in terms of nuclear data content, for new data to be considered and used in the SCALE tool suite. An overview of how to process and prepare JEFF-3.2 incident-neutron data with AMPX for its application in SCALE neutron transport codes is given. The resulting library is verified and tested at differential and integral level by comparing the performance of JEFF-3.2 in AMPX format with other processing and transport codes. C1 [Diez, C. J.; Michel-Sendis, F.; Cabellos, O.] OECD Nucl Energy Agcy NEA, Data Bank, F-92130 Issy Les Moulineaux, France. [Wiarda, D.; Dunn, M. E.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA. RP Diez, CJ (reprint author), OECD Nucl Energy Agcy NEA, Data Bank, F-92130 Issy Les Moulineaux, France. EM carlosjavier.diez@oecd.org NR 8 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 06003 DI 10.1051/epjconf/201611106003 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000019 ER PT S AU Neudecker, D Talou, P Kawano, T Kahler, AC Rising, ME White, MC AF Neudecker, D. Talou, P. Kawano, T. Kahler, A. C. Rising, M. E. White, M. C. BE Serot, O TI Evaluating the Pu-239 Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID COVARIANCES; PLUTONIUM; URANIUM AB We present a new evaluation of the Pu-239 prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed. C1 [Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Neudecker, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dneudecker@lanl.gov NR 25 TC 0 Z9 0 U1 3 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 05004 DI 10.1051/epjconf/201611105004 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000016 ER PT S AU Nobre, GPA Herman, M Brown, D Capote, R Trkov, A Leal, L Plompen, A Danon, Y Qian, J Ge, ZG Liu, TJ Lu, HL Ruan, XC AF Nobre, G. P. A. Herman, M. Brown, D. Capote, R. Trkov, A. Leal, L. Plompen, A. Danon, Y. Qian, Jing Ge, Zhigang Liu, Tingjin Lu, Hnalin Ruan, Xichao BE Serot, O TI New Fe-56 Evaluation for the CIELO project SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID LIBRARY AB The Collaborative International Evaluated Library Organisation (CIELO) aims to provide revised and updated evaluations for Pu-239, U-238,U-235, Fe-56, O-16, and H-1 through international collaboration. This work, which is part of the CIELO project, presents the initial results for the evaluation of the Fe-56 isotope, with neutron-incident energy ranging from 0 to 20 MeV. The Fe-56(n,p) cross sections were fitted to reproduce the ones from IRDFF dosimetry file. Our preliminary file provides good cross-section agreements for the main angle-integrated reactions, as well as a reasonable overall agreement for angular distributions and double-differential spectra, when compared to previous evaluations. C1 [Nobre, G. P. A.; Herman, M.; Brown, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Capote, R.; Trkov, A.] IAEA, POB 100, A-1400 Vienna, Austria. [Leal, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Plompen, A.] EC JRC IRMM, Geel, Belgium. [Danon, Y.] Rensselaer Polytech Inst, Troy, NY USA. [Qian, Jing; Ge, Zhigang; Liu, Tingjin] CNDC, POB 275-41, Beijing 102413, Peoples R China. [Lu, Hnalin; Ruan, Xichao] CIAE, POB 275-41, Beijing 102413, Peoples R China. RP Nobre, GPA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM gnobre@bnl.gov RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 NR 11 TC 0 Z9 0 U1 1 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 03001 DI 10.1051/epjconf/201611103001 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000008 ER PT S AU Paradela, C Duran, I Tassan-Got, L Audouin, L Berthier, B Isaev, S Le Naour, C Stephan, C Tarrio, D Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Badurek, G Baumann, P Becvar, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapio, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fujii, K Furman, W Goncalves, IF Gonzalez-Romero, E Goverdovski, A Gramegna, F Guerrero, C Gunsing, F Haight, R Heil, M Igashira, M Jericha, E Kadi, Y Kaeppeler, F Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Krticka, M Lampoudis, C Lederer, C Leeb, H Lindote, A Lukic, S Marganiec, J Martinez, T Marrone, S Massimi, C Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Pancin, SJ Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Pretel, C Praena, J Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Tagliente, G Tain, JL Tavora, L Terlizzi, R Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Weiss, C Wiesher, M Wisshak, K AF Paradela, C. Duran, I. Tassan-Got, L. Audouin, L. Berthier, B. Isaev, S. Le Naour, C. Stephan, C. Tarrio, D. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapio, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fujii, K. Furman, W. Goncalves, I. F. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Guerrero, C. Gunsing, F. Haight, R. Heil, M. Igashira, M. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Krticka, M. Lampoudis, C. Lederer, C. Leeb, H. Lindote, A. Lukic, S. Marganiec, J. Martinez, T. Marrone, S. Massimi, C. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Pancin, S. J. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Praena, J. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Weiss, C. Wiesher, M. Wisshak, K. CA N TOF Collaboration BE Serot, O TI High accuracy U-235(n,f) data in the resonance energy region SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB The U-235 neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n_TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Comparison with the ENDF/B-VII evaluation and the IAEA reference file from 100 eV to 10 keV are provided. C1 [Paradela, C.; Plompen, A.; Rullhusen, P.] EC JRC IRMM, Retieseweg 111, B-2440 Geel, Belgium. [Paradela, C.; Duran, I.; Tarrio, D.; Alvarez-Pol, H.; Mengoni, A.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Tassan-Got, L.; Audouin, L.; Berthier, B.; Isaev, S.; Le Naour, C.; Stephan, C.; David, S.; Ferrant, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Abbondanno, U.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, S. J.; Perrot, L.; Plukis, A.] CEA Saclay, Irfu, SPhN, F-91191 Gif Sur Yvette, France. [Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.] CIEMAT, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Badurek, G.; Jericha, E.; Lederer, C.; Leeb, H.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3, IPHC, Strasbourg, France. [Becvar, F.; Embid-Segura, M.; Krticka, M.; Vincente, M. C.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Mengoni, A.; Rubbia, C.; Sarchiapone, L.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland. [Capote, R.; Guerrero, C.; Quesada, J.] Univ Seville, Seville, Spain. [Carrapio, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal. [Chepel, V.; Ferreira-Marques, R.; Lindote, A.] LIP Coimbra, Coimbra, Portugal. [Colonna, N.; Marrone, S.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Tarrio, D.; Couture, A.; Cox, J.; Wiesher, M.] Uppsala Univ, Dept Phys & Astron, S-75105 Uppsala, Sweden. [Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Karlsruhe Inst Technol, Inst Kernphys, Campus North, D-76021 Karlsruhe, Germany. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Furman, W.; Konovalov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Goverdovski, A.; Ketlerov, V.] IPPE, Obninsk, Russia. [Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Haight, R.; Koehler, P.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Karadimos, D.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Massimi, C.; Pavlopoulos, P.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Ventura, A.] ENEA, Bologna, Italy. [Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland. RP Paradela, C (reprint author), EC JRC IRMM, Retieseweg 111, B-2440 Geel, Belgium.; Paradela, C (reprint author), Univ Santiago de Compostela, Santiago De Compostela, Spain. EM carlos.PARADELA-DOBARRO@ec.europa.eu RI Vaz, Pedro/K-2464-2013; Rauscher, Thomas/D-2086-2009; Calvino, Francisco/K-5743-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/K-2008-2015; Alvarez Pol, Hector/F-1930-2011; Martinez, Trinitario/K-6785-2014; OI Vaz, Pedro/0000-0002-7186-2359; Rauscher, Thomas/0000-0002-1266-0642; Calvino, Francisco/0000-0002-7198-4639; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0003-2499-5586; Alvarez Pol, Hector/0000-0001-9643-6252; Martinez, Trinitario/0000-0002-0683-5506; Tarrio, Diego/0000-0002-9858-3341 NR 7 TC 1 Z9 1 U1 11 U2 20 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 02003 DI 10.1051/epjconf/201611102003 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000005 ER PT S AU Porta, A Zakari-Issoufou, AA Fallot, M Algora, A Tain, JL Valencia, E Rice, S Bui, VM Cormon, S Estienne, M Agramunt, J Aysto, J Bowry, M Briz, JA Caballero-Folch, R Cano-Ott, D Cucouanes, A Elomaa, VV Eronen, T Estevez, E Farrelly, GF Garcia, AR Gelletly, W Gomez-Hornillos, MB Gorlychev, V Hakala, J Jokinen, A Jordan, MD Kankainen, A Karvonen, P Kolhinen, VS Kondev, FG Martinez, T Mendoza, E Molina, F Moore, I Perez-Cerdan, AB Podolyak, Z Penttila, H Regan, PH Reponen, M Rissanen, J Rubio, B Shiba, T Sonzogni, AA Weber, C AF Porta, A. Zakari-Issoufou, A. -A. Fallot, M. Algora, A. Tain, J. L. Valencia, E. Rice, S. Bui, V. M. Cormon, S. Estienne, M. Agramunt, J. Aysto, J. Bowry, M. Briz, J. A. Caballero-Folch, R. Cano-Ott, D. Cucouanes, A. Elomaa, V. -V. Eronen, T. Estevez, E. Farrelly, G. F. Garcia, A. R. Gelletly, W. Gomez-Hornillos, M. B. Gorlychev, V. Hakala, J. Jokinen, A. Jordan, M. D. Kankainen, A. Karvonen, P. Kolhinen, V. S. Kondev, F. G. Martinez, T. Mendoza, E. Molina, F. Moore, I. Perez-Cerdan, A. B. Podolyak, Zs. Penttila, H. Regan, P. H. Reponen, M. Rissanen, J. Rubio, B. Shiba, T. Sonzogni, A. A. Weber, C. CA IGISOL Collaboration BE Serot, O TI Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properties are not well known. New measurements of Rb-92,Rb-93 beta-decay properties have been performed at the IGISOL facility (Jyvaskyla, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for Rb-93, our measured beta feedings for Rb-92 and we show the impact of these results on reactor antineutrino spectra and decay heat calculations. C1 [Porta, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Bui, V. M.; Cormon, S.; Estienne, M.; Briz, J. A.; Cucouanes, A.; Shiba, T.] Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France. [Algora, A.; Tain, J. L.; Valencia, E.; Agramunt, J.; Estevez, E.; Gelletly, W.; Jordan, M. D.; Molina, F.; Perez-Cerdan, A. B.; Rubio, B.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain. [Algora, A.] MTA ATOMKI, Inst Nucl Res, H-4026 Debrecen, Hungary. [Rice, S.; Bowry, M.; Farrelly, G. F.; Gelletly, W.; Podolyak, Zs.; Regan, P. H.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Aysto, J.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Caballero-Folch, R.; Gomez-Hornillos, M. B.; Gorlychev, V.] Univ Politecn Cataluna, ES-08034 Barcelona, Spain. [Cano-Ott, D.; Garcia, A. R.; Martinez, T.; Mendoza, E.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Elomaa, V. -V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Moore, I.; Penttila, H.; Reponen, M.; Rissanen, J.; Weber, C.; IGISOL Collaboration] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Kondev, F. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Molina, F.] Comis Chilena Energia Nucl, POB 188, Santiago, Chile. [Regan, P. H.] Natl Phys Lab, Teddington TW11 0LW, Middx, England. [Reponen, M.] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Weber, C.] Univ Munich, Fac Phys, Coulombwall 1, D-85748 Garching, Germany. RP Porta, A (reprint author), Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France. EM porta@subatech.in2p3.fr RI Martinez, Trinitario/K-6785-2014; Mendoza Cembranos, Emilio/K-5789-2014; Moore, Iain/D-7255-2014 OI Martinez, Trinitario/0000-0002-0683-5506; Jokinen, Ari/0000-0002-0451-125X; Garcia Rios, Aczel Regino/0000-0002-7955-1475; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Moore, Iain/0000-0003-0934-8727 NR 21 TC 0 Z9 0 U1 3 U2 9 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 08006 DI 10.1051/epjconf/201611108006 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000031 ER PT S AU Regnier, D Dubray, N Schunck, N Verriere, M AF Regnier, D. Dubray, N. Schunck, N. Verriere, M. BE Serot, O TI Microscopic predictions of fission yields based on the time dependent GCM formalism SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+Pu-239 low energy induced fission. This work is the result of a collaboration between CEA, DAM, DIF and LLNL on nuclear fission theory. C1 [Regnier, D.; Dubray, N.; Verriere, M.] CEA, DAM, DIF, F-91297 Arpajon, France. [Schunck, N.] LLNL, Nucl & Chem Sci Div, Livermore, CA 94551 USA. RP Regnier, D; Dubray, N (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM david.regnier@cea.fr; noel.dubray@cea.fr NR 10 TC 0 Z9 0 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 08005 DI 10.1051/epjconf/201611108005 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000030 ER PT S AU Walsh, JA Forget, B Smith, KS Brown, FB AF Walsh, Jonathan A. Forget, Benoit Smith, Kord S. Brown, Forrest B. BE Serot, O TI Neutron Cross Section Processing Methods for Improved Integral Benchmarking of Unresolved Resonance Region Evaluations SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as k(eff) and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table and OTF treatments reproduce the true expected values, calculated by averaging the results of many independent simulations, quite well. However, the spread of independent calculation results is shown to be relatively significant. The k(eff) eigenvalues for fast spectrum systems can differ by more than 250 pcm from one simulation to the next. C1 [Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA. [Walsh, Jonathan A.; Brown, Forrest B.] Los Alamos Natl Lab, XCP 3, Monte Carlo Methods Codes & Appl, POB 1663, Los Alamos, NM 87545 USA. RP Walsh, JA (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA.; Walsh, JA (reprint author), Los Alamos Natl Lab, XCP 3, Monte Carlo Methods Codes & Appl, POB 1663, Los Alamos, NM 87545 USA. EM walshjon@mit.edu NR 12 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 06001 DI 10.1051/epjconf/201611106001 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000017 ER PT J AU Kotwal, AV Jayatilaka, B AF Kotwal, Ashutosh V. Jayatilaka, Bodhitha TI Comparison of horace and photos Algorithms for Multiphoton Emission in the Context of W Boson Mass Measurement SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Article AB W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from horace and photos implementations of the final-state multiphoton emission in the context of a direct measurement of W boson mass at Tevatron. Mass fits are performed using a simulation of the CDF II detector. C1 [Kotwal, Ashutosh V.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Jayatilaka, Bodhitha] Fermilab Natl Accelerator Lab, Sci Comp Div, POB 500, Batavia, IL 60510 USA. RP Kotwal, AV (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. EM ashutosh.kotwal@duke.edu FU U.S. Department of Energy, Office of High Energy Physics; Fermi National Accelerator Laboratory (Fermilab); United States Department of Energy [DE-AC02-07CH11359] FX The authors wish to thank Ilija Bizjak for his assistance with the HORACE program and Zbigniew Was for providing the interface to the photos program. The authors wish to thank William Ashmanskas, Franco Bedeschi, Daniel Beecher, Ilija Bizjak, Kenichi Hatakeyama, Christopher Hays, Mark Lancaster, Sarah Malik, Larry Nodulman, Peter Renton, Tom Riddick, Ravi Shekhar, Melvyn Shochet, Oliver Stelzer-Chilton, Siyuan Sun, David Waters, Yu Zeng, and other colleagues in the CDF Collaboration for helpful discussions. They also thank Carlo Carloni Calame, Guido Montagna, Alessandro Vicini, Doreen Wackeroth, and Zbigniew Was for discussions regarding electroweak radiative corrections. They acknowledge the support of the U.S. Department of Energy, Office of High Energy Physics, and the Fermi National Accelerator Laboratory (Fermilab). The computational resources used in this study were provided by Fermilab. Fermilab is operated by Fermi Research Alliance, LLC, under Contract no. DE-AC02-07CH11359 with the United States Department of Energy. NR 15 TC 0 Z9 0 U1 1 U2 1 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-7357 EI 1687-7365 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2016 AR 1615081 DI 10.1155/2016/1615081 PG 9 WC Physics, Particles & Fields SC Physics GA DH2RM UT WOS:000372633800001 ER PT J AU Polisetti, S Bible, AN Morrell-Falvey, JL Bohn, PW AF Polisetti, Sneha Bible, Amber N. Morrell-Falvey, Jennifer L. Bohn, Paul W. TI Raman chemical imaging of the rhizosphere bacterium Pantoea sp YR343 and its co-culture with Arabidopsis thaliana SO ANALYST LA English DT Article ID SURFACE-ENHANCED RAMAN; GROWTH-PROMOTING RHIZOBACTERIA; RESONANCE RAMAN; PLANT-GROWTH; MASS-SPECTROMETRY; SCATTERING SERS; SPECTROSCOPY; SILVER; MICROSCOPY; NANOPARTICLES AB Chemical imaging of plant-bacteria co-cultures makes it possible to characterize bacterial populations and behaviors and their interactions with proximal organisms, under conditions closest to the environment in the rhizosphere. Here Raman micro-spectroscopy and confocal Raman imaging are used as minimally invasive probes to study the rhizosphere bacterial isolate, Pantoea sp. YR343, and its co-culture with model plant Arabidopsis thaliana by combining enhanced Raman spectroscopies with electron microscopy and principal component analysis (PCA). The presence of carotenoid pigments in the wild type Pantoea sp. YR343 was characterized using resonance Raman scattering, which was also used to confirm successful disruption of the crtB gene in an engineered carotenoid mutant strain. Other components of the Pantoea sp. YR343 cells were imaged in the presence of resonantly enhanced pigments using a combination of surface enhanced Raman imaging and PCA. Pantoea sp. YR343 cells decorated with Ag colloid synthesized ex situ gave spectra dominated by carotenoid scattering, whereas colloids synthesized in situ produced spectral signatures characteristic of flavins in the cell membrane. Scanning electron microscopy (SEM) of whole cells and transmission electron microscopy (TEM) images of thinly sliced cross-sections were used to assess structural integrity of the coated cells and to establish the origin of spectral signatures based on the position of Ag nanoparticles in the cells. Raman imaging was also used to characterize senescent green Arabidopsis thaliana plant roots inoculated with Pantoea sp. YR343, and PCA was used to distinguish spectral contributions from plant and bacterial cells, thereby establishing the potential of Raman imaging to visualize the distribution of rhizobacteria on plant roots. C1 [Polisetti, Sneha; Bohn, Paul W.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Bible, Amber N.; Morrell-Falvey, Jennifer L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Bohn, Paul W.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Bohn, PW (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.; Bohn, PW (reprint author), Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. EM pbohn@nd.edu RI Morrell-Falvey, Jennifer/A-6615-2011 OI Morrell-Falvey, Jennifer/0000-0002-9362-7528 FU Department of Energy through Oak Ridge National Laboratory (PTX-UT-Battelle) [ORNL-4000132808]; Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by Department of Energy through a subcontract from Oak Ridge National Laboratory (PTX-UT-Battelle), grant ORNL-4000132808. (SP). Work at ORNL was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The authors acknowledge W. Archer and T. Orlova (University of Notre Dame, Notre Dame) for experimental advice and assistance with TEM and SEM sample preparation and image acquisition. We also acknowledge R. Masyuko for her preliminary work in characterizing the bacterial strains and D. A. Wheatcraft who developed the PCA codes. NR 53 TC 0 Z9 0 U1 10 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 7 BP 2175 EP 2182 DI 10.1039/c6an00080k PG 8 WC Chemistry, Analytical SC Chemistry GA DH3AB UT WOS:000372657900007 PM 26948490 ER PT J AU Wang, SQ Thomas, A Lee, E Yang, S Cheng, XH Liu, YL AF Wang, Shunqiang Thomas, Antony Lee, Elaine Yang, Shu Cheng, Xuanhong Liu, Yaling TI Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces SO ANALYST LA English DT Article ID CANCER-CELLS; PROSTATE-CANCER; CAPTURE; MICROMIXERS; DEVICES; RELEASE; MICROVORTEX; LITHOGRAPHY; ENRICHMENT; PARTICLES AB Circulating tumor cells (CTCs) in peripheral blood have been recognized as a general biomarker for diagnosing cancer and providing guidance for personalized treatments. Yet due to their rarity, the challenge for their clinical utility lies in the efficient isolation while avoiding the capture of other non-targeted white blood cells (WBCs). In this paper, a wavy-herringbone (HB) microfluidic chip coated with antibody directly against epithelial cell adhesion molecule (anti-EpCAM) was developed for highly efficient and selective isolation of tumor cells from tumor cell-spiked whole blood samples. By extending the concept of the hallmark HB-Chip in the literature, the wavy-HB chip not only achieves high capture efficiency (up to 85.0%) by micro-vortexes induced by HB structures, but also achieves high purity (up to 39.4%) due to the smooth wavy microstructures. These smooth wavy-HB structures eliminate the ultra-low shear rate regions in the traditional grooved-HB structures that lead to non-specific trapping of cells. Compared with the grooved-HB chip with sharp corners, the wavy-HB chip shows significantly higher purity while maintaining similarly high capture efficiency. Furthermore, the wavy-HB chip has up to 11% higher captured cell viability over the grooved-HB chip. The distributions of tumor cells and WBCs along the grooves and waves are investigated to help understand the mechanisms behind the better performance of the wavy-HB chip. The wavy-HB chip may serve as a promising platform for CTC capture and cancer diagnosis. C1 [Wang, Shunqiang; Liu, Yaling] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. [Thomas, Antony; Cheng, Xuanhong; Liu, Yaling] Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA. [Lee, Elaine] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lee, Elaine; Yang, Shu] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. [Cheng, Xuanhong] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Liu, YL (reprint author), Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA.; Liu, YL (reprint author), Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA. EM yal310@lehigh.edu RI Wang, Shunqiang/L-1622-2016; Yang, Shu/D-9758-2011 OI Wang, Shunqiang/0000-0003-2339-8130; FU National Science Foundation (NSF) [CBET-1264808, DMS-1516236]; National Institute of Health (NIH) [EB015105]; NSF [CBET-1263940] FX This work was supported in part by National Science Foundation (NSF) grant CBET-1264808 (to Y. Liu and X. Cheng), DMS-1516236 (to Y. Liu), and National Institute of Health (NIH) grant EB015105 (to Y. Liu), NSF grant CBET-1263940 (to S. Yang). The authors thank Dr. Younghyun Cho in the University of Pennsylvania for helpful discussions and suggestions, Dr. Susan Perry in Lehigh University for sharing lab facilities and Dr. Lynne Cassimeris in Lehigh University for sharing the HCT-116 cell line. NR 54 TC 6 Z9 6 U1 8 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 7 BP 2228 EP 2237 DI 10.1039/c6an00236f PG 10 WC Chemistry, Analytical SC Chemistry GA DH3AB UT WOS:000372657900013 PM 26907962 ER PT J AU Tang, YT Rosenberg, JN Bohutskyi, P Yu, G Betenbaugh, MJ Wang, F AF Tang, Yuting Rosenberg, Julian N. Bohutskyi, Pavlo Yu, Geng Betenbaugh, Michael J. Wang, Fei TI Microalgae as a Feedstock for Biofuel Precursors and Value-Added Products: Green Fuels and Golden Opportunities SO BIORESOURCES LA English DT Review DE Microalgae; Biofuels; Biochemicals; Lipid Profiles; Algal Strain Development ID IN-SITU TRANSESTERIFICATION; FATTY-ACID-COMPOSITION; ELEVATED CO2 CONCENTRATION; ALGA SCENEDESMUS-QUADRICAUDA; CELL-WALL POLYSACCHARIDES; WASTE-WATER TREATMENT; CHLORELLA-VULGARIS; BIODIESEL PRODUCTION; LIGHT-INTENSITY; CHLAMYDOMONAS-REINHARDTII AB The prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided. C1 [Tang, Yuting; Wang, Fei] Nanjing Forestry Univ, Jiangsu Key Lab Biomass Based Green Fuels & Chem, Coll Chem Engn, 159 Longpan St, Nanjing 210037, JS, Peoples R China. [Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St, Baltimore, MD 21218 USA. [Bohutskyi, Pavlo] Pacific NW Natl Lab, Div Biol Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Wang, F (reprint author), Nanjing Forestry Univ, Jiangsu Key Lab Biomass Based Green Fuels & Chem, Coll Chem Engn, 159 Longpan St, Nanjing 210037, JS, Peoples R China. EM hgwf@njfu.edu.cn FU Natural Science Foundation of Jiangsu Universities [11KJA480001]; national Natural Science Foundation of China [31170537]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); National Science Foundation [NSF-EFRI-1332344]; DOE DE [SC0012658]; Johns Hopkins Environment, Energy, Sustainability & Health Institute (E2SHI) FX The authors gratefully acknowledge the financial support from the Natural Science Foundation of Jiangsu Universities (11KJA480001), the national Natural Science Foundation of China (31170537) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Partial support was also provided by grant number NSF-EFRI-1332344 from the National Science Foundation (MJB), DOE DE SC0012658 grant (MJB) and a fellowship to JNR from the Johns Hopkins Environment, Energy, Sustainability & Health Institute (E2SHI). NR 203 TC 2 Z9 2 U1 9 U2 16 PU NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI PI RALEIGH PA CAMPUS BOX 8005, RALEIGH, NC 27695-8005 USA SN 1930-2126 J9 BIORESOURCES JI BioResources PY 2016 VL 11 IS 1 BP 2850 EP 2885 PG 36 WC Materials Science, Paper & Wood SC Materials Science GA DG8GO UT WOS:000372321200075 ER PT J AU Flood, D Proulx, C Robertson, EJ Battigelli, A Wang, S Schwartzberg, AM Zuckermann, RN AF Flood, Dillon Proulx, Caroline Robertson, Ellen J. Battigelli, Alessia Wang, Shuo Schwartzberg, Adam M. Zuckermann, Ronald N. TI Improved chemical and mechanical stability of peptoid nanosheets by photo-crosslinking the hydrophobic core SO CHEMICAL COMMUNICATIONS LA English DT Article ID ARYL HALIDES; NONBIOLOGICAL POLYMER; SECONDARY-STRUCTURE; UNACTIVATED ARENES; SIDE-CHAINS; ARYLATION; BENZENE AB Peptoid nanosheets can be broadly functionalized for a variety of applications. However, they are susceptible to degradation when exposed to chemical or mechanical stress. To improve their strength, photolabile monomers were introduced in order to crosslink the nanosheet interior. Photo-crosslinking produced a more robust material that can survive sonication, lyophilization, and other biochemical manipulations. C1 [Flood, Dillon; Proulx, Caroline; Robertson, Ellen J.; Battigelli, Alessia; Wang, Shuo; Schwartzberg, Adam M.; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov FU Defense Threat Reduction Agency [DTRA10027-15875]; DARPA Fold F(x) program; Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy [DEAC02-05CH11231]; Natural Sciences and Engineering Council of Canada (NSERC); Advanced Light Source, at Lawrence Berkeley National Laboratory FX This project was funded by the Defense Threat Reduction Agency under Contract No. DTRA10027-15875 and the DARPA Fold F(x) program. The work was conducted at the Molecular Foundry with support from the Advanced Light Source, at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DEAC02-05CH11231. We also thank R. Garcia, M. Connolly and B. Rad for their insightful discussions and inspiration. C. P. is grateful for a postdoctoral fellowship from the Natural Sciences and Engineering Council of Canada (NSERC). NR 31 TC 1 Z9 1 U1 6 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 26 BP 4753 EP 4756 DI 10.1039/c6cc00588h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH3BN UT WOS:000372662100003 PM 26864502 ER PT J AU Leggett, CJ Parker, BF Teat, SJ Zhang, Z Dau, PD Lukens, WW Peterson, SM Cardenas, AJP Warner, MG Gibson, JK Arnold, J Rao, L AF Leggett, C. J. Parker, B. F. Teat, S. J. Zhang, Z. Dau, P. D. Lukens, W. W. Peterson, S. M. Cardenas, A. J. P. Warner, M. G. Gibson, J. K. Arnold, J. Rao, L. TI Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution SO CHEMICAL SCIENCE LA English DT Article ID VANADIUM(V) COMPLEXES; SEA WATER; X-RAY; URANIUM; SEAWATER; AMAVADIN; EXTRACTION; AMIDOXIME; RECOVERY; STEREOCHEMISTRY AB A non-oxido V(V) complex with glutaroimide-dioxime (H3L), a ligand for recovering uranium from seawater, was synthesized from aqueous solution as Na[V(L)(2)]center dot 2H(2)O, and the structure determined by X-ray diffraction. It is the first non-oxido V(V) complex that has been directly synthesized in and crystallized from aqueous solution. The distorted octahedral structure contains two fully deprotonated ligands (L3-) coordinating to V5+, each in a tridentate mode via the imide N (RV-N = 1.96 angstrom) and oxime O atoms (RV-O = 1.87-1.90 angstrom). Using O-17-labelled vanadate as the starting material, concurrent O-17/V-51/H-1/C-13 NMR, in conjunction with ESI-MS, unprecedentedly demonstrated the stepwise displacement of the oxido V=O bonds by glutaroimide-dioxime and verified the existence of the "bare" V5+/glutaroimide-dioxime complex, [V(L)(2)](-), in aqueous solution. In addition, the crystal structure of an intermediate 1 : 1 V(V)/glutaroimide-dioxime complex, [VO2(HL)](-), in which the oxido bonds of vanadate are only partially displaced, corroborates the observations by NMR and ESI-MS. Results from this work provide important insights into the strong sorption of vanadium on poly(amidoxime) sorbents in the recovery of uranium from seawater. Also, because vanadium plays important roles in biological systems, the syntheses of the oxido and non-oxido V5+ complexes and the unprecedented demonstration of the displacement of the oxido V=O bonds help with the on-going efforts to develop new vanadium compounds that could be of importance in biological applications. C1 [Leggett, C. J.; Parker, B. F.; Zhang, Z.; Dau, P. D.; Lukens, W. W.; Gibson, J. K.; Arnold, J.; Rao, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Parker, B. F.; Arnold, J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Teat, S. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Peterson, S. M.; Warner, M. G.] Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. [Cardenas, A. J. P.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. RP Rao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Teat, SJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM SJTeat@lbl.gov; LRao@lbl.gov RI Arnold, John/F-3963-2012 OI Arnold, John/0000-0001-9671-227X FU Fuel Cycle Research and Development Campaign (FCRD)/Fuel Resources Program, Office of Nuclear Energy, the U.S. Department of Energy (USDOE), at Lawrence Berkeley National Laboratory (LBNL); Nuclear Energy University Program (NEUP) at University of California, Berkeley (UCB); USDOE, Office of Science, Office of Basic Energy Sciences; USDOE, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division (CSGB), Heavy Element Chemistry Program at LBNL [DE-AC02-05CH11231]; FCRD/Fuel Resources Program, Office of Nuclear Energy, USDOE, at Pacific Northwest National Laboratory (PNNL) FX C. J. Leggett and L. Rao were supported by the Fuel Cycle Research and Development Campaign (FCRD)/Fuel Resources Program, Office of Nuclear Energy, the U.S. Department of Energy (USDOE), at Lawrence Berkeley National Laboratory (LBNL). B. F. Parker and J. Arnold were supported by the Nuclear Energy University Program (NEUP) at University of California, Berkeley (UCB). Collection and analysis of the single-crystal X-ray diffraction data for Na[V(L)2]center dot 2H2O(cr) were performed by S. J. Teat at the Advanced Light Source (ALS) and supported by USDOE, Office of Science, Office of Basic Energy Sciences. Z. Zhang's work on 17O-labelled NMR and ESI-MS, W. W. Lukens' work on EPR, and P. D. Dau/J. K. Gibson's work on ethanol-spray ESI-MS were supported by USDOE, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division (CSGB), Heavy Element Chemistry Program under Contract No. DE-AC02-05CH11231 at LBNL. S. Peterson, A. J. P. Cardenas and M. Warner were supported by the FCRD/Fuel Resources Program, Office of Nuclear Energy, USDOE, at Pacific Northwest National Laboratory (PNNL). The authors thank Dr R. Nichiporuk and Dr Z. Zhou at the QB3/Mass Spectrometry Facility (UCB) for collecting the ESI-MS spectra (methanol spray). NR 44 TC 11 Z9 11 U1 12 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 4 BP 2775 EP 2786 DI 10.1039/c5sc03958d PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA DH2KQ UT WOS:000372614800042 ER PT J AU Diaz-Torres, R Menelaou, M Roubeau, O Sorrenti, A Brandariz-de-Pedro, G Sanudo, EC Teat, SJ Fraxedas, J Ruiz, E Aliaga-Alcalde, N AF Diaz-Torres, Raul Menelaou, Melita Roubeau, Olivier Sorrenti, Alessandro Brandariz-de-Pedro, Guillem Carolina Sanudo, E. Teat, Simon J. Fraxedas, Jordi Ruiz, Eliseo Aliaga-Alcalde, Nuria TI Multiscale study of mononuclear Co-II SMMs based on curcuminoid ligands SO CHEMICAL SCIENCE LA English DT Article ID SINGLE-MOLECULE MAGNET; POSITIVE ANISOTROPY; COBALT(II) COMPLEX; ZERO-FIELD; RELAXATION; TRANSITION; ION; MANGANESE(II); FLUORESCENCE; NANOSCIENCE AB This work introduces a novel family of Co-II species having a curcuminoid (CCMoid) ligand, 9Accm, attached, namely [Co(9Accm)(2)(py)(2)] (1) and [Co(9Accm)(2)(2,2'-bpy)] (2), achieved in high yields by the use of a microwave reactor, and exhibiting two different arrangements for the 9Accm ligands, described as "cis"(2) and "trans"(1). The study of the similarities/differences of the magnetic, luminescent and surface behaviors of the two new species, 1 and 2, is the main objective of the present work. The determined single-crystal structures of both compounds are the only Co-II-CCMoid structures described in the literature so far. Both compounds exhibit large positive D values, that of 1 (D = +74 cm(-1)) being three times larger than that of 2 (D = +24 cm(-1)), and behave as mononuclear Single-Molecule Magnets (SMMs) in the presence of an external magnetic field. Their similar structures but different anisotropy and SMM characteristics provide, for the first time, deep insight on the spin-orbital effects thanks to the use of CASSCF/NEVPT2 calculations implementing such contributions. Further magnetic studies were performed in solution by means of paramagnetic H-1 NMR, where both compounds (1 and 2) are stable in CDCl3 and display high symmetry. Paramagnetic NMR appears to be a useful diagnostic tool for the identification of such molecules in solution, where the resonance values found for the methine group (-CH-) of 9Accm vary significantly depending on the cis or trans disposition of the ligands. Fluorescence studies show that both systems display chelation enhancement of quenching (CHEQ) with regard to the free ligand, while 1 and 2 display similar quantum yields. Deposition of 1-2 on HOPG and Si(100) surfaces using spin-coating was studied using AFM; UV photoemission experiments under the same conditions display 2 as the most robust system. The measured occupied density of states of 2 with UV photoemission is in excellent agreement with theoretical DFT calculations. C1 [Diaz-Torres, Raul; Menelaou, Melita; Brandariz-de-Pedro, Guillem; Carolina Sanudo, E.; Ruiz, Eliseo] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain. [Roubeau, Olivier] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Sorrenti, Alessandro] ICMAB Inst Ciencia Mat Barcelona, CSIC, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Fraxedas, Jordi] CSIC, ICN2, Campus UAB, Barcelona 08193, Spain. [Fraxedas, Jordi] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain. [Ruiz, Eliseo] Univ Barcelona, Inst Quim Teor & Computac, Diagonal 645, E-08028 Barcelona, Spain. [Aliaga-Alcalde, Nuria] ICMAB Inst Ciencia Mat Barcelona, CSIC, ICREA, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Carolina Sanudo, E.] Univ Barcelona, Inst Nanociencia & Nanotecnol, Diagonal 645, E-08028 Barcelona, Spain. RP Aliaga-Alcalde, N (reprint author), ICMAB Inst Ciencia Mat Barcelona, CSIC, ICREA, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. EM nuria.aliaga@icrea.cat RI Aliaga-Alcalde, Nuria/H-5886-2011; Menelaou, Melita/J-9511-2014; Roubeau, Olivier/A-6839-2010; Ruiz, Eliseo/A-6268-2011; Sanudo, E. Carolina/A-8384-2014 OI Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Menelaou, Melita/0000-0001-7845-8802; Roubeau, Olivier/0000-0003-2095-5843; Ruiz, Eliseo/0000-0001-9097-8499; Sanudo, E. Carolina/0000-0001-9647-6406 FU MICINN (Spain) [CTQ2012-32247, CTQ2011-23862-C02-01, MAT2012-38319-C02, MAT2013-47869-C4-2-P]; Severo Ochoa Program (MINECO) [SEV-2013-0295]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC0205CH11231] FX The authors thank Dr N. Clos and Dr G. Oncins from the UB for their great assistance. This work was supported by the MICINN (Spain) (Projects CTQ2012-32247, CTQ2011-23862-C02-01, MAT2012-38319-C02 and MAT2013-47869-C4-2-P). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). ER thanks Generalitat de Catalunya (ICREA Academia). The Advanced Light Source (S. J. T.) is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC0205CH11231. NR 68 TC 10 Z9 10 U1 10 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 4 BP 2793 EP 2803 DI 10.1039/c5sc03298a PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA DH2KQ UT WOS:000372614800044 ER PT J AU Aromi, G Beavers, CM Costa, JS Craig, GA Espallargas, GM Orera, A Roubeau, O AF Aromi, G. Beavers, C. M. Sanchez Costa, J. Craig, G. A. Minguez Espallargas, G. Orera, A. Roubeau, O. TI Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal SO CHEMICAL SCIENCE LA English DT Article ID POROUS COORDINATION POLYMER; METAL-ORGANIC FRAMEWORK; X-RAY-ANALYSIS; SINGLE-CRYSTAL; SPIN-CROSSOVER; MOLECULAR MATERIAL; NETWORK; COMPLEX AB Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H2L)](ClO4)(2)center dot 1.5C(3)H(6)O (bpp = 2,6-bis(pyrazol-3-yl) pyridine; H2L = 2,6-bis(5-(2-methoxyphenyl)- pyrazol-3-yl) pyridine; C3H6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner, leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. The process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations. C1 [Aromi, G.; Sanchez Costa, J.; Craig, G. A.] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain. [Beavers, C. M.] Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Minguez Espallargas, G.] Univ Valencia, Inst Ciencia Mol ICMol, C Catedratico Jose Beltran 2, Paterna 46980, Spain. [Orera, A.; Roubeau, O.] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Orera, A.; Roubeau, O.] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. RP Aromi, G (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain.; Beavers, CM (reprint author), Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Roubeau, O (reprint author), CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.; Roubeau, O (reprint author), Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. EM guillem.aromi@qi.ub.es; cmbeavers@lbl.gov; roubeau@unizar.es RI Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; Beavers, Christine/C-3539-2009; Orera, Alodia/B-9524-2009; Minguez Espallargas, Guillermo/D-3164-2013; Sanchez Costa, Jose/N-9085-2014 OI Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; Beavers, Christine/0000-0001-8653-5513; Minguez Espallargas, Guillermo/0000-0001-7855-1003; Sanchez Costa, Jose/0000-0001-5426-7956 FU ERC [258060]; Spanish MICINN [MAT2011-24284, CTQ2012-32247, CTQ-2014-59209-P]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Juan de la Cierva; Ramon y Cajal FX GA thanks the Generalitat de Catalunya for the prize ICREA Academia 2008 and 2013, for excellence in research and the ERC for a Starting Grant (258060 FuncMolQIP). The authors thank the Spanish MICINN for funding through MAT2011-24284 (OR), CTQ2012-32247 (GA, GAC and JSC), CTQ-2014-59209-P (GME), a "Juan de la Cierva" (JSC) and "Ramon y Cajal" (GME) fellowship. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 42 TC 8 Z9 8 U1 6 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 4 BP 2907 EP 2915 DI 10.1039/c5sc04287a PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DH2KQ UT WOS:000372614800057 ER PT J AU Dion, M AF Dion, Michael TI Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS Reply SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Letter C1 [Dion, Michael] Pacific Northwest Natl Lab, Richland, WA USA. RP Dion, M (reprint author), Pacific Northwest Natl Lab, Richland, WA USA. EM michael.dion@pnnl.gov OI Dion, Michael/0000-0002-3030-0050 NR 0 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JAN PY 2016 VL 307 IS 1 BP 7 EP 7 DI 10.1007/s10967-015-4167-5 PG 1 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7LD UT WOS:000372264900004 ER PT J AU Steeb, JL Mertz, CJ Finck, MR Engelstad, G Carney, KP Chamberlain, DB AF Steeb, Jennifer L. Mertz, Carol J. Finck, Martha R. Engelstad, Gary Carney, Kevin P. Chamberlain, David B. TI Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Handheld XRF; Portable; Nuclear forensics; RDD; Dead-time ID X-RAY-FLUORESCENCE; PORTABLE XRF; SAMPLES; RAMAN AB X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld XRF device by applying an external radiation field (10 mR/h-17 R/h) using two types of radiography sources: a Co-60 radiography camera for high-energy gamma emissions and an 192 Ir radiography camera for several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter X-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/h for both the Ir-192 and Co-60 sources. C1 [Steeb, Jennifer L.; Mertz, Carol J.; Chamberlain, David B.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Finck, Martha R.; Engelstad, Gary; Carney, Kevin P.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Steeb, JL (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM steeb@anl.gov FU U.S. Department of Energy, Nuclear Energy Research and Development Program [W-31-109-ENG-38]; UChicago Argonne, LLC; Battelle Energy Alliance, LLC [DE-AC07-05ID14517, DE-AC02-06CH11357]; U.S. Department of Energy FX The authors acknowledge the U.S. Department of Energy, Nuclear Energy Research and Development Program under Contract no. W-31-109-ENG-38 for funding. This manuscript has been authored by UChicago Argonne, LLC, and Battelle Energy Alliance, LLC, under Contracts no. DE-AC07-05ID14517 and DE-AC02-06CH11357 with the U.S. Department of Energy. The United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 16 TC 0 Z9 0 U1 5 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JAN PY 2016 VL 307 IS 1 BP 751 EP 760 DI 10.1007/s10967-015-4105-6 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7LD UT WOS:000372264900092 ER PT J AU Zhang, F Nemeth, K Bareno, J Dogan, F Bloom, ID Shaw, LL AF Zhang, Fan Nemeth, Karoly Bareno, Javier Dogan, Fulya Bloom, Ira D. Shaw, Leon L. TI Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries SO RSC ADVANCES LA English DT Article ID EXFOLIATION PROCESS; GRAPHENE OXIDE; NANOSHEETS; STORAGE; CHALLENGES; STABILITY; NANOTUBES; ENERGY; ANODE AB The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN. C1 [Zhang, Fan; Shaw, Leon L.] IIT, Mech Mat & Aerosp Engn Dept, Chicago, IL 60616 USA. [Nemeth, Karoly] IIT, Dept Phys, Chicago, IL 60616 USA. [Bareno, Javier; Dogan, Fulya; Bloom, Ira D.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shaw, LL (reprint author), IIT, Mech Mat & Aerosp Engn Dept, Chicago, IL 60616 USA.; Nemeth, K (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA. EM nemeth@agni.phys.iit.edu; lshaw2@iit.edu NR 41 TC 1 Z9 1 U1 19 U2 38 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 33 BP 27901 EP 27914 DI 10.1039/c6ra03141b PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA DH2VD UT WOS:000372644100073 ER PT J AU Balestra, P Giannetti, F Caruso, G Alfonsi, A AF Balestra, P. Giannetti, F. Caruso, G. Alfonsi, A. TI New RELAP5-3D Lead and LBE Thermophysical Properties Implementation for Safety Analysis of Gen IV Reactors SO SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS LA English DT Article ID SOFT-SPHERE EQUATION; STATE AB The latest versions of RELAP5-3D(C) code allow the simulation of thermodynamic system, using different type of working fluids, that is, liquid metals, molten salt, diathermic oil, and so forth, thanks to the ATHENA code integration. The RELAP5-3D(C) water thermophysical properties are largely verified and validated; however there are not so many experiments to generate the liquid metals ones in particular for the Lead and the Lead Bismuth Eutectic. Recently, new and more accurate experimental data are available for liquid metals. The comparison between these state-of-the-art data and the RELAP5-3D(C) default thermophysical properties shows some discrepancy; therefore a tool for the generation of new properties binary files has been developed. All the available data came from experiments performed at atmospheric pressure. Therefore, to extend the pressure domain below and above this pressure, the tool fits a semiempirical model (soft sphere model with inverse-power-law potential), specific for the liquid metals. New binary files of thermophysical properties, with a detailed mesh grid of point to reduce the code mass error (especially for the Lead), were generated with this tool. Finally, calculations using a simple natural circulation loop were performed to understand the differences between the default and the new properties. C1 [Balestra, P.; Giannetti, F.; Caruso, G.] Univ Roma La Sapienza, Dept Astronaut Elect & Energy Engn, Corso Vittorio Emanuele II 244, I-00186 Rome, Italy. [Alfonsi, A.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. RP Balestra, P (reprint author), Univ Roma La Sapienza, Dept Astronaut Elect & Energy Engn, Corso Vittorio Emanuele II 244, I-00186 Rome, Italy. EM paolo.balestra@uniroma1.it RI Caruso, Gianfranco/D-9598-2011; Giannetti, Fabio/E-6727-2012 OI Caruso, Gianfranco/0000-0001-6137-9235; Giannetti, Fabio/0000-0003-1005-7492 NR 12 TC 0 Z9 0 U1 2 U2 8 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA SN 1687-6075 EI 1687-6083 J9 SCI TECHNOL NUCL INS JI Sci. Technol. Nucl. Install. PY 2016 AR 1687946 DI 10.1155/2016/1687946 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH2LK UT WOS:000372617100001 ER PT S AU Bazilevsky, A AF Bazilevsky, A. CA RHIC Spin Collaboration GP IOP TI The RHIC Spin Program Overview SO XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 16th Workshop on High Energy Spin Physics (D-SPIN) CY SEP 08-12, 2015 CL Dubna, RUSSIA ID DEEP-INELASTIC-SCATTERING; ASYMMETRIES; PROTON AB After more than a decade of RHIC running as a polarized proton collider, we summarize recent achievements of the RHIC spin program and their impact on our understanding of the nucleon's spin structure, i.e. the individual parton (quarks and gluons) contributions to the helicity structure of the nucleon, and to understand the origin of the transverse spin phenomena. Open questions are identified and a suite of future measurements with polarized beams at RHIC to address them is laid out. C1 [Bazilevsky, A.; RHIC Spin Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bazilevsky, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM shura@bnl.gov NR 38 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 678 AR 012059 DI 10.1088/1742-6596/678/1/012059 PG 8 WC Physics, Particles & Fields SC Physics GA BE4ZK UT WOS:000372400500059 ER PT S AU Filatov, Y Kondratenko, AM Kondratenko, MA Kovalenko, A Derbenev, YS Lin, F Morozov, VS Zhang, Y AF Filatov, Yu Kondratenko, A. M. Kondratenko, M. A. Kovalenko, A. Derbenev, Ya S. Lin, F. Morozov, V. S. Zhang, Y. GP IOP TI Superconducting racetrack booster for the ion complex of MEIC SO XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 16th Workshop on High Energy Spin Physics (D-SPIN) CY SEP 08-12, 2015 CL Dubna, RUSSIA AB The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex. C1 [Kondratenko, A. M.; Kondratenko, M. A.] Sci & Tech Lab Zaryad, Novosibirsk 630090, Russia. [Filatov, Yu; Kovalenko, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Filatov, Yu] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia. [Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Kondratenko, AM (reprint author), Sci & Tech Lab Zaryad, Novosibirsk 630090, Russia. EM kondratenkom@mail.ru RI Filatov, Yury/D-8894-2016 OI Filatov, Yury/0000-0002-4783-9079 NR 12 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 678 AR 012015 DI 10.1088/1742-6596/678/1/012015 PG 4 WC Physics, Particles & Fields SC Physics GA BE4ZK UT WOS:000372400500015 ER PT S AU Abdelrahman, M ElBatanouny, M Serrato, M Dixon, K Larosche, C Ziehl, P AF Abdelrahman, Marwa ElBatanouny, Mohamed Serrato, Michael Dixon, Kenneth Larosche, Carl Ziehl, Paul BE Chimenti, DE Bond, LJ TI Classification of Alkali-Silica Reaction and Corrosion Distress Using Acoustic Emission SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction. C1 [Abdelrahman, Marwa; Ziehl, Paul] Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA. [ElBatanouny, Mohamed] Wiss Janney Elstner & Associates Inc, 330 Pfingsten Rd, Northbrook, IL 60062 USA. [Serrato, Michael; Dixon, Kenneth] Savannah River Natl Lab, Environm Restorat Technol Sect, Aiken, SC 29808 USA. [Larosche, Carl] Wiss Janney Eviler Associates Inc, 9511 N Lake Creek Pkwy, Austin, TX 78717 USA. RP Ziehl, P (reprint author), Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA. EM abdelram@email.sc.edu; melbatanouny@wje.com; michael.serrato@srnl.doe.gov; kenneth.dixon@srnl.doe.gov; clarosche@wje.com; ziehl@cec.sc.edu NR 15 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 140001 DI 10.1063/1.4940610 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800164 ER PT S AU Almansouri, H Clayton, D Kisner, R Polsky, Y Bouman, C Santos-Villalobos, H AF Almansouri, Hani Clayton, Dwight Kisner, Roger Polsky, Yarom Bouman, Charles Santos-Villalobos, Hector BE Chimenti, DE Bond, LJ TI Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID CT AB Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data. C1 [Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Santos-Villalobos, Hector] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Almansouri, Hani; Bouman, Charles] Purdue Univ, 610 Purdue Mall, W Lafayette, IN 47907 USA. RP Santos-Villalobos, H (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM halmanso@purdue.edu; claytonda@ornl.gov; kisnerra@ornl.gov; polskyy@ornl.gov; bouman@purdue.edu; hsantos@ornl.gov NR 19 TC 0 Z9 0 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 020013 DI 10.1063/1.4940459 PG 9 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800013 ER PT S AU Clayton, D Barker, A Albright, A Santos-Villalobos, H AF Clayton, Dwight Barker, Alan Albright, Austin Santos-Villalobos, Hector BE Chimenti, DE Bond, LJ TI Improved Synthetic Aperture Focusing Technique Results of Thick Concrete Specimens through Frequency Banding SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects(1). C1 [Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Clayton, D; Barker, A; Albright, A; Santos-Villalobos, H (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM claytonda@ornl.gov; barkeram@ornl.gov; albrightap@ornl.gov; hsantos@ornl.gov NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 020012 DI 10.1063/1.4940458 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800012 ER PT S AU Dib, G Larche, M Diaz, AA Crawford, SL Prowant, MS Anderson, MT AF Dib, Gerges Larche, Michael Diaz, Aaron A. Crawford, Susan L. Prowant, Matthew S. Anderson, Michael T. BE Chimenti, DE Bond, LJ TI Experimental Validation of Ultrasonic NDE Simulation Software SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Computer modeling and simulation is becoming an essential tool for transducer design and insight into ultrasonic nondestructive evaluation (UT-NDE). As the popularity of simulation tools for UT-NDE increases, it becomes important to assess their reliability to model acoustic responses from defects in operating components and provide information that is consistent with in-field inspection data. This includes information about the detectability of different defect types for a given UT probe. Recently, a cooperative program between the Electrical Power Research Institute and the U.S. Nuclear Regulatory Commission was established to validate numerical modeling software commonly used for simulating UT-NDE of nuclear power plant components. In the first phase of this cooperative, extensive experimental UT measurements were conducted on machined notches with varying depth, length, and orientation in stainless steel plates. Then, the notches were modeled in CIVA, a semi-analytical NDE simulation platform developed by the French Commissariat a l'Energie Atomique, and their responses compared with the experimental measurements. Discrepancies between experimental and simulation results are due to either improper inputs to the simulation model, or to incorrect approximations and assumptions in the numerical models. To address the former, a variation study was conducted on the different parameters that are required as inputs for the model, specifically the specimen and transducer properties. Then, the ability of simulations to give accurate predictions regarding the detectability of the different defects was demonstrated. This includes the results in terms of the variations in defect amplitude indications, and the ratios between tip diffracted and specular signal amplitudes. C1 [Dib, Gerges; Larche, Michael; Diaz, Aaron A.; Crawford, Susan L.; Prowant, Matthew S.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Dib, G (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM gerges.dib@pnnl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 170004 DI 10.1063/1.4940627 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800181 ER PT S AU Eisenmann, D Margetan, FJ Koester, L Clayton, D AF Eisenmann, David Margetan, Frank J. Koester, Lucas Clayton, Dwight BE Chimenti, DE Bond, LJ TI Inspection of a Large Concrete Block Containing Embedded Defects Using Ground Penetrating Radar SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work. C1 [Eisenmann, David; Margetan, Frank J.; Koester, Lucas] Iowa State Univ, Ctr Nondestruct Evaluat, 1915 Scholl Rd, Ames, IA 50011 USA. [Clayton, Dwight] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Eisenmann, D (reprint author), Iowa State Univ, Ctr Nondestruct Evaluat, 1915 Scholl Rd, Ames, IA 50011 USA. EM djeisen@iastate.edu NR 5 TC 0 Z9 0 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 020014 DI 10.1063/1.4940460 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800014 ER PT S AU Glass, SW Ramuhalli, P Fifield, LS Prowant, MS Dib, G Tedeschi, JR Suter, JD Jones, AM Good, MS Pardini, AF Hartman, TS AF Glass, S. W. Ramuhalli, P. Fifield, L. S. Prowant, M. S. Dib, G. Tedeschi, J. R. Suter, J. D. Jones, A. M. Good, M. S. Pardini, A. F. Hartman, T. S. BE Chimenti, DE Bond, LJ TI Assessment of NDE for Key Indicators of Aging Cables in Nuclear Power Plants - Interim Status SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. delta time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including delta that have been reviewed most completely in this progress period. C1 [Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RP Glass, SW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Bill.Glass@pnnl.gov NR 14 TC 0 Z9 0 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR UNSP 170006 DI 10.1063/1.4940629 PG 14 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800183 ER PT S AU Hughes, MS McCarthy, JE Bruillard, PJ Marsh, JN Wickline, SA AF Hughes, Michael S. McCarthy, John E. Bruillard, Paul J. Marsh, Jon N. Wickline, Samuel A. BE Chimenti, DE Bond, LJ TI High Contrast Ultrasonic Imaging of Resin-Rich Regions in Graphite/Epoxy Composites Using Entropy SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID WAVE-FORMS; STEROID TREATMENT; SHANNON ENTROPY; DYSTROPHIC MICE; SIGNAL RECEIVER; RENYI ENTROPY AB This study compares different approaches for imaging a near-surface resin-rich defect in a thin graphite/epoxy plate using backscattered ultrasound. The specimen was created by cutting a circular hole in the second ply; this region filled with excess resin from the graphite/epoxy sheets during the curing process. Backscattered waveforms were acquired using a 4 in. focal length, 5MHz center frequency broadband transducer, scanned on a 100x100 grid of points that were 0.03x0.03 in. apart. The specimen was scanned with the defect side closest to the transducer. Consequently, the reflection from the resin-rich region cannot be gated from the large front-wall echo. At each point in the grid 256 waveforms were averaged together and subsequently used to produce peak-to-peak, Signal Energy (sum of squared digitized waveform values), as well as entropy images of two different types (a Renyi entropy, and a joint entropy). As the figure shows, all of the entropy images exhibit better border delineation and defect contrast than the either the peak-to-peak or Signal Energy. The best results are obtained using the joint entropy of the backscattered waveforms with a reference function. Two different references are examined. The first is a reflection of the insonifying pulse from a stainless steel reflector. The second is an approximate optimum obtained from an iterative parametric search. The joint entropy images produced using this reference exhibit three times the contrast obtained in previous studies. C1 [Hughes, Michael S.; Bruillard, Paul J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [McCarthy, John E.] Washington Univ, Depart Math, St Louis, MO USA. [Marsh, Jon N.; Wickline, Samuel A.] Washington Univ, Sch Med, St Louis, MO USA. RP Hughes, MS (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM michael.s.hughes@pnnl.gov NR 19 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 120002 DI 10.1063/1.4940587 PG 7 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800141 ER PT S AU Larche, MR Baldwin, DL Edwards, MK Mathews, RA Prowant, MS Diaz, AA AF Larche, M. R. Baldwin, D. L. Edwards, M. K. Mathews, R. A. Prowant, M. S. Diaz, A. A. BE Chimenti, DE Bond, LJ TI Progress in the Development and Demonstration of a 2D-Matrix Phased Array Ultrasonic Probe for Under-Sodium Viewing SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Optically opaque liquid sodium used in liquid metal fast reactors poses a unique set of challenges for nondestructive evaluation. The opaque nature of the sodium prevents visual examinations of components within this medium, but ultrasonic waves are able to propagate through sodium so an ultrasonic testing (UT) technique can be applied for imaging objects in sodium. A UT sensor used in liquid sodium during a refueling outage must be capable of withstanding the 260 degrees C corrosive environment and must also be able to wet (couple the ultrasonic waves) so that sound can propagate into the sodium. A multi-year iterative design effort, based on earlier work in the 1970s, has set out to improve the design and fabrication processes needed for a UT sensor technology capable of overcoming the temperature and wetting issues associated with this environment. Robust materials and improved fabrication processes have resulted in single-element sensors and two different linear-array sensors that have functioned in liquid sodium. More recent efforts have been focused on improving signal-to-noise ratio and image resolution in the highly attenuating liquid sodium. In order to accomplish this, modeling and simulation tools were used to design a 60-element 2D phased-array sensor operating at 2 MHz that features a separate transmitter and receiver. This design consists of 30 transmit elements and another 30 receive elements, each arranged in a rectangular matrix pattern that is 10 rows tall and 3 wide. The fabrication of this 2D array is currently underway and will be followed by a series of performance tests in water, hot oil, and finally in liquid sodium at 260 degrees C. The performance testing cycle will evaluate multiple characteristics of the sensor that are crucial to performance including: transmit-uniformity, element sensitivity variations, element-to-element energy leakage, sound field dimensions, and spatial resolution. This paper will present a summary of results from the previous UT sensors as well as the results to date on the 2D phased-array sensor fabrication and evaluation. C1 [Larche, M. R.; Baldwin, D. L.; Edwards, M. K.; Mathews, R. A.; Prowant, M. S.; Diaz, A. A.] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. RP Larche, MR (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM Michael.Larche@pnnl.gov NR 4 TC 0 Z9 0 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 170005 DI 10.1063/1.4940628 PG 8 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800182 ER PT S AU Lau, SJ Moore, DG Stair, SL Nelson, CL AF Lau, Sarah J. Moore, David G. Stair, Sarah L. Nelson, Ciji L. BE Chimenti, DE Bond, LJ TI Application of Temporal Moments and Other Signal Processing Algorithms to Analysis of Ultrasonic Signals through Melting Wax SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID MEDIA AB Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linear relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This paper describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results. C1 [Lau, Sarah J.; Moore, David G.; Nelson, Ciji L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Stair, Sarah L.] Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA. RP Lau, SJ; Moore, DG; Nelson, CL (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Stair, SL (reprint author), Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA. EM slau@sandia.gov; dgmoore@sandia.gov; Sarah_Stair@baylor.edu; cijnels@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 180006 DI 10.1063/1.4940636 PG 9 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800190 ER PT S AU Meyer, RM Komura, I Kim, KC Zetterwall, T Cumblidge, SE Prokofiev, I AF Meyer, Ryan M. Komura, Ichiro Kim, Kyung-cho Zetterwall, Tommy Cumblidge, Stephen E. Prokofiev, Iouri BE Chimenti, DE Bond, LJ TI Overview of the Program to Assess the Reliability of Emerging Nondestructive Techniques Open Testing and Study of Flaw Type Effect on NDE Response SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results. C1 [Meyer, Ryan M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Komura, Ichiro] Japan Power Engn & Inspect Corp, Yokohama, Kanagawa, Japan. [Kim, Kyung-cho] Korea Inst Nucl Safety, Daejeon, South Korea. [Zetterwall, Tommy] Swedish Qualificat Ctr, Taby, Sweden. [Cumblidge, Stephen E.; Prokofiev, Iouri] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Meyer, RM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Ryan.Meyer@pnnl.gov NR 3 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 200010 DI 10.1063/1.4940654 PG 11 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800208 ER PT S AU Smith, JA Lacy, JM Levesque, D Monchalin, JP Lord, M AF Smith, James A. Lacy, Jeffrey M. Levesque, Daniel Monchalin, Jean-Pierre Lord, Martin BE Chimenti, DE Bond, LJ TI Use of the Hugoniot Elastic Limit in Laser Shockwave Experiments to Relate Velocity Measurements SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID INTERFACE STRENGTH; SPALLATION TECHNIQUE; WAVES; PULSE AB The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems. C1 [Smith, James A.; Lacy, Jeffrey M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Levesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin] Natl Res Council Canada, Boucherville, PQ, Canada. RP Smith, JA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM James.Smith@INL.gov NR 24 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 080005 DI 10.1063/1.4940537 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800091 ER PT S AU Sun, JG Tao, N AF Sun, J. G. Tao, N. BE Chimenti, DE Bond, LJ TI Thermal Property Measurement for Thermal Barrier Coatings Using Pulsed Thermal Imaging - Multilayer Analysis Method SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID DIFFUSIVITY MEASUREMENTS AB Thermal barrier coatings (TBCs) are extensively used on hot gas-path components in gas turbines to improve engine performance and extend component life. TBC thermal properties, specifically the thermal conductivity and heat capacity (the product of density and specific heat), are important parameters in these applications. These TBC properties are usually measured by destructive methods with specially prepared TBC samples. Nondestructive evaluation (NDE) methods have been developed in recently years that can measure TBC properties on natural TBC samples. However, many have limitations when examining TBCs on engine components. One exception is the pulsed thermal imaging multilayer analysis (PTI-MLA) method, which can be applied to essentially any TBC samples with one or more coating layers and can determine TBC property distributions over the entire TBC surface. This paper describes its basic theories and implementations and discusses its potential applications to all areas of TBC studies. C1 [Sun, J. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tao, N.] Capital Normal Univ, Beijing, Peoples R China. RP Sun, JG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sun@anl.gov NR 17 TC 0 Z9 0 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 100004 DI 10.1063/1.4940564 PG 6 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800118 ER PT J AU Pyatina, T Sugama, T AF Pyatina, Tatiana Sugama, Toshifumi TI Resistance of fly ash-Portland cement blends to thermal shock SO ADVANCES IN CEMENT RESEARCH LA English DT Article ID INFRARED-SPECTROSCOPY; TEMPERATURE; HYDRATION; GEOPOLYMERS; RAMAN; REFLECTANCE; ACTIVATION; CONCRETE; MORTARS; RATIO AB Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90% fly ash F (FAF) were left to set at room temperature, then hydrated for 24 h at 85 degrees C and then for an additional 24 h at 300 degrees C, and tested in five thermal-shock cycles (600 degrees C heat - 25 degrees C water quenching). X-ray diffraction (XRD) and thermal gravimetric analyses, along with calorimetric measurements and scanning electron microscope-energy-dispersive X-ray tests demonstrated that the activated blends form more hydrates after 24 h at 300 degrees C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and soda-ash engendered the concomitant hydration of ordinary Portland cement (OPC) and class F fly ash (FAF), with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime and wairakite, along with the amorphous FAF hydration products. In sodium sulfate-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after five thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermal shock. There was no significant difference in the performance of the blends with different activators. C1 [Pyatina, Tatiana; Sugama, Toshifumi] Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA. RP Pyatina, T (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA. FU Geothermal Technologies Office in the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), under the auspices of the US DOE, Washington, DC [DE-AC02-98CH 10886-98CH10886]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This publication was based on the work supported by the Geothermal Technologies Office in the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), under the auspices of the US DOE, Washington, DC, under Contract No. DE-AC02-98CH 10886 -98CH10886. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 43 TC 2 Z9 2 U1 2 U2 4 PU ICE PUBLISHING PI WESTMINISTER PA INST CIVIL ENGINEERS, 1 GREAT GEORGE ST, WESTMINISTER SW 1P 3AA, ENGLAND SN 0951-7197 EI 1751-7605 J9 ADV CEM RES JI Adv. Cem. Res. PY 2016 VL 28 IS 2 BP 121 EP 131 DI 10.1680/adcr.15.00030 PG 11 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA DG3ON UT WOS:000371979400007 ER PT J AU Wang, YP Jiang, J Chen-Charpentier, B Agusto, FB Hastings, A Hoffman, F Rasmussen, M Smith, MJ Todd-Brown, K Wang, Y Xu, X Luo, YQ AF Wang, Y. P. Jiang, J. Chen-Charpentier, B. Agusto, F. B. Hastings, A. Hoffman, F. Rasmussen, M. Smith, M. J. Todd-Brown, K. Wang, Y. Xu, X. Luo, Y. Q. TI Responses of two nonlinear microbial models to warming and increased carbon input SO BIOGEOSCIENCES LA English DT Article ID SOIL ORGANIC-MATTER; MICHAELIS-MENTEN KINETICS; TROPICAL FOREST; DECOMPOSITION; NITROGEN; TEMPERATURE; RESPIRATION; LITTERFALL; EFFICIENCY; CO2 AB A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. Here we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in their initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (F-max) decreases with an increase in soil temperature in both models. However, the sensitivity of F-max to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. These insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change. C1 [Wang, Y. P.] CSIRO Ocean & Atmosphere, PMB 1, Aspendale, Vic 3195, Australia. [Jiang, J.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Chen-Charpentier, B.] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA. [Agusto, F. B.] Austin Peay State Univ, Dept Math & Stat, Clarksville, TN 37044 USA. [Hastings, A.] Univ Calif Davis, Dept Environm Sci & Policy, One Shields Ave, Davis, CA 95616 USA. [Hoffman, F.] Oak Ridge Natl Lab, Computat Earth Sci Grp, POB 2008, Oak Ridge, TN 37831 USA. [Rasmussen, M.] Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London, England. [Smith, M. J.] Microsoft Res, Computat Sci Lab, Cambridge, England. [Todd-Brown, K.; Xu, X.; Luo, Y. Q.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Wang, Y.] Univ Oklahoma, Dept Math, Norman, OK 73019 USA. [Todd-Brown, K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, YP (reprint author), CSIRO Ocean & Atmosphere, PMB 1, Aspendale, Vic 3195, Australia. EM yingping.wang@csiro.au RI Hoffman, Forrest/B-8667-2012; wang, yp/A-9765-2011; OI Hoffman, Forrest/0000-0001-5802-4134; Todd-Brown, Katherine/0000-0002-3109-8130 FU National Science Foundation; US Department of Homeland Security; US Department of Agriculture through NSF [EF-0832858]; University of Tennessee, Knoxville FX This work was assisted through participation of the authors in the working group Nonautonomous Systems and Terrestrial Carbon Cycle, at the National Institute for Mathematical and Biological Synthesis, an institute sponsored by the National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF award no. EF-0832858, with additional support from the University of Tennessee, Knoxville. We are grateful for the constructive comments from the associate editor and three reviewers. Source code and data used in this study are available on request by email (yingping.wang@csiro.au). NR 50 TC 1 Z9 1 U1 7 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 4 BP 887 EP 902 DI 10.5194/bg-13-887-2016 PG 16 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DG4ZR UT WOS:000372082200001 ER PT J AU dos Santos, LT Marra, DM Trumbore, S de Camargo, PB Negron-Juarez, RI Lima, AJN Ribeiro, GHPM dos Santos, J Higuchi, N AF dos Santos, Leandro T. Marra, Daniel Magnabosco Trumbore, Susan de Camargo, Plinio B. Negron-Juarez, Robinson I. Lima, Adriano J. N. Ribeiro, Gabriel H. P. M. dos Santos, Joaquim Higuchi, Niro TI Windthrows increase soil carbon stocks in a central Amazon forest SO BIOGEOSCIENCES LA English DT Article ID NORTHEASTERN COSTA-RICA; BARRO-COLORADO ISLAND; TROPICAL PASTURES; BRAZILIAN AMAZON; LARGE BLOWDOWNS; ORGANIC-MATTER; TREEFALL PITS; RAIN-FOREST; DISTURBANCE; DYNAMICS AB Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 +/- 8.2 Mg ha(-1), mean +/- 95% confidence interval) was marginally higher (p = 0.09) than that from undisturbed plots (47.7 +/- 13.6 Mg ha(-1)). The soil organic carbon concentration in disturbed plots (2.0 +/- 0.17 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 +/- 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r(2) = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity (r(2) = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest re-growth and increase vegetation resilience. C1 [dos Santos, Leandro T.; Marra, Daniel Magnabosco; Lima, Adriano J. N.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Higuchi, Niro] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. [Marra, Daniel Magnabosco; Trumbore, Susan] Max Planck Inst Biochem, Biogeochem Proc Dept, Jena, Germany. [Marra, Daniel Magnabosco] Univ Leipzig, AG Spezielle Bot & Funktionelle Biodiversitat, D-04109 Leipzig, Germany. [de Camargo, Plinio B.] Ctr Energia Nucl Agr, Piracicaba, Brazil. [Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. RP Marra, DM (reprint author), Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil.; Marra, DM (reprint author), Max Planck Inst Biochem, Biogeochem Proc Dept, Jena, Germany.; Marra, DM (reprint author), Univ Leipzig, AG Spezielle Bot & Funktionelle Biodiversitat, D-04109 Leipzig, Germany. EM dmarra@bgc-jena.mpg.de RI Negron-Juarez, Robinson/I-6289-2016; Camargo, Plinio/D-6635-2012 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [MCTI/N14/2012, 473357/2012-7]; INCT - Madeiras da Amazonia; Biogeochemistry Processes Department of the Max Planck Institute for Biogeochemistry; Laboratorio de Manejo Florestal (LMF/INPA); Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge the workers from the EEST/INPA for giving support with the fieldwork, and the lab team of the CENA-USP and the Laboratorio Tematico de Solos e Plantas (LTSP/INPA) for giving support with the soil analyses. We also acknowledge the SUFRAMA for allowing us to access part of the study area. At last, we acknowledge Edzo Velkamp, an anonymous referee, and Hermann F. Jungkunst for providing valuable comments during the revision of this article. This study was financed by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) within the project SAWI (Chamada Universal MCTI/N14/2012, Proc. 473357/2012-7) and the INCT - Madeiras da Amazonia. It has also been supported by the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE), a joint project between the Biogeochemistry Processes Department of the Max Planck Institute for Biogeochemistry and the Laboratorio de Manejo Florestal (LMF/INPA). Robinson I. Negron-Juarez was supported by the Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of Next-Generation Ecosystems Experiments (NGEE Tropics) and the Regional and Global Climate Modeling (RGCM) Program. NR 65 TC 0 Z9 0 U1 10 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 4 BP 1299 EP 1308 DI 10.5194/bg-13-1299-2016 PG 10 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DG4ZR UT WOS:000372082200028 ER PT J AU Marra, DM Higuchi, N Trumbore, SE Ribeiro, GHPM dos Santos, J Carneiro, VMC Lima, AJN Chambers, JQ Negron-Juarez, RI Holzwarth, F Reu, B Wirth, C AF Marra, Daniel Magnabosco Higuchi, Niro Trumbore, Susan E. Ribeiro, Gabriel H. P. M. dos Santos, Joaquim Carneiro, Vilany M. C. Lima, Adriano J. N. Chambers, Jeffrey Q. Negron-Juarez, Robinson I. Holzwarth, Frederic Reu, Bjoern Wirth, Christian TI Predicting biomass of hyperdiverse and structurally complex central Amazonian forests - a virtual approach using extensive field data SO BIOGEOSCIENCES LA English DT Article ID TROPICAL RAIN-FORESTS; WOOD DENSITY; ABOVEGROUND BIOMASS; CARBON STOCKS; ALLOMETRIC MODELS; SECONDARY FOREST; CENTRAL-EUROPE; LIFE-HISTORY; TREE HEIGHT; DISTURBANCE AB Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90% of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height >= 5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different mod-els and an available pantropical model, we observed systematic biases ranging from -31% (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha(-1) (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha(-1)) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i. e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including speciesspecific attributes, which are often unavailable or estimated imprecisely in most regions. C1 [Marra, Daniel Magnabosco; Holzwarth, Frederic; Reu, Bjoern; Wirth, Christian] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Leipzig, Germany. [Marra, Daniel Magnabosco; Trumbore, Susan E.] Max Planck Inst Biogeochem, Biogeochem Proc Dept, D-07745 Jena, Germany. [Marra, Daniel Magnabosco; Higuchi, Niro; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Carneiro, Vilany M. C.; Lima, Adriano J. N.] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. [Chambers, Jeffrey Q.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Reu, Bjoern] Univ Ind Santander, Escuela Biol, Bucaramanga, Colombia. [Wirth, Christian] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany. [Wirth, Christian] Max Planck Inst Biogeochem, Funct Biogeog Fellow Grp, D-07745 Jena, Germany. RP Marra, DM (reprint author), Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Leipzig, Germany.; Marra, DM (reprint author), Max Planck Inst Biogeochem, Biogeochem Proc Dept, D-07745 Jena, Germany.; Marra, DM (reprint author), Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. EM dmarra@bgc-jena.mpg.de RI Chambers, Jeffrey/J-9021-2014; Negron-Juarez, Robinson/I-6289-2016 OI Chambers, Jeffrey/0000-0003-3983-7847; FU Brazilian Council for Scientific and Technological Development (CNPq) [473357/2012-7, 14/2012]; Max Planck Institute for Biogeochemistry within the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE); Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX This study has been possible thanks to the extensive fieldwork carried by members of the Laboratorio de Manejo Florestal (LMF) from the Instituto Nacional de Pesquisas da Amazonia (INPA). We gratefully acknowledge: Antonio F. da Silva, Armando N. Colares, Bertran A. da Silva (in memoriam), Geraldo A. da Mota, Geraldo E. da Silva, Francinilton R. de Araujo, Francisco H. M. dos Santos, Francisco Q. Reis, Jose M. de Souza, Jose M. B. da Paz, Jose M. G. Quintanilha Junior, Manoel F. J. de Souza, Manoel N. Taveira, Paulo J. Q. de Lacerda (in memoriam), Pedro L. de Figueiredo (in memoriam), Romeu D. de Paiva, Sebastiao M. do Nascimento, Sergio L. Leite, Valdecira M. J. Azevedo and Wanderley de L. Reis. This study was financed by the Brazilian Council for Scientific and Technological Development (CNPq) within the projects Piculus, INCT Madeiras da Amazonia and Succession After Windthrows (SAWI) (Chamada Universal MCTI/No 14/2012, Proc. 473357/2012-7), and supported by the Max Planck Institute for Biogeochemistry within the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE). Robinson I. Negron-Juarez was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of Next-Generation Ecosystems Experiments (NGEE Tropics) and the Regional and Global Climate Modeling (RGCM) Program. NR 100 TC 1 Z9 1 U1 7 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 5 BP 1553 EP 1570 DI 10.5194/bg-13-1553-2016 PG 18 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DG4ZU UT WOS:000372082500011 ER PT J AU Claure, MT Morrill, MR Goh, JW Chai, SH Dai, S Agrawal, PK Jones, CW AF Claure, Micaela Taborga Morrill, Michael R. Goh, Jin Wai Chai, Song-Hai Dai, Sheng Agrawal, Pradeep K. Jones, Christopher W. TI Insight into reaction pathways in CO hydrogenation reactions over K/MoS2 supported catalysts via alcohol/olefin co-feed experiments SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; MOLYBDENUM-BASED CATALYSTS; SYNTHESIS GAS CONVERSION; WALLED CARBON NANOTUBES; MG-AL HYDROTALCITE; HIGHER ALCOHOLS; SULFIDE CATALYSTS; SYNGAS; ETHANOL; POTASSIUM AB Reaction pathways for higher alcohol synthesis from syngas are studied over K/MoS2 domains supported on mesoporous carbon (C) and mixed MgAl oxide (MMO) via addition of methanol, ethanol, and ethylene co-feeds. A methanol co-feed results in an increase in ethanol and methane production for the catalysts studied. Ethanol or ethylene co-feeds yield increased C3+OH and C2+HC over the supported catalysts. No change is observed in the product distribution over K/bulk-MoS2 with an ethanol co-feed, but 1-propanol production significantly increases in the presence of ethylene, suggesting the formation of ethyl species from ethanol and/or the adsorption of ethanol are rate-controlling for 1-propanol formation when ethanol is co-fed. Ethylene and ethanol co-feeds yield similar production rates of C3+OH over the MMO catalyst, indicating that alcohol formation likely proceeds primarily via the same acyl intermediate as olefin carbonylation. Supports do seem to have an important influence on the reaction pathways. Specifically, acidic carbon support seems to facilitate alcohol dehydration/hydrogenation to produce alkanes, while MMO influences methanol plus 1-propanol coupling to form isobutyl alcohol. However, Mo-K-MMO sites are key for superior normalized C3+OH productivity with ethanol and ethylene co-feeds over the MMO catalyst. C1 [Claure, Micaela Taborga; Morrill, Michael R.; Goh, Jin Wai; Agrawal, Pradeep K.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Chai, Song-Hai; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Agrawal, PK; Jones, CW (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM pradeep.agrawal@chbe.gatech.edu; cjones@chbe.gatech.edu RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU U.S. DOE Office of Science, Center for Understanding and Control of Acid Gas Evolution of Materials for Energy; Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012577] FX The authors would like to thank Dr. Liwei Li for fruitful discussions. CWJ, MTC, SHC, and SD thank the U.S. DOE Office of Science for particular support of this work (travel, coordination, and partial support for MTC and SHC) as part of the Center for Understanding and Control of Acid Gas Evolution of Materials for Energy, and Energy Frontier Research Center, funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0012577. NR 55 TC 2 Z9 2 U1 14 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 6 BP 1957 EP 1966 DI 10.1039/c5cy01587a PG 10 WC Chemistry, Physical SC Chemistry GA DG6DQ UT WOS:000372172800042 ER PT J AU Huang, JP Poyraz, AS Takeuchi, KJ Takeuchi, ES Marschilok, AC AF Huang, Jianping Poyraz, Altug S. Takeuchi, Kenneth J. Takeuchi, Esther S. Marschilok, Amy C. TI MxMn8O16 (M = Ag or K) as promising cathode materials for secondary Mg based batteries: the role of the cation M SO CHEMICAL COMMUNICATIONS LA English DT Article ID OCTAHEDRAL MOLECULAR-SIEVES; MANGANESE OXIDE; ENERGY-STORAGE; ELECTROCHEMICAL INSERTION; SILVER HOLLANDITE; HIGH-CAPACITY; MAGNESIUM; ION; ALPHA-MNO2; ELECTRODES AB AgxMn8O16 (Ag-OMS-2) and KxMn8O16 (K-OMS-2) were investigated as high voltage cathode materials for Mg based batteries. Both MxMn8O16 materials delivered high initial capacities (>180 mA h g(-1)), and KxMn8O16 showed high cycle stability with a reversible capacity of >170 mA h g(-1) after 20 cycles. C1 [Huang, Jianping; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Poyraz, Altug S.; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. [Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Takeuchi, KJ; Takeuchi, ES; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.; Takeuchi, KJ; Takeuchi, ES; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM kenneth.takeuchi.1@stonybrook.edu; esther.takeuchi@stonybrook.edu; amy.marschilok@stonybrook.edu RI Huang, Jianping/C-9379-2014 OI Huang, Jianping/0000-0002-8391-1381 FU Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Department of Energy, Office of Electricity; Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Materials synthesis and characterization was supported as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Electrochemistry in magnesium electrolyte was supported by the Department of Energy, Office of Electricity, administered through Sandia National Laboratories, Purchase Order #1275961. XPS experiments were carried out at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is supported by the Department of Energy, Office of Basic Energy Sciences (DE-AC02-98CH10886). NR 29 TC 2 Z9 2 U1 13 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 21 BP 4088 EP 4091 DI 10.1039/c6cc00025h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG3ZV UT WOS:000372010600024 PM 26899919 ER PT J AU Xu, J Lin, F Nordlund, D Crumlin, EJ Wang, F Bai, JM Doeff, MM Tong, W AF Xu, Jing Lin, Feng Nordlund, Dennis Crumlin, Ethan J. Wang, Feng Bai, Jianming Doeff, Marca M. Tong, Wei TI Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2 SO CHEMICAL COMMUNICATIONS LA English DT Article ID LITHIUM-ION BATTERIES; LAYERED CATHODE MATERIALS; ELECTRODE MATERIALS; OXIDE; CHEMISTRY; BEHAVIOR; LI; MN AB Phase pure LiNiO2 was prepared using a solid-state method and the optimal synthesis conditions led to a remarkably high capacity of 200 mA h g(-1) with excellent retention. The combination of bulk and surface characterization elucidated an essential role of the excess Li in phase formation during synthesis and the subsequent electrochemical performance. C1 [Xu, Jing; Lin, Feng; Doeff, Marca M.; Tong, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Crumlin, Ethan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wang, Feng] Brookhaven Natl Lab, Dept Sustainable Energy Technol, Upton, NY 11973 USA. [Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Tong, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM weitong@lbl.gov RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU Energy Efficiency and Renewable Energy (EERE), Office of Vehicle Technologies of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. DOE Office of EERE under the Advanced Battery Materials Research program [DE-SC0012704]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Vehicle Technologies of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Soft XAS experiments were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE Office of Science by Stanford University. The use of the SSRL, SLAC National Accelerator Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. J. Bai and F. Wang thank the support by the U.S. DOE Office of EERE under the Advanced Battery Materials Research program, Contract No. DE-SC0012704. Use of the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Synchrotron XPS was carried out at beamline 9.3.2 at the Advanced Light Source in Lawrence Berkeley National Laboratory (LBNL), which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. The authors are grateful for the support for Raman characterization from Dr. Robert Kostecki and Dr. Jarry Angelique in LBNL. NR 20 TC 4 Z9 4 U1 7 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 22 BP 4239 EP 4242 DI 10.1039/c5cc09434h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG6ER UT WOS:000372175700030 PM 26911422 ER PT J AU Jin, T Xiong, Y Zhu, X Tian, ZQ Tao, DJ Hu, J Jiang, DE Wang, HL Liu, HL Dai, S AF Jin, Tian Xiong, Yan Zhu, Xiang Tian, Ziqi Tao, Duan-Jian Hu, Jun Jiang, De-en Wang, Hualin Liu, Honglai Dai, Sheng TI Rational design and synthesis of a porous, task-specific polycarbazole for efficient CO2 capture SO CHEMICAL COMMUNICATIONS LA English DT Article ID CARBON-DIOXIDE CAPTURE; BENZIMIDAZOLE-LINKED POLYMERS; COVALENT ORGANIC FRAMEWORKS; GAS-STORAGE; ADSORPTION; NETWORKS; DENSITY; FUNCTIONALIZATION; SEPARATION; CONVERSION AB We present a rational design and synthesis of a novel porous pyridine-functionalized polycarbazole for efficient CO2 capture based on the density functional theory calculations. The task-specific polymer, generated through a one-step FeCl3-catalyzed oxidative coupling reaction, exhibits a superior CO2 uptake at 1.0 bar and 273 K (5.57 mmol g(-1)). C1 [Jin, Tian; Xiong, Yan; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. [Jin, Tian; Xiong, Yan; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tao, Duan-Jian; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Tian, Ziqi; Jiang, De-en] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Wang, Hualin] E China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Asse, Shanghai 200237, Peoples R China. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Liu, HL (reprint author), E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China.; Liu, HL (reprint author), E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China.; Zhu, X; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM hlliu@ecust.edu.cn; xiang@utk.edu; zhuxiang.ecust@gmail.com; hlliu@ecust.edu.cn; dais@ornl.gov RI Zhu, Xiang/P-6867-2014; Dai, Sheng/K-8411-2015; Jiang, De-en/D-9529-2011 OI Zhu, Xiang/0000-0002-3973-4998; Dai, Sheng/0000-0002-8046-3931; Jiang, De-en/0000-0001-5167-0731 FU National Key Technology Support Program of China [2015BAC04B01]; National Natural Science Foundation of China [91334203, 21376074, 21321064]; 111 Project of Ministry of Education of China [B08021]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX TJ, YX and HLL were supported by the National Key Technology Support Program of China (2015BAC04B01), the National Natural Science Foundation of China (No. 91334203, 21376074 and 21321064) and the 111 Project of Ministry of Education of China (No. B08021). XZ, ZT, DJ and SD were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 37 TC 10 Z9 10 U1 20 U2 88 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 24 BP 4454 EP 4457 DI 10.1039/c6cc00573j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG6EI UT WOS:000372174700005 PM 26864392 ER PT J AU Pan, FX Xu, CQ Li, LJ Min, X Wang, JQ Li, J Zhai, HJ Sun, ZM AF Pan, Fu-Xing Xu, Cong-Qiao Li, Lei-Jiao Min, Xue Wang, Jian-Qiang Li, Jun Zhai, Hua-Jin Sun, Zhong-Ming TI A niobium-necked cluster [As3Nb(As3Sn3)](3-) with aromatic Sn-3(2-) SO DALTON TRANSACTIONS LA English DT Article ID METAL-MEDIATED ACTIVATION; DELTAHEDRAL ZINTL IONS; INTERMETALLOID CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; DIRECT EXTRACTION; SANDWICH COMPLEX; COVALENT RADII; GAS-PHASE; AB-INITIO; TRANSITION AB We describe here the synthesis and characterization of a ternary cluster compound [As3Nb(As3Sn3)](3)- (1), in which a niobium(v) atom is coordinated by an As-3(3-) triangle and a bowl -type As3Sn35- ligand. Cluster 1 was synthesized by dissolving K8NbSnAs5 (2) in the presence of [2.2.21crypt in ethylenediamine solution, filtered and layered with toluene, then crystallized in the form of [K([2.2.21crypt)](3)[As3Nb(As3Sn3)]center dot en.tol center dot The flower-vase shaped compound 1 features a new structure type, rather different from the known Zintl phases. The stability and bonding of 1 are elucidated via extensive bonding analyses. The Sn-3 ring is found to have n-aromaticity featuring a delocalized Sn-Sn-Sn sigma bond. Electronic structure calculations confirm the Nb(v) oxidation state and weak Nb-Sn and Sn-Sn bonding, in addition to the normal Nb-As and As-As bonds. C1 [Pan, Fu-Xing; Li, Lei-Jiao; Min, Xue; Sun, Zhong-Ming] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China. [Pan, Fu-Xing; Min, Xue] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Wang, Jian-Qiang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Li, Jun] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhai, Hua-Jin] Shanxi Univ, Inst Mol Sci, Nanocluster Lab, Taiyuan 030006, Peoples R China. RP Sun, ZM (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China.; Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Li, J (reprint author), Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China.; Li, J (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM junli@tsinghua.edu.cn; szm@ciac.ac.cn OI Xu, Cong-Qiao/0000-0003-4593-3288 FU NSF of China [21171162, 21221062, 21573138]; Jilin Province Youth Foundation [20130522132JH]; SRF for ROCS (Chinese Ministry of Education); State Key Laboratory of Quantum Optics and Quantum Optics Devices [KF201402]; Shanxi University FX This work was supported by the NSF of China (21171162, 21221062, 21573138), Jilin Province Youth Foundation (20130522132JH), SRF for ROCS (Chinese Ministry of Education), and the State Key Laboratory of Quantum Optics and Quantum Optics Devices (KF201402). H. J. Z. gratefully acknowledges the start-up fund from Shanxi University for support. The calculations were performed at the Tsinghua National Laboratory for Information Science and Technology. We thank Prof. Yong Pei for valuable discussions. NR 84 TC 1 Z9 1 U1 5 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 9 BP 3874 EP 3879 DI 10.1039/c6dt00028b PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DF2AG UT WOS:000371140900028 PM 26905226 ER PT J AU Guo, XF Tiferet, E Qi, L Solomon, JM Lanzirotti, A Newville, M Engelhard, MH Kukkadapu, RK Wu, D Ilton, ES Asta, M Sutton, SR Xu, HW Navrotsky, A AF Guo, Xiaofeng Tiferet, Eitan Qi, Liang Solomon, Jonathan M. Lanzirotti, Antonio Newville, Matthew Engelhard, Mark H. Kukkadapu, Ravi K. Wu, Di Ilton, Eugene S. Asta, Mark Sutton, Stephen R. Xu, Hongwu Navrotsky, Alexandra TI U(V) in metal uranates: a combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4 SO DALTON TRANSACTIONS LA English DT Article ID HIGH-TEMPERATURE CALORIMETRY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; URANIUM-COMPOUNDS; FORMATION ENTHALPIES; STANDARD ENTHALPIES; MAGNETIC-STRUCTURES; OXIDATION-STATE; ENERGETICS; SYSTEM AB Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO4, CrUO4 and FeUO4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and Fe-57-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U5+ has been solidly confirmed in CrUO4 and FeUO4, which are thermodynamically stable compounds, and the origin and stability of U5+ in the system was elaborated by DFT. The structural and thermodynamic behaviour of U5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal. C1 [Guo, Xiaofeng; Xu, Hongwu] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Guo, Xiaofeng; Tiferet, Eitan; Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Guo, Xiaofeng; Tiferet, Eitan; Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Nanomat Environm Agr & Technol Organized Res Unit, Davis, CA 95616 USA. [Tiferet, Eitan] Nucl Res Ctr Negev, Israel Inst, POB 9001, IL-84190 Beer Sheva, Israel. [Qi, Liang; Solomon, Jonathan M.; Asta, Mark] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Qi, Liang] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Engelhard, Mark H.; Kukkadapu, Ravi K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sutton, Stephen R.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.; Navrotsky, A (reprint author), Univ Calif Davis, Nanomat Environm Agr & Technol Organized Res Unit, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu RI Wu, Di/A-3039-2014; Qi, Liang/A-3851-2010; OI Wu, Di/0000-0001-6879-321X; Qi, Liang/0000-0002-0201-9333; Engelhard, Mark/0000-0002-5543-0812; Xu, Hongwu/0000-0002-0793-6923; Guo, Xiaofeng/0000-0003-3129-493X FU Materials Science of Actinides, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001089]; Office of Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO1930]; National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy - GeoSciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; laboratory-directed research and development (LDRD) program, through the G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL); DOE [DE-AC52-06NA25396] FX This study, including synthesis, characterization, DFT calculations and calorimetric measurements, was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001089. The Mossbauer and XPS analyses were performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO1930. The XAS work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy - GeoSciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The last stage of this work was also supported by the laboratory-directed research and development (LDRD) program, through the G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396, in that X.G. is now pursuing a Seaborg postdoctoral fellowship at LANL. NR 75 TC 6 Z9 6 U1 11 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 11 BP 4622 EP 4632 DI 10.1039/c6dt00066e PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DG6JW UT WOS:000372191500023 PM 26854913 ER PT J AU Lampert, DJ Cai, H Elgowainy, A AF Lampert, David J. Cai, Hao Elgowainy, Amgad TI Wells to wheels: water consumption for transportation fuels in the United States SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID NATURAL-GAS; ENERGY; INTENSITY; OIL AB The sustainability of energy resources such as transportation fuels is increasingly connected to the consumption of water resources. Water is required for irrigation in the development of bioenergy, reservoir creation in hydroelectric power generation, drilling and resource displacement in petroleum and gas production, mineral extraction in mining operations, and cooling and processing in thermoelectric power generation. Vehicles powered by petroleum, electricity, natural gas, ethanol, biodiesel, and hydrogen fuel cells consume water resources indirectly through fuel production cycles, and it is important to understand the impacts of these technologies on water resources. Previous investigations of water consumption for transportation fuels have focused primarily on key processes and pathways, ignoring the impacts of many intermediate, inter-related processes used in fuel production cycles. Herein, the results of a life cycle analysis of water consumption for transportation fuels in the United States using an extensive system boundary that includes the water embedded in intermediate processing and transportation fuels are presented. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation ( GREET) model provides a comprehensive framework and system boundary for transportation fuel analysis in the United States. GREET was expanded to include water consumption and used to compare the water consumed per unit energy and per km traveled in light-duty vehicles. Many alternative fuels were found to consume larger quantities of water on a per km basis than traditional petroleum pathways, and it is therefore important to consider the implications of transportation and energy policy changes on water resources in the future. C1 [Lampert, David J.; Cai, Hao; Elgowainy, Amgad] Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Lemont, IL 60439 USA. RP Lampert, DJ (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Lemont, IL 60439 USA. EM david.lampert@okstate.edu RI Lampert, David/G-2826-2016 OI Lampert, David/0000-0001-7357-1873 FU Bioenergy Technologies Office; Fuel Cell Technologies Office; Vehicle Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This research effort was supported by the Bioenergy Technologies Office, Fuel Cell Technologies Office, and the Vehicle Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under contract number DE-AC02-06CH11357. NR 42 TC 4 Z9 4 U1 6 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 787 EP 802 DI 10.1039/c5ee03254g PG 16 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600005 ER PT J AU Sathre, R Greenblatt, JB Walczak, K Sharp, ID Stevens, JC Ager, JW Houle, FA AF Sathre, Roger Greenblatt, Jeffery B. Walczak, Karl Sharp, Ian D. Stevens, John C. Ager, Joel W., III Houle, Frances A. TI Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SOLAR HYDROGEN-PRODUCTION; INTEGRATED PHOTOELECTROLYSIS SYSTEM; LIFE-CYCLE ASSESSMENT; PEROVSKITE PHOTOVOLTAICS; VAPOR-DEPOSITION; FILM; ELECTROCATALYSTS; EVOLUTION; PAYBACK; FUTURE AB The hydrogen energy provided by solar-driven photoelectrochemical (PEC) water splitting must be greater than the energy used to produce and operate the technology, as a fundamental system requirement to enable energetic benefits to society. PEC H-2 production will require significant advances from both basic scientific research and applied technology development, prior to manufacturing and field deployment. To identify opportunities and priorities, here we use prospective life cycle system modeling to investigate the net-energy significance of six characteristics describing the PEC life cycle: (1) embodied energy of active cell materials, (2) embodied energy of inactive module materials, (3) energy intensity of active cell fabrication, (4) energy intensity of PEC module assembly, (5) initial energy use for production of balance-of-system (BOS), and (6) ongoing energy use for operation and end-of-life of BOS. We develop and apply a system model describing material and energy flows during the full life cycle of louvered thin-film PEC cells and their associated modules and BOS components. We find that fabrication processes for the PEC cells, especially the thin-film deposition of active cell materials, are important drivers of net energy performance. Nevertheless, high solar-to-hydrogen (STH) conversion efficiency and long cell life span are primary design requirements for PEC systems, even if such performance requires additional energy and material inputs for production and operation. We discuss these and other system dynamics, and highlight pathways to improve net energy performance. C1 [Sathre, Roger; Greenblatt, Jeffery B.; Walczak, Karl; Sharp, Ian D.; Stevens, John C.; Ager, Joel W., III; Houle, Frances A.] Joint Ctr Artificial Photosynth, Berkeley, CA USA. [Sathre, Roger; Greenblatt, Jeffery B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Walczak, Karl; Stevens, John C.; Ager, Joel W., III] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sharp, Ian D.; Houle, Frances A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Sathre, R; Greenblatt, JB (reprint author), Joint Ctr Artificial Photosynth, Berkeley, CA USA.; Sathre, R; Greenblatt, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. EM roger@transformativetechnologies.org; jbgreenblatt@lbl.gov FU Office of Science of the US Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. NR 62 TC 4 Z9 4 U1 18 U2 56 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 803 EP 819 DI 10.1039/c5ee03040d PG 17 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600006 ER PT J AU Su, NC Sun, DT Beavers, CM Britt, DK Queen, WL Urban, JJ AF Su, Norman C. Sun, Daniel T. Beavers, Christine M. Britt, David K. Queen, Wendy L. Urban, Jeffrey J. TI Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID MIXED-MATRIX MEMBRANES; METAL-ORGANIC FRAMEWORK; MICROWAVE-ASSISTED SYNTHESIS; GAS SEPARATION MEMBRANES; NANOCOMPOSITE MEMBRANES; FACILITATED TRANSPORT; CARBON-DIOXIDE; PERMEABILITY; COMPOSITES; UIO-66 AB The rise of anthropogenic global warming has sparked new interest in developing strategies to mitigate carbon dioxide emissions. Conventional carbon capture processes are not economically viable at scale due to their enormous energy cost. Membrane-based separation is a promising alternative, but its separation performance has traditionally been limited by a well-known trade-off between permeability and selectivity. Here, we report a hybrid polymer/inorganic membrane with dual transport pathways, which allows us to overcome this traditional limitation. The inorganic phase consists of a metal-organic framework (MOF), which is an ideal inorganic dispersant to construct dual transport pathways as the crystalline porous structure of MOFs is more amenable to molecular diffusion than polymers. Previous hybrid membrane research has failed to achieve sufficiently high loadings to establish a percolative network necessary for dual transport, often due to mechanical failure of the membrane at high loading. Using polysulfone and UiO-66-NH2 MOF as a model system, we achieve high MOF loadings (50 wt%) and observe the evolution from single mode to dual transport regimes. The newly formed percolative pathway through the MOF, which has not previously been observed, acts as a molecular highway for gases. As the MOF loading increases to 30 wt%, CO2 permeability increases linearly from 5.6 barrers in polysulfone homopolymer to 18 barrers. Crucially, between 30 and 40 wt%, a percolative MOF network arises and the CO2 permeability dramatically rises from 18 to 46 barrers; an eight-fold increase over pure polysulfone, while maintaining selectivity over methane and nitrogen near the pure polymer at 24 and 26, respectively. A similar phenomenon is observed in the measurement of the diffusion coefficient and is consistent with the formation of dual transport pathways. The findings in this study enable new approaches towards designing hybrid membranes with dual transport pathways. This is an important step towards a competitive membrane-based carbon capture process. C1 [Su, Norman C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Su, Norman C.; Sun, Daniel T.; Britt, David K.; Queen, Wendy L.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sun, Daniel T.; Queen, Wendy L.] EPFL, Inst Sci & Ingn Chim, CH-1051 Sion, Switzerland. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI Beavers, Christine/C-3539-2009; Britt, David/D-4675-2009 OI Beavers, Christine/0000-0001-8653-5513; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-ACO2-05CH11231]; Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship Program; Lawrence Berkeley National Laboratory Laboratory-Directed Research and Development Program; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362] FX X-ray diffraction measurements were collected at the Advanced Light Source, Beamline 12.2.2. Work at the Molecular Foundry and the Advanced Light Source was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. N.S. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship Program. D.S. was supported by Lawrence Berkeley National Laboratory Laboratory-Directed Research and Development Program. W.Q. was supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362. NR 53 TC 8 Z9 9 U1 36 U2 100 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 922 EP 931 DI 10.1039/c5ee02660a PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600021 ER PT J AU Martinez, AD Warren, EL Gorai, P Borup, KA Kuciauskas, D Dippo, PC Ortiz, BR Macaluso, RT Nguyen, SD Greenaway, AL Boettcher, SW Norman, AG Stevanovic, V Toberer, ES Tamboli, AC AF Martinez, Aaron D. Warren, Emily L. Gorai, Prashun Borup, Kasper A. Kuciauskas, Darius Dippo, Patricia C. Ortiz, Brenden R. Macaluso, Robin T. Nguyen, Sau D. Greenaway, Ann L. Boettcher, Shannon W. Norman, Andrew G. Stevanovic, Vladan Toberer, Eric S. Tamboli, Adele C. TI Solar energy conversion properties and defect physics of ZnSiP2 SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SINGLE-CRYSTALS; THIN-FILMS; N-TYPE; SEMICONDUCTORS; SILICON; ZNGEP2; GROWTH; PHOTOLUMINESCENCE; RECOMBINATION; ABSORPTION AB Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials. C1 [Martinez, Aaron D.; Gorai, Prashun; Ortiz, Brenden R.; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Warren, Emily L.; Gorai, Prashun; Borup, Kasper A.; Kuciauskas, Darius; Dippo, Patricia C.; Norman, Andrew G.; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Borup, Kasper A.] Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark. [Macaluso, Robin T.] Univ Texas Arlington, Dept Chem & Biochem, Arlington, TX 76019 USA. [Macaluso, Robin T.; Nguyen, Sau D.] Univ No Colorado, Dept Chem, Greeley, CO 80639 USA. [Greenaway, Ann L.; Boettcher, Shannon W.] Univ Oregon, Inst Mat Sci, Dept Chem & Biochem, Eugene, OR 97403 USA. RP Tamboli, AC (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.; Tamboli, AC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM adele.tamboli@nrel.gov RI Norman, Andrew/F-1859-2010; OI Norman, Andrew/0000-0001-6368-521X; Warren, Emily/0000-0001-8568-7881; Greenaway, Ann/0000-0001-6681-9965 FU National Renewable Energy Laboratory through the Laboratory-Directed Research and Development program; National Science Foundation through the Renewable Energy Materials Research and Engineering Center at the Colorado School of Mines under NSF [DMR-0820518]; NSF CAREER Award [1541230]; Danish Council for Independent Research (DFF) [4090-00071]; DFF Sapere Aude program FX The authors thank Anna Duda for depositing electrical contacts. Funding for this work was provided by the National Renewable Energy Laboratory through the Laboratory-Directed Research and Development program and by the National Science Foundation through the Renewable Energy Materials Research and Engineering Center at the Colorado School of Mines under NSF grant number DMR-0820518. RTM acknowledges NSF CAREER Award 1541230 for support of this work. KAB is thankful for funding from the Danish Council for Independent Research (DFF), grant no. 4090-00071, and the DFF Sapere Aude program. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 94 TC 2 Z9 2 U1 9 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 1031 EP 1041 DI 10.1039/c5ee02884a PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600033 ER PT J AU Xu, F Sun, J Konda, NVSNM Shi, J Dutta, T Scown, CD Simmons, BA Singh, S AF Xu, Feng Sun, Jian Konda, N. V. S. N. Murthy Shi, Jian Dutta, Tanmoy Scown, Corinne D. Simmons, Blake A. Singh, Seema TI Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SUBSEQUENT ENZYMATIC-HYDROLYSIS; SACCHAROMYCES-CEREVISIAE; BIOETHANOL PRODUCTION; WHEAT-STRAW; RICE STRAW; PRETREATMENT; SACCHARIFICATION; FERMENTATION; SUGARCANE; CHOLINIUM AB Producing concentrated sugars and minimizing water usage are key elements in the economics and environmental sustainability of advanced biofuels. Conventional pretreatment processes that require a water-wash step can result in losses of fermentable sugars and generate large volumes of wastewater or solid waste. To address these problems, we have developed high gravity biomass processing with a one-pot conversion technology that includes ionic liquid pretreatment, enzymatic saccharification, and yeast fermentation for the production of concentrated fermentable sugars and high-titer cellulosic ethanol. The use of dilute bio-derived ionic liquids (a.k.a. bionic liquids) enables one-pot, high-gravity bioethanol production due to their low toxicity to the hydrolytic enzyme mixtures and microbes used. We increased biomass digestibility at 430 wt% loading by understanding the relationship between ionic liquid and biomass loading, yielding 41.1 g L-1 of ethanol (equivalent to an overall yield of 74.8% on glucose basis) using an integrated one-pot fed-batch system. Our technoeconomic analysis indicates that the optimized one-pot configuration provides significant economic and environmental benefits for cellulosic biorefineries by reducing the amount of ionic liquid required by similar to 90% and pretreatment-related water inputs and wastewater generation by B85%. In turn, these improvements can reduce net electricity use, greenhouse gas-intensive chemical inputs for wastewater treatment, and waste generation. The result is an overall 40% reduction in the cost of cellulosic ethanol produced and a reduction in local burdens on water resources and waste management infrastructure. C1 [Xu, Feng; Sun, Jian; Konda, N. V. S. N. Murthy; Shi, Jian; Dutta, Tanmoy; Scown, Corinne D.; Simmons, Blake A.; Singh, Seema] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Xu, Feng; Sun, Jian; Shi, Jian; Dutta, Tanmoy; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA. [Konda, N. V. S. N. Murthy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Scown, Corinne D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. RP Singh, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA.; Singh, S (reprint author), Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA. EM seesing@sandia.gov RI Scown, Corinne/D-1253-2013; OI Dutta, Tanmoy/0000-0002-7597-9028 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The enzyme mixtures used in this study were obtained as a gift from Novozymes. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 31 TC 8 Z9 8 U1 32 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 1042 EP 1049 DI 10.1039/c5ee02940f PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600034 ER PT J AU Moses, EI Lindl, JD Spaeth, ML Patterson, RW Sawicki, RH Atherton, LJ Baisden, PA Lagin, LJ Larson, DW MacGowan, BJ Miller, GH Rardin, DC Roberts, VS Van Wonterghem, BM Wegner, PJ AF Moses, E. I. Lindl, J. D. Spaeth, M. L. Patterson, R. W. Sawicki, R. H. Atherton, L. J. Baisden, P. A. Lagin, L. J. Larson, D. W. MacGowan, B. J. Miller, G. H. Rardin, D. C. Roberts, V. S. Van Wonterghem, B. M. Wegner, P. J. TI Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Facility; National Ignition Campaign; high energy density science ID INERTIAL FUSION ENERGY; CONFINEMENT FUSION; TARGET PHYSICS; LASER SYSTEM; PERFORMANCE; LIFE; NIF; IMPLOSION; MATTER; POWER AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3 omega light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besides the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This paper provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. They are covered in more detail in the papers that follow. C1 [Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; Patterson, R. W.; Sawicki, R. H.; Atherton, L. J.; Baisden, P. A.; Lagin, L. J.; Larson, D. W.; MacGowan, B. J.; Miller, G. H.; Rardin, D. C.; Roberts, V. S.; Van Wonterghem, B. M.; Wegner, P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. EM lindl1@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 63 TC 4 Z9 4 U1 5 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 1 EP 24 PG 24 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600001 ER PT J AU Spaeth, ML Manes, KR Kalantar, DH Miller, PE Heebner, JE Bliss, ES Speck, DR Parham, TG Whitman, PK Wegner, PJ Baisden, PA Menapace, JA Bowers, MW Cohen, SJ Suratwala, TI Di Nicola, JM Newton, MA Adams, JJ Trenholme, JB Finucane, RG Bonanno, RE Rardin, DC Arnold, PA Dixit, SN Erbert, GV Erlandson, AC Fair, JE Feigenbaum, E Gourdin, WH Hawley, RA Honig, J House, RK Jancaitis, KS LaFortune, KN Larson, DW Le Galloudec, BJ Lindl, JD MacGowan, BJ Marshall, CD McCandless, KP McCracken, RW Montesanti, RC Moses, EI Nostrand, MC Pryatel, JA Roberts, VS Rodriguez, SB Rowe, AW Sacks, RA Salmon, JT Shaw, MJ Sommer, S Stolz, CJ Tietbohl, GL Widmayer, CC Zacharias, R AF Spaeth, M. L. Manes, K. R. Kalantar, D. H. Miller, P. E. Heebner, J. E. Bliss, E. S. Speck, D. R. Parham, T. G. Whitman, P. K. Wegner, P. J. Baisden, P. A. Menapace, J. A. Bowers, M. W. Cohen, S. J. Suratwala, T. I. Di Nicola, J. M. Newton, M. A. Adams, J. J. Trenholme, J. B. Finucane, R. G. Bonanno, R. E. Rardin, D. C. Arnold, P. A. Dixit, S. N. Erbert, G. V. Erlandson, A. C. Fair, J. E. Feigenbaum, E. Gourdin, W. H. Hawley, R. A. Honig, J. House, R. K. Jancaitis, K. S. LaFortune, K. N. Larson, D. W. Le Galloudec, B. J. Lindl, J. D. MacGowan, B. J. Marshall, C. D. McCandless, K. P. McCracken, R. W. Montesanti, R. C. Moses, E. I. Nostrand, M. C. Pryatel, J. A. Roberts, V. S. Rodriguez, S. B. Rowe, A. W. Sacks, R. A. Salmon, J. T. Shaw, M. J. Sommer, S. Stolz, C. J. Tietbohl, G. L. Widmayer, C. C. Zacharias, R. TI Description of the NIF Laser SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ICF; fusion driver; NIF laser ID NATIONAL-IGNITION-FACILITY; PERFORMANCE OPERATIONS MODEL; INERTIAL-CONFINEMENT FUSION; SUBCRITICAL CRACK-GROWTH; WAVE-FRONT CONTROL; PHOSPHATE-GLASSES; PLASMA ELECTRODES; FORCE MICROSCOPY; OPTICAL SWITCHES; POROUS SILICA AB The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge became whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This paper describes the architecture, systems, and subsystems of NIF. It describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality. C1 [Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; Miller, P. E.; Heebner, J. E.; Bliss, E. S.; Speck, D. R.; Parham, T. G.; Whitman, P. K.; Wegner, P. J.; Baisden, P. A.; Menapace, J. A.; Bowers, M. W.; Cohen, S. J.; Suratwala, T. I.; Di Nicola, J. M.; Newton, M. A.; Adams, J. J.; Trenholme, J. B.; Finucane, R. G.; Bonanno, R. E.; Rardin, D. C.; Arnold, P. A.; Dixit, S. N.; Erbert, G. V.; Erlandson, A. C.; Fair, J. E.; Feigenbaum, E.; Gourdin, W. H.; Hawley, R. A.; Honig, J.; House, R. K.; Jancaitis, K. S.; LaFortune, K. N.; Larson, D. W.; Le Galloudec, B. J.; Lindl, J. D.; MacGowan, B. J.; Marshall, C. D.; McCandless, K. P.; McCracken, R. W.; Montesanti, R. C.; Moses, E. I.; Nostrand, M. C.; Pryatel, J. A.; Roberts, V. S.; Rodriguez, S. B.; Rowe, A. W.; Sacks, R. A.; Salmon, J. T.; Shaw, M. J.; Sommer, S.; Stolz, C. J.; Tietbohl, G. L.; Widmayer, C. C.; Zacharias, R.] Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA. RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA. EM spaeth2@llnl.gov RI Trenholme, John/M-4805-2016 OI Trenholme, John/0000-0003-3673-6653 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 184 TC 5 Z9 6 U1 4 U2 12 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 25 EP 145 PG 121 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600002 ER PT J AU Manes, KR Spaeth, ML Adams, JJ Bowers, MW Bude, JD Carr, CW Conder, AD Cross, DA Demos, SG Di Nicola, JMG Dixit, SN Feigenbaum, E Finucane, RG Guss, GM Henesian, MA Honig, J Kalantar, DH Kegelmeyer, LM Liao, ZM MacGowan, BJ Matthews, MJ McCandless, KP Mehta, NC Miller, PE Negres, RA Norton, MA Nostrand, MC Orth, CD Sacks, RA Shaw, MJ Siegel, LR Stolz, CJ Suratwala, TI Trenholme, JB Wegner, PJ Whitman, PK Widmayer, CC Yang, ST AF Manes, K. R. Spaeth, M. L. Adams, J. J. Bowers, M. W. Bude, J. D. Carr, C. W. Conder, A. D. Cross, D. A. Demos, S. G. Di Nicola, J. M. G. Dixit, S. N. Feigenbaum, E. Finucane, R. G. Guss, G. M. Henesian, M. A. Honig, J. Kalantar, D. H. Kegelmeyer, L. M. Liao, Z. M. MacGowan, B. J. Matthews, M. J. McCandless, K. P. Mehta, N. C. Miller, P. E. Negres, R. A. Norton, M. A. Nostrand, M. C. Orth, C. D. Sacks, R. A. Shaw, M. J. Siegel, L. R. Stolz, C. J. Suratwala, T. I. Trenholme, J. B. Wegner, P. J. Whitman, P. K. Widmayer, C. C. Yang, S. T. TI Damage Mechanisms Avoided or Managed for NIF Large Optics SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ICF lasers; pseudoscopic imaging; parasitic loss mechanisms for lasers ID LASER-INDUCED DAMAGE; STIMULATED BRILLOUIN-SCATTERING; NATIONAL IGNITION FACILITY; SPATIAL FILTER PINHOLE; FUSED-SILICA OPTICS; RAMAN-SCATTERING; WATER-VAPOR; WAVELENGTH IRRADIATION; REFRACTIVE-INDEX; INITIATED DAMAGE AB After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of them anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. It has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared. C1 [Manes, K. R.; Spaeth, M. L.; Adams, J. J.; Bowers, M. W.; Bude, J. D.; Carr, C. W.; Conder, A. D.; Cross, D. A.; Demos, S. G.; Di Nicola, J. M. G.; Dixit, S. N.; Feigenbaum, E.; Finucane, R. G.; Guss, G. M.; Henesian, M. A.; Honig, J.; Kalantar, D. H.; Kegelmeyer, L. M.; Liao, Z. M.; MacGowan, B. J.; Matthews, M. J.; McCandless, K. P.; Mehta, N. C.; Miller, P. E.; Negres, R. A.; Norton, M. A.; Nostrand, M. C.; Orth, C. D.; Sacks, R. A.; Shaw, M. J.; Siegel, L. R.; Stolz, C. J.; Suratwala, T. I.; Trenholme, J. B.; Wegner, P. J.; Whitman, P. K.; Widmayer, C. C.; Yang, S. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Manes, KR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM manes1@llnl.gov RI Trenholme, John/M-4805-2016 OI Trenholme, John/0000-0003-3673-6653 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 201 TC 4 Z9 5 U1 11 U2 22 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 146 EP 249 PG 104 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600003 ER PT J AU Spaeth, ML Manes, KR Honig, J AF Spaeth, M. L. Manes, K. R. Honig, J. TI Cleanliness for the NIF 1 omega Laser Amplifiers SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Flashlamp-induced aerosols; laser amplifier environment; laser slab damage ID CONTAMINATION PARTICLES; PROPAGATION AB During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1 omega amplers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab -high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, would lead to higher than acceptable slab-refurbishment rates. This paper tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1 omega amplifier slabs. C1 [Spaeth, M. L.; Manes, K. R.; Honig, J.] Lawrence Livermore Natl Lab, POB 808,L-466, Livermore, CA 94550 USA. RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, POB 808,L-466, Livermore, CA 94550 USA. EM Spaeth2@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 21 TC 0 Z9 1 U1 2 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 250 EP 264 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600004 ER PT J AU Spaeth, ML Wegner, PJ Suratwala, TI Nostrand, MC Bude, JD Conder, AD Folta, JA Heebner, JE Kegelmeyer, LM MacGowan, BJ Mason, DC Matthews, MJ Whitman, PK AF Spaeth, M. L. Wegner, P. J. Suratwala, T. I. Nostrand, M. C. Bude, J. D. Conder, A. D. Folta, J. A. Heebner, J. E. Kegelmeyer, L. M. MacGowan, B. J. Mason, D. C. Matthews, M. J. Whitman, P. K. TI Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Lasers and laser optics; laser damage; UV lasers ID FUSED-SILICA SURFACES; GALVANOMETER SCANNED CO2-LASER; CRYSTAL LIGHT VALVE; MATERIAL REMOVAL; 351 NM; GROWTH; MITIGATION; PRECURSORS; RELAXATION; MICROSCOPY AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world's largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm(2), more than twice the (3 omega only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics. Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, 4 J/cm(2), thus keeping the energy delivered to the target significantly below 1 MI. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MI on target, an increase in operational capability of more than 100%. In this review, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed. C1 [Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; Nostrand, M. C.; Bude, J. D.; Conder, A. D.; Folta, J. A.; Heebner, J. E.; Kegelmeyer, L. M.; MacGowan, B. J.; Mason, D. C.; Matthews, M. J.; Whitman, P. K.] Lawrence Livermore Natl Lab, 7000 East Ave,L-580, Livermore, CA 94550 USA. RP Wegner, PJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-580, Livermore, CA 94550 USA. EM wegner1@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. Much of the fundamental science enabling the loop technologies was supported by the Laboratory Directed Research and Development Program. NR 88 TC 2 Z9 2 U1 4 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 265 EP 294 PG 30 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600005 ER PT J AU Baisden, PA Atherton, LJ Hawley, RA Land, TA Menapace, JA Miller, PE Runkel, MJ Spaeth, ML Stolz, CJ Suratwala, TI Wegner, PJ Wong, LL AF Baisden, P. A. Atherton, L. J. Hawley, R. A. Land, T. A. Menapace, J. A. Miller, P. E. Runkel, M. J. Spaeth, M. L. Stolz, C. J. Suratwala, T. I. Wegner, P. J. Wong, L. L. TI Large Optics for the National Ignition Facility SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Facility; optics fabrication for high-fluence lasers; large-aperture optical metrology tools ID PHOSPHATE LASER GLASSES; PLANE IRRADIANCE PROFILES; SUBCRITICAL CRACK-GROWTH; ATOMIC-FORCE MICROSCOPY; CONTINUOUS-PHASE-PLATE; ASTERISK-P CRYSTALS; SOL-GEL COATINGS; FUSED-SILICA; RAPID-GROWTH; DAMAGE PRECURSORS AB The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world's largest laser but also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF's high output energies and precision beam quality. This paper describes the multiyear, multisupplier development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused-silica lenses, windows, and phase plates; mirrors and polarizers with multilayer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3 omega) is provided. C1 [Baisden, P. A.; Atherton, L. J.; Hawley, R. A.; Land, T. A.; Menapace, J. A.; Miller, P. E.; Runkel, M. J.; Spaeth, M. L.; Stolz, C. J.; Suratwala, T. I.; Wegner, P. J.; Wong, L. L.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Baisden, PA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. EM baisden1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 179 TC 2 Z9 7 U1 4 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 295 EP 351 PG 57 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600006 ER PT J AU Brunton, G Casey, A Christensen, M Demaret, R Fedorov, M Flegel, M Folta, P Frazier, T Hutton, M Kegelmeyer, L Lagin, L Ludwigsen, P Reed, R Speck, D Wilhelmsen, K AF Brunton, G. Casey, A. Christensen, M. Demaret, R. Fedorov, M. Flegel, M. Folta, P. Frazier, T. Hutton, M. Kegelmeyer, L. Lagin, L. Ludwigsen, P. Reed, R. Speck, D. Wilhelmsen, K. TI Control and Information Systems for the National Ignition Facility SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Control systems; information systems; software tools AB Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF's laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 mu m root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF's automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign. C1 [Brunton, G.; Casey, A.; Christensen, M.; Demaret, R.; Fedorov, M.; Flegel, M.; Folta, P.; Frazier, T.; Hutton, M.; Kegelmeyer, L.; Lagin, L.; Ludwigsen, P.; Reed, R.; Speck, D.; Wilhelmsen, K.] Lawrence Livermore Natl Lab, POB 808,L-488, Livermore, CA 94550 USA. RP Brunton, G (reprint author), Lawrence Livermore Natl Lab, POB 808,L-488, Livermore, CA 94550 USA. EM Brunton2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 16 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 352 EP 365 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600007 ER PT J AU Spaeth, ML Manes, KR Bowers, M Celliers, P Di Nicola, JM Di Nicola, P Dixit, S Erbert, G Heebner, J Kalantar, D Landen, O MacGowan, B Van Wonterghem, B Wegner, P Widmayer, C Yang, S AF Spaeth, Mary L. Manes, Kenneth R. Bowers, M. Celliers, P. Di Nicola, J. -M. Di Nicola, P. Dixit, S. Erbert, G. Heebner, J. Kalantar, D. Landen, O. MacGowan, B. Van Wonterghem, B. Wegner, P. Widmayer, C. Yang, S. TI National Ignition Facility Laser System Performance SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ICF targets; thermal analysis; laser inertial fusion energy (LIFE) ID STIMULATED BRILLOUIN-SCATTERING; LIGHT AB The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established for the project in 1994. During NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators. C1 [Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; Celliers, P.; Di Nicola, J. -M.; Di Nicola, P.; Dixit, S.; Erbert, G.; Heebner, J.; Kalantar, D.; Landen, O.; MacGowan, B.; Van Wonterghem, B.; Wegner, P.; Widmayer, C.; Yang, S.] Lawrence Livermore Natl Lab, 7000 East Ave,L-466, Livermore, CA 94550 USA. RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-466, Livermore, CA 94550 USA. EM spaeth2@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work is performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 40 TC 5 Z9 5 U1 3 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 366 EP 394 PG 29 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600008 ER PT J AU Hamza, AV Nikroo, A Alger, E Antipa, N Atherton, LJ Barker, D Baxamusa, S Bhandarkar, S Biesiada, T Buice, E Carr, E Castro, C Choate, C Conder, A Crippen, J Dylla-Spears, R Dzenitis, E Eddinger, S Emerich, M Fair, J Farrell, M Felker, S Florio, J Forsman, A Giraldez, E Hein, N Hoover, D Horner, J Huang, H Kozioziemski, B Kroll, J Lawson, B Letts, SA Lord, D Mapoles, E Mauldin, M Miller, P Montesanti, R Moreno, K Parham, T Nathan, B Reynolds, J Sater, J Segraves, K Seugling, R Stadermann, M Strauser, R Stephens, R Suratwala, TI Swisher, M Taylor, JS Wallace, R Wegner, P Wilkens, H Yoxall, B AF Hamza, A. V. Nikroo, A. Alger, E. Antipa, N. Atherton, L. J. Barker, D. Baxamusa, S. Bhandarkar, S. Biesiada, T. Buice, E. Carr, E. Castro, C. Choate, C. Conder, A. Crippen, J. Dylla-Spears, R. Dzenitis, E. Eddinger, S. Emerich, M. Fair, J. Farrell, M. Felker, S. Florio, J. Forsman, A. Giraldez, E. Hein, N. Hoover, D. Horner, J. Huang, H. Kozioziemski, B. Kroll, J. Lawson, B. Letts, S. A. Lord, D. Mapoles, E. Mauldin, M. Miller, P. Montesanti, R. Moreno, K. Parham, T. Nathan, B. Reynolds, J. Sater, J. Segraves, K. Seugling, R. Stadermann, M. Strauser, R. Stephens, R. Suratwala, T. I. Swisher, M. Taylor, J. S. Wallace, R. Wegner, P. Wilkens, H. Yoxall, B. TI Target Development for the National Ignition Campaign SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Campaign; inertial confinement fusion; target development ID XRADIA MICROXCT MICROSCOPE; ICF SHELLS; QUANTITATIVE RADIOGRAPHY; NIF TARGETS; CALIBRATION; CAPSULES; DOPANT AB Complex and precise research targets are required for the inertial confinement fusion (ICF) experiments conducted at the National Ignition Facility. During the National Ignition Campaign (NIC) the target development team embarked on and completed a science and technology campaign to provide the capability to produce the required targets at the rate needed by the NIC. An engineering design for precision, manufacturing, and fielding was developed. This required new processes, new tooling, and equipment to metrologize and assemble components. In addition, development of new processing technology was also required. Since the NIC had to respond to new results from ICF experiments, the target development team had to respond as well. This required target designs that allowed for flexibility in accommodating changes in the targets for capsule dimensions and doping levels, hohlraztm dimensions and materials, and various new platforms to investigate new physics. A continuous improvement of processes was also required to meet stringent specifications and fielding requirements. C1 [Hamza, A. V.; Antipa, N.; Atherton, L. J.; Barker, D.; Baxamusa, S.; Bhandarkar, S.; Biesiada, T.; Buice, E.; Carr, E.; Castro, C.; Choate, C.; Conder, A.; Dylla-Spears, R.; Dzenitis, E.; Fair, J.; Felker, S.; Horner, J.; Kozioziemski, B.; Kroll, J.; Lawson, B.; Letts, S. A.; Lord, D.; Mapoles, E.; Miller, P.; Montesanti, R.; Parham, T.; Nathan, B.; Reynolds, J.; Sater, J.; Segraves, K.; Seugling, R.; Stadermann, M.; Suratwala, T. I.; Swisher, M.; Taylor, J. S.; Wallace, R.; Wegner, P.; Yoxall, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nikroo, A.; Alger, E.; Crippen, J.; Eddinger, S.; Emerich, M.; Farrell, M.; Florio, J.; Forsman, A.; Giraldez, E.; Hein, N.; Hoover, D.; Huang, H.; Mauldin, M.; Moreno, K.; Strauser, R.; Stephens, R.; Wilkens, H.] Gen Atom Co, La Jolla, CA 92121 USA. RP Hamza, AV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hamza1@llnl.gov OI Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 33 TC 1 Z9 1 U1 4 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 395 EP 406 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600009 ER PT J AU Parham, T Kozioziemski, B Atkinson, D Baisden, P Bertolini, L Boehm, K Chernov, A Coffee, K Coffield, F Dylla-Spears, R Edwards, O Fair, J Fedorov, M Fry, J Gibson, C Haid, B Holunga, D Kohut, T Lewis, T Malsbury, T Mapoles, E Sater, J Skulina, K Trummer, D Walters, C AF Parham, T. Kozioziemski, B. Atkinson, D. Baisden, P. Bertolini, L. Boehm, K. Chernov, A. Coffee, K. Coffield, F. Dylla-Spears, R. Edwards, O. Fair, J. Fedorov, M. Fry, J. Gibson, C. Haid, B. Holunga, D. Kohut, T. Lewis, T. Malsbury, T. Mapoles, E. Sater, J. Skulina, K. Trummer, D. Walters, C. TI Cryogenic Target System for Hydrogen Layering SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Facility; cryogenic target; target positioner ID NATIONAL IGNITION FACILITY; TRITIUM AB A cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highly constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer. The team developed processes, procedures, software, and metrology techniques to form and qualify solid layers of hydrogen isotopes at a quality level and yield needed to support the National Ignition Campaign experimental program. The team has grown over 220 layers in NIF, and 52 have been shot to date. C1 [Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; Edwards, O.; Fair, J.; Fedorov, M.; Fry, J.; Haid, B.; Holunga, D.; Kohut, T.; Malsbury, T.; Mapoles, E.; Sater, J.; Skulina, K.; Trummer, D.; Walters, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehm, K.; Gibson, C.] Gen Atom Co, San Diego, CA 92121 USA. [Lewis, T.] AKIMA Infrastruct Serv LLC, Livermore, CA 94550 USA. RP Kozioziemski, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Kozioziemski1@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 25 TC 1 Z9 1 U1 4 U2 16 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 407 EP 419 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600010 ER PT J AU Kilkenny, JD Bell, PM Bradley, DK Bleuel, DL Caggiano, JA Dewald, EL Hsing, WW Kalantar, DH Kauffman, RL Larson, DJ Moody, JD Schneider, DH Schneider, MB Shaughnessy, DA Shelton, RT Stoeffl, W Widmann, K Yeamans, CB Batha, SH Grim, GP Herrmann, HW Merrill, FE Leeper, RJ Oertel, JA Sangster, TC Edgell, DH Hohenberger, M Glebov, VY Regan, SP Frenje, JA Gatu-Johnson, M Petrasso, RD Rinderknecht, HG Zylstra, AB Cooper, GW Ruiz, C AF Kilkenny, J. D. Bell, P. M. Bradley, D. K. Bleuel, D. L. Caggiano, J. A. Dewald, E. L. Hsing, W. W. Kalantar, D. H. Kauffman, R. L. Larson, D. J. Moody, J. D. Schneider, D. H. Schneider, M. B. Shaughnessy, D. A. Shelton, R. T. Stoeffl, W. Widmann, K. Yeamans, C. B. Batha, S. H. Grim, G. P. Herrmann, H. W. Merrill, F. E. Leeper, R. J. Oertel, J. A. Sangster, T. C. Edgell, D. H. Hohenberger, M. Glebov, V. Yu. Regan, S. P. Frenje, J. A. Gatu-Johnson, M. Petrasso, R. D. Rinderknecht, H. G. Zylstra, A. B. Cooper, G. W. Ruiz, C. TI The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012 SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Target drive diagnostics; target response diagnostics; target assembly diagnostics ID FLIGHT; NOVA AB At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova's, new diagnostics are limited such as the higher-speed X-ray imager. Recommendations for future diagnostics on the NIF are discussed. C1 [Kilkenny, J. D.] Gen Atom, La Jolla, CA 92121 USA. [Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; Moody, J. D.; Schneider, D. H.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Stoeffl, W.; Widmann, K.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Batha, S. H.; Grim, G. P.; Herrmann, H. W.; Merrill, F. E.; Leeper, R. J.; Oertel, J. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Sangster, T. C.; Edgell, D. H.; Hohenberger, M.; Glebov, V. Yu.; Regan, S. P.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Kilkenny, J. D.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Rinderknecht, H. G.; Zylstra, A. B.] MIT, Cambridge, MA 02139 USA. [Cooper, G. W.; Ruiz, C.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Kilkenny, JD (reprint author), Gen Atom, La Jolla, CA 92121 USA. EM kilkenny1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 64 TC 5 Z9 5 U1 7 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 420 EP 451 PG 32 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600011 ER PT J AU Van Wonterghem, BM Brereton, SJ Burr, RF Folta, P Hardy, DL Jize, NN Kohut, TR Land, TA Merritt, BT AF Van Wonterghem, Bruno M. Brereton, Sandra J. Burr, Robert F. Folta, Peg Hardy, Diane L. Jize, Nicholas N. Kohut, Thomas R. Land, Terry A. Merritt, Bernard T. TI Operations on the National Ignition Facility SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE NIF operations; user facility; laser facility ID MANAGEMENT; EQUIPMENT; PROGRAM AB The National Ignition Facility (NIF) is a high-energy-density physics, experimental user facility that focuses up to 1.8 MJ of UV light in 192 laser beams onto a mm-sized target at the center of a target chamber. This paper describes how we conduct experimental shots on the NIF. We review processes and tools used to facilitate experiment planning and operations. Safety and radiological aspects of NIF's operations are discussed. We also describe efforts to continuously improve operational efficiency and further increase shot rate. C1 [Van Wonterghem, Bruno M.; Brereton, Sandra J.; Burr, Robert F.; Folta, Peg; Hardy, Diane L.; Jize, Nicholas N.; Kohut, Thomas R.; Land, Terry A.; Merritt, Bernard T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Van Wonterghem, BM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM VanWonterghem1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 15 TC 3 Z9 3 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 452 EP 469 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600012 ER PT J AU Li, M Pu, YQ Yoo, CG Ragauskas, AJ AF Li, Mi Pu, Yunqiao Yoo, Chang Geun Ragauskas, Arthur J. TI The occurrence of tricin and its derivatives in plants SO GREEN CHEMISTRY LA English DT Review ID ORYZA-SATIVA L.; ANTIOXIDANT FLAVONE GLYCOSIDES; BRAN CONSTITUENT TRICIN; STRAW LIGNIN STRUCTURE; SASA-ALBO-MARGINATA; NJAVARA RICE BRAN; CELLS IN-VITRO; HPLC-UV-MS; AERIAL PARTS; MASS-SPECTROMETRY AB Our understanding of the structure and biosynthetic pathway of lignin, a phenylpropanoid heteropolymer, continues to evolve, especially with the discovery of new lignin monomers/structural moieties such as monolignol acetate, hydroxycinnamyl aldehyde/alcohol, and p-hydroxybenzoate in the past decades. Recently, tricin has been reported as a component incorporated into monocot lignin. As a flavonoid compound widely distributed in herbaceous plants, tricin has been extensively studied due to its biological significance in plant growth as well as its potential for pharmaceutical importance. Tricin is biosynthesized as a constituent of plant secondary metabolites through a combination of phenylpropanoid and polyketide pathways. Tricin occurs in plants in either free or conjugated forms such as tricin-glycosides, tricinlignans, and tricin-lignan-glycosides. The emergence of tricin covalently incorporated with lignin biopolymer implies the possible association of lignification and tricin biosynthesis. This review summarizes the occurrence of tricin and its derivatives in plants. In addition, synthesis, potential application, and characterization of tricin are discussed. C1 [Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.] Joint Inst Biol Sci, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Joint Inst Biol Sci, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM aragausk@utk.edu RI Pu, Yunqiao/H-3206-2016; LI, Mi/Q-4261-2016; OI Pu, Yunqiao/0000-0003-2554-1447; LI, Mi/0000-0001-7523-1266; Ragauskas, Arthur/0000-0002-3536-554X; Yoo, Chang Geun/0000-0002-6179-2414 FU U.S. Department of Energy [DE-AC05-00OR22725]; BioEnergy Science Center (BESC); Office of Biological and Environmental Research in DOE Office of Science FX This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The work was supported and performed as part of the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 185 TC 8 Z9 9 U1 6 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 6 BP 1439 EP 1454 DI 10.1039/c5gc03062e PG 16 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DG7GH UT WOS:000372252300001 ER PT J AU Nguyen, TY Cai, CM Osman, O Kumar, R Wyman, CE AF Thanh Yen Nguyen Cai, Charles M. Osman, Omar Kumar, Rajeev Wyman, Charles E. TI CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings SO GREEN CHEMISTRY LA English DT Article ID SIMULTANEOUS SACCHARIFICATION; TECHNOECONOMIC EVALUATION; LIGNOCELLULOSIC BIOFUELS; BIOETHANOL PRODUCTION; WHEAT-STRAW; FERMENTATION; CELLULOSE; BIOMASS; HYDROLYSIS; LIGNIN AB A major challenge to economically produce ethanol from lignocellulosic biomass is to achieve industrially relevant ethanol titers (>50 g L-1) to control operating and capital costs for downstream ethanol operations while maintaining high ethanol yields. However, due to reduced fermentation effectiveness at high biomass solids loadings, excessive amounts of enzymes are typically required to obtain reasonable ethanol titers, thereby trading off reduced operating and capital costs with high enzyme costs. In this study, we applied our newly developed Co-Solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment to produce highly digestible glucan-rich solids from corn stover. Simultaneous saccharification and fermentation (SSF) was then applied to pretreated solids from CELF at 15.5 wt% solids loadings (corresponding to 11 wt% glucan loadings) in modified shake flasks to achieve an ethanol titer of 58.8 g L-1 at 89.2% yield with an enzyme loading of 15 mg-protein per g-glucan-in-raw-corn-stover (-RCS) in only 5 days. By comparison, SSF of corn stover solids from dilute acid pretreatment at 18.3 wt% solids loading (or 10 wt% glucan loading) only achieved an ethanol titer and a yield of 47.8 g L-1 and 73.0%, respectively, despite needing longer fermentation times (similar to 20 days) and an additional 18 h of prehydrolysis at 50 degrees C. Remarkably, although longer fermentation times were required at more economical enzyme loadings of 5 and 2 mg-protein per g-glucan-in-RCS, high solids SSF of CELF pretreated corn stover realized final ethanol titers consistently above 50 g L-1 and yields over 80%. C1 [Thanh Yen Nguyen; Cai, Charles M.; Osman, Omar; Kumar, Rajeev; Wyman, Charles E.] UC Riverside, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA. [Thanh Yen Nguyen; Osman, Omar; Wyman, Charles E.] UC Riverside, Dept Bioengn, 217 Mat Sci & Engn,900 Univ Ave, Riverside, CA 92507 USA. [Wyman, Charles E.] UC Riverside, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92507 USA. [Cai, Charles M.; Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. RP Wyman, CE (reprint author), UC Riverside, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), UC Riverside, Dept Bioengn, 217 Mat Sci & Engn,900 Univ Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), UC Riverside, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. EM cewyman@engr.ucr.edu RI Cai, Charles/E-4986-2012 OI Cai, Charles/0000-0002-5047-0815 FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304]; National Science Foundation [2013142496]; Ford Motor Company FX We are grateful for funding by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (Contract DE-PS02-06ER64304) for supporting this study. The award of a fellowship to the lead author by the National Science Foundation (Grant #2013142496) made her participation in this project possible. We also acknowledge the Center for Environmental Research and Technology (CE-CERT) of the Bourns College of Engineering for providing the facilities and the Ford Motor Company for funding the Chair in Environmental Engineering that facilitates projects such as this one. NR 51 TC 4 Z9 4 U1 10 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 6 BP 1581 EP 1589 DI 10.1039/c5gc01977j PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DG7GH UT WOS:000372252300018 ER PT J AU Choi, YS Singh, R Zhang, J Balasubramanian, G Sturgeon, MR Katahira, R Chupka, G Beckham, GT Shanks, BH AF Choi, Yong S. Singh, Rahul Zhang, Jing Balasubramanian, Ganesh Sturgeon, Matthew R. Katahira, Rui Chupka, Gina Beckham, Gregg T. Shanks, Brent H. TI Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of beta-O-4 and alpha-O-4 compounds SO GREEN CHEMISTRY LA English DT Article ID PHENETHYL PHENYL ETHER; FLAME IONIZATION DETECTION; COAL-LIQUEFACTION MODEL; ALPHA/BETA-SELECTIVITIES; COMPUTATIONAL PREDICTION; LIGNOCELLULOSIC BIOMASS; DIBENZYL ETHER; BIO-OIL; CHEMISTRY; DENSITY AB Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five beta-O-4 and two alpha-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for beta-O-4 compounds and alpha-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation. The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the beta-ether linked and alpha-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both beta-O-4 and alpha-O-4 linkages. C1 [Choi, Yong S.; Zhang, Jing; Shanks, Brent H.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Singh, Rahul; Balasubramanian, Ganesh] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Sturgeon, Matthew R.; Katahira, Rui; Chupka, Gina; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Shanks, BH (reprint author), Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. EM bshanks@iastate.edu FU U.S. Department of Energy through National Advanced Biofuels Consortium [DEEE0003044] FX The authors would like to acknowledge funding support from the U.S. Department of Energy through National Advanced Biofuels Consortium, grant number DEEE0003044. NR 52 TC 5 Z9 5 U1 3 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 6 BP 1762 EP 1773 DI 10.1039/c5gc02268a PG 12 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DG7GH UT WOS:000372252300036 ER PT J AU Keahey, K Raicu, I Chard, K Nicolae, B AF Keahey, Kate Raicu, Ioan Chard, Kyle Nicolae, Bogdan TI Guest Editors Introduction: Special Issue on Scientific Cloud Computing SO IEEE TRANSACTIONS ON CLOUD COMPUTING LA English DT Editorial Material C1 [Keahey, Kate] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Raicu, Ioan] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Chard, Kyle] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Chard, Kyle] Argonne Natl Lab, Argonne, IL 60439 USA. [Nicolae, Bogdan] IBM Res, Dublin, Ireland. RP Keahey, K (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.; Raicu, I (reprint author), IIT, Dept Comp Sci, Chicago, IL 60616 USA.; Chard, K (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; Chard, K (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA.; Nicolae, B (reprint author), IBM Res, Dublin, Ireland. EM keahey@mcs.anl.gov; iraicu@cs.iit.edu; chard@uchicago.edu; bogdan.nicolae@acm.org NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-7161 J9 IEEE TRANS CLOUD COM JI IEEE Trans. Cloud Comput. PD JAN-MAR PY 2016 VL 4 IS 1 BP 4 EP 5 DI 10.1109/TCC.2015.2505022 PG 2 WC Computer Science, Software Engineering SC Computer Science GA DG2KC UT WOS:000371894800003 ER PT J AU Brink, AR Quinn, DD AF Brink, Adam R. Quinn, D. Dane TI Shear Effects on Energy Dissipation From an Elastic Beam on a Rigid Foundation SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article ID BOLTED JOINTS; MICRO-SLIP; DYNAMICS; MODEL AB This work describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of the shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon. C1 [Brink, Adam R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Quinn, D. Dane] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA. RP Quinn, DD (reprint author), Univ Akron, Dept Mech Engn, Akron, OH 44325 USA. EM arbrink@sandia.gov; quinn@uakron.edu FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD JAN PY 2016 VL 83 IS 1 AR 011004 DI 10.1115/1.4031764 PG 7 WC Mechanics SC Mechanics GA DG5XZ UT WOS:000372156100004 ER PT J AU Fu, L Wang, ZG Batista, VS Yan, ECY AF Fu, Li Wang, Zhuguang Batista, Victor S. Yan, Elsa C. Y. TI New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes SO JOURNAL OF DIABETES RESEARCH LA English DT Article ID SOLID-STATE NMR; TYPE-2 DIABETES-MELLITUS; NONLINEAR OPTICS; IN-SITU; INFRARED-SPECTROSCOPY; MOLECULAR CHIRALITY; AQUEOUS INTERFACE; UNIFIED TREATMENT; IR SPECTROSCOPY; SFG-VS AB Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces. C1 [Fu, Li] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. [Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. RP Yan, ECY (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. EM elsa.yan@yale.edu OI Fu, Li/0000-0003-0994-7789 FU National Science Foundation Grant [CHE 1213362]; National Institutes of Health Grant [1R56DK105381-01]; NSF Grant [CHE-1213742]; Starter Grant Award, Spectroscopy Society of Pittsburgh FX Elsa C. Y. Yan is the recipient of the Starter Grant Award, Spectroscopy Society of Pittsburgh, the National Science Foundation Grant (CHE 1213362), and the National Institutes of Health Grant (1R56DK105381-01). Victor S. Batista acknowledges high performance computing time from NERSC and support from the NSF Grant CHE-1213742. NR 112 TC 0 Z9 0 U1 5 U2 18 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 2314-6745 EI 2314-6753 J9 J DIABETES RES JI J. Diabetes Res. PY 2016 AR 7293063 DI 10.1155/2016/7293063 PG 17 WC Endocrinology & Metabolism; Medicine, Research & Experimental SC Endocrinology & Metabolism; Research & Experimental Medicine GA DG7EP UT WOS:000372247900001 ER PT J AU Tu, TN Phan, NQ Vu, TT Nguyen, HL Cordova, KE Furukawa, H AF Tu, Thach N. Phan, Nghi Q. Vu, Thanh T. Nguyen, Ha L. Cordova, Kyle E. Hiroyasu Furukawa TI High proton conductivity at low relative humidity in an anionic Fe-based metal-organic framework SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SUPERPROTONIC CONDUCTIVITY; COORDINATION POLYMER; MEMBRANE; NANOCHANNELS; CRYSTAL AB A metal-organic framework, termed VNU-15 (VNU = Vietnam National University), was synthesized and subsequent detailed structural analysis revealed that the crystalline structure adopted the fob topology. Due to integrated sulphate ligands accompanied by hydrogen-bonded dimethylammonium ions that lined the pore channels of VNU-15, the proton conductivity of this material reached 2.90 x 10(-2) S cm(-1) at 95 degrees C and 60% relative humidity. Remarkably, the high proton conductivity of VNU-15 was maintained under these conditions, without any appreciable loss, for 40 h. C1 [Tu, Thach N.; Phan, Nghi Q.; Vu, Thanh T.; Nguyen, Ha L.; Cordova, Kyle E.; Hiroyasu Furukawa] Vietnam Natl Univ Ho Chi Minh VNU HCM, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam. [Cordova, Kyle E.; Hiroyasu Furukawa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Mat Sci Div,Berkeley Global Sci Inst, Berkeley, CA 94720 USA. [Hiroyasu Furukawa] King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia. RP Cordova, KE; Furukawa, H (reprint author), Vietnam Natl Univ Ho Chi Minh VNU HCM, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam.; Cordova, KE; Furukawa, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Mat Sci Div,Berkeley Global Sci Inst, Berkeley, CA 94720 USA.; Furukawa, H (reprint author), King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia. EM kcordova@berkeley.edu; furukawa@berkeley.edu RI Furukawa, Hiroyasu/C-5910-2008; OI Furukawa, Hiroyasu/0000-0002-6082-1738; Cordova, Kyle/0000-0002-4988-0497 FU VNU-HCM [A2015-50-01-HD-KHCN]; United States Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program [N62909-15-1N056]; MANAR FX This work was financially supported by VNU-HCM (A2015-50-01-HD-KHCN) and the United States Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program (No. N62909-15-1N056). We are grateful to Prof. O. M. Yaghi (UC Berkeley) for his continued support of MANAR. We acknowledge Mr T. L. H. Doan and Mr N. T. Hoang at MANAR for their valuable discussion and assistance on this work. We are grateful to Prof. D. Prosperio (University of Milan) for his assistance on the topological analysis of VNU-15. We thank Mr J. Yang (UC Berkeley) for performing the elemental microanalysis measurements. Finally, we appreciate the inputs provided by Profs. P. T. S. Nam (University of Technology, VNU-HCM) and H. T. Nguyen (University of Science, VNU-HCM). NR 37 TC 8 Z9 8 U1 12 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 10 BP 3638 EP 3641 DI 10.1039/c5ta10467j PG 4 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG3KB UT WOS:000371967000003 ER PT J AU Li, SX Yan, JL Li, CZ Liu, F Shi, MM Chen, HZ Russell, TP AF Li, Shuixing Yan, Jielin Li, Chang-Zhi Liu, Feng Shi, Minmin Chen, Hongzheng Russell, Thomas P. TI A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID OPEN-CIRCUIT VOLTAGE; SMALL-MOLECULE; BUILDING-BLOCKS; DIKETOPYRROLOPYRROLE; EFFICIENT; PHOTOVOLTAICS; DESIGN; DERIVATIVES; DONOR AB Effective electron acceptor materials usually have a deep lowest unoccupied molecular orbital (LUMO) energy level that can split excitons and generate current. A non-fullerene electron acceptor (F8-DPPTCN) was developed, using fluorene as the core with arms of diketopyrrolopyrrole (DPP) having thiophene-2-carbonitrile as the terminal units. The new molecule had a LUMO of similar to 3.65 eV and a narrow bandgap (E-g) of 1.66 eV, owing to the electronegativity of the thiophene-2-carbonitrile group and its conjugation with DPP units. Organic solar cells (OSCs) with F8-DPPTCN as the acceptor and poly(3-hexylthiophene) (P3HT) as the donor were fabricated. A power conversion efficiency (PCE) of 2.37% was obtained with an open-circuit voltage (Voc) of 0.97 V, a short-circuit current (J(sc)) of 6.25 mA cm(-2), and a fill factor (FF) of 0.39. Structural characterization showed that P3HT and F8-DPPTCN were kinetically trapped in a weakly separated state whereas thermal annealing led to the crystallization of P3HT and the formation of a network structure with a mesh-size of several hundred nanometers. When a solvent additive, diiodooctane, was used and the mixture was thermally annealed, both P3HT and F8-DPPTCN crystallized and a multi-length scale network was formed. Though the PCEs were low, the changes in the PCE could be correlated with the morphological changes, opening pathways to increase performance further. C1 [Li, Shuixing; Yan, Jielin; Li, Chang-Zhi; Shi, Minmin; Chen, Hongzheng] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China. [Liu, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Liu, Feng] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Shi, MM; Chen, HZ (reprint author), Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China.; Liu, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.; Liu, F (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. EM iamfengliu@gmail.com; minminshi@zju.edu.cn; hzchen@zju.edu.cn RI Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU National Natural Science Foundation of China [21474088, 51261130582, 91233114, 51561145001]; Zhejiang Province Natural Science Foundation [LR13E030001]; 973 program [2014CB643503]; U.S. Office of Naval Research [N00014-15-1-2244]; DOE, Office of Science, and Office of Basic Energy Sciences FX M. Shi and H. Chen would like to gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21474088, 51261130582, 91233114, and 51561145001) and Zhejiang Province Natural Science Foundation (No. LR13E030001). The work was also partly supported by 973 program (No. 2014CB643503). FL and TPR were supported by the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, and Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 38 TC 16 Z9 16 U1 23 U2 56 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 10 BP 3777 EP 3783 DI 10.1039/c6ta00056h PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG3KB UT WOS:000371967000022 ER PT J AU Xia, YX Musumeci, C Bergqvist, J Ma, W Gao, F Tang, Z Bai, S Jin, YZ Zhu, CH Kroon, R Wang, C Andersson, MR Hou, LT Inganas, O Wang, EG AF Xia, Yuxin Musumeci, Chiara Bergqvist, Jonas Ma, Wei Gao, Feng Tang, Zheng Bai, Sai Jin, Yizheng Zhu, Chenhui Kroon, Renee Wang, Cheng Andersson, Mats R. Hou, Lintao Inganas, Olle Wang, Ergang TI Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID OPEN-CIRCUIT VOLTAGE; HIGH-MOBILITY; CONJUGATED POLYMERS; PERFORMANCE; MORPHOLOGY; EFFICIENCY; ACCEPTOR; CRYSTALLINITY; PHOTOVOLTAICS; AGGREGATION AB We have investigated the effect of thermal annealing on the photovoltaic parameters of all-polymer solar cells based on a quinoxaline-thiophene donor polymer (TQ1) and a naphthalene diimide acceptor polymer (N2200). The annealed devices show a doubled power conversion efficiency compared to nonannealed devices, due to the higher short-circuit current (J(sc)) and fill factor (FF), but with a lower open circuit voltage (V-oc). On the basis of the morphology-mobility examination by several scanning force microscopy techniques, and by grazing-incidence wide-angle X-ray scattering, we conclude that better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help in charge generation and meanwhile reduce recombination. Photoluminescence, electroluminescence, and light intensity dependence measurements reveal how this morphological change affects charge generation and recombination. As a result, the J(sc) and FF are significantly improved. However, the smaller band gap and the higher HOMO level of TQ1 upon annealing causes a lower V-oc. The blend of an amorphous polymer TQ1, and a semi-crystalline polymer N2200, can thus be modified by thermal annealing to double the power conversion efficiency. C1 [Xia, Yuxin; Musumeci, Chiara; Bergqvist, Jonas; Gao, Feng; Tang, Zheng; Bai, Sai; Inganas, Olle] Linkoping Univ, Biomol & Organ Elect, IFM, SE-58183 Linkoping, Sweden. [Ma, Wei] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Jin, Yizheng; Kroon, Renee] Zhejiang Univ, State Key Lab Silicon Mat, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Zhu, Chenhui; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Andersson, Mats R.] Univ S Australia, Future Ind Inst, Mawson Lakes, SA 5095, Australia. [Xia, Yuxin; Hou, Lintao] Jinan Univ, Siyuan Lab, Dept Phys, Guangzhou 510632, Guangdong, Peoples R China. [Wang, Ergang] Chalmers, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden. RP Inganas, O (reprint author), Linkoping Univ, Biomol & Organ Elect, IFM, SE-58183 Linkoping, Sweden.; Wang, EG (reprint author), Chalmers, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden. EM oling@ifm.liu.se; ergang@chalmers.se RI Musumeci, Chiara/K-6827-2015; Gao, Feng/C-8797-2014; Tang, Zheng/D-7780-2013; Wang, Ergang/F-8157-2010; Wang, Cheng/A-9815-2014; MA, Wei/E-1254-2013; Bai, Sai/E-3032-2015; OI Musumeci, Chiara/0000-0001-7923-8086; Gao, Feng/0000-0002-2582-1740; Tang, Zheng/0000-0003-0036-2362; Wang, Ergang/0000-0002-4942-3771; MA, Wei/0000-0001-6926-1960; Bai, Sai/0000-0001-7623-686X; Kroon, Renee/0000-0001-8053-4288; Ma, Wei/0000-0002-7239-2010 FU Swedish Energy Agency; Swedish Research council, NSFC [21504006, 21534003]; Knut and Alice Wallenberg Foundation through a Wallenberg scholar grant; China Scholarship Council (CSC); graduate student short-term abroad research project of Jinan University; program for the Excellent Doctoral Dissertations of Guangdong Province [ybzzxm201114]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Swedish Energy Agency, the Swedish Research council, NSFC (21504006, 21534003), the Knut and Alice Wallenberg Foundation through a Wallenberg scholar grant to Olle Inganas and also supported by the China Scholarship Council (CSC) and graduate student short-term abroad research project of Jinan University. EW acknowledges the program for the Excellent Doctoral Dissertations of Guangdong Province (ybzzxm201114). FG acknowledges the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology) (2015-skllmd-02). X-ray data were acquired at beamlines 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 6 Z9 6 U1 22 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 10 BP 3835 EP 3843 DI 10.1039/c6ta00531d PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG3KB UT WOS:000371967000030 ER PT J AU Ye, JC An, YH Montalvo, E Campbell, PG Worsley, MA Tran, IC Liu, YY Wood, BC Biener, J Jiang, HQ Tang, M Wang, YM AF Ye, Jianchao An, Yonghao Montalvo, Elizabeth Campbell, Patrick G. Worsley, Marcus A. Tran, Ich C. Liu, Yuanyue Wood, Brandon C. Biener, Juergen Jiang, Hanqing Tang, Ming Wang, Y. Morris TI Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal oxides and strong synergistic disparities in lithium storage SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID ENHANCED ELECTROCHEMICAL PERFORMANCE; ION BATTERY ANODES; HIGH-SURFACE-AREA; ENERGY-STORAGE; REVERSIBLE CAPACITY; ELECTRODE MATERIALS; FACILE SYNTHESIS; LI BATTERIES; COMPOSITE; NANOCOMPOSITES AB Graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to a passive role played by the exceptional electronic and mechanical properties of graphene in enabling metal oxides (MOs) to achieve near-theoretical capacities. In contrast, the effects of MOs on the active lithium storage mechanisms of graphene remain enigmatic. Via a unique two-step solvent-directed sol-gel process, we have synthesized and directly compared the electrochemical performance of several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs can play an equally important role in empowering graphene to achieve large reversible lithium storage capacity. The magnitude of capacity improvement is found to scale roughly with the surface coverage of MOs, and depend sensitively on the type of MOs. We define a synergistic factor based on the capacity contributions. Our quantitative assessments indicate that the synergistic effect is most achievable in conversion-reaction GMOs (Fe2O3/graphene and SnO2/graphene) but not in intercalation-based TiO2/graphene. However, a long cycle stability up to 2000 cycles was observed in TiO2/graphene nanocomposites. We propose a surface coverage model to qualitatively rationalize the beneficial roles of MOs to graphene. Our first-principles calculations further suggest that the extra lithium storage sites could result from the formation of Li2O at the interface with graphene during the conversion-reaction. These results suggest an effective pathway for reversible lithium storage in graphene and shift design paradigms for graphene-based electrodes. C1 [Ye, Jianchao; An, Yonghao; Montalvo, Elizabeth; Campbell, Patrick G.; Worsley, Marcus A.; Tran, Ich C.; Liu, Yuanyue; Wood, Brandon C.; Biener, Juergen; Wang, Y. Morris] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [An, Yonghao; Wang, Y. Morris] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85286 USA. [Liu, Yuanyue; Jiang, Hanqing] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tang, Ming] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.; Wang, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85286 USA. EM ymwang@llnl.gov RI Jiang, Hanqing/B-1810-2008; Wang, Yinmin (Morris)/F-2249-2010; OI Jiang, Hanqing/0000-0002-1947-4420; Worsley, Marcus/0000-0002-8012-7727; Campbell, Patrick/0000-0003-0167-4624; Liu, Yuanyue/0000-0002-5880-8649 FU US Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) programs of LLNL [12-ERD-053]; US Department of Energy [DE-AC36-08GO28308]; NSF [CMMI-1067947, CMMI-1162619]; DOE Office of Basic Energy Sciences Physical Behavior of Materials Program [DE-SC0014435] FX Discussion with J. Lee, T. van Buuren, A. Wittstock, M. D. Merrill, and B. Sadigh is acknowledged. The work was performed under the auspices of the US Department of Energy by LLNL under contract No. DE-AC52-07NA27344. The project is supported by the Laboratory Directed Research and Development (LDRD) programs of LLNL (12-ERD-053). Y. L. acknowledges the support by US Department of Energy under Contract No. DE-AC36-08GO28308. The first-principles calculations were performed by using NREL Peregrine supercomputer, as well as LLNL CAB supercomputer. H. J. acknowledges the support from NSF CMMI-1067947 and CMMI-1162619. M.T. acknowledges support from DOE Office of Basic Energy Sciences Physical Behavior of Materials Program under grant number DE-SC0014435. NR 74 TC 6 Z9 6 U1 26 U2 59 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 11 BP 4032 EP 4043 DI 10.1039/c5ta10730j PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG6IZ UT WOS:000372189100008 ER PT J AU Pasta, M Wang, RY Ruffo, R Qiao, RM Lee, HW Shyam, B Guo, MH Wang, YY Wray, LA Yang, WL Toney, MF Cui, Y AF Pasta, Mauro Wang, Richard Y. Ruffo, Riccardo Qiao, Ruimin Lee, Hyun-Wook Shyam, Badri Guo, Minghua Wang, Yayu Wray, L. Andrew Yang, Wanli Toney, Michael F. Cui, Yi TI Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SOFT-X-RAY; PRUSSIAN BLUE ANALOGS; SCALE ENERGY-STORAGE; LONG CYCLE LIFE; NICKEL HEXACYANOFERRATE; NEUTRON-DIFFRACTION; SPIN STATES; ELECTRODES; SPECTROSCOPY; TEMPERATURE AB Prussian Blue analogues (PBAs) have shown promise as electrode materials for grid-scale batteries because of their high cycle life and rapid kinetics in aqueous-based electrolytes. However, these materials suffer from relatively low specific capacity, which may limit their practical applications. Here, we investigate strategies to improve the specific capacity of these materials while maintaining their cycling stability and elucidate mechanisms that enhance their electrochemical properties. In particular, we have studied the electrochemical and structural properties of manganese hexacyanoferrate (MnHCFe) and cobalt hexacyanoferrate (CoHCFe) in an aqueous, sodium-ion electrolyte. We also studied manganese-cobalt hexacyanoferrate (Mn-CoHCFe) solid solutions with different Mn/Co ratios that combine properties of both MnHCFe and CoHCFe. The materials have the characteristic open-framework crystal structure of PBAs, and their specific capacities can be significantly improved by electrochemically cycling (oxidizing and reducing) both the carbon-coordinated Fe and the nitrogen-coordinated Co or Mn ions. In situ synchrotron X-ray diffraction studies and ex situ soft X-ray absorption spectroscopy combined with an in-depth electrochemical characterization provide insight into the different electrochemical properties associated with the Fe, Co, and Mn redox couples. We show that cycling the C-coordinated Fe preserves the crystal structure and enables the outstanding kinetics and cycle life previously displayed by PBAs in aqueous electrolytes. On the other hand, the N-coordinated Co and Mn ions exhibit a slower kinetic regime due to structural distortions resulting from the weak N-coordinated crystal field, but they still contribute significantly towards increasing the specific capacity of the materials. These results provide the understanding needed to drive future development of PBAs for grid-scale applications that require extremely high cycle life and kinetics. C1 [Pasta, Mauro; Wang, Richard Y.; Lee, Hyun-Wook; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Pasta, Mauro] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. [Ruffo, Riccardo] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 53, I-20125 Milan, Italy. [Qiao, Ruimin; Guo, Minghua; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shyam, Badri; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Guo, Minghua; Wang, Yayu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Wray, L. Andrew] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Cui, Yi] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Cui, Y (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.; Cui, Y (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM yicui@stanford.edu RI Yang, Wanli/D-7183-2011; Ruffo, Riccardo/C-1508-2009; Lee, Hyun-Wook/Q-9222-2016; Qiao, Ruimin/E-9023-2013; OI Yang, Wanli/0000-0003-0666-8063; Ruffo, Riccardo/0000-0001-7509-7052; Lee, Hyun-Wook/0000-0001-9074-1619; Wang, Richard/0000-0003-0581-6917 FU Global Climate and Energy Project (GCEP) at Stanford; U.S. Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability; Pacific Northwest National Laboratory; DOE [DEA C05-76RL01830]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oronzio and Niccolo De Nora Foundation; National Science Foundation; National Defense Science & Engineering Graduate Fellowship; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2012038593]; Laboratory-Directed Research and Development (LDRD) program at the Lawrence Berkeley National Laboratory; China Scholarship Council; Fondazione Cariplo [2011-0312] FX The authors would like to acknowledge support from the Global Climate and Energy Project (GCEP) at Stanford as well as the U.S. Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability for this research through collaboration with the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle under Contract DEA C05-76RL01830. Use of the Stanford Synchrotron Radiation Light-source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of the Advanced Light Source, Lawrence Berkeley National Laboratory, is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.P. acknowledges the support of the Oronzio and Niccolo De Nora Foundation. R.Y.W acknowledges support from the National Science Foundation Graduate Research Fellowship and the National Defense Science & Engineering Graduate Fellowship. H.W.L. acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology under Contract No. 2012038593. Ruimin Qiao acknowledges support from the Laboratory-Directed Research and Development (LDRD) program at the Lawrence Berkeley National Laboratory. M.G. is supported by China Scholarship Council Fellowship. R.R. acknowledges support from Fondazione Cariplo (contract 2011-0312). NR 45 TC 5 Z9 5 U1 44 U2 101 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 11 BP 4211 EP 4223 DI 10.1039/c5ta10571d PG 13 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG6IZ UT WOS:000372189100027 ER PT J AU Gindt, BP Abebe, DG Tang, ZJ Lindsey, MB Chen, J Elgammal, RA Zawodzinski, TA Fujiwara, T AF Gindt, B. P. Abebe, D. G. Tang, Z. J. Lindsey, M. B. Chen, J. Elgammal, R. A. Zawodzinski, T. A. Fujiwara, T. TI Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID NAFION PERFLUOROSULFONIC MEMBRANES; SULFURIC-ACID; POROUS MEMBRANES; PERFORMANCE; TRANSPORT; POLYMERIZATION; CONDUCTIVITY; NANOCHANNELS; MONOLITHS; POLYMERS AB Nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration. C1 [Gindt, B. P.; Abebe, D. G.; Fujiwara, T.] Univ Memphis, Dept Chem, 213 Smith Chem Bldg, Memphis, TN 38152 USA. [Tang, Z. J.; Zawodzinski, T. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lindsey, M. B.; Elgammal, R. A.; Zawodzinski, T. A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Chen, J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Fujiwara, T (reprint author), Univ Memphis, Dept Chem, 213 Smith Chem Bldg, Memphis, TN 38152 USA. EM tfjiwara@memphis.edu RI Chen, Jihua/F-1417-2011 OI Chen, Jihua/0000-0001-6879-5936 FU NSF [EPS-1004083]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability FX This work was supported by the NSF-funded TN-SCORE program, NSF EPS-1004083, under Thrust 2 and by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (Dr Imre Gyuk). NR 34 TC 3 Z9 3 U1 24 U2 51 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 11 BP 4288 EP 4295 DI 10.1039/c6ta00698a PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG6IZ UT WOS:000372189100035 ER PT J AU Gan, YY Zhao, HJ Hoelzer, DT Yun, D AF Gan, Yingye Zhao, Huijuan Hoelzer, David T. Yun, Di TI Energetic Study of Helium Cluster Nucleation and Growth in 14YWT through First Principles SO MATERIALS LA English DT Article DE helium bubbles; nanostructured ferritic alloys; first principles theory; formation criteria ID NANOSTRUCTURED FERRITIC ALLOY; REACTOR STRUCTURAL-MATERIALS; ATOM-PROBE TOMOGRAPHY; AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES; HIGH-TEMPERATURES; STAINLESS-STEEL; ION-IRRADIATION; POWER-SYSTEMS; BASIS-SET AB First principles calculations have been performed to energetically investigate the helium cluster nucleation, formation and growth behavior in the nano-structured ferritic alloy 14YWT. The helium displays strong affinity to the oxygen: vacancy (O:Vac) pair. By investigating various local environments of the vacancy, we find that the energy cost for He cluster growth increases with the appearance of solutes in the reference unit. He atom tends to join the He cluster in the directions away from the solute atoms. Meanwhile, the He cluster tends to expand in the directions away from the solute atoms. A growth criterion is proposed based on the elastic instability strain of the perfect iron lattice in order to determine the maximum number of He atoms at the vacancy site. We find that up to seven He atoms can be trapped at a single vacancy. However, it is reduced to five if the vacancy is pre-occupied by an oxygen atom. Furthermore, the solute atoms within nanoclusters, such as Ti and Y, will greatly limit the growth of the He cluster. A migration energy barrier study is performed to discuss the reduced mobility of the He atom/He cluster in 14YWT. C1 [Gan, Yingye; Zhao, Huijuan] Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA. [Hoelzer, David T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. [Yun, Di] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, 28 Xian Ning West Rd, Xian 710049, Peoples R China. RP Zhao, HJ (reprint author), Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA. EM ygan@clemson.edu; hzhao2@clemson.edu; hoelzerd@ornl.gov; diyun1979@xjtu.edu.cn RI Hoelzer, David/L-1558-2016; Yun, Di/K-6441-2013 OI Yun, Di/0000-0002-9767-3214 FU Nuclear Energy University Program (NEUP) program under Department of Energy [13-5408] FX We gratefully acknowledge support from the Nuclear Energy University Program (NEUP) program under Award Number 13-5408 by the Department of Energy. NR 53 TC 0 Z9 0 U1 1 U2 7 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD JAN PY 2016 VL 9 IS 1 AR 17 DI 10.3390/ma9010017 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA DG5DS UT WOS:000372095300003 ER PT J AU Mo, K Yun, D Miao, YB Liu, X Pellin, M Almer, J Park, JS Stubbins, JF Zhu, SF Yacout, AM AF Mo, Kun Yun, Di Miao, Yinbin Liu, Xiang Pellin, Michael Almer, Jonathan Park, Jun-Sang Stubbins, James F. Zhu, Shaofei Yacout, Abdellatif M. TI Investigation of High-Energy Ion-Irradiated MA957 Using Synchrotron Radiation under In-Situ Tension SO MATERIALS LA English DT Article DE synchrotron radiation; oxide dispersion-strengthened (ODS); ion irradiation; in situ tensile test ID X-RAY-DIFFRACTION; FERRITIC ALLOY MA957; DISPERSION-STRENGTHENED MATERIAL; ATOM-PROBE TOMOGRAPHY; F/M ODS STEEL; ELECTRON-MICROSCOPY; NEUTRON-IRRADIATION; HIGH-TEMPERATURES; STAINLESS-STEEL; LATTICE STRAIN AB In this study, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 mu m in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 mu m from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing of the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner. C1 [Mo, Kun; Yun, Di; Miao, Yinbin; Pellin, Michael; Yacout, Abdellatif M.] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. [Yun, Di] Xi An Jiao Tong Univ, Dept Nucl Engn, Xian 710049, Shaanxi, Peoples R China. [Liu, Xiang; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Almer, Jonathan; Park, Jun-Sang] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Stubbins, James F.] Kyushu Univ, Int Inst Carbon Neutral Energy Res, Fukuoka 8190395, Japan. [Zhu, Shaofei] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. RP Mo, K (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. EM kunmo@anl.gov; diyun1979@mail.xjtu.edu.cn; ymiao@anl.gov; xliu128@illinois.edu; pellin@anl.gov; almer@aps.anl.gov; parkjs@aps.anl.gov; jstubbin@illinois.edu; zhu@anl.gov; yacout@anl.gov RI Pellin, Michael/B-5897-2008; Liu, Xiang/D-2005-2017; OI Pellin, Michael/0000-0002-8149-9768; Liu, Xiang/0000-0002-2634-1888; Miao, Yinbin/0000-0002-3128-4275 FU U.S. Department of Energy [DE-AC-02-06CH11357]; International Institute for Carbon Neutral Energy Research (WPI-I2CNER) - World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the Department of Energy. The authors gratefully acknowledge the support of the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), sponsored by the World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors would like to thank Carolyn Tomchik for editing the manuscript. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 51 TC 3 Z9 3 U1 1 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD JAN PY 2016 VL 9 IS 1 AR 15 DI 10.3390/ma9010015 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA DG5DS UT WOS:000372095300001 ER PT J AU Shu, SP Zhang, X Bellon, P Averback, RS AF Shu, Shipeng Zhang, Xuan Bellon, Pascal Averback, Robert S. TI Non-equilibrium Grain Boundary Wetting in Cu-Ag Alloys Containing W Nanoparticles SO MATERIALS RESEARCH LETTERS LA English DT Article DE Grain-Boundary Wetting; Nanoparticles; Coarsening Resistance; Non-equilibrium Nanostructuring ID PHASE-SEPARATION; BINARY-MIXTURES; SOLID-PHASE; IN SYSTEM; IRRADIATION; PARTICLES; TEMPERATURE; MODEL AB Adding nanoparticles to soft matter and liquids is known to provide remarkable control in the processing of novel materials. Here, we demonstrate a similar potential in crystalline solids. Specifically, we show that the addition of a high density of W nanoparticles dramatically alters the coarsening behavior of precipitate-hardened Cu-Ag alloys. First, the nanoparticles suppress precipitate growth, but far more surprisingly, they induce non-equilibrium Ag wetting layers on grain boundaries. This observation is explained using kinetic Monte Carlo simulations, which show that caging of Ag precipitates by the W nanoparticles suppresses their growth and drives the formation of wetting layers. C1 [Shu, Shipeng; Zhang, Xuan; Bellon, Pascal; Averback, Robert S.] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. [Zhang, Xuan] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shu, SP (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM shu13@illinois.edu OI Shu, Shipeng/0000-0003-3859-5014 FU US National Science Foundation [DMR-1306475] FX This research was supported by US National Science Foundation under Grant Number DMR-1306475. The work was carried out in part in the Frederick-Seitz Materials Research Laboratory Central Facilities, University of Illinois at Urbana-Champaign. NR 18 TC 1 Z9 1 U1 4 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 2166-3831 J9 MATER RES LETT JI Mater. Res. Lett. PY 2016 VL 4 IS 1 BP 22 EP 26 DI 10.1080/21663831.2015.1090496 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA DG6UV UT WOS:000372222500002 ER PT J AU Hoang, S Ashraf, A Eisaman, MD Nykypanchuk, D Nam, CY AF Hoang, Son Ashraf, Ahsan Eisaman, Matthew D. Nykypanchuk, Dmytro Nam, Chang-Yong TI Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects SO NANOSCALE LA English DT Article ID QUANTUM DOTS; LIGHT; EFFICIENCY; NANOMEMBRANES; DYNAMICS; SYSTEMS; LAYERS AB Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices. C1 [Hoang, Son; Nykypanchuk, Dmytro; Nam, Chang-Yong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Ashraf, Ahsan; Eisaman, Matthew D.] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Ashraf, Ahsan; Eisaman, Matthew D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Eisaman, Matthew D.] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. RP Nykypanchuk, D; Nam, CY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM dnykypan@bnl.gov; cynam@bnl.gov RI Hoang, Son/F-2795-2013; Nam, Chang-Yong/D-4193-2009 OI Hoang, Son/0000-0002-1225-6121; Nam, Chang-Yong/0000-0002-9093-4063 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This research was carried out at the Center for Functional Nanomaterials (S. H., D. N., C.-Y. N.) and Sustainable Energy Technologies Department (A. A. and M. D. E.), and Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract no. DE-SC0012704. NR 31 TC 2 Z9 2 U1 2 U2 7 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 11 BP 5873 EP 5883 DI 10.1039/c5nr07932b PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG7DV UT WOS:000372245900011 PM 26677967 ER PT J AU Battistoni, M Xue, QL Som, S AF Battistoni, Michele Xue, Qingluan Som, Sibendu TI Large-Eddy Simulation (LES) of Spray Transients: Start and End of Injection Phenomena SO OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES LA English DT Article; Proceedings Paper CT IFP Energies Nouvelles International Conference for Internal Combustion Engine Flows CY DEC 04-05, 2014 CL Rueil Malmaison, FRANCE ID X-RAY RADIOGRAPHY; RELAXATION MODEL; TURBULENT FLOWS; 2-PHASE FLOW; ATOMIZATION; COMBUSTION; RESOLUTION; JETS AB This work reports investigations on Diesel spray transients, accounting for internal nozzle flow and needle motion, and demonstrates how seamless calculations of internal flow and external jet can be accomplished in a Large-Eddy Simulation (LES) framework using an Eulerian mixture model. Sub-grid stresses are modeled with the Dynamic Structure (DS) model, a non-viscosity based one-equation LES model. Two problems are studied with high level of spatial and temporal resolution. The first one concerns an End-Of-Injection (EOI) case where gas ingestion, cavitation, and dribble formation are resolved. The second case is a Start-Of-Injection (SOI) simulation that aims at analyzing the effect of residual gas trapped inside the injector sac on spray penetration and rate of fuel injection. Simulation results are compared against experiments carried out at Argonne National Laboratory (ANL) using synchrotron X-ray. A mesh sensitivity analysis is conducted to assess the quality of the LES approach by evaluating the resolved turbulent kinetic energy budget and comparing the outcomes with a length-scale resolution index. LES of both EOI and SOI processes have been carried out on a single hole Diesel injector, providing insights in to the physics of the processes, with internal and external flow details, and linking the phenomena at the end of an injection event to those at the start of a new injection. Concerning the EOI, the model predicts ligament formation and gas ingestion, as observed experimentally, and the amount of residual gas in the nozzle sac matches with the available data. The fast dynamics of the process is described in detail. The simulation provides unique insights into the physics at the EOI. Similarly, the SOI simulation shows how gas is ejected first, and liquid fuel starts being injected with a delay. The simulation starts from a very low needle lift and is able to predict the actual Rate-Of-Injection (ROI) and jet penetration, based only on the prescribed needle motion. Finally, guidelines and future improvements of the model are discussed concerning the simulation of the transient injection phases. C1 [Battistoni, Michele; Xue, Qingluan; Som, Sibendu] Argonne Natl Lab, Chicago, IL USA. [Battistoni, Michele] Univ Perugia, 67 Via G Duranti, I-06125 Perugia, Italy. RP Battistoni, M (reprint author), Argonne Natl Lab, Chicago, IL USA.; Battistoni, M (reprint author), Univ Perugia, 67 Via G Duranti, I-06125 Perugia, Italy. EM michele.battistoni@unipg.it RI Battistoni, Michele/M-9194-2014 OI Battistoni, Michele/0000-0001-6807-9657 FU Argonne, a US Department of Energy Office of Science laboratory [DE-AC02- 06CH11357]; DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02- 06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research was funded by DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program managers at DOE, for their support. NR 54 TC 3 Z9 3 U1 2 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1294-4475 EI 1953-8189 J9 OIL GAS SCI TECHNOL JI Oil Gas Sci. Technol. PD JAN-FEB PY 2016 VL 71 IS 1 AR 4 DI 10.2516/ogst/2015024 PG 24 WC Energy & Fuels; Engineering, Chemical; Engineering, Petroleum SC Energy & Fuels; Engineering GA DG6GF UT WOS:000372180800005 ER PT S AU Balasubramanian, S Weber, AZ AF Balasubramanian, Sivagaminathan Weber, Adam Z. BE Franco, AA Doublet, ML Bessler, WG TI Continuum, Macroscopic Modeling of Polymer-Electrolyte Fuel Cells SO PHYSICAL MULTISCALE MODELING AND NUMERICAL SIMULATION OF ELECTROCHEMICAL DEVICES FOR ENERGY CONVERSION AND STORAGE: FROM THEORY TO ENGINEERING TO PRACTICE SE Green Energy and Technology LA English DT Article; Book Chapter ID GAS-DIFFUSION LAYERS; ANGLE X-RAY; PERFLUORINATED IONOMER MEMBRANES; EFFECTIVE TRANSPORT-PROPERTIES; PROTON-EXCHANGE MEMBRANES; OXYGEN REDUCTION REACTION; ATOMIC-FORCE MICROSCOPY; PERFLUOROSULFONIC ACID MEMBRANES; MICROELECTRODE NAFION INTERFACE; ION-CONTAINING POLYMERS AB In this chapter, the modeling equations and approaches for continuum modeling of phenomena in polymer-electrolyte fuel cells are introduced and discussed. Specific focus is made on the underlying transport, thermodynamic, and kinetic equations, and how these can be applied towards more complex fuel-cell issues such as multiphase flow. In addition, porous-media models including impact of droplets and pore-network modeling are introduced, as well methodologies towards modeling reaction rates in fuel-cell catalyst layers including physics-based impedance modeling. Finally, future directions for fuel-cell modeling are discussed. C1 [Balasubramanian, Sivagaminathan; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM azweber@lbl.gov NR 208 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1865-3529 BN 978-1-4471-5677-2; 978-1-4471-5676-5 J9 GREEN ENERGY TECHNOL PY 2016 BP 91 EP 149 DI 10.1007/978-1-4471-5677-2_4 D2 10.1007/978-1-4471-5677-2 PG 59 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BE2MC UT WOS:000369631400005 ER PT J AU Li, A Li, WZ Ling, Y Gan, WJ Brady, MA Wang, C AF Li, Ao Li, Weizhen Ling, Yang Gan, Wenjun Brady, Michael A. Wang, Cheng TI Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites SO RSC ADVANCES LA English DT Article ID MECHANICAL-PROPERTIES; CURE BEHAVIOR; ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; FRACTURE-TOUGHNESS; RAMAN-SPECTROSCOPY; NANOCOMPOSITES; FUNCTIONALIZATION; RESIN; DISPERSION AB Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol-gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites, were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall. C1 [Li, Ao; Li, Weizhen; Ling, Yang; Gan, Wenjun] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China. [Gan, Wenjun; Brady, Michael A.; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Li, WZ; Gan, WJ (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China.; Gan, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM liweizhen@sues.edu.cn; wjgan@sues.edu.cn RI Wang, Cheng/A-9815-2014 FU Shanghai Municipal Education Commission [20120407]; Shanghai Young Teachers' Training-funded Projects [ZZGJD13018]; Shanghai University of Engineering Science [2011XZ04, 0501-13-018, 2012SCX005] FX The authors wish to thank the Shanghai Municipal Education Commission (Overseas Visiting Scholar Project 20120407); Shanghai Young Teachers' Training-funded Projects (ZZGJD13018); Shanghai University of Engineering Science Developing funding (grant 2011XZ04), start-up project funding (grant 0501-13-018) and Interdisciplinary Subject Construction funding (grant 2012SCX005). NR 43 TC 1 Z9 1 U1 7 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 28 BP 23318 EP 23326 DI 10.1039/c5ra25182f PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DG7GQ UT WOS:000372253200023 ER PT J AU Datskos, P Polizos, G Bhandari, M Cullen, DA Sharma, J AF Datskos, P. Polizos, G. Bhandari, M. Cullen, D. A. Sharma, J. TI Colloidosome like structures: self-assembly of silica microrods SO RSC ADVANCES LA English DT Article ID PICKERING EMULSIONS; GOLD NANOPARTICLES; PARTICLES; MICROCAPSULES; NANORODS AB Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. In the present work, silica microrod self-assembly has been demonstrated by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/pentanol emulsion droplets. Rods self-assembled to make structures in the range of approximate to 10-40 mm. Smooth rods assembled better than segmented rods. The assembled structures were bonded by weak van der Waals forces. C1 [Datskos, P.; Polizos, G.; Sharma, J.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Nanosyst Separat & Mat Res Grp, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Bhandari, M.] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Cullen, D. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Sharma, J (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Nanosyst Separat & Mat Res Grp, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM sharmajk@ornl.gov RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU U.S. Department of Energy [DE-AC05-00OR22725]; DOE's Building Technology office [1027-1605] FX J. Sharma is a Staff Scientist at the Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This work is supported by DOE's Building Technology office award# 1027-1605 to J. S. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 27 TC 1 Z9 1 U1 10 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 32 BP 26734 EP 26737 DI 10.1039/c5ra25817k PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG7GV UT WOS:000372253700029 ER PT S AU Pathak, S AF Pathak, Siddhartha BE Paris, O TI Collective Behaviour of Vertically Aligned Carbon Nanotubes: from a Single Tube towards Complex Networks SO STRUCTURE AND MULTISCALE MECHANICS OF CARBON NANOMATERIALS SE CISM Courses and Lectures LA English DT Article; Book Chapter ID STRESS-STRAIN CURVES; MECHANICAL-PROPERTIES; UNIAXIAL COMPRESSION; CELLULAR SOLIDS; SILICON-CARBIDE; METALLIC FOAMS; IN-SITU; ARRAYS; NANOINDENTATION; INDENTATION C1 [Pathak, Siddhartha] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. RP Pathak, S (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. NR 63 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG WIEN PI VIENNA PA SACHSENPLATZ 4-6, A-1201 VIENNA, AUSTRIA SN 0254-1971 BN 978-3-7091-1887-0; 978-3-7091-1885-6 J9 CISM COURSES LECT PY 2016 VL 563 BP 191 EP 226 DI 10.1007/978-3-7091-1887-0_8 D2 10.1007/ 978-3-7091-1887-0 PG 36 WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Mechanics SC Engineering; Science & Technology - Other Topics; Materials Science; Mechanics GA BE2NB UT WOS:000369652200009 ER PT S AU Wong, CY AF Wong, Cheuk-Yin BE AlvarezCastillo, D Blaschke, D Kekelidze, V Matveev, V Sorin, A TI Analytical Expressions for the Hard-Scattering Production of Massive Partons SO 15TH INTERNATIONAL CONFERENCE ON STRANGENESS IN QUARK MATTER (SQM2015) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 15th International Conference on Strangeness in Quark Matter (SQM) CY JUL 06-11, 2015 CL Dubna, RUSSIA SP Joint Inst Nucl Res, Veksler & Baldin Lab High Energy Phys ID PP AB We obtain explicit expressions for the two-particle differential cross section E(c)E(kappa)d sigma-(AB -> c kappa X)/dcd kappa and the two-particle angular correlation function d sigma(AB -> c kappa X)/d Delta phi d Delta y in the hard-scattering production of massive partons in order to exhibit the "ridge" structure on the away side in the hard-scattering process. The single-particle production cross section d sigma(AB -> cX)/dy(c)c(T)dc(T) is also obtained and compared with the ALICE experimental data for charm production in pp collisions at 7 TeV at LHC. C1 [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 668 AR 012097 DI 10.1088/1742-6596/668/1/012097 PG 4 WC Physics, Particles & Fields SC Physics GA BE4GK UT WOS:000371691300097 ER PT J AU Martin, JL Read, RJ Wakatsuki, S AF Martin, Jennifer L. Read, Randy J. Wakatsuki, Soichi TI Expanding beyond biological crystallography SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Editorial Material DE editorial; structural biology C1 [Martin, Jennifer L.] Univ Queensland, Inst Mol Biosci, Queensland Biosci Precinct, Brisbane, Qld 4072, Australia. [Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England. [Wakatsuki, Soichi] Stanford Univ, Sch Med, SLAC, Photon Sci, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA. [Wakatsuki, Soichi] Stanford Univ, Sch Med, Struct Biol, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA. RP Martin, JL (reprint author), Univ Queensland, Inst Mol Biosci, Queensland Biosci Precinct, Brisbane, Qld 4072, Australia.; Read, RJ (reprint author), Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England.; Wakatsuki, S (reprint author), Stanford Univ, Sch Med, SLAC, Photon Sci, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA.; Wakatsuki, S (reprint author), Stanford Univ, Sch Med, Struct Biol, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA. EM j.martin@imb.uq.edu.au; rjr27@cam.ac.uk; soichi.wakatsuki@stanford.edu RI Read, Randy/L-1418-2013 OI Read, Randy/0000-0001-8273-0047 NR 0 TC 0 Z9 0 U1 0 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND EI 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JAN PY 2016 VL 72 BP 1 EP 1 DI 10.1107/S2059798315023761 PN 1 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DF9UO UT WOS:000371707300001 PM 26894528 ER PT J AU Baxter, EL Aguila, L Alonso-Mori, R Barnes, CO Bonagura, CA Brehmer, W Brunger, AT Calero, G Caradoc-Davies, TT Chatterjee, R Degrado, WF Fraser, JS Ibrahim, M Kern, J Kobilka, BK Kruse, AC Larsson, KM Lemke, HT Lyubimov, AY Manglik, A McPhillips, SE Norgren, E Pang, SS Soltis, SM Song, JH Thomaston, J Tsai, Y Weis, WI Woldeyes, RA Yachandra, V Yano, J Zouni, A Cohen, AE AF Baxter, Elizabeth L. Aguila, Laura Alonso-Mori, Roberto Barnes, Christopher O. Bonagura, Christopher A. Brehmer, Winnie Brunger, Axel T. Calero, Guillermo Caradoc-Davies, Tom T. Chatterjee, Ruchira Degrado, William F. Fraser, James S. Ibrahim, Mohamed Kern, Jan Kobilka, Brian K. Kruse, Andrew C. Larsson, Karl M. Lemke, Heinrik T. Lyubimov, Artem Y. Manglik, Aashish McPhillips, Scott E. Norgren, Erik Pang, Siew S. Soltis, S. M. Song, Jinhu Thomaston, Jessica Tsai, Yingssu Weis, William I. Woldeyes, Rahel A. Yachandra, Vittal Yano, Junko Zouni, Athina Cohen, Aina E. TI High-density grids for efficient data collection from multiple crystals SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE XFELs; high-throughput crystallography; serial crystallography; sample delivery; automation for sample-exchange robots ID X-RAY-DIFFRACTION; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; LIPIDIC CUBIC PHASE; MACROMOLECULAR CRYSTALLOGRAPHY; PHOTOSYSTEM-II; PROTEIN CRYSTALS; ROOM-TEMPERATURE; BIOLOGICAL CRYSTALLOGRAPHY; SYNCHROTRON-RADIATION; ANGSTROM RESOLUTION AB Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice Blu-Ice/DCSS DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures. C1 [Baxter, Elizabeth L.; Aguila, Laura; Brehmer, Winnie; McPhillips, Scott E.; Soltis, S. M.; Song, Jinhu; Tsai, Yingssu; Cohen, Aina E.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Alonso-Mori, Roberto; Kern, Jan; Lemke, Heinrik T.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Barnes, Christopher O.; Calero, Guillermo] Univ Pittsburgh, Sch Med, Dept Struct Biol, Pittsburgh, PA 15261 USA. [Bonagura, Christopher A.; Norgren, Erik] Art Robbins Instruments, Sunnyvale, CA 94089 USA. [Brunger, Axel T.; Kobilka, Brian K.; Kruse, Andrew C.; Lyubimov, Artem Y.; Manglik, Aashish; Weis, William I.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Brunger, Axel T.; Lyubimov, Artem Y.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Caradoc-Davies, Tom T.; Pang, Siew S.] Monash Univ, ARC Ctr Excellence Adv Mol Imaging, Melbourne, Vic 3800, Australia. [Caradoc-Davies, Tom T.] Australian Synchrotron, 800 Blackburn Rd, Melbourne, Vic 3168, Australia. [Chatterjee, Ruchira; Kern, Jan; Yachandra, Vittal; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Bioscences Div, Berkeley, CA 94720 USA. [Degrado, William F.; Thomaston, Jessica] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Fraser, James S.; Woldeyes, Rahel A.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA. [Ibrahim, Mohamed; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. [Larsson, Karl M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Weis, William I.] Stanford Univ, Dept Struct Biol, Stanford, CA 94305 USA. RP Cohen, AE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM acohen@slac.stanford.edu RI Lemke, Henrik Till/N-7419-2016; OI Lemke, Henrik Till/0000-0003-1577-8643; Fraser, James/0000-0002-5080-2859 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; LCLS Ultrafast Science Instruments project - US Department of Energy, Office of Basic Energy Sciences; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; US Department of Energy Office of Biological and Environmental Research; National Institutes of Health (NIH), National Institute of General Medical Sciences [P41GM103393]; NSF Graduate Research Fellowship; NIH [GM110580]; NSF [STC-1231306]; Office of Science, OBES, Chemical Sciences, Geosciences and Biosciences CSGB of the DOE [DE-AC02-05CH11231]; National Institutes of Health (NIH) [GM055302, GM110501]; DFG-Cluster of Excellence 'UniCat' coordinated by Technische Universitat at Berlin [Sfb1078, TPA5]; Human Frontiers Science Project [RGP0063/2013 310] FX Portions of this research were carried out at the Linac Coherent Light Source (LCLS), a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The XPP instruments were funded through the LCLS Ultrafast Science Instruments project funded by the US Department of Energy, Office of Basic Energy Sciences. Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the US Department of Energy Office of Biological and Environmental Research and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (including P41GM103393). RAW is supported by an NSF Graduate Research Fellowship. JSF is supported by NIH GM110580 and NSF STC-1231306. JY and VKY are supported by Office of Science, OBES, Chemical Sciences, Geosciences and Biosciences CSGB of the DOE under Contract No. DE-AC02-05CH11231 for X-ray methodology and instrumentation. The LCLS is acknowledged for beamtime access under experiment No. XPPG7814. This work is supported by National Institutes of Health (NIH) grants GM055302 (VKY) and GM110501 (JY), the DFG-Cluster of Excellence 'UniCat' coordinated by the Technische Universitat at Berlin and Sfb1078, TPA5 (AZ and MI) and the Human Frontiers Science Project Award No. RGP0063/2013 310 (JY and AZ). NR 52 TC 8 Z9 8 U1 5 U2 20 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JAN PY 2016 VL 72 BP 2 EP 11 DI 10.1107/S2059798315020847 PN 1 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DF9UO UT WOS:000371707300002 PM 26894529 ER PT J AU Moriarty, NW Tronrud, DE Adams, PD Karplus, PA AF Moriarty, Nigel W. Tronrud, Dale E. Adams, Paul D. Karplus, P. Andrew TI A new default restraint library for the protein backbone inPhenix Phenix: a conformation-dependent geometry goes mainstream SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Editorial Material DE covalent geometry restraints; crystallographic refinement; protein structure; validation; Phenix ID IMPROVES CRYSTALLOGRAPHIC REFINEMENT; RESOLUTION; ABINITIO AB Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriartyet al. et al. (2014),FEBS J. FEBS J.281 281, 4061-4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used byPhenix Phenix is described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries. C1 [Moriarty, Nigel W.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA. [Tronrud, Dale E.; Karplus, P. Andrew] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97377 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Moriarty, NW (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA. EM nwmoriarty@lbl.gov RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIGMS NIH HHS [R01 GM083136, 1P01 GM063210, P01 GM063210, R01-GM083136] NR 19 TC 6 Z9 6 U1 0 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND EI 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JAN PY 2016 VL 72 BP 176 EP 179 DI 10.1107/S2059798315022408 PN 1 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DF9UO UT WOS:000371707300018 PM 26894545 ER PT J AU Hu, GZ Gracia-Espino, E Sandstrom, R Sharifi, T Cheng, SD Shen, HJ Wang, CY Guo, SJ Yang, G Wagberg, T AF Hu, Guangzhi Gracia-Espino, Eduardo Sandstrom, Robin Sharifi, Tiva Cheng, Shaodong Shen, Hangjia Wang, Chuanyi Guo, Shaojun Yang, Guang Wagberg, Thomas TI Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co-Pt core-shell nanoparticles SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; METHANOL OXIDATION REACTION; ALLOY NANOPARTICLES; SURFACE-COMPOSITION; CATALYSTS; NI; PERFORMANCE; ALKALINE; METALS; PTCU3 AB PtM-based core-shell nanoparticles are a new class of active and stable nanocatalysts for promoting oxygen reduction reaction (ORR); however, the understanding of their high electrocatalytic performance for ORR at the atomistic level is still a great challenge. Herein, we report the synthesis of highly ordered and homogeneous truncated cuboctahedral Pt3Co-Pt core-shell nanoparticles (cs-Pt3Co). By combining atomic resolution electron microscopy, X-ray photoelectron spectroscopy, extensive first-principles calculations, and many other characterization techniques, we conclude that the cs-Pt3Co nanoparticles are composed of a complete or nearly complete Pt monolayer skin, followed by a secondary shell containing 5-6 layers with similar to 78 at% of Pt, in a Pt3Co configuration, and finally a Co-rich core with 64 at% of Pt. Only this particular structure is consistent with the very high electrocatalytic activity of cs-Pt3Co nanoparticles for ORR, which is about 6 times higher than commercial 30%-Pt/Vulcan and 5 times more active than non-faceted (spherical) alloy Pt3Co nanoparticles. Our study gives an important insight into the atomistic design and understanding of advanced bimetallic nanoparticles for ORR catalysis and other important industrial catalytic applications. C1 [Hu, Guangzhi; Gracia-Espino, Eduardo; Sandstrom, Robin; Sharifi, Tiva; Wagberg, Thomas] Umea Univ, Dept Phys, S-90187 Umea, Sweden. [Cheng, Shaodong; Yang, Guang] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China. [Cheng, Shaodong; Yang, Guang] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. [Shen, Hangjia; Wang, Chuanyi] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Lab Environm Sci & Technol, Urumqi 830011, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Phys Chem & Appl Spect, POB 1663, Los Alamos, NM 87545 USA. RP Gracia-Espino, E; Wagberg, T (reprint author), Umea Univ, Dept Phys, S-90187 Umea, Sweden.; Yang, G (reprint author), Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.; Yang, G (reprint author), Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. EM Eduardo.gracia@physics.umu.se; g.yang@mail.xjtu.edu.cn; Thomas.wagberg@physics.umu.se RI Yang, Guang/C-9022-2011; Cheng, Shaodong/P-6440-2014 OI Yang, Guang/0000-0003-1117-1238; FU Artificial Leaf Project Umea (K&A Wallenberg Foundation); Swedish Research Council [2013-5252]; 1000-Talent Program (Recruitment Program of Global Expert, in Chinese); Special Talent Foundation of Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; National Natural Science Foundation of China [21505154, 51202180]; Angpanneforeningen's Foundation [14-541]; Fundamental Research Funds for the Central Universities in China; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry FX This work was supported by the Artificial Leaf Project Umea (K&A Wallenberg Foundation) and by the Swedish Research Council (Grant dnr 2013-5252). G.H. acknowledges support from the 1000-Talent Program (Recruitment Program of Global Expert, in Chinese: Qian-Ren-Ji-Hua) and the Special Talent Foundation of Director of Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences and National Natural Science Foundation of China (21505154). E.G.E. acknowledges support from Angpanneforeningen's Foundation (14-541). G.Y. acknowledges the funding from the National Natural Science Foundation of China (Grant No. 51202180), the Fundamental Research Funds for the Central Universities in China and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. The theoretical simulations were performed on resources provided by the Swedish National Infrastructure for Computing at the High Performance Computing Center North (HPC2N). We wish to thank Qingxue Lai and Prof. Yanyu Liang of the Nanjing University of Aeronautics and Astronautics for assistance with electrochemical measurements. NR 36 TC 2 Z9 2 U1 12 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 5 BP 1393 EP 1401 DI 10.1039/c5cy01128k PG 9 WC Chemistry, Physical SC Chemistry GA DF8KW UT WOS:000371607600014 ER PT J AU Kim, J Kim, KH Oang, KY Lee, JH Hong, K Cho, H Huse, N Schoenlein, RW Kim, TK Ihee, H AF Kim, Jeongho Kim, Kyung Hwan Oang, Key Young Lee, Jae Hyuk Hong, Kiryong Cho, Hana Huse, Nils Schoenlein, Robert W. Kim, Tae Kyu Ihee, Hyotcherl TI Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering) SO CHEMICAL COMMUNICATIONS LA English DT Article ID ULTRAFAST ELECTRON-DIFFRACTION; TRANSIENT MOLECULAR-STRUCTURES; PROTEIN STRUCTURAL DYNAMICS; PHOTOACTIVE YELLOW PROTEIN; TIME-RESOLVED DIFFRACTION; 2-DIMENSIONAL INFRARED-SPECTROSCOPY; FEMTOSECOND-STIMULATED RAMAN; CU(I) PHENANTHROLINE COMPLEX; SPIN-CROSSOVER DYNAMICS; EXCITED-STATE STRUCTURE AB Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions. C1 [Kim, Jeongho] Inha Univ, Dept Chem, Inchon 402751, South Korea. [Kim, Kyung Hwan; Oang, Key Young; Ihee, Hyotcherl] Ctr Nanomat & Chem React, Inst Basic Sci, Taejon 305701, South Korea. [Kim, Kyung Hwan; Oang, Key Young; Ihee, Hyotcherl] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea. [Lee, Jae Hyuk; Cho, Hana; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Dept Chem, Busan 609735, South Korea. [Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea. [Cho, Hana] Korea Res Inst Standard & Sci, Div Metrol Qual Life, Ctr Inorgan Anal, Daejeon 305340, South Korea. [Huse, Nils] Univ Hamburg, Max Planck Res Dept Struct Dynam, D-22607 Hamburg, Germany. [Huse, Nils] Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. RP Kim, J (reprint author), Inha Univ, Dept Chem, Inchon 402751, South Korea.; Ihee, H (reprint author), Ctr Nanomat & Chem React, Inst Basic Sci, Taejon 305701, South Korea.; Ihee, H (reprint author), Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea.; Kim, TK (reprint author), Pusan Natl Univ, Dept Chem, Busan 609735, South Korea.; Kim, TK (reprint author), Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea. EM jkim5@inha.ac.kr; tkkim@pusan.ac.kr; hyotcherl.ihee@kaist.ac.kr RI Ihee, Hyotcherl/C-1614-2011; KIM, TAE KYU/A-8737-2016; Huse, Nils/A-5712-2017; OI KIM, TAE KYU/0000-0002-9578-5722; Huse, Nils/0000-0002-3281-7600; Kim, Jeongho/0000-0003-4085-293X FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2014R1A1A1002511, 2013R1A1A2009575, 2014R1A4A1001690, 2011-0031558]; TJ Park Science Fellowship of POSCO TJ Park Foundation; [IBS-R004-G2] FX We greatly appreciate our co-workers listed in many references of this article. We acknowledge other research groups who have made significant contributions to the advance of TRXL and TRXAS as well as other related X-ray techniques. This work was supported by IBS-R004-G2. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002511, 2013R1A1A2009575, 2014R1A4A1001690, and 2011-0031558). This research has been supported by the TJ Park Science Fellowship of POSCO TJ Park Foundation. NR 228 TC 4 Z9 4 U1 8 U2 45 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 19 BP 3734 EP 3749 DI 10.1039/c5cc08949b PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA DF6PG UT WOS:000371477100001 PM 26785280 ER PT J AU Liu, R Cheng, S Baker, ES Smith, RD Zeng, XC Gong, B AF Liu, Rui Cheng, Shuang Baker, Erin S. Smith, Richard D. Zeng, Xiao Cheng Gong, Bing TI Surprising impact of remote groups on the folding-unfolding and dimer-chain equilibria of bifunctional H-bonding unimers SO CHEMICAL COMMUNICATIONS LA English DT Article ID BONDED MOLECULAR DUPLEXES; SUPRAMOLECULAR POLYMERS; HYDROGEN-BONDS; AQUEOUS-MEDIA; DNA COMPLEX; FOLDAMERS; ARRAYS; ASSOCIATION; WATER; MACROCYCLES AB Oligoamide 1, consisting of two H-bonding units linked by a trimethylene linker, was previously found to form a very stable, folded dimer. In this work, replacing the side chains and end groups of 1 led to derivatives that show the surprising impact of end groups on the folding and dimer-chain equilibria of the resultant molecules. C1 [Liu, Rui; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Liu, Rui; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Cheng, Shuang] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Jiangsu, Peoples R China. [Baker, Erin S.; Smith, Richard D.] Pacific NW Natl Lab, Earth & Biol Sci Div, Richland, WA 99352 USA. [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Gong, B (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.; Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. EM bgong@buffalo.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU US National Science Foundation [CHE-1306326, CBET-1512164]; National Natural Science Foundation of China [NSFC-91227109]; NIGMS [P41 GM103493]; NIEHS [R01ES022190]; DOE [DE-AC05-76RLO-1830] FX This work was supported by the US National Science Foundation (CHE-1306326 and CBET-1512164), and the National Natural Science Foundation of China (NSFC-91227109). The mass spectrometric measurements were supported by grants from the NIGMS (P41 GM103493) and NIEHS (R01ES022190). This work was performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle under contract no. DE-AC05-76RLO-1830. NR 53 TC 2 Z9 2 U1 3 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 19 BP 3773 EP 3776 DI 10.1039/c6cc00224b PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DF6PG UT WOS:000371477100007 PM 26830456 ER PT J AU Zhou, M Wang, HL Guo, SJ AF Zhou, Ming Wang, Hsing-Lin Guo, Shaojun TI Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID METAL-FREE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; PEM FUEL-CELL; ELECTROCHEMICAL ENERGY APPLICATIONS; NANOTUBE-MODIFIED ELECTRODES; CATALYST-FREE SYNTHESIS; LITHIUM ION BATTERIES; POROUS CARBON; MESOPOROUS CARBON; CATHODE CATALYST AB One of the critical issues in the industrial development of fuel cells (e.g., proton exchange membrane fuel cells, direct methanol fuel cells and biofuel cells) is the high cost, serious intermediate tolerance, anode crossover, sluggish kinetics, and poor stability of the platinum (Pt) as the preferred electrocatalysts for the oxygen reduction reaction (ORR) at the cathode. The development of novel noble-metal-free electrocatalysts with low cost, high activity and practical durability for ORR has been considered as one of the most active and competitive fields in chemistry and materials science. In this critical review, we will summarize recent advances on engineering advanced carbon nanomaterials with different dimensions for the rational design and synthesis of noble-metal-free oxygen reduction electrocatalysts including heteroatom-doped carbon nanomaterials, transition metal-based nanoparticle (NP)-carbon nanomaterial composites and especially the stable iron carbide (Fe3C)-based NP-carbon nanomaterial composites. Introducing advanced carbon nanomaterials with high specific surface area and stable structure into the noble-metal-free ORR field has not only led to a maximized electrocatalyst surface area for the electron transfer but also resulted in enhanced electrocatalyst stability for long-term operation. Therefore, the rational design and synthesis of noble-metal-free electrocatalysts based on heteroatoms, transition metal-based NPs and Fe3C-based NP functionalized carbon nanomaterials are of special relevance for their ORR applications, and represents a rapidly growing branch of research. The demonstrated examples in this review will open new directions on designing and optimizing advanced carbon nanomaterials for the development of extremely active and durable earth-abundant cathodic catalysts for fuel cell applications. C1 [Zhou, Ming] NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Fac Chem, Changchun 130024, Jilin Province, Peoples R China. [Zhou, Ming] NE Normal Univ, Natl & Local United Engn Lab Power Batteries, Changchun 130024, Jilin Province, Peoples R China. [Wang, Hsing-Lin] Los Alamos Natl Lab, Phys Chem & Appl Spect, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Guo, Shaojun] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China. [Guo, Shaojun] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. RP Zhou, M (reprint author), NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Fac Chem, Changchun 130024, Jilin Province, Peoples R China.; Zhou, M (reprint author), NE Normal Univ, Natl & Local United Engn Lab Power Batteries, Changchun 130024, Jilin Province, Peoples R China.; Wang, HL (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect, Div Chem, POB 1663, Los Alamos, NM 87545 USA.; Guo, SJ (reprint author), Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China.; Guo, SJ (reprint author), Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. EM zhoum739@nenu.edu.cn; hwang@lanl.gov; guosj@pku.edu.cn RI Guo, Shaojun/A-8449-2011; Zhou, Ming/B-7451-2009 OI Guo, Shaojun/0000-0002-5941-414X; Zhou, Ming/0000-0003-2239-9342 FU Northeast Normal University startup funds; Recruitment Program of Global Youth Experts; Laboratory Directed Research and Development program under the U.S. Department of Energy; Peking University FX M. Z. is grateful to financial support from Northeast Normal University startup funds and the Recruitment Program of Global Youth Experts. H. L. W. would like to acknowledge financial support by the Laboratory Directed Research and Development program under the auspices of the U.S. Department of Energy. S. G. acknowledges the support by Peking University start up funds and Recruitment Program of Global Youth Experts. NR 291 TC 58 Z9 58 U1 249 U2 535 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 EI 1460-4744 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2016 VL 45 IS 5 BP 1273 EP 1307 DI 10.1039/c5cs00414d PG 35 WC Chemistry, Multidisciplinary SC Chemistry GA DF8JV UT WOS:000371604800007 PM 26647087 ER PT J AU Leu, BM Sturza, MI Hong, JW Alatas, A Baran, V Fassler, TF AF Leu, Bogdan M. Sturza, Mihai I. Hong, Jiawang Alatas, Ahmet Baran, Volodymyr Faessler, Thomas F. TI Elastic properties of type-I clathrate K8Zn4Sn42 determined by inelastic X-ray scattering SO EPL LA English DT Article ID HIGH-PRESSURE; TRANSITION; SPECTROSCOPY; TEMPERATURE; EXCITATIONS; DYNAMICS; STATES; MODES AB We measured the phonon dispersion at ambient conditions in single-crystal type-I clathrate K8Zn4Sn42, a material with promising thermoelectric properties that has only recently been synthesized, using the high-energy resolution inelastic X-ray scattering (IXS) technique. From the sound velocities along high-symmetry directions, we extracted the elastic constants (C-11, C-12, C-44 = 63.2, 19.1, 21.9GPa, respectively). Experimental results agree with the predictions from first-principles calculations on the hypothetical, "guest-free", type-I clathrate Sn-46. The size of the crystal investigated was several orders of magnitude smaller than what is required for neutron and ultrasonic measurements. Due to this essential property, together with the high-energy resolution, high-momentum-transfer resolution, and the access to the strongest Bragg reflections, IXS is the technique of choice for measuring the full elastic constant tensor for microcrystals. Copyright (C) EPLA, 2016 C1 [Leu, Bogdan M.; Alatas, Ahmet] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sturza, Mihai I.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Hong, Jiawang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Baran, Volodymyr; Faessler, Thomas F.] Tech Univ Munich, Dept Chem, Garching, Germany. RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Hong, Jiawang/B-2864-2009 OI Hong, Jiawang/0000-0002-9915-8072 FU U.S. DOE [DE-AC02-06CH11357]; Center for Accelerating Materials Modeling - U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. JH was supported by the Center for Accelerating Materials Modeling, funded by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 57 TC 0 Z9 0 U1 4 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2016 VL 113 IS 1 AR 16001 DI 10.1209/0295-5075/113/16001 PG 6 WC Physics, Multidisciplinary SC Physics GA DF6QB UT WOS:000371479500015 ER PT J AU Tinkham, WT Hoffman, CM Canfield, JM Vakili, E Reich, RM AF Tinkham, Wade T. Hoffman, Chad M. Canfield, Jesse M. Vakili, Emma Reich, Robin M. TI Using the photoload technique with double sampling to improve surface fuel loading estimates SO INTERNATIONAL JOURNAL OF WILDLAND FIRE LA English DT Article DE fuels; ratio estimation; regression estimation ID FOREST; BIOMASS AB Accurate surface fuel load estimates based on the planar intercept method require a considerable amount of time and cost. Recently the photoload method has been proposed as an alternative for sampling of fine woody surface fuels. To evaluate the use of photoload fuel sampling, six simulated fuel beds of 100 photoload visual estimates and destructively sampled fuel loads were generated at three levels of fuel loading (0.016, 0.060, and 0.120 kg m(-2)) and two levels of variability (coefficients of variation of similar to 42 and 85%). We assessed the accuracy and precision of simple random sampling with and without double sampling on surface fuel load estimation. Direct visual estimates often overestimated fuel loads where actual fuel loading was low and underestimated fuel loads where fuel loads were large. We found that double sampling with a classical regression estimation approach provided the most accurate and precise fuel load estimates, substantially improving the accuracy and precision achieved over standard photoload estimation when 20 and double sampling rate 20%. These results indicate that fine woody fuel loading estimation with the photoload technique can be improved by incorporating a double sampling approach. C1 [Tinkham, Wade T.; Hoffman, Chad M.; Vakili, Emma; Reich, Robin M.] Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA. [Canfield, Jesse M.] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. RP Tinkham, WT (reprint author), Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA. EM Wade.Tinkham@colostate.edu OI Hoffman, Chad/0000-0001-8715-937X FU Joint Fire Sciences grant [13-1-04-53]; McIntire-Stennis Program FX The collection and analysis of this dataset would not have been possible without support from Joint Fire Sciences grant 13-1-04-53 and the McIntire-Stennis Program. NR 20 TC 2 Z9 2 U1 0 U2 0 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1049-8001 EI 1448-5516 J9 INT J WILDLAND FIRE JI Int. J. Wildland Fire PY 2016 VL 25 IS 2 BP 224 EP 228 DI 10.1071/WF15027 PG 5 WC Forestry SC Forestry GA DF8EV UT WOS:000371591000010 ER PT S AU Tak, T Choe, J Jeong, Y Lee, D Kim, TK AF Tak, Taewoo Choe, Jiwon Jeong, Yongjin Lee, Deokjung Kim, T. K. BE Mohamed, AA Idris, FM Hasan, AB Hamzah, Z TI Study for Requirement of Advanced Long Life Small Modular Fast Reactor SO INTERNATIONAL NUCLEAR SCIENCE, TECHNOLOGY AND ENGINEERING CONFERENCE 2015 (INUSTEC2015) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Nuclear Science, Technology and Engineering Conference (iNuSTEC) CY AUG 17-19, 2015 CL Univ Sains Islam Malaysia, Nilai, MALAYSIA SP Minist Sci Technol & Innovat Malaysia, Minist Educ Malaysia, Malaysian Nucl Agcy, Int Atom Energy Agcy, Hitachi GE, Japan Atom Energy Agcy, Tokyo Inst Technol, Seoul Natl Univ, ASME Sect Malaysia, Reactor Interest Grp, NGO, Malaysian Nucl Soc, Univ Tenaga Nas, Univ Teknologi MARA, Univ Teknologi Malaysia, Univ Islam Antarabangsa Malaysia, Univ Kebangsaan Malaysia, Univ Malaya, Univ Tun Hussien Malaysia HO Univ Sains Islam Malaysia AB To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length. C1 [Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung] Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea. [Kim, T. K.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60564 USA. RP Lee, D (reprint author), Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea. EM ttwispy@unist.ac.kr; chi91023@unist.ac.kr; yjjeong09@unist.ac.kr; deokjung@unist.ac.kr; tkkim@anl.gov NR 17 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1351-1 J9 AIP CONF PROC PY 2016 VL 1704 AR 020001 DI 10.1063/1.4940059 PG 6 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA BE3ZH UT WOS:000371423800001 ER PT J AU Voss, JD Kugblenu, R Salter, K Johnson, L Reeves, WK AF Voss, Jameson D. Kugblenu, Richard Salter, Khabira Johnson, Lucas Reeves, Will K. TI Case series of 23 deaths from Hymenoptera stings among United States Air Force populations SO JOURNAL OF HYMENOPTERA RESEARCH LA English DT Article DE Hymenoptera; bees; wasps; stings; mortality; military; Air Force Mortality Registry ID SERVICE MEMBERS AB Medical conditions arising from hymenopteran sting allergy or mass envenomation are a serious health concern, particularly in austere environments. Both practicing allergists and entomological pest control personnel should consider the relevance of stinging insects when responding to problems with Hymenoptera. Recent occupational reviews of civilian deaths from insect bites and stings prompted our review of the US Air Force Mortality Registry to determine the relevance of insect stings and bites as a cause of death in the US Air Force. After reviewing over 40 years of death records we identified 23 death records, among US Air Force Active duty, guard, or retirees that arose directly from hymenopteran stings. C1 [Voss, Jameson D.; Reeves, Will K.] US Air Force Sch Aerosp Med, PHR, 2510 5th St, Wright Patterson AFB, OH 45433 USA. [Kugblenu, Richard] Oak Ridge Inst Sci & Educ, Wright Patterson AFB, OH 45433 USA. [Salter, Khabira] Decypher, Wright Patterson AFB, OH 45433 USA. [Johnson, Lucas] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Washington, DC USA. [Reeves, Will K.] 2510 Fifth St,Bldg 840, Wright Patterson AFB, OH 45433 USA. RP Reeves, WK (reprint author), US Air Force Sch Aerosp Med, PHR, 2510 5th St, Wright Patterson AFB, OH 45433 USA.; Reeves, WK (reprint author), 2510 Fifth St,Bldg 840, Wright Patterson AFB, OH 45433 USA. EM will.reeves@us.af.mil NR 8 TC 0 Z9 0 U1 3 U2 3 PU PENSOFT PUBL PI SOFIA PA 12 PROF GEORGI ZLATARSKI ST, SOFIA, 1700, BULGARIA SN 1070-9428 EI 1314-2607 J9 J HYMENOPT RES JI J. Hymenopt. Res. PY 2016 VL 48 BP 95 EP 99 DI 10.3897/JHR.48.7905 PG 5 WC Entomology SC Entomology GA DG0HU UT WOS:000371746700006 ER PT J AU Aab, A Abreu, P Aglietta, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anastasi, GA Anchordoqui, L Andringa, S Aramo, C Arqueros, F Arsene, N Asorey, H Assis, P Aublin, J Avila, G Awal, N Badescu, AM Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Blaess, SG Blanco, A Blanco, M Blazek, J Bleve, C Bluemer, H Bohacova, M Boncioli, D Bonifazi, C Borodai, N Brack, J Brancus, I Bretz, T Bridgeman, A Brogueira, P Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Coleman, A Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Cordier, A Coutu, S Covault, CE Cronin, J Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM de Jong, SJ De Mauro, G Neto, JRTD De Mitri, I de Oliveira, J de Souza, V del Pera, L Deligny, O Dhita, N Di Giulio, C Di Matteot, A Diaz, JC Castro, MLD Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dorofeev, A Hasankiadeh, QD dos Anjos, RC Dova, MT Ebr, J Enge, R Erdmann, M Erfani, M Escobar, CO Eser, J Espadanal, J Etchegoyeng, A Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Figueira, JM Filevich, A Filipcic, A Fratu, O Freire, MM Fujii, T Garcia, B Garcia-Gamez, D Garcia-Pinto, D Gate, F Gemmeke, H Gherghel-Lascu, A Ghia, PL Giaccari, U Giammarchi, M Giller, M Glas, D Glaser, C Glass, H Golup, G Berisso, MG Vitale, PFG Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Griffith, N Grillo, AF Grubb, TD Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Hartmann, S Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hohon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Jandt, I Jansen, S Jarne, C Johnsen, JA Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kuempe, D Mezek, GK Kunka, N Awad, AWK LaHurd, D Lang, A Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopes, L Lopez, R Casado, AL Louedec, K Lucero, A Malacari, M Mallamaci, M Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Meissner, R Meo, VBB Melo, D Menshikov, A Messina, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Montanet, F Morello, C Mostafa, M Moura, CA Muller, G Muller, MA Muller, S Navas, S Necesa, P Nellen, L Nelles, A Neuser, J Nguyen, PH Niculescu-Oglinzanu, M Niechcio, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Nunez, LA Ochilo, L Oikonomou, F Olinto, A Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Papenbreer, P Parente, G Parra, A Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petermann, E Peters, C Petrera, S Petrov, Y Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirrone, V Platino, M Plum, M Porcelli, A Porowski, C Prado, RR Privitera, R Prouza, M Quel, EJ Querchfeld, S Quinn, S Rautenberg, J Rave, O Ravignani, D Reinert, D Revenu, B Ridky, J Risse, M Ristori, P Rizi, V de Carvalho, WR Rojo, JR Rodriguez-Frias, MD Rogozin, D Rosado, J Roth, M Roulet, E Rovero, AC Saffi, SJ Saftoiu, A Salazar, H Saleh, A Greus, FS Salina, G Gomez, JDS Sanchez, F Sanchez-Lucas, P Santos, EM Santos, E Sarazin, F Sarkar, B Sarmento, R Sarmiento-Cano, C Sato, R Scarso, C Schauer, M Scherini, V Schieler, H Schmidt, D Scholten, O Schoorlemmer, H Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sig, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sonntag, S Sorokin, J Squartini, R Srivastava, YN Stanca, D Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Duran, MS Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Taborda, OA Tapia, A Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trini, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van Bodegom, P van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vasquez, R Vazquez, JR Vazquez, RA Veberie, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Widom, A Wiencke, L Wilczynski, H Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yang, L Yapici, T Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zepeda, A Zimmermann, B Ziolkowski, M Zuccarello, F AF Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anastasi, G. A. Anchordoqui, L. Andringa, S. Aramo, C. Arqueros, F. Arsene, N. Asorey, H. Assis, P. Aublin, J. Avila, G. Awal, N. Badescu, A. M. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Blaess, S. G. Blanco, A. Blanco, M. Blazek, J. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Borodai, N. Brack, J. Brancus, I. Bretz, T. Bridgeman, A. Brogueira, P. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Cordier, A. Coutu, S. Covault, C. E. Cronin, J. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. de Jong, S. J. De Mauro, G. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. del Pera, L. Deligny, O. Dhita, N. Di Giulio, C. Di Matteot, A. Diaz, J. C. Diaz Castro, M. L. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dorofeev, A. Hasankiadeh, Q. Dorosti dos Anjos, R. C. Dova, M. T. Ebr, J. Enge, R. Erdmann, M. Erfani, M. Escobar, C. O. Eser, J. Espadanal, J. Etchegoyeng, A. Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fratu, O. Freire, M. M. Fujii, T. Garcia, B. Garcia-Gamez, D. Garcia-Pinto, D. Gate, F. Gemmeke, H. Gherghel-Lascu, A. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glas, D. Glaser, C. Glass, H. Golup, G. Gomez Berisso, M. Gomez Vitale, P. F. Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Griffith, N. Grillo, A. F. Grubb, T. D. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Hartmann, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hohon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Jandt, I. Jansen, S. Jarne, C. Johnsen, J. A. Josebachuili, M. Kaeaepae, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kuempe, D. Mezek, G. Kukec Kunka, N. Awad, A. W. Kuotb LaHurd, D. Lang, A. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopes, L. Lopez, R. Lopez Casado, A. Louedec, K. Lucero, A. Malacari, M. Mallamaci, M. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martinez, H. Martinez Bravo, O. Martraire, D. Masias Meza, J. J. Mathes, H. J. Mathys, S. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Meissner, R. Meo, V. B. B. Melo, D. Menshikov, A. Messina, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Montanet, F. Morello, C. Mostafa, M. Moura, C. A. Mueller, G. Muller, M. A. Mueller, S. Navas, S. Necesa, P. Nellen, L. Nelles, A. Neuser, J. Nguyen, P. H. Niculescu-Oglinzanu, M. Niechcio, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Nunez, L. A. Ochilo, L. Oikonomou, F. Olinto, A. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Papenbreer, P. Parente, G. Parra, A. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petermann, E. Peters, C. Petrera, S. Petrov, Y. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirrone, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Prado, R. R. Privitera, R. Prouza, M. Quel, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Rave, O. Ravignani, D. Reinert, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rizi, V. Rodrigues de Carvalho, W. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Rogozin, D. Rosado, J. Roth, M. Roulet, E. Rovero, A. C. Saffi, S. J. Saftoiu, A. Salazar, H. Saleh, A. Greus, F. Salesa Salina, G. Sanabria Gomez, J. D. Sanchez, F. Sanchez-Lucas, P. Santos, E. M. Santos, E. Sarazin, F. Sarkar, B. Sarmento, R. Sarmiento-Cano, C. Sato, R. Scarso, C. Schauer, M. Scherini, V. Schieler, H. Schmidt, D. Scholten, O. Schoorlemmer, H. Schovanek, P. Schroeder, F. G. Schulz, A. Schulz, J. Schumacher, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sig, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sonntag, S. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanca, D. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suarez Duran, M. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Taborda, O. A. Tapia, A. Tepe, A. Theodoro, V. M. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Torres Machado, D. Travnicek, P. Trini, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van Bodegom, P. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vasquez, R. Vazquez, J. R. Vazquez, R. A. Veberie, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Widom, A. Wiencke, L. Wilczynski, H. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yang, L. Yapici, T. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zepeda, A. Zimmermann, B. Ziolkowski, M. Zuccarello, F. CA Pierre Auger Collaboration TI Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Pattern recognition, cluster finding, calibration and fitting methods; Timing detectors; Detector alignment and calibration methods (lasers, sources, particle-beams) AB To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Villa Martelli, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, Villa Martelli, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, Dept Fis, FCEyN, Buenos Aires, DF, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Freire, M. M.; Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Freire, M. M.; Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Santa Fe, Argentina. [Garcia, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc Astroparticulas, Mendoza, Argentina. [Garcia, B.] CONICET CNEA, Univ Tecnol Nacl, Fac Reg Mendoza, Mendoza, Argentina. [Almela, A.; Etchegoyeng, A.; Figueira, J. M.; Filevich, A.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Scarso, C.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyeng, A.; Suarez, F.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Bellido, J. A.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffi, S. J.; Sorokin, J.; van Bodegom, P.] Univ Adelaide, Adelaide, SA, Australia. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [de Souza, V.; dos Anjos, R. C.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, SP, Brazil. [Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Santos, E.; Theodoro, V. M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Melo, D.; Torres Machado, D.; Vasquez, R.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Asorey, H.; Nunez, L. A.; Sanabria Gomez, J. D.; Sarmiento-Cano, C.; Suarez Duran, M.] Univ Ind Santander, Bucaramanga, Colombia. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesa, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Cordier, A.; Garcia-Gamez, D.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Dallier, R.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, Nancay, France. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Rave, O.; Revenu, B.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Becker, K. H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baus, C.; Bluemer, H.; Eser, J.; Huber, D.; Kambeitz, O.; Katkov, I.; Lang, A.; Link, K.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Campus South, D-76021 Karlsruhe, Germany. [Bluemer, H.; Bridgeman, A.; Daumiller, K.; Hasankiadeh, Q. Dorosti; Enge, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Awad, A. W. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Porcelli, A.; Rogozin, D.; Roth, M.; Schieler, H.; Schmidt, D.; Schroeder, F. G.; Schulz, A.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberie, D.; Weindl, A.] Karlsruhe Inst Technol, Inst Kernphys IKP, Campus North, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt IEKP, Campus North, D-76021 Karlsruhe, Germany. [Biermann, P. L.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Bretz, T.; Erdmann, M.; Glaser, C.; Hartmann, S.; Hebbeker, T.; Krause, R.; Kuempe, D.; Lauscher, M.; Meissner, R.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Batista, R. Alves; Sig, G.; van Vliet, A.] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechcio, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirrone, V.; Zuccarello, F.] Univ Catania, Catania, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirrone, V.; Zuccarello, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Di Matteot, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Di Matteot, A.; Petrera, S.; Rizi, V.] Sezione Ist Nazl Fis Nucl, Laquila, Italy. [Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Bonifazi, C.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Naz Gran Sasso, Assergi, Laquila, Italy. [Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Osservatorio Astrofis Torino, INAF, Turin, Italy. [Aglietta, M.; Bertaina, M. E.; Castellina, A.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bertaina, M. E.; Chiavassa, A.] Univ Turin, Turin, Italy. [Lopez, R.; Martinez Bravo, O.; Parra, A.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Pelayo, R.] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City, DF, Mexico. [Caballero-Mora, K. S.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Chiapas, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Buitink, S.; de Jong, S. J.; De Mauro, G.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Timmermans, C.] Nikhef, Sci Pk, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Glas, D.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, P-1699 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal. [Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Caramete, L.; Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Arsene, N.; Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Mezek, G. Kukec; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Pera, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Vlcek, B.] Univ Alcala de Henares, Madrid, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Granada, Granada, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Casado, A.; Parente, G.; Rodrigues de Carvalho, W.; Torralba Elipe, G.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Johnsen, J. A.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Anchordoqui, L.; Paul, T.] CUNY Herbert H Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Matthews, J.; Shadkam, A.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhita, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Awal, N.; Farrar, G.; Unger, M.] NYU, New York, NY USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Greus, F. Salesa; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; Fang, K.; Fujii, T.; Olinto, A.; Privitera, R.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Gorham, P.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Scholten, O.] Vrije Univ Brussels, Brussels, Belgium. RP Aab, A (reprint author), Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany. EM auger_spokespersons@fnal.gov RI Fauth, Anderson/F-9570-2012; Abreu, Pedro/L-2220-2014; Assis, Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; de Mello Neto, Joao/C-5822-2013; Gouffon, Philippe/I-4549-2012; Badescu, Alina/B-6087-2012; Rosado, Jaime/K-9109-2014; zas, enrique/I-5556-2015; Chinellato, Jose Augusto/I-7972-2012; Caramete, Laurentiu/C-2328-2011; Chinellato, Carola Dobrigkeit /F-2540-2011; Brogueira, Pedro/K-3868-2012; Moura Santos, Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Alvarez-Muniz, Jaime/H-1857-2015; Ridky, Jan/H-6184-2014; Pimenta, Mario/M-1741-2013; de souza, Vitor/D-1381-2012; Guarino, Fausto/I-3166-2012; Zuccarello, Francesca/R-1834-2016; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Valino, Ines/J-8324-2012; Horvath, Pavel/G-6334-2014; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Nosek, Dalibor/F-1129-2017 OI Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Fauth, Anderson/0000-0001-7239-0288; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; de Mello Neto, Joao/0000-0002-3234-6634; Gouffon, Philippe/0000-0001-7511-4115; Rosado, Jaime/0000-0001-8208-9480; zas, enrique/0000-0002-4430-8117; Chinellato, Jose Augusto/0000-0002-3240-6270; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Brogueira, Pedro/0000-0001-6069-4073; Moura Santos, Edivaldo/0000-0002-2818-8813; Tome, Bernardo/0000-0002-7564-8392; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Nunez, Luis/0000-0003-4575-5899; Ridky, Jan/0000-0001-6697-1393; Pimenta, Mario/0000-0002-2590-0908; Rizi, Vincenzo/0000-0002-5277-6527; Garcia Pinto, Diego/0000-0003-1348-6735; Guarino, Fausto/0000-0003-1427-9885; Zuccarello, Francesca/0000-0003-1853-2550; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Valino, Ines/0000-0001-7823-0154; Horvath, Pavel/0000-0002-6710-5339; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Nosek, Dalibor/0000-0001-6219-200X FU Comision Nacional de Energia Atomica, Argentina; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina; Gobierno de la Provincia de Mendoza, Argentina; Municipalidad de Malargue, Argentina; NDM Holdings, Argentina; Valle Las Lenas, Argentina; Australian Research Council [DP150101622]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation (FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic [14-17501S]; Centre de Calcul IN2P3/CNRS, France; Centre National de la Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France, France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP) within the Investissements d'Avenir Programme, France [LABEX ANR-10-LABX-63, ANR-11-IDEX-0004-02]; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Istituto Nazionale di Astrofisica (INAF), Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy; CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Poland [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds, Portugal; FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects, Romania [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Programme Space Technology and Advanced Research (STAR), Romania [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Educacion y Ciencia, Spain; Xunta de Galicia, Spain; European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom; Department of Energy, U.S.A. [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, U.S.A. [0450696]; Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005] FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support:; Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council (DP150101622); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 21 TC 2 Z9 2 U1 12 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR P01018 DI 10.1088/1748-0221/11/01/P01018 PG 31 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800106 ER PT J AU Abir, MI Islam, FF Craft, A Williams, WJ Wachs, DM Chichester, DL Meyer, MK Lee, HK AF Abir, M. I. Islam, F. F. Craft, A. Williams, W. J. Wachs, D. M. Chichester, D. L. Meyer, M. K. Lee, H. K. TI Determination of optimal imaging parameters for the reconstruction of a nuclear fuel assembly using limited angle neutron tomography SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT International Workshop on Imaging CY SEP 07-10, 2015 CL Varenna, ITALY DE Image reconstruction in medical imaging; Inspection with neutrons; Neutron radiography ID TOMOSYNTHESIS; REMOVAL; CT AB The core components of nuclear reactors (e.g., fuel assemblies, spacer grids, control rods) encounter harsh environments due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of nuclear power plants; post-irradiation examination (PIE) can reveal information about the integrity of these components. Neutron computed tomography (CT) is one important PIE measurement tool for nondestructively evaluating the structural integrity of these items. CT typically requires many projections to be acquired from different view angles, after which a mathematical algorithm is used for image reconstruction. However, when working with heavily irradiated materials and irradiated nuclear fuel, obtaining many projections is laborious and expensive. Image reconstruction from a smaller number of projections has been explored to achieve faster and more cost-efficient PIE. Classical reconstruction methods (e.g., filtered backprojection), unfortunately, do not typically offer stable reconstructions from a highly asymmetric, few-projection data set and often create severe streaking artifacts. We propose an iterative reconstruction technique to reconstruct curved, plate-type nuclear fuel assemblies using limited-angle CT. The performance of the proposed method is assessed using simulated data and validated through real projections. We also discuss the systematic strategy for establishing the conditions of reconstructions and finding the optimal imaging parameters for reconstructions of the fuel assemblies from few projections using limited-angle CT. Results show that a fuel assembly can be reconstructed using limited-angle CT if 36 or more projections are taken from a particular direction with 1 degrees angular increment. C1 [Abir, M. I.; Craft, A.; Williams, W. J.; Wachs, D. M.; Chichester, D. L.; Meyer, M. K.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Islam, F. F.; Lee, H. K.] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, 301 W 14th St, Rolla, MO 65409 USA. RP Abir, MI (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM muhammad.abir@inl.gov RI Craft, Aaron/B-7579-2017 OI Craft, Aaron/0000-0002-7092-3826 NR 17 TC 0 Z9 0 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01016 DI 10.1088/1748-0221/11/01/C01016 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800016 ER PT J AU Anderson, J Borga, A Boterenbrood, H Chen, H Chen, K Drake, G Donszelmann, M Francis, D Gorini, B Lanni, F Miotto, GL Levinson, L Narevicius, J Roich, A Ryu, S Schreuder, F Schumacher, J Vandelli, W Vermeulen, J Wu, W Zhang, J AF Anderson, J. Borga, A. Boterenbrood, H. Chen, H. Chen, K. Drake, G. Donszelmann, M. Francis, D. Gorini, B. Lanni, F. Miotto, G. Lehmann Levinson, L. Narevicius, J. Roich, A. Ryu, S. Schreuder, F. Schumacher, J. Vandelli, W. Vermeulen, J. Wu, W. Zhang, J. TI A new approach to front-end electronics interfacing in the ATLAS experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Data acquisition circuits; Data acquisition concepts AB For new detector and trigger systems to be installed in the ATLAS experiment after LHC Run 2, a new approach will be followed for Front-End electronics interfacing. The FELIX (Front-End LInk eXchange) system will function as gateway connecting: on one side to detector and trigger electronics links, as well as providing timing and trigger information; and on the other side a commodity switched network built using standard technology (either Ethernet or Infiniband). The new approach is described in this paper, and results achieved so far are presented. C1 [Anderson, J.; Drake, G.; Ryu, S.; Zhang, J.] Argonne Natl Lab, 9700 South Cass Ave B109, Lemont, IL 60439 USA. [Chen, H.; Chen, K.; Lanni, F.; Wu, W.] Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. [Francis, D.; Gorini, B.; Miotto, G. Lehmann; Schumacher, J.; Vandelli, W.] CERN, CH-1211 Geneva 23, Switzerland. [Borga, A.; Boterenbrood, H.; Schreuder, F.; Vermeulen, J.] Univ Amsterdam, Nikhef Natl Inst Subatom Phys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Schumacher, J.] Univ Paderborn, Dept Comp Sci, Pohlweg 47, D-33098 Paderborn, Germany. [Levinson, L.; Narevicius, J.; Roich, A.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Donszelmann, M.] Radboud Univ Nijmegen, Comeniuslaan 4, NL-6525 HP Nijmegen, Netherlands. RP Borga, A (reprint author), Univ Amsterdam, Nikhef Natl Inst Subatom Phys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. EM andrea.borga@nikhef.nl NR 2 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01055 DI 10.1088/1748-0221/11/01/C01055 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800055 ER PT J AU Bartoldus, R Claus, R Garelli, N Herbst, RT Huffer, M Lakovidis, G Iordanidou, K Kwan, K Kocian, M Lankford, AJ Moschovakos, P Nelson, A Ntekas, K Ruckman, L Russell, J Schernau, M Schlenker, S Su, D Valderanis, C Wittgen, M Yildiz, SC AF Bartoldus, R. Claus, R. Garelli, N. Herbst, R. T. Huffer, M. Lakovidis, G. Iordanidou, K. Kwan, K. Kocian, M. Lankford, A. J. Moschovakos, P. Nelson, A. Ntekas, K. Ruckman, L. Russell, J. Schernau, M. Schlenker, S. Su, D. Valderanis, C. Wittgen, M. Yildiz, S. C. TI A new ATLAS muon CSC readout system with system on chip technology on ATCA platform SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Electronic detector readout concepts (gas, liquid); Modular electronics; Data acquisition concepts AB The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2. C1 [Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Kocian, M.; Ruckman, L.; Russell, J.; Su, D.; Wittgen, M.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Lakovidis, G.; Iordanidou, K.; Moschovakos, P.; Ntekas, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Iordanidou, K.] Univ Athens, GR-10679 Athens, Greece. [Kwan, K.] Chinese Univ Hong Kong, Hong Kong, Peoples R China. [Lankford, A. J.; Nelson, A.; Schernau, M.; Yildiz, S. C.] Univ Calif Irvine, Irvine, CA 92697 USA. [Moschovakos, P.; Ntekas, K.] Natl Tech Univ Athens, Athens 15973, Greece. [Schlenker, S.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Valderanis, C.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. [Iordanidou, K.] Columbia Univ, Nevis Lab, Irvington, NY USA. RP Yildiz, SC (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM cenk.yildiz@cern.ch NR 6 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01059 DI 10.1088/1748-0221/11/01/C01059 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800059 ER PT J AU Fernandez-Martinez, P Ullan, M Flores, D Hidalgo, S Quirion, D Lynn, D AF Fernandez-Martinez, P. Ullan, M. Flores, D. Hidalgo, S. Quirion, D. Lynn, D. TI Rad-hard vertical JFET switch for the HV-MUX system of the ATLAS upgrade Inner Tracker SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Radiation-hard electronics; Voltage distributions; Large detector systems for particle and astroparticle physics ID SIMULATION; DETECTORS AB This work presents a new silicon vertical JFET (V-JFET) device, based on the trenched 3D-detector technology developed at IMB-CNM, to be used as a switch for the High-Voltage powering scheme of the ATLAS upgrade Inner Tracker. The optimization of the device characteristics is performed by 2D and 3D TCAD simulations. Special attention has been paid to the on-resistance and the switch-off and breakdown voltages to meet the specific requirements of the system. In addition, a set of parameter values has been extracted from the simulated curves to implement a SPICE model of the proposed V-JFET transistor. As these devices are expected to operate under very high radiation conditions during the whole experiment life-time, a study of the radiation damage effects and the expected degradation of the device performance is also presented at the end of the paper. C1 [Fernandez-Martinez, P.; Ullan, M.; Flores, D.; Hidalgo, S.; Quirion, D.] CSIC, IMB CNM, Inst Microelect Barcelona, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Lynn, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fernandez-Martinez, P (reprint author), CSIC, IMB CNM, Inst Microelect Barcelona, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. EM pablo.fernandez@csic.es RI Hidalgo, Salvador/B-2649-2012; OI Hidalgo, Salvador/0000-0002-8070-3499; Quirion, David/0000-0002-5309-0535 NR 9 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01043 DI 10.1088/1748-0221/11/01/C01043 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800043 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieckl, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R Van de Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Gay, APR Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Pernie, L Randle-Conde, A Reis, T Seva, T Velde, CV Vanlaer, P Yonamine, R Zenoni, F Zhang, F Beernaert, K Benucci, L Cimmino, A Crucy, S Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Salva, S Sigamani, M Strobbe, N Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Brochet, S Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Belly, N Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Hamer, M Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Santos, AD Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M Abdelalim, AA Awad, A El Sawy, M Mahrous, A Mohammed, Y Radi, A Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Lisniak, S Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kuessel, Y Khunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garcia, JG Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Klanner, R Kogler, R Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schwandt, J Seidel, M Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Fink, S Frensch, F Giffels, M Gilbert, A Hartmann, F Heindl, SM Husemann, U Katkov, I Kornmayer, A Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Mal, P Mandal, K Sahoo, N Swain, SK Bansal, S Beni, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sudhakar, K Sur, N Sutar, B Wickramage, N Chauhan, S Dube, S Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaseili, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, R Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Bellato, M Benato, L Boletti, A Branca, A Osso, MD Dorigo, T Dosselli, U Fanzago, F Gozzelino, A Gulmini, M Lacaprara, S Margoni, M Meneguzzo, BT Montecassiano, F Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Ventura, S Zanetti, M Zotto, P Zucchetta, A Braghieri, A Magnani, A Montagna, P Raffi, SP Re, V Rieeardi, C Salvini, P Vai, I Vitulo, R Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Maco, V Monteil, E Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Zanetti, A Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Cifuentes, JAB Kim, H Kim, TJ Ryu, MS Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de la Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Leonardo, N Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Laney, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Myagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Manzano, PDC Campderros, JD Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Dunser, M Dupont, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Sharma, A Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Yang, Y Cardaci, M Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Yu, SS Kumar, A Bartek, R Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Tai, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Sen, S Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Thomas, L Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Kasmi, A Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J St John, J Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Dhingra, N Ferapontov, A Garabedian, A Hakala, J Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Sinthuprasith, T Syarif, R Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Paneva, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Della Porta, GZ Barge, D Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Justus, C Mccoll, N Mullin, SD Richman, J Stuart, D Suarez, I To, W West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Hu, Z Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwant, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Weber, HA Whitbeck, A Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Furic, IK Hugon, J Konigsberg, J Korytov, A Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Rossin, R Shchutska, L Snowball, M Sperka, D Terentyev, N Wang, J Wang, S Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Bhopatkar, V Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Osherson, M Swartz, M Xiao, M Xin, Y You, C Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Majumder, D Malek, M Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Niu, X Paus, C Ralph, D Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Ji, W Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Malik, S Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Kress, M Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Verzetti, M Demortier, L Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Nash, K Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Riley, G Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Kamon, T Krutelyov, V Montalvo, R Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Roe, J Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Ni, H Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Christian, A Dasu, S Dodd, L Duric, S Friis, E Gomber, B Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Ruggles, T Sarangi, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieckl, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. Van de Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Gay, A. P. R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Velde, C. Vander Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Salva, S. Sigamani, M. Strobbe, N. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Belly, N. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Hamer, M. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. De Souza Santos, A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Zou, W. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. Abdelalim, A. A. Awad, A. El Sawy, M. Mahrous, A. Mohammed, Y. Radi, A. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. de Cassagnac, R. Grapier Lisniak, S. Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Khuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. OE. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Klanner, R. Kogler, R. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schwandt, J. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Fink, S. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Mal, P. Mandal, K. Sahoo, N. Swain, S. K. Bansal, S. Beni, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sudhakar, K. Sur, N. Sutar, B. Wickramage, N. Chauhan, S. Dube, S. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaseili, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, R. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Bellato, M. Benato, L. Boletti, A. Branca, A. Osso, M. Dail' Dorigo, T. Dosselli, U. Fanzago, F. Gozzelino, A. Gulmini, M. Lacaprara, S. Margoni, M. Meneguzzo, Ba. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Ventura, S. Zanetti, M. Zotto, P. Zucchetta, A. Braghieri, A. Magnani, A. Montagna, P. Raffi, S. P. Re, V. Rieeardi, C. Salvini, P. Vai, I. Vitulo, R. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Maco, V. Monteil, E. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Zanetti, A. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Cifuentes, J. A. Brochero Kim, H. Kim, T. J. Ryu, M. S. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Casimiro Linares, E. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Leonardo, N. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Laney, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Myagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castinieiras De Saa, J. R. Castro Manzano, P. De Duarte Campderros, J. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duenser, M. Dupont, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Yu, S. S. Kumar, Arun Bartek, R. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Tai, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Sen, S. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Thomas, L. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. St John, J. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Dhingra, N. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Sinthuprasith, T. Syarif, R. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Paneva, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wuerthwein, F. Yagil, A. Della Porta, G. Zevi Barge, D. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Justus, C. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. Suarez, I. To, W. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Hu, Z. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwant, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Weber, H. A. Whitbeck, A. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Rossin, R. Shchutska, L. Snowball, M. Sperka, D. Terentyev, N. Wang, J. Wang, S. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Swartz, M. Xiao, M. Xin, Y. You, C. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Ji, W. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Malik, S. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Kress, M. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Verzetti, M. Demortier, L. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Nash, K. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Riley, G. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Krutelyov, V. Montalvo, R. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Roe, J. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Ni, H. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Christian, A. Dasu, S. Dodd, L. Duric, S. Friis, E. Gomber, B. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Ruggles, T. Sarangi, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Reconstruction and identification of tau lepton decays to hadrons and nu(tau) at CMS SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle identification methods; Large detector systems for particle and astroparticle physics ID PP COLLISIONS; ROOT-S=7 TEV AB This paper describes the algorithms used by the CMS experiment to reconstruct and identify tau -> hadrons + nu(tau) decays during Run 1 of the LHC. The performance of the algorithms is studied in proton-proton collisions recorded at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The algorithms achieve an identification efficiency of 50-60%, with misidentification rates for quark and gluon jets, electrons, and muons between per mille and per cent levels. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieckl, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fasanella, D.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Belly, N.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; De Souza Santos, A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Mohammed, Y.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Grapier; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Bernet, C.; Autermann, C.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. OE.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Weber, H.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Chauhan, S.; Dube, S.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci, IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaseili, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaseili, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, R.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, R.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Esposito, M.; Sciacca, C.; Fiori, F.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Branca, A.; Osso, M. Dail'; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, Ba. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Boletti, A.; Branca, A.; Osso, M. Dail'; Margoni, M.; Meneguzzo, Ba. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy. [Zanetti, M.] Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Raffi, S. P.; Re, V.; Salvini, P.; Vai, I.; Vitulo, R.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Montagna, P.; Raffi, S. P.; Vitulo, R.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.] Univ Torino, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Laney, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Leninsky Prospect 53, Moscow 117924, Russia. [Popov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, POB 550, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castinieiras De Saa, J. R.; Castro Manzano, P. De; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Rabady, D.; Merlin, J. A.; Lingemann, J.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Silvestris, L.; Battilana, C.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Osso, M. Dail'; Zucchetta, A.; Ciangottini, D.; Donato, S.; D'imperio, G.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Apollinari, G.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Sen, S.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Chauhan, S.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wuerthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Cheng, T.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwant, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.; Wood, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Elwood, A.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Sharma, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Schieckl, J.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Abdelalim, A. A.; Mahrous, A.] Helwan Univ, Cairo, Egypt. [Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt. [Awad, A.; Radi, A.] Ain Shams Univ, Cairo, Egypt. [Awad, A.; El Sawy, M.; Radi, A.] British Univ Egypt, Cairo, Egypt. [El Sawy, M.] Beni Suef Univ, Bani Sweif, Egypt. [Mohammed, Y.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Gulmini, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-de la Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Tai, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. EM cms-publication-committee-chair@cern.ch RI Dudko, Lev/D-7127-2012; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Leonidov, Andrey/M-4440-2013; Paulini, Manfred/N-7794-2014; Moraes, Arthur/F-6478-2010; Dremin, Igor/K-8053-2015; ciocci, maria agnese /I-2153-2015; Kirakosyan, Martin/N-2701-2015; TUVE', Cristina/P-3933-2015; Mundim, Luiz/A-1291-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Ruiz, Alberto/E-4473-2011; Petrushanko, Sergey/D-6880-2012; Azarkin, Maxim/N-2578-2015; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Stahl, Achim/E-8846-2011; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Della Ricca, Giuseppe/B-6826-2013; Montanari, Alessandro/J-2420-2012; Lokhtin, Igor/D-7004-2012; Manganote, Edmilson/K-8251-2013; Calvo Alamillo, Enrique/L-1203-2014; Matorras, Francisco/I-4983-2015; Hernandez Calama, Jose Maria/H-9127-2015; Cerrada, Marcos/J-6934-2014; Andreev, Vladimir/M-8665-2015; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012 OI Luukka, Panja/0000-0003-2340-4641; Dudko, Lev/0000-0002-4462-3192; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Moraes, Arthur/0000-0002-5157-5686; ciocci, maria agnese /0000-0003-0002-5462; TUVE', Cristina/0000-0003-0739-3153; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Ruiz, Alberto/0000-0002-3639-0368; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Stahl, Achim/0000-0002-8369-7506; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Della Ricca, Giuseppe/0000-0003-2831-6982; Montanari, Alessandro/0000-0003-2748-6373; Calvo Alamillo, Enrique/0000-0002-1100-2963; Matorras, Francisco/0000-0003-4295-5668; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian Funding Agency (FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonia; European Regional Development Fund, Estonia; Estonian Research Council, Estonia [IUT23-4, IUT23-6]; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education (Malaysia); University of Malaya (Malaysia); Mexican Funding Agency (CINVESTAV); Mexican Funding Agency (CONACYT); Mexican Funding Agency (SEP); Mexican Funding Agency (UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss Funding Agency (SER); Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine, Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union, Regional Development Fund; OPUS programme of the National Science Center (Poland); Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845. NR 67 TC 1 Z9 1 U1 17 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR P01019 DI 10.1088/1748-0221/11/01/P01019 PG 76 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800107 ER PT J AU Kreis, B Berryhill, J Cavanaugh, R Mishra, K Rivera, R Uplegger, L Apanasevich, L Zhang, J Marrouche, J Wardle, N Aggleton, R Ball, F Brooke, J Newbold, D Paramesvaran, S Smith, D Baber, M Bundock, A Citron, M Elwood, A Hall, G Iles, G Laner, C Penning, B Rose, A Tapper, A Foudas, C Beaudette, F Cadamuro, L Mastrolorenzo, L Romanteau, T Sauvan, JB Strebler, T Zabi, A Barbieri, R Cali, IA Innocenti, GM Lee, YJ Roland, C Wyslouch, B Guilbaud, M Li, W Northup, M Tran, B Durkin, T Harder, K Harper, S Shepherd-Themistocleous, C Thea, A Williams, T Cepeda, M Dasu, S Dodd, L Forbes, R Gorski, T Klabbers, P Levine, A Ojalvo, I Ruggles, T Smith, N Smith, W Svetek, A Tikalsky, J Vicente, M AF Kreis, B. Berryhill, J. Cavanaugh, R. Mishra, K. Rivera, R. Uplegger, L. Apanasevich, L. Zhang, J. Marrouche, J. Wardle, N. Aggleton, R. Ball, F. Brooke, J. Newbold, D. Paramesvaran, S. Smith, D. Baber, M. Bundock, A. Citron, M. Elwood, A. Hall, G. Iles, G. Laner, C. Penning, B. Rose, A. Tapper, A. Foudas, C. Beaudette, F. Cadamuro, L. Mastrolorenzo, L. Romanteau, T. Sauvan, J. B. Strebler, T. Zabi, A. Barbieri, R. Cali, I. A. Innocenti, G. M. Lee, Y. -J. Roland, C. Wyslouch, B. Guilbaud, M. Li, W. Northup, M. Tran, B. Durkin, T. Harder, K. Harper, S. Shepherd-Themistocleous, C. Thea, A. Williams, T. Cepeda, M. Dasu, S. Dodd, L. Forbes, R. Gorski, T. Klabbers, P. Levine, A. Ojalvo, I. Ruggles, T. Smith, N. Smith, W. Svetek, A. Tikalsky, J. Vicente, M. TI Run 2 upgrades to the CMS Level-1 calorimeter trigger SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Trigger concepts and systems (hardware and software); Trigger algorithms AB The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards. C1 [Kreis, B.; Berryhill, J.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Cavanaugh, R.; Apanasevich, L.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Marrouche, J.; Wardle, N.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.] Univ Bristol, Bristol, Avon, England. [Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Foudas, C.] Univ Ioannina, GR-45110 Ioannina, Greece. [Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Barbieri, R.; Cali, I. A.; Innocenti, G. M.; Lee, Y. -J.; Roland, C.; Wyslouch, B.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Guilbaud, M.; Li, W.; Northup, M.; Tran, B.] Rice Univ, Houston, TX USA. [Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.] Univ Wisconsin, Madison, WI USA. RP Kreis, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM kreis@fnal.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01051 DI 10.1088/1748-0221/11/01/C01051 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800051 ER PT J AU Lenardo, B Li, Y Manalaysay, A Morad, J Payne, C Stephenson, S Szydagis, M Tripathi, M AF Lenardo, B. Li, Y. Manalaysay, A. Morad, J. Payne, C. Stephenson, S. Szydagis, M. Tripathi, M. TI Position reconstruction of bubble formation in liquid nitrogen using piezoelectric sensors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Time projection Chambers (TPC); Noble liquid detectors (scintillation, ionization, double-phase); Liquid detectors; Cryogenic detectors ID SEARCH AB Cryogenic liquids, particularly liquid xenon and argon, are of interest as detector media for experiments in nuclear and particle physics. Here we present a new detector diagnostic technique using piezoelectric sensors to detect bubbling of the liquid. Bubbling can indicate locations of excess heat dissipation e.g., in immersed electronics. They can also interfere with normal event evolution by scattering of light or by interrupting the drift of ionization charge. In our test apparatus, four sensors are placed in the vacuum space of a double-walled dewar of liquid nitrogen and used to detect and locate a source of bubbling inside the liquid volume. Utilizing the differences in transmitted frequencies through the different media present in the experiment, we find that sound traveling in a direct path from the source to the sensor can be isolated with appropriate filtering. The location of the source is then reconstructed using the time difference of arrivals (TDOA) information. The reconstruction algorithm is shown to have a 95.8% reproducibility rate and reconstructed positions are self-consistent to an average +/- 0.5 cm around the mean in x, y, and z. Systematic effects are observed to cause errors in reconstruction when bubbles occur very close to the surfaces of the liquid volume. C1 [Lenardo, B.; Li, Y.; Manalaysay, A.; Morad, J.; Payne, C.; Stephenson, S.; Tripathi, M.] Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA. [Lenardo, B.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Szydagis, M.] SUNY Albany, 1400 Washington Ave, Albany, NY 12222 USA. RP Lenardo, B (reprint author), Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA.; Lenardo, B (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM lenardo1@llnl.gov FU U.S. Department of Energy [DE-FG02-91ER40674]; DOE [DE-NA0000979]; Lawrence Scholars Program at the Lawrence Livermore National Laboratory (LLNL); U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344, LLNL-CONF-678285] FX The authors would like to acknowledge Marshall Styczinski and Gavin Fields for preliminary efforts on the present work. We would also like to thank Ray Gerhard, Britt Holbrook, David Hemer, and Keith DeLong for their engineering expertise and support. The sensor readout circuit was designed by Ilan Levine of Indiana University South Bend. This work at the University of California, Davis was supported by U.S. Department of Energy grant DE-FG02-91ER40674, as well as supported by DOE grant DE-NA0000979, which funds the seven universities involved in the Nuclear Science and Security Consortium. Brian Lenardo is supported by the Lawrence Scholars Program at the Lawrence Livermore National Laboratory (LLNL). LLNL is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. LLNL-CONF-678285. NR 11 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR P01013 DI 10.1088/1748-0221/11/01/P01013 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800101 ER PT J AU Schambach, J Contin, G Greiner, L Stezelberger, T Sun, X Szelezniak, M Vu, C AF Schambach, J. Contin, G. Greiner, L. Stezelberger, T. Sun, X. Szelezniak, M. Vu, C. TI The STAR Heavy Flavor Tracker PXL detector readout electronics SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Data acquisition circuits; Front-end electronics for detector readout; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Digital electronic circuits ID MAPS AB The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ("PXL") subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector. C1 [Schambach, J.] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA. [Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sun, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Szelezniak, M.] Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. RP Schambach, J (reprint author), Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA. EM jschamba@physics.utexas.edu NR 5 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01034 DI 10.1088/1748-0221/11/01/C01034 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800034 ER PT J AU Xiao, L Liu, C Liu, T Chen, H Chen, J Chen, K Feng, Y Gong, D Guo, D He, H Hou, S Huang, G Sun, X Tang, Y Teng, PK Xiang, AC Xu, H Ye, J You, Y AF Xiao, L. Liu, C. Liu, T. Chen, H. Chen, J. Chen, K. Feng, Y. Gong, D. Guo, D. He, H. Hou, S. Huang, G. Sun, X. Tang, Y. Teng, P. -K. Xiang, A. C. Xu, H. Ye, J. You, Y. TI The clock and control system for the ATLAS Liquid Argon Calorimeter Phase-I upgrade SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Radiation-hard electronics; Front-end electronics for detector readout; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases) AB A Liquid-argon Trigger Digitizer Board (LTDB) is being developed to upgrade the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics. The LTDB located at the front end needs to obtain the clock signals and be configured and monitored remotely from the back end. A clock and control system is being developed for the LTDB and the major functions of the system have been evaluated. The design and evaluation of the clock and control system are presented in this paper. C1 [Xiao, L.; He, H.; Huang, G.; Sun, X.] Cent China Normal Univ, Wuhan 430079, Hubei, Peoples R China. [Xiao, L.; Liu, C.; Liu, T.; Gong, D.; Guo, D.; He, H.; Xiang, A. C.; Ye, J.; You, Y.] So Methodist Univ, Dallas, TX 75275 USA. [Chen, H.; Chen, K.; Xu, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chen, J.; Feng, Y.; Tang, Y.] Univ Houston, Houston, TX 77004 USA. [Guo, D.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. [He, H.] Shenzhen Polytech, Shenzhen 518055, Peoples R China. [Hou, S.] Acad Sinica, Taipei 11529, Taiwan. RP Liu, C (reprint author), So Methodist Univ, Dallas, TX 75275 USA. EM tliu@mail.smu.edu; gmhuang@phy.ccnu.edu.cn NR 10 TC 0 Z9 0 U1 4 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01062 DI 10.1088/1748-0221/11/01/C01062 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800062 ER PT J AU Bajaj, S Wang, H Doak, JW Wolverton, C Snyder, GJ AF Bajaj, Saurabh Wang, Heng Doak, Jeff W. Wolverton, Chris Snyder, G. Jeffrey TI Calculation of dopant solubilities and phase diagrams of X-Pb-Se (X = Br, Na) limited to defects with localized charge SO JOURNAL OF MATERIALS CHEMISTRY C LA English DT Article ID HIGH THERMOELECTRIC PERFORMANCE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; FIGURE; NANOSTRUCTURES; SEMICONDUCTORS; EFFICIENCY; MOBILITY; BANDS; MERIT AB The control of defects, particularly impurities, to tune the concentrations of electrons and holes is of utmost importance in the use of semiconductor materials. To estimate the amount of dopant that can be added to a semiconductor without precipitating secondary phases, a detailed phase diagram is needed. The ability of ab initio computational methods to predict defect stability can greatly accelerate the discovery of new semiconductors by calculating phase diagrams when time-consuming experimental ones are not available. DFT defect energy calculations are particularly successful in identifying doping strategies by determining the energy of multiple defect charge states in large band gap semiconductors and insulators. In metals, detailed phase diagrams can be determined from such calculations but only one, uncharged defect is needed. In this work, we have calculated dopant solubilities of Br and Na in the thermoelectric material PbSe by mapping its solvus boundaries in different regions of the respective ternary phase diagrams using DFT defect energy calculations. The narrow gap PbSe provides an example where defects with nominal charge state (based on valence counting) have properly-localized charge states. However, defects with unexpected charge states produce delocalized electrons, which are then, in effect, defects with the expected charge state. Simply applying the methods for calculating multiple defect charge states in PbSe and treating themas separate defects fails to predict properties measured by experiments. Performing thermodynamic calculations using only the expected charge states, excluding others, enables accurate prediction of experimentally measured doping efficiencies and phase diagrams. Identifying which defect charge states to include in thermodynamic calculations will expedite the use of such calculations for other semiconductors in understanding phase diagrams and devising effective doping strategies. C1 [Bajaj, Saurabh; Wang, Heng; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Bajaj, Saurabh] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Doak, Jeff W.; Wolverton, Chris; Snyder, G. Jeffrey] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Snyder, GJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM jeff.snyder@northwestern.edu RI Wang, Heng/O-5418-2014; Snyder, G. Jeffrey/E-4453-2011; Wolverton, Christopher/B-7542-2009 OI Snyder, G. Jeffrey/0000-0003-1414-8682; FU Department of Energys Basic Energy Sciences program - the Materials Project [EDCBEE]; Office of Science of the U.S. Department of Energy [DEAC02-05CH11231]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DEFG02-07ER46433] FX This work was supported by the Department of Energys Basic Energy Sciences program - the Materials Project - under Grant No. EDCBEE. Work at Lawrence Berkeley, through discussions with Qimin Yan, Mark Asta, and Jeff Neaton, was supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. J. W. D. and C. W. acknowledge support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Grant DEFG02-07ER46433. The authors acknowledge the Chemical Engineering Cluster at Texas A&M University and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy, for providing computing resources useful in conducting the research reported in this work. The figures in this article have been created using the LevelScheme scientific figure preparation system.40 NR 48 TC 1 Z9 1 U1 8 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7526 EI 2050-7534 J9 J MATER CHEM C JI J. Mater. Chem. C PY 2016 VL 4 IS 9 BP 1769 EP 1775 DI 10.1039/c5tc03970c PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DF6QI UT WOS:000371480300003 ER PT J AU Hu, W Wang, T Zhang, RQ Yang, JL AF Hu, Wei Wang, Tian Zhang, Ruiqi Yang, Jinlong TI Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers SO JOURNAL OF MATERIALS CHEMISTRY C LA English DT Article ID HEXAGONAL BORON-NITRIDE; DENSITY-FUNCTIONAL THEORY; AB-INITIO; BLACK PHOSPHORUS; EFFECT TRANSISTORS; MEMORY DEVICES; HETEROSTRUCTURES; NANOCOMPOSITE; HYDROCARBONS; COMPOSITES AB Combining the electronic structures of graphene and molybdenum disulphide (MoS2) monolayers in two-dimensional (2D) ultrathin graphene and MoS2 heterostructures has been realized experimentally for novel nanoelectronic devices. Here, first-principles calculations are performed to investigate the effects of interlayer coupling and the electric field on the electronic structures of graphene and MoS2 heterobilayers (G/MoS2 HBLs). We find that an n-type Schottky contact is formed at the G/MoS2 interface with a small Schottky barrier of 0.23 eV, because the work function of graphene is close to the electron affinity of MoS2. Furthermore, increasing the interfacial distances between graphene and MoS2 can reduce the n-type Schottky barriers at the G/MoS2 interface. But applying the electric field perpendicular to the G/MoS2 HBL can not only control the Schottky barriers but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the G/MoS2 interface. Tunable p-type doping in graphene is easily achieved at negative electric fields because electrons can easily transfer from the Dirac point of graphene to the conduction band of MoS2. C1 [Hu, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Wang, Tian] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruiqi; Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruiqi; Yang, Jinlong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. RP Hu, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Yang, JL (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.; Yang, JL (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. EM whu@lbl.gov; jlyang@ustc.edu.cn RI Yang, Jinlong/D-3465-2009; OI Yang, Jinlong/0000-0002-5651-5340; Hu, Wei/0000-0001-9629-2121 FU National Key Basic Research Program [2011CB921404]; NSFC [21121003, 91021004, 21233007, 21222304]; Chinese Academy of Sciences (CAS) [XDB01020300]; Scientific Discovery through Advanced Computing (SciDAC) Program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers FX This work is partially supported by the National Key Basic Research Program (2011CB921404), by NSFC (21121003, 91021004, 21233007, 21222304), by Chinese Academy of Sciences (CAS) (XDB01020300), and by USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers. This work is also partially supported by the Scientific Discovery through Advanced Computing (SciDAC) Program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (W. H.). We thank the National Energy Research Scientific Computing (NERSC) center for the computational resources. NR 63 TC 8 Z9 8 U1 21 U2 61 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7526 EI 2050-7534 J9 J MATER CHEM C JI J. Mater. Chem. C PY 2016 VL 4 IS 9 BP 1776 EP 1781 DI 10.1039/c6tc00207b PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DF6QI UT WOS:000371480300004 ER PT J AU Rungtaweevoranit, B Zhao, YB Choi, KM Yaghi, OM AF Rungtaweevoranit, Bunyarat Zhao, Yingbo Choi, Kyung Min Yaghi, Omar M. TI Cooperative effects at the interface of nanocrystalline metal-organic frameworks SO NANO RESEARCH LA English DT Review DE metal-organic framework; inorganic nanocrystal; cooperative effects; interface design ID POROUS COORDINATION POLYMERS; HETEROGENEOUS CATALYSTS; MODULATED SYNTHESIS; PD NANOPARTICLES; LIGHT-SCATTERING; CRYSTAL-GROWTH; GOLD NANORODS; AT-MOF; SHELL; CORE AB Controlling the chemistry at the interface of nanocrystalline solids has been a challenge and an important goal to realize desired properties. Integrating two different types of materials has the potential to yield new functions resulting from cooperative effects between the two constituents. Metal-organic frameworks (MOFs) are unique in that they are constructed by linking inorganic units with organic linkers where the building units can be varied nearly at will. This flexibility has made MOFs ideal materials for the design of functional entities at interfaces and hence allowing control of properties. This review highlights the strategies employed to access synergistic functionality at the interface of nanocrystalline MOFs (nMOFs) and inorganic nanocrystals (NCs). C1 [Rungtaweevoranit, Bunyarat; Zhao, Yingbo; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Rungtaweevoranit, B; Zhao, YB; Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM bunyaratr@berkeley.edu; zhaoyybb@berkeley.edu; yaghi@berkeley.edu OI Yaghi, Omar/0000-0002-5611-3325; Rungtaweevoranit, Bunyarat/0000-0002-9069-4370 FU Royal Thai Government Scholarship; BASF (Ludwigshafen, Germany); U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA 1-12-1-0053] FX B. R. is supported by the Royal Thai Government Scholarship. Research in the Yaghi group on nanoMOFs is supported by BASF (Ludwigshafen, Germany) and U.S. Department of Defense, Defense Threat Reduction Agency (No. HDTRA 1-12-1-0053). We thank Profs. Gabor Somorjai and Peidong Yang and their research group members for our ongoing collaborations on aspects of this review. NR 46 TC 5 Z9 5 U1 33 U2 97 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD JAN PY 2016 VL 9 IS 1 BP 47 EP 58 DI 10.1007/s12274-015-0970-0 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG1AQ UT WOS:000371797800004 ER PT J AU Salandrino, A Wang, Y Zhang, X AF Salandrino, Alessandro Wang, Yuan Zhang, Xiang TI Nonlinear infrared plasmonic waveguide arrays SO NANO RESEARCH LA English DT Article DE infrared plasmonics; plasmonic waveguides; nonlinear plasmonics; waveguide theory; waveguide arrays ID SURFACE-PLASMONS; METAMATERIALS AB The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region. C1 [Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Salandrino, Alessandro] Univ Kansas, Dept EECS, Lawrence, KS 66045 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM xzhang@me.berkeley.edu RI Zhang, Xiang/F-6905-2011; Wang, Yuan/F-7211-2011 FU U.S. Air Force Office of Scientific Research (AFOSR) MURI program [FA9550-12-1-0024] FX This work was supported by U.S. Air Force Office of Scientific Research (AFOSR) MURI program (No. FA9550-12-1-0024). NR 24 TC 0 Z9 0 U1 8 U2 16 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 100084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD JAN PY 2016 VL 9 IS 1 BP 224 EP 229 DI 10.1007/s12274-016-0994-0 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG1AQ UT WOS:000371797800019 ER PT J AU Zhu, J Quan, Z Wang, C Wen, X Jiang, Y Fang, J Wang, Z Zhao, Y Xu, H AF Zhu, J. Quan, Z. Wang, C. Wen, X. Jiang, Y. Fang, J. Wang, Z. Zhao, Y. Xu, H. TI Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure SO NANOSCALE LA English DT Article ID NANOCRYSTALS; ASSEMBLIES; NANOCUBES; ENERGY; PHASE AB High pressure is an effective means for tuning the interparticle distances of nanoparticle (NP) superlattices and thus for modifying their physical properties and functionalities. In this work, we determined the evolution of inter-NP distances of a Pt NP superlattice with increasing pressure using an in situ synchrotron small-angle X-ray scattering (SAXS) technique in a diamond-anvil cell (DAC). Transmission electron microscopy (TEM) was used to characterize the microstructures of pre- and post-compression samples. Our results demonstrate that the evolution of Pt NP assemblies with increasing pressure consists of four stages: (1) ligand elastic response, (2) uniform compression, (3) ligand detachment from NP surfaces, and (4) deviatoric compression of ligands between neighboring NPs. By controlling the magnitudes of applied pressure and deviatoric stress, one can sinter NPs into novel architectures such as nanowires and nanoceramics. C1 [Zhu, J.; Zhao, Y.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Quan, Z.; Xu, H.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Wang, C.; Fang, J.] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Wen, X.] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China. [Jiang, Y.] Univ New Mexico, TEM Lab, Albuquerque, NM 87131 USA. [Wang, Z.] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. RP Zhu, J (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.; Xu, H (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.; Fang, J (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. EM jlzhu04@physics.unlv.edu; jfang@binghamton.edu; hxu@lanl.gov OI Xu, Hongwu/0000-0002-0793-6923 FU laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory; NSF [DMR-0936384]; High Pressure Science and Engineering Center; University of Nevada at Las Vegas; National Nuclear Security Administration under Stewardship Science Academic Alliances program through DOE Cooperative Agreement [DE-NA0001982]; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX This work was supported by the laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384. The later stage of the work was also supported by the High Pressure Science and Engineering Center, the University of Nevada at Las Vegas, which was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. NR 30 TC 0 Z9 0 U1 10 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 9 BP 5214 EP 5218 DI 10.1039/c5nr08291a PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF6PW UT WOS:000371479000047 PM 26878810 ER PT J AU Jubb, AM Jiao, Y Eres, G Retterer, ST Gu, B AF Jubb, A. M. Jiao, Y. Eres, G. Retterer, S. T. Gu, B. TI Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates SO NANOSCALE LA English DT Article ID PLASMON RESONANCE SENSORS; PERCHLORATE DETECTION; SINGLE-MOLECULE; BOWTIE NANOANTENNA; SCATTERING SERS; ARRAYS; NANOPARTICLES; FABRICATION; MONOLAYERS; FIELD AB We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 +/- 2 nm gaps exhibit uniform SERS enhancement factors on the order of 10(9) for adsorbed p-mercaptoaniline molecules. C1 [Jubb, A. M.; Jiao, Y.; Gu, B.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Eres, G.; Retterer, S. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Eres, G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Jubb, AM; Gu, B (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. EM jubbam@ornl.gov; gub1@ornl.gov RI Jubb, Aaron/G-4538-2013; Eres, Gyula/C-4656-2017 OI Jubb, Aaron/0000-0001-6875-1079; Eres, Gyula/0000-0003-2690-5214 FU Environmental Security and Technology Certification Program (ESTCP) of the U.S. Department of Defense; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science; U.S. Department of Energy; DOE Scientific User Facilities Division; US DOE [DE-AC05-00OR22725] FX This research was supported in part by the Environmental Security and Technology Certification Program (ESTCP) of the U.S. Department of Defense. The contribution by G.E. was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. The fabrication of elevated Au ellipse dimers and the 633 nm SERS spectra collection were conducted at the Center for Nanophase Materials Sciences of Oak Ridge National Laboratory (ORNL), which is sponsored by DOE Scientific User Facilities Division. ORNL is managed by UT-Battelle, LLC, for US DOE under contract DE-AC05-00OR22725. The authors thank Nickolay Lavrik for his assistance with the 633 nm Raman measurements. NR 44 TC 3 Z9 3 U1 8 U2 40 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 10 BP 5641 EP 5648 DI 10.1039/c5nr08920d PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF9FC UT WOS:000371665400030 PM 26893035 ER PT J AU Li, CY Liu, S Luk, TS Figiel, JJ Brener, I Brueck, SRJ Wang, GT AF Li, Changyi Liu, Sheng Luk, Ting. S. Figiel, Jeffrey J. Brener, Igal Brueck, S. R. J. Wang, George T. TI Intrinsic polarization control in rectangular GaN nanowire lasers SO NANOSCALE LA English DT Article ID PHOTONICS; EMISSION AB We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm(-2) and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates. C1 [Li, Changyi; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, 1313 Goddard St SE, Albuquerque, NM 87106 USA. [Liu, Sheng; Luk, Ting. S.; Figiel, Jeffrey J.; Brener, Igal; Wang, George T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Liu, Sheng; Luk, Ting. S.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center; U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; Sandia's Laboratory Directed Research and Development program; U. S. DOE, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division; Lock-heed Martin Corporation; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr Jeremy B. Wright for helpful discussions and a critical reading of this manuscript. C.L. and S.R.J.B. acknowledge funding from Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. S.L., T.S.L., and I.B. acknowledge funding from Sandia's Laboratory Directed Research and Development program. G.T.W. and J.J.F. acknowledge funding from the U. S. DOE, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock-heed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 4 Z9 4 U1 5 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 10 BP 5682 EP 5687 DI 10.1039/c5nr07504a PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF9FC UT WOS:000371665400035 PM 26899502 ER PT J AU Li, Q Zhang, J Wang, LS Hao, J Yin, PC Wei, YG AF Li, Qiang Zhang, Jin Wang, Longsheng Hao, Jian Yin, Panchao Wei, Yongge TI Nucleophilic substitution reaction for rational post-functionalization of polyoxometalates SO NEW JOURNAL OF CHEMISTRY LA English DT Article ID ORGANOIMIDO DERIVATIVES; HYBRID; NANOSCALE; DESIGN; CLUSTERS; HEXAMOLYBDATE; CATALYSIS; DEVICES; CARBON AB A hexamolybdate-based organic-inorganic hybrid molecule containing a chloralkane fragment is synthesized and its Cl atom can be substituted by iodine and nitrate through nucleophilic substitution reactions in high yields, which provide a post-functionalization protocol to bring in various additional functional groups into polyoxometalate-based hybrid materials under mild conditions. C1 [Li, Qiang; Zhang, Jin; Wang, Longsheng; Hao, Jian; Wei, Yongge] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Li, Qiang] Beijing Forestry Univ, Dept Chem, Beijing 100083, Peoples R China. [Yin, Panchao] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Wei, Yongge] Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China. RP Wei, YG (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Yin, PC (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.; Wei, YG (reprint author), Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China. EM yinp@ornl.gov; yonggewei@tsinghua.edu.cn RI Yin, Panchao/J-3322-2013 OI Yin, Panchao/0000-0003-2902-8376 FU Neutron Sciences Directorate in Oak Ridge National Laboratory; Office of Science of the US Department of Energy [DE-AC05-00-OR22725]; National Natural Science Foundation of China (NSFC) [21225103, 21221062]; Tsinghua University Initiative Foundation Research Program [20131089204] FX We acknowledge the Clifford G. Shull Fellowship support from Neutron Sciences Directorate in Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00-OR22725, and the support from the National Natural Science Foundation of China (NSFC No. 21225103 and 21221062) and Tsinghua University Initiative Foundation Research Program No. 20131089204. NR 34 TC 1 Z9 1 U1 4 U2 17 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1144-0546 EI 1369-9261 J9 NEW J CHEM JI New J. Chem. PY 2016 VL 40 IS 2 BP 906 EP 909 DI 10.1039/c5nj01090j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DF7SX UT WOS:000371559000004 ER PT J AU Zhang, L Jia, YL Wang, H Zhang, DW Zhang, Q Liu, Y Li, ZT AF Zhang, Liang Jia, Youli Wang, Hui Zhang, Dan-Wei Zhang, Qi Liu, Yi Li, Zhan-Ting TI pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity SO POLYMER CHEMISTRY LA English DT Article ID AMPHIPHILIC PYRENE OLIGOMERS; ON-SURFACE POLYMERIZATION; 2-DIMENSIONAL POLYMERS; AIR/WATER INTERFACE; ARCHITECTURES; DIMERIZATION; GROWTH; WATER AB Two two-dimensional (2D) single-layer supramolecular organic frameworks (SOFs) have been constructed in water. One framework displays pH-responsive self-assembly and de-assembly and both exhibit activity against methicillin-resistant Staphylococcus aureus. C1 [Zhang, Liang; Jia, Youli; Wang, Hui; Zhang, Dan-Wei; Zhang, Qi; Li, Zhan-Ting] Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat IChEM, 220 Handan Rd, Shanghai 200433, Peoples R China. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zhang, DW; Zhang, Q; Li, ZT (reprint author), Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat IChEM, 220 Handan Rd, Shanghai 200433, Peoples R China.; Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM zhangdw@fudan.edu.cn; qizhang_chem@fudan.edu.cn; yliu@lbl.gov; ztli@fudan.edu.cn RI Liu, yi/A-3384-2008 OI Liu, yi/0000-0002-3954-6102 FU Science and Technology Commission of Shanghai Municipality [13M1400200]; Ministry of Science and Technology [2013CB834501]; Ministry of Education of China Research Fund for Doctoral Program; National Science Foundation of China [21432004, 21529201, 91527301]; Molecular Foundry, Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was financially supported by the Science and Technology Commission of Shanghai Municipality (13M1400200), the Ministry of Science and Technology (2013CB834501), the Ministry of Education of China Research Fund for the Doctoral Program, and the National Science Foundation of China (No. 21432004, 21529201 and 91527301). We thank the Shanghai Synchrotron Radiation Facility for providing the BL16B beamline for collecting the solution-phase synchrotron X-ray scattering data. The support from the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under the Contract no. DE-AC02-05CH11231 is also appreciated. NR 33 TC 3 Z9 4 U1 8 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9954 EI 1759-9962 J9 POLYM CHEM-UK JI Polym. Chem. PY 2016 VL 7 IS 10 BP 1861 EP 1865 DI 10.1039/c5py02054a PG 5 WC Polymer Science SC Polymer Science GA DG1GY UT WOS:000371815300002 ER PT B AU Rupnowski, P Ulsh, M Sopori, B AF Rupnowski, Peter Ulsh, Michael Sopori, Bhushan GP ASME TI HIGH THROUGHPUT AND HIGH RESOLUTION IN-LINE MONITORING OF PEMFC MATERIALS BY MEANS OF VISIBLE LIGHT DIFFUSE REFLECTANCE IMAGING AND COMPUTER VISION SO PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015 LA English DT Proceedings Paper CT 13th ASME Fuel Cell Science, Engineering, and Technology Conference CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID INFRARED THERMOGRAPHY; RAPID DETECTION; THIN-FILMS; THICKNESS; PROFILOMETRY AB In this paper we present results from our recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at the National Renewable Energy Laboratory. The defect types considered included particle debris, scuffs, scores, slits, and laser perforated pinholes. The debris defects were analyzed on samples from three different production stages, whereas the other defect types were introduced in a membrane tacked on a catalyst-coated diffusion media. We are showing that the fuel cell scanner can generate good quality, high resolution images of both baseline and defect-containing material. Based on the scanned images, an automatic, computer vision algorithm is developed that identifies presence and location of debris particles. The presented results clearly indicate that the in-line visible-light-diffuse-reflectance-based system can be successfully employed to monitor quality and to detect critical defects in fuel cell electrodes that are transported with high speed in a high volume manufacturing facility. C1 [Rupnowski, Peter; Ulsh, Michael; Sopori, Bhushan] Natl Renewable Energy Lab, Golden, CO USA. RP Rupnowski, P (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5661-1 PY 2016 AR V001T04A002 PG 10 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BE4FO UT WOS:000371648500010 ER PT B AU Tucker, D Haynes, C Geoghegan, P AF Tucker, David Haynes, Comas Geoghegan, Patrick GP ASME TI NEEDS AND APPROACHES FOR NOVEL CHARACTERIZATION OF DIRECT HYBRID FUEL CELL/GAS TURBINES SO PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015 LA English DT Proceedings Paper CT 13th ASME Fuel Cell Science, Engineering, and Technology Conference CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div DE SOFC turbine hybrid simulation characterization AB Solid oxide fuel cell (SOFC)/ gas turbine (GT) hybrid systems possess the capacity for unprecedented performances, such as electric efficiencies nearly twice that of conventional heat engines at variable scale power ratings inclusive of distributed generation. Additionally, these hybrids can have excellent operational flexibility with turndowns possibly as great as 85%. There are, however, developmental needs such as turbomachinery characterization and re-design. A leading example is that of greater propensity to have occurrences of stall-surge given the significantly different operating environment in contrast to conventional heat engines. Additionally, dynamic variation in power generation has to be done with significant a priori insight to avoid thermomechanical threats to cell stack and turbomachinery. State-of-the-art approaches involving hardware-in-the-loop simulation and, ultimately, additive manufacturing are being pursued to enable such characterization and re-design considerations given variable and dynamic operability requirements. Compressor performance in hybrid systems has been characterized at the United States National Energy Technology Laboratory (NETL), inclusive of a capability of feed forward hardware-in-the-loop simulation of hybrid systems under dynamic conditions and a capability of replacing turbine and compressor components at a relatively low cost. This paper highlights some of the simulation results, and the net result is an approach that addresses hybrid system developmental needs for accommodating generation transients. C1 [Tucker, David] Natl Energy Technol Lab, Morgantown, WV USA. [Haynes, Comas] Georgia Tech Res Inst, Atlanta, GA 30332 USA. [Haynes, Comas; Geoghegan, Patrick] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Tucker, D (reprint author), Natl Energy Technol Lab, Morgantown, WV USA. NR 11 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5661-1 PY 2016 AR V001T05A001 PG 6 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BE4FO UT WOS:000371648500014 ER PT B AU Boldon, L Sabharwall, P Liu, L AF Boldon, Lauren Sabharwall, Piyush Liu, Li (Emily) GP ASME TI EXERGY ANALYSIS FOR SMALL MODULAR REACTOR HYBRID ENERGY SYSTEM SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div ID COST AB Nuclear hybrid energy systems (NHES) with the capability to store energy will advance the development of renewable energy technologies by providing reliable, non-carbon emitting, and integrated base-load nuclear energy. Small modular reactors (SMRs) will be significant in establishing hybrid energy systems because of their inherent financial advantages over larger commercial reactors; flexible deployment and faster onsite assembly; and ability to closely match required energy needs for industrial process heat applications. An SMR is a thermal energy plant comprised of many complex systems that interact with each other and their surroundings. To study such a system and set appropriate prices for outputs, it is important to assess thermoeconomics or the effective utility and costs of all resources. At its core, thermoeconomics is based upon the quality of energy, or exergy, flowing into and out of each component within a system. Limited research into the thermoeconomics behind SMRs has been performed, leaving an important gap in understanding. This article presents relevant exergetic cost theory and details methods behind an exergy analysis for an SMR-wind-storage system. To perform this analysis, both the physical and economic environments are identified to provide information on how overall system efficiencies and costs may be analyzed. The physical environment incorporates the actual system components, necessary raw materials, and the surroundings or reference environment. The economic environment refers to the upfront installation and operational costs in addition to market prices. In a purely thermodynamic exergy analysis, the exergetic cost may be determined from the physical environment alone and describes the necessary exergy for production to occur. To improve or optimize a system, system efficiency must be balanced with economics to make NHES more competitive and further their development. C1 [Boldon, Lauren; Liu, Li (Emily)] Rensselaer Polytech Inst, Troy, NY USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Boldon, L (reprint author), Rensselaer Polytech Inst, Troy, NY USA. NR 7 TC 0 Z9 0 U1 4 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 8 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300002 ER PT B AU Hawkes, GL Sterbentz, JW Pham, BT AF Hawkes, Grant L. Sterbentz, James W. Pham, Binh T. GP ASME TI SENSITIVITY EVALUATION OF THE DAILY THERMAL PREDICTIONS OF THE AGR-2 EXPERIMENT IN THE ADVANCED TEST REACTOR SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div AB A temperature sensitivity evaluation has been performed for an individual test capsule in the AGR-2 TRISO particle fuel experiment. The AGR-2 experiment is the second in a series of fueled test experiments for TRISO coated fuel particles run in the Advanced Test Reactor at the Idaho National Laboratory. A series of cases were compared to a base case by varying different input parameters in an ABAQUS finite element thermal model. Most input parameters were varied by +/- 10%, with one parameter +/- 20%, to show the temperature sensitivity to each parameter. The most sensitive parameters were the outer control gap distance, heat rate in the fuel compacts, and neon gas fraction. The thermal conductivity of the fuel compacts and thermal conductivity of the graphite holder were of moderate sensitivity. The least sensitive parameters were the emissivities of the stainless steel and graphite, along with gamma heat rate in the non -fueled components. Sensitivity calculations were also performed for the fast neutron fluence, which showed a general, but minimal, temperature rise with increasing fluence. C1 [Hawkes, Grant L.; Sterbentz, James W.; Pham, Binh T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hawkes, GL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 9 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300012 ER PT B AU Mohamed, W Roh, HS Hofman, G Medvedev, PG AF Mohamed, Walid Roh, Hee Seok Hofman, Gerard Medvedev, Pavel G. GP ASME TI IMPACT OF MECHANICAL CONSTRAINTS ON THE IRRADIATION PERFORMANCE OF U10MO MONOLITHIC MINI-PLATES SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE Monolithic Fuel Plate; U10Mo; Irradiation; Mechanical constraints; Finite Element Analysis ID FUEL AB For the conversion of high performance research reactors to low enrichment Uranium fuel, U-Mo alloy based fuels in monolithic form were proposed. These plate-type fuels consist of a high uranium density, low enrichment uranium (LEU) foil contained within a diffusion barrier, and encapsulated within a cladding. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. In this work, the effects of mechanical constraints on the thermo-mechanical behavior of a plate were studied. To evaluate these effects, a selected plate from RERTR-12 experiments (Plate L1P756) was simulated. Four distinct cases which represent four distinct welding conditions were considered. Evaluation of the stress-strain fields in the fuel elements revealed that mechanical constraints may impact the plate's performance. These constraints include (a) inlet side, (b) outlet side, (c) both inlet and outlet sides; and finally, (d) entire long edges. Results of these cases were then compared with the ideal case. The peak stress-strain magnitudes, displacement, stress and strain profiles on the fuel elements are evaluated to make a comparative assessment. The results indicated that the cases with constraints on "inlet side only" and "outlet side only" yielded lower cladding strains compared with other cases. The difference on the displacement profiles on the fuel foil was not significant. Peak stresses on the foil did not change considerably. These results imply that the mechanical constraints effects peak cladding strains, while it does not cause significant effects on the fuel behavior. C1 [Mohamed, Walid; Roh, Hee Seok; Hofman, Gerard] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Medvedev, Pavel G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Mohamed, W (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wmohamed@anl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 13 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300008 ER PT B AU Moisseytsev, A Sienicki, JJ AF Moisseytsev, Anton Sienicki, James J. GP ASME TI LESSONS LEARNED AND IMPROVEMENTS IN ANL PLANT DYNAMICS CODE SIMULATION OF EXPERIMENTAL S-CO2 LOOPS SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div AB Validation of the ANL Plant Dynamics Code with the experimental data from integral S-CO2 cycle facilities has been continued. Several code modifications as well as modeling approaches and assumptions were introduced to improve both the code's capabilities in modeling the experimental loops and the agreement of the code prediction with the experimental data. The lessons learned from the code improvement and modeling experience important for the validation of the codes with the experimental data from small-scale integral loops are presented. C1 [Moisseytsev, Anton; Sienicki, James J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Moisseytsev, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 12 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300003 ER PT B AU Ozaltun, H Medvedev, P AF Ozaltun, Hakan Medvedev, Pavel GP ASME TI EFFECTS OF THE SHAPE OF THE FOIL CORNERS ON THE IRRADIATION PERFORMANCE OF U10MO ALLOY BASED MONOLITHIC MINI-PLATES SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE Monolithic Fuel Plate; U10Mo; Irradiation; Sensitivity; Foil corners; Finite Element Analysis ID FUEL AB Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners. C1 [Ozaltun, Hakan; Medvedev, Pavel] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ozaltun, H (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM hakan.ozaltun@inl.gov NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 14 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300007 ER PT B AU Sienicki, JJ Moisseytsev, A Krajtl, L AF Sienicki, James J. Moisseytsev, Anton Krajtl, Lubomir GP ASME TI A SUPERCRITICAL CO2 BRAYTON CYCLE POWER CONVERTER FOR A SODIUM-COOLED FAST REACTOR SMALL MODULAR REACTOR SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div AB Although a number of power conversion applications have been identified or have even been developed (e.g., waste heat recovery) for supercritical carbon dioxide (S-CO2) cycles including fossil fuel combustors, concentrated solar power (i.e., solar power towers), and marine propulsion, the benefits of S-CO2 Brayton cycle power conversion are especially prominent for applications to nuclear power reactors. In particular, the S-CO2 Brayton cycle is well matched to the Sodium-Cooled Fast Reactor (SFR) nuclear power reactor system and offers significant benefits for SFRs. The recompression closed Brayton cycle is highly recuperated and wants to operate with an approximate optimal S-CO2 temperature rise in the sodium-to-CO2 heat exchangers of about 150 degrees C which is well matched to the sodium temperature rise through the core that is also about 150 degrees C. Use of the S-CO2 Brayton cycle eliminates sodium-water reactions and can reduce the nuclear power plant cost per unit electrical power. A conceptual design of an optimized S-CO2 Brayton cycle power converter and supporting systems has been developed for the Advanced Fast Reactor - 100 (AFR-100) 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR). The AFR-100 is under ongoing development at Argonne National Laboratory (ANL) to target emerging markets where a clean, secure, and stable source of electricity is required but a large-scale power plant cannot be accommodated. The S-CO2 Brayton cycle components and cycle conditions were optimized to minimize the power plant cost per unit electrical power (i.e., $/kWe). For a core outlet temperature of 550 degrees C and turbine inlet temperature of 517 degrees C, a cycle efficiency of 42.3 % is calculated that exceeds that obtained with a traditional superheated steam cycle by one percentage point or more. A normal shutdown heat removal system incorporating a pressurized pumped S-CO2 loop slightly above the critical pressure on each of the two intermediate sodium loops has been developed to remove heat from the reactor when the power converter is shut down. Three-dimensional layouts of S-CO2 Brayton cycle power converter and shutdown heat removal components and piping have been determined and three-dimensional CAD drawings prepared. The S-CO2 Brayton cycle power converter is found to have a small footprint reducing the space requirements for components and systems inside of both the turbine generator building and reactor building. The results continue to validate earlier notions about the benefits of S-CO2 Brayton cycle power conversion for SFRs including higher efficiency, improved economics, elimination of sodium-water reactions, load following, and smaller footprint. C1 [Sienicki, James J.; Moisseytsev, Anton; Krajtl, Lubomir] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Sienicki, JJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 4 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 10 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300004 ER PT B AU Wen, HM Van Rooyen, IJ Hill, CM Trowbridge, TL Coryell, BD AF Wen, Haiming Van Rooyen, Isabella J. Hill, Connie M. Trowbridge, Tammy L. Coryell, Ben D. GP ASME TI FISSION PRODUCTS DISTRIBUTION IN TRISO COATED FUEL PARTICLES IRRADIATED TO 3.22 X 10(21) N/CM2 FAST FLUENCE AT 1092 degrees C SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE TRISO fuel particles; irradiation; fission product; transport ID RELEASE AB Mechanisms by which fission products (especially silver [Ag]) migrate across the coating layers of tristructural isotropic (TRISO) coated fuel particles designed for next generation nuclear reactors have been the subject of a variety of research activities due to the complex nature of the migration mechanisms. This paper presents results obtained from the electron microscopic examination of selected irradiated TRISO coated particles from fuel compact 1-3-1 irradiated in the first Advanced Gas Reactor experiment (AGR-1) that was performed as part of the Next Generation Nuclear Plant (NGNP) project. It is of specific interest to study particles of this compact as they were fabricated using a different carrier gas composition ratio for the SiC layer deposition compared with the baseline coated fuel particles reported on previously. Basic scanning electron microscopy (SEM) and SEM montage investigations of the particles indicate a correlation between the distribution of fission product precipitates and the proximity of the inner pyrolytic carbon (IPyC)-silicon carbide (SiC) interface to the fuel kernel. Transmission electron microscopy (TEM) samples were sectioned by focused ion beam (FIB) technique from the IPyC layer, the SiC layer and the IPyC-SiC interlayer of the coated fuel particle. Detailed TEM and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS) were performed to identify fission products and characterize their distribution across the IPyC and SiC layers in the areas examined. Results indicate the presence of palladium-silicon uranium (Pd-Si-U), Pd-Si, Pd-U, Pd, U, U-Si precipitates in the SiC layer and the presence of Pd-Si-U, Pd-Si, U-Si, U precipitates in the IPyC layer. No Ag-containing precipitates are evident in the IPyC or SiC layers. With increased distance from the IPyC-SiC interface, there are less U-containing precipitates, however, such precipitates are present across nearly the entire SiC layer. C1 [Wen, Haiming; Van Rooyen, Isabella J.; Hill, Connie M.; Trowbridge, Tammy L.; Coryell, Ben D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Van Rooyen, IJ (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM isabella.vanrooyen@inl.gov RI Wen, Haiming/B-3250-2013 OI Wen, Haiming/0000-0003-2918-3966 NR 16 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 13 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300010 ER PT B AU Wright, J Ozaltun, H AF Wright, Jill Ozaltun, Hakan GP ASME TI EFFECTS OF THE FOIL CENTERING ON THE IRRADIATION PERFORMANCE OF U10MO ALLOY BASED MONOLITHIC MINI-PLATES SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE Monolithic Fuel Plate; U10Mo; Irradiation; Sensitivity; Foil centering; Finite Element Analysis ID FUEL; BEHAVIOR AB Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These plate-type fuels consist of a high uranium density LEU foil contained within diffusion barriers and encapsulated within a cladding material. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. For this work, the effects of fuel foil centering on the thermo-mechanical performance of the mini-plates were studied. To evaluate these effects, a selected plate from RERTR-12 experiments, the Plate L1P756, was considered. The fuel foil was moved within the fuel plate to study the effects of the fuel centering on stress, strain and overall shape of the fuel elements. The thickness of the fuel foil, thickness of the Zr-liners and total thickness of the plate were held constant, except the centerline alignment of the fuel foil. For this, the position, of the fuel foil was varied from the center position to a maximum offset corresponding to the minimum allowable aluminum cladding thickness of 0.1524 mm. Results for various offset cases were then compared to each other and to the ideal case of a centered fuel foil. Fabrication simulations indicated that the thermal expansion mismatch results in warping of the fuel plate during fabrication as the fuel plate is cooled from the HIP temperature when the fuel is not centered. Even if the model is constrained during cooling to simulate the rigid HIP can surrounding the fuel plate during cooling, warping is observed when the constraint is removed. Similarly, irradiation simulations revealed that the fuel offset causes virtually all irradiation-induced swelling to occur on the thin-cladding side of the plate. This is observed even for the smallest offset that was considered. The total magnitude of the swelling is approximately same for all offsets values. C1 [Wright, Jill; Ozaltun, Hakan] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wright, J (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM jill.wright@ird.gov NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 10 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300009 ER PT J AU Xu, XF Goswami, S Gulledge, J Wullschleger, SD Thornton, PE AF Xu, Xiaofeng Goswami, Santonu Gulledge, Jay Wullschleger, Stan D. Thornton, Peter E. TI Interdisciplinary research in climate and energy sciences SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Review ID BUDGETS; CARBON AB Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over time and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010-2013, while vulnerability became prominent during the most recent years (2010-2013). Our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge emanating from climate change science has motivated the subsequent upswing in renewable energy R&D. (C) 2015 The Authors. WIREs Energy and Environment published by John Wiley & Sons, Ltd. C1 [Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. RP Xu, XF; Goswami, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.; Xu, XF; Goswami, S (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.; Xu, XF (reprint author), Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. EM xxu2@utep.edu; goswamis@ornl.gov RI Wullschleger, Stan/B-8297-2012; Xu, Xiaofeng/B-2391-2008; OI Wullschleger, Stan/0000-0002-9869-0446; Xu, Xiaofeng/0000-0002-6553-6514; Gulledge, Jay/0000-0002-9779-8690; Thornton, Peter/0000-0002-4759-5158 FU DOE [DE-AC05-00OR22725] FX We thank Drs Virginia Dale, Rebecca A. Efroymson, Yetta Jager, and Bruce Tonn at Oak Ridge National Laboratory for their constructive comments and Ms Amy Harkey at Oak Ridge National Laboratory for editing the language. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. NR 37 TC 1 Z9 1 U1 3 U2 7 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD JAN-FEB PY 2016 VL 5 IS 1 BP 49 EP 56 DI 10.1002/wene.180 PG 8 WC Energy & Fuels SC Energy & Fuels GA DF6SC UT WOS:000371485600005 ER PT J AU Stupak, I Joudrey, J Smith, CT Pelkmans, L Chum, H Cowie, A Englund, O Goh, CS Junginger, M AF Stupak, Inge Joudrey, Jamie Smith, C. Tattersall Pelkmans, Luc Chum, Helena Cowie, Annette Englund, Oskar Goh, Chun Sheng Junginger, Martin TI A global survey of stakeholder views and experiences for systems needed to effectively and efficiently govern sustainability of bioenergy SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Review ID FOREST CERTIFICATION; ROUND-TABLE; PALM OIL; STANDARDS; MARKET; LEGITIMACY; BIOMASS; BIODIVERSITY; CHALLENGES; BIOFUELS AB Different governance mechanisms have emerged to ensure biomass and bioenergy sustainability amidst a myriad of related public and private regulations that have existed for decades. We conducted a global survey with 59 questions which examined 192 stakeholders' views and experiences related to (1) the multi-leveled governance to which they are subjected, (2) the impacts of that governance on bioenergy production and trade, and (3) the most urgent areas for improvement of certification schemes. The survey revealed significant support along the whole supply chain for new legislation which uses market-based certification schemes to demonstrate compliance (co-regulation). Some respondents did not see a need for new regulation, and meta-standards is a promising approach for bridging divergent views, especially if other proof than certification will be an option. Most respondents had so far experienced positive or neutral changes to their bioenergy production or trade after the introduction of new sustainability governance. Legislative requirements and a green business profile were important motivations for getting certified, while lack of market advantages, administrative complexity and costs all were barriers of varying importance. A need to include, e.g., regular standard revision and dealing with conflicting criteria was identified by respondents associated with bioenergy schemes. Respondents associated with forestry schemes saw less need for revisions, but some were interested in supply chain sustainability criteria. Significant differences among schemes suggest it is crucial in the future to examine the tradeoffs between certification costs, schemes' inclusiveness, the quality of their substantive and procedural rules, and the subsequent effectiveness on-the-ground. (C) 2015 John Wiley & Sons, Ltd. C1 [Stupak, Inge] Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, Copenhagen, Denmark. [Joudrey, Jamie] Univ Toronto, Fac Forestry, Toronto, ON, Canada. [Smith, C. Tattersall] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada. [Pelkmans, Luc] VITO NV, Unit Separat & Convers Proc, Mol, Belgium. [Chum, Helena] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. [Cowie, Annette] Univ New England, NSW Dept Primary Ind, Armidale, NSW, Australia. [Englund, Oskar] Chalmers, Dept Energy & Environm, Div Phys Resource Theory, S-41296 Gothenburg, Sweden. [Goh, Chun Sheng; Junginger, Martin] Univ Utrecht, Copernicus Inst Sustainable Dev, Energy & Resources, Utrecht, Netherlands. RP Stupak, I (reprint author), Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, Copenhagen, Denmark. EM ism@ign.ku.dk RI Goh, Chun Sheng/K-3364-2012; Junginger, Martin/A-2687-2009; OI Junginger, Martin/0000-0002-5010-2051; Englund, Oskar/0000-0002-1662-6951 FU IEA Bioenergy Executive Committee; Nordic Energy Research (ENERWOODS); EUDP program under the Danish Energy Agency FX The authors gratefully acknowledge the IEA Bioenergy Executive Committee for providing funding to make the project possible, and the Nordic Energy Research (ENERWOODS) and the EUDP program under the Danish Energy Agency for supporting the work with supplementary funding. We sincerely thank the key organizations that generously prioritized giving us very helpful feedback for improving the survey design and questions. FSC, PEFC, and the INBIOM network kindly published the invitation to participate in their newsletters, and colleagues provided us with relevant contacts from their networks. Torben Martinussen, University of Copenhagen, was indispensable in providing statistical advice and feedback and suggestions from two anonymous reviewers were greatly appreciated and helped improve the paper. Finally, we would especially like to thank the respondents of the survey, for providing thoughtful and engaging answers, and helping to move the discussion beyond the identification of the challenges, toward solutions. NR 94 TC 0 Z9 0 U1 2 U2 10 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD JAN-FEB PY 2016 VL 5 IS 1 BP 89 EP 118 DI 10.1002/wene.166 PG 30 WC Energy & Fuels SC Energy & Fuels GA DF6SC UT WOS:000371485600008 ER PT S AU Creutz, M AF Creutz, Michael BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Gauge field topology and the hadron spectrum SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE gauge fields; topology; chiral anomalies ID SYMMETRY-BREAKING; CHIRAL-SYMMETRY; LATTICE; INSTANTONS; BEHAVIOR; QUARKS; U(1); MASS AB Topologically non-trivial gauge field configurations are an interesting aspect of non-abelian gauge theories. These become particularly important upon quantizing the theory, especially through their effect on the pseudo-scalar spectrum. These effects are closely tied to chiral anomalies and the possibility of CP violation in the strong interactions. C1 [Creutz, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Creutz, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 26 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 020008 DI 10.1063/1.4938597 PG 11 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500008 ER PT S AU Gursoy, U Kharzeev, D Rajagopal, K AF Gursoy, Umut Kharzeev, Dmitri Rajagopal, Krishna BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Magnetohydrodynamics and charge identified directed flow in heavy ion collisions SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ AB Strong magnetic fields produced in any non-central heavy ion collision are expected to affect the dynamics of the hot QCD matter produced in this collision. The magnetic field is time -dependent and the medium is expanding, which leads to the induction of charged currents due to the combination of Faraday and Hall effects. We study the imprint the magnetic fields produced in non-central heavy ion collisions leave on the azimuthal distributions and correlations of the produced charged hadrons by employing an analytic solution to hydrodynamics combined with the electromagnetic effects in a perturbative fashion. We use the Cooper-Frye freeze-out procedure on an isothermal freeze-out surface to obtain the azimuthal hadron distributions. We find that the charged currents induced by the present of the electromagnetic fields result in a charge -dependent directed flow v(1) that is odd in rapidity and odd under charge exchange. It can be detected by measuring correlations between the directed flow of charged hadrons at different rapidities, < v(1)(-/+) (y(1))v(1)(-/+)(y(2)))>. C1 [Gursoy, Umut] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands. [Kharzeev, Dmitri] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rajagopal, Krishna] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Gursoy, U (reprint author), Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands. NR 32 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 030006 DI 10.1063/1.4938612 PG 8 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500023 ER PT S AU Kim, S Petreczky, P Rothkopf, A AF Kim, Seyong Petreczky, Peter Rothkopf, Alexander BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Lattice NRQCD study on in-medium bottomonium spectra using a novel Bayesian reconstruction approach SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE Bottomonium; Lattice QCD; NRQCD; Finite-temperature ID HEAVY QUARKONIUM; BOUND-STATES; QCD; SUPPRESSION; EQUATION; PLASMA AB We present recent results on the in-medium modification of S- and P -wave bottomonium states around the deconfinement transition. Our study uses lattice QCD with Nf = 2+ 1 light quark flavors to describe the non-perturbative thermal QCD medium between 140MeV< T < 249MeV and deploys lattice regularized non-relativistic QCD (NRQCD) effective field theory to capture the physics of heavy quark bound states immersed therein. The spectral functions of the S-3(1) (T) and P-3(1) (xbi) bottomonium states are extracted from Euclidean time Monte Carlo simulations using a novel Bayesian prescription, which provides higher accuracy than the Maximum Entropy Method. Based on a systematic comparison of interacting and free spectral functions we conclude that the ground states of both the S -wave (T) and P -wave (xbi) channel survive up to T = 249MeV. Stringent upper limits on the size of the in -medium modification of bottomonium masses and widths are provided. C1 [Kim, Seyong] Sejong Univ, Dept Phys, Seoul 143747, South Korea. [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rothkopf, Alexander] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. RP Kim, S (reprint author), Sejong Univ, Dept Phys, Seoul 143747, South Korea. NR 39 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 060017 DI 10.1063/1.4938680 PG 8 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500091 ER PT S AU Nebreda, J Carraseo, JA Londergan, JT Pelaez, JR Szczepaniak, AP AF Nebreda, J. Carraseo, J. A. Londergan, J. T. Pelaez, J. R. Szczepaniak, A. P. BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Regge trajectories of ordinary and non-ordinary mesons from their scattering poles SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE Regge Theory; Light scalar mesons AB Our results on obtaining the Regge trajectory of a resonance from its pole in a scattering process and from analytic constraints in the complex angular momentum plane are presented. The method, suited for resonances that dominate au elastic scattering amplitude, has been applied to the rho(770), f(2)(1270), f(2)(1525) and f(0)(500) resonances. Whereas for the first three we obtain linear Regge trajectories, characteristic of ordinary quark-antiquark states, for the latter we find a nonlinear trajectory with a much smaller slope at the resonance mass. We also show that if a linear trajectory with a slope of typical size is imposed for the f(0)(500), the corresponding amplitude is at odds with the data. This provides a strong indication of the non-ordinary nature of the sigma meson. C1 [Nebreda, J.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Nebreda, J.; Londergan, J. T.; Szczepaniak, A. P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Nebreda, J.; Londergan, J. T.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Nebreda, J.; Carraseo, J. A.; Pelaez, J. R.] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain. [Szczepaniak, A. P.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Nebreda, J (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. NR 16 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 040015 DI 10.1063/1.4938632 PG 6 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500043 ER PT S AU Prelovsek, S Lang, CB Leskovec, L Mohler, D AF Prelovsek, Sasa Lang, C. B. Leskovec, Luka Mohler, Daniel BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Lattice QCD simulations of the Z(c)(+) channel SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE charmonium-like states; lattice QCD; tetraquark ID GAUGE-THEORY AB We discuss the lattice QCD simulations that search for the Z(c)(+) with the unconventional quark content (c) over barc (d) over baru in the channel I-G(J(PC)) = 1(+)(1(+-)). The major challenge is due to the two-meson states J/psi pi, psi(2S)pi, psi(1D)pi, D (D) over bar*, D*(D) over bar*, eta(c)rho that are also inevitably present in this channel. The available lattice simulations find expected two-meson eigenstates, but no additional eigenstate as a candidate for Z(c)(+). This is in a striking contrast to the lattice results in the flavour non-exotic channels, where additional states are found in relation to most of the known resonances and bound states. C1 [Prelovsek, Sasa] Univ Ljubljana, Dept Phys, Jadranska 19, Ljubljana 1000, Slovenia. [Lang, C. B.] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Prelovsek, Sasa; Leskovec, Luka] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia. [Mohler, Daniel] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Prelovsek, S (reprint author), Univ Ljubljana, Dept Phys, Jadranska 19, Ljubljana 1000, Slovenia.; Prelovsek, S (reprint author), Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia. NR 22 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 050012 DI 10.1063/1.4938652 PG 6 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500063 ER PT S AU Bajt, S Prasciolu, M Morgan, AJ Chapman, HN Krzywinski, J Andrejczuk, A AF Bajt, Sasa Prasciolu, Mauro Morgan, Andrew J. Chapman, Henry N. Krzywinski, Jacek Andrejczuk, Andrzej BE DeJonge, MD Paterson, DJ Ryan, CG TI One Dimensional Focusing with High Numerical Aperture Multilayer Laue Lens SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID FABRICATION AB Multilayer Laue lenses (MLLs) capitalize on the developments in multilayer deposition technologies for fabricating reflective coatings, specifically undertaken for EUV lithography, where layer thicknesses of several nanometers can be achieved. MLLs are deposited layer by layer, with their thicknesses following the zone plate law, and then pieces are sliced and extracted for use in focusing. Rays are reflected in the Laue geometry. The efficiency of a MLL can be very high, and is maximized by making the slice equal to about a half Pendellosung period so that most energy is transferred from the undiffracted to the diffracted beam, and by ensuring that the Bragg condition is met at each point in the zone plate. This latter condition requires that the layers are tilted to the beam by an amount that varies with layer position; e.g. for focusing a collimated beam, the layers should be normal to a cylinder of radius of twice the focal length. We have fabricated such tilted-zone MLLs and find that they exhibit improved efficiency across their entire pupil as compared with parallel-zone MLLs. This leads to a higher effective NA of the optic and hence higher resolution. C1 [Bajt, Sasa; Prasciolu, Mauro] DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany. [Morgan, Andrew J.; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. [Chapman, Henry N.] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany. [Chapman, Henry N.] Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22607 Hamburg, Germany. [Krzywinski, Jacek] SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Andrejczuk, Andrzej] Univ Bialystok, Fac Phys, K Ciolkowskiego 1L, PL-15245 Bialystok, Poland. RP Bajt, S (reprint author), DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany. EM sasa.bajt@desy.de RI Andrejczuk, Andrzej/B-4031-2013 OI Andrejczuk, Andrzej/0000-0001-9736-6321 NR 11 TC 0 Z9 0 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020049 DI 10.1063/1.4937543 PG 6 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300049 ER PT S AU Chang, H Cummings, M Shirato, N Stripe, B Rosenmann, D Preissner, C Freeland, JW Kersell, H Hla, SW Rose, V AF Chang, Hao Cummings, Marvin Shirato, Nozomi Stripe, Benjamin Rosenmann, Daniel Preissner, Curt Freeland, John W. Kersell, Heath Hla, Saw-Wai Rose, Volker BE DeJonge, MD Paterson, DJ Ryan, CG TI Ultra-High Vacuum Compatible Optical Chopper System for Synchrotron X-ray Scanning Tunneling Microscopy SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID RADIATION AB High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM. C1 [Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W.; Rose, Volker] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chang, Hao; Kersell, Heath; Hla, Saw-Wai] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. [Rosenmann, Daniel; Kersell, Heath; Hla, Saw-Wai; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Chang, H; Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.; Chang, H (reprint author), Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA.; Rose, V (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hc000211@ohio.edu; vrose@anl.gov RI Rose, Volker/B-1103-2008 OI Rose, Volker/0000-0002-9027-1052 NR 18 TC 0 Z9 0 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020001 DI 10.1063/1.4937495 PG 4 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300001 ER PT S AU Chen, S Paunesku, T Yuan, Y Deng, J Jin, Q Hong, YP Vine, DJ Lai, B Flachenecker, C Hornberger, B Brister, K Jacobsen, C Woloschak, GE Vogt, S AF Chen, S. Paunesku, T. Yuan, Y. Deng, J. Jin, Q. Hong, Y. P. Vine, D. J. Lai, B. Flachenecker, C. Hornberger, B. Brister, K. Jacobsen, C. Woloschak, G. E. Vogt, S. BE DeJonge, MD Paterson, DJ Ryan, CG TI 2D/3D Cryo X-ray Fluorescence Imaging at the Bionanoprobe at the Advanced Photon Source SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID EPIDERMAL-GROWTH-FACTOR; NUCLEAR-LOCALIZATION; MICROSCOPY; RECEPTOR AB Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation. C1 [Chen, S.; Vine, D. J.; Lai, B.; Jacobsen, C.; Vogt, S.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Vogt, S.] Northwester Univ, Dept Radiat Oncol, Chicago, IL 60611 USA. [Deng, J.; Jacobsen, C.] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Jin, Q.; Hong, Y. P.; Jacobsen, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Flachenecker, C.; Hornberger, B.] Carl Zeiss Xray Microscopy, Pleasanton, CA 94588 USA. [Brister, K.] Northwestern Univ, Synchrotron Res Ctr, Argonne, IL 60439 USA. [Jacobsen, C.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Chen, S (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. EM sichen@aps.anl.gov RI Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015; Paunesku, Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017 OI Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353; Paunesku, Tatjana/0000-0001-8698-2938; Woloschak, Gayle/0000-0001-9209-8954 NR 16 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020028 DI 10.1063/1.4937522 PG 5 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300028 ER PT S AU Deng, J Vine, DJ Chen, S Nashed, YSG Jin, Q Peterka, T Vogt, S Jacobsen, C AF Deng, J. Vine, D. J. Chen, S. Nashed, Y. S. G. Jin, Q. Peterka, T. Vogt, S. Jacobsen, C. BE DeJonge, MD Paterson, DJ Ryan, CG TI Advances and challenges in cryo ptychography at the Advanced Photon Source SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron DE ptychography; cryogenic sample; parallel computation; fly scan; 3D ptychography ID RAY-DIFFRACTION MICROSCOPY; COMPUTED-TOMOGRAPHY; RESOLUTION; NANOTOMOGRAPHY AB Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography. C1 [Deng, J.] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Vine, D. J.; Chen, S.; Vogt, S.; Jacobsen, C.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Nashed, Y. S. G.; Peterka, T.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Jacobsen, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Jacobsen, C.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Deng, J (reprint author), Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. RI Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015 OI Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353 NR 34 TC 0 Z9 0 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020030 DI 10.1063/1.4937524 PG 6 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300030 ER PT S AU Jacobsen, C AF Jacobsen, Chris BE DeJonge, MD Paterson, DJ Ryan, CG TI Future challenges for x-ray microscopy SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron DE x-ray microscopy; cryo microscopy; single particle imaging ID CRYO-ELECTRON-MICROSCOPY; RADIATION-DAMAGE; CRYOELECTRON MICROSCOPY; BIOLOGICAL APPLICATIONS; GIANT MIMIVIRUS; ION-CHANNEL; TOMOGRAPHY; CRYOTOMOGRAPHY; RESOLUTION; CARBOXYSOMES AB X-ray microscopy has made immense progress over the time of the "modern" conference series dating back to 1983 [1]. Knowing well that predictions of the future inevitably provide fodder for embarrassing retrospectives, it is nevertheless worthwhile to consider a few recent developments and what they might suggest for future challenges in x-ray microscopy. C1 [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA. RP Jacobsen, C (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.; Jacobsen, C (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL USA.; Jacobsen, C (reprint author), Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA. RI Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 NR 67 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020035 DI 10.1063/1.4937529 PG 7 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300035 ER PT S AU Mak, R Wild, SM Jacobsen, C AF Mak, Rachel Wild, Stefan M. Jacobsen, Chris BE DeJonge, MD Paterson, DJ Ryan, CG TI Non-negative matrix analysis in x-ray spectromicroscopy: choosing regularizers SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron DE x-ray spectromicroscopy; x-ray microscopy; multivariate statistical analysis; non-negative matrix analysis; optimization AB In x-ray spectromicroscopy, a set of images can be acquired across an absorption edge to reveal chemical speciation. We previously described the use of non-negative matrix approximation methods for improved classification and analysis of these types of data. We present here an approach to find appropriate values of regularization parameters for this optimization approach. C1 [Mak, Rachel; Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Mak, R (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. RI Jacobsen, Chris/E-2827-2015; Wild, Stefan/P-4907-2016 OI Jacobsen, Chris/0000-0001-8562-0353; Wild, Stefan/0000-0002-6099-2772 NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020034 DI 10.1063/1.4937528 PG 4 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300034 ER PT S AU Zhu, XH Tyliszczak, T Shiu, HW Shapiro, D Bazylinski, DA Lins, U Hitchcock, AP AF Zhu, X. H. Tyliszczak, T. Shiu, H. -W. Shapiro, D. Bazylinski, D. A. Lins, U. Hitchcock, A. P. BE DeJonge, MD Paterson, DJ Ryan, CG TI Magnetic studies of magnetotactic bacteria by soft X-ray STXM and ptychography SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID MAGNETOSOMES; MICROSCOPY AB Magnetotactic bacteria (MTB) biomineralize chains of nanoscale magnetite single crystals which align the cell with the earth's magnetic field and assist the cell to migrate to, and maintain its position at, the oxic-anoxic transition zone, their preferred habitat. Here we describe use of multi-edge scanning transmission X-ray microscopy (STXM) to investigate the chemistry and magnetism of MTB on an individual cell basis. We report measurements of the orientation of the magnetic vector of magnetosome chains relative to the location of the single flagellum in marine vibrio, Magnetovibrio blakemorei strain MV-1 cells from both the southern and northern hemisphere. We also report a major improvement in both spatial resolution and spectral quality through the use of spectro-ptychography at the Fe L-3 edge. C1 [Zhu, X. H.; Hitchcock, A. P.] McMaster Univ, Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. [Tyliszczak, T.; Shiu, H. -W.; Shapiro, D.] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Shiu, H. -W.] NSRRC, Hsinchu 30076, Taiwan. [Bazylinski, D. A.] Univ Nevada, Life Sci, Las Vegas, NV 89154 USA. [Lins, U.] Univ Fed Rio de Janeiro, Dept Microbiol Geral, Rio de Janeiro, RJ, Brazil. RP Hitchcock, AP (reprint author), McMaster Univ, Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca NR 11 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020002 DI 10.1063/1.4937496 PG 5 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300002 ER PT J AU Dastmalchi, B Tassin, P Koschny, T Soukoulis, CM AF Dastmalchi, Babak Tassin, Philippe Koschny, Thomas Soukoulis, Costas M. TI A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries SO ADVANCED OPTICAL MATERIALS LA English DT Article ID WAVE-GUIDES; SUBWAVELENGTH OPTICS; NANO-OPTICS; GRAPHENE; POLARITONS; SPECTROSCOPY; EXCITATION; METALS; SILVER; LIGHT AB Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. The analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material. C1 [Dastmalchi, Babak; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Dastmalchi, Babak; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Dastmalchi, Babak; Soukoulis, Costas M.] FORTH, IESL, Iraklion 71110, Crete, Greece. [Tassin, Philippe] Chalmers Univ, Dept Appl Phys, SE-41296 Gothenburg, Sweden. RP Tassin, P (reprint author), Chalmers Univ, Dept Appl Phys, SE-41296 Gothenburg, Sweden. EM graphenemodulators@gmail.com RI Soukoulis, Costas/A-5295-2008; Dastmalchi, Babak/C-9050-2013; bagheri, amir/C-3274-2017 OI Dastmalchi, Babak/0000-0002-2701-3712; FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering (U.S. Department of Energy) [DE-AC02-07CH11358]; U.S. Office of Naval Research [N00014-14-1-0474]; European Research Council [320081] FX Work at Ames Laboratory was partially supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering (Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358), by the U.S. Office of Naval Research, award No. N00014-14-1-0474 (simulations). The European Research Council under the ERC Advanced Grant No. 320081 (PHOTOMETA) supported work (theory) at FORTH. NR 62 TC 10 Z9 10 U1 9 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD JAN PY 2016 VL 4 IS 1 BP 177 EP 184 DI 10.1002/adom.201500446 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA DF3SQ UT WOS:000371268300019 ER PT J AU Ilgu, M Nilsen-Hamilton, M AF Ilgu, Muslum Nilsen-Hamilton, Marit TI Aptamers in analytics SO ANALYST LA English DT Review ID SURFACE-PLASMON RESONANCE; FREE ELECTROCHEMICAL APTASENSOR; LABEL-FREE DETECTION; IN-VITRO SELECTION; THROUGHPUT SEQUENCE-ANALYSIS; INDUCED STRAND DISPLACEMENT; GREEN FLUORESCENT PROTEIN; POTASSIUM-ION DETECTION; HIV-1 TAT PROTEIN; RNA APTAMER AB Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms. C1 [Ilgu, Muslum; Nilsen-Hamilton, Marit] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Ilgu, Muslum; Nilsen-Hamilton, Marit] Aptalogic Inc, Ames, IA 50014 USA. [Nilsen-Hamilton, Marit] US DOE, Ames Lab, Ames, IA 50011 USA. RP Ilgu, M (reprint author), Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.; Ilgu, M (reprint author), Aptalogic Inc, Ames, IA 50014 USA. EM ilgu@iastate.edu FU National Institutes of Health [1R43DK098031, 2R44DK098031] FX MI was supported by grants 1R43DK098031 and 2R44DK098031 from the National Institutes of Health. Images of antibodies in the graphical abstract from the RCSB PDB April 2001 Molecule of the Month feature by David Goodsell (DOI: 10.2210/rcsb_pdb/mom_2011_4). NR 223 TC 3 Z9 3 U1 23 U2 68 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 5 BP 1551 EP 1568 DI 10.1039/c5an01824b PG 18 WC Chemistry, Analytical SC Chemistry GA DF3FO UT WOS:000371229600001 PM 26864075 ER PT J AU Kyle, JE Zhang, X Weitz, KK Monroe, ME Ibrahim, YM Moore, RJ Cha, J Sun, XF Lovelace, ES Wagoner, J Polyak, SJ Metz, TO Dey, SK Smith, RD Burnum-Johnson, KE Baker, ES AF Kyle, Jennifer E. Zhang, Xing Weitz, Karl K. Monroe, Matthew E. Ibrahim, Yehia M. Moore, Ronald J. Cha, Jeeyeon Sun, Xiaofei Lovelace, Erica S. Wagoner, Jessica Polyak, Stephen J. Metz, Thomas O. Dey, Sudhansu K. Smith, Richard D. Burnum-Johnson, Kristin E. Baker, Erin S. TI Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry SO ANALYST LA English DT Article ID RESOLUTION MS DETECTION; C VIRUS-INFECTION; HUMAN PLASMA; STRUCTURAL-CHARACTERIZATION; INDUCED DISSOCIATION; PHOSPHATIDYLCHOLINES; SEPARATION; UPLC; DERIVATIZATION; IMPLANTATION AB Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. C1 [Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Metz, Thomas O.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.] Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. [Cha, Jeeyeon; Sun, Xiaofei; Dey, Sudhansu K.] Cincinnati Childrens Hosp, Cincinnati, OH USA. [Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.] Univ Washington, Dept Lab Med, Seattle, WA 98195 USA. [Polyak, Stephen J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Cha, Jeeyeon] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA. RP Burnum-Johnson, KE; Baker, ES (reprint author), Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. EM kristin.burnum-johnson@pnnl.gov; erin.baker@pnnl.gov RI Smith, Richard/J-3664-2012; zhang, xuesong/B-7907-2009 OI Smith, Richard/0000-0002-2381-2349; FU National Institute of Environmental Health Sciences of the NIH [R01ES022190]; National Institute of General Medical Sciences [P41 GM103493]; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program; National Institute of Allergy and Infectious Diseases [U19AI106772]; NIH [HD068524, DA006668]; March of Dimes [21-FY12-127]; NCCIH [5R01AT006842, 3R01AT006842-03S1]; NIH Common Fund's Metabolomics Program; DOE [DE-AC05-76RL0 1830] FX Portions of this research were supported by grants from the National Institute of Environmental Health Sciences of the NIH (R01ES022190), National Institute of General Medical Sciences (P41 GM103493), the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. This research utilized capabilities developed by the Panomics program (funded by the U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program) and by the National Institute of Allergy and Infectious Diseases under grant U19AI106772. The research was also supported in part by grants from the NIH (HD068524 and DA006668) and March of Dimes (21-FY12-127) (to S. K. D.) and 5R01AT006842 and 3R01AT006842-03S1 from NCCIH and the NIH Common Fund's Metabolomics Program (to S. J. P.). This work was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL0 1830. NR 42 TC 11 Z9 11 U1 13 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 5 BP 1649 EP 1659 DI 10.1039/c5an02062j PG 11 WC Chemistry, Analytical SC Chemistry GA DF3FO UT WOS:000371229600010 PM 26734689 ER PT J AU Golebiowska, B Wlodek, A Pieczka, A Borkiewicz, O Polak, M AF Golebiowska, Bozena Wlodek, Adam Pieczka, Adam Borkiewicz, Olaf Polak, Marta TI THE PHILIPSBORNITE-SEGNITITE SOLID-SOLUTION SERIES FROM REDZINY, EASTERN METAMORPHIC COVER OF THE KARKONOSZE GRANITE (SW POLAND) SO ANNALES SOCIETATIS GEOLOGORUM POLONIAE LA English DT Article DE arsenates; oxidation zone; philipsbornite; segnitite; carminite; chemical composition; Redziny ID SOUTHWESTERN POLAND; BOHEMIAN MASSIF; IZERA MASSIF; BROKEN-HILL; ALUNITE; MINERALS; MINERALIZATION; NOMENCLATURE; AUSTRALIA; JAROSITE AB Supergene minerals of the philipsbornite-segnitite series, PbAl3(AsO4)(AsO3OH)(OH)(6)-PbFe3+ (3)(AsO4) (AsO3OH)(OH)(6), accompanied by carminite, PbFe3+ (2)(AsO4)(2)(OH)(2), were found in relics of hydrothermal quartz-chlorite-arsenopyrite veins, associated with subordinate polymetallic ores disseminated in contact zones of a dolomitic marble deposit at Redziny, Western Sudetes, Poland, and recognized by means of electron microprobe and X-ray and electron-back-scattered diffraction (XRD and EBSD). Philipsbornite and segnitite, as the two minerals of the series, exhibit highly variable compositions, especially in terms of the range of Fe3+ <-> Al3+ substitution at the G site, with a distinct gap between the values of 0.52 and 0.89 for the Fe/(Al+Fe) ratio; substitutions at the D and T sites are less important. In this respect, the minerals are almost identical with philips-bornite and segnitite, known from other localities. The gap might be a consequence of the limited miscibility of the end-members, but also might be attributed to crystallization under the changing and distinctly differing activities of Al3+ and Fe3+. The unit-cell parameters of philipsbornite, a = 7.1245(13) angstrom, c = 17.0967(45) angstrom, make the mineral comparable with philipsbornites from other occurrences. The EBSD analysis confirmed the rhombohedral structure of both minerals and the space group symmetry R-3m. The minerals crystallized in the sequence: philipsbornite -> segnitite -> carminite, which reflects (i) decreasing acidity in the oxidation zone, due to the leaching of sulphate ions and interaction of the solutions with a nearby dolomite lens, and (ii) varying activities of Al3+, Fe3+ and Pb2+ cations, mobilized by the solutions through interaction with the silicate host containing disseminated arsenopyrite and subordinate sulphides, up to complete Pb2+ depletion. C1 [Golebiowska, Bozena; Wlodek, Adam; Pieczka, Adam; Polak, Marta] AGH Univ Sci & Technol, Dept Mineral Petrog & Geochem, Mickiewicza 30, PL-30059 Krakow, Poland. [Borkiewicz, Olaf] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60563 USA. RP Golebiowska, B (reprint author), AGH Univ Sci & Technol, Dept Mineral Petrog & Geochem, Mickiewicza 30, PL-30059 Krakow, Poland. EM goleb@agh.edu.pl FU AGH University of Science and Technology [11.11.140.319] FX The authors would like to thank Evgeny Galuskin, Krzysztof Szopa, Bartosz Budzyn and Frank Simpson for their helpful discussion on the manuscript. We also thank Piotr Dzierzanowski and Lidia Jezak (University of Warsaw) for their assistance during the EMP analyses. The work was financially supported by AGH University of Science and Technology Grant No 11.11.140.319. NR 48 TC 1 Z9 1 U1 4 U2 4 PU POLISH GEOLOGICAL SOC PI KRAKOW PA UL. OLEANDRY 2A, KRAKOW, POLAND SN 0208-9068 J9 ANN SOC GEOL POL JI Ann. Soc. Geol. Pol. PY 2016 VL 86 IS 1 BP 73 EP 83 PG 11 WC Geology SC Geology GA DF6YE UT WOS:000371503400005 ER PT J AU Feng, Y Kotamarthi, VR Coulter, R Zhao, C Cadeddu, M AF Feng, Y. Kotamarthi, V. R. Coulter, R. Zhao, C. Cadeddu, M. TI Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OPTICAL DEPTH; SUMMER MONSOON; DUST AEROSOLS; GOCART MODEL; ANTHROPOGENIC AEROSOLS; CLIMATE SIMULATIONS; FORCING UNCERTAINTY; SOLAR ABSORPTION; COORDINATE MODEL; CARBON AB Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83% of the model's low bias is due to aerosol extinctions below similar to 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7Kday(-1), which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts. C1 [Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Cadeddu, M.] Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zhao, C.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Feng, Y (reprint author), Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yfeng@anl.gov OI Kotamarthi, Veerabhadra Rao/0000-0002-2612-7590 FU U.S. Department of Energy (DOE) as part of Atmospheric System Research Program; Argonne National Laboratory under U.S. DOE [DE-AC02-06CH11357]; U.S. DOE as part of the Regional and Global Climate Modeling program [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE) as part of the Atmospheric System Research Program. Support for this research was provided to Y. Feng, V. R. Kotamarthi, R. Coulter, and M. Cadeddu by Argonne National Laboratory under U.S. DOE contract DE-AC02-06CH11357. C. Zhao's contribution to this study was supported by the U.S. DOE as part of the Regional and Global Climate Modeling program through contract DE-AC05-76RL01830. All of the numerical simulations were performed by using the computing cluster (Fusion) operated by the Argonne's Laboratory Computing Resource Center. NR 78 TC 6 Z9 6 U1 3 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 1 BP 247 EP 264 DI 10.5194/acp-16-247-2016 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YG UT WOS:000371283900016 ER PT J AU Jahn, M Munoz-Esparza, D Chouza, F Reitebuch, O Knoth, O Haarig, M Ansmann, A AF Jaehn, M. Munoz-Esparza, D. Chouza, F. Reitebuch, O. Knoth, O. Haarig, M. Ansmann, A. TI Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SAHARAN DUST; NUMERICAL-SIMULATION; LIDAR MEASUREMENTS; HEAT ISLANDS; RAMAN LIDAR; AIR-FLOW; CONVECTION; MODEL; MESOSCALE; PARAMETERIZATION AB Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z approximate to 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results accurately reproduce the development of the daytime convective boundary layer measured by the Raman lidar. C1 [Jaehn, M.; Knoth, O.; Haarig, M.; Ansmann, A.] Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. [Munoz-Esparza, D.] Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, POB 1663, Los Alamos, NM 87545 USA. [Chouza, F.; Reitebuch, O.] Inst Atmospher Phys, Deutsches Zentrum Luft & Raumfahrt DLR, Munchner Str 20, D-82234 Oberpfaffenhofen, Germany. RP Jahn, M (reprint author), Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. EM jaehn@tropos.de FU TROPOS; Helmholtz Association; DLR; LMU; Earth Observatory Team NASA FX The first author was internally funded by TROPOS. The authors thank Bernd Heinold and the two reviewers for their constructive comments. Satellite data were downloaded from NOAA's web archive (ftp://ftp.nnvl.noaa.gov/GOES/). The basemap was provided by the Earth Observatory Team NASA (http://earthobservatory.nasa.gov). High-resolution topography data were provided by the CGIAR-CSI SRTM data set (http://srtm.csi.cgiar.org). Numerical simulations were performed at the HPC cluster of and at the Julich Supercomputing Centre (JSC). We would also like to thank Thomas Bjerring Kristensen from TROPOS for provision of CCN data. The SALTRACE campaign was mainly funded by the Helmholtz Association, DLR, LMU and TROPOS. NR 39 TC 1 Z9 1 U1 2 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 651 EP 674 DI 10.5194/acp-16-651-2016 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000013 ER PT J AU Zamora, LM Kahn, RA Cubison, MJ Diskin, GS Jimenez, JL Kondo, Y McFarquhar, GM Nenes, A Thornhill, KL Wisthaler, A Zelenyuk, A Ziemba, LD AF Zamora, L. M. Kahn, R. A. Cubison, M. J. Diskin, G. S. Jimenez, J. L. Kondo, Y. McFarquhar, G. M. Nenes, A. Thornhill, K. L. Wisthaler, A. Zelenyuk, A. Ziemba, L. D. TI Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AEROSOL-SIZE DISTRIBUTIONS; IN-SITU CHARACTERIZATION; MIXED-PHASE CLOUDS; CONDENSATION NUCLEI; SPLAT II; PERFORMANCE-CHARACTERISTICS; STRATIFORM CLOUDS; MASS-SPECTROMETER; FIELD CAMPAIGN; BOREAL FORESTS AB The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were similar to 40-60% smaller than in background clouds. Based on the relationship between cloud droplet number (N-liq ) and various biomass burning tracers (BBt ) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3 x dln. N-liq/dln(BBt) to be similar to 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content C1 [Zamora, L. M.; Kahn, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Zamora, L. M.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Diskin, G. S.; Thornhill, K. L.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Kondo, Y.] Natl Inst Polar Res, Tokyo, Japan. [McFarquhar, G. M.] Univ Illinois, Urbana, IL USA. [Nenes, A.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Nenes, A.] Fdn Res & Technol Hellas, Patras, Greece. [Nenes, A.] Natl Observ Athens, Athens, Greece. [Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Zelenyuk, A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zamora, LM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.; Zamora, LM (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN USA. EM lauren.m.zamora@nasa.gov RI Jimenez, Jose/A-5294-2008; OI Jimenez, Jose/0000-0001-6203-1847; McFarquhar, Greg/0000-0003-0950-0135; Zamora, Lauren/0000-0002-0878-4378 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG); NASA Postdoctoral Program at Goddard Space Flight Center; NASA [NNX12AC03G, NNX15AH33A] FX The authors would like to thank A. Aknan, B. Anderson, E. Apel, G. Chen, M. Couture, T. Garrett, K. B. Huebert, A. Khain, A. Korolev, T. Lathem, P. Lawson, R. Leaitch, J. Limbacher, J. Nelson, M. Pinsky, W. Ridgeway, A. Rangno, S. Williams, S. Woods, and Y. Yang for data and/or advice or help with various aspects of this project, and all others who were involved in collecting and funding the collection of the data sets we have used. We acknowledge the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division for providing the ISDAC data set. The authors also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication. Plots were made with Ocean Data View (Schlitzer, R., Ocean Data View, http://odv.awi.de, 2015) and R (R Core Team, 2013). CH3CN measurements were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). T. Mikoviny is acknowledged for his support with the CH3CN data acquisition and analysis. LMZ's funding for this study was provided by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. M. J. Cubison and J. L. Jimenez were supported by NASA NNX12AC03G and NNX15AH33A. NR 127 TC 2 Z9 2 U1 4 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 715 EP 738 DI 10.5194/acp-16-715-2016 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000017 ER PT J AU Beyersdorf, AJ Ziemba, LD Chen, G Corr, CA Crawford, JH Diskin, GS Moore, RH Thornhill, KL Winstead, EL Anderson, BE AF Beyersdorf, A. J. Ziemba, L. D. Chen, G. Corr, C. A. Crawford, J. H. Diskin, G. S. Moore, R. H. Thornhill, K. L. Winstead, E. L. Anderson, B. E. TI The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, DC region SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID UNITED-STATES; DISCOVER-AQ; AIR-QUALITY; PM2.5; ABSORPTION; PROFILES; HUMIDITY; AIRBORNE; MASS AB In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ngm(-3) in the lowest 1 km, decreasing to 35 ngm(-3) in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27% if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km(2)). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region. C1 [Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Corr, C. A.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Thornhill, K. L.; Winstead, E. L.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Beyersdorf, AJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM andreas.j.beyersdorf@nasa.gov FU NASA's Earth Venture-1 Program through Earth System Science Pathfinder (ESSP) Program Office FX This research was funded by NASA's Earth Venture-1 Program through the Earth System Science Pathfinder (ESSP) Program Office. We thank the DISCOVER-AQ Science Team, especially the pilots and flight crews of NASA's P-3B. Boundary layer heights based on airborne measurements of the potential temperature profile were provided by Don Lenschow of the University Corporation for Atmospheric Research (UCAR). Thanks also to Joshua DiGangi and Michael Shook (both of NASA Langley) for valuable discussions during manuscript preparation. NR 32 TC 0 Z9 0 U1 18 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 1003 EP 1015 DI 10.5194/acp-16-1003-2016 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000032 ER PT J AU Xu, L Williams, LR Young, DE Allan, JD Coe, H Massoli, P Fortner, E Chhabra, P Herndon, S Brooks, WA Jayne, JT Worsnop, DR Aiken, AC Liu, S Gorkowski, K Dubey, MK Fleming, ZL Visser, S Prevot, ASH Ng, NL AF Xu, L. Williams, L. R. Young, D. E. Allan, J. D. Coe, H. Massoli, P. Fortner, E. Chhabra, P. Herndon, S. Brooks, W. A. Jayne, J. T. Worsnop, D. R. Aiken, A. C. Liu, S. Gorkowski, K. Dubey, M. K. Fleming, Z. L. Visser, S. Prevot, A. S. H. Ng, N. L. TI Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; MASS-SPECTROMETER DATA; POSITIVE MATRIX FACTORIZATION; SOUTHEASTERN UNITED-STATES; EQUILIBRATION TIME SCALES; SOURCE APPORTIONMENT; HIGH-RESOLUTION; PARTICULATE MATTER; BROWN CARBON; PHOTOCHEMICAL OXIDATION AB The composition of PM1 (particulate matter with diameter less than 1 mu m) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling,Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70% of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 degrees C in the TD, 40% of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10% of the total OA (measured by a HR-ToF-AMS) at 250 degrees C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O: C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 degrees C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O: C of OA and find that particles with a wide range of O: C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O: C in bulk OA. C1 [Xu, L.; Ng, N. L.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Williams, L. R.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.] Aerodyne Res Inc, Billerica, MA USA. [Young, D. E.; Allan, J. D.; Coe, H.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester, Lancs, England. [Allan, J. D.] Univ Manchester, Natl Ctr Atmospher Sci, Manchester, Lancs, England. [Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Fleming, Z. L.] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England. [Fleming, Z. L.] Univ Leicester, Natl Ctr Atmospher Sci, Leicester, Leics, England. [Visser, S.; Prevot, A. S. H.] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland. [Ng, N. L.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Young, D. E.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA. [Chhabra, P.] PerkinElmer Inc, Hopkinton, MA USA. [Liu, S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Gorkowski, K.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. RP Ng, NL (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Ng, NL (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ng@chbe.gatech.edu RI Prevot, Andre/C-6677-2008; Allan, James/B-1160-2010; Dubey, Manvendra/E-3949-2010; Liu, Shang/F-9085-2011; Worsnop, Douglas/D-2817-2009; Aiken, Allison/B-9659-2009; OI Prevot, Andre/0000-0002-9243-8194; Allan, James/0000-0001-6492-4876; Dubey, Manvendra/0000-0002-3492-790X; Liu, Shang/0000-0002-3403-8651; Worsnop, Douglas/0000-0002-8928-8017; Aiken, Allison/0000-0001-5749-7626; Coe, Hugh/0000-0002-3264-1713 FU US Department of Energy [DE-SC000602]; UK Natural Environment Research Council (NERC) ClearfLo project [NE/H008136/1]; National Centre for Atmospheric Science (NCAS); NERC PhD studentship [NE/I528142/1]; LANL's LDRD program; US DOE Office of Biological and Environmental Research Atmospheric System Research Program [F265]; Swiss National Science Foundation [200021_132467/1, 200020_150056]; European Community's Seventh Framework Programme [312284] FX This project was supported by the US Department of Energy (grant no. DE-SC000602) and in part by the UK Natural Environment Research Council (NERC) ClearfLo project (grant ref. NE/H008136/1), coordinated by the National Centre for Atmospheric Science (NCAS). D.E. Young acknowledges a NERC PhD studentship (ref. NE/I528142/1). A.C. Aiken acknowledges Director's postdoctoral funding from LANL's LDRD program. M.K. Dubey acknowledges support by the US DOE Office of Biological and Environmental Research Atmospheric System Research Program, F265 to LANL. Elemental analysis was funded by the Swiss National Science Foundation (grant nos. 200021_132467/1 and 200020_150056) and the European Community's Seventh Framework Programme (FP7/2007-2013; grant no. 312284). The authors would like to thank the Met Office for use of the NAME dispersion model and the Meteorological data used in it and for the Leicester University ALICE supercomputer for running the model. The authors gratefully acknowledge Ashley Williamson (DOE), Amon Haruta (Los Alamos National Laboratory), David Green (Kings College London), and Roger Moore (Kent County Showgrounds) for assistance with the organization of the field site in Detling, UK. Processed and quality assured data are available through the ClearfLo project archive at the British Atmospheric Data Centre (http://badc.nerc.ac.uk/browse/badc/clearflo) and through the US Department of Energy Atmospheric Radiation Measurement Archive (www.archive.arm.gov). Raw data are archived at the Georgia Institute of Technology and at Aerodyne Research, Inc. and are available on request. NR 94 TC 5 Z9 5 U1 20 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 1139 EP 1160 DI 10.5194/acp-16-1139-2016 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000040 ER PT J AU Massart, S Agusti-Panareda, A Heymann, J Buchwitz, M Chevallier, F Reuter, M Hilker, M Burrows, JP Deutscher, NM Feist, DG Hase, F Sussmann, R Desmet, F Dubey, MK Griffith, DWT Kivi, R Petri, C Schneider, M Velazco, VA AF Massart, Sebastien Agusti-Panareda, Anna Heymann, Jens Buchwitz, Michael Chevallier, Frederic Reuter, Maximilian Hilker, Michael Burrows, John P. Deutscher, Nicholas M. Feist, Dietrich G. Hase, Frank Sussmann, Ralf Desmet, Filip Dubey, Manvendra K. Griffith, David W. T. Kivi, Rigel Petri, Christof Schneider, Matthias Velazco, Voltaire A. TI Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SCIAMACHY; ALGORITHM; VALIDATION; SATELLITE; PRODUCTS; SYSTEM; TCCON; TANSO AB This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TC-CON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free run (1.1 and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00: 00 UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000 km) even up to day 5 compared to its own analysis. C1 [Massart, Sebastien; Agusti-Panareda, Anna] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. [Heymann, Jens; Buchwitz, Michael; Reuter, Maximilian; Hilker, Michael; Burrows, John P.; Deutscher, Nicholas M.; Petri, Christof] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Chevallier, Frederic] IPSL, CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Feist, Dietrich G.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Hase, Frank; Schneider, Matthias] IMK ASF, Karlsruhe Inst Technol, Karlsruhe, Germany. [Sussmann, Ralf] IMK IFU, Karlsruhe Inst Technol, Garmisch Partenkirchen, Germany. [Desmet, Filip] Univ Antwerp, Dept Chem, B-2020 Antwerp, Belgium. [Dubey, Manvendra K.] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM USA. [Deutscher, Nicholas M.; Griffith, David W. T.; Velazco, Voltaire A.] Univ Wollongong, Sch Chem, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Kivi, Rigel] Arctic & Antarctic Res Inst, Finnish Meteorol Inst, Sodankyla, Finland. RP Massart, S (reprint author), European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. EM sebastien.massart@ecmwf.int RI Chevallier, Frederic/E-9608-2016; Feist, Dietrich/B-6489-2013; Velazco, Voltaire/H-2280-2011; Dubey, Manvendra/E-3949-2010; Reuter, Maximilian/L-3752-2014; Schneider, Matthias/B-1441-2013; Sussmann, Ralf/K-3999-2012; Burrows, John/B-6199-2014 OI Chevallier, Frederic/0000-0002-4327-3813; Feist, Dietrich/0000-0002-5890-6687; Velazco, Voltaire/0000-0002-1376-438X; Dubey, Manvendra/0000-0002-3492-790X; Reuter, Maximilian/0000-0001-9141-3895; Burrows, John/0000-0002-6821-5580 FU European Commission under the European Union's Horizon 2020 programme; European Space Agency (ESA) Greenhouse Gases Climate Change Initiative (GHG-CCI); LANL's LDRD programme; NASA [NAG5-12247, NNG05-GD07G]; Australian Research Council [DP140101552, DP110103118, DP0879468, LE0668470, LP0562346]; ICOS-INWIRE; InGOS; Senate of Bremen; ARC-DECRA fellowship [DE140100178] FX This study was funded by the European Commission under the European Union's Horizon 2020 programme. The development of the GOSAT BESD algorithm received funding from the European Space Agency (ESA) Greenhouse Gases Climate Change Initiative (GHG-CCI). TCCON data were obtained from the TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis Center (CDIAC) - http://tccon.ornl.gov/.Garmisch work was funded in part via the ESA GHG-CCI project. Four Corners TCCON was funded by LANL's LDRD programme. Darwin and Wollongong TCCON measurements are funded by NASA grants NAG5-12247 and NNG05-GD07G and the Australian Research Council grants DP140101552, DP110103118, DP0879468, LE0668470 and LP0562346. We are grateful to the DOE ARM programme for technical support in Darwin, and Clare Murphy, Nicholas Jones and others for support in Wollongong. TCCON measurements in Bialystok and Orleans are supported by ICOS-INWIRE, InGOS and the Senate of Bremen. N. Deutscher is supported by an ARC-DECRA fellowship, DE140100178. The authors are grateful to Marijana Crepulja for the acquisition of the BESD GOSAT data at ECMWF and the preparation of the data for the assimilation. The authors would like to acknowledge Paul Wennberg, PI of the Lamont and Park Falls TCCON stations. Finally, we would like to express our great appreciation to William Lahoz, editor of this paper, for his useful comments during the revision process. NR 35 TC 7 Z9 7 U1 7 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 3 BP 1653 EP 1671 DI 10.5194/acp-16-1653-2016 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YI UT WOS:000371284100028 ER PT J AU Gao, M Carmichael, GR Wang, Y Saide, PE Yu, M Xin, J Liu, Z Wang, Z AF Gao, M. Carmichael, G. R. Wang, Y. Saide, P. E. Yu, M. Xin, J. Liu, Z. Wang, Z. TI Modeling study of the 2010 regional haze event in the North China Plain SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; URBAN AIR-QUALITY; EASTERN CHINA; FORMATION MECHANISM; SIZE DISTRIBUTIONS; SOUTHERN HEBEI; WINTER HAZE; POLLUTION; IMPACT; TRANSPORT AB The online coupled Weather Research and Forecasting-Chemistry (WRF-Chem) model was applied to simulate a haze event that happened in January 2010 in the North China Plain (NCP), and was validated against various types of measurements. The evaluations indicate that WRF-Chem provides reliable simulations for the 2010 haze event in the NCP. This haze event was mainly caused by high emissions of air pollutants in the NCP and stable weather conditions in winter. Secondary inorganic aerosols also played an important role and cloud chemistry had important contributions. Air pollutants outside Beijing contributed about 64.5% to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, relative humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn. In Shijiazhuang, Planetary Boundary Layer (PBL) decreased about 278.2 m and PM2.5 increased more than 20 mu g m(-3) due to aerosol feedback. It was also shown that black carbon (BC) absorption has significant impacts on meteorology and air quality changes, indicating more attention should be paid to BC from both air pollution control and climate change perspectives. C1 [Gao, M.; Carmichael, G. R.; Yu, M.] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. [Gao, M.; Carmichael, G. R.; Saide, P. E.; Yu, M.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Wang, Y.; Xin, J.; Liu, Z.; Wang, Z.] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & At, Beijing, Peoples R China. [Saide, P. E.] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling ACOM Lab, POB 3000, Boulder, CO 80307 USA. [Yu, M.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Gao, M; Carmichael, GR (reprint author), Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA.; Gao, M; Carmichael, GR (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. EM meng-gao@uiowa.edu; gcarmich@engineering.uiowa.edu RI Gao, Meng/P-8921-2015; 辛, 金元/F-7310-2012; Wang, Zifa/B-5799-2011 OI Gao, Meng/0000-0002-8657-3541; 辛, 金元/0000-0003-4243-5072; FU National Natural Science Foundation of China [41222033, 41375036]; CAS Strategic Priority Research Program Grant [XDA05100102, XDB05020103] FX Special thanks are given to Yuesi Wang, Jinyuan Xin and their research groups for providing measurements to evaluate model performance. The ground observation was supported by the National Natural Science Foundation of China (41222033; 41375036) and the CAS Strategic Priority Research Program Grant (XDA05100102, XDB05020103). We also would like to thank Yafang Cheng for her contributions to the development of emission processing model. The NCEP FNL data were available at http://rda.ucar.edu/datasets/ds083.2/. The MEIC emission inventory data are obtained from http://www.meicmodel.org/. The MOZART-4 chemical data are available at http://www.acd.ucar.edu/wrf-chem/mozart.shtml. Contact M. Gao (meng-gao@uiowa.edu) or G. R. Carmichael (gcarmich@engineering.uiowa.edu) for data requests. NR 67 TC 6 Z9 6 U1 24 U2 60 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 3 BP 1673 EP 1691 DI 10.5194/acp-16-1673-2016 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YI UT WOS:000371284100029 ER PT J AU Kleinman, L Kuang, C Sedlacek, A Senum, G Springston, S Wang, J Zhang, Q Jayne, J Fast, J Hubbe, J Shilling, J Zaveri, R AF Kleinman, L. Kuang, C. Sedlacek, A. Senum, G. Springston, S. Wang, J. Zhang, Q. Jayne, J. Fast, J. Hubbe, J. Shilling, J. Zaveri, R. TI What do correlations tell us about anthropogenic-biogenic interactions and SOA formation in the Sacramento plume during CARES? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; MEXICO-CITY; CARBONACEOUS AEROSOL; SIZE DISTRIBUTION; SIERRA-NEVADA; SAMPLE-SIZE; EMISSIONS; ISOPRENE; CALIFORNIA; OXIDATION AB During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the US Department of Energy (DOE) G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA, plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced by the simultaneous presence of high concentrations of carbon monoxide (CO) and either isoprene, MVK + MACR (sum of methyl vinyl ketone and methacrolein), or methanol, which are taken as tracers of anthropogenic and biogenic emissions, respectively. Linear and bilinear correlations between OA, CO, and each of three biogenic tracers, "Bio", for individual plume transects indicate that most of the variance in OA over short timescales and distance scales can be explained by CO. For each transect and species a plume perturbation, (i.e., Delta OA, defined as the difference between 90th and 10th percentiles) was defined and regressions done amongst Delta values in order to probe day-to-day and location-dependent variability. Species that predicted the largest fraction of the variance in Delta OA were Delta O-3 and Delta CO. Background OA was highly correlated with background methanol and poorly correlated with other tracers. Because background OA was similar to 60% of peak OA in the urban plume, peak OA should be primarily biogenic and therefore non-fossil, even though the day-today and spatial variability of plume OA is best described by an anthropogenic tracer, CO. Transects were split into subsets according to the percentile rankings of Delta CO and Delta Bio, similar to an approach used by Setyan et al. (2012) and Shilling et al. (2013) to determine if anthropogenic-biogenic (A-B) interactions enhance OA production. As found earlier, Delta OA in the data subset having high Delta CO and high Delta Bio was several-fold greater than in other subsets. Part of this difference is consistent with a synergistic interaction between anthropogenic and biogenic precursors and part to an independent linear dependence of Delta OA on precursors. The highest values of Delta O-3, along with high temperatures, clear skies, and poor ventilation, also occurred in the high Delta CO-high Delta Bio data set. A complicated mix of A-B interactions can result. After taking into account linear effects as predicted from low concentration data, an A-B enhancement of OA by a factor of 1.2 to 1.5 is estimated. C1 [Kleinman, L.; Kuang, C.; Sedlacek, A.; Senum, G.; Springston, S.; Wang, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhang, Q.] Univ Calif Davis, Davis, CA 95616 USA. [Jayne, J.] Aerodyne Res Inc, Billerica, MA USA. [Fast, J.; Hubbe, J.; Shilling, J.; Zaveri, R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kleinman, L (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kleinman@bnl.gov RI Shilling, John/L-6998-2015; Wang, Jian/G-9344-2011 OI Shilling, John/0000-0002-3728-0195; FU US DOE [DE-A06-76RLO 1830, DE-SC0007178, DE-SC0012704]; United States Department of Energy [DE-SC0012704] FX We thank chief pilot Bob Hannigan and the flight crew from PNNL for a job well done. We gratefully acknowledge the Atmospheric Radiation Measurement (ARM) and the Atmospheric Systems Research (ASR) Programs within the Office of Biological and Environmental Research of the Office of Science of the US Department of Energy (DOE) for supporting field and analysis activities and for providing the G-1 aircraft. Support for J. Fast, J. Hubbe, J. Shilling, and R. Zaveri of Pacific Northwest National Laboratory and Q. Zhang of U. C. Davis was provided by the US DOE under contracts DE-A06-76RLO 1830 and DE-SC0007178, respectively. Research by L. Kleinman, C. Kuang, A. Sedlacek, G. Senum, S. Springston, and J. Wang of Brookhaven National Laboratory was performed under sponsorship of the US DOE under contracts DE-SC0012704.; This research was performed under the auspices of the United States Department of Energy under contract no. DE-SC0012704. NR 50 TC 2 Z9 2 U1 5 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 3 BP 1729 EP 1746 DI 10.5194/acp-16-1729-2016 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YI UT WOS:000371284100032 ER PT S AU Eisenbach, M Larkin, J Lutjens, J Rennich, S Rogers, JH AF Eisenbach, Markus Larkin, Jeff Lutjens, Justin Rennich, Steven Rogers, James H. BE Chen, W Yin, G Zhao, G Han, Q Jing, W Sun, G Lu, Z TI GPU Acceleration of the Locally Selfconsistent Multiple Scattering Code for First Principles Calculation of the Ground State and Statistical Physics of Materials SO BIG DATA TECHNOLOGY AND APPLICATIONS SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 1st National Conference on Big Data Technology and Applications (BDTA) CY DEC 25-26, 2015 CL CCF, Harbin, PEOPLES R CHINA SP CCF TCAPP HO CCF ID RANDOM-WALK ALGORITHM; DENSITY-OF-STATES AB The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code. C1 [Eisenbach, Markus; Rogers, James H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Larkin, Jeff; Lutjens, Justin; Rennich, Steven] NVIDIA Corp, Santa Clara, CA 95050 USA. RP Eisenbach, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM eisenbachm@ornl.gov OI Eisenbach, Markus/0000-0001-8805-8327 NR 14 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1865-0929 BN 978-981-10-0457-5; 978-981-10-0456-8 J9 COMM COM INF SC PY 2016 VL 590 BP 259 EP 268 DI 10.1007/978-981-10-0457-5_24 PG 10 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA BE4CL UT WOS:000371501900024 ER PT J AU Klaus, S Trotochaud, L Cheng, MJ Head-Gordon, M Bell, AT AF Klaus, Shannon Trotochaud, Lena Cheng, Mu-Jeng Head-Gordon, Martin Bell, Alexis T. TI Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media SO CHEMELECTROCHEM LA English DT Article DE catalysis; energetics; oxidized Au; oxygen evolution reaction; surface impurities ID OXYGEN EVOLUTION REACTION; ENHANCED RAMAN-SPECTROSCOPY; GOLD ELECTRODES; ELECTROCHEMICAL EVOLUTION; OXIDE CATALYSTS; FILM ELECTRODES; ALKALINE MEDIA; AQUEOUS-MEDIA; IRON; DISSOLUTION AB Addition of Fe to Ni- and Co-based (oxy) hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au2O3) occurs at an overpotential similar to 0.3 V lower than over hydroxylated Au2O3 (0.82 V). This finding agrees well with experimental observations and is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au2O3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au-III surfaquo species. C1 [Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; Head-Gordon, Martin; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Klaus, Shannon; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA.; Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. The authors gratefully acknowledge James Wu and Doug Jamieson (Lawrence Berkeley National Laboratory) for RDE fabrication. The authors also thank Li Wang (Lawrence Berkeley National Laboratory) for ICP-MS acquisition, as well as Jason Cooper and David Larson (Joint Center for Artificial Photosynthesis) for assistance with the acquisition of XPS data. NR 51 TC 7 Z9 7 U1 15 U2 42 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD JAN PY 2016 VL 3 IS 1 BP 66 EP 73 DI 10.1002/celc.201500364 PG 8 WC Electrochemistry SC Electrochemistry GA DF3OG UT WOS:000371253500009 ER PT J AU Sheng, X Chen, LP Xu, T Zhu, K Feng, XJ AF Sheng, Xia Chen, Liping Xu, Tao Zhu, Kai Feng, Xinjian TI Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance SO CHEMICAL SCIENCE LA English DT Article ID SENSITIZED SOLAR-CELLS; ELECTRON-TRANSPORT; RUTILE; RECOMBINATION; DEPOSITION; MOBILITY; NANOROD; MODEL; LAYER AB Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO2 NWs can be developed and well-utilized, which is significantly important for their practical applications. C1 [Sheng, Xia; Chen, Liping; Feng, Xinjian] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China. [Zhu, Kai] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. [Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. RP Feng, XJ (reprint author), Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China. EM xjfeng@suda.edu.cn FU National Natural Science Foundation of China [21371178, 21501193]; Jiangsu Province Science Foundation for Distinguished Young Scholars [BK20150032]; Chinese Thousand Youth Talents Program [YZBQF11001]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX X. F. acknowledges financial support from the National Natural Science Foundation of China (21371178), the Jiangsu Province Science Foundation for Distinguished Young Scholars (BK20150032), and the Chinese Thousand Youth Talents Program (YZBQF11001). X. S. acknowledges financial support from the National Natural Science Foundation of China (21501193). K. Z. acknowledges the support by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The authors acknowledge D. L. of State Key Laboratory of Silicon Materials, Zhejiang University for PL measurements. NR 33 TC 3 Z9 3 U1 6 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 3 BP 1910 EP 1913 DI 10.1039/c5sc04076k PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DF0IH UT WOS:000371021900033 ER PT J AU Russ, B Robb, MJ Popere, BC Perry, EE Mai, CK Fronk, SL Patel, SN Mates, TE Bazan, GC Urban, JJ Chabinyc, ML Hawker, CJ Segalman, RA AF Russ, Boris Robb, Maxwell J. Popere, Bhooshan C. Perry, Erin E. Mai, Cheng-Kang Fronk, Stephanie L. Patel, Shrayesh N. Mates, Thomas E. Bazan, Guillermo C. Urban, Jeffrey J. Chabinyc, Michael L. Hawker, Craig J. Segalman, Rachel A. TI Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors SO CHEMICAL SCIENCE LA English DT Article ID POLYMER SOLAR-CELLS; INTRAMOLECULAR EXCIPLEX FORMATION; INDUCED ELECTRON-TRANSFER; THIN-FILM TRANSISTORS; PERYLENE DIIMIDES; EFFICIENCY; MEMBRANES AB A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moieties during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials. C1 [Russ, Boris] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Russ, Boris; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Robb, Maxwell J.; Mai, Cheng-Kang; Fronk, Stephanie L.; Patel, Shrayesh N.; Mates, Thomas E.; Bazan, Guillermo C.; Hawker, Craig J.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Popere, Bhooshan C.; Patel, Shrayesh N.; Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Perry, Erin E.; Bazan, Guillermo C.; Chabinyc, Michael L.; Hawker, Craig J.; Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93117 USA. [Robb, Maxwell J.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL USA. [Robb, Maxwell J.] Univ Illinois, Dept Chem, Urbana, IL USA. RP Hawker, CJ (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.; Segalman, RA (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.; Chabinyc, ML; Hawker, CJ; Segalman, RA (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93117 USA. EM mchabinyc@engineering.ucsb.edu; hawker@mrl.ucsb.edu; segalman@engineering.ucsb.edu RI Mai, Cheng-Kang/A-8018-2012; Robb, Maxwell/B-6857-2011; Bazan, Guillermo/B-7625-2014 OI Mai, Cheng-Kang/0000-0002-9825-7466; Robb, Maxwell/0000-0002-0528-9857; FU AFOSR MURI program [FA9550-12-1-0002]; Office of Science, BES, U.S. DOE [DE-AC02-05CH11231]; NSF [DMR 1121053]; DOD, AFOSR [FA9550-11-C-0028]; UC Regents; CSP Technologies; DOE (SCGF) FX This work was funded by the AFOSR MURI program under FA9550-12-1-0002. Portions of this research were carried out at the Molecular Foundry, a LBNL user facility supported by the Office of Science, BES, U.S. DOE, under Contract DE-AC02-05CH11231. Portions of this work were performed at the MRL Shared Experimental Facilities, which are supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (http://www.mrfn.org). B. R. gratefully acknowledges the DOD, AFOSR, for DOD-NDSEG fellowship support, 32 CFR 168a under contract FA9550-11-C-0028. M. J. R. thanks UC Regents, CSP Technologies, and the DOE (SCGF) for graduate fellowships. We thank Fred Wudl for helpful conversations. NR 45 TC 13 Z9 13 U1 21 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 3 BP 1914 EP 1919 DI 10.1039/c5sc04217h PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DF0IH UT WOS:000371021900034 ER PT J AU Barber, DM Schonberger, M Burgstaller, J Levitz, J Weaver, CD Isacoff, EY Baier, H Trauner, D AF Barber, David M. Schoenberger, Matthias Burgstaller, Jessica Levitz, Joshua Weaver, C. David Isacoff, Ehud Y. Baier, Herwig Trauner, Dirk TI Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO) SO CHEMICAL SCIENCE LA English DT Article ID RECTIFYING POTASSIUM CHANNELS; K+ CHANNELS; BIOLOGICAL-ACTIVITY; MOLECULAR SWITCHES; GLUTAMATE-RECEPTOR; INWARD RECTIFIER; BLIND MICE; INHIBITION; PHOTOSWITCH; DISCOVERY AB G-protein coupled inwardly rectifying potassium (GIRK) channels are expressed throughout the human body and are an integral part of inhibitory signal transduction pathways. Upon binding of G(beta gamma) subunits released from G-protein coupled receptors (GPCRs), GIRK channels open and reduce the activity of excitable cells via hyperpolarization. As such, they play a role in cardiac output, the coordination of movement and cognition. Due to their involvement in a multitude of pathways, the precision control of GIRK channels is an important endeavour. Here, we describe the development of the photoswitchable agonist LOGO (the Light-Operated GIRK channel Opener), which activates GIRK channels in the dark and is rapidly deactivated upon exposure to long wavelength UV irradiation. LOGO is the first photochromic K+ channel opener and selectively targets channels that contain the GIRK1 subunit. It can be used to optically silence action potential firing in dissociated hippocampal neurons and LOGO exhibits activity in vivo, controlling the motility of zebrafish larvae in a light-dependent fashion. We envisage that LOGO will be a valuable research tool to dissect the function of GIRK channels from other GPCR dependent signalling pathways. C1 [Barber, David M.; Schoenberger, Matthias; Trauner, Dirk] Univ Munich, Dept Chem, Butenandtstr 5-13, D-81377 Munich, Germany. [Barber, David M.; Schoenberger, Matthias; Trauner, Dirk] Univ Munich, Ctr Integrated Prot Sci, Butenandtstr 5-13, D-81377 Munich, Germany. [Burgstaller, Jessica; Baier, Herwig] Max Planck Inst Neurobiol, Klopferspitz 18, D-82152 Martinsried, Germany. [Levitz, Joshua; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Levitz, Joshua; Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Weaver, C. David] Vanderbilt Univ, Dept Pharmacol, Sch Med, Nashville, TN 37232 USA. [Weaver, C. David] Vanderbilt Univ, Inst Chem Biol, Sch Med, Nashville, TN 37232 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Trauner, D (reprint author), Univ Munich, Dept Chem, Butenandtstr 5-13, D-81377 Munich, Germany.; Trauner, D (reprint author), Univ Munich, Ctr Integrated Prot Sci, Butenandtstr 5-13, D-81377 Munich, Germany. EM dirk.trauner@lmu.de FU EC [PIEF-GA-2013-627990]; ERC [268795]; CIPSM; Max Planck Society; NIH [2PN2EY018241] FX We gratefully acknowledge the EC [IEF to D.M.B. (PIEF-GA-2013-627990)], the ERC [Advanced Grant to D.T. (268795)], CIPSM (D.T. and H.B.) and the Max Planck Society (H.B.) for generous financial support. We are also grateful to the NIH for supporting the Nanomedicine Developmental Center for the Optical Control of Biological Function [D.T., H.B. and E.Y.I. (2PN2EY018241)]. We thank Luis de la Osa de la Rosa and Luisa Zartner for excellent technical assistance and Giulio Volpin for assistance with NMR measurements. We also thank Dr. Martin Olbrich and Cedric Hugelshofer for helpful discussions during the preparation of this manuscript. NR 55 TC 3 Z9 3 U1 6 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 3 BP 2347 EP 2352 DI 10.1039/c5sc04084a PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DF0IH UT WOS:000371021900091 PM 28090283 ER PT J AU Beltran, Y Cerqueda-Garcia, D Tas, N Thome, PE Iglesias-Prieto, R Falcon, LI AF Beltran, Yislem Cerqueda-Garcia, Daniel Tas, Neslihan Thome, Patricia E. Iglesias-Prieto, Roberto Falcon, Luisa I. TI Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE Acropora palmata; microbial carbonates; lithifying biofilms; global warming; pH; genetic diversity ID BACTERIAL COMMUNITY STRUCTURE; WHITE-BAND DISEASE; OCEAN ACIDIFICATION; CALCIUM-CARBONATE; REEF FRAMEWORK; ELKHORN CORAL; DIVERSITY; STROMATOLITE; PRECIPITATION; SEDIMENTS AB Coral reefs are amongst the most productive ecosystems on the planet, but are rapidly declining due to global warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost similar to 80% of their original coverage, resulting in vast extensions of dead coral rubble. We analysed the microbial composition of biofilms that colonize and lithify dead A. palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO3) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after 2-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs. C1 [Beltran, Yislem; Cerqueda-Garcia, Daniel; Falcon, Luisa I.] Univ Nacl Autonoma Mexico, Inst Ecol, Lab Ecol Bacteriana, Mexico City 04510, DF, Mexico. [Tas, Neslihan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth & Environm Sci Ecol Dept, Berkeley, CA 94720 USA. [Thome, Patricia E.; Iglesias-Prieto, Roberto] Inst Ciencias Mar & Limnol, Unidad Acad Sistemas Arrecifales Puerto Morelos, UNAM Ado Post 1152, Cancun 77500, QR, Mexico. RP Falcon, LI (reprint author), Cto Ext Sn,Cd Univ, Mexico City 04510, DF, Mexico. EM falcon@ecologia.unam.mx RI Cerqueda-Garcia, Daniel/J-3764-2016 OI Cerqueda-Garcia, Daniel/0000-0003-1544-5662 FU CONACyT; SEP-CONACyT [0151796]; UNAM-PAPIIT [100212-3] FX Sampling and mesocosms were conducted at UNAM's Coral Reef Academic Unit, in Puerto Morelos, Mexico. Technical support is acknowledged from O. Gaona, Susana Guzman Gomez and F. Negrete-Soto. Mesocosm systems support is acknowledged from Dr W. Kramer and X-ray diffraction analysis support from Dr T. Pi Puig. This paper is part of the graduate degree requirements for YB, in the Posgrado en Ciencias Biologicas, UNAM. YB and DC-G are recipients of graduate studies fellowships (CONACyT). Funding was provided to LIF from SEP-CONACyT grant No. 0151796 and UNAM-PAPIIT grant No. 100212-3. All samples were collected under collector permit No. PPF/DGOPA-113/14 (LIF). NR 66 TC 1 Z9 1 U1 9 U2 22 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD JAN PY 2016 VL 92 IS 1 AR fiv162 DI 10.1093/femsec/fiv162 PG 10 WC Microbiology SC Microbiology GA DF3MV UT WOS:000371249300013 ER PT S AU Mayo, JR Armstrong, RC Hulette, GC AF Mayo, Jackson R. Armstrong, Robert C. Hulette, Geoffrey C. BE Artho, C Olveczky, PC TI Leveraging Abstraction to Establish Out-of-Nominal Safety Properties SO FORMAL TECHNIQUES FOR SAFETY-CRITICAL SYSTEMS, (FTSCS 2015) SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 4th International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS) CY NOV 06-07, 2015 CL Paris, FRANCE DE Abstraction; Refinement; Model checking; Fault tolerance; Soft errors; Temporal logic of actions; NuSMV AB Digital systems in an out-of-nominal environment (e.g., one causing hardware bit flips) may not be expected to function correctly in all respects but may be required to fail safely. We present an approach for understanding and verifying a system's out-of-nominal behavior as an abstraction of nominal behavior that preserves designated critical safety requirements. Because abstraction and refinement are already widely used for improved tractability in formal design and proof techniques, this additional way of viewing an abstraction can potentially verify a system's out-of-nominal safety with little additional work. We illustrate the approach with a simple model of a turnstile controller with possible logic faults (formalized in the temporal logic of actions and NuSMV), noting how design choices can be guided by the desired out-of-nominal abstraction. Principles of robustness in complex systems (specifically, Boolean networks) are found to be compatible with the formal abstraction approach. This work indicates a direction for broader use of formal methods in safety-critical systems. C1 [Mayo, Jackson R.; Armstrong, Robert C.; Hulette, Geoffrey C.] Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. RP Mayo, JR (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM jmayo@sandia.gov; rob@sandia.gov; ghulett@sandia.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1865-0929 BN 978-3-319-29510-7; 978-3-319-29509-1 J9 COMM COM INF SC PY 2016 VL 596 BP 172 EP 186 DI 10.1007/978-3-319-29510-7_10 PG 15 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Logic SC Computer Science; Science & Technology - Other Topics GA BE3YX UT WOS:000371403600010 ER PT J AU Smith, MD Mostofian, B Cheng, XL Petridis, L Cai, CM Wyman, CE Smith, JC AF Smith, Micholas Dean Mostofian, Barmak Cheng, Xiaolin Petridis, Loukas Cai, Charles M. Wyman, Charles E. Smith, Jeremy C. TI Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics SO GREEN CHEMISTRY LA English DT Article ID LIGNOCELLULOSIC BIOMASS; MOLECULAR-DYNAMICS; ENZYMATIC-HYDROLYSIS; SIMULATION; SOLVENT; ETHANOL; HYDROPHOBICITY; RECALCITRANCE; TEMPERATURE; INHIBITION AB The deconstruction of cellulose is an essential step in the production of ethanol from lignocellulosic biomass. However, the presence of lignin hinders this process. Recently, a novel cosolvent based biomass pretreatment method called CELF (Cosolvent Enhanced Lignocellulosic Fractionation) which employs tetrahydrofuran (THF) in a single phase mixture with water, was found to be highly effective at solubilizing and extracting lignin from lignocellulosic biomass and achieving high yields of fermentable sugars. Here, using all-atom molecular-dynamics simulation, we find that THF preferentially solvates lignin, and in doing so, shifts the equilibrium configurational distribution of the biopolymer from a crumpled globule to coil, independent of temperature. Whereas pure water is a bad solvent for lignin, the THF : water cosolvent acts as a "theta" solvent, in which solvent : lignin and lignin : lignin interactions are approximately equivalent in strength. Under these conditions, polymers do not aggregate, thus providing a mechanism for the observed lignin solubilization that facilitates unfettered access of celluloytic enzymes to cellulose. C1 [Smith, Micholas Dean; Mostofian, Barmak; Cheng, Xiaolin; Petridis, Loukas; Smith, Jeremy C.] Univ Tennessee, Ctr Biophys Mol, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Smith, Micholas Dean; Cheng, Xiaolin; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, M407 Walters Life Sci,1414 Cumberland Ave, Knoxville, TN 37996 USA. [Cai, Charles M.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92521 USA. [Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92521 USA. [Cai, Charles M.; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. RP Smith, JC (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA.; Smith, JC (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, M407 Walters Life Sci,1414 Cumberland Ave, Knoxville, TN 37996 USA. EM smithjc@ornl.gov RI Petridis, Loukas/B-3457-2009; smith, jeremy/B-7287-2012; Cai, Charles/E-4986-2012; OI Petridis, Loukas/0000-0001-8569-060X; smith, jeremy/0000-0002-2978-3227; Cai, Charles/0000-0002-5047-0815; Smith, Micholas/0000-0002-0777-7539 FU BioEnergy Science Center, a U.S. Department of Energy (DOE) Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX We would like to thank Yunqiao Pu for his helpful discussions regarding lignin structure. This research was funded by the BioEnergy Science Center, a U.S. Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC05-00OR22725. This research also used the computing resources provided by the U.S. Department of Energy's National Energy Research Scientific Computing Center.r This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 59 TC 4 Z9 4 U1 11 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 5 BP 1268 EP 1277 DI 10.1039/c5gc01952d PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DF8LA UT WOS:000371608100013 ER PT J AU Zhao, C Xie, SX Pu, YQ Zhang, R Huang, F Ragauskas, AJ Yuan, JS AF Zhao, Cheng Xie, Shangxian Pu, Yunqiao Zhang, Rui Huang, Fang Ragauskas, Arthur J. Yuan, Joshua S. TI Synergistic enzymatic and microbial lignin conversion SO GREEN CHEMISTRY LA English DT Article ID OPACUS DSM 1069; SYSTEMS BIOLOGY; KRAFT LIGNIN; LIGNOCELLULOSE; BIOCONVERSION; PRETREATMENT; PHENOLS; BIOFUEL; AGE AB The utilization of lignin for fungible fuels and chemicals represents one of the most imminent challenges in modern biorefineries. However, bioconversion of lignin is highly challenging due to its recalcitrant nature as a phenolic heteropolymer. This study addressed the challenges by revealing the chemical and biological mechanisms for synergistic lignin degradation by a bacterial and enzymatic system, which significantly improved lignin consumption, cell growth and lipid yield. The Rhodococcus opacus cell growth increased exponentially in response to the level of laccase treatment, indicating the synergy between laccase and bacterial cells in lignin degradation. Other treatments like iron and hydrogen peroxide showed limited impact on cell growth. Chemical analysis of lignin under various treatments further confirmed the synergy between laccase and cells at the chemical level. P-31 nuclear magnetic resonance (NMR) suggested that laccase, R. opacus cell and Fenton reaction reagents promoted the degradation of different types of lignin functional groups, elucidating the chemical basis for the synergistic effects. 31P NMR further revealed that laccase treatment had the most significant impact for degrading the abundant chemical groups. The results were further confirmed by the molecular weight analysis and lignin quantification by the Prussian blue assay. The cell-laccase fermentation led to a 17-fold increase of lipid production. Overall, the study indicated that laccase and R. opacus can synergize to degrade lignin efficiently, likely through rapid utilization of monomers generated by laccase to promote the reaction toward depolymerization. The study provided a potential path for more efficient lignin conversion and development of consolidated lignin conversion. C1 [Zhao, Cheng; Xie, Shangxian; Zhang, Rui; Yuan, Joshua S.] Texas A&M Univ, Texas A&M Agrilife Synthet & Syst Biol Innovat Hu, College Stn, TX 77843 USA. [Zhao, Cheng; Xie, Shangxian; Yuan, Joshua S.] Texas A&M Univ, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA. [Zhao, Cheng; Xie, Shangxian; Zhang, Rui; Yuan, Joshua S.] Texas A&M Univ, Inst Plant Genom & Biotechnol, College Stn, TX 77843 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Zhang, Rui] Texas A&M Univ, Dept Vet Pathobiol, College Stn, TX 77843 USA. [Huang, Fang] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Biomol & Chem Engn, Dept Forestry Fisheries & Wildlife, Knoxville, TN 37996 USA. [Yuan, Joshua S.] Cleamol LLC, College Stn, TX 77843 USA. RP Xie, SX; Yuan, JS (reprint author), Texas A&M Univ, Texas A&M Agrilife Synthet & Syst Biol Innovat Hu, College Stn, TX 77843 USA.; Xie, SX; Yuan, JS (reprint author), Texas A&M Univ, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA.; Xie, SX; Yuan, JS (reprint author), Texas A&M Univ, Inst Plant Genom & Biotechnol, College Stn, TX 77843 USA.; Yuan, JS (reprint author), Cleamol LLC, College Stn, TX 77843 USA. EM xsx0613@gmail.com; syuan@tamu.edu RI Pu, Yunqiao/H-3206-2016; Zhang, Rui/O-4778-2016; Xie, Shangxian/P-7175-2016; OI Pu, Yunqiao/0000-0003-2554-1447; Zhang, Rui/0000-0001-9641-1573; Ragauskas, Arthur/0000-0002-3536-554X FU U.S. DOE (Department of Energy) EERE (Energy Efficiency and Renewable Energy) BETO (Bioenergy Technology Office) [DE-EE0006112]; Texas A&M Agrilife Research's biofuel initiative; China Scholarship Council; DOE [DE-AC05-00OR22725] FX The work was supported by the U.S. DOE (Department of Energy) EERE (Energy Efficiency and Renewable Energy) BETO (Bioenergy Technology Office) (grant no. DE-EE0006112) to JSY and AR. The research was also supported by Texas A&M Agrilife Research's biofuel initiative to JSY. The work was also supported by China Scholarship Council to CZ. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract DE-AC05-00OR22725. NR 28 TC 11 Z9 11 U1 18 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 5 BP 1306 EP 1312 DI 10.1039/c5gc01955a PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DF8LA UT WOS:000371608100017 ER PT J AU Chang, CC Cho, HJ Yu, JY Gorte, RJ Gulbinski, J Dauenhauer, P Fan, W AF Chang, Chun-Chih Cho, Hong Je Yu, Jingye Gorte, Ray J. Gulbinski, Jason Dauenhauer, Paul Fan, Wei TI Lewis acid zeolites for tandem Diels-Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene SO GREEN CHEMISTRY LA English DT Article ID TEREPHTHALIC ACID; BETA ZEOLITE; SN-BETA; 2,5-DIMETHYLFURAN; CATALYST; CONVERSION; OXIDATION AB Lewis acid zeolites including Zr-, Sn-, and Ti-BEA were examined for tandem [4 + 2] Diels-Alder cyclo-addition of 2,5-dimethylfuran (DMF) and ethylene to oxanorbornene with subsequent dehydration to produce biorenewable p-xylene. Zr-BEA (Si/Zr = 168) exhibited superior performance with improved recalcitrance to deactivation, which was attributed to its low activity for the hydrolysis of DMF to 2,5-hexanedione and subsequent condensation. Zr-BEA also achieved the highest selectivity to p-xylene of 90% at 99% conversion of DMF. For low catalyst loading within a three-phase reactor, the reaction rate to form p-xylene was linearly proportional to the number of Lewis acid sites, while high catalyst loading exhibited zero order dependence on Lewis acid sites. A maximum achievable reaction rate was shown to be consistent with a transition in rate-limiting reactions from dehydration of oxanorbornene, the Diels-Alder product, to the Diels-Alder cycloaddition of DMF and ethylene. C1 [Chang, Chun-Chih; Cho, Hong Je; Fan, Wei] Univ Massachusetts, Dept Chem Engn, 686 N Pleasant St, Amherst, MA 01002 USA. [Chang, Chun-Chih; Cho, Hong Je; Yu, Jingye; Gorte, Ray J.; Gulbinski, Jason; Dauenhauer, Paul; Fan, Wei] Univ Delaware, Catalysis Ctr Energy Innovat, US DOE, Energy Frontier Res Ctr, 150 Acad St, Newark, DE 19716 USA. [Yu, Jingye; Gorte, Ray J.] Univ Penn, Dept Biomol & Chem Engn, 220 S 33rd St, Philadelphia, PA 19104 USA. [Gulbinski, Jason] Univ Delaware, Dept Chem Engn, 150 Acad St, Newark, DE 19716 USA. [Dauenhauer, Paul] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. RP Fan, W (reprint author), Univ Massachusetts, Dept Chem Engn, 686 N Pleasant St, Amherst, MA 01002 USA.; Fan, W (reprint author), Univ Delaware, Catalysis Ctr Energy Innovat, US DOE, Energy Frontier Res Ctr, 150 Acad St, Newark, DE 19716 USA. EM wfan@ecs.umass.edu FU Center for Catalysis and Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004] FX The authors acknowledge financial support from the Center for Catalysis and Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001004. NR 35 TC 13 Z9 13 U1 29 U2 51 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 5 BP 1368 EP 1376 DI 10.1039/c5gc02164b PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DF8LA UT WOS:000371608100025 ER PT J AU Bansal, N Bhalla, A Pattathil, S Adelman, SL Hahn, MG Hodge, DB Hegg, EL AF Bansal, Namita Bhalla, Aditya Pattathil, Sivakumar Adelman, Sara L. Hahn, Michael G. Hodge, David B. Hegg, Eric L. TI Cell wall-associated transition metals improve alkaline-oxidative pretreatment in diverse hardwoods SO GREEN CHEMISTRY LA English DT Article ID HOT-WATER PRETREATMENT; HYDROGEN-PEROXIDE; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; LIGNOCELLULOSIC BIOFUELS; BIOMASS RECALCITRANCE; CELLULOSIC ETHANOL; LIGNIN OXIDATION; MODEL COMPOUNDS; WOODY BIOMASS AB The responses of four diverse hardwoods (hybrid poplar, silver birch, hybrid aspen, and sugar maple) to alkaline hydrogen peroxide (AHP) pretreated at ambient temperature and pressure were analyzed to gain a deeper understanding of the cell wall properties that contribute to differences in enzymatic hydrolysis efficacy following alkaline-oxidative pretreatment. The enzymatic hydrolysis yields of these diverse hardwoods increased significantly with increasing the cell wall-associated, redox-active transition metal content. These increases in hydrolysis yields were directly correlated with improved delignification. Furthermore, we demonstrated that these improvements in hydrolysis yields could be achieved either through elevated levels of naturally-occurring metals, namely Cu, Fe, and Mn, or by the addition of a homogeneous transition metal catalyst (e.g. Cu 2,2'-bipyridine complexes) capable of penetrating into the cell wall matrix. Removal of naturally-occurring cell wall-associated transition metals by chelation resulted in substantial decreases in the hydrolysis yields following AHP pretreatment, while re-addition of metals in the form of Cu 2,2'-bipyridine complexes and to a limited extent Fe 2,2'-bipyridine complexes prior to pretreatment restored the improved hydrolysis yields. Glycome profiles showed improved extractability of xylan, xyloglucan, and pectin epitopes with increasing hydrolysis yields for the diverse hardwoods subjected to the alkaline-oxidative pretreatment, demonstrating that the strength of association between cell wall matrix polymers decreased as a consequence of improved delignification. C1 [Bansal, Namita; Bhalla, Aditya; Adelman, Sara L.; Hodge, David B.; Hegg, Eric L.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Bansal, Namita; Bhalla, Aditya; Hegg, Eric L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Pattathil, Sivakumar; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA. [Pattathil, Sivakumar; Hahn, Michael G.] Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN USA. [Hodge, David B.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. [Hodge, David B.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Hodge, David B.] Lulea Univ Technol, Div Sustainable Proc Engn, S-95187 Lulea, Sweden. RP Hodge, DB; Hegg, EL (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.; Hegg, EL (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.; Hodge, DB (reprint author), Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA.; Hodge, DB (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA.; Hodge, DB (reprint author), Lulea Univ Technol, Div Sustainable Proc Engn, S-95187 Lulea, Sweden. EM hodgeda@msu.edu; erichegg@msu.edu OI , Sivakumar Pattathil/0000-0003-3870-4137 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; BioEnergy Science Center; Office of Biological and Environmental Research, Office of Science, US Department of Energy [DE-AC05-00OR22725]; National Science Foundation Plant Genome Program [DBI-0421683, IOS-0923992] FX The authors would like to acknowledge Brian Graff (MSU PSM) for milling of the biomass and Cliff Foster (GLBRC MSU) for performing lignin thioacidolysis and quantification of the minor sugars. The authors also thank Maryam Mirzai, Sindhu Kandemkavil and Ronald Clay (BESC CCRC) for technical assistance with the glycome profiling analyses. This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). Glycome Profiling studies were supported by the BioEnergy Science Center administered by Oak Ridge National Laboratory and funded by Grant DE-AC05-00OR22725 from the Office of Biological and Environmental Research, Office of Science, US Department of Energy. Generation of the CCRC series of cell wall glycan-directed monoclonal antibodies was supported by the National Science Foundation Plant Genome Program (DBI-0421683 and IOS-0923992). NR 74 TC 1 Z9 1 U1 9 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 5 BP 1405 EP 1415 DI 10.1039/c5gc01748c PG 11 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DF8LA UT WOS:000371608100029 ER PT J AU Dusling, K Li, W Schenke, B AF Dusling, Kevin Li, Wei Schenke, Bjoern TI Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE Quark-gluon plasma; relativistic heavy-ion collisions; quantum chromodynamics; color glass condensate ID HEAVY-ION COLLISIONS; COLOR GLASS CONDENSATE; PLUS PB COLLISIONS; QUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; RANGE ANGULAR-CORRELATIONS; PPB COLLISIONS; LONG-RANGE; ROOT-S(NN)=5.02 TEV; ELLIPTIC FLOW AB The observation of long-range rapidity correlations among particles in high-multiplicity p-p and p-Pb collisions has created new opportunities for investigating novel high-density QCD phenomena in small colliding systems. We review experimental results related to the study of collective phenomena in small systems at RHIC and the LHC along with the related developments in theory and phenomenology. Perspectives on possible future directions for research are discussed with the aim of exploring emergent QCD phenomena. C1 [Dusling, Kevin] Amer Phys Soc, 1 Res Rd, Ridge, NY 11961 USA. [Li, Wei] Dept Phys & Astron, 6100 Main St,MS-315, Houston, TX 77005 USA. [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. RP Dusling, K (reprint author), Amer Phys Soc, 1 Res Rd, Ridge, NY 11961 USA.; Li, W (reprint author), Dept Phys & Astron, 6100 Main St,MS-315, Houston, TX 77005 USA.; Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. EM kdusling@mailaps.org; davidlw@rice.edu; bschenke@bnl.gov FU DOE [DE-SC0012704]; DOE Office of Science Early Career Award [DE-SC0012185]; Welch Foundation [C-1845]; Alfred P. Sloan Research Fellowship [FR-2015-65911] FX We thank Jurgen Schukraft for providing valuable feedback on an early version of this manuscript. BPS is supported under DOE Contract No. DE-SC0012704. BPS acknowledges a DOE Office of Science Early Career Award. WL acknowledges funding from a DOE Office of Science Early Career Award (Contract No. DE-SC0012185), from the Welch Foundation (Grant No. C-1845) and from an Alfred P. Sloan Research Fellowship (No. FR-2015-65911). NR 251 TC 15 Z9 15 U1 2 U2 8 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JAN PY 2016 VL 25 IS 1 AR 1630002 DI 10.1142/S0218301316300022 PG 77 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DF4HN UT WOS:000371308700002 ER PT J AU Oset, E Liang, WH Bayar, M Xie, JJ Dai, LR Albaladejo, M Nielsen, M Sekihara, T Navarra, F Roca, L Mai, M Nieves, J Dias, JM Feijoo, A Magas, VK Ramos, A Miyahara, K Hyodo, T Jido, D Doring, M Molina, R Chen, HX Wang, E Geng, LS Ikeno, N Fernandez-Soler, P Sun, ZF AF Oset, Eulogio Liang, Wei-Hong Bayar, Melahat Xie, Ju-Jun Dai, Lian Rong Albaladejo, Miguel Nielsen, Marina Sekihara, Takayasu Navarra, Fernando Roca, Luis Mai, Maxim Nieves, Juan Dias, Jorgivan Morais Feijoo, Alberto Magas, Volodymyr K. Ramos, Angels Miyahara, Kenta Hyodo, Tetsuo Jido, Daisuke Doering, Michael Molina, Raquel Chen, Hua-Xing Wang, En Geng, Lisheng Ikeno, Natsumi Fernandez-Soler, Pedro Sun, Zhi Feng TI Weak decays of heavy hadrons into dynamically generated resonances SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE Heavy meson and baryon weak decays; mesonic and baryonic resonances; final state interaction ID NONPERTURBATIVE CHIRAL APPROACH; KAON-NUCLEON INTERACTIONS; MESON-BARYON SCATTERING; QCD SUM-RULES; K-P; BRANCHING FRACTIONS; RADIATIVE DECAYS; SEMILEPTONIC DECAYS; PERTURBATION-THEORY; SCALAR RESONANCES AB In this paper, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allow for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances. C1 [Oset, Eulogio; Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Oset, Eulogio] Univ Valencia, CSIC, Dept Fis Teor, Ctr Mixto,Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain. [Oset, Eulogio; Albaladejo, Miguel; Nieves, Juan; Fernandez-Soler, Pedro; Sun, Zhi Feng] Univ Valencia, CSIC, IFIC, Ctr Mixto,Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain. [Liang, Wei-Hong] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China. [Bayar, Melahat] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkey. [Chen, Hua-Xing; Geng, Lisheng] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China. [Chen, Hua-Xing; Geng, Lisheng] Beihang Univ, Int Res Ctr Nuclei & Particles Cosmos, Beijing 100191, Peoples R China. [Xie, Ju-Jun; Geng, Lisheng] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China. [Dai, Lian Rong] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China. [Nielsen, Marina; Navarra, Fernando; Dias, Jorgivan Morais] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05389970 Sao Paulo, SP, Brazil. [Sekihara, Takayasu] Osaka Univ, RCNP, Osaka 5670047, Japan. [Roca, Luis] Univ Murcia, Dept Fis, E-30100 Murcia, Spain. [Mai, Maxim] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. [Mai, Maxim] Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Feijoo, Alberto; Magas, Volodymyr K.; Ramos, Angels] Univ Barcelona, Dept Estruct & Constituents Mat, Marti & Franques 1, E-08028 Barcelona, Spain. [Feijoo, Alberto; Magas, Volodymyr K.; Ramos, Angels] Univ Barcelona, Inst Ciencies Cosmos, Marti & Franques 1, E-08028 Barcelona, Spain. [Miyahara, Kenta] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. [Hyodo, Tetsuo] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Jido, Daisuke] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan. [Doering, Michael] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Doering, Michael] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. [Molina, Raquel] George Washington Univ, Inst Nucl Studies, Washington, DC 20052 USA. [Molina, Raquel] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Wang, En] Zhengzhou Univ, Dept Phys, Zhengzhou 450001, Henan, Peoples R China. [Ikeno, Natsumi] Tottori Univ, Dept Reg Environm, Tottori 6808550, Japan. RP Oset, E (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. RI Nieves, Juan/K-2115-2014; Morais Dias, Jorgivan/D-8369-2015; Magas, Volodymyr/J-8599-2016; Geng, Li-Sheng /C-6441-2009; Nielsen, Marina/F-5625-2012; OI Nieves, Juan/0000-0002-2518-4606; Morais Dias, Jorgivan/0000-0002-0354-4711; Magas, Volodymyr/0000-0003-3701-8362; Geng, Li-Sheng /0000-0002-5626-0704; Ramos, Angels/0000-0002-0882-1570 FU Chinese Academy of Science [2013T2J0012]; Spanish Ministerio de Economia y Competitividad; European FEDER funds [FIS2011-28853-C02-01, FIS2011-28853-C02-02, FIS2014-57026-REDT, FIS2014-51948-C2-1-P, FIS2014-51948-C2-2-P]; Generalitat Valenciana in the program Prometeo [II-2014/068]; National Natural Science Foundation of China [11165005, 11565007, 11475227, 11375080, 11575076]; European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (acronym HadronPhysics3) under the Seventh Framework Programme of EU [283286]; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China [Y5KF151CJ1]; NSF/PIF Grant [PHY 1415459]; NSF/Career grant [1452055] FX We would like to thank C. Hanhart and S. Stone for valuable comments on the manuscript. One of us, E. O., wishes to acknowledge support from the Chinese Academy of Science in the Program of Visiting Professorship for Senior International Scientists (Grant No. 2013T2J0012). This work is partly supported by the Spanish Ministerio de Economia y Competitividad and European FEDER funds under the contract numbers FIS2011-28853-C02-01, FIS2011-28853-C02-02, FIS2014-57026-REDT, FIS2014-51948-C2-1-P, and FIS2014-51948-C2-2-P, and the Generalitat Valenciana in the program Prometeo II-2014/068. This work is also partly supported by the National Natural Science Foundation of China under Grant Nos. 11165005, 11565007, 11475227, 11375080 and 11575076. We acknowledge the support of the European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (acronym HadronPhysics3, Grant Agreement n. 283286) under the Seventh Framework Programme of EU. It is also supported by the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y5KF151CJ1). M. D. gratefully acknowledges support from the NSF/PIF Grant No. PHY 1415459 and the NSF/Career grant No. 1452055. NR 314 TC 15 Z9 15 U1 2 U2 11 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JAN PY 2016 VL 25 IS 1 AR 1630001 DI 10.1142/S0218301316300010 PG 105 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DF4HN UT WOS:000371308700001 ER PT J AU Bierkens, J Chernyak, VY Chertkov, M Kappen, HJ AF Bierkens, Joris Chernyak, Vladimir Y. Chertkov, Michael Kappen, Hilbert J. TI Linear PDEs and eigenvalue problems corresponding to ergodic stochastic optimization problems on compact manifolds SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE stationary states; current fluctuations; diffusion ID PRINCIPAL EIGENVALUE AB Long term average or 'ergodic' optimal control problems on a compact manifold are considered. The problems exhibit a special structure which is typical of control problems related to large deviations theory: Control is exerted in all directions and the control costs are proportional to the square of the norm of the control field with respect to the metric induced by the noise. The long term stochastic dynamics on the manifold will be completely characterized by the long term density rho and the long term current density J. As such, control problems may be reformulated as variational problems over rho and J. The density rho is paired in the cost functional with a state dependent cost function V, and the current density J is paired with a vector potential or gauge field A. We discuss several optimization problems: the problem in which both rho and J are varied freely, the problem in which rho is fixed and the one in which J is fixed. These problems lead to different kinds of operator problems: linear PDEs in the first two cases and a nonlinear PDE in the latter case. These results are obtained through a variational principle using infinite dimensional Lagrange multipliers. In the case where the initial dynamics are reversible the optimally controlled diffusion is also reversible. The particular case of constraining the dynamics to be reversible of the optimally controlled process leads to a linear eigenvalue problem for the square root of the density process. C1 [Bierkens, Joris] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England. [Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Chertkov, Michael] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Kappen, Hilbert J.] Radboud Univ Nijmegen, Fac Sci, NL-6525 ED Nijmegen, Netherlands. RP Bierkens, J (reprint author), Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England.; Chernyak, VY (reprint author), Wayne State Univ, Dept Chem, Detroit, MI 48202 USA.; Chertkov, M (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.; Kappen, HJ (reprint author), Radboud Univ Nijmegen, Fac Sci, NL-6525 ED Nijmegen, Netherlands. EM j.bierkens@warwick.ac.uk; chernyak@chem.wayne.edu; chertkov@lanl.gov; b.kappen@science.ru.nl RI Chernyak, Vladimir/F-5842-2016; OI Chernyak, Vladimir/0000-0003-4389-4238; Chertkov, Michael/0000-0002-6758-515X FU European Community [270327]; EPSRC under the CRiSM [EP/D002060/1]; NSF [CHE-1111350]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX 5The research at Radboud University by J. Bierkens and H. J. Kappen has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 270327 (CompLACS)r 6The research at the University of Warwick by J. Bierkens has received support from the EPSRC under the CRiSM grant: EP/D002060/1r 7The research at Wayne State University (MI), USA, has received support from the NSF under grant agreement no. CHE-1111350r 8The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 NR 40 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD JAN PY 2016 AR 013206 DI 10.1088/1742-5468/2016/01/013206 PG 32 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA DF6VC UT WOS:000371494000011 ER PT J AU Fujioka, Y Frantti, J Llobet, A King, G Ehrlich, SN AF Fujioka, Yukari Frantti, Johannes Llobet, Anna King, Graham Ehrlich, Steven N. TI Structure and magnetic properties of triclinic Ni0.6Co0.4TiO3 ilmenite oxide SO MATERIALS TODAY-PROCEEDINGS LA English DT Proceedings Paper CT 1st International Conference on Advances in Functional Materials (AFM) CY JUN 29-JUL 03, 2015 CL Stony Brook Univ, Stony Brook, NY HO Stony Brook Univ DE Ilmenite; neutron diffraction; x-ray diffraction; magnetic ordering AB NiTiO3 and CoTiO3 ilmenites (space group R (3) over bar) form a homogeneous mixture with remarkably low crystal symmetry. According to neutron and synchrotron X-ray powder diffraction measurements, the room-temperature space group symmetry of the Ni0.6Co0.4TiO3 sample is triclinic P (1) over bar. This structural distortion is the first known case in ilmenites and opens up ways to modify functional properties of magnetic oxides. The origin of the distortion is discussed. Transitions from a paramagnetic to a weak ferromagnetic and further to a ferrimagnetic phase occur at 69 and 25 K, respectively. The ferromagnetic phase is characteristic of the solid-solution and is not found in the constituents. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Fujioka, Yukari; Frantti, Johannes] Finnish Res & Engn, Jaalaranta 9 B 42, Helsinki 00180, Finland. [Llobet, Anna; King, Graham] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA. [Ehrlich, Steven N.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Frantti, J (reprint author), Finnish Res & Engn, Jaalaranta 9 B 42, Helsinki 00180, Finland. EM Johannes.frantti@fre.fi RI King, Graham/E-3632-2010 OI King, Graham/0000-0003-1886-7254 NR 12 TC 1 Z9 1 U1 4 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-7853 J9 MATER TODAY-PROC JI Mater. Today-Proc. PY 2016 VL 3 IS 2 BP 265 EP 276 DI 10.1016/j.matpr.2016.01.068 PG 12 GA DE1HO UT WOS:000370378000029 ER PT J AU Baskin, A Kral, P AF Baskin, Artem Kral, Petr TI Hybrid Modeling of Molecular Sensing and Catalysis in Low-dimensional Nanomaterials SO MATERIALS TODAY-PROCEEDINGS LA English DT Proceedings Paper CT 1st International Conference on Advances in Functional Materials (AFM) CY JUN 29-JUL 03, 2015 CL Stony Brook Univ, Stony Brook, NY HO Stony Brook Univ DE grain boundaries; transport channels; molybdenum disulphide; carbon dioxyde reduction ID CARBON-DIOXIDE REDUCTION; GRAPHENE GRAIN-BOUNDARIES; ELECTROCHEMICAL REDUCTION; ELECTRONIC-PROPERTIES; HYDROGEN-EVOLUTION; CO2 REDUCTION; DYNAMICS; DEFECTS; TRANSPORT; SENSORS AB We use hybrid quantum and classical modeling to describe recently observed molecular sensing at graphene grain boundaries and electrochemical reduction of carbon dioxide (CO2) on molybdenum disulphide (MoS2) flakes. In the sensing studies, classical and quantum molecular dynamics simulations are used to relax graphene with grain boundaries deposited on amorphous SiO2. Electronic structure calculations show how this graphene is locally doped by the substrate and adsorbed molecules, while electronic transport modelling reveals that the doping can lead to synchronous opening and closing of local electron transport channels, resulting in a very large observed sensitivity. In the catalysis studies, electronic structure calculations combined with ab initio molecular dynamics uncover that the metallic character and high d-electron density of molybdenum-terminated MoS2 edges and EMIM-ion delivery are responsible for the observed superior CO2 reduction performance, with a high current density and low similar to 54 mV overpotential. The described mechanisms open up new pathways for the design of nanometer-scale highly sensitive chemical detectors and the development of inexpensive systems of CO2 conversion to energy-rich products. These studies illustrate how hybrid modeling techniques can explain complex transport phenomena in nanostructures. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Baskin, Artem] Lawrence Berkeley Natl Lab, Mol Foundary, 1 Cyclotron Rd,MS 67-3207, Berkeley, CA 94720 USA. [Baskin, Artem; Kral, Petr] Univ Illinois, Dept Chem, 845 W Taylor St, Chicago, IL 60607 USA. [Kral, Petr] Univ Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA. RP Kral, P (reprint author), Univ Illinois, Dept Chem, 845 W Taylor St, Chicago, IL 60607 USA.; Kral, P (reprint author), Univ Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA. EM pkral@uic.edu NR 57 TC 0 Z9 0 U1 6 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-7853 J9 MATER TODAY-PROC JI Mater. Today-Proc. PY 2016 VL 3 IS 2 BP 396 EP 410 DI 10.1016/j.matpr.2016.01.027 PG 15 GA DE1HO UT WOS:000370378000049 ER PT J AU Deshpande, V Wang, Q Greenfield, P Charleston, M Porras-Alfaro, A Kuske, CR Cole, JR Midgley, DJ Nai, TD AF Deshpande, Vinita Wang, Qiong Greenfield, Paul Charleston, Michael Porras-Alfaro, Andrea Kuske, Cheryl R. Cole, James R. Midgley, David J. Nai Tran-Dinh TI Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences SO MYCOLOGIA LA English DT Article DE Ecogenome; fungal classification; fungi; identification; ITS ID LARGE-SUBUNIT; DATABASE AB Fungi are key organisms in many ecological processes and communities. Rapid and low cost surveys of the fungal members of a community can be undertaken by isolating and sequencing a taxonomically informative genomic region, such as the ITS (internal transcribed spacer), from DNA extracted from a meta-genomic sample, and then classifying these sequences to determine which organisms are present. This paper announces the availability of the Warcup ITS training set and shows how it can be used with the Ribosomal Database Project (RDP) Bayesian Classifier to rapidly and accurately identify fungi using ITS sequences. The classifications can be down to species level and use conventional literature-based mycological nomenclature and taxonomic assignments. C1 [Deshpande, Vinita; Charleston, Michael] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia. [Wang, Qiong] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48823 USA. [Greenfield, Paul; Midgley, David J.; Nai Tran-Dinh] CSIRO, N Ryde, NSW 2113, Australia. [Charleston, Michael] Univ Tasmania, Sch Phys Sci, Sandy Bay, Tas 7005, Australia. [Porras-Alfaro, Andrea] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA. [Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Cole, James R.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48823 USA. RP Nai, TD (reprint author), CSIRO, N Ryde, NSW 2113, Australia. EM nai.tran-dinh@csiro.au OI Porras-Alfaro, Andrea/0000-0002-9053-7973 FU US Department of Energy, Office of Science, Biological and Environmental Research Division through a Science Focus Area grant [2009LANLF260]; Office of Science (Biological and Environmental Research); US Department of Energy [DE-FG02-99ER62848, DE-SC0010715, DE-FC02-07ER64494]; CSIRO office of the chief executive through an OCE honors scholarship FX Development of the DOE SFA ITS training set was supported by the US Department of Energy, Office of Science, Biological and Environmental Research Division through a Science Focus Area grant to CRK (2009LANLF260). The RDP is supported by the Office of Science (Biological and Environmental Research), US Department of Energy (DE-FG02-99ER62848, DE-SC0010715 and DE-FC02-07ER64494). The initial development of the Warcup training set was supported by the CSIRO office of the chief executive through an OCE honors scholarship awarded to Vinita Deshpande. We thank Kessy Abarenkov for providing the UNITE dataset. NR 10 TC 7 Z9 7 U1 7 U2 10 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD JAN-FEB PY 2016 VL 108 IS 1 BP 1 EP 5 DI 10.3852/14-293 PG 5 WC Mycology SC Mycology GA DF7BM UT WOS:000371512500001 PM 26553774 ER PT J AU Peera, A Biswas, R AF Peera, Akshit Biswas, Rana TI Extraordinary optical transmission in nanopatterned ultrathin metal films without holes SO NANOSCALE LA English DT Article ID ENHANCED RAMAN-SCATTERING; SURFACE-RELIEF GRATINGS; ARRAYS; DIFFRACTION; LIGHT AB We experimentally and theoretically demonstrate that a continuous gold film on a periodically textured substrate exhibits extraordinary optical transmission, even though no holes were etched in the film. Our film synthesis started by nanoimprinting a periodic array of nanocups with a period of similar to 750 nm on a polystyrene film over a glass substrate. A thin non-conformal gold film was sputter-deposited on the polystyrene by angle-directed deposition. The gold film was continuous with spatial thickness variation, the film being thinnest at the bottom of the nanocup. Measurements revealed an extraordinary transmission peak at a wavelength just smaller than the period, with an enhancement of similar to 2.5 compared to the classically expected value. Scattering matrix simulations model well the transmission and reflectance measurements when an ultrathin gold layer (similar to 5 nm), smaller than the skin depth is retained at the bottom of the nanocups. Electric field intensities are enhanced by >100 within the nanocup, and similar to 40 in the ultrathin gold layer causing transmission through it. We show a wavelength red-shift of similar to 30 nm in the extraordinary transmission peak when the nanocups are coated with a thin film of a few nanometers, which can be utilized for biosensing. The continuous corrugated metal films are far simpler structures to observe extraordinary transmission, circumventing the difficult process of etching the metal film. Such continuous metal films with ultrathin regions are simple platforms for non-linear optics, plasmonics, and biological and chemical sensing. C1 [Peera, Akshit; Biswas, Rana] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Peera, Akshit; Biswas, Rana] Ames Lab, Ames, IA 50011 USA. [Biswas, Rana] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Biswas, R (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA.; Biswas, R (reprint author), Ames Lab, Ames, IA 50011 USA.; Biswas, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM biswasr@iastate.edu FU National Science Foundation [CMMI-1265844]; U.S. Department of Energy (USDOE) [DE-AC02-07CH11385]; Office of Science of the USDOE [DE-AC02-05CH11231] FX We thank Dr J. Kim and R. Dhakal for assistance with soft lithography, and P. H. Joshi for transmission measurements. This research was partially supported by the National Science Foundation through Grant CMMI-1265844 (fabrication); and the Ames Laboratory, which is operated for the U.S. Department of Energy (USDOE) by Iowa State University under contract no. DE-AC02-07CH11385 (optical measurements and theoretical analysis). We acknowledge the use of computational resources at the National Energy Research Scientific Computing Center (NERSC) which is supported by the Office of Science of the USDOE under contract no. DE-AC02-05CH11231. NR 43 TC 2 Z9 2 U1 9 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 8 BP 4657 EP 4666 DI 10.1039/c5nr07903a PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF1RW UT WOS:000371117900031 PM 26853881 ER PT J AU Wu, ZX Wang, J Han, LL Lin, RQ Liu, HF Xin, HLL Wang, DL AF Wu, Zexing Wang, Jie Han, Lili Lin, Ruoqian Liu, Hongfang Xin, Huolin L. Wang, Deli TI Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction SO NANOSCALE LA English DT Article ID PEM FUEL-CELLS; METAL ELECTROCATALYSTS; CARBON NANOSPHERES; NITROGEN; CATALYSTS; GRAPHENE; COMPLEXES; ALKALINE; IRON; NANOCRYSTALS AB Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N-C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N-C/C core-shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N-C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement over the commercial Pt/C catalyst. The progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications. C1 [Wu, Zexing; Wang, Jie; Liu, Hongfang; Wang, Deli] Huazhong Univ Sci & Technol, Minist Educ, Hubei Key Lab Mat Chem, Key Lab Mat Chem Energy Convers & Storage, Beijing, Peoples R China. [Wu, Zexing; Wang, Jie; Liu, Hongfang; Wang, Deli] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Serv Failure, Beijing, Peoples R China. [Han, Lili; Lin, Ruoqian; Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Han, Lili] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China. [Lin, Ruoqian; Xin, Huolin L.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Wang, DL (reprint author), Huazhong Univ Sci & Technol, Minist Educ, Hubei Key Lab Mat Chem, Key Lab Mat Chem Energy Convers & Storage, Beijing, Peoples R China.; Wang, DL (reprint author), Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Serv Failure, Beijing, Peoples R China. EM wangdl81125@hust.edu.cn RI Wang, Jie/H-3638-2015; Wang, Deli/K-5029-2012; Xin, Huolin/E-2747-2010 OI Wang, Jie/0000-0002-7188-3053; Xin, Huolin/0000-0002-6521-868X FU National Natural Science Foundation of China [21306060, 21573083]; Program for New Century Excellent Talents in Universities of China [NCET 130237]; Fundamental Research Funds for the Central University [2013TS136, 2014YQ009]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This work was supported by the National Natural Science Foundation of China (21306060, 21573083), the Program for New Century Excellent Talents in Universities of China (NCET 130237), the Fundamental Research Funds for the Central University (2013TS136, 2014YQ009). We thank Analytical and Testing Center of the Huazhong University of Science & Technology for allowing us to use its facilities. This research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-SC0012704. NR 49 TC 12 Z9 12 U1 21 U2 72 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 8 BP 4681 EP 4687 DI 10.1039/c5nr07929b PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF1RW UT WOS:000371117900034 PM 26853996 ER PT S AU Whiteaker, JR Halusa, GN Hoofnagle, AN Sharma, V MacLean, B Yan, P Wrobel, JA Kennedy, J Mani, DR Zimmerman, LJ Meyer, MR Mesri, M Boja, E Carr, SA Chan, DW Chen, X Chen, J Davies, SR Ellis, MJC Fenyo, D Hiltke, T Ketchum, KA Kinsinger, C Kuhn, E Liebler, DC Liu, T Loss, M MacCoss, MJ Qian, WJ Rivers, R Rodland, KD Ruggles, KV Scott, MG Smith, RD Thomas, S Townsend, RR Whiteley, G Wu, CC Zhang, H Zhang, Z Rodriguez, H Paulovich, AG AF Whiteaker, Jeffrey R. Halusa, Goran N. Hoofnagle, Andrew N. Sharma, Vagisha MacLean, Brendan Yan, Ping Wrobel, John A. Kennedy, Jacob Mani, D. R. Zimmerman, Lisa J. Meyer, Matthew R. Mesri, Mehdi Boja, Emily Carr, Steven A. Chan, Daniel W. Chen, Xian Chen, Jing Davies, Sherri R. Ellis, Matthew J. C. Fenyoe, David Hiltke, Tara Ketchum, Karen A. Kinsinger, Chris Kuhn, Eric Liebler, Daniel C. Liu, Tao Loss, Michael MacCoss, Michael J. Qian, Wei-Jun Rivers, Robert Rodland, Karin D. Ruggles, Kelly V. Scott, Mitchell G. Smith, Richard D. Thomas, Stefani Townsend, R. Reid Whiteley, Gordon Wu, Chaochao Zhang, Hui Zhang, Zhen Rodriguez, Henry Paulovich, Amanda G. BE Sechi, S TI Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays SO QUANTITATIVE PROTEOMICS BY MASS SPECTROMETRY, 2ND EDITION SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Multiple reaction monitoring; Selected reaction monitoring; MRM; SRM; PRM; Quantitative proteomics; Targeted mass spectrometry; Quantitative assay database; Harmonization; Standardization ID DATABASE AB The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancengov) to serve as an open-source repository of well characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative to other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and posttranslational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories. C1 [Whiteaker, Jeffrey R.; Yan, Ping; Kennedy, Jacob; Paulovich, Amanda G.] Fred Hutchinson Canc Res Ctr, Div Clin Res, 1124 Columbia St, Seattle, WA 98104 USA. [Halusa, Goran N.; Loss, Michael; Whiteley, Gordon] Leidos Biomed Res Inc, Frederick Natl Lab Canc Res, Frederick, MD USA. [Hoofnagle, Andrew N.] Univ Washington, Dept Lab Med, Seattle, WA 98195 USA. [Sharma, Vagisha; MacLean, Brendan; MacCoss, Michael J.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Wrobel, John A.; Chen, Xian] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill Sch Med, Chapel Hill, NC USA. [Mani, D. R.] Broad Inst, Cambridge, MA USA. [Zimmerman, Lisa J.; Liebler, Daniel C.] Vanderbilt Univ, Sch Med, Dept Biochem, Jim Ayers Inst Precancer Detect & Diag, Nashville, TN 37212 USA. [Meyer, Matthew R.; Davies, Sherri R.; Ellis, Matthew J. C.; Townsend, R. Reid] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA. [Mesri, Mehdi; Boja, Emily; Kinsinger, Chris; Rivers, Robert; Rodriguez, Henry] NCI, Off Canc Clin Prote Res, Bethesda, MD 20892 USA. [Carr, Steven A.; Kuhn, Eric] Broad Inst MIT & Harvard, Cambridge, MA USA. [Chan, Daniel W.; Chen, Jing; Thomas, Stefani; Zhang, Zhen] Johns Hopkins Univ, Sch Med, Dept Pathol, Div Clin Chem, Baltimore, MD 21205 USA. [Fenyoe, David; Ruggles, Kelly V.] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY USA. [Ketchum, Karen A.] ESAC Inc, Data Coordinating Ctr, Rockville, MD USA. [Liu, Tao; Qian, Wei-Jun; Rodland, Karin D.; Smith, Richard D.; Wu, Chaochao] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Liu, Tao; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Scott, Mitchell G.] Washington Univ, Sch Med, Dept Pathol & Immunol, Div Lab & Genom Med, St Louis, MO USA. RP Whiteaker, JR (reprint author), Fred Hutchinson Canc Res Ctr, Div Clin Res, 1124 Columbia St, Seattle, WA 98104 USA. OI Fenyo, David/0000-0001-5049-3825; Ruggles, Kelly/0000-0002-0152-0863 FU NCI NIH HHS [U24 CA159988, U01 CA164186, U01CA164186, U24 CA160019, U24 CA160034, U24 CA160035, U24 CA160036, U24CA159988, U24CA160019, U24CA160034, U24CA160035, U24CA160036]; NIGMS NIH HHS [R01 GM103551] NR 12 TC 3 Z9 3 U1 0 U2 3 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-4939-3524-6; 978-1-4939-3522-2 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2016 VL 1410 BP 223 EP 236 DI 10.1007/978-1-4939-3524-6_13 D2 10.1007/978-1-4939-3524-6 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BE4BX UT WOS:000371487700014 PM 26867747 ER PT S AU Gritsenko, MA Xu, Z Liu, T Smith, RD AF Gritsenko, Marina A. Xu, Zhe Liu, Tao Smith, Richard D. BE Sechi, S TI Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS SO QUANTITATIVE PROTEOMICS BY MASS SPECTROMETRY, 2ND EDITION SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Quantitative proteomics; Isobaric labeling; iTRAQ; Two-dimensional liquid chromatography; Mass spectrometry ID MASS-SPECTROMETRY; BIOMARKER DISCOVERY; IDENTIFICATIONS; STRATEGY AB Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography tandem mass spectrometry (2D-LC MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts. C1 [Gritsenko, Marina A.; Xu, Zhe; Liu, Tao; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Gritsenko, Marina A.; Xu, Zhe; Liu, Tao; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Gritsenko, MA (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.; Gritsenko, MA (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. FU NCI NIH HHS [U24CA160019, U24 CA160019]; NIGMS NIH HHS [P41 GM103493, P41GM103493] NR 15 TC 0 Z9 0 U1 0 U2 3 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-4939-3524-6; 978-1-4939-3522-2 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2016 VL 1410 BP 237 EP 247 DI 10.1007/978-1-4939-3524-6_14 D2 10.1007/978-1-4939-3524-6 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BE4BX UT WOS:000371487700015 PM 26867748 ER PT J AU Ben, HX Ferrell, JR AF Ben, Haoxi Ferrell, Jack R., III TI In-depth investigation on quantitative characterization of pyrolysis oil by P-31 NMR SO RSC ADVANCES LA English DT Article ID TANNIN STRUCTURAL ELUCIDATION; BIO-OIL; KRAFT LIGNIN; OLIVE OIL; MOLECULAR-WEIGHT; LABILE HYDROGEN; RECENT PROGRESS; MODEL COMPOUNDS; LOBLOLLY-PINE; SPECTROSCOPY AB The characterization of different heteroatom functional groups by employing P-31 NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for P-31 NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigated by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the P-31 NMR solution. As far as we know, this is the first report on such time-dependent changes when using P-31 NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data. C1 [Ben, Haoxi; Ferrell, Jack R., III] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. RP Ben, HX; Ferrell, JR (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. EM benhaoxi@gmail.com; jack.ferrell@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 48 TC 4 Z9 4 U1 6 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 21 BP 17567 EP 17573 DI 10.1039/c5ra23939g PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DF2HT UT WOS:000371163900082 ER PT J AU Attfield, MP Feygenson, M Neuefeind, JC Proffen, TE Lucas, TCA Hriljac, JA AF Attfield, M. P. Feygenson, M. Neuefeind, J. C. Proffen, T. E. Lucas, T. C. A. Hriljac, J. A. TI Reprobing the mechanism of negative thermal expansion in siliceous faujasite SO RSC ADVANCES LA English DT Article ID PAIR DISTRIBUTION FUNCTION; NEUTRON TOTAL SCATTERING; SI-O BOND; TEMPERATURE; DIFFRACTION; CRISTOBALITE; CHABAZITE; ZEOLITES; DISORDER; PHASE AB A combination of Rietveld refinement and pair distribution function analysis of total neutron scattering data are used to provide insight into the negative thermal expansion mechanism of siliceous faujasite. The negative thermal expansion mechanism of siliceous faujasite is attributed to the transverse vibrations of bridging oxygen atoms resulting in the coupled librations of the SiO4 tetrahedra. The constituent SiO4 tetrahedra are revealed to expand in size with temperature and they are also shown to undergo some distortion as temperature is increased. However, these distortions are not distinct enough in any geometric manner for the average behaviour of the SiO4 tetrahedra not to be considered as that of a rigid units. The work displays the benefits of using total scattering experiments to unveil the finer details of dynamic thermomechanical processes within crystalline materials. C1 [Attfield, M. P.] Univ Manchester, Sch Chem, Ctr Nanoporous Mat, Brunswick St, Manchester M13 9PL, Lancs, England. [Feygenson, M.; Neuefeind, J. C.; Proffen, T. E.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Lucas, T. C. A.; Hriljac, J. A.] Univ Birmingham, Sch Chem, POB 363, Birmingham B15 2TT, W Midlands, England. RP Attfield, MP (reprint author), Univ Manchester, Sch Chem, Ctr Nanoporous Mat, Brunswick St, Manchester M13 9PL, Lancs, England. EM m.attfield@manchester.ac.uk RI Proffen, Thomas/B-3585-2009; Neuefeind, Joerg/D-9990-2015; OI Proffen, Thomas/0000-0002-1408-6031; Neuefeind, Joerg/0000-0002-0563-1544; Feygenson, Mikhail /0000-0002-0316-3265 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Royal Society; TCAL; JAH FX The research performed at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. MPA wishes to thank the Royal Society of Chemistry and the Royal Society for provision of a Journals Grant for International Authors and an International Exchange Scheme grant respectively. TCAL and JAH wish to thank Diamond Light Source for provision of a partial PhD scholarship for TCAL. We also thank G. J. Ray, Amoco Chemical Company for provision of the dealuminated zeolite-Y sample. NR 37 TC 2 Z9 2 U1 7 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 24 BP 19903 EP 19909 DI 10.1039/c5ra23827g PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DF1TU UT WOS:000371122900035 ER PT J AU Johansson, HT Forssen, C AF Johansson, H. T. Forssen, C. TI FAST AND ACCURATE EVALUATION OF WIGNER 3j, 6j, AND 9j SYMBOLS USING PRIME FACTORIZATION AND MULTIWORD INTEGER ARITHMETIC SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE computational physics; prime factorization; multiword integer arithmetic; quantum theory of angular momentum ID VECTOR-COUPLING COEFFICIENTS AB We present an efficient implementation for the evaluation of Wigner 3j, 6j, and 9j symbols. These represent numerical transformation coefficients that are used in the quantum theory of angular momentum. They can be expressed as sums and square roots of ratios of integers. The integers can be very large due to factorials. We avoid numerical precision loss due to cancellation through the use of multiword integer arithmetic for exact accumulation of all sums. A fixed relative accuracy is maintained as the limited number of floating-point operations in the final step incur rounding errors only in the least significant bits. Time spent to evaluate large multiword integers is in turn reduced by using explicit prime factorization of the ingoing factorials, thereby improving execution speed. Comparison with existing routines shows the efficiency of our approach, and we therefore provide a computer code based on this work. C1 [Johansson, H. T.; Forssen, C.] Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. [Forssen, C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Forssen, C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Johansson, HT; Forssen, C (reprint author), Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden.; Forssen, C (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; Forssen, C (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM f96hajo@chalmers.se; christian.forssen@chalmers.se RI Forssen, Christian/C-6093-2008; Johansson, Hakan/E-2685-2014; OI Forssen, Christian/0000-0003-3458-0480; /0000-0001-7978-8336 FU European Research Council under the European Community [240603]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [IG2012-5158]; U.S. Department of Energy [DE-AC05-00OR22725] FX The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 240603 and the Swedish Foundation for International Cooperation in Research and Higher Education (STINT, IG2012-5158). This material is based upon work supported in part by the U.S. Department of Energy under contract DE-AC05-00OR22725 (Oak Ridge National Laboratory). NR 20 TC 1 Z9 1 U1 1 U2 2 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2016 VL 38 IS 1 BP A376 EP A384 DI 10.1137/15M1021908 PG 9 WC Mathematics, Applied SC Mathematics GA DF3HU UT WOS:000371235600016 ER PT J AU Vecharynski, E Yang, C Xue, F AF Vecharynski, Eugene Yang, Chao Xue, Fei TI GENERALIZED PRECONDITIONED LOCALLY HARMONIC RESIDUAL METHOD FOR NON-HERMITIAN EIGENPROBLEMS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE eigenvalue; eigenvector; non-Hermitian; preconditioned eigensolver ID NONSYMMETRIC EIGENVALUE PROBLEMS; COMPUTING EIGENVALUES; DAVIDSON METHOD; ARNOLDI METHOD; MATRICES; ALGORITHMS; ITERATION; EQUATIONS; SYSTEMS; GROWTH AB We introduce the generalized preconditioned locally harmonic residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen-or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework. Our numerical experiments demonstrate that GPLHR is generally more robust and efficient than existing methods, especially if the available memory is limited. C1 [Vecharynski, Eugene; Yang, Chao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Xue, Fei] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA. RP Vecharynski, E; Yang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Xue, F (reprint author), Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA. EM evecharynski@lbl.gov; cyang@lbl.gov; fxue@louisiana.edu FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; National Science Foundation [DMS-1419100] FX The work of these authors was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.; This author's work was supported by the National Science Foundation under grant DMS-1419100. NR 50 TC 1 Z9 1 U1 0 U2 0 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2016 VL 38 IS 1 BP A500 EP A527 DI 10.1137/15M1027413 PG 28 WC Mathematics, Applied SC Mathematics GA DF3HU UT WOS:000371235600021 ER PT J AU Adler, JH Benson, TR Cyr, EC Maclachlan, SP Tuminaro, RS AF Adler, James H. Benson, Thomas R. Cyr, Eric C. Maclachlan, Scott P. Tuminaro, Raymond S. TI MONOLITHIC MULTIGRID METHODS FOR TWO-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE monolithic multigrid; magnetohydrodynamics; Braess-Sarazin relaxation; Vanka relaxation ID SYSTEM LEAST-SQUARES; NAVIER-STOKES EQUATIONS; SADDLE-POINT PROBLEMS; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; BLOCK PRECONDITIONERS; NUMERICAL-SOLUTION; IMPLICIT; MHD; STATIONARY; COALESCENCE AB Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess-Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. We present convergence and timing results for a two-dimensional, steady-state test problem. C1 [Adler, James H.; Benson, Thomas R.] Tufts Univ, Dept Math, Medford, MA 02155 USA. [Cyr, Eric C.] Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA. [Maclachlan, Scott P.] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. [Tuminaro, Raymond S.] Sandia Natl Labs, POB 969,MS 9159, Livermore, CA 94551 USA. RP Adler, JH; Benson, TR (reprint author), Tufts Univ, Dept Math, Medford, MA 02155 USA.; Cyr, EC (reprint author), Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA.; Maclachlan, SP (reprint author), Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada.; Tuminaro, RS (reprint author), Sandia Natl Labs, POB 969,MS 9159, Livermore, CA 94551 USA. EM james.adler@tufts.edu; thomas.benson@alumni.tufts.edu; eccyr@sandia.gov; smaclachlan@mun.ca; rstumin@sandia.gov FU NSF [DMS-1216972]; United States Department of Energy [DE-AC04-94-AL85000]; U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program; NSERC FX This work was partially supported by NSF grant DMS-1216972. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. Part of this material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program.; This author's work was supported by an NSERC discovery grant. NR 47 TC 2 Z9 2 U1 0 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2016 VL 38 IS 1 BP B1 EP B24 DI 10.1137/151006135 PG 24 WC Mathematics, Applied SC Mathematics GA DF3HU UT WOS:000371235600027 ER PT J AU Bock, N Challacombe, M Kale, LV AF Bock, Nicolas Challacombe, Matt Kale, Laxmikant V. TI SOLVERS FOR O(N) ELECTRONIC STRUCTURE IN THE STRONG SCALING LIMIT SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE sparse approximate matrix multiply; sparse linear algebra; SpAMM; reduced complexity algorithm; linear scaling; quantum chemistry; spectral projection; N-Body; Charm plus; matrices with decay; parallel irregular; space filling curve; persistence load balancing; overdecomposition ID CONSISTENT-FIELD THEORY; SPARSE-MATRIX MULTIPLICATION; DENSITY-MATRIX; FOCK MATRIX; DECAY; SIMULATIONS; COMPUTATION; ALGORITHMS; BOUNDS; CODE AB We present a hybrid OpenMP/Charm++ framework for solving the O(N) self-consistent-field eigenvalue problem with parallelism in the strong scaling regime, P >> N, where P is the number of cores, and N is a measure of system size, i.e., the number of matrix rows/columns, basis functions, atoms, molecules, etc. This result is achieved with a nested approach to spectral projection and the sparse approximate matrix multiply [Bock and Challacombe, SIAM J. Sci. Comput., 35 (2013), pp. C72-C98], and involves a recursive, task-parallel algorithm, often employed by generalized N-Body solvers, to occlusion and culling of negligible products in the case of matrices with decay. Employing classic technologies associated with generalized N-Body solvers, including overdecomposition, recursive task parallelism, orderings that preserve locality, and persistence-based load balancing, we obtain scaling beyond hundreds of cores per molecule for small water clusters ([H2O](N), N is an element of {30, 90, 150}, P/N approximate to {819, 273, 164}) and find support for an increasingly strong scalability with increasing system size N. C1 [Bock, Nicolas; Challacombe, Matt] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Kale, Laxmikant V.] Univ Illinois, Dept Comp Sci, Parallel Programming Lab, Champaign, IL 61801 USA. RP Bock, N; Challacombe, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA.; Kale, LV (reprint author), Univ Illinois, Dept Comp Sci, Parallel Programming Lab, Champaign, IL 61801 USA. EM nicolasbock@freeon.org; mchalla@lanl.gov; kale@illinois.edu FU NNSA of the USDoE [DE-AC52- 06NA25396]; LDRD program under LDRD-ER grant [20110230ER] FX This article was released under LA-UR-14-22050. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the NNSA of the USDoE under contract DE-AC52- 06NA25396. The work of these authors was supported by the LDRD program under LDRD-ER grant 20110230ER. NR 128 TC 1 Z9 1 U1 4 U2 7 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2016 VL 38 IS 1 BP C1 EP C21 DI 10.1137/140974602 PG 21 WC Mathematics, Applied SC Mathematics GA DF3HU UT WOS:000371235600035 ER PT J AU Li, S Xiong, LH Li, HY Leung, LR Demissie, Y AF Li, Shuai Xiong, Lihua Li, Hong-Yi Leung, L. Ruby Demissie, Yonas TI Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Runoff change; Uncertainty assessment; Monthly water balance models; SCEM; Bayesian Model Averaging ID WEI RIVER-BASIN; QUANTITATIVE ASSESSMENT; PARAMETER OPTIMIZATION; HYDROLOGICAL RECORDS; HUMAN IMPACTS; YELLOW-RIVER; TIME SCALES; CHINA; STREAMFLOW; CATCHMENT AB Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging of four monthly water balance models was proposed. The method was applied to the Weihe River Basin, the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities to runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt's test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models. C1 [Li, Shuai; Xiong, Lihua] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China. [Li, Shuai; Li, Hong-Yi; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xiong, Lihua] Wuhan Univ, Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China. [Demissie, Yonas] Washington State Univ, Dept Civil & Environm Engn, Richland, WA 99352 USA. RP Xiong, LH (reprint author), Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China.; Xiong, LH (reprint author), Wuhan Univ, Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China. EM lishuai@whu.edu.cn; xionglh@whu.edu.cn; Hongyi.Li@pnnl.gov; Ruby.Leung@pnnl.gov; y.demissie@tricity.wsu.edu FU National Natural Science Foundation of China [51190094, 51079098]; Office of Science of the US Department of Energy; DOE by Battelle Memorial Institute [DE-AC05-76RLO 1830] FX This research was financially supported by National Natural Science Foundation of China (Grant nos. 51190094 and 51079098) and partly supported by the Office of Science of the US Department of Energy as part of the Regional and Global Climate Modeling Program and Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. The authors thank six anonymous reviewers for their highly constructive suggestions and comments, which are very helpful to improve the quality of the original manuscript. NR 82 TC 1 Z9 1 U1 11 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JAN PY 2016 VL 30 IS 1 BP 251 EP 269 DI 10.1007/s00477-015-1083-8 PG 19 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA DF4KP UT WOS:000371317300019 ER PT J AU Yung, MM AF Yung, Matthew M. TI Catalytic Conversion of Biomass to Fuels and Chemicals SO TOPICS IN CATALYSIS LA English DT Editorial Material C1 [Yung, Matthew M.] Natl Renewable Energy Lab, Golden, CO USA. RP Yung, MM (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM matthew.yung@nrel.gov NR 0 TC 2 Z9 2 U1 1 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 1 EP 1 DI 10.1007/s11244-015-0511-9 PG 1 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200001 ER PT J AU Dutta, A Schaidle, JA Humbird, D Baddour, FG Sahir, A AF Dutta, Abhijit Schaidle, Joshua A. Humbird, David Baddour, Frederick G. Sahir, Asad TI Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility SO TOPICS IN CATALYSIS LA English DT Article DE Ex situ catalytic fast pyrolysis; Biofuel; Process design; Techno-economic assessment; Fixed bed reactor; Vapor phase upgrading; Hot gas filter; Aspen Plus ID MOLYBDENUM CARBIDE CATALYSTS; C COUPLING REACTIONS; BIO-OIL; SELECTIVE HYDRODEOXYGENATION; UNSATURATED-HYDROCARBONS; RU/TIO2 CATALYST; MODEL COMPOUNDS; ACETIC-ACID; GUAIACOL; VAPORS AB Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design report led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C-C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C-C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. This analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility. C1 [Dutta, Abhijit; Schaidle, Joshua A.; Sahir, Asad] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. [Humbird, David] DWH Proc Consulting, Centennial, CO USA. [Baddour, Frederick G.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO USA. RP Dutta, A; Schaidle, JA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. EM Abhijit.Dutta@nrel.gov; Joshua.Schaidle@nrel.gov OI Sahir, Asad/0000-0001-9552-3119 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. We thank the Pall Corporation for providing information about the hot gas filter, and Michael Talmadge and other NREL Thermochemical Platform research staff for their inputs. NR 57 TC 11 Z9 11 U1 10 U2 26 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 2 EP 18 DI 10.1007/s11244-015-0500-z PG 17 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200002 ER PT J AU Rahman, MM Davidson, SD Sun, JM Wang, Y AF Rahman, Muhammad Mahfuzur . Davidson, Stephen D. Sun, Junming Wang, Yong TI Effect of Water on Ethanol Conversion over ZnO SO TOPICS IN CATALYSIS LA English DT Article DE Ethanol; ZnO; Water dissociation; Ketonization; Aldol-condensation ID ZNXZRYOZ MIXED OXIDES; CATALYSTS; ISOBUTENE; PATHWAYS; SURFACES; ACETONE; SITES; VAPOR; PHASE AB This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldolcondensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 degrees C). C1 [Rahman, Muhammad Mahfuzur .; Davidson, Stephen D.; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. RP Sun, JM; Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA.; Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. EM Junming.sun@wsu.edu; Yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011 OI Sun, Junming/0000-0002-0071-9635 FU US Department of Energy, Office of Basic Energy Sciences; Washington State University FX We acknowledge the US Department of Energy, Office of Basic Energy Sciences for the financial support, the WSU Franceschi Microscopy Center and Dr. Knoblauch for the use of the TEM. Junming Sun acknowledges the New Faculty Seed Grant support from Washington State University. NR 31 TC 1 Z9 1 U1 11 U2 23 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 37 EP 45 DI 10.1007/s11244-015-0503-9 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200005 ER PT J AU Ramasamy, KK Gray, M Job, H Santosa, D Li, XS Devaraj, A Karkamkar, A Wang, Y AF Ramasamy, Karthikeyan K. Gray, Michel Job, Heather Santosa, Daniel Li, Xiaohong Shari Devaraj, Arun Karkamkar, Abhi Wang, Yong TI Role of Calcination Temperature on the Hydrotalcite Derived MgO-Al2O3 in Converting Ethanol to Butanol SO TOPICS IN CATALYSIS LA English DT Article DE Ethanol condensation; Guerbet; Hydrotalcite; Butanol; Mixed oxide; MgO-Al2O3 ID SOLID-BASE CATALYSTS; MG-AL HYDROTALCITES; THERMAL-DECOMPOSITION; CHEMICAL-COMPOSITION; CONVERSION; HZSM-5; HYDROCARBONS; BASICITY; AL-27 AB In the base catalyzed ethanol condensation reactions, the calcined MgO-Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristics of the hydrotalcite material treated between catalytically relevant temperatures 450 and 800 degrees C have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800 degrees C. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 % with 1-butanol selectivity of 50 % was achieved for the 600 degrees C calcined hydrotalcite material. C1 [Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Santosa, Daniel; Karkamkar, Abhi; Wang, Yong] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. [Ramasamy, Karthikeyan K.; Li, Xiaohong Shari; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Devaraj, Arun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Ramasamy, KK; Wang, Y (reprint author), Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA.; Ramasamy, KK; Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.; Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM Karthi@pnnl.gov; yong.wang@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830]; U.S. Department of Energy's Bioenergy Technology Office; DOE's Office of Biological and Environmental Research FX The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was supported by the U.S. Department of Energy's Bioenergy Technology Office. The SEM imaging portion of the work was done as a part of chemical imaging initiative, a laboratory directed research and development program at Pacific Northwest National Laboratory. The SEM imaging was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The authors wish to express thanks to Robert A. Dagle and Michael A. Lilga for the valuable technical discussions, Colin D. Smith for the XRD analysis, and Satish Nune for the TG analysis. NR 32 TC 5 Z9 5 U1 16 U2 29 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 46 EP 54 DI 10.1007/s11244-015-0504-8 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200006 ER PT J AU Olarte, MV Zacher, AH Padmaperuma, AB Burton, SD Job, HM Lemmon, TL Swita, MS Rotness, LJ Neuenschwander, GN Frye, JG Elliott, DC AF Olarte, Mariefel V. Zacher, Alan H. Padmaperuma, Asanga B. Burton, Sarah D. Job, Heather M. Lemmon, Teresa L. Swita, Marie S. Rotness, Leslie J. Neuenschwander, Gary N. Frye, John G. Elliott, Douglas C. TI Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing SO TOPICS IN CATALYSIS LA English DT Article DE Fast pyrolysis oil; Hydroprocessing; Pretreatment; Catalyst fouling ID HYDRODEOXYGENATION; CATALYSTS AB The use of fast pyrolysis oil as a potential renewable liquid transportation fuel alternative to crude oil depends on successful catalytic upgrading to produce a refinery-ready product with oxygen content and qualities (i.e., specific functional group or compound content) compatible with the product's proposed refinery insertion point. Similar to crude oil hydrotreating, catalytic upgrading of bio-oil requires high temperature and pressure. However, processing thermally unstable pyrolysis oil is not straightforward. For years, a two-temperature, downflow trickle bed reactor using sulfided catalysts was the state-of-the art for continuous operation. However, pressure excursion due to plug formation still occurred, typically at the high-temperature transition zone, and led to a process shutdown within 140 h. A plug typically consists of polymerized bio-oil and inorganic constituents that bind catalysts at specific portions preventing liquid and gas flow through the bed, resulting to a potential pressure incursion. Recently, two factors were found to enable continuous operation by preventing reactor shutdown due to plug formation: (1) a bio-oil pretreatment process prior to the two-temperature reactor, and (2) a robust commercial catalyst for the high temperature zone reactor. Here, we report the use and characterization of bio-oil that was pre-treated at 413 K and 8.4 MPa under flowing H-2 (500 L H-2/L bio-oil, 0.5 L bio-oil/L catalyst bed) to enable the long-term (cumulative 1440-h) bio-oil hydroprocessing. C1 [Olarte, Mariefel V.; Zacher, Alan H.; Padmaperuma, Asanga B.; Burton, Sarah D.; Job, Heather M.; Lemmon, Teresa L.; Swita, Marie S.; Rotness, Leslie J.; Neuenschwander, Gary N.; Frye, John G.; Elliott, Douglas C.] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Olarte, MV; Zacher, AH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM mariefel.olarte@pnnl.gov; alan.zacher@pnnl.gov RI Olarte, Mariefel/D-3217-2013 OI Olarte, Mariefel/0000-0003-2989-1110 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office; U.S. Department of Energy [DE-AC06-76RLO 1830] FX The authors gratefully acknowledge the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office for funding for this work. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. The authors also thank Shari X. Li (PNNL) for surface area/pore volume measurement and Todd Hart (PNNL) for aging study on the feed oil. NR 25 TC 6 Z9 6 U1 2 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 55 EP 64 DI 10.1007/s11244-015-0505-7 PG 10 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200007 ER PT J AU Wang, HM Wang, Y AF Wang, Huamin Wang, Yong TI Characterization of Deactivated Bio-oil Hydrotreating Catalysts SO TOPICS IN CATALYSIS LA English DT Article DE Bio-oil hydrotreating; Catalyst; Deactivation; XPS ID BIOMASS FAST PYROLYSIS; CO AB Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase of the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and X-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts. C1 [Wang, Huamin; Wang, Yong] Pacific NW Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. RP Wang, HM (reprint author), Pacific NW Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99352 USA. EM huamin.wang@pnnl.gov FU United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office; DOE Office of Biological and Environmental Research FX The authors gratefully acknowledge the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office for the support of this work. XRD and XPS measurements were performed at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for DOE. The authors also thank Shari X. Li (PNNL) for surface area/pore volume measurement, Karl Albrecht (PNNL) for TGA-MS measurements, Mark Engelhard (PNNL) for XPS measurements, and Chongmin Wang (PNNL) for TEM measurements. NR 23 TC 3 Z9 3 U1 4 U2 11 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 65 EP 72 DI 10.1007/s11244-015-0506-6 PG 8 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200008 ER PT J AU Xu, MZ Mukarakate, C Robichaud, DJ Nimlos, MR Richards, RM Trewyn, BG AF Xu, Mengze Mukarakate, Calvin Robichaud, David J. Nimlos, Mark R. Richards, Ryan M. Trewyn, Brian G. TI Elucidating Zeolite Deactivation Mechanisms During Biomass Catalytic Fast Pyrolysis from Model Reactions and Zeolite Syntheses SO TOPICS IN CATALYSIS LA English DT Article DE Biomass pyrolysis; Zeolite deactivation; Microporous and mesoporous materials; Methanol to hydrocarbon ID STRUCTURE-DIRECTING AGENTS; TO-OLEFIN CATALYSIS; SURFACE METHOXY GROUPS; HIGH-SILICA ZEOLITES; EXTRA-LARGE-PORE; MOLECULAR-SIEVE; COKE FORMATION; H-BETA; HYDROCARBONS REACTION; METHANOL CONVERSION AB Zeolites are crystalline microporous aluminosilicates that have numerous applications in industry, specifically in catalysis, separation and adsorption. Zeolites catalyze the conversion of biomass-derived pyrolysis vapors into hydrocarbons; however, zeolites frequently suffer from rapid deactivation under pyrolysis conditions. Methanol-to-hydrocarbon processes are closely related to biomass upgrading reactions and several proposed mechanisms are discussed to provide mechanistic insight for biomass upgrading with zeolites. Syntheses of novel zeolites have potential to relieve deactivation factors including mass diffusion limitations of bulky molecules and accumulation of carbonaceous coke on the catalyst surface. Catalytic activity of conventional zeolites is presented to provide insights to evaluate the novel zeolites. Recent advances of the new zeolite structures are also presented in the context of potential future directions for the field. C1 [Xu, Mengze; Richards, Ryan M.; Trewyn, Brian G.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.] Natl Renewable Energy Lab, 15523 Denver West Pkwy, Golden, CO 80401 USA. RP Trewyn, BG (reprint author), Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. EM btrewyn@mines.edu FU U.S. Department of Energy [UGA-0-41025-40]; National Renewable Energy Laboratory; U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08-GO28308] FX We acknowledge the financial support from the U.S. Department of Energy under sub-contract No. UGA-0-41025-40 with the National Renewable Energy Laboratory. NREL co-authors would like to acknowledge support through the U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 103 TC 1 Z9 1 U1 11 U2 20 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 73 EP 85 DI 10.1007/s11244-015-0507-5 PG 13 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200009 ER PT J AU Iisa, K French, RJ Orton, KA Budhi, S Mukarakate, C Stanton, AR Yung, MM Nimlos, MR AF Iisa, Kristiina French, Richard J. Orton, Kellene A. Budhi, Sridhar Mukarakate, Calvin Stanton, Alexander R. Yung, Matthew M. Nimlos, Mark R. TI Catalytic Pyrolysis of Pine Over HZSM-5 with Different Binders SO TOPICS IN CATALYSIS LA English DT Article DE Catalytic pyrolysis; Biomass; HZSM-5; Binder; Alumina; Silica; Clay ID MISCANTHUS X GIGANTEUS; SPOUTED-BED REACTOR; BIOMASS PYROLYSIS; REACTION-MECHANISM; HYDROCARBON FORMATION; FLUIDIZED-BED; CO-REACTION; BIO-OIL; IN-SITU; PERFORMANCE AB Three HZSM-5 catalysts with different binders (alumina, silica, and clay) were evaluated for upgrading of pine pyrolysis vapors. All catalysts were based on the same HZSM-5 with silica to alumina molar ratio of 30. Experiments in micro-scale analytical Py-GCMS/FID showed that fresh catalysts with silica and clay produced predominantly aromatic hydrocarbons at similar carbon yields. The catalyst with alumina gave lower vapor yields and produced both hydrocarbons and partially deoxygenated products, in particular furans. The catalyst with alumina also gave higher coke yields and exhibited faster deactivation than the catalysts with clay and silica binders. The low hydrocarbon yields and coke formation were attributed to the acidic sites provided by alumina and blocking of the zeolite sites. The catalysts with silica and clay as binders were further tested in a 2-inch fluidized bed system for ex situ catalytic pyrolysis of pine. Similar oils were produced over both catalysts with carbon yields of approximately 23 % and oxygen contents of 20-21 %. C1 [Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Budhi, Sridhar; Mukarakate, Calvin; Stanton, Alexander R.; Yung, Matthew M.; Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Iisa, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM kristiina.iisa@nrel.gov RI Budhi, Sridhar/B-2157-2017 OI Budhi, Sridhar/0000-0003-2514-5161 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office is gratefully acknowledged. We wish to thank Scott Palmer, Michele Myers, Matt Plumb, Bill Michener, and Haoxi Ben for their technical assistance and discussions. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 55 TC 2 Z9 2 U1 6 U2 19 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 94 EP 108 DI 10.1007/s11244-015-0509-3 PG 15 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200011 ER PT J AU Cheah, S Starace, AK Gjersing, E Bernier, S Deutch, S AF Cheah, Singfoong Starace, Anne K. Gjersing, Erica Bernier, Sarah Deutch, Steve TI Reactions of Mixture of Oxygenates Found in Pyrolysis Vapors: Deoxygenation of Hydroxyacetaldehyde and Guaiacol Catalyzed by HZSM-5 SO TOPICS IN CATALYSIS LA English DT Article DE ZSM-5; Guaiacol; Hydroxyacetaldehyde; Glycolaldehyde; Diffusion; Deoxygenation ID BIO-OILS; MOLECULAR CHARACTERIZATION; PHASE HYDRODEOXYGENATION; REACTION-MECHANISM; REACTION NETWORK; BIOMASS; TRANSFORMATION; DIFFUSION; ZEOLITES; HYDROCARBONS AB Pyrolysis is a promising thermochemical process to convert lignocellulosic biomass to renewable biofuel. Much research has been conducted on the catalytic upgrading of either vapors derived from whole biomass scale or on individual model oxygenates. However, not many studies investigated the upgrading and deoxygenation of a mixture of several oxygenates. In this study, we use a combination of techniques to probe the reactions of guaiacol and hydroxyacetaldehyde (HAA) on HZSM-5, their diffusion inside the zeolite catalyst pores, and the extractable products. The techniques we used included several NMR methods, gas chromatography, and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR). In nitrogen at 280 degrees C with HZSM-5 catalyst, HAA decomposes, cyclizes to form aromatics and phenolic compounds, as well as produces coke. Under the same conditions, guaiacol neither reacts nor forms coke. When the two molecules are present together at 280 degrees C, their reaction pathways are independent of each other. For HAA at 480 degrees C, the quantity of aromatics produced is much higher than at 280 degrees C. At 480 degrees C guaiacol forms mostly substituted phenolics, BTEX type molecules, and coke. When guaiacol and HAA are mixed together at 480 degrees C, the amount of coke formed is slightly higher while the aromatics produced in the form of toluene, naphthalene, and their substituted compounds are substantially higher than that can be predicted by simple summation of products in individual cases. After reactions with guaiacol alone or a mixture containing both guaiacol and HAA, the available micropore surface area decreased to zero, indicating plugging of the pores or blocking of pore entrance. However, in both cases the guaiacol and phenolics can be desorbed in an N2 atmosphere at a relatively low temperature range of 100-200 degrees C. Diffusion measurements indicate that size has a large effect on the pore diffusion coefficients of different oxygen molecules. After coke forms on the catalyst the diffusion coefficients of larger molecules such as guaiacol are affected more significantly than diffusion of small molecules such as water and methanol. C1 [Cheah, Singfoong; Starace, Anne K.; Gjersing, Erica; Bernier, Sarah; Deutch, Steve] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Cheah, S (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Singfoong.Cheah@nrel.gov FU Laboratory Directed Research and Development Program of the National Renewable Energy Laboratory (NREL); Bioenergy Technologies Office (BETO) at the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; Alliance for Sustainable Energy, LLC [DE-AC36-08-GO28308] FX This work was supported by Laboratory Directed Research and Development Program of the National Renewable Energy Laboratory (NREL) and the Bioenergy Technologies Office (BETO) at the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. NREL is operated by The Alliance for Sustainable Energy, LLC under Contract no. DE-AC36-08-GO28308. NR 46 TC 1 Z9 1 U1 5 U2 15 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 109 EP 123 DI 10.1007/s11244-015-0510-x PG 15 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200012 ER PT J AU Griffin, MB Baddour, FG Habas, SE Ruddy, DA Schaidle, JA AF Griffin, Michael B. Baddour, Frederick G. Habas, Susan E. Ruddy, Daniel A. Schaidle, Joshua A. TI Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions SO TOPICS IN CATALYSIS LA English DT Article DE Guaiacol; Bio-oil; Catalytic fast pyrolysis; Deoxygenation; Metal phosphide; Nanoparticle; Ligand ID SELF-ASSEMBLED MONOLAYERS; BIO-OIL; HYDROPROCESSING CATALYSTS; HETEROGENEOUS CATALYSTS; FURFURAL HYDROGENATION; MODEL COMPOUNDS; PARTICLE-SIZE; BIOMASS; CONVERSION; MECHANISM AB A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis conditions (350 degrees C, 0.5 MPa, 12 H-2:1 guaiacol, weight hourly space velocity 5 h(-1)). Ligand-capped Ni, Pt, Rh, Ni2P, and Rh2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO2 and Pt/SiO2 prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO2 catalyst. The NP-Ni/SiO2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO2, NP-Rh2P/SiO2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. The com-Pt/SiO2 and IW-Pt/SiO2 catalyst exhibited the highest normalized rate of guaiacol conversion per m(2) and per gram of active phase, respectively, but did not produce any completely deoxygenated products. C1 [Griffin, Michael B.; Habas, Susan E.; Schaidle, Joshua A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. [Baddour, Frederick G.; Ruddy, Daniel A.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO USA. RP Schaidle, JA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. EM Joshua.Schaidle@nrel.gov FU Department of Energy's Bioenergy Technology Office [DE-AC36-08-GO28308] FX This work was supported by the Department of Energy's Bioenergy Technology Office under Contract No. DE-AC36-08-GO28308. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The authors wish to express thanks to Jesse Hensley for the valuable discussions, Jon Luecke for assistance with gas chromatography, Jason Thibodeaux for technical assistance in the laboratory, and Seth Noone for assistance with reactor operation and maintenance. NR 39 TC 9 Z9 9 U1 11 U2 41 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JAN PY 2016 VL 59 IS 1 BP 124 EP 137 DI 10.1007/s11244-015-0512-8 PG 14 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DF5XD UT WOS:000371425200013 ER PT J AU John, S Atkinson, RW Roy, A Unocic, RR Papandrew, AB Zawodzinski, TA AF St. John, Samuel Atkinson, Robert W., III Roy, Asa Unocic, Raymond R. Papandrew, Alexander B. Zawodzinski, Thomas A., Jr. TI The Effect of Carbonate and pH on Hydrogen Oxidation and Oxygen Reduction on Pt-Based Electrocatalysts in Alkaline Media SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID ACID FUEL-CELLS; PLATINUM; ELECTROLYTE; SOLUBILITY; RUTHENIUM; HYDROXIDE; MEMBRANES AB We investigated the performance of several carbon-supported RuxPty electrocatalysts for their alkaline hydrogen oxidation and oxygen reduction performance in the presence of carbonate and compared their performance with monometallic, carbon-supported Pt. Our results indicate a strong dependence of HOR upon pH for the monometallic Pt catalysts (22 mV/pH) and a weak dependence upon pH for the Ru-containing electrocatalysts (3.7, 2.5, and 4.7 mV/pH on Ru0.2Pt0.8, Ru0.4Pt0.6, and Ru0.8Pt0.2, respectively). These results are consistent with our previous findings that illustrate a change in rds from electron transfer (on monometallic Pt) to dissociative hydrogen adsorption (on RuxPty catalysts). Analysis of the kinetic currents to determine the rate-determining step via Tafel slope analysis provides additional data supporting this conclusion. There is no difference in the performance at comparable pH values in the presence or absence of carbonate on monometallic Pt indicating that water/hydroxide is the primary proton acceptor for alkaline HOR in 0.1 M KOH aqueous electrolyte. Finally, we observe no pH or carbonate dependence for the ORR on monometallic Pt. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [St. John, Samuel; Atkinson, Robert W., III; Roy, Asa; Papandrew, Alexander B.; Zawodzinski, Thomas A., Jr.] Univ Tennessee, Chem & Biomol Engn, Knoxville, TN 37996 USA. [Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zawodzinski, Thomas A., Jr.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Papandrew, AB (reprint author), Univ Tennessee, Chem & Biomol Engn, Knoxville, TN 37996 USA. EM apapandrew@utk.edu FU Office of Naval Research [N00014-12-1-0887]; NSF [EPS-1004083]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by the Office of Naval Research, N00014-12-1-0887 and the NSF-funded, TN-SCORE program, EPS-1004083, under Thrust 2. Electron microscopy was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 31 TC 1 Z9 1 U1 12 U2 68 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP F291 EP F295 DI 10.1149/2.1071603jes PG 5 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500109 ER PT J AU Luhring, TM Connette, GM Schalk, CM AF Luhring, Thomas M. Connette, Grant M. Schalk, Christopher M. TI Trap characteristics and species morphology explain size-biased sampling of two salamander species SO AMPHIBIA-REPTILIA LA English DT Article DE Amphiuma means; body size; detection probability; inventory; passive trapping; population monitoring; sampling bias; Siren lacertina ID SIREN SIREN-LACERTINA; AMPHIUMA-MEANS; FUNNEL TRAPS; BODY-SIZE; GREATER SIREN; AQUATIC SALAMANDERS; CAPTURE RATES; BIRD COUNTS; DIMORPHISM; EFFICIENCY AB Demographic studies often depend on sampling techniques providing representative samples from populations. However, the sequence of events leading up to a successful capture or detection is susceptible to biases introduced through individual-level behaviour or physiology. Passive sampling techniques may be especially prone to sampling bias caused by size-related phenomena (e.g., physical limitations on trap entrance). We tested for size-biased sampling among five types of passive traps using a 9-year data set for two species of aquatic salamanders that have a 20 and 61 fold change in length over their ontogeny (Amphiuma means, Siren lacertina). Size-biased trapping was evident for both species, with body size distributions (body length mean and SD) of captured individuals differing among sampling techniques. Because our two species differed in girth at similar lengths, we were able to show that size biases (in length) were most likely caused by girth limitations on trap entry rates, and potentially by differences in retention rates. Accounting for the biases of sampling techniques may be critical when assessing current population status and demographic change. C1 [Luhring, Thomas M.; Schalk, Christopher M.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Luhring, Thomas M.] Univ Nebraska, Biol Sci, 410 Manter Hall, Lincoln, NE 68588 USA. [Connette, Grant M.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, 1500 Remount Rd, Front Royal, VA 22630 USA. [Schalk, Christopher M.] Texas A&M Univ, Biodivers Res & Teaching Collect, Dept Wildlife & Fisheries Sci, 210 Nagle Hall, College Stn, TX 77843 USA. RP Luhring, TM (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.; Luhring, TM (reprint author), Univ Nebraska, Biol Sci, 410 Manter Hall, Lincoln, NE 68588 USA. EM tomluhring@gmail.com FU National Science Foundation [DBI-0453493]; American Museum of Natural History's Theodore Roosevelt Memorial Fund; University of Missouri; Savannah River Ecology Laboratory [DE-FC09-96SR18-546] FX We thank all of the people that have helped with sampling efforts at Dry Bay over the past 9 years. Special thanks are due to K. Buhlmann, B. Crawford, J. Greene, B. Morris, P. Nicodemo, S. Poppy, L. Smith, and J.W. Gibbons for their help and support with these efforts. Animals were collected under South Carolina Department of Natural Resources Scientific Collection permit G-08-07, and procedures used were approved by the University of Georgia (AUP approval #2006-10069). We thank R. McLaughlin for his helpful review of the article. This work was supported by the National Science Foundation (DBI-0453493), the American Museum of Natural History's Theodore Roosevelt Memorial Fund (awarded to TML), The University of Missouri's Life Sciences Fellowship and TWA Fellowship (awarded to TML), the Savannah River Ecology Laboratory under Financial Assistance Award DE-FC09-96SR18-546 between the University of Georgia and the US Department of Energy. We also thank K. O'Donnell for helpful suggestions for the conceptual model. NR 51 TC 0 Z9 0 U1 1 U2 2 PU BRILL ACADEMIC PUBLISHERS PI LEIDEN PA PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS SN 0173-5373 EI 1568-5381 J9 AMPHIBIA-REPTILIA JI Amphib. Reptil. PY 2016 VL 37 IS 1 BP 79 EP 89 DI 10.1163/15685381-00003034 PG 11 WC Zoology SC Zoology GA DE9JT UT WOS:000370953600008 ER PT J AU Demmie, PN Ostoja-Starzewski, M AF Demmie, P. N. Ostoja-Starzewski, M. TI Local and nonlocal material models, spatial randomness, and impact loading SO ARCHIVE OF APPLIED MECHANICS LA English DT Article DE Continuum mechanics; Nonlocal; Peridynamics; Stochastic mechanics; Random media; Impact ID COMPOSITES AB In many material systems, both man-made and natural, we have an incomplete knowledge of geometric or material properties, which leads to uncertainty in predicting their performance under dynamic loading. Given the uncertainty and a high degree of spatial variability in properties of geological formations subjected to impact, a stochastic theory of continuum mechanics would be useful for modeling dynamic response of such systems. In this paper, we examine spatial randomness in local and nonlocal material-mechanics models. We begin with classical linear elasticity. Then, we consider nonlocal elasticity and, finally, peridynamic theory. We discuss a formulation of stochastic peridynamic theory and illustrate this formulation with examples of impact loading of geological materials with uncorrelated versus correlated properties, sampled in a Monte Carlo sense. We examine wave propagation and damage to the material. The most salient feature is the absence of spallation, referred to as disorder toughness, which, in fact, generalizes similar results from earlier quasi-static damage mechanics. C1 [Demmie, P. N.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Ostoja-Starzewski, M.] Univ Illinois, Inst Condensed Matter Theory, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Ostoja-Starzewski, M.] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA. RP Ostoja-Starzewski, M (reprint author), Univ Illinois, Inst Condensed Matter Theory, Dept Mech Sci & Engn, Urbana, IL 61801 USA. EM pndemmi@sandia.gov; martinos@illinois.edu FU DTRA [HDTRA1-08-10-BRCWM]; NSF [CMMI-1462749, IP-1362146] FX This research was made possible by the support from DTRA Grant HDTRA1-08-10-BRCWM and, in part, by the NSF under Grants CMMI-1462749 and IP-1362146 (I/UCRC on Novel High Voltage/Temperature Materials and Structures). NR 26 TC 1 Z9 1 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0939-1533 EI 1432-0681 J9 ARCH APPL MECH JI Arch. Appl. Mech. PD JAN PY 2016 VL 86 IS 1-2 SI SI BP 39 EP 58 DI 10.1007/s00419-015-1095-3 PG 20 WC Mechanics SC Mechanics GA DE9JK UT WOS:000370952600004 ER PT J AU Mao, J Ricciuto, DM Thornton, PE Warren, JM King, AW Shi, X Iversen, CM Norby, RJ AF Mao, J. Ricciuto, D. M. Thornton, P. E. Warren, J. M. King, A. W. Shi, X. Iversen, C. M. Norby, R. J. TI Evaluating the Community Land Model in a pine stand with shading manipulations and (CO2)-C-13 labeling SO BIOGEOSCIENCES LA English DT Article ID AIR CO2 ENRICHMENT; TEMPERATE FOREST TREES; CARBON ALLOCATION; LOBLOLLY-PINE; ELEVATED CO2; TERRESTRIAL ECOSYSTEMS; INTERIM SYNTHESIS; CYCLE MODELS; CLIMATE; FLUXES AB Carbon allocation and flow through ecosystems regulates land surface-atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment model project tracked carbon allocation through a young Pinus taeda stand following pulse labeling with (CO2)-C-13 and two levels of shading. The field component of this project provided process-oriented data that were used to evaluate terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. When calibrated with pretreatment observations, CLM4 was capable of closely simulating stand-level biomass, transpiration, leaf-level photosynthesis, and pre-labeling C-13 values. Over the 3-week treatment period, CLM4 generally reproduced the impacts of shading on soil moisture changes, relative change in stem carbon, and soil CO2 efflux rate. Transpiration under moderate shading was also simulated well by the model, but even with optimization we were not able to simulate the high levels of transpiration observed in the heavy shading treatment, suggesting that the Ball-Berry conductance model is inadequate for these conditions. The calibrated version of CLM4 gave reasonable estimates of label concentration in phloem and in soil surface CO2 after 3 weeks of shade treatment, but it lacks the mechanisms needed to track the labeling pulse through plant tissues on shorter timescales. We developed a conceptual model for photosynthate transport based on the experimental observations, and we discussed conditions under which the hypothesized mechanisms could have an important influence on model behavior in larger-scale applications. Implications for future experimental studies are described, some of which are already being implemented in follow-on studies. C1 [Mao, J.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. RP Mao, J (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM maoj@ornl.gov RI Warren, Jeffrey/B-9375-2012; Ricciuto, Daniel/I-3659-2016; Mao, Jiafu/B-9689-2012; Thornton, Peter/B-9145-2012 OI Warren, Jeffrey/0000-0002-0680-4697; Ricciuto, Daniel/0000-0002-3668-3021; Mao, Jiafu/0000-0002-2050-7373; Thornton, Peter/0000-0002-4759-5158 FU US Department of Energy (DOE), Office of Science, Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX This work is supported by the US Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725. NR 81 TC 1 Z9 1 U1 10 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 3 BP 641 EP 657 DI 10.5194/bg-13-641-2016 PG 17 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DE9QV UT WOS:000370973900002 ER PT J AU Tang, JY Riley, WJ AF Tang, J. Y. Riley, W. J. TI Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models SO BIOGEOSCIENCES LA English DT Article ID EARTH SYSTEM MODELS; NITROGEN LIMITATION; TROPICAL FORESTS; LAND; MECHANISMS; DYNAMICS; MODULE; CARBON; PLANTS; OCCUR AB We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulation approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust. C1 [Tang, J. Y.; Riley, W. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Climate & Carbon Sci, Berkeley, CA 94720 USA. RP Tang, JY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Climate & Carbon Sci, Berkeley, CA 94720 USA. EM jinyuntang@lbl.gov RI Tang, Jinyun/M-4922-2013; Riley, William/D-3345-2015 OI Tang, Jinyun/0000-0002-4792-1259; Riley, William/0000-0002-4615-2304 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy as part of the Next-Generation Ecosystem Experiments (NGEE-Arctic) [DE-AC02-05CH11231]; Office of Science, Office of Biological and Environmental Research of the US Department of Energy as part of the Accelerated Climate Model for Energy project in the Earth System Modeling program FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of the Next-Generation Ecosystem Experiments (NGEE-Arctic) and the Accelerated Climate Model for Energy project in the Earth System Modeling program. We thank Niall Broekhuizen and an anonymous reviewer for their constructive comments, which improved the paper significantly. NR 28 TC 1 Z9 1 U1 5 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 3 BP 723 EP 735 DI 10.5194/bg-13-723-2016 PG 13 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DE9QV UT WOS:000370973900007 ER PT J AU Onishi, N Ertem, MZ Xu, SA Tsurusaki, A Manaka, Y Muckerman, JT Fujita, E Himeda, Y AF Onishi, Naoya Ertem, Mehmed Z. Xu, Shaoan Tsurusaki, Akihiro Manaka, Yuichi Muckerman, James T. Fujita, Etsuko Himeda, Yuichiro TI Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID REVERSIBLE HYDROGENATION; IRIDIUM COMPLEXES; CARBON-DIOXIDE; CATALYST; GENERATION; WATER; STORAGE; MILD; DECOMPOSITION; TEMPERATURE AB A Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m(3) of H-2/CO2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. The pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions. C1 [Onishi, Naoya; Xu, Shaoan; Tsurusaki, Akihiro; Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. [Ertem, Mehmed Z.; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Tsurusaki, Akihiro; Manaka, Yuichi; Himeda, Yuichiro] Japan Sci & Technol Agcy, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan. [Manaka, Yuichi; Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Renewable Energy Res Ctr, 2-2-9 Machiikedai, Koriyama, Fukushima 9630298, Japan. RP Himeda, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan.; Himeda, Y (reprint author), Japan Sci & Technol Agcy, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan.; Himeda, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Renewable Energy Res Ctr, 2-2-9 Machiikedai, Koriyama, Fukushima 9630298, Japan. EM himeda.y@aist.go.jp RI Onishi, Naoya/I-6373-2016; OI Manaka, Yuichi/0000-0001-5872-3365; Tsurusaki, Akihiro/0000-0002-9392-539X FU Japan Science and Technology Agency (JST), CREST; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC00112704] FX A. T., Y. M. and Y. H. thank the Japan Science and Technology Agency (JST), CREST for financial support. The work at BNL was carried out under contract DE-SC00112704 with the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 28 TC 8 Z9 8 U1 12 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 4 BP 988 EP 992 DI 10.1039/c5cy01865j PG 5 WC Chemistry, Physical SC Chemistry GA DF2MJ UT WOS:000371177100004 ER PT J AU Shan, WP Geng, Y Chen, XL Huang, N Liu, FD Yang, SJ AF Shan, Wenpo Geng, Yang Chen, Xiaoling Huang, Nan Liu, Fudong Yang, Shijian TI A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3 SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID SIMULATED DIESEL EXHAUST; OF-THE-ART; LOW-TEMPERATURE; NITRIC-OXIDE; TIO2-SUPPORTED V2O5-WO3; CEO2-WO3 CATALYSTS; SUPERIOR CATALYST; MANGANESE OXIDES; MOLECULAR-SIEVES; AMMONIA AB In this study, two methods were used to prepare Ce-W oxide catalysts. The CeWOx catalyst prepared by the homogeneous precipitation method showed excellent NH3-SCR performance, with over 80% NOx conversion obtained from 225 to 450 degrees C under a high GHSV of 300000 h(-1). Characterization revealed that the homogeneous precipitation method can achieve highly dispersed active species and intense interaction between the Ce and W species on the CeWOx catalyst, and thus result in enhanced charge imbalance, superior redox functions, and outstanding adsorption and activation properties for the reactants, which are the main reasons for the highly efficient NOx abatement of the CeWOx catalyst. C1 [Shan, Wenpo; Geng, Yang; Chen, Xiaoling; Huang, Nan; Yang, Shijian] Nanjing Univ Sci & Technol, Sch Environm & Biol Engn, Nanjing 210094, Jiangsu, Peoples R China. [Liu, Fudong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Shan, WP (reprint author), Nanjing Univ Sci & Technol, Sch Environm & Biol Engn, Nanjing 210094, Jiangsu, Peoples R China. EM wenposhan@hotmail.com RI 南京理工大学, 环境与生物工程学院/N-7361-2016 FU National Natural Science Foundation of China [51308296]; Fundamental Research Funds for the Central Universities [30920140111012]; Qing Lan Project of Jiangsu Province, China FX We gratefully acknowledge the financial support from the National Natural Science Foundation of China (51308296), the Fundamental Research Funds for the Central Universities (30920140111012) and the Qing Lan Project of Jiangsu Province, China. NR 56 TC 7 Z9 7 U1 17 U2 39 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 4 BP 1195 EP 1200 DI 10.1039/c5cy01282a PG 6 WC Chemistry, Physical SC Chemistry GA DF2MJ UT WOS:000371177100027 ER PT J AU Luo, LL Zou, LF Schreiber, DK Olszta, MJ Baer, DR Bruemmer, SM Zhou, GW Wang, CM AF Luo, Langli Zou, Lianfeng Schreiber, Daniel K. Olszta, Matthew J. Baer, Donald R. Bruemmer, Stephen M. Zhou, Guangwen Wang, Chong-Min TI In situ atomic scale visualization of surface kinetics driven dynamics of oxide growth on a Ni-Cr surface SO CHEMICAL COMMUNICATIONS LA English DT Article ID OXIDATION MECHANISM; CRYSTAL-SURFACES; STEP MOTION; THIN-FILMS; CU(001); ALLOYS; CU2O; NI(001); DESIGN; METAL AB We report the in situ atomic-scale visualization of the dynamic three-dimensional growth of NiO during the initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy. A step-by-step adatom growth mechanism in 3D is observed and a change in the surface planes of growing oxide islands can be induced by local surface kinetic variations. C1 [Luo, Langli; Baer, Donald R.; Wang, Chong-Min] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zou, Lianfeng; Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Zou, Lianfeng; Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. [Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.; Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA.; Zhou, GW (reprint author), SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu; Chongmin.wang@pnnl.gov RI Luo, Langli/B-5239-2013; OI Luo, Langli/0000-0002-6311-051X FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; DOE [DE-AC06-76RLO 1830]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-09ER46600] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE User Facility operated by Battelle for the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory was operated for the DOE under Contract DE-AC06-76RLO 1830. The work of Binghamton University was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-09ER46600. NR 30 TC 2 Z9 2 U1 5 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 16 BP 3300 EP 3303 DI 10.1039/c5cc09165a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DE4RT UT WOS:000370618400007 PM 26815841 ER PT J AU White, MA Thompson, MJ Miller, GJ Vela, J AF White, Miles A. Thompson, Michelle J. Miller, Gordon J. Vela, Javier TI Got LiZnP? Solution phase synthesis of filled tetrahedral semiconductors in the nanoregime SO CHEMICAL COMMUNICATIONS LA English DT Article ID PHOSPHIDE NANOPARTICLES; THERMOELECTRIC PROPERTIES; NANOCRYSTALS; REACTIVITY; METALS AB We report the synthesis and characterization of nanocrystalline LiZnP. The reaction proceeds through a zinc metal intermediate followed by rapid incorporation of lithium and phosphorus. We demonstrate flexibility in the selection of Li, Zn, and P precursors, as well as extension of this method to other half-Heusler phases. C1 [White, Miles A.; Thompson, Michelle J.; Miller, Gordon J.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Miller, Gordon J.; Vela, Javier] Ames Lab, Ames, IA 50011 USA. RP Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Vela, J (reprint author), Ames Lab, Ames, IA 50011 USA. EM vela@iastate.edu RI Vela, Javier/I-4724-2014 OI Vela, Javier/0000-0001-5124-6893 FU US National Science Foundation from the Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry program [1253058] FX J. Vela thanks the US National Science Foundation for a CAREER grant from the Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry program (1253058). NR 31 TC 3 Z9 3 U1 5 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 17 BP 3497 EP 3499 DI 10.1039/c5cc09635a PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA DF0KB UT WOS:000371026700009 PM 26839924 ER PT J AU Casco, ME Cheng, YQ Daemen, LL Fairen-Jimenez, D Ramos-Fernandez, EV Ramirez-Cuesta, AJ Silvestre-Albero, J AF Casco, M. E. Cheng, Y. Q. Daemen, L. L. Fairen-Jimenez, D. Ramos-Fernandez, E. V. Ramirez-Cuesta, A. J. Silvestre-Albero, J. TI Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering SO CHEMICAL COMMUNICATIONS LA English DT Article ID CONFINED NANOSPACE; STABILITY AB The gate-opening phenomenon in ZIFs is of paramount importance to understand their behavior in industrial molecular separations. Here we show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N-2 pressure. C1 [Casco, M. E.; Ramos-Fernandez, E. V.; Silvestre-Albero, J.] Univ Alicante, Lab Mat Avanzados, Dept Quim Inorgan, Inst Univ Mat, Ctra San Vicente Alicante S-N, E-03690 San Vicente Del Raspeig, Spain. [Cheng, Y. Q.; Daemen, L. L.; Ramirez-Cuesta, A. J.] Oak Ridge Natl Lab, Chem & Engn Mat Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Fairen-Jimenez, D.] Univ Cambridge, Dept Chem Engn & Biotechnol, Pembroke St, Cambridge CB2 3RA, England. RP Silvestre-Albero, J (reprint author), Univ Alicante, Lab Mat Avanzados, Dept Quim Inorgan, Inst Univ Mat, Ctra San Vicente Alicante S-N, E-03690 San Vicente Del Raspeig, Spain.; Ramirez-Cuesta, AJ (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM timmy.ramirez.cuesta@gmail.com; joaquin.silvestre@ua.es RI Ramirez-Cuesta, Timmy/A-4296-2010; Silvestre-Albero, Joaquin/H-2000-2016; OI Ramirez-Cuesta, Timmy/0000-0003-1231-0068; Silvestre-Albero, Joaquin/0000-0002-0303-0817; Casco, Mirian Elizabeth/0000-0002-7189-3497; Fairen-Jimenez, David/0000-0002-5013-1194 FU MINECO [MAT2013-45008-p, PCIN-2013-057]; MINECO (Spain) [RyC-2012-11427]; Royal Society (UK); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [LDRD 7739, DE-AC0500OR22725]; UT Battelle, LLC FX The authors acknowledge financial support from MINECO projects: MAT2013-45008-p and CONCERT Project-NASEMS (PCIN-2013-057). EVRF gratefully acknowledge support from MINECO (Spain) for his Ramon y Cajal grant (RyC-2012-11427). DFJ thanks the Royal Society (UK) for funding through a University Research Fellowship and Dr Axel Zeitler for interesting discussions. This research benefited from the use of the VISION beamline (IPTS-13608) at ONRL's Spallation Neutron Source and the VirtuES (Virtual Experiments in Spectroscopy) project, (LDRD 7739), which are supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC0500OR22725 with UT Battelle, LLC. NR 14 TC 3 Z9 3 U1 9 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 18 BP 3639 EP 3642 DI 10.1039/c5cc10222g PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DF0DF UT WOS:000371008500009 PM 26845644 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Electron Lenses for Super-Colliders Introduction SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Editorial Material; Book Chapter ID BEAM-BEAM INTERACTION; ACCELERATOR SCIENCE; TEVATRON; PROTON C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 83 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP 1 EP 24 DI 10.1007/978-1-4939-3317-4_1 D2 10.1007/978-1-4939-3317-4 PG 24 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100002 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Electron Lenses for Super-Colliders Preface SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Editorial Material; Book Chapter C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP VII EP VIII D2 10.1007/978-1-4939-3317-4 PG 2 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100001 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Technology of Electron Lenses SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Article; Book Chapter ID MODE-COUPLING INSTABILITY; FEEDBACK-SYSTEM C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 66 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP 25 EP 83 DI 10.1007/978-1-4939-3317-4_2 D2 10.1007/978-1-4939-3317-4 PG 59 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100003 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Electron Lenses for Beam-Beam Compensation SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Article; Book Chapter ID TEVATRON C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 40 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP 85 EP 135 DI 10.1007/978-1-4939-3317-4_3 D2 10.1007/978-1-4939-3317-4 PG 51 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100004 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Electron Lenses for Halo Collimation SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Article; Book Chapter C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 30 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP 137 EP 161 DI 10.1007/978-1-4939-3317-4_4 D2 10.1007/978-1-4939-3317-4 PG 25 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100005 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Electron Lenses for Space-Charge Compensation, Other Applications of Electron Lenses SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Article; Book Chapter ID ACCELERATORS; SYNCHROTRONS; BEAMS C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 74 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP 163 EP 181 DI 10.1007/978-1-4939-3317-4_5 D2 10.1007/978-1-4939-3317-4 PG 19 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100006 ER PT S AU Shiltsev, VD AF Shiltsev, Vladimir D. BA Shiltsev, VD BF Shiltsev, VD TI Theses on Physics, Technology and Applications of Electron Lenses SO ELECTRON LENSES FOR SUPER-COLLIDERS SE Particle Acceleration and Detection LA English DT Article; Book Chapter C1 [Shiltsev, Vladimir D.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. RP Shiltsev, VD (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1611-1052 BN 978-1-4939-3317-4; 978-1-4939-3315-0 J9 PART ACCEL DETECT PY 2016 BP 183 EP 183 DI 10.1007/978-1-4939-3317-4 D2 10.1007/978-1-4939-3317-4 PG 1 WC Physics, Particles & Fields SC Physics GA BE1PY UT WOS:000368366100007 ER PT J AU Jo, S Qi, YF Im, W AF Jo, Sunhwan Qi, Yifei Im, Wonpil TI Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins SO GLYCOBIOLOGY LA English DT Article DE crystal structure; information theory; molecular dynamics; simulation ID MOLECULAR-DYNAMICS SIMULATION; ALPHA-MANNOSIDASE-II; PROTEIN DATA-BANK; LINKED GLYCOSYLATION; GLYCOSIDIC LINKAGES; ENERGY LANDSCAPE; NMR STRUCTURE; FORCE-FIELD; SIDE-CHAINS; OLIGOSACCHARIDES AB N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states. C1 [Jo, Sunhwan] Argonne Natl Lab, Leadership Comp Ctr, 9700 Cass Ave,Bldg 240, Argonne, IL 60439 USA. [Qi, Yifei; Im, Wonpil] Univ Kansas, Dept Mol Biosci, 2030 Becker Dr, Lawrence, KS 66047 USA. [Qi, Yifei; Im, Wonpil] Univ Kansas, Ctr Computat Biol, 2030 Becker Dr, Lawrence, KS 66047 USA. RP Im, W (reprint author), Univ Kansas, Dept Mol Biosci, 2030 Becker Dr, Lawrence, KS 66047 USA.; Im, W (reprint author), Univ Kansas, Ctr Computat Biol, 2030 Becker Dr, Lawrence, KS 66047 USA. EM wonpil@ku.edu FU University of Kansas General Research Fund [2301552]; NSF [IIA-1359530]; NIH [U54GM087519]; XSEDE [MCB070009]; National Institutes of Health [P41GM103712-S1] FX This work was supported by the University of Kansas General Research Fund allocation #2301552, NSF IIA-1359530, NIH U54GM087519 and XSEDE MCB070009. Anton computer time was provided by the National Center for Multiscale Modeling of Biological Systems (MMBioS) through Grant P41GM103712-S1 from the National Institutes of Health and the Pittsburgh Supercomputing Center (PSC). The Anton machine at PSC was generously made available by D.E. Shaw Research. NR 77 TC 2 Z9 2 U1 6 U2 16 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD JAN PY 2016 VL 26 IS 1 BP 19 EP 29 DI 10.1093/glycob/cwv083 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DF2BZ UT WOS:000371145800003 PM 26405106 ER PT S AU Fadley, CS AF Fadley, Charles S. BE Woicik, JC TI Hard X-ray Photoemission: An Overview and Future Perspective SO HARD X-RAY PHOTOELECTRON SPECTROSCOPY (HAXPES) SE Springer Series in Surface Sciences LA English DT Editorial Material; Book Chapter ID ANGLE-RESOLVED PHOTOEMISSION; ANGULAR-DISTRIBUTION PARAMETERS; BULK ELECTRONIC-STRUCTURE; RANGE 100-5000 EV; PHOTOELECTRON-SPECTROSCOPY; MOTT INSULATOR; VALENCE-BAND; SURFACE; SPECTRA; DIFFRACTION AB The various aspects of hard X-ray photoemission are reviewed, including in particular more newly developed directions of measurement, but also with references to other chapters in this book or prior publications in which additional details can be found. An overview of the different dimensions of the technique, including a look at promising future directions, is presented. C1 [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fadley, CS (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM fadley@physics.ucdavis.edu NR 99 TC 1 Z9 1 U1 4 U2 8 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0931-5195 BN 978-3-319-24043-5; 978-3-319-24041-1 J9 SPRINGER SER SURF SC PY 2016 VL 59 BP 1 EP 34 DI 10.1007/978-3-319-24043-5_1 D2 10.1007/978-3-319-24043-5 PG 34 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA BE2AJ UT WOS:000368855500002 ER PT S AU Chambers, SA AF Chambers, Scott A. BE Woicik, JC TI Probing Perovskite Interfaces and Superlattices with X-ray Photoemission Spectroscopy SO HARD X-RAY PHOTOELECTRON SPECTROSCOPY (HAXPES) SE Springer Series in Surface Sciences LA English DT Article; Book Chapter ID PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; CORE-LEVEL; 3D-TRANSITION-METAL OXIDES; LAALO3/SRTIO3 INTERFACES; PRECISE DETERMINATION; CROSS-SECTIONS; BAND OFFSETS; SPECTRA; ENERGY AB The use of X-ray photoemission spectroscopy (XPS) in the soft, intermediate and hard X-ray regimes in probing complex oxide interfaces and superlattices is reviewed. Core-level line shapes are briefly discussed, followed by a case study of several aspects of the LaAlO3/SrTiO3(001) heterojunction. These include how XPS in both angle-integrated and angle-resolved modes has been used to probe the physical cause of interface conductivity, the origin of itinerant electrons, the valence band offset, and the extent of cation mixing. The chapter concludes with a brief discussion of other perovskite interfaces which have been successfully investigated with XPS. C1 [Chambers, Scott A.] Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov NR 109 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0931-5195 BN 978-3-319-24043-5; 978-3-319-24041-1 J9 SPRINGER SER SURF SC PY 2016 VL 59 BP 341 EP 380 DI 10.1007/978-3-319-24043-5_14 D2 10.1007/978-3-319-24043-5 PG 40 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA BE2AJ UT WOS:000368855500015 ER PT S AU Weiland, C Rumaiz, AK Woicik, JC AF Weiland, Conan Rumaiz, Abdul K. Woicik, Joseph C. BE Woicik, JC TI HAXPES Measurements of Heterojunction Band Alignment SO HARD X-RAY PHOTOELECTRON SPECTROSCOPY (HAXPES) SE Springer Series in Surface Sciences LA English DT Article; Book Chapter ID RAY PHOTOEMISSION-SPECTROSCOPY; SEMICONDUCTOR HETEROJUNCTION; INTERNAL PHOTOEMISSION; ATOMIC LAYER; GATE STACKS; DISCONTINUITY; INTERFACE; GERMANIUM; SYSTEM; ABRUPT AB Heterojunctions, the abrupt change of materials at interfaces, are an integral feature of modern electronic devices. The alignment of electronic energy levels at a heterojunction can be used to tailor charge transfer across the interface, for example to improve carrier injection or to block leakage current. An overview of the understanding of heterojunction energy-level alignment with specific examples of the unique contributions that hard X-ray photoelectron spectroscopy (HAXPES) provides to the understanding of this topic is presented in this chapter. Many theoretical approaches have been applied to heterojunction band alignment, and have had some success in predicting band-alignment values in some but not all cases. Band-alignment measurements have been made using electronic measurements such as internal photoemission, as well as photoelectron spectroscopy either measuring valence bands directly or through the use of core levels. Examples of measurements made by these techniques is presented. HAXPES measurements provide a greater analysis depth, which provides the advantage of measuring "real" heterojunctions fabricated by industrially-relevant techniques. HAXPES has been used to query the fundamental limitations on interlayer thickness for band-offset engineering, and the use of new materials for photovoltaic applications. These and other applications are presented. C1 [Weiland, Conan; Woicik, Joseph C.] NIST, Mat Measurements Lab, Gaithersburg, MD 20899 USA. [Rumaiz, Abdul K.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Weiland, C (reprint author), NIST, Mat Measurements Lab, Gaithersburg, MD 20899 USA. EM cweiland@bnl.gov; rumaiz@bnl.gov; joseph.woicik@nist.gov NR 57 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0931-5195 BN 978-3-319-24043-5; 978-3-319-24041-1 J9 SPRINGER SER SURF SC PY 2016 VL 59 BP 381 EP 405 DI 10.1007/978-3-319-24043-5_15 D2 10.1007/978-3-319-24043-5 PG 25 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA BE2AJ UT WOS:000368855500016 ER PT S AU Liu, Z Bluhm, H AF Liu, Z. Bluhm, H. BE Woicik, JC TI Liquid/Solid Interfaces Studied by Ambient Pressure HAXPES SO HARD X-RAY PHOTOELECTRON SPECTROSCOPY (HAXPES) SE Springer Series in Surface Sciences LA English DT Article; Book Chapter ID RAY PHOTOELECTRON-SPECTROSCOPY; IN-SITU; WATER-INTERFACE; ELECTROCHEMICAL INTERFACES; ELECTRON-SPECTROSCOPY; SURFACE-CHEMISTRY; CROSS-SECTIONS; PHOTOEMISSION; OXIDATION; PLATINUM AB The investigation of liquid/solid interfaces using X-ray photoelectron spectroscopy is still in its infancy, but several viable approaches for the characterization of these interfaces have been proposed over the last few years. Most of these schemes require the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) due to the high vapor pressure of the liquids of interest. APXPS at high kinetic energies is especially valuable due to the extended mean free path of electrons at higher energies, which allows measuring liquid/solid interfaces in the presence of thicker solution layers. In this chapter we describe the basics of high-energy APXPS and review current schemes as well as application examples for the measurement of liquid/solid interfaces using photoelectron spectroscopy. C1 [Liu, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Liu, Z.] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Liu, Z.] ShanghaiTech Univ, Sch Phys Sci & Technol, Condensed Matter Phys & Photon Sci Div, Shanghai 200031, Peoples R China. [Bluhm, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Liu, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM zliu2@lbl.gov; hbluhm@lbl.gov NR 51 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0931-5195 BN 978-3-319-24043-5; 978-3-319-24041-1 J9 SPRINGER SER SURF SC PY 2016 VL 59 BP 447 EP 466 DI 10.1007/978-3-319-24043-5_17 D2 10.1007/978-3-319-24043-5 PG 20 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA BE2AJ UT WOS:000368855500018 ER PT J AU Dede, E Sendir, B Kuzlu, P Weachock, J Govindaraju, M Ramakrishnan, L AF Dede, E. Sendir, B. Kuzlu, P. Weachock, J. Govindaraju, M. Ramakrishnan, L. TI Processing Cassandra Datasets with Hadoop-Streaming Based Approaches SO IEEE TRANSACTIONS ON SERVICES COMPUTING LA English DT Article DE Hadoop-streaming; Cassandra; MapReduce AB The progressive transition in the nature of both scientific and industrial datasets has been the driving force behind the development and research interests in the NoSQL model. Loosely structured data poses a challenge to traditional data store systems, and when working with the NoSQL model, these systems are often considered impractical and costly. As the quantity and quality of unstructured data grows, so does the demand for a processing pipeline that is capable of seamlessly combining the NoSQL storage model and a "Big Data" processing platform such as MapReduce. Although MapReduce is the paradigm of choice for data-intensive computing, Java-based frameworks such as Hadoop require users to write MapReduce code in Java while Hadoop Streaming module allows users to define non-Java executables as map and reduce operations. When confronted with legacy C/C++ applications and other non-Java executables, there arises a further need to allow NoSQL data stores access to the features of Hadoop Streaming. We present approaches in solving the challenge of integrating NoSQL data stores with MapReduce under non-Java application scenarios, along with advantages and disadvantages of each approach. We compare Hadoop Streaming alongside our own streaming framework, MARISSA, to show performance implications of coupling NoSQL data stores like Cassandra with MapReduce frameworks that normally rely on file-system based data stores. Our experiments also include Hadoop-C*, which is a setup where a Hadoop cluster is co-located with a Cassandra cluster in order to process data using Hadoop with non-java executables. C1 [Dede, E.; Sendir, B.; Kuzlu, P.; Weachock, J.; Govindaraju, M.] SUNY Binghamton, Dept Comp Sci, Binghamton, NY USA. [Ramakrishnan, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dede, E; Sendir, B; Kuzlu, P; Weachock, J; Govindaraju, M (reprint author), SUNY Binghamton, Dept Comp Sci, Binghamton, NY USA.; Ramakrishnan, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM edede1@binghamton.edu; bsendir1@binghamton.edu; pkuzlu1@binghamton.edu; jweacho1@binghamton.edu; mgovinda@binghamton.edu; lramakrishnan@lbl.gov FU NSF [CNS-0958501] FX Supported in part by NSF grant CNS-0958501. NR 25 TC 0 Z9 0 U1 2 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1374 J9 IEEE T SERV COMPUT JI IEEE Trans. Serv. Comput. PD JAN-FEB PY 2016 VL 9 IS 1 BP 46 EP 58 DI 10.1109/TSC.2015.2444838 PG 13 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA DE6MO UT WOS:000370748100006 ER PT J AU Zhao, DF Qiao, K Yin, J Raicu, I AF Zhao, Dongfang Qiao, Kan Yin, Jian Raicu, Ioan TI Dynamic Virtual Chunks: On Supporting Efficient Accesses to Compressed Scientific Data SO IEEE TRANSACTIONS ON SERVICES COMPUTING LA English DT Article DE File compression; distributed file systems; parallel file systems; big data; data-intensive computing; scientific computing AB Data compression could ameliorate the I/O pressure of data-intensive scientific applications. Unfortunately, the conventional wisdom of naively applying data compression to the file or block brings the dilemma between efficient random accesses and high compression ratios. File-level compression barely supports efficient random accesses to the compressed data: any retrieval request need trigger the decompression from the beginning of the compressed file. Block-level compression provides flexible random accesses to the compressed blocks, but introduces extra overhead when applying the compressor to each and every block that results in a degraded overall compression ratio. This paper extends our prior work that introduces virtual chunks offering efficient random accesses to the compressed scientific data without sacrificing the compression ratio. Virtual chunks are logical blocks pointed at by appended references without breaking the physical continuity of the file content. These references allow the decompression to start from an arbitrary position (efficient random accesses), while no per-block overhead is introduced because the file's physical entirety is retained (high compression ratio). One limitation of virtual chunk is it only supports static references. This paper presents the algorithms, analysis, and evaluations of dynamic virtual chunks to deal with the cases where the references are updated dynamically. C1 [Zhao, Dongfang; Qiao, Kan; Raicu, Ioan] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Yin, Jian] Pacific NW Natl Lab, Div Math & Comp Sci, Richland, WA 99354 USA. [Raicu, Ioan] Argonne Natl Lab, Div Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Zhao, DF; Qiao, K; Raicu, I (reprint author), IIT, Dept Comp Sci, Chicago, IL 60616 USA.; Yin, J (reprint author), Pacific NW Natl Lab, Div Math & Comp Sci, Richland, WA 99354 USA.; Raicu, I (reprint author), Argonne Natl Lab, Div Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dzhao8@iit.edu; kqiao@iit.edu; jian.yin@pnnl.gov; iraicu@cs.iit.edu FU Office of Biological and Environmental Research, Office of Science, US. Department of Energy [DE-ACO2-O6CH11357]; US National Science Foundation (NSF) [OCI-1054974] FX This work was supported in part by the Office of Biological and Environmental Research, Office of Science, US. Department of Energy, under contract DE-ACO2-O6CH11357, and the US National Science Foundation (NSF) under awards OCI-1054974. NR 39 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1374 J9 IEEE T SERV COMPUT JI IEEE Trans. Serv. Comput. PD JAN-FEB PY 2016 VL 9 IS 1 BP 96 EP 109 DI 10.1109/TSC.2015.2456889 PG 14 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA DE6MO UT WOS:000370748100010 ER PT S AU Lookman, T Balachandran, PV Xue, D Pilania, G Shearman, T Theiler, J Gubernatis, JE Hogden, J Barros, K BenNaim, E Alexander, FJ AF Lookman, T. Balachandran, P. V. Xue, D. Pilania, G. Shearman, T. Theiler, J. Gubernatis, J. E. Hogden, J. Barros, K. BenNaim, E. Alexander, F. J. BE Lookman, T Alexander, FJ Rajan, K TI A Perspective on Materials Informatics: State-of-the-Art and Challenges SO INFORMATION SCIENCE FOR MATERIALS DISCOVERY AND DESIGN SE Springer Series in Materials Science LA English DT Article; Book Chapter ID MINIMUM EXPECTED ERROR; OPTIMAL CLASSIFIERS; BAYESIAN FRAMEWORK; CLASSIFICATION; CHEMISTRY; GENE AB We review how classification and regression methods have been used on materials problems and outline a design loop that serves as a basis for adaptively finding materials with targeted properties. C1 [Lookman, T.; Balachandran, P. V.; Xue, D.; Gubernatis, J. E.; BenNaim, E.] Los Alamos Natl Lab, Div Theoret, T-4, Los Alamos, NM 87545 USA. [Pilania, G.] Los Alamos Natl Lab, Div Mat Sci, MST 8, Los Alamos, NM 87545 USA. [Shearman, T.] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA. [Theiler, J.] Los Alamos Natl Lab, ISR Div, POB 1663, Los Alamos, NM 87545 USA. [Hogden, J.; Alexander, F. J.] Los Alamos Natl Lab, CCS Div, CCS 3, Los Alamos, NM 87545 USA. [Barros, K.] Los Alamos Natl Lab, Div Theoret, T-1, Los Alamos, NM 87545 USA. RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, T-4, Los Alamos, NM 87545 USA. EM txl@lanl.gov; pbalachandran@lanl.gov; xdz@lanl.gov; gpilania@lanl.gov; toby.shearman@gmail.com; jt@lanl.gov; jg@lanl.gov; hogden@lanl.gov; kbarros@lanl.gov; ebn@lanl.gov; fja@lanl.gov OI Xue, Dezhen/0000-0001-6132-1236; Barros, Kipton/0000-0002-1333-5972; Pilania, Ghanshyam/0000-0003-4460-1572 NR 28 TC 3 Z9 3 U1 1 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-23871-5; 978-3-319-23870-8 J9 SPRINGER SER MATER S PY 2016 VL 225 BP 3 EP 12 DI 10.1007/978-3-319-23871-5_1 D2 10.1007/978-3-319-23871-5 PG 10 WC Computer Science, Interdisciplinary Applications; Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Computer Science; Materials Science GA BE2AH UT WOS:000368852400002 ER PT S AU Lookman, T Alexander, FJ Rajan, K AF Lookman, Turab Alexander, Francis J. Rajan, Krishna BE Lookman, T Alexander, FJ Rajan, K TI Information Science for Materials Discovery and Design Preface SO INFORMATION SCIENCE FOR MATERIALS DISCOVERY AND DESIGN SE Springer Series in Materials Science LA English DT Editorial Material; Book Chapter C1 [Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Alexander, Francis J.] Los Alamos Natl Lab, CCS Div, Los Alamos, NM USA. [Rajan, Krishna] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY 14260 USA. RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-23871-5; 978-3-319-23870-8 J9 SPRINGER SER MATER S PY 2016 VL 225 BP V EP VII D2 10.1007/978-3-319-23871-5 PG 3 WC Computer Science, Interdisciplinary Applications; Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Computer Science; Materials Science GA BE2AH UT WOS:000368852400001 ER PT S AU Gubernatis, JE AF Gubernatis, J. E. BE Lookman, T Alexander, FJ Rajan, K TI Data Visualization and Structure Identification SO INFORMATION SCIENCE FOR MATERIALS DISCOVERY AND DESIGN SE Springer Series in Materials Science LA English DT Article; Book Chapter AB For three datasets, all dealing with materials with ABO(3) chemistries, the two data visualizations algorithms of Tsafrir et al. [Bioinformatics 21, 2301 (2005)] were studied and applied. These algorithms permute the distance matrix associated with the data in a way to unveil structure in one case by keeping large-distanced information afar or in the other case by keeping small-distanced information near. Modifications to their proposed numerical implementations were made to enhance effectiveness. The two algorithms were used both in space of the materials and the features, looking for groupings of features and materials. In general, for the datasets considered, when visualized, the features tended to show more distinctive structure (clustering) than the materials. For enhanced grouping of materials, the initial studies point to the importance of feature selection. C1 [Gubernatis, J. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Gubernatis, JE (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jg@lanl.gov NR 10 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-23871-5; 978-3-319-23870-8 J9 SPRINGER SER MATER S PY 2016 VL 225 BP 103 EP 113 DI 10.1007/978-3-319-23871-5_5 D2 10.1007/978-3-319-23871-5 PG 11 WC Computer Science, Interdisciplinary Applications; Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Computer Science; Materials Science GA BE2AH UT WOS:000368852400006 ER PT S AU Kamath, C AF Kamath, Chandrika BE Lookman, T Alexander, FJ Rajan, K TI On the Use of Data Mining Techniques to Build High-Density, Additively-Manufactured Parts SO INFORMATION SCIENCE FOR MATERIALS DISCOVERY AND DESIGN SE Springer Series in Materials Science LA English DT Article; Book Chapter ID POWDER-BED FUSION; LASER; SIMULATION; MODEL AB The determination of process parameters to build additively-manufactured parts with desired properties remains a challenge, especially as we move from machine to machine or process new materials. In this chapter, we show how we can combine simple simulations and experiments to iteratively constrain the design space of parameters, and quickly and efficiently identify parameters to create parts with >99% density. Our approach is based on techniques from statistics and data mining, including design of physical and computational experiments, feature selection to identify important variables, and data-driven predictive models that can act as surrogates for the simulations. C1 [Kamath, Chandrika] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. RP Kamath, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM kamath2@llnl.gov NR 22 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-23871-5; 978-3-319-23870-8 J9 SPRINGER SER MATER S PY 2016 VL 225 BP 141 EP 155 DI 10.1007/978-3-319-23871-5_7 D2 10.1007/978-3-319-23871-5 PG 15 WC Computer Science, Interdisciplinary Applications; Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Computer Science; Materials Science GA BE2AH UT WOS:000368852400008 ER PT S AU Balachandran, PV Benedek, NA Rondinelli, JM AF Balachandran, Prasanna V. Benedek, Nicole A. Rondinelli, James M. BE Lookman, T Alexander, FJ Rajan, K TI Symmetry-Adapted Distortion Modes as Descriptors for Materials Informatics SO INFORMATION SCIENCE FOR MATERIALS DISCOVERY AND DESIGN SE Springer Series in Materials Science LA English DT Article; Book Chapter ID BINARY COMPOUNDS; PEROVSKITES; RADII AB In this paper, we explore the application of symmetry-mode analysis for establishing structure-property relationships. The approach involves describing a distorted (low-symmetry) structure as arising from a (high-symmetry) parent structure with one or more static symmetry-breaking structural distortions. The analysis utilizes crystal structure data of parent and distorted phase as input and decomposes the distorted structure in terms of symmetry-adapted distortion-modes. These distortion-modes serves as the descriptors for materials informatics. We illustrate the potential impact of these descriptors using perovskite nickelates as an example and show that it provides a useful construct beyond the traditional tolerance factor paradigm found in perovskites to understand the atomic scale origin of physical properties, specifically how unit cell level modifications correlate with macroscopic functionality. C1 [Balachandran, Prasanna V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Benedek, Nicole A.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Rondinelli, James M.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60628 USA. RP Balachandran, PV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM pbalachandran@lanl.gov; nab83@cornell.edu; jrondinelli@northwestern.edu RI Rondinelli, James/A-2071-2009 OI Rondinelli, James/0000-0003-0508-2175 NR 24 TC 2 Z9 2 U1 1 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-23871-5; 978-3-319-23870-8 J9 SPRINGER SER MATER S PY 2016 VL 225 BP 213 EP 222 DI 10.1007/978-3-319-23871-5_11 D2 10.1007/978-3-319-23871-5 PG 10 WC Computer Science, Interdisciplinary Applications; Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Computer Science; Materials Science GA BE2AH UT WOS:000368852400012 ER PT J AU Jung, NY Han, CE Kim, HJ Yoo, SW Kim, HJ Kim, EJ Na, DL Lockhart, SN Jagust, WJ Seong, JK Seo, SW AF Jung, Na-Yeon Han, Cheol E. Kim, Hee Jin Yoo, Sang Wook Kim, Hee-Jong Kim, Eun-Joo Na, Duk L. Lockhart, Samuel N. Jagust, William J. Seong, Joon-Kyung Seo, Sang Won TI Tract-Specific Correlates of Neuropsychological Deficits in Patients with Subcortical Vascular Cognitive Impairment SO JOURNAL OF ALZHEIMERS DISEASE LA English DT Article DE Diffusion-tensor imaging; neuropsychological correlation; subcortical vascular cognitive impairment; tract-specific statistical analysis; white matter connectivity ID WHITE-MATTER HYPERINTENSITIES; SMALL-VESSEL DISEASE; ALZHEIMERS-DISEASE; HUMAN BRAIN; EXECUTIVE FUNCTION; PROCESSING SPEED; DEMENTIA; VOXEL; NEUROANATOMY; PERMUTATION AB The white matter tract-specific correlates of neuropsychological deficits are not fully established in patients with subcortical vascular cognitive impairment (SVCI), where white matter tract damage may be a critical factor in cognitive impairment. The purpose of this study is to investigate the tract-specific correlates of neuropsychological deficits in SVCI patients using tract-specific statistical analysis (TSSA). We prospectively recruited 114 SVCI patients, and 55 age-, gender-, and education-matched individuals with normal cognition (NC). All participants underwent diffusion weighted imaging and neuropsychological testing. We classified tractography results into fourteen major fiber tracts and analyzed group comparison and correlation with cognitive impairments. Relative to NC subjects, SVCI patients showed decreased fractional anisotropy values in bilateral anterior-thalamic radiation, cingulum, superior-longitudinal fasciculus, uncinate fasciculus, corticospinal tract, and left inferior-longitudinal fasciculus. Focal disruptions in specific tracts were associated with specific cognitive impairments. Our findings suggest that disconnection of specific white matter tracts, especially those neighboring and providing connections between gray matter regions important to certain cognitive functions, may contribute to specific cognitive impairments in SVCI. C1 [Jung, Na-Yeon; Kim, Hee Jin; Na, Duk L.; Seo, Sang Won] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea. [Jung, Na-Yeon; Kim, Hee Jin; Na, Duk L.; Seo, Sang Won] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Neurosci Ctr, Seoul 06351, South Korea. [Jung, Na-Yeon; Kim, Eun-Joo] Pusan Natl Univ, Sch Med, Pusan Natl Univ Hosp, Dept Neurol, Busan, South Korea. [Jung, Na-Yeon; Kim, Eun-Joo] Med Res Inst, Busan, South Korea. [Han, Cheol E.; Yoo, Sang Wook; Kim, Hee-Jong; Seong, Joon-Kyung] Korea Univ, Sch Biomed Engn, 145 Anam Ro,Anam Dong 5 Ga, Seoul 02841, South Korea. [Han, Cheol E.; Yoo, Sang Wook; Kim, Hee-Jong; Seong, Joon-Kyung] Korea Univ, Dept Bioconvergence Engn, Seoul 02841, South Korea. [Na, Duk L.] Sungkyunkwan Univ, SAIHST, Dept Hlth Sci & Technol, Seoul 06351, South Korea. [Lockhart, Samuel N.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Lockhart, Samuel N.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seo, Sang Won] Sungkyunkwan Univ, SAIHST, Dept Clin Res Design & Evaluat, Seoul 06351, South Korea. RP Seo, SW (reprint author), Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea.; Seong, JK (reprint author), Korea Univ, Sch Biomed Engn, 145 Anam Ro,Anam Dong 5 Ga, Seoul 02841, South Korea. EM jkseong@korea.ac.kr; sangwonseo@empal.com FU National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2013-004157, NRF-2013R1A1A2065 365]; National Research Foundation of Korea (NRF) - Korea government: The Ministry of Science, ICT & Future Planning as "the Bio & Medical Technology Development Program" (MSIP) [2015M3A9A7029725]; National Research Foundation of Korea (NRF) - Korea government: The Ministry of Science, ICT & Future Planning as "the Original Technology Research Program for Brain Science" (MSIP) [2015M3C7A1029034] FX This study was supported through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST, No. 2013-004157, NRF-2013R1A1A2065 365), and funded by the Korea government: The Ministry of Science, ICT & Future Planning as "the Bio & Medical Technology Development Program" (MSIP, No. 2015M3A9A7029725), and as "the Original Technology Research Program for Brain Science" (MSIP, No. 2015M3C7A1029034). NR 57 TC 0 Z9 0 U1 0 U2 6 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1387-2877 EI 1875-8908 J9 J ALZHEIMERS DIS JI J. Alzheimers Dis. PY 2016 VL 50 IS 4 BP 1125 EP 1135 DI 10.3233/JAD-150841 PG 11 WC Neurosciences SC Neurosciences & Neurology GA DF0UA UT WOS:000371053400017 PM 26836179 ER PT J AU Huang, SY Retino, A Phan, TD Daughton, W Vaivads, A Karimabadi, H Zhou, M Sahraoui, F Li, GL Yuan, ZG Deng, XH Fu, HS Fu, S Pang, Y Wang, DD AF Huang, S. Y. Retino, A. Phan, T. D. Daughton, W. Vaivads, A. Karimabadi, H. Zhou, M. Sahraoui, F. Li, G. L. Yuan, Z. G. Deng, X. H. Fu, H. S. Fu, S. Pang, Y. Wang, D. D. TI In situ observations of flux rope at the separatrix region of magnetic reconnection SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetic reconnection; flux rope; separatrix; tearing instability ID EARTHS MAGNETOTAIL; DIFFUSION REGION; FIELD; ELECTRON; BOUNDARY; ISLANDS; WAVES AB We present the first in situ observations of a small-scale flux rope locally formed at the separatrix region of magnetic reconnection without large guide field. Bidirectional electron beams (cold and hot beams) and density cavity accompanied by intense wave activity substantiate the crossing of the separatrix region. Density compression and one parallel electron beam are detected inside the flux rope. We suggest that this flux rope is locally generated at the separatrix region due to the tearing instability within the separatrix current layer. This observation sheds new light on the 3-D picture of magnetic reconnection in space plasma. C1 [Huang, S. Y.; Yuan, Z. G.; Fu, S.; Wang, D. D.] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China. [Huang, S. Y.; Retino, A.; Sahraoui, F.] UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France. [Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Vaivads, A.] Swedish Inst Space Phys, Uppsala, Sweden. [Karimabadi, H.] SciberQuest Inc, Del Mar, CA USA. [Zhou, M.; Deng, X. H.; Pang, Y.] Nanchang Univ, Inst Space Sci & Technol, Nanchang, Peoples R China. [Li, G. L.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Fu, H. S.] Beihang Univ, Sch Astronaut, Space Sci Inst, Beijing 100191, Peoples R China. RP Huang, SY (reprint author), Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China.; Huang, SY (reprint author), UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France. EM shiyonghuang@whu.edu.cn RI Daughton, William/L-9661-2013 FU National Natural Science Foundation of China (NSFC) [41174140, 41374168, 41174147, 41404132]; Doctoral Program of Higher Education of China [20110141110043]; China Postdoctoral Science Foundation [2014 M552076, 2015 T80830]; Fundamental Research Fund for the Central Universities [2042014kf0017]; LABEX Plas@Par [ANR-11-IDEX-0004-02] FX This work was supported by the National Natural Science Foundation of China (NSFC) under grants (41174140, 41374168, 41174147 and 41404132), the Doctoral Program of Higher Education of China (20110141110043), China Postdoctoral Science Foundation Funded Project (2014 M552076, 2015 T80830), the Fundamental Research Fund for the Central Universities (2042014kf0017), and by LABEX Plas@Par through a grant managed by the Agence Nationale de la Recherche (ANR), as part of the program "Investissements d'Avenir" under the reference ANR-11-IDEX-0004-02. We thank the Cluster teams and Cluster Active Archive (http://www.cosmos.esa.int/web/csa/access) for the high-quality data. Contributions from W.D. were supposed by NASA's Heliophysics Theory Program, and simulations were performed on Pleiades provided by NASA's HEC Program NR 35 TC 2 Z9 2 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2016 VL 121 IS 1 BP 205 EP 213 DI 10.1002/2015JA021468 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF2CJ UT WOS:000371146900015 ER PT J AU Matsui, H Paulson, KW Torbert, RB Spence, HE Kletzing, CA Kurth, WS Skoug, RM Larsen, BA Breneman, AW AF Matsui, H. Paulson, K. W. Torbert, R. B. Spence, H. E. Kletzing, C. A. Kurth, W. S. Skoug, R. M. Larsen, B. A. Breneman, A. W. TI Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE nonlinearity; chorus waves; geomagnetic storm ID ALLEN PROBES OBSERVATIONS; RADIATION-BELT ELECTRONS; WHISTLER-MODE WAVES; MAGNETOSPHERIC CHORUS; PARTICLE INTERACTIONS; CYCLOTRON MASER; BANDED CHORUS; VLF EMISSIONS; GENERATION; FREQUENCY AB In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of approximate to 0.6nT and >7mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst sampling. Since the rising tone is known as a signature of nonlinearity, a large portion of the waves are regarded as nonlinear at least during the burst sampling periods. These results underline the importance of nonlinearity in the dynamics of chorus waves. We further compare the measurement and the nonlinear theories, based on the inhomogeneity ratio, our own calculation derived from the field equation and the backward wave oscillator model. The wave quantities examined are frequency, amplitude, frequency drift rate, and duration. This type of study is useful to more deeply understand wave-particle interactions and hence may lead to predicting the generation and loss of radiation belt electrons in the future. C1 [Matsui, H.; Paulson, K. W.; Torbert, R. B.; Spence, H. E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Kletzing, C. A.; Kurth, W. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Skoug, R. M.; Larsen, B. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Breneman, A. W.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Matsui, H (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM hiroshi.matsui@unh.edu OI Kletzing, Craig/0000-0002-4136-3348; Paulson, Kristoff/0000-0002-5699-090X FU JHU/APL under NASA [921647, NAS5-01072]; RBSP-ECT by JHU/APL under NASA [NAS5-01072, 967399]; JHU/APL [922613] FX We would like to thank G. B. Hospodarsky, T. F. Averkamp, M. Chutter, and G. Needell for their assistance in analyzing the WFR burst data. We appreciate helpful comments made by C.-L. Huang and C. J. Farrugia on this work. Discussion with A. Nishida and Y. Omura is acknowledged. Van Allen Probes' data are available at the following websites: https://emfisis.physics.uiowa.edu, http://www.rbsp-ect.lanl.gov, and http://www.space.umn.edu/missions/rbspefw-home-university-of-minnesota/. The Dst index is provided by the World Data Center at Kyoto University (http://wdc.kugi.kyoto-u.ac.jp). Work at the University of Iowa and the University of New Hampshire was performed under support from JHU/APL contract 921647 under NASA's Prime contract NAS5-01072. This work was supported by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's Prime contract NAS5-01072. The work by the EFW team was conducted under JHU/APL contract 922613 (RBSP-EFW). NR 62 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2016 VL 121 IS 1 BP 358 EP 373 DI 10.1002/2015JA021772 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF2CJ UT WOS:000371146900026 ER PT J AU Reeves, GD Friedel, RHW Larsen, BA Skoug, RM Funsten, HO Claudepierre, SG Fennell, JF Turner, DL Denton, MH Spence, HE Blake, JB Baker, DN AF Reeves, Geoffrey D. Friedel, Reiner H. W. Larsen, Brian A. Skoug, Ruth M. Funsten, Herbert O. Claudepierre, Seth G. Fennell, Joseph F. Turner, Drew L. Denton, Mick H. Spence, Harlan E. Blake, J. Bernard Baker, Daniel N. TI Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radiation belts; outer zone; inner zone; slot region; acceleration; energetic particles ID VAN ALLEN PROBES; RADIATION-BELT ELECTRONS; RELATIVISTIC ELECTRONS; SEED POPULATION; ACCELERATION; PARTICLE; PLASMASPHERE; STORM; WAVE; DIFFUSION AB We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of slot filling events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions. C1 [Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; Denton, Mick H.] New Mexico Consortium, Los Alamos, NM USA. [Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Blake, J. Bernard] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. [Spence, Harlan E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Spence, Harlan E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Baker, Daniel N.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Reeves, GD (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA.; Reeves, GD (reprint author), New Mexico Consortium, Los Alamos, NM USA. EM geoff@reevesresearch.org OI Funsten, Herbert/0000-0002-6817-1039; Reeves, Geoffrey/0000-0002-7985-8098 FU RBSP-Energetic Particle, Composition, and Thermal Plasma under NASA [NAS5-01072] FX This work was supported by RBSP-Energetic Particle, Composition, and Thermal Plasma funding under NASA's prime contract NAS5-01072. The authors acknowledge the International Space Sciences Institute (ISSI) and the participants in a 2014 ISSI workshop, particularly Matina Gkioulidou, Jean-Francois Ripoll, and Ondrej Santolik. All Van Allen Probes (RBSP) observations used in this study, along with display and analysis software, are publicly available at the Web site http://www.RBSP-ect.lanl.gov/. NR 43 TC 17 Z9 17 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2016 VL 121 IS 1 BP 397 EP 412 DI 10.1002/2015JA021569 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF2CJ UT WOS:000371146900029 PM 27818855 ER PT J AU Yu, MZ McCulloch, WD Huang, ZJ Trang, BB Lu, J Amine, K Wu, YY AF Yu, Mingzhe McCulloch, William D. Huang, Zhongjie Trang, Brittany B. Lu, Jun Amine, Khalil Wu, Yiying TI Solar-powered electrochemical energy storage: an alternative to solar fuels SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Review ID REDOX FLOW BATTERY; METAL-ORGANIC FRAMEWORKS; WALLED CARBON NANOTUBES; SELF-CHARGING CAPACITOR; DUAL-PHASE ELECTROLYTES; LITHIUM-SULFUR BATTERY; SAUR VIDDYUT KOSH; VANADIUM REDOX; HYDROGEN-STORAGE; PHOTOELECTRIC CONVERSION AB Because of the intermittent nature of solar radiation, being able to simultaneously convert and store solar energy is a significant advance for efficiently harnessing solar energy. Solar fuels have already been recognized as a promising method towards this goal and have attracted tremendous research interest recently. Alternatively, this goal can also be achieved by using the solar-powered electrochemical energy storage (SPEES) strategy, which integrates a photoelectrochemical cell and an electrochemical cell into a single device. The integrated device is able to harvest solar energy and store it in situ within the device via a photocharging process and also distribute the energy as electric power when needed. This essay reviews the past SPEES research and analyzes its future prospects with a special emphasis on chemical design and material choices. We hope that the article will help draw more research attention to this field and stimulate additional exciting investigations toward more efficient solar energy utilization. C1 [Yu, Mingzhe; McCulloch, William D.; Huang, Zhongjie; Trang, Brittany B.; Wu, Yiying] Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA. [Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Wu, YY (reprint author), Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA. EM wu@chemistry.ohio-state.edu RI Yu, Mingzhe/N-5907-2016; OI McCulloch, William/0000-0003-2610-1611 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-07ER46427]; Center for Electrical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We acknowledge funding support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering (Award: DE-FG02-07ER46427). We thank C. Chen for her detailed and valuable comments on the manuscript. J. Lu, and K. Amine are supported by the Center for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 131 TC 9 Z9 9 U1 22 U2 97 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 8 BP 2766 EP 2782 DI 10.1039/c5ta06950e PG 17 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DF1CZ UT WOS:000371077300002 ER PT J AU Young, JL Steirer, KX Dzara, MJ Turner, JA Deutsch, TG AF Young, J. L. Steirer, K. X. Dzara, M. J. Turner, J. A. Deutsch, T. G. TI Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SEMICONDUCTOR ELECTRODES; WATER; SURFACES; CELLS; ILLUMINATION; GENERATION; EFFICIENCY; EPILAYERS; BEHAVIOR; AIR AB We report on the remarkable stability of unmodified, epitaxially grown GaAs photocathodes during hydrogen evolution at -15 mA cm(-2) in 3 M sulfuric acid electrolyte. Contrary to the perception regarding instability of III-V photoelectrodes, results here show virtually no performance degradation and minimal etching after 120 hours. C1 [Young, J. L.; Steirer, K. X.; Turner, J. A.; Deutsch, T. G.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Young, J. L.] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA. [Dzara, M. J.] Rochester Inst Technol, Dept Chem Engn, Rochester, NY 14623 USA. RP Deutsch, TG (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Deutsch@nrel.gov OI Deutsch, Todd/0000-0001-6577-1226 FU National Science Foundation [DGE 1144083]; Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory (NREL); U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program; U.S. Department of Energy (DOE) Fuel Cell Technology Office [DEAC36-08-GO28308]; NREL FX We acknowledge Henning Doscher and Alan Kibbler for synthesizing the GaAs epilayers. JLY acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144083. KXS was supported by the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory (NREL). MJD was supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. This work was supported by the U.S. Department of Energy (DOE) Fuel Cell Technology Office under Contract No. DEAC36-08-GO28308 with NREL. NR 36 TC 4 Z9 4 U1 8 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 8 BP 2831 EP 2836 DI 10.1039/c5ta07648j PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DF1CZ UT WOS:000371077300007 ER PT J AU Greenaway, AL Davis, AL Boucher, JW Ritenour, AJ Alonid, S Boettcher, SW AF Greenaway, Ann L. Davis, Allison L. Boucher, Jason W. Ritenour, Andrew J. Alonid, Shaul Boettcher, Shannon W. TI Gallium arsenide phosphide grown by close-spaced vapor transport from mixed powder sources for low-cost III-V photovoltaic and photoelectrochemical devices SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SEMICONDUCTOR-LIQUID-JUNCTION; N-GAAS PHOTOELECTRODES; TANDEM SOLAR-CELLS; EPITAXIAL-GROWTH; WATER-VAPOR; HYDROGEN-PRODUCTION; PHASE EPITAXY; GAAS1-XPX; ABSORPTION; EFFICIENCY AB We report the heteroepitaxial growth of variable composition n-GaAs1-xPx directly on GaAs substrates via close-spaced vapor transport using mixed GaAs-GaP powder sources. GaAs1-xPx films showed an average 10% reduction in atomic concentration of phosphorous from the source material, and ten GaAs0.7P0.3 films were grown with reproducible composition from a single source pellet. Non-aqueous photoelectrochemical measurements were used to assess electronic quality, with the best short-circuit photocurrent of 6.7 mA cm(-2) and open-circuit photovoltage of 0.915 V for n-GaAs0.7P0.3 with a carrier concentration of 2 x 10(17) cm(-3). The best Hall electron mobility for this composition was 1570 cm(2) V-1 s(-1). Cross-sectional transmission electron microscopy of GaAs0.7P0.3 shows single-crystal structure with few defects. We conclude that CSVT is a promising route to the growth of ternary III-V materials like GaAs1-xPx for low-cost high-efficiency tandem photoelectrochemical or photovoltaic devices. C1 [Greenaway, Ann L.; Ritenour, Andrew J.; Boettcher, Shannon W.] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA. [Davis, Allison L.] Pk Univ, Dept Nat & Phys Sci, Parkville, MO 64152 USA. [Boucher, Jason W.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Alonid, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Boettcher, SW (reprint author), Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA. EM swb@uoregon.edu OI Greenaway, Ann/0000-0001-6681-9965 FU Department of Energy SunShot Initiative BRIDGE program [DE-EE0005957]; Research Corporation for Scientific Advancement through a Scialog Award; NSF [DGE-0829517]; M. J. Murdock Charitable Trust; W. M. Keck Foundation; ONAMI; NSF; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was funded by the Department of Energy SunShot Initiative BRIDGE program (DE-EE0005957) and by the Research Corporation for Scientific Advancement through a Scialog Award. A. L. G. acknowledges support from a NSF Graduate Research Fellowship (DGE-0829517). We acknowledge the use of the CAMCOR shared instrument facility at the University of Oregon, which is supported by grants from the M. J. Murdock Charitable Trust, the W. M. Keck Foundation, ONAMI, and the NSF. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. We thank Kurt Langworthy, Dr Stephen Golledge, Robert Fischer, Joshua Razink, Matthew Kast, Dr Adam Smith, Michaela Burke, Lisa Enman and Benjamin Bachman for their support on this project. In memory of T. J. Mills. NR 53 TC 3 Z9 3 U1 6 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 8 BP 2909 EP 2918 DI 10.1039/c5ta06900a PG 10 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DF1CZ UT WOS:000371077300016 ER PT J AU Lee, K Lu, YG Chuang, CH Ciston, J Dukovic, G AF Lee, Kyureon Lu, Ying-Gang Chuang, Chi-Hung Ciston, Jim Dukovic, Gordana TI Synthesis and characterization of (Ga1-xZnx)(N1-xOx) nanocrystals with a wide range of compositions SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SOLID-SOLUTION PHOTOCATALYST; VISIBLE-LIGHT-DRIVEN; MIXED-OXIDE NANOPARTICLES; ELECTRONIC-STRUCTURE; HYDROGEN-PRODUCTION; PHOTOELECTROCHEMICAL PROPERTIES; BAND-GAP; MO BIVO4; WATER; ZNO AB We describe the synthesis and characterization of wurtzite (Ga1-xZnx)(N1-xOx) nanocrystals with a wide range of compositions and a focus on properties relevant for solar fuel generation. (Ga1-xZnx)(N1-xOx), a solid solution of GaN and ZnO, is an intriguing material because it exhibits composition-dependent visible absorption even though the parent semiconductors absorb in the UV. When functionalized with co-catalysts, (Ga1-xZnx)(N1-xOx) is also capable of water splitting under visible irradiation. Here, we examine the synthesis of (Ga1-xZnx)(N1-xOx) nanocrystals to understand how they form by nitridation of ZnO and ZnGa2O4 nanocrystalline precursors. We find that the ZnO precursor is critical for the formation of crystalline (Ga1-xZnx)(N1-xOx) at 650 degrees C, consistent with a mechanism in which wurtzite (Ga1-xZnx)(N1-xOx) nucleates topotactically on wurtzite ZnO at an interface with ZnGa2O4. Using this information, we expand the range of compositions from previously reported 0.30 <= x <= 0.87 to include the low-x and high-x ends of the range. The resulting compositions, 0.06 <= x <= 0.98, constitute the widest range of (Ga1-xZnx)(N1-xOx) compositions obtained by one synthetic method. We then examine how the band gap depends on sample composition and find a minimum of 2.25 eV at x = 0.87, corresponding to a maximum possible solar-to-H-2 power conversion efficiency of 12%. Finally, we examine the photoelectrochemical (PEC) oxidation behavior of thick films of (Ga1-xZnx)(N1-xOx) nanocrystals with x = 0.40, 0.52, and 0.87 under visible illumination. (Ga1-xZnx)(N1-xOx) nanocrystals with x = 0.40 exhibit solar PEC oxidation activity that, while too low for practical applications, is higher than that of bulk (Ga1-xZnx)(N1-xOx) of the same composition. The highest photocurrents are observed at x = 0.52, even though x = 0.87 absorbs more visible light, illustrating that the observed photocurrents are a result of an interplay of multiple parameters which remain to be elucidated. This set of characterizations provides information useful for future studies of composition-dependent PEC properties of nanoscale (Ga1-xZnx)(N1-xOx). C1 [Lee, Kyureon; Lu, Ying-Gang; Chuang, Chi-Hung; Dukovic, Gordana] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. [Ciston, Jim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. RP Dukovic, G (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM Gordana.Dukovic@colorado.edu FU Beckman Young Investigator Award from the Arnold and Mabel Beckman Foundation; Petroleum Research Fund of the American Chemical Society; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded primarily by the Beckman Young Investigator Award from the Arnold and Mabel Beckman Foundation. Support was also provided by the Petroleum Research Fund of the American Chemical Society. XRD patterns, diffuse reflectance spectra, and PEC data were acquired at the National Renewable Energy Laboratory. We thank J. Seabold for PEC training and T. Deutsch and C. Koval for helpful discussions. STEM imaging was carried out at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank C. Song and K. Bustillo for technical support at the Molecular Foundry. NR 60 TC 4 Z9 4 U1 14 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 8 BP 2927 EP 2935 DI 10.1039/c5ta04314j PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DF1CZ UT WOS:000371077300018 ER PT J AU Lengyel, M Shen, KY Lanigan, DM Martin, JM Zhang, XF Axelbaum, RL AF Lengyel, Miklos Shen, Kuan-Yu Lanigan, Deanna M. Martin, Jonathan M. Zhang, Xiaofeng Axelbaum, Richard L. TI Trace level doping of lithium-rich cathode materials SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID LI-ION BATTERIES; SPRAY-PYROLYSIS; VOLTAGE-FADE; ELECTROCHEMICAL PROPERTIES; STRUCTURAL TRANSFORMATION; OXIDE; ELECTRODES; INTERCALATION; CHEMISTRY AB Lithium ion batteries have revolutionized portable electronics and have the potential to electrify the transportation sector. Lithium-rich cathode materials with the composition xLi(2)MnO(3)(1-x) Li(Ni1/3Mn1/3Co1/3)O-2 have received considerable attention as candidates for Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Vehicles (EVs). Cathodes made from these materials display high capacity (>200 mAhg(-1)) and good cycling stability, offering twice the energy density of currently available intercalation materials. Unfortunately, their performance is plagued by voltage fade due to a layered-spinel phase transformation. Herein, using spray pyrolysis, we show that certain inexpensive trace level (<= 1%) dopants can help in mitigating voltage fade, when the material is cycled between 2.0-4.6 V. The dopants lead to greater capacity loss than what would be expected from a capacity that is strictly based on a change in the transitional-metal oxidation state. The results imply that a portion of the capacity of these materials comes from reversible oxygen chemistry. These findings could put a different perspective on fade mechanism prevention. C1 [Lengyel, Miklos; Shen, Kuan-Yu; Lanigan, Deanna M.; Axelbaum, Richard L.] Washington Univ, Dept Energy Environm & Chem Engn, One Brookings Dr, St Louis, MO 63130 USA. [Zhang, Xiaofeng] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Martin, Jonathan M.] Univ Calif Santa Barbara, Dept Chem Engn, Lagoon Rd, Isla Vista, CA 93117 USA. RP Axelbaum, RL (reprint author), 1 Brookings Dr,Campus Box 1180, St Louis, MO 63130 USA. EM axelbaum@wustl.edu FU NSF; X-tend Energy LLC [0928964]; Nano Research Facility (NRF); National Science Foundation [ECS-0335765]; Department of Energy, Environmental, and Chemical Engineering; WUSTL FX The authors are grateful to the NSF and X-tend Energy LLC for support under Grant No. 0928964. The authors would like to thank Gal Atlas for helpful discussions, Hope Bretscher and Matt Tracy for their assistance with material preparation and testing. This work was also supported by the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under Grant No. ECS-0335765. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NRF is part of the School of Engineering and Applied Science at Washington University in St. Louis. RLA and Washington University may receive income based on a license of related technology by the University to X-tend Energy, LLC. J. M. M. is grateful to the Energy Research with Global Reach (NSF REU program); Department of Energy, Environmental, and Chemical Engineering; WUSTL for support. NR 28 TC 3 Z9 3 U1 10 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 9 BP 3538 EP 3545 DI 10.1039/c5ta07764h PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DF1DC UT WOS:000371077600042 ER PT J AU Lemieux, P Wood, J Drake, J Minamyer, S Silvestri, E Yund, C Nichols, T Ierardi, M Amidan, B AF Lemieux, P. Wood, J. Drake, J. Minamyer, S. Silvestri, E. Yund, C. Nichols, T. Ierardi, M. Amidan, B. TI Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article AB The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test. Implications: Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities. C1 [Lemieux, P.; Wood, J.; Drake, J.; Minamyer, S.; Silvestri, E.; Yund, C.; Nichols, T.] US EPA, Natl Homeland Secur Res Ctr, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Ierardi, M.] US EPA, Off Resource Conservat & Recovery, Waste Characterizat Branch, Washington, DC 20460 USA. [Amidan, B.] Pacific NW Natl Lab, Appl Stat & Computat Modeling Grp, Seattle, WA USA. RP Lemieux, P (reprint author), US EPA, NHSRC, 109 TW Alexander Dr E343-06, Res Triangle Pk, NC 27711 USA. EM Lemieux.paul@epa.gov OI Wood, Joseph/0000-0001-6316-9418 NR 7 TC 0 Z9 0 U1 2 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1096-2247 EI 2162-2906 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PY 2016 VL 66 IS 1 BP 17 EP 27 DI 10.1080/10962247.2015.1096865 PG 11 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DF1HX UT WOS:000371091600003 PM 26479121 ER PT J AU Dai, YL Srinivasan, V AF Dai, Yiling Srinivasan, Venkat TI On Graded Electrode Porosity as a Design Tool for Improving the Energy Density of Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; CAPACITY FADE; EXPERIMENTAL VALIDATION; TRANSPORT-PROPERTIES; POROUS-ELECTRODE; IRON-PHOSPHATE; INSERTION CELL; OPTIMIZATION; MODEL; PERFORMANCE AB As the need for higher energy density batteries increases, there have been numerous attempts at tuning the design of the battery electrodes to improve performance. Increasing the electrode loading remains a straightforward method to increase the energy density. Li-ion batteries are typically liquid phase limited; therefore, battery designers attempt to increase the electrode thickness and decrease the porosity until polarization losses become significant. It is in this context that a graded porosity, with varying porosity across electrode, has been explored to reduce liquid phase limitations and thereby decrease the polarization losses. In the literature, mathematical models have been used to suggest that varying porosity designs can lead to improved energy density. In this paper we show that such an enhanced improvement is an artifact of the previous models using arbitrary base cases, and that a similar improvement in energy is readily achievable by judicious choice of a constant porosity. A more careful comparison, as shown in this paper, suggests only a marginal improvement in energy density. Here, we show the methodology used to reach this conclusion and detail the underlying reason for this result. (C) The Author(s) 2015 Published by ECS. All rights reserved. C1 [Dai, Yiling; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA. [Dai, Yiling; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resource Div, Berkeley, CA 94720 USA. RP Dai, YL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA.; Dai, YL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resource Div, Berkeley, CA 94720 USA. EM YilingDai@lbl.gov RI DAI, YILING/L-2430-2016 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES). The authors would like to Dr. Kenneth Higa (LBNL), Jing-Yang Wang (University of California, Berkeley) for fruitful discussions. NR 44 TC 4 Z9 4 U1 11 U2 28 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A406 EP A416 DI 10.1149/2.0301603jes PG 11 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500012 ER PT J AU DeWitt, S Hahn, N Zavadil, K Thornton, K AF DeWitt, S. Hahn, N. Zavadil, K. Thornton, K. TI Computational Examination of Orientation-Dependent Morphological Evolution during the Electrodeposition and Electrodissolution of Magnesium SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID SELECTIVE-AREA EPITAXY; QUANTUM-DOT FORMATION; RECHARGEABLE BATTERY; DEPOSITION; ELECTROLYTE; LEVEL; TETRAHYDROFURAN; DYNAMICS; BEHAVIOR; GROWTH AB A new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yield deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. The morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution. (C) The Author(s) 2015 Published by ECS. All rights reserved. C1 [DeWitt, S.; Thornton, K.] Univ Michigan, Joint Ctr Energy Storage Res, Ann Arbor, MI 48109 USA. [DeWitt, S.; Thornton, K.] Univ Michigan, Applied Phys Program, Ann Arbor, MI 48109 USA. [Hahn, N.; Zavadil, K.] Sandia Natl Labs, Joint Ctr Energy Storage Res, POB 5800, Albuquerque, NM 87185 USA. [Thornton, K.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Thornton, K (reprint author), Univ Michigan, Joint Ctr Energy Storage Res, Ann Arbor, MI 48109 USA.; Thornton, K (reprint author), Univ Michigan, Applied Phys Program, Ann Arbor, MI 48109 USA.; Thornton, K (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM kthorn@umich.edu OI /0000-0002-1227-5293; DeWitt, Stephen/0000-0002-9550-293X FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. S. D. would also like to thank Drs. Hui-Chia Yu and Larry Aagesen for discussions regarding how their previous work could be applied to this research. NR 39 TC 3 Z9 3 U1 6 U2 35 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A513 EP A521 DI 10.1149/2.0781603jes PG 9 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500024 ER PT J AU Pan, BF Zhou, DH Huang, JH Zhang, L Burrell, AK Vaughey, JT Zhang, ZC Liao, C AF Pan, Baofei Zhou, Dehua Huang, Jinhua Zhang, Lu Burrell, Anthony K. Vaughey, John T. Zhang, Zhengcheng Liao, Chen TI 2,5-Dimethoxy-1,4-Benzoquinone (DMBQ) as Organic Cathode for Rechargeable Magnesium-Ion Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID WIDE ELECTROCHEMICAL WINDOWS; REDOX FLOW BATTERY; POSITIVE-ELECTRODE; LITHIUM BATTERIES; MG BATTERIES; STABILITY; CORROSION; STORAGE; SALTS AB 2,5-Dimethoxy-1,4-benzoquinone (DMBQ) was reinvestigated as a cathode material with magnesium electrolytes that are capable of plating/stripping magnesium for rechargeable magnesium-ion batteries. Two electrolytes, the magnesium bis(trifluoromethylsulfonyl)imide mixed with MgCl2 in dimethoxyethane (Mg(TFSI)(2)-2MgCl(2) in DME) electrolyte, and the Mg(TFSI)(2) in diglyme were selected. The Mg(TFSI)(2)-2MgCl(2) in DME enabled Mg-DMBQ batteries with a discharge potentials above 2.0 V vs Mg/Mg2+, which is superior to the previous reported potential in Mg-DMBQ batteries with conventional magnesium salt-based electrolytes (1.1 V, vs Mg/Mg2+), and also excels the well-known Chevrel phase Mo6S8 in magnesium-ion batteries (1.2 V, vs Mg/Mg2+). (C) 2016 The Electrochemical Society. All rights reserved. C1 [Pan, Baofei; Zhou, Dehua; Huang, Jinhua; Zhang, Lu; Burrell, Anthony K.; Vaughey, John T.; Zhang, Zhengcheng; Liao, Chen] Argonne Natl Lab, Joint Ctr Energy Storage Res, Chem & Sci Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Liao, C (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, Chem & Sci Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM liaoc@anl.gov OI Vaughey, John/0000-0002-2556-6129 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CH11357. The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory. NR 39 TC 6 Z9 6 U1 19 U2 59 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A580 EP A583 DI 10.1149/2.0021605jes PG 4 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500034 ER PT J AU Rus, ED Moon, GD Bai, JM Steingart, DA Erdonmez, CK AF Rus, Eric D. Moon, Geon Dae Bai, Jianming Steingart, Daniel A. Erdonmez, Can K. TI Electrochemical Behavior of Electrolytic Manganese Dioxide in Aqueous KOH and LiOH Solutions: A Comparative Study SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID X-RAY-DIFFRACTION; SPINEL TRANSFORMATION; ALKALINE ELECTROLYTE; DISCHARGE MECHANISM; LITHIUM BATTERIES; RECHARGEABLE LI; REDOX PROCESSES; ION BATTERIES; MNO2; GAMMA-MNO2 AB As an inexpensive and high capacity oxidant, electrolytic manganese dioxide (gamma-MnO2) is of interest as a cathode for secondary aqueous batteries. Electrochemical behavior of gamma-MnO2 was characterized in aqueous 5.0 M KOH and LiOH solutions, and found to depend strongly upon cation identity. In LiOH and mixed LiOH / KOH solutions, Li-ion intercalation appeared to operate in competition with proton intercalation, being favored at higher [Li+] and, for mixed electrolytes, lower sweep rates. Electrochemical and in situ X-ray diffraction data indicated that gamma-MnO2 underwent a chemically irreversible transformation upon the first reduction in LiOH solution, while in KOH solution, structure was largely unchanged after the first cycle. These experiments with gamma-MnO2 as well as with a closely-related, ramsdellite-like sample, suggest that depending on sample morphology / rate capability, the irreversible process proceeds either through a solid-solution reaction or a two-phase reaction followed by a solid-solution reaction. While discharge capacity and capacity retention during galvanostatic cycling of gamma-MnO2 were worse in LiOH than in KOH solution, some improvement was noted in a mixed LiOH / KOH solution. (C) The Author(s) 2015 Published by ECS. All rights reserved. C1 [Rus, Eric D.; Moon, Geon Dae; Erdonmez, Can K.] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Steingart, Daniel A.] Princeton Univ, Mech & Aerosp Engn, Princeton, NJ 08540 USA. [Steingart, Daniel A.] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08540 USA. RP Erdonmez, CK (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM erdonmez@gmail.com FU Laboratory Directed Research and Development program of Brookhaven National Laboratory (LDRD-BNL) [DE-AC02-98CH 10866]; U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work was supported by the Laboratory Directed Research and Development program of Brookhaven National Laboratory (LDRD-BNL) under Contract No. DE-AC02-98CH 10866 with the U.S. Department of Energy. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. We thank Dr. Jianqing Zhao for assistance with the Rigaku diffractometer. NR 47 TC 2 Z9 2 U1 6 U2 19 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A356 EP A363 DI 10.1149/2.1011602jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500005 ER PT J AU Shi, W Zheng, JM Xiao, J Chen, XL Polzin, BJ Zhang, JG AF Shi, Wei Zheng, Jianming Xiao, Jie Chen, Xilin Polzin, Bryant J. Zhang, Ji-Guang TI The Effect of Entropy and Enthalpy Changes on the Thermal Behavior of Li-Mn-Rich Layered Composite Cathode Materials SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; ELECTROCHEMICAL PERFORMANCE; ANOMALOUS CAPACITY; SITE DISORDER; VOLTAGE FADE; ELECTRODES; SPINEL; LINI0.5MN1.5O4; SURFACE AB The entropy changes (Delta S) and enthalpy changes (Delta H) of redox reactions occurring in the Li-rich, Mn-rich (LMR) layered composite cathode material Li1.2Ni0.15Co0.10Mn0.55O2 are systematically investigated using an electrochemical thermodynamic measurement system. The LMR cathode shows much higher Delta S than other conventional layered-structure cathode materials during the initial activation of the Li2MnO3 component associated with the concurrent extensive Li+ ion removal, oxygen evolution, and structural rearrangement. The evolution of entropy change during cycling correlates well with the transformation from layered to spinel-like phase. The reversible heat generation rate related to entropy changes dominates the thermal behavior of the LMR cathode at low rate conditions, especially during the initial charging process. The contribution of the reversible heat generation rate decreases in the subsequent cycles due to increased overpotential during cycling. These results provide valuable information on the fundamental mechanism of voltage fade in LMR cathodes and for thermal management of batteries using these materials. (C) 2016 The Electrochemical Society. All rights reserved. C1 [Shi, Wei; Zheng, Jianming; Xiao, Jie; Chen, Xilin; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Shi, Wei] Beijing Jiaotong Univ, Sch Elect Engn, Natl Act Distribut Network Technol Res Ctr, Beijing 100044, Peoples R China. [Polzin, Bryant J.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Zhang, JG (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM jiguang.zhang@pnnl.gov RI Zheng, Jianming/F-2517-2014 OI Zheng, Jianming/0000-0002-4928-8194 FU Office of Vehicle Technologies of the U. S. Department of Energy under the Advanced Battery Materials Research (BMR) program [DE-AC02-05CH11231, 18769] FX This work is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769, under the Advanced Battery Materials Research (BMR) program. W. Shi and J.M. Zheng contributed equally to this work. NR 31 TC 1 Z9 1 U1 6 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A571 EP A577 DI 10.1149/2.0031605jes PG 7 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500032 ER PT J AU Takahashi, K Higa, K Mair, S Chintapalli, M Balsara, N Srinivasan, V AF Takahashi, Kenji Higa, Kenneth Mair, Sunil Chintapalli, Mahati Balsara, Nitash Srinivasan, Venkat TI Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; ATOMIC-FORCE MICROSCOPY; POLY(VINYLIDENE FLUORIDE); NEGATIVE ELECTRODES; POLYACRYLIC-ACID; AGING MECHANISMS; YOUNGS MODULUS; VOLUME CHANGES; INDUCED STRESS; CYCLE LIFE AB Mechanical failure modes of a graphite/polyvinylidene difluoride (PVDF) composite electrode for lithium-ion batteries were investigated by combining realistic stress-stain tests and mathematical model predictions. Samples of PVDF mixed with conductive additive were prepared in a similar way to graphite electrodes and tested while submerged in electrolyte solution. Young's modulus and tensile strength values of wet samples were found to be approximately one-fifth and one-half of those measured for dry samples. Simulations of graphite particles surrounded by binder layers given the measured material property values suggest that the particles are unlikely to experience mechanical damage during cycling, but that the fate of the surrounding composite of PVDF and conductive additive depends completely upon the conditions under which its mechanical properties were obtained. Simulations using realistic property values produced results that were consistent with earlier experimental observations. (C) The Author(s) 2015 Published by ECS. All rights reserved. C1 [Takahashi, Kenji] Toyota Motor Co Ltd, Hybrid Vehicle Battery Unit, Dev Div, Toyota, Aichi 4718571, Japan. [Takahashi, Kenji; Higa, Kenneth; Mair, Sunil; Balsara, Nitash; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Chintapalli, Mahati; Balsara, Nitash] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chintapalli, Mahati; Balsara, Nitash] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Balsara, Nitash] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Srinivasan, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM Vsrinivasan@lbl.gov FU Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231] FX The authors gratefully acknowledge Steve Ferreira of the Lawrence Berkeley National Laboratory (LBNL) for his invaluable advice in fabricating the test assembly, Yanbao Fu (LBNL) and Gao Liu (LBNL) for their guidance in sample fabrication, Tiffany Ho (LBNL) for her helpful comments during the preparation of this paper, Rafael Oliveira (Federal University of Sao Joao del-Rei, Brazil) and Dennis Dunnigan (University of California, Berkeley) for their exploratory experimental efforts, and contributors to the Python, NumPy, SciPy, and Gnuplot software projects, which were used in this work. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 under the Batteries for Advanced Transportation Technologies (BATT) Program. The first two authors share equal credit for this work. KT developed and implemented the mathematical model, analyzed simulation results, and assisted with experiments. KH developed the test assembly and experimental procedures, assisted in model development, analyzed simulation and experimental results, fabricated samples, and performed experiments. SM fabricated samples and performed experiments. MC performed differential scanning calorimetry experiments and calculations with the guidance of NB. KT and VS conceived this project. VS guided the development and documentation of this project. NR 40 TC 8 Z9 8 U1 9 U2 29 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A385 EP A395 DI 10.1149/2.0271603jes PG 11 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500009 ER PT J AU Trask, SE Pupek, KZ Gilbert, JA Klett, M Polzin, BJ Jansen, AN Abraham, DP AF Trask, Stephen E. Pupek, Krzysztof Z. Gilbert, James A. Klett, Matilda Polzin, Bryant J. Jansen, Andrew N. Abraham, Daniel P. TI Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; FLUOROETHYLENE CARBONATE; VINYLENE CARBONATE; POUCH CELLS; ANODES; BINDERS; STABILITY; COMPOSITE; NANOCOMPOSITE; FABRICATION AB The energy density of lithium-ion cells can be significantly increased by the use of silicon-containing negative electrodes. However, the long-term performance of these cells is limited by the stability of the silicon electrode-electrolyte interface, which is continually disrupted during electrochemical cycling. Therefore, the development of electrolyte systems that enhance the stability of this interface is a critical need. In this article, we examine the cycling of similar to 20 mAh pouch cells with lithium bis(fluorosulfonyl) imide (LiFSI)-containing carbonate-based electrolytes, silicon-graphite negative electrodes, and Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2 based positive electrodes. The effect of fluoroethylene carbonate (FEC) and vinylene carbonate (VC) addition on cell performance is also examined and compared to the performance of our baseline LiPF6-containing cells. Our data show that cells containing only LiFSI show rapid loss of capacity, whereas additions of FEC and VC significantly improve cell capacity retention. Furthermore, the performance of LiFSI-FEC and LiPF6-FEC cells are very similar indicating that the electrolyte salts play a much smaller role in performance degradation than the electrolyte solvent. Future efforts to enhance longevity of cells with silicon-graphite negative electrodes will thereby focus on developing alternative solvent systems. (C) The Author(s) 2015 Published by ECS. All rights reserved. C1 [Trask, Stephen E.; Pupek, Krzysztof Z.; Gilbert, James A.; Klett, Matilda; Polzin, Bryant J.; Jansen, Andrew N.; Abraham, Daniel P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abraham@anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU U.S. Department of Energy's Vehicle Technologies Program (DOE-VTP); Applied Battery Research (ABR) for Transportation Program; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Support from the U.S. Department of Energy's Vehicle Technologies Program (DOE-VTP), specifically from Peter Faguy and Dave Howell, is gratefully acknowledged. The electrodes and cells used in this article were fabricated at Argonne's Cell Analysis, Modeling and Prototyping (CAMP) Facility, and the electrolytes were prepared at Argonne's Materials Engineering Research Facility (MERF). Both facilities are supported within the core funding of the Applied Battery Research (ABR) for Transportation Program. We are grateful to team members at both facilities, especially D. Baker, D. Dees, W. Lu, G. Krumdick and T. Dzwiniel for their help and guidance.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 29 TC 8 Z9 8 U1 19 U2 51 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A345 EP A350 DI 10.1149/2.0981602jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500003 ER PT J AU Zheng, JM Yan, PF Kan, WH Wang, CM Manthiram, A AF Zheng, Jianming Yan, Pengfei Kan, Wang Hay Wang, Chongmin Manthiram, Arumugam TI A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID HIGH-ENERGY CATHODE; X-RAY-DIFFRACTION; HIGH-CAPACITY; LITHIUM-ION; ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODE; PERFORMANCE; O3-TYPE; OXIDE; STABILITY AB Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g(-1) when discharging at a very high current density of 1500 mA g(-1) (10 C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries. (C) 2016 The Electrochemical Society. All rights reserved. C1 [Zheng, Jianming; Kan, Wang Hay; Manthiram, Arumugam] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Zheng, Jianming; Kan, Wang Hay; Manthiram, Arumugam] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Zheng, Jianming; Yan, Pengfei; Wang, Chongmin] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Manthiram, A (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.; Manthiram, A (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. EM manth@austin.utexas.edu RI yan, pengfei/E-4784-2016; Zheng, Jianming/F-2517-2014 OI yan, pengfei/0000-0001-6387-7502; Zheng, Jianming/0000-0002-4928-8194 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-EE0006447]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-EE0006447. The STEM observation was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 42 TC 1 Z9 2 U1 11 U2 46 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP A584 EP A591 DI 10.1149/2.0041605jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500035 ER PT J AU Alia, SM Pylypenko, S Dameron, A Neyerlin, KC Kocha, SS Pivovar, BS AF Alia, Shaun M. Pylypenko, Svitlana Dameron, Arrelaine Neyerlin, K. C. Kocha, Shyam S. Pivovar, Bryan S. TI Oxidation of Platinum Nickel Nanowires to Improve Durability of Oxygen-Reducing Electrocatalysts SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID REDUCTION REACTION ELECTROCATALYSTS; GALVANIC DISPLACEMENT; SURFACE-COMPOSITION; METHANOL OXIDATION; ALLOY CATALYSTS; NANOTUBES; ELECTRODES; STABILITY; SHELL; PT3NI AB The impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealed Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200 degrees C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Alia, Shaun M.; Dameron, Arrelaine; Neyerlin, K. C.; Kocha, Shyam S.; Pivovar, Bryan S.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Pylypenko, Svitlana] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. RP Pivovar, BS (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. EM bryan.pivovar@nrel.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308] FX Financial support is provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, through contract no. DE-AC36-08GO28308 to the National Renewable Energy Laboratory. NR 34 TC 2 Z9 2 U1 16 U2 31 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 3 BP F296 EP F301 DI 10.1149/2.0081605jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DE8BT UT WOS:000370861500110 ER PT S AU Calvo, GF Picon, A AF Calvo, Gabriel F. Picon, Antonio BE Healy, JJ Kutay, MA Ozaktas, HM Sheridan, JT TI Linear Canonical Transforms on Quantum States of Light SO LINEAR CANONICAL TRANSFORMS: THEORY AND APPLICATIONS SE Springer Series in Optical Sciences LA English DT Article; Book Chapter ID ORBITAL ANGULAR-MOMENTUM; WIGNER DISTRIBUTION FUNCTION; GENERAL PHASE-SPACE; NONCOMMUTING OPERATORS; POINCARE-SPHERE; GAUSSIAN BEAMS; OPTICS; COMPUTATION; SYSTEMS; REPRESENTATION AB Many quantum information and quantum computation protocols exploit high-dimensional Hilbert spaces. Photons, which constitute the main carrier of information between nodes of quantum networks, can store high-dimensional quantum bits in their spatial degrees of freedom. These degrees of freedom can be tailored by resorting to the symplectic invariant approach based on lossless linear canonical transformations. These transformations enable one to manipulate the transverse structure of a single photon prepared in superpositions of paraxial modes. We present a basic introduction of these transformations acting on photons and discuss some of their applications for elementary quantum information processing. C1 [Calvo, Gabriel F.] UCLM Univ Castilla La Mancha, Dept Math, Ciudad Real 13071, Spain. [Calvo, Gabriel F.] UCLM Univ Castilla La Mancha, IMACI Inst Appl Math Sci & Engn, Ciudad Real 13071, Spain. [Picon, Antonio] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Picon, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Gabriel.Fernandez@uclm.es; apicon@anl.gov NR 71 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0342-4111 BN 978-1-4939-3028-9; 978-1-4939-3027-2 J9 SPRINGER SER OPT SCI PY 2016 VL 198 BP 429 EP 453 DI 10.1007/978-1-4939-3028-9_15 D2 10.1007/978-1-4939-3028-9 PG 25 WC Optics; Physics, Applied SC Optics; Physics GA BE1PF UT WOS:000368341300017 ER PT S AU Valone, SM Muralidharan, K Runge, K AF Valone, S. M. Muralidharan, Krishna Runge, Keith BE Deymier, PA Runge, K Muralidharan, K TI Interatomic Potentials Including Chemistry SO MULTISCALE PARADIGMS IN INTEGRATED COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING: MATERIALS THEORY, MODELING, AND SIMULATION FOR PREDICTIVE DESIGN SE Springer Series in Materials Science LA English DT Article; Book Chapter ID MOLECULAR-DYNAMICS SIMULATIONS; DENSITY-FUNCTIONAL THEORY; POLARIZABLE WATER MODEL; VALENCE-BOND MODEL; AB-INITIO VB/MM; LIQUID WATER; FLUCTUATING CHARGE; CORRELATION-ENERGY; ELECTRONEGATIVITY EQUALIZATION; PROTON TRANSPORT AB Beginning from two theories, classical and quantum mechanical, as realized in terms of Newton's second law and the time-independent Schrodinger equation, we put forth a framework for understanding the development of atomistic potentials that include chemistry. Our analysis introduces, explains, and exploits the Fragment Hamiltonian approach to the electronic structure of molecular and condensed matter systems. Illustrations of the Fragment Hamiltionian display the roles of various physical concepts in the formation of these atomistic potentials. Electron density fluctuations are clearly seen as essential to the realistic description of interatomic interactions over a large range of nuclear (ionic) configurations. Finally, we present a novel approach to the parameterization of interatomic potentials that explicitly include the effect of charge fluctuations, the environment-dependent dynamic charge potential. C1 [Valone, S. M.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Muralidharan, Krishna; Runge, Keith] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. RP Valone, SM (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM smv@lanl.gov; krishna@u.arizona.edu; krunge@u.arizona.edu NR 130 TC 0 Z9 0 U1 1 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-24529-4; 978-3-319-24527-0 J9 SPRINGER SER MATER S PY 2016 VL 226 BP 107 EP 194 DI 10.1007/978-3-319-24529-4_3 D2 10.1007/978-3-319-24529-4 PG 88 WC Optics; Physics, Mathematical SC Optics; Physics GA BE2EK UT WOS:000369088800004 ER PT J AU Yan, ZQ Chen, L Yoon, MN Kumar, S AF Yan, Zhequan Chen, Liang Yoon, Mina Kumar, Satish TI Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures SO NANOSCALE LA English DT Article ID GREENS-FUNCTION METHOD; HEAT-CONDUCTION; GRAPHITE; ENERGY; SPECTROSCOPY; ELECTRONICS; TRANSISTORS; SIMULATION; MONOLAYER; SURFACE AB Hexagonal boron nitride (h-BN) is a promising substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boron atom (C-B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C-N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C-B matched interfaces have stronger phonon-phonon coupling than the C-N matched interfaces, which results in significantly higher TBC (more than 50%) in the C-B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices. C1 [Yan, Zhequan; Kumar, Satish] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Chen, Liang] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China. [Yoon, Mina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Kumar, S (reprint author), Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM satish.kumar@me.gatech.edu RI Yoon, Mina/A-1965-2016; Chen, Liang/G-1587-2015; OI Yoon, Mina/0000-0002-1317-3301; Chen, Liang/0000-0001-7642-1168; Yan, Zhequan/0000-0001-8026-0264 FU National Science Foundation [CBET-1236416]; ORNL Laboratory Directed Research and Development; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was partially supported by the National Science Foundation Grant CBET-1236416. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility and supported by the ORNL Laboratory Directed Research and Development funding. This research used the resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under the Contract No. DE-AC02-05CH11231. NR 61 TC 4 Z9 4 U1 19 U2 55 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 7 BP 4037 EP 4046 DI 10.1039/c5nr06818e PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DE6RQ UT WOS:000370761700022 PM 26817419 ER PT J AU Fu, K Nelson, CT Scott, MC Minor, A Mathews, N Wong, LH AF Fu, Kunwu Nelson, Christopher T. Scott, Mary Cooper Minor, Andrew Mathews, Nripan Wong, Lydia Helena TI Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells SO NANOSCALE LA English DT Article ID PHOTOVOLTAIC CELLS; HALIDE PEROVSKITES; V HYSTERESIS; IODIDE; DEPOSITION; ABSORBER; MORPHOLOGIES; PASSIVATION; TRIHALIDE; LENGTHS AB The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of void free perovskite capping layer surface on the charge recombination processes within the mesoscopic perovskite solar cells is further scrutinized via charge extraction measurement. Modulation of precursor solution concentrations in order to further improve the perovskite layer surface morphology leads to higher efficiency and lower charge recombination rates. Inhibited charge recombination in these solar cells also matches with the higher charge density and slower photovoltage decay profiles measured. C1 [Fu, Kunwu; Mathews, Nripan; Wong, Lydia Helena] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Res Techno Plaza,50 Nanyang Dr, Singapore 637553, Singapore. [Fu, Kunwu; Mathews, Nripan; Wong, Lydia Helena] Nanyang Technol Univ, Sch Mat Sci & Engn, Block N4-1,50 Nanyang Ave, Singapore 639798, Singapore. [Nelson, Christopher T.; Scott, Mary Cooper; Minor, Andrew; Mathews, Nripan] Singapore Berkeley Res Initiat Sustainable Energ, 1 Create Way, Singapore 138602, Singapore. [Nelson, Christopher T.; Scott, Mary Cooper; Minor, Andrew] Univ Calif Berkeley, Mol Foundry Lawrence Berkeley Natl Lab, One Cyclotron Rd,NCEM Bldg 72, Berkeley, CA 94720 USA. RP Mathews, N; Wong, LH (reprint author), Nanyang Technol Univ, Energy Res Inst NTU ERI N, Res Techno Plaza,50 Nanyang Dr, Singapore 637553, Singapore.; Mathews, N; Wong, LH (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Block N4-1,50 Nanyang Ave, Singapore 639798, Singapore.; Mathews, N (reprint author), Singapore Berkeley Res Initiat Sustainable Energ, 1 Create Way, Singapore 138602, Singapore. EM nripan@ntu.edu.sg; lydiawong@ntu.edu.sg RI Wong, Lydia Helena /A-2239-2011; Mathews, Nripan/C-8438-2011 OI Mathews, Nripan/0000-0001-5234-0822 FU National Research Foundation (NRF) Singapore under the Competitive Research Program (CRP); Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) CREATE Programme; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX K. Fu would like to acknowledge valuable discussions from Dr Wolfgang Tress and Dr Robin Humphry-Baker. This work is supported by National Research Foundation (NRF) Singapore under the Competitive Research Program (CRP) and the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) CREATE Programme. Work at the Molecular Foundry at Lawrence Berkeley National Laboratory was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 4 Z9 4 U1 5 U2 52 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 7 BP 4181 EP 4193 DI 10.1039/c5nr06362k PG 13 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DE6RQ UT WOS:000370761700039 PM 26830152 ER PT J AU Li, YB Li, DL Lin, ZQ David, SA Feng, Z Tang, W AF Li, Y. B. Li, D. L. Lin, Z. Q. David, S. A. Feng, Z. Tang, W. TI Review: magnetically assisted resistance spot welding SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Review DE Resistance spot welding; External magnetic field; Fluid flow; Heat transfer; Electromagnetic stirring; Grain refinement ID MECHANICAL-PROPERTIES; TRANSPORT PROCESSES; TIP ELECTRODES; ALUMINUM; STRENGTH; STEEL; FIELD; NUGGET; MICROSTRUCTURE; ALLOY AB Currently, the use of advanced high strength steels (AHSSs) is the most cost effective means of reducing vehicle body weight and maintaining structural integrity at the same time. However, AHSSs present a big challenge to the traditional resistance spot welding (RSW) widely applied in automotive industries because the rapid heating and cooling procedures during RSW produce hardened weld microstructures, which lower the ductility and fatigue properties of welded joints and raise the probability of interfacial failure under external loads. Changing process parameters or post-weld heat treatment may reduce the weld brittleness, but those traditional quality control methods also increase energy consumption and prolong cycle time. In recent years, a magnetically assisted RSW (MA-RSW) method was proposed, in which an externally applied magnetic field would interact with the conduction current to produce a Lorentz force that would affect weld nugget formation. This paper is a review of an experimental MA-RSW platform, the mode of the external magnetic field and the mechanism that controls nugget shape, weld microstructures and joint performance. The advantages of the MA-RSW method in improving the weldability of AHSSs are given, a recent application of the MA-RSW process to light metals is described and the outlook for the MA-RSW process is presented. C1 [Li, Y. B.; Lin, Z. Q.] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China. [Li, Y. B.; Li, D. L.; Lin, Z. Q.] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai Key Lab Digital Manufacture Thin Walled, Shanghai 200240, Peoples R China. [David, S. A.; Feng, Z.; Tang, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Li, YB (reprint author), Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China.; Li, YB (reprint author), Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai Key Lab Digital Manufacture Thin Walled, Shanghai 200240, Peoples R China. EM yongbinglee@sjtu.edu.cn RI Tang, Wei/E-3613-2017 OI Tang, Wei/0000-0002-9274-9574 FU National Natural Science Foundation of China [51275300, 51322504, 50821003]; Program for New Century Excellent Talents in University by Ministry of Education of China [NCET-120361]; Program of Introducing Talents of Discipline [B06012]; Research Project of State Key Laboratory of Mechanical System and Vibration [MSVZD201411]; US-China CERCCVC program FX The authors would like to acknowledge the support of the National Natural Science Foundation of China (grant nos. 51275300, 51322504 and 50821003), Program for New Century Excellent Talents in University by Ministry of Education of China (grant no. NCET-120361), the Program of Introducing Talents of Discipline to Universities (grant no. B06012) and the Research Project of State Key Laboratory of Mechanical System and Vibration (grant no. MSVZD201411). The research . was also supported in part by the US-China CERCCVC program. NR 42 TC 0 Z9 0 U1 3 U2 24 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1362-1718 EI 1743-2936 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PY 2016 VL 21 IS 1 BP 1 EP 16 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DE9SM UT WOS:000370979200001 ER PT S AU Paranthaman, MP Wong-Ng, W Bhattacharya, RN AF Paranthaman, M. Parans Wong-Ng, Winnie Bhattacharya, Raghu N. BE Paranthaman, MP WongNg, W Bhattacharya, RN TI Semiconductor Materials for Solar Photovoltaic Cells Preface SO SEMICONDUCTOR MATERIALS FOR SOLAR PHOTOVOLTAIC CELLS SE Springer Series in Materials Science LA English DT Editorial Material; Book Chapter C1 [Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Wong-Ng, Winnie] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Bhattacharya, Raghu N.] Natl Renewable Energy Lab, Golden, CO USA. RP Paranthaman, MP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-20331-7; 978-3-319-20330-0 J9 SPRINGER SER MATER S PY 2016 VL 218 BP V EP VIII D2 10.1007/978-3-319-20331-7 PG 4 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA BE1KJ UT WOS:000368070500001 ER PT S AU Das, S Mandal, KC Bhattacharya, RN AF Das, Sandip Mandal, Krishna C. Bhattacharya, Raghu N. BE Paranthaman, MP WongNg, W Bhattacharya, RN TI Earth-Abundant Cu2ZnSn(S,Se)(4) (CZTSSe) Solar Cells SO SEMICONDUCTOR MATERIALS FOR SOLAR PHOTOVOLTAIC CELLS SE Springer Series in Materials Science LA English DT Article; Book Chapter ID CU2ZNSNS4 THIN-FILMS; PULSED-LASER DEPOSITION; ZN-SN PRECURSORS; OPTICAL-PROPERTIES; CRYSTAL-STRUCTURE; PHASE-EQUILIBRIA; ELECTRONIC-STRUCTURE; SPUTTERED PRECURSOR; EFFICIENCY; PHOTOVOLTAICS C1 [Das, Sandip] Kennesaw State Univ, Dept Elect Engn, Marietta, GA 30060 USA. [Mandal, Krishna C.] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Bhattacharya, Raghu N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bhattacharya, RN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Raghu.Bhattacharya@nrel.gov NR 168 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-20331-7; 978-3-319-20330-0 J9 SPRINGER SER MATER S PY 2016 VL 218 BP 25 EP 74 DI 10.1007/978-3-319-20331-7_2 D2 10.1007/978-3-319-20331-7 PG 50 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA BE1KJ UT WOS:000368070500003 ER PT S AU Xiu, FX Xu, J Joshi, PC Bridges, CA Paranthaman, MP AF Xiu, Faxian Xu, Jun Joshi, Pooran C. Bridges, Craig A. Paranthaman, M. Parans BE Paranthaman, MP WongNg, W Bhattacharya, RN TI ZnO Doping and Defect Engineering-A Review SO SEMICONDUCTOR MATERIALS FOR SOLAR PHOTOVOLTAIC CELLS SE Springer Series in Materials Science LA English DT Review; Book Chapter ID P-TYPE ZNO; PULSED-LASER DEPOSITION; MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING-DIODES; ULTRASONIC SPRAY-PYROLYSIS; CHEMICAL-VAPOR-DEPOSITION; NITROGEN-DOPED ZNO; ZINC-OXIDE FILMS; THIN-FILMS; OPTICAL-PROPERTIES C1 [Xiu, Faxian] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Xiu, Faxian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Xu, Jun; Joshi, Pooran C.; Bridges, Craig A.; Paranthaman, M. Parans] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Xiu, FX (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.; Xiu, FX (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. EM faxian@fudan.edu.cn OI Paranthaman, Mariappan/0000-0003-3009-8531 NR 168 TC 1 Z9 1 U1 4 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-20331-7; 978-3-319-20330-0 J9 SPRINGER SER MATER S PY 2016 VL 218 BP 105 EP 140 DI 10.1007/978-3-319-20331-7_4 D2 10.1007/978-3-319-20331-7 PG 36 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA BE1KJ UT WOS:000368070500005 ER PT S AU Manivannan, A Peterson, A Wilson, W Mukherjee, B Subramanian, VR AF Manivannan, A. Peterson, Aaron Wilson, Winn Mukherjee, Bratindranath Subramanian, Vaidyanathan Ravi BE Paranthaman, MP WongNg, W Bhattacharya, RN TI Hydrogen Production and Photodegradation at TiO2/Metal/CdS Sandwich Using UV-Visible Light SO SEMICONDUCTOR MATERIALS FOR SOLAR PHOTOVOLTAIC CELLS SE Springer Series in Materials Science LA English DT Article; Book Chapter ID SENSITIZED SOLAR-CELLS; X-RAY-ABSORPTION; PHOTOCATALYTIC DEGRADATION; TITANIUM-DIOXIDE; METHYL-ORANGE; AZO-DYE; HYBRID PHOTOCATALYSTS; METAL NANOPARTICLES; AQUEOUS-SOLUTION; PARTICLE-SIZE C1 [Manivannan, A.] US DOE, Natl Energy Technol Lab, Thermal Sci Div, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. [Peterson, Aaron; Mukherjee, Bratindranath; Subramanian, Vaidyanathan Ravi] Univ Nevada, Chem & Mat Engn, Reno, NV 89557 USA. [Wilson, Winn] Univ Nevada, Civil & Environm Engn, Reno, NV 89557 USA. [Manivannan, A.] W Virginia Univ, Mech & Aerosp Engn, Morgantown, WV 26506 USA. RP Manivannan, A (reprint author), US DOE, Natl Energy Technol Lab, Thermal Sci Div, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.; Subramanian, VR (reprint author), Univ Nevada, Chem & Mat Engn, Reno, NV 89557 USA. EM manivana@netl.doe.gov; ravisv@unr.edu NR 75 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-20331-7; 978-3-319-20330-0 J9 SPRINGER SER MATER S PY 2016 VL 218 BP 141 EP 167 DI 10.1007/978-3-319-20331-7_5 D2 10.1007/978-3-319-20331-7 PG 27 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA BE1KJ UT WOS:000368070500006 ER PT S AU Yang, B Shao, M Keum, J Geohegan, D Xiao, K AF Yang, Bin Shao, Ming Keum, Jong Geohegan, David Xiao, Kai BE Paranthaman, MP WongNg, W Bhattacharya, RN TI Nanophase Engineering of Organic Semiconductor-Based Solar Cells SO SEMICONDUCTOR MATERIALS FOR SOLAR PHOTOVOLTAIC CELLS SE Springer Series in Materials Science LA English DT Article; Book Chapter ID OPEN-CIRCUIT-VOLTAGE; POLYMER PHOTOVOLTAIC CELLS; X-RAY; CONVERSION EFFICIENCY; QUANTUM EFFICIENCY; PROCESSING ADDITIVES; BULK HETEROJUNCTIONS; NANOSCALE MORPHOLOGY; SELF-ORGANIZATION; FILL FACTOR C1 [Yang, Bin; Shao, Ming; Keum, Jong; Geohegan, David; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xiao, K (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xiaok@ornl.gov RI Yang, Bin/P-8529-2014; Keum, Jong/N-4412-2015 OI Yang, Bin/0000-0002-5667-9126; Keum, Jong/0000-0002-5529-1373 NR 105 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-20331-7; 978-3-319-20330-0 J9 SPRINGER SER MATER S PY 2016 VL 218 BP 197 EP 228 DI 10.1007/978-3-319-20331-7_7 D2 10.1007/978-3-319-20331-7 PG 32 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA BE1KJ UT WOS:000368070500008 ER PT S AU Yanny, B Newberg, HJ AF Yanny, Brian Newberg, Heidi Jo BE Newberg, HJ Carlin, JL TI The Monoceros Ring, and Other Substructure Near the Galactic Plane SO TIDAL STREAMS IN THE LOCAL GROUP AND BEYOND: OBSERVATIONS AND IMPLICATIONS SE Astrophysics and Space Science Library LA English DT Article; Book Chapter ID CANIS-MAJOR OVERDENSITY; EXPLORING HALO SUBSTRUCTURE; MILKY-WAY HALO; ANTICENTER STELLAR STRUCTURE; TRIANGULUM-ANDROMEDA REGION; DIGITAL SKY SURVEY; RR LYRAE SURVEY; DWARF GALAXY; OPEN CLUSTERS; RADIAL-VELOCITY AB The outer Milky Way stellar structure known as "The Monoceros Ring" was discovered in imaging data in 2002. Since then, numerous photometric and spectroscopic explorations of this structure, some 18 kpc from the Galactic center and at low Galactic latitudes, have led to a rich discussion in the field on its composition, possible origins, and relevance for theories of galaxy formation and studies of dark matter. This substructure was initially thought to be either a tidal stream from a disrupted dwarf galaxy or the result of a warping and flaring of the Milky Way disk. A newer conjecture is that the structure is due to disk oscillations, possibly caused by a massive Milky Way satellite passing through the disk. C1 [Yanny, Brian] Fermilab Natl Accelerator Lab, 500 Pine St, Batavia, IL 60510 USA. [Newberg, Heidi Jo] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. RP Yanny, B (reprint author), Fermilab Natl Accelerator Lab, 500 Pine St, Batavia, IL 60510 USA. EM yanny@fnal.gov; heidi@rpi.edu NR 94 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0067-0057 BN 978-3-319-19336-6; 978-3-319-19335-9 J9 ASTROPHYS SPACE SC L PY 2016 VL 420 BP 63 EP 86 DI 10.1007/978-3-319-19336-6_3 D2 10.1007/978-3-319-19336-6 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE2IP UT WOS:000369384500004 ER PT J AU Sheng, SW AF Sheng, Shuangwen TI Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective SO TRIBOLOGY TRANSACTIONS LA English DT Article DE Wind turbine gearbox; oil condition monitoring; oil debris monitoring; oil sample analysis; wear debris analysis AB Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life. C1 [Sheng, Shuangwen] Natl Renewable Energy Lab, Golden, CO USA. RP Sheng, SW (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM shuangwen.sheng@nrel.gov FU SGS Herguth Laboratories; FEI Aspex; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office FX The equipment from Parker Kittiwake, Macom Technologies/Poseidon Systems, and GasTOPS loaned to NREL and the support for conducting oil CM research are sincerely acknowledged. The support from SGS Herguth Laboratories and FEI Aspex is greatly appreciated. The author is also grateful for the support from the GRC dynamometer and field testing teams. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for this work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office. NR 26 TC 0 Z9 0 U1 3 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1040-2004 EI 1547-397X J9 TRIBOL T JI Tribol. Trans. PY 2016 VL 59 IS 1 BP 149 EP 162 DI 10.1080/10402004.2015.1055621 PG 14 WC Engineering, Mechanical SC Engineering GA DE5WF UT WOS:000370703100017 ER PT J AU Cosgriff, MP Chen, P Lee, SS Lee, HJ Kuna, L Pitike, KC Louis, L Parker, WD Tajiri, H Nakhmanson, SM Jo, JY Chen, ZH Chen, L Evans, PG AF Cosgriff, Margaret P. Chen, Pice Lee, Sung Su Lee, Hyeon Jun Kuna, Lukasz Pitike, Krishna C. Louis, Lydie Parker, William D. Tajiri, Hiroo Nakhmanson, Serge M. Jo, Ji Young Chen, Zuhuang Chen, Lang Evans, Paul G. TI Nanosecond Phase Transition Dynamics in Compressively Strained Epitaxial BiFeO3 SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; THIN-FILMS AB A highly strained BiFeO3 (BFO) thin film is transformed between phases with distinct structures and properties by nanosecond-duration applied electric field pulses. Time-resolved synchrotron X-ray microdiffraction shows that the steady-state transformation between phases is accompanied by a dynamical component that is reversed upon the removal of the field. Steady-state measurements reveal that approximate to 20% of the volume of a BFO thin film grown on a LaAlO3 substrate can be reproducibly transformed between rhombohedral-like and tetragonal-like phases by electric field pulses with magnitudes up to 2 MV cm(-1). A transient component, in which the transformation is reversed following the end of the electric field pulse, can transform a similar fraction of the BFO layer and occurs rapidly time scale limited by the charging time constant of the thin film capacitor. The piezoelectric expansion of the tetragonal-like phase leads to a strain of up to 0.1%, with a lower limit of 10 pm V-1 for the piezoelectric coefficient of this phase. Density functional theory calculations provide insight into the mechanism of the phase transformation showing that imparting a transient strain of this magnitude favors a transformation from rhombohedral-like to tetragonal-like phase. C1 [Cosgriff, Margaret P.; Chen, Pice; Evans, Paul G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Cosgriff, Margaret P.; Chen, Pice; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Lee, Sung Su; Lee, Hyeon Jun; Jo, Ji Young] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 500712+, South Korea. [Kuna, Lukasz] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Pitike, Krishna C.; Louis, Lydie] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Pitike, Krishna C.; Louis, Lydie; Tajiri, Hiroo] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. [Parker, William D.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Parker, William D.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Tajiri, Hiroo] Japan Synchrotron Radiat Res Inst, SPring 8, Kobe, Hyogo 6795198, Japan. [Nakhmanson, Serge M.] Univ Connecticut, Dept Phys, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Chen, Zuhuang] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chen, Lang] South Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Peoples R China. [Chen, Pice] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Evans, PG (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.; Evans, PG (reprint author), Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. EM pgevans@wisc.edu RI Evans, Paul/A-9260-2009; CHEN, LANG/A-2251-2011; Chen, Zuhuang/E-7131-2011; OI Evans, Paul/0000-0003-0421-6792; Chen, Zuhuang/0000-0003-1912-6490; Chen, Pice/0000-0003-4401-5637 FU U.S. National Science Foundation [DMR-1106050]; JASRI [2012A1105, 2012B1551]; National Research Foundation [NRF-2014R1A1A3053111, NRF-2011-220-C00016]; NSFC [11474146]; National Science Foundation [DMR-1309114]; Hong Kong Science & Technology Cooperation Program of China [2015DFH10200]; Macao Science & Technology Cooperation Program of China [2015DFH10200]; Taiwan Science & Technology Cooperation Program of China [2015DFH10200] FX M.P.C., P.C., and P.G.E. gratefully acknowledge support by the U.S. National Science Foundation, through Grant No. DMR-1106050. The SPring-8 measurement was supported by the JASRI under Proposal Nos. 2012A1105 and 2012B1551. H.J.L., S.S.L., and J.Y.J. acknowledge support by the National Research Foundation (NRF-2014R1A1A3053111 and NRF-2011-220-C00016). L.C. acknowledges supports by Hong Kong, Macao & Taiwan Science & Technology Cooperation Program of China (#2015DFH10200) and NSFC #11474146. K.C.P. and S.M.N. are thankful to the National Science Foundation for partial support under Grant No. DMR-1309114. NR 37 TC 0 Z9 0 U1 8 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD JAN PY 2016 VL 2 IS 1 AR 1500204 DI 10.1002/aelm.201500204 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SN UT WOS:000370335000008 ER PT J AU Meyer, TL Jeen, H Gao, X Petrie, JR Chisholm, MF Lee, HN AF Meyer, Tricia L. Jeen, Hyoungjeen Gao, Xiang Petrie, Jonathan R. Chisholm, Matthew F. Lee, Ho Nyung TI Symmetry-Driven Atomic Rearrangement at a Brownmillerite-Perovskite Interface SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID REDOX REACTIONS; THIN-FILMS; OXYGEN; SRCOO2.5; HETEROSTRUCTURES; SUPERLATTICES; DISPLACEMENT; DYNAMICS; BA2IN2O5; LEVEL C1 [Meyer, Tricia L.; Gao, Xiang; Petrie, Jonathan R.; Chisholm, Matthew F.; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Jeen, Hyoungjeen] Pusan Natl Univ, Dept Phys, Busan 609735, South Korea. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI Lee, Ho Nyung/K-2820-2012 OI Lee, Ho Nyung/0000-0002-2180-3975 FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors thank Qian He for helpful discussions on quantitative analysis of HAADF images. This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 44 TC 0 Z9 0 U1 13 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD JAN PY 2016 VL 2 IS 1 AR 1500201 DI 10.1002/aelm.201500201 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SN UT WOS:000370335000006 ER PT J AU Schaab, J Cano, A Lilienblum, M Yan, ZW Bourret, E Ramesh, R Fiebig, M Meier, D AF Schaab, Jakob Cano, Andres Lilienblum, Martin Yan, Zewu Bourret, Edith Ramesh, Ramamoorthy Fiebig, Manfred Meier, Dennis TI Optimization of Electronic Domain-Wall Properties by Aliovalent Cation Substitution SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID CONDUCTANCE; MANGANITES C1 [Schaab, Jakob; Lilienblum, Martin; Fiebig, Manfred; Meier, Dennis] ETH, Dept Mat, CH-8093 Zurich, Switzerland. [Cano, Andres] Univ Bordeaux, ICMCB, UPR 9048, CNRS, F-33600 Pessac, France. [Yan, Zewu; Bourret, Edith] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Meier, D (reprint author), ETH, Dept Mat, CH-8093 Zurich, Switzerland. EM dennis.meier@mat.ethz.ch FU SNF [200021_149192]; U.S. Department of Energy; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The research at the ETH Zurich was supported in part by the SNF (Proposal No. 200021_149192) and work in Berkeley was supported in part by the U.S. Department of Energy and carried out at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 23 TC 3 Z9 3 U1 9 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD JAN PY 2016 VL 2 IS 1 AR 1500195 DI 10.1002/aelm.201500195 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SN UT WOS:000370335000004 ER PT J AU Seidel, J Valanoor, N AF Seidel, Jan Valanoor, Nagarajan TI A glimpse at topological structures in multiferroic materials SO ADVANCED ELECTRONIC MATERIALS LA English DT Editorial Material C1 [Seidel, Jan] UNSW Australia, Sch Mat Sci & Engn, Sydney, NSW, Australia. [Seidel, Jan] Univ Calif Berkeley, Alexander von Humboldt Fdn, Berkeley, CA 94720 USA. [Seidel, Jan] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Valanoor, Nagarajan] Univ Maryland, Sch Mat Sci & Engn, College Pk, MD USA. [Valanoor, Nagarajan] Univ Maryland, College Pk, MD USA. RP Seidel, J (reprint author), UNSW Australia, Sch Mat Sci & Engn, Sydney, NSW, Australia. RI valanoor, nagarajan/B-4159-2012 NR 12 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD JAN PY 2016 VL 2 IS 1 AR 1500447 DI 10.1002/aelm.201500447 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SN UT WOS:000370335000020 ER PT J AU Seidel, J Vasudevan, RK Valanoor, N AF Seidel, Jan Vasudevan, Rama K. Valanoor, Nagarajan TI Topological Structures in Multiferroics - Domain Walls, Skyrmions and Vortices SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID CA-DOPED BIFEO3; ATOMIC-RESOLUTION; THIN-FILMS; FERROELECTRIC-FILMS; ROOM-TEMPERATURE; EPITAXIAL OXIDE; VORTEX DOMAINS; COMPLEX OXIDE; NANOSCALE; POLARIZATION AB Topological structures in multiferroic materials have recently received considerable attention because of their potential use as nanoscale functional elements. Their reduced size in conjunction with exotic arrangement of the ferroic order parameter and potential order parameter coupling allows for emergent and unexplored phenomena in condensed matter and functional materials systems. This will lead to exciting new fundamental discoveries as well as application concepts that exploit their response to external stimuli such as mechanical strain, electric and magnetic fields. In this review we capture the current development of this rapidly moving field with specific emphasis on key achievements that have cast light on how such topological structures in multiferroic materials systems can be exploited for use in complex oxide nanoelectronics and spintronics. C1 [Seidel, Jan; Valanoor, Nagarajan] UNSW Australia, Sch Mat Sci & Engn, Sydney, NSW, Australia. [Vasudevan, Rama K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vasudevan, Rama K.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. RP Seidel, J; Valanoor, N (reprint author), UNSW Australia, Sch Mat Sci & Engn, Sydney, NSW, Australia. EM jan.seidel@unsw.edu.au; nagarajan@unsw.edu.au RI valanoor, nagarajan/B-4159-2012 FU Australian Research Council through ARC Discovery Projects; ARC Future Fellowship; Division of Materials Sciences and Engineering, BES, DOE FX JS and VN acknowledge support by the Australian Research Council through ARC Discovery Projects. JS also acknowledges an ARC Future Fellowship. This research was in part sponsored by the Division of Materials Sciences and Engineering, BES, DOE (RKV). We acknowledge fruitful discussions with all our colleagues, and in particular wish to extend a special thanks to all participants of the "International Workshop on Topological Structures in Ferroic Materials" held in Sydney in May 2015. He also acknowledges the help of Mr. Dongyi Zhou in maintaining the reference list for this article. NR 137 TC 2 Z9 2 U1 23 U2 90 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD JAN PY 2016 VL 2 IS 1 AR 1500292 DI 10.1002/aelm.201500292 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SN UT WOS:000370335000017 ER PT J AU Sen Gupta, A Akamatsu, H Strayer, ME Lei, SM Kuge, T Fujita, K dela Cruz, C Togo, A Tanaka, I Tanaka, K Mallouk, TE Gopalan, V AF Sen Gupta, Arnab Akamatsu, Hirofumi Strayer, Megan E. Lei, Shiming Kuge, Toshihiro Fujita, Koji dela Cruz, Clarina Togo, Atsushi Tanaka, Isao Tanaka, Katsuhisa Mallouk, Thomas E. Gopalan, Venkatraman TI Improper Inversion Symmetry Breaking and Piezoelectricity through Oxygen Octahedral Rotations in Layered Perovskite Family, LiRTiO4 (R = Rare Earths) SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; POWDER DIFFRACTION; TRANSITION-METALS; ION-EXCHANGE; FERROELECTRICITY; DESIGN; PHASES; OXIDES; LN AB An improper mechanism for breaking inversion symmetry is revealed and thus inducing piezoelectricity in the family of layered perovskites, LiRTiO4 (R = rare earths), which are previously reported as centrosymmetric. Noncentrosymmetry in this family of compounds arises from TiO6 octahedral rotation represented by a(-)b(o)c(o)/b(o)a(-)c(o) in the perovskite blocks between RO rock salt and LiO antifl uorite layers. X-ray diffraction and optical second harmonic generation complemented by density functional theory predictions are crucial in determining the new structures. High transition temperature (T-ac) of up to 1200 K from noncentrosymmetric to centrosymmetric phase is observed. Piezoelectric coefficients (d(36)) of up to -15 pC/N are predicted, and piezoelectric force microscopy experiments confirm a piezoelectric response. The demonstrated improper mechanism in this and other layered oxide families, with a wide range of available topologies and chemistries, could aid in the search for high temperature piezoelectrics. C1 [Sen Gupta, Arnab; Akamatsu, Hirofumi; Lei, Shiming; Gopalan, Venkatraman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Strayer, Megan E.; Mallouk, Thomas E.] Penn State Univ, Dept Chem, Dept Phys, University Pk, PA 16802 USA. [Strayer, Megan E.; Mallouk, Thomas E.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Kuge, Toshihiro; Fujita, Koji; Tanaka, Isao] Kyoto Univ, Dept Chem Mat, Nishikyo Ku, Kyoto 6158510, Japan. [dela Cruz, Clarina] Oak Ridge Natl Lab, Quantum Condensed Matter Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Togo, Atsushi; Tanaka, Isao] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto 6068501, Japan. RP Gopalan, V (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.; Fujita, K (reprint author), Kyoto Univ, Dept Chem Mat, Nishikyo Ku, Kyoto 6158510, Japan. EM fujita@dipole7.kuic.kyoto-u.ac.jp; vgopalan@psu.edu RI Fujita, Koji/C-7662-2012; Tanaka, Isao/B-5941-2009; dela Cruz, Clarina/C-2747-2013; Akamatsu, Hirofumi/O-6634-2014 OI Fujita, Koji/0000-0002-1700-0889; dela Cruz, Clarina/0000-0003-4233-2145; Akamatsu, Hirofumi/0000-0003-2867-2127 FU National Science Foundation under MRSEC grant [DMR-1420620]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Japan Society for the Promotion of Science for Research Abroad [25-185]; National Science Foundation Graduate Fellowship grant [DGE-1255832]; JSPS KAKENHI [26106514]; [DMR-1210588] FX This work was primarily supported by the National Science Foundation under MRSEC grant DMR-1420620. S. L. and V. G. were also partially supported by DMR-1210588. The authors thank Dr. James Rondinelli for helpful discussions about this project. The research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. H.A. would like to acknowledge support from Japan Society for the Promotion of Science for Research Abroad (No. 25-185). M.E.S. would like to acknowledge the National Science Foundation Graduate Fellowship grant DGE-1255832. K.F. would like to acknowledge Japan Synchrotron Radiation Research Institute (Proposal No. 2015A1151) for SXRD measurements and JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas "Nano Informatics" (Grant No. 26106514). NR 42 TC 1 Z9 1 U1 8 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD JAN PY 2016 VL 2 IS 1 AR 1500196 DI 10.1002/aelm.201500196 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SN UT WOS:000370335000005 ER PT J AU Andringa, S Arushanova, E Asahi, S Askins, M Auty, DJ Back, AR Barnard, Z Barros, N Beier, EW Bialek, A Biller, SD Blucher, E Bonventre, R Braid, D Caden, E Callaghan, E Caravaca, J Carvalho, J Cavalli, L Chauhan, D Chen, M Chkvorets, O Clark, K Cleveland, B Coulter, IT Cressy, D Dai, X Darrach, C Davis-Purcell, B Deen, R Depatie, MM Descamps, F Di Lodovico, F Duhaime, N Duncan, F Dunger, J Falk, E Fatemighomi, N Ford, R Gorel, P Grant, C Grullon, S Guillian, E Hallin, AL Hallman, D Hans, S Hartnell, J Harvey, P Hedayatipour, M Heintzelman, WJ Helmer, RL Hreljac, B Hu, J Iida Jackson, CM Jelley, NA Jillings, C Jones, C Jones, PG Kamdin, K Kaptanoglu, T Kaspar, J Keener, P Khaghani, P Kippenbrock, L Klein, JR Knapik, R Kofron, JN Kormos, LL Korte, S Kraus, C Krauss, CB Labe, K Lam, I Lan, C Land, BJ Langrock, S LaTorre, A Lawson, I Lefeuvre, GM Leming, EJ Lidgard, J Liu, X Liu, Y Lozza, V Maguire, S Maio, A Majumdar, K Manecki, S Maneira, J Marzec, E Mastbaum, A McCauley, N McDonald, AB McMillan, JE Mekarski, P Miller, C Mohan, Y Mony, E Mottram, MJ Novikov, V O'Keeffe, HM O'Sullivan, E Gann, GDO Parnell, J Peeters, SJM Pershing, T Petriw, Z Prior, G Prouty, JC Quirk, S Reichold, A Robertson, A Rose, J Rosero, R Rost, PM Rumleskie, J Schumaker, MA Schwendener, MH Scislowski, D Secrest, J Seddighin, M Segui, L Seibert, S Shantz, T Shokair, TM Sibley, L Sinclair, JR Singh, K Skensved, P Sorensen, A Sonley, T Stainforth, R Strait, M Stringer, MI Svoboda, R Tatar, J Tian, L Tolich, N Tseng, J Tseung, HWC Van Berg, R Vzquez-Jauregui, E Virtue, C von Krosigk, B Walker, JMG Walker, M Wasalski, O Waterfield, J White, RF Wilson, JR Winchester, TJ Wright, A Yeh, M Zhao, T Zuber, K AF Andringa, S. Arushanova, E. Asahi, S. Askins, M. Auty, D. J. Back, A. R. Barnard, Z. Barros, N. Beier, E. W. Bialek, A. Biller, S. D. Blucher, E. Bonventre, R. Braid, D. Caden, E. Callaghan, E. Caravaca, J. Carvalho, J. Cavalli, L. Chauhan, D. Chen, M. Chkvorets, O. Clark, K. Cleveland, B. Coulter, I. T. Cressy, D. Dai, X. Darrach, C. Davis-Purcell, B. Deen, R. Depatie, M. M. Descamps, F. Di Lodovico, F. Duhaime, N. Duncan, F. Dunger, J. Falk, E. Fatemighomi, N. Ford, R. Gorel, P. Grant, C. Grullon, S. Guillian, E. Hallin, A. L. Hallman, D. Hans, S. Hartnell, J. Harvey, P. Hedayatipour, M. Heintzelman, W. J. Helmer, R. L. Hreljac, B. Hu, J. Iida Jackson, C. M. Jelley, N. A. Jillings, C. Jones, C. Jones, P. G. Kamdin, K. Kaptanoglu, T. Kaspar, J. Keener, P. Khaghani, P. Kippenbrock, L. Klein, J. R. Knapik, R. Kofron, J. N. Kormos, L. L. Korte, S. Kraus, C. Krauss, C. B. Labe, K. Lam, I. Lan, C. Land, B. J. Langrock, S. LaTorre, A. Lawson, I. Lefeuvre, G. M. Leming, E. J. Lidgard, J. Liu, X. Liu, Y. Lozza, V. Maguire, S. Maio, A. Majumdar, K. Manecki, S. Maneira, J. Marzec, E. Mastbaum, A. McCauley, N. McDonald, A. B. McMillan, J. E. Mekarski, P. Miller, C. Mohan, Y. Mony, E. Mottram, M. J. Novikov, V. O'Keeffe, H. M. O'Sullivan, E. Gann, G. D. Orebi Parnell, J. Peeters, S. J. M. Pershing, T. Petriw, Z. Prior, G. Prouty, J. C. Quirk, S. Reichold, A. Robertson, A. Rose, J. Rosero, R. Rost, P. M. Rumleskie, J. Schumaker, M. A. Schwendener, M. H. Scislowski, D. Secrest, J. Seddighin, M. Segui, L. Seibert, S. Shantz, T. Shokair, T. M. Sibley, L. Sinclair, J. R. Singh, K. Skensved, P. Soerensen, A. Sonley, T. Stainforth, R. Strait, M. Stringer, M. I. Svoboda, R. Tatar, J. Tian, L. Tolich, N. Tseng, J. Tseung, H. W. C. Van Berg, R. Vzquez-Jauregui, E. Virtue, C. von Krosigk, B. Walker, J. M. G. Walker, M. Wasalski, O. Waterfield, J. White, R. F. Wilson, J. R. Winchester, T. J. Wright, A. Yeh, M. Zhao, T. Zuber, K. TI Current Status and Future Prospects of the SNO plus Experiment SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Review ID DOUBLE-BETA DECAY; SOLAR NEUTRINOS; NUCLEON DECAYS; EARTH; PURIFICATION; SCINTILLATOR; BOREXINO; PROTON; MODEL; SUN AB SNO+ is a large liquid scintillator-based experiment located 2 kmunderground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0 nu beta beta) of Te-130. In Phase I, the detectorwill be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of Te-130, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0 nu beta beta Phase I is foreseen for 2017. C1 [Andringa, S.; Barros, N.; Chauhan, D.; Maio, A.; Maneira, J.; Prior, G.] Lab Instrumentacao Fisica Expt Particulas LIP, Avenida Elias Garcia 14,1, P-1000149 Lisbon, Portugal. [Arushanova, E.; Back, A. R.; Di Lodovico, F.; Jones, P. G.; Langrock, S.; Mottram, M. J.] Queen Mary Univ London, Sch Phys & Astron, 327 Mile End Rd, London E1 4NS, England. [Asahi, S.; Chauhan, D.; Chen, M.; Clark, K.; Fatemighomi, N.; Guillian, E.; Harvey, P.; Iida; Lam, I.; Lan, C.; Liu, X.; Liu, Y.; Manecki, S.; McDonald, A. B.; Miller, C.; Mony, E.; Novikov, V.; O'Keeffe, H. M.; O'Sullivan, E.; Quirk, S.; Seddighin, M.; Skensved, P.; Sonley, T.; Tian, L.; Walker, M.; Wright, A.; Zhao, T.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. [Askins, M.; Grant, C.; Pershing, T.; Svoboda, R.] Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. [Auty, D. J.; Bialek, A.; Gorel, P.; Hallin, A. L.; Hedayatipour, M.; Hu, J.; Krauss, C. B.; Mekarski, P.; Petriw, Z.; Sibley, L.; Singh, K.] Univ Alberta, Dept Phys, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada. [Back, A. R.; Clark, K.; Falk, E.; Hartnell, J.; Lefeuvre, G. M.; Leming, E. J.; Mottram, M. J.; Peeters, S. J. M.; Sinclair, J. R.; Stringer, M. I.; Waterfield, J.] Univ Sussex, Phys & Astron, Pevensey 2, Brighton BN1 9QH, E Sussex, England. [Barnard, Z.; Braid, D.; Caden, E.; Chauhan, D.; Chkvorets, O.; Cleveland, B.; Cressy, D.; Darrach, C.; Depatie, M. M.; Duhaime, N.; Duncan, F.; Ford, R.; Hallman, D.; Hreljac, B.; Jillings, C.; Khaghani, P.; Korte, S.; Kraus, C.; Lawson, I.; Rost, P. M.; Rumleskie, J.; Schumaker, M. A.; Schwendener, M. H.; Shantz, T.; Virtue, C.; White, R. F.] Laurentian Univ, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada. [Barros, N.; Beier, E. W.; Bonventre, R.; Callaghan, E.; Coulter, I. T.; Deen, R.; Grullon, S.; Heintzelman, W. J.; Kaptanoglu, T.; Keener, P.; Klein, J. R.; Knapik, R.; Marzec, E.; Mastbaum, A.; Mohan, Y.; Gann, G. D. Orebi; Seibert, S.; Shokair, T. M.; Van Berg, R.] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Biller, S. D.; Cavalli, L.; Clark, K.; Coulter, I. T.; Dai, X.; Deen, R.; Dunger, J.; Jelley, N. A.; Jones, C.; Jones, P. G.; Lidgard, J.; Majumdar, K.; Reichold, A.; Segui, L.; Tseng, J.] Univ Oxford, DenysWilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. [Blucher, E.; Labe, K.; LaTorre, A.; Strait, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blucher, E.; Labe, K.; LaTorre, A.; Strait, M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Caravaca, J.; Descamps, F.; Jackson, C. M.; Kamdin, K.; Land, B. J.; Gann, G. D. Orebi; Prouty, J. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Caravaca, J.; Descamps, F.; Jackson, C. M.; Kamdin, K.; Land, B. J.; Gann, G. D. Orebi; Prouty, J. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Carvalho, J.] Univ Coimbra, Lab Instrumentacao & Fis Expt Particulas, P-3004516 Coimbra, Portugal. [Carvalho, J.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Cleveland, B.; Duncan, F.; Ford, R.; Jillings, C.; Lawson, I.; Vzquez-Jauregui, E.] SNOLAB, Creighton Mine 9,1039 Reg Rd 24, Sudbury, ON P3Y 1N2, Canada. [Davis-Purcell, B.; Helmer, R. L.; Wasalski, O.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Hans, S.; Maguire, S.; Rosero, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Bldg 555,POB 5000, Upton, NY 11973 USA. [Kaspar, J.; Kippenbrock, L.; Kofron, J. N.; Scislowski, D.; Tatar, J.; Tolich, N.; Tseung, H. W. C.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Kaspar, J.; Kippenbrock, L.; Kofron, J. N.; Scislowski, D.; Tatar, J.; Tolich, N.; Tseung, H. W. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Knapik, R.] Norwich Univ, 158 Harmon Dr, Northfield, VT 05663 USA. [Kormos, L. L.; O'Keeffe, H. M.; Parnell, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Lozza, V.; Soerensen, A.; von Krosigk, B.; Wilson, J. R.; Zuber, K.] Tech Univ Dresden, Inst Kern & Teilchenphys, Zellescher Weg 19, D-01069 Dresden, Germany. [Maio, A.; Maneira, J.] Univ Lisbon, Fac Ciencias, Dept Fis, Edificio C8, P-1749016 Lisbon, Portugal. [McCauley, N.; Robertson, A.; Rose, J.; Stainforth, R.; Walker, J. M. G.; Winchester, T. J.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [McMillan, J. E.] Univ Sheffield, Dept Phys & Astron, Hicks Bldg,Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England. [Secrest, J.] Armstrong Atlantic State Univ, Dept Chem & Phys, 11935 Abercorn St, Savannah, GA 31419 USA. [Vzquez-Jauregui, E.] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico. RP Lozza, V (reprint author), Tech Univ Dresden, Inst Kern & Teilchenphys, Zellescher Weg 19, D-01069 Dresden, Germany. EM valentina.lozza@tu-dresden.de RI Carvalho, Joao/M-4060-2013; Di Lodovico, Francesca/L-9109-2016; Maneira, Jose/D-8486-2011; Barros, Nuno/O-1921-2016; OI Carvalho, Joao/0000-0002-3015-7821; Lozza, Valentina/0000-0002-9521-8517; Di Lodovico, Francesca/0000-0003-3952-2175; Maneira, Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705; Walker, Matthew/0000-0003-4595-5276; Hartnell, Jeffrey/0000-0002-1744-7955 FU Canada Foundation for Innovation (CFI); Science and Technology Facilities Council (STFC) of the United Kingdom [ST/J001007/1, ST/K001329/1]; Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research (CIFAR); National Science Foundation; Portugal and European Union FEDER fund through the COMPETE program, through FCT, Fundacao para a Ciencia e a Tecnologia [EXPL/FIS-NUC/1557/2013]; Deutsche Forschungsgemeinschaft [ZU123/5]; European Union's Seventh Framework Programme (FP7, under the European Research Council (ERC) Grant) [278310]; European Union's Seventh Framework Programme (Marie Curie Grant) [PIEF-GA-2009-253701]; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0010407]; U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [NSF-PHY-1242509]; University of California, Berkeley; Portugal and European Union FEDER fund through FCT, Fundacao para a Ciencia e a Tecnologia [EXPL/FIS-NUC/1557/2013] FX Capital construction funds for the SNO+ experiment are provided by the Canada Foundation for Innovation (CFI). This work has been in part supported by the Science and Technology Facilities Council (STFC) of the United Kingdom (Grants nos. ST/J001007/1 and ST/K001329/1), the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research (CIFAR), the National Science Foundation, national funds from Portugal and European Union FEDER funds through the COMPETE program, through FCT, Fundacao para a Ciencia e a Tecnologia (Grant no. EXPL/FIS-NUC/1557/2013), the Deutsche Forschungsgemeinschaft (Grant no. ZU123/5), the European Union's Seventh Framework Programme (FP7/2007-2013, under the European Research Council (ERC) Grant Agreement no. 278310 and the Marie Curie Grant Agreement no. PIEF-GA-2009-253701), the Director, Office of Science, of the U.S. Department of Energy (Contract no. DE-AC02-05CH11231), the U.S. Department of Energy, Office of Science, Office of Nuclear Physics (Award no. DE-SC0010407), the U.S. Department of Energy (Contract no. DE-AC02-98CH10886), the National Science Foundation (Grant no. NSF-PHY-1242509), and the University of California, Berkeley. The authors acknowledge the generous support of the Vale and SNOLAB staff. NR 83 TC 1 Z9 1 U1 1 U2 19 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 1687-7357 EI 1687-7365 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2016 AR 6194250 DI 10.1155/2016/6194250 PG 21 WC Physics, Particles & Fields SC Physics GA DD2KI UT WOS:000369750800001 ER PT J AU Huesemann, M Crowe, B Waller, P Chavis, A Hobbs, S Edmundson, S Wigmosta, M AF Huesemann, M. Crowe, B. Waller, P. Chavis, A. Hobbs, S. Edmundson, S. Wigmosta, M. TI A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Biomass growth model; Light absorption coefficient; Maximum specific growth rate; Dark respiration; Biomass loss rate in the dark; Raceway pond ID NIGHT BIOMASS LOSS; ALGAL-GROWTH; CHLAMYDOMONAS-REINHARDTII; SPIRULINA-PLATENSIS; TUBULAR PHOTOBIOREACTORS; CHLORELLA-PYRENOIDOSA; MARINE-PHYTOPLANKTON; BIOFUEL PRODUCTION; DARK RESPIRATION; RACEWAY PONDS AB Amicroalgae growth model was developed for predicting biomass productivity in outdoor ponds under nutrient replete conditions and diurnally fluctuating light intensities and water temperatures. The model was validated for three different species (Chlorella sorokiniana, Nannochloropsis salina, Picochlorum sp.), successfully predicting biomass growth and productivity in all three cases in raceway pond cultures. The model can be run in batch and continuous culture mode at different culture depths and, in addition to incident sunlight and water temperature data, requires the following experimentally determined strain-specific input parameters: growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. Light attenuation due to biomass was estimated on the basis of a scatter-corrected Beer-Lambert law in a culture theoretically divided into discrete volume layers which receive decreasing amounts of light with depth. Sensitivity of model predictions to deviations in input parameters was moderate. To increase the predictive power of this and other microalgae biomass growth models, a better understanding is needed of the effects of mixing-induced rapid light-dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond. The model is also applicable to photobioreactor cultures. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Huesemann, M.; Crowe, B.; Chavis, A.; Hobbs, S.; Edmundson, S.] Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. [Wigmosta, M.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Waller, P.] Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ USA. RP Huesemann, M (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. EM michael.huesemann@pnnl.gov OI Hobbs, Samuel/0000-0002-4282-8813 FU US Department of Energy [DE-EE0003046]; Department of Energy Science Undergraduate Laboratory Internship Program FX The authors would like to acknowledge funding of this work by the US Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts. Additional support by the Department of Energy Science Undergraduate Laboratory Internship Program was provided to Boris Chubukov and V.J. Tocco, whose early work on method development and validation is greatly appreciated. The authors have declared no conflict of interest. NR 66 TC 6 Z9 6 U1 13 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JAN PY 2016 VL 13 BP 195 EP 206 DI 10.1016/j.algal.2015.11.008 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DD8NG UT WOS:000370183100021 ER PT J AU Elliott, DC AF Elliott, Douglas C. TI Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Review DE Biomass; Thermochemical; Fuels; Hydrothermal; Hydrotreating ID CONTINUOUS HYDROTHERMAL LIQUEFACTION; MICROALGAE DUNALIELLA-TERTIOLECTA; WASTE-WATER TREATMENT; BIO-OIL PRODUCTION; NANNOCHLOROPSIS SP; AQUEOUS-PHASE; PRODUCT FRACTIONS; CRUDE OIL; CULTIVATION; BIOMASS AB This review considers the recent developments in which there has been a tremendous expansion of the research and development focused on process development for the thermochemical processing of whole algae for the production of fuels. There are several key elements to this expanded interest in thermochemical processing: 1) the processing is applied to whole algae, not just lipid extracts, and as a result higher product yields have been demonstrated; 2) the feedstock composition is not so critical to the process, so that a wider range of algae growth scenarios has been considered; and 3) the envisioned products are actual hydrocarbon fuels, which are infrastructure compatible. Based on these three elements one can envision a more widely expanded utilization with more flexible growth options and more direct market applications of products. Algae can be processed by dry pyrolysis or in water slurry by hydrothermal liquefaction. In either case, the liquid oil product can be hydroprocessed to liquid hydrocarbon fuels. Recovery and recycle of nutrients is possible through treatment of the aqueous byproduct to promote sustainable production of the algae feedstock. In all cases the cost of the algae feedstock is the primary uncertainty in the economic analysis of such processing. (C) 2015 Elsevier B.V. All rights reserved. C1 [Elliott, Douglas C.] Pacific NW Natl Lab, POB 999,MSIN P8-60, Richland, WA 99352 USA. RP Elliott, DC (reprint author), Pacific NW Natl Lab, POB 999,MSIN P8-60, Richland, WA 99352 USA. EM dougc.elliott@pnnl.gov OI Elliott, Douglas/0000-0002-2807-4648 FU U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830]; Bioenergy Technologies Office of Energy Efficiency and Renewable Energy FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. Support is acknowledged from the Bioenergy Technologies Office of Energy Efficiency and Renewable Energy. NR 82 TC 6 Z9 6 U1 8 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD JAN PY 2016 VL 13 BP 255 EP 263 DI 10.1016/j.algal.2015.12.002 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DD8NG UT WOS:000370183100027 ER PT J AU Shofners, GA Campbell, AJ Danielson, LR Righter, K Fischer, RA Wang, YB Prakapenka, V AF Shofners, Gregory A. Campbell, Andrew J. Danielson, Lisa R. Righter, Kevin Fischer, Rebecca A. Wang, Yanbin Prakapenka, Vitali TI The W-WO2 oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for f(o2) buffering and metal-silicate partitioning SO AMERICAN MINERALOGIST LA English DT Article DE High pressure; tungsten; oxygen fugacity buffer; equation of state; metal-silicate partitioning ID MULTI-ANVIL EXPERIMENTS; X-RAY-DIFFRACTION; EQUATION-OF-STATE; CORE FORMATION; SIDEROPHILE ELEMENTS; TUNGSTEN; MOLYBDENUM; LIQUID; SYSTEM; CONSTRAINTS AB Synchrotron X-ray diffraction data were obtained to simultaneously measure unit-cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. Both W and WO2 unit-cell volume data were fit to Mie-Gruneisen equations of state; parameters for W are Kr = 307 ( 0.4) GPa, K-T = 4.05 (+/- 0.04), yo = 1.61 ( 0.03), and q = 1.54 ( 0.13). Three phases were observed in WO2 with structures in the P2(1)/c, Pnma, and C2c space groups. The transition pressures are 4 and 32 GPa for the P211 c-Pnma and Pnma-C2I c phase changes, respectively. The P2,/c and Pnma phases have previously been described, whereas the C2I c phase is newly described here. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 238 ( 7), 230 ( 5), 304 ( 3) GPa, K-j, = 4 (fixed), 4 (fixed), 4 (fixed) GPa, yo = 1.45 (+/- 0.18), 1.22 ( 0.07), 1.21 ( 0.12), and q =1 (fixed), 2.90 (+/- 1.5), 1 (fixed) for the P2(1)/c, Pnma, and C2I c phases, respectively. The W-W02 buffer (WWO) was extended to high pressure using these W and WO2 equations of state. The T-f02 slope of the WWO buffer along isobars is positive from 1000 to 2500 K with increasing pressure up to at least 60 GPa. The WWO buffer is at a higher foe than the iron-wilstite (IW) buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This implies an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient (KE,) for the Fe-W exchange reaction. This approach captures the non-linear pressure dependence of W metal-silicate partitioning using the W WO-IW buffer difference. Calculation of KD along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IVV buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure the results here indicate that pressure exerts a greater effect on W metal-silicate partitioning. C1 [Shofners, Gregory A.] Towson Univ, Dept Phys Astron & Geosci, 8000 York Rd, Towson, MD 21252 USA. [Campbell, Andrew J.; Fischer, Rebecca A.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. [Danielson, Lisa R.] NASA, Jacobs Technol, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. [Righter, Kevin] NASA, Johnson Space Ctr, 2101 NASA Pkwy,Mailcode XI2, Houston, TX 77058 USA. [Wang, Yanbin; Prakapenka, Vitali] Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, 9700 South Cass Ave,Bldg 434A, Argonne, IL 60439 USA. RP Shofners, GA (reprint author), Towson Univ, Dept Phys Astron & Geosci, 8000 York Rd, Towson, MD 21252 USA. EM gshofner@towson.edu FU NASA GSRP fellowship; NASA RTOP from the Cosmochemistry program; NSF [EAR-1243847]; NSF GSFP; University of Maryland; National Science Foundation, Earth Sciences [EAR-1128799]; Department of Energy-GeoSciences [DE-FG02-94ER14466]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This research was supported by a NASA GSRP fellowship to G.A.S., NASA RTOP from the Cosmochemistry program to K.R., and NSF grant EAR-1243847 to A.J.C. R.A.F. was supported by the NSF GSFP and a Flagship Fellowship from University of Maryland. High-pressure multi-anvil assemblies were produced by the COMPRES Infrastructure Development Project. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation, Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Assistance with RHDAC experiments was provided by undergraduate researcher James Deane. Reviews by D. Walker, C. Lesher, and several anonymous reviewers helped improve the clarity of the manuscript. NR 41 TC 2 Z9 2 U1 1 U2 10 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JAN-FEB PY 2016 VL 101 IS 1-2 BP 211 EP 221 DI 10.2138/am-2016-5328 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DD8YT UT WOS:000370213500020 ER PT J AU Marcial, J Crum, J Neill, O McCloy, J AF Marcial, Jose Crum, Jarrod Neill, Owen McCloy, John TI Nepheline structural and chemical dependence on melt composition SO AMERICAN MINERALOGIST LA English DT Article DE Nepheline; glass; vacancy; nuclear waste; crystallization; electron microprobe; nepheline crystal chemistry and structure ID ELECTRON-PROBE MICROANALYSIS; NUCLEAR-WASTE GLASS; X-RAY SPECTROMETRY; PHASE-COMPOSITION; CRYSTAL-CHEMISTRY; MINERAL GLASSES; CRYSTALLIZATION; BORON; TEMPERATURE; NAALSI3O8 AB Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline composition varies as a function of starting melt composition. Five simulated high-level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow-cooling were selected for study. These starting melt compositions contained a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 concentrations. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that nepheline is generally rich in silica, whereas boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure. C1 [Marcial, Jose; McCloy, John] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Marcial, Jose; McCloy, John] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. [Crum, Jarrod] Pacific NW Natl Lab, Richland, WA 99352 USA. [Neill, Owen] Washington State Univ, Sch Environm, Peter Hooper GeoAnalyt Lab, Pullman, WA 99164 USA. RP McCloy, J (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.; McCloy, J (reprint author), Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. EM john.mccloy@wsu.edu RI Marcial, Jose/I-9627-2016 OI Marcial, Jose/0000-0001-6156-5310 FU Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office [DE-EM0002904]; Graduate Assistance in Areas of National Need (GAANN) fellowship FX This research was supported by the Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office, contract number DE-EM0002904, under the direction of Albert A. Kruger. Further support for Jose Marcial was provided by the Graduate Assistance in Areas of National Need (GAANN) fellowship. Electron microprobe analyses were performed at the Peter Hooper GeoAnalytical Laboratory of the Washington State University School of the Environment. The authors thank the two anonymous reviewers and the editor for suggestions that substantially improved the manuscript. NR 66 TC 1 Z9 1 U1 8 U2 17 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JAN-FEB PY 2016 VL 101 IS 1-2 BP 266 EP 276 DI 10.2138/am-2016-5370 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DD8YT UT WOS:000370213500026 ER PT J AU Puccetti, S Comastri, A Bauer, FE Brandt, WN Fiore, E Harrison, FA Luo, B Stern, D Urry, CM Alexander, DM Annuar, A Arevalo, P Balokovic, M Boggs, SL Brightman, M Christensen, FE Craig, WW Gandhi, P Hailey, CJ Koss, MJ La Massa, S Marinucci, A Ricci, C Walton, DJ Zappacosta, L Zhang, W AF Puccetti, S. Comastri, A. Bauer, F. E. Brandt, W. N. Fiore, E. Harrison, F. A. Luo, B. Stern, D. Urry, C. M. Alexander, D. M. Annuar, A. Arevalo, P. Balokovic, M. Boggs, S. L. Brightman, M. Christensen, F. E. Craig, W. W. Gandhi, P. Hailey, C. J. Koss, M. J. La Massa, S. Marinucci, A. Ricci, C. Walton, D. J. Zappacosta, L. Zhang, W. TI Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: individual: NGC 6240; X-rays: galaxies ID ACTIVE GALACTIC NUCLEUS; STAR-FORMATION RATE; BLACK-HOLE GROWTH; XMM-NEWTON; STARBURST GALAXIES; INTERACTING GALAXY; EDDINGTON RATIO; QUASAR FEEDBACK; LINE EMISSION; HOST GALAXIES AB We present a broadband (similar to 0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by similar to 1.''5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau similar or equal to 1.2, N-H similar to 1.5 x 10(24) cm(-2)). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at similar to 30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities N-H <= 2 x 1023 cm(-2) over long (similar to 3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei. C1 [Puccetti, S.] ASDC ASI, Via Politecn, I-00133 Rome, Italy. [Puccetti, S.; Fiore, E.; Zappacosta, L.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, RM, Italy. [Comastri, A.] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Bauer, F. E.; Arevalo, P.; Ricci, C.] EMBIGGEN Anillo, Concepcion, Chile. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 6177, Santiago 22, Chile. [Bauer, F. E.] Millenium Inst Astrophys, Casilla 360, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Brandt, W. N.; Luo, B.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.; Luo, B.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA. [Harrison, F. A.; Balokovic, M.; Brightman, M.; Walton, D. J.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. [Urry, C. M.; La Massa, S.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, POB 208120, New Haven, CT 06520 USA. [Alexander, D. M.; Annuar, A.; Gandhi, P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Boggs, S. L.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gandhi, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Koss, M. J.] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Marinucci, A.] Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. [Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Puccetti, S (reprint author), ASDC ASI, Via Politecn, I-00133 Rome, Italy. EM puccetti@asdc.asi.it RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Urry, Meg/0000-0002-0745-9792 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ASI/INAF [I/037/12/0 - 011/13]; Caltech NuSTAR [44A-1092750]; CONICYT-Chile [Basal-CATA PFB-06/2007, FONDECYT 1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H] FX This work was supported under NASA Contract NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). A.C., A.M., F.F. and L.Z. acknowledge support from the ASI/INAF grant I/037/12/0 - 011/13. W.N.B. acknowledges support from Caltech NuSTAR sub-contract 44A-1092750. F.E.B. and C.R. acknowledge support from CONICYT-Chile grants Basal-CATA PFB-06/2007 and FONDECYT 1141218. F.E.B., C.R. and P.A. acknowledge support from "EMBIGGEN" Anillo ACT1101. FEB acknowledges support from the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. M.B. acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H. NR 92 TC 5 Z9 5 U1 2 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JAN PY 2016 VL 585 AR A157 DI 10.1051/0004-6361/201527189 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1VI UT WOS:000369710300164 ER PT J AU Finbloom, JA Slack, CC Bruns, CJ Jeong, K Wemmer, DE Pines, A Francis, MB AF Finbloom, Joel A. Slack, Clancy C. Bruns, Carson J. Jeong, Keunhong Wemmer, David E. Pines, Alexander Francis, Matthew B. TI Rotaxane-mediated suppression and activation of cucurbit[6]uril for molecular detection by Xe-129 hyperCEST NMR SO CHEMICAL COMMUNICATIONS LA English DT Article ID CONTRAST AGENTS; BIOSENSOR; XENON; CUCURBITURIL; CELLS; MRI AB We report a method for blocking interactions between Xe-129 and cucurbit[6]uril (CB6) until activation by a specific chemical event. We synthesized a CB6-rotaxane that allowed no Xe-129 interaction with the CB6-macrocycle component until a cleavage event released the CB6, which then produced a Xe-129@CB6 NMR signal. This contrast-upon-activation Xe-129 NMR platform allows for modular synthesis and can be expanded to applications in detection and disease imaging. C1 [Finbloom, Joel A.; Slack, Clancy C.; Bruns, Carson J.; Jeong, Keunhong; Wemmer, David E.; Pines, Alexander; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Slack, Clancy C.; Jeong, Keunhong; Pines, Alexander; Francis, Matthew B.] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA. [Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Francis, MB (reprint author), Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu OI Slack, Clancy/0000-0001-6663-9112 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program; National Science Foundation Graduate Research Fellowship [DGE-1106400]; Miller Institute for Basic Research at UC Berkeley FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. The authors thank Dr Christophoros Vassiliou for valuable discussions. J.A.F. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. C.C.S. was supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. C.J.B. was supported by the Miller Institute for Basic Research at UC Berkeley. NR 31 TC 8 Z9 8 U1 12 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 15 BP 3119 EP 3122 DI 10.1039/c5cc10410f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DE4BE UT WOS:000370573400008 PM 26795714 ER PT J AU Wang, GL Yu, M Pal, JS Mei, R Bonan, GB Levis, S Thornton, PE AF Wang, Guiling Yu, Miao Pal, Jeremy S. Mei, Rui Bonan, Gordon B. Levis, Samuel Thornton, Peter E. TI On the development of a coupled regional climate-vegetation model RCM-CLM-CN-DV and its validation in Tropical Africa SO CLIMATE DYNAMICS LA English DT Article DE Regional climate modeling; Biogeochemical cycles; Plant phenology; Vegetation dynamics; Biosphere-atmosphere interactions ID LATERAL BOUNDARY-CONDITIONS; CARBON-CYCLE FEEDBACKS; LARGE-SCALE MODELS; LAND-USE CHANGES; WEST-AFRICA; DYNAMIC VEGETATION; GLOBAL VEGETATION; INTERANNUAL VARIABILITY; ECOSYSTEM DYNAMICS; BIOSPHERE MODEL AB This paper presents a regional climate system model RCM-CLM-CN-DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon-nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule into the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM-CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM-CLM-CN with prescribed PFTs coverage but prognostic plant phenology; RCM-CLM-CN-DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated through vegetation dynamics in RCM-CLM-CN-DV. C1 [Wang, Guiling; Yu, Miao] Univ Connecticut, Dept Civil & Environm Engn, Ctr Environm Sci & Engn, Storrs, CT USA. [Pal, Jeremy S.] Loyola Marymount Univ, Dept Civil Engn, Los Angeles, CA 90045 USA. [Bonan, Gordon B.; Levis, Samuel] Natl Ctr Atmospher Res, Terr Sci Div, POB 3000, Boulder, CO 80307 USA. [Mei, Rui; Thornton, Peter E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. RP Wang, GL (reprint author), Univ Connecticut, Dept Civil & Environm Engn, Ctr Environm Sci & Engn, Storrs, CT USA. EM gwang@engr.uconn.edu RI Thornton, Peter/B-9145-2012 OI Thornton, Peter/0000-0002-4759-5158 FU NSF [AGS-1049017, AGS-1049186, AGS-1063986, AGS-1064008]; NSF FX This research was supported by funding from the NSF (AGS-1049017, AGS-1049186, AGS-1063986, and AGS-1064008). NCAR is sponsored by the NSF. Constructive comments from two anonymous reviewers greatly improved the quality of this paper. NR 90 TC 9 Z9 9 U1 6 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JAN PY 2016 VL 46 IS 1-2 BP 515 EP 539 DI 10.1007/s00382-015-2596-z PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD6NE UT WOS:000370040100033 ER PT J AU DeFlorio, MJ Goodwin, ID Cayan, DR Miller, AJ Ghan, SJ Pierce, DW Russell, LM Singh, B AF DeFlorio, Michael J. Goodwin, Ian D. Cayan, Daniel R. Miller, Arthur J. Ghan, Steven J. Pierce, David W. Russell, Lynn M. Singh, Balwinder TI Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO SO CLIMATE DYNAMICS LA English DT Article DE Dust; ENSO; NAO; CESM; Teleconnections; Decadal variability ID EARTH SYSTEM MODEL; AFRICAN DUST; NORTH-ATLANTIC; CLIMATE MODELS; TROPICAL ATLANTIC; EMISSION MODEL; MINERAL DUST; GOCART MODEL; ATMOSPHERE; TRANSPORT AB Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available in situ and satellite observations of dust and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Nino-Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, one of the few sites having a multi-decadal observed record. During strong La Nina summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the cross-basin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and is associated with a phase shift in the North Atlantic Oscillation. Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records. C1 [DeFlorio, Michael J.; Cayan, Daniel R.; Miller, Arthur J.; Pierce, David W.; Russell, Lynn M.] Univ Calif San Diego, Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog, 9500 Gilman Dr,Mail Code 0208, La Jolla, CA 92093 USA. [Goodwin, Ian D.] Macquarie Univ, Dept Environm Sci, N Ryde, NSW, Australia. [Cayan, Daniel R.] US Geol Survey, La Jolla, CA USA. [Ghan, Steven J.; Singh, Balwinder] Pacific NW Natl Lab, Richland, WA 99352 USA. RP DeFlorio, MJ (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog, 9500 Gilman Dr,Mail Code 0208, La Jolla, CA 92093 USA. EM mdeflori@ucsd.edu RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU NSF [AGS-1048995]; U.S. Department of Energy, Office of Science; DOE [DE-AC06-76RLO1830] FX This study forms a portion of the Ph.D. dissertation of M.J.D. Funding was provided by NSF (AGS-1048995), and by the U.S. Department of Energy, Office of Science, Decadal and Regional Climate Prediction using Earth System Models (EaSM program). Battelle Memorial Institute operates the Pacific Northwest National Laboratory for the DOE under contract DE-AC06-76RLO1830. We are grateful for the contribution made by Joseph M. Prospero (RSMAS, U. Miami), who provided us with the Barbados dust record. We also acknowledge Cynthia Twohy (NorthWest Research Associates and SIO) and Diego Melgar (UC-Berkeley) for improving the manuscript, and for assistance with the pseudo-principal component spectral analysis used in this study. Our CESM simulation can be accessed via an email inquiry (mdeflori@ucsd.edu). NR 42 TC 4 Z9 4 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JAN PY 2016 VL 46 IS 1-2 BP 585 EP 599 DI 10.1007/s00382-015-2600-7 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD6NE UT WOS:000370040100037 ER PT J AU Wu, QY Lan, JH Wang, CZ Cheng, ZP Chai, ZF Gibson, JK Shi, WQ AF Wu, Q. -Y. Lan, J. -H. Wang, C. -Z. Cheng, Z. -P. Chai, Z. -F. Gibson, J. K. Shi, W. -Q. TI Paving the way for the synthesis of a series of divalent actinide complexes: a theoretical perspective SO DALTON TRANSACTIONS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; CRYSTALLINE MOLECULAR-COMPLEX; OXIDATION-STATE; BASIS-SETS; CORRELATION-ENERGY; ELECTRON-DENSITY; TH-CM; LANTHANIDE; BONDS; URANIUM AB Recently, the +2 formal oxidation state in soluble molecular complexes for lanthanides (La-Nd, Sm-Lu) and actinides (Th and U) has been discovered [W. J. Evans, et al., J. Am. Chem. Soc., 2011, 133, 15914; J. Am. Chem. Soc., 2012, 134, 8420; J. Am. Chem. Soc., 2013, 135, 13310; Chem. Sci., 2015, 6, 517]. To explore the nature of the bonding and stabilities of the low-valent actinide complexes, a series of divalent actinide species, [AnCp'3](-) (An=Th-Am, Cp' = [eta(5)-C5H4(SiMe3)](-)) have been investigated in THF solution using scalar relativistic density functional theory. The electronic structures and electron affinity properties were systematically studied to identify the interactions between the + 2 actinide ions and Cp' ligands. The ground state electron configurations for the [AnCp'3](-) species are [ThCp'3](-) 6d(2), [PaCp'3](-) 5f(2)6d(1), [UCp'3](-) 5f(3)6d(1), [NpCp'3](-) 5f(5), [PuCp'3](-) 5f (,) and [AmCp'3](-) 5f(7), respectively, according to the MO analysis. The total bonding energy decreases from the Th- to the Am-complex and the electrostatic interactions mainly dominate the bonding between the actinide atom and ligands. The electron affinity analysis suggests that the reduction reaction of AnCp'3. [AnCp'3](-) should become increasingly facile across the actinide series from Th to Am, in accord with the known An(III/II) reduction potentials. This work expands the knowledge on the low oxidation state chemistry of actinides, and further motivates and guides the synthesis of related low oxidation state compounds of 5f elements. C1 [Wu, Q. -Y.; Lan, J. -H.; Wang, C. -Z.; Cheng, Z. -P.; Chai, Z. -F.; Shi, W. -Q.] Chinese Acad Sci, Inst High Energy Phys, Lab Nucl Energy Chem, Beijing 100049, Peoples R China. [Wu, Q. -Y.; Lan, J. -H.; Wang, C. -Z.; Cheng, Z. -P.; Chai, Z. -F.; Shi, W. -Q.] Chinese Acad Sci, Inst High Energy Phys, Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100049, Peoples R China. [Chai, Z. -F.] Soochow Univ, Sch Radiol & Interdisciplinary Sci RAD X, Suzhou 215123, Peoples R China. [Chai, Z. -F.] Soochow Univ, Collaborat Innovat Ctr Radiat Med, Jiangsu Higher Educ Inst, Suzhou 215123, Peoples R China. [Gibson, J. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Shi, WQ (reprint author), Chinese Acad Sci, Inst High Energy Phys, Lab Nucl Energy Chem, Beijing 100049, Peoples R China.; Shi, WQ (reprint author), Chinese Acad Sci, Inst High Energy Phys, Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100049, Peoples R China. EM shiwq@ihep.ac.cn RI wu, qunyan/B-9983-2013 FU National Natural Science Foundation of China [21477130, 91426302, 91326202]; "Strategic Priority Research Program" of the Chinese Academy of Sciences [XDA030104]; U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry, at LBNL [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 21477130, 91426302, 91326202) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA030104). The results described in this work were obtained from the ScGrid of Supercomputing Center, and the Computer Network Information Center of Chinese Academy of Sciences. The work of JKG was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry, at LBNL under the Contract No. DE-AC02-05CH11231. NR 56 TC 6 Z9 6 U1 7 U2 21 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 7 BP 3102 EP 3110 DI 10.1039/c5dt04540a PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DD8GX UT WOS:000370165300042 PM 26777518 ER PT J AU Kolinko, S Richter, M Glockner, FO Brachmann, A Schuler, D AF Kolinko, Sebastian Richter, Michael Gloeckner, Frank-Oliver Brachmann, Andreas Schueler, Dirk TI Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; MAGNETOSPIRILLUM-GRYPHISWALDENSE; MAXIMUM-LIKELIHOOD; INDEPENDENT CHARACTERIZATION; PHYLUM NITROSPIRAE; PROTEIN MAMK; DIVERSITY; BIOMINERALIZATION; THIOREDOXIN; ISLAND AB While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains. C1 [Kolinko, Sebastian; Brachmann, Andreas; Schueler, Dirk] Univ Munich, LMU Biozentrum, Dept Biol 1, Grosshaderner Sre 2-4, D-82152 Planegg Martinsried, Germany. [Richter, Michael; Gloeckner, Frank-Oliver] Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Res Grp, Celsiusstr 1, D-28359 Bremen, Germany. [Gloeckner, Frank-Oliver] Jacobs Univ Bremen, Dept Life Sci & Chem, Campus Ring 1, D-28759 Bremen, Germany. [Schueler, Dirk] Univ Bayreuth, Dept Microbiol, Bayreuth, Germany. [Kolinko, Sebastian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst JBEI, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Kolinko, S; Schuler, D (reprint author), Univ Munich, LMU Biozentrum, Dept Biol 1, Grosshaderner Sre 2-4, D-82152 Planegg Martinsried, Germany.; Schuler, D (reprint author), Univ Bayreuth, Dept Microbiol, Bayreuth, Germany.; Kolinko, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst JBEI, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sebastian.kolinko@gmx.de; dirk.schueler@uni-bayreuth.de RI Brachmann, Andreas/I-2241-2013 OI Brachmann, Andreas/0000-0001-7980-8173 FU Deutsche Forschungsgemeinschaft [DFG Schu1080/11-1] FX This work was supported by Deutsche Forschungsgemeinschaft (Grant DFG Schu1080/11-1 to D.S.). This Whole Genome Shotgun project has been deposited at the DDBJ/EMBL/GenBank under the accessions JYNY00000000, LACI00000000 and JZJI00000000. The version described in this paper is version JYNY01000000, LACI00000000 and JZJI00000000. NR 69 TC 9 Z9 10 U1 12 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD JAN PY 2016 VL 18 IS 1 BP 21 EP 37 DI 10.1111/1462-2920.12907 PG 17 WC Microbiology SC Microbiology GA DE5LN UT WOS:000370672600004 PM 26060021 ER PT J AU Hug, LA Thomas, BC Sharon, I Brown, CT Sharma, R Hettich, RL Wilkins, MJ Williams, KH Singh, A Banfield, JF AF Hug, Laura A. Thomas, Brian C. Sharon, Itai Brown, Christopher T. Sharma, Ritin Hettich, Robert L. Wilkins, Michael J. Williams, Kenneth H. Singh, Andrea Banfield, Jillian F. TI Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; DE-NOVO; PEPTIDE IDENTIFICATION; UNCULTURED BACTERIA; GENOME SEQUENCE; AQUIFER; GROUNDWATER; METAGENOME; SEDIMENT; ACCURATE AB Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. We applied these methods to evaluate the inter-linked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla with no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin-Benson-Bassham, Wood-Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. This organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources. C1 [Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; Singh, Andrea; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Brown, Christopher T.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Sharma, Ritin; Hettich, Robert L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Wilkins, Michael J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Wilkins, Michael J.] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA. [Williams, Kenneth H.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Geophys, Berkeley, CA 94720 USA. [Sharma, Ritin] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Mol Oncol, Tampa, FL 33612 USA. RP Hug, LA (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM laura.audrey.hug@gmail.com RI Wilkins, Michael/A-9358-2013; Hettich, Robert/N-1458-2016; Williams, Kenneth/O-5181-2014 OI Hettich, Robert/0000-0001-7708-786X; Williams, Kenneth/0000-0002-3568-1155 FU Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; NSERC Post-Doctoral Fellowship FX The authors acknowledge the DOE Joint Genome Institute sequencing facility for generating the metagenome sequence via the Community Science Program. This material is based upon work supported as part of the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under contract DE-AC02-05CH11231. LAH was partially supported by an NSERC Post-Doctoral Fellowship. The authors state they have no conflicts of interest to declare. NR 44 TC 14 Z9 14 U1 11 U2 36 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD JAN PY 2016 VL 18 IS 1 BP 159 EP 173 DI 10.1111/1462-2920.12930 PG 15 WC Microbiology SC Microbiology GA DE5LN UT WOS:000370672600014 PM 26033198 ER PT J AU Deng, Y Zhang, P Qin, YJ Tu, QC Yang, YF He, ZL Schadt, CW Zhou, JZ AF Deng, Ye Zhang, Ping Qin, Yujia Tu, Qichao Yang, Yunfeng He, Zhili Schadt, Christopher Warren Zhou, Jizhong TI Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HIGHLY CONTAMINATED AQUIFER; MICROBIAL COMMUNITIES; SACCHAROMYCES-CEREVISIAE; FUNCTIONAL-ORGANIZATION; U(VI) BIOREDUCTION; ECOSYSTEM FUNCTION; ELECTRON-DONOR; DIVERSITY; BACTERIAL; GROUNDWATER AB Discerning network interactions among different species/populations in microbial communities has evoked substantial interests in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. Here, we modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the network interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140-269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. Particularly, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations. C1 [Deng, Ye] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, CAS Key Lab Environm Biotechnol, POB 934, Beijing, Peoples R China. [Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Yang, Yunfeng; Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Schadt, Christopher Warren] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.; Zhou, JZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jzhou@ou.edu RI Schadt, Christopher/B-7143-2008; OI Schadt, Christopher/0000-0001-8759-2448; ?, ?/0000-0002-7584-0632 FU National Science Foundation of China [21437005]; '100 Talents' Program of Chinese Academy of Sciences; State Key Joint Laboratory of Environment Simulation and Pollution Control [11Z03ESPCT]; Subsurface Biogeochemical Research Program [DE-FG02-07ER64398]; ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies; U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231]; DOE STTR Program [DE-SC0004613] FX This research was supported by the National Science Foundation of China (No. 21437005) and '100 Talents' Program of Chinese Academy of Sciences to Ye Deng, and the State Key Joint Laboratory of Environment Simulation and Pollution Control (11Z03ESPCT) to Yunfeng Yang. Field sampling was supported by the Subsurface Biogeochemical Research Program under Contract No. DE-FG02-07ER64398. Microbial analysis was supported by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), and a Scientific Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research under Contract Number DE-AC02-05CH11231. This work also has been partially supported by DOE STTR Program DE-SC0004613. The authors declare no conflict of interest. NR 61 TC 6 Z9 6 U1 14 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD JAN PY 2016 VL 18 IS 1 BP 205 EP 218 DI 10.1111/1462-2920.12981 PG 14 WC Microbiology SC Microbiology GA DE5LN UT WOS:000370672600017 PM 26177312 ER PT J AU Chevalier, ML Van der Woerd, J Tapponnier, P Li, HB Ryerson, FJ Finkel, RC AF Chevalier, Marie-Luce Van der Woerd, Jerome Tapponnier, Paul Li, Haibing Ryerson, Frederick J. Finkel, Robert C. TI Late Quaternary slip-rate along the central Bangong-Chaxikang segment of the Karakorum fault, western Tibet SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID ALTYN-TAGH FAULT; POSITIONING SYSTEM MEASUREMENTS; 2001 KOKOXILI-EARTHQUAKE; INDIA-ASIA COLLISION; KUNLUN FAULT; COSMOGENIC NUCLIDES; SOUTHERN TIBET; RED-RIVER; CONTINUOUS DEFORMATION; STRUCTURAL EVOLUTION AB Insight into the spatial and temporal changes of slip-rate is essential to understand the kinematic role of large strike-slip faults in continental collision zones. Geodetic and geologic rates from present to several million years ago along the Karakorum fault range from 0 to 11 mm/yr. Here, we determine the first late Quaternary slip-rate at the southern end of the linear Bangong-Chaxikang segment of the Karakorum fault, using cumulative offsets (20-200 m) of fans and terraces at three sites, as well as 74 new Be-10 surface-exposure ages to constrain the age of these offset geomorphic markers. The rate is >3 mm/yr at sites Gun and Chaxikang, and it is >1.7-2.2 mm/yr at the Gar fan site. Together with rates obtained along the southernmost Menshi-Kailas segment, the Karakorum fault slip-rate seems to increase southeastward from south of Bangong Lake to Kailas (from >3 to >8 mm/yr). These Karakorum fault slip-rate data (>3-8 mm/yr), together with the total length of the fault (>1000 km) and its initiation age (>13-23 Ma), confirm that the Karakorum fault is the major fault accommodating dextral strike-slip motion NE of the western Himalayas. The dextral Karakorum fault in the south and the conjugate left-lateral Longmu Co-Altyn Tagh fault system in the north are thus the major strike-slip faults of western Tibet, which contribute to eastward extrusion of Tibet. C1 [Chevalier, Marie-Luce; Li, Haibing] Chinese Acad Geol Sci, Inst Geol, State Key Lab Continental Tecton & Dynam, 26 Baiwanzhuang Rd, Beijing 100037, Peoples R China. [Chevalier, Marie-Luce; Tapponnier, Paul] Inst Phys Globe Paris, Lab Tecton & Mecan Lithosphere, 1 Rue Jussieu, F-75238 Paris 05, France. [Van der Woerd, Jerome] Univ Strasbourg, CNRS, Inst Phys Globe Strasbourg, UMR 7516, 5 Rue Descartes, F-67084 Strasbourg, France. [Tapponnier, Paul] Earth Observ Singapore, 50 Nanyang Ave,N2-01a-09, Singapore 639798, Singapore. [Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Atmospher Earth & Energy Div, L-231, Livermore, CA 94550 USA. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, 371 McCone Hall, Berkeley, CA 94720 USA. RP Chevalier, ML (reprint author), Chinese Acad Geol Sci, Inst Geol, State Key Lab Continental Tecton & Dynam, 26 Baiwanzhuang Rd, Beijing 100037, Peoples R China.; Chevalier, ML (reprint author), Inst Phys Globe Paris, Lab Tecton & Mecan Lithosphere, 1 Rue Jussieu, F-75238 Paris 05, France. EM mlchevalier@hotmail.com OI Chevalier, Marie-Luce/0000-0001-9110-2456 FU China Geological Survey [1212011121267]; Basic Outlay of Scientific Research Work from the Ministry of Science and Technology, China [J1126]; University of California-Los Angeles [NAS 13-98048]; U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL); Institut National des Sciences de l'Univers; Centre National de la Recherche Scientifique (Paris, France) FX This work was conducted under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL), as well as Institut National des Sciences de l'Univers and Centre National de la Recherche Scientifique (Paris, France). This study was also financially supported by the China Geological Survey (project 1212011121267) and the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology, China (J1126).r Ikonos image acquisition was made possible thanks to special funding from University of California-Los Angeles (G. Peltzer's contract NAS 13-98048). We thank the Associate Editor F. Pazzaglia, and the reviewers M. Oskin and J. Harvey for their thorough and constructive comments. NR 137 TC 2 Z9 2 U1 1 U2 10 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 EI 1943-2674 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD JAN PY 2016 VL 128 IS 1-2 BP 284 EP 314 DI 10.1130/B31269.1 PG 31 WC Geosciences, Multidisciplinary SC Geology GA DD6ZM UT WOS:000370073300016 ER PT J AU Jin, MJ Sousa, LD Schwartz, C He, YX Sarks, C Gunawan, C Balan, V Dale, BE AF Jin, Mingjie Sousa, Leonardo da Costa Schwartz, Christopher He, Yuxin Sarks, Cory Gunawan, Christa Balan, Venkatesh Dale, Bruce E. TI Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies SO GREEN CHEMISTRY LA English DT Article ID SACCHAROMYCES-CEREVISIAE 424A(LNH-ST); CORN STOVER; ETHANOL-PRODUCTION; LIGNOCELLULOSIC BIOMASS; DILUTE-ACID; SIMULTANEOUS SACCHARIFICATION; DECOMPOSITION PRODUCTS; ENZYMATIC-HYDROLYSIS; TRICHODERMA-REESEI; FIBER EXPANSION AB In response to growing concerns about energy security, environmental sustainability and societal sustainability, cellulosic biomass refining technologies have been extensively developed in recent years. However, these technologies are not yet fully commercialized. High capital cost and high enzyme cost are two major bottlenecks. Capital cost and operating cost (excluding 33% feedstock cost) account for 34% and 33%, respectively, of the total biofuel production cost with enzyme cost alone representing about 47% of the operating cost. Therefore, reducing both capital cost and enzyme cost is imperative. Over the past eight years, with the support from US Department of Energy Great Lakes Bioenergy Research Center (GLBRC), we greatly improved our AFEX T (Trade mark of MBI, International (Lansing, Michigan)) (Ammonia Fiber Expansion)-related processing technologies, leading to a 66% reduction in enzyme loading (current enzyme loading is as low as 7.5 mg protein per g glucan) and a 129% enhancement in ethanol volumetric productivity (>56% reduction in capital cost for enzymatic hydrolysis and fermentation). C1 [Jin, Mingjie; Sousa, Leonardo da Costa; Schwartz, Christopher; He, Yuxin; Sarks, Cory; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, BCRL, 3815 Technol Blvd, Lansing, MI 48910 USA. [Jin, Mingjie; Sousa, Leonardo da Costa; Schwartz, Christopher; He, Yuxin; Sarks, Cory; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Jin, MJ; Balan, V; Dale, BE (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, BCRL, 3815 Technol Blvd, Lansing, MI 48910 USA.; Jin, MJ; Balan, V; Dale, BE (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM jinmingj@egr.msu.edu; balan@egr.msu.edu; bdale@egr.msu.edu OI Jin, Mingjie/0000-0002-9493-305X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; MSU Michigan Translational Research and Commercialization Program (MTRAC) FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and MSU Michigan Translational Research and Commercialization Program (MTRAC). We would like to thank Novozymes for providing us commercial enzymes for this work, Dr Trey Sato (GLBRC) for providing S. cerevisiae Y128, Charles Donald, Jr and MBI (especially Tim Campbell and Farzaneh Teymouri) for preparing AFEX pretreated corn stover, and Prof. Charles Wyman's group (especially, Dr Rajeev Kumar) at University of California Riverside for providing dilute acid pretreated corn stover. We would also like to thank the members of the Biomass Conversion Research Laboratory (BCRL) at Michigan State University for their valuable suggestions and Devin Schmitt for some initial investigation. NR 46 TC 2 Z9 2 U1 3 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 4 BP 957 EP 966 DI 10.1039/c5gc02433a PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DE4RM UT WOS:000370617600008 ER PT J AU Shariatzadeh, F Chanda, S Srivastava, AK Bose, A AF Shariatzadeh, Farshid Chanda, Sayonsom Srivastava, Anurag K. Bose, Anjan TI Real-Time Benefit Analysis and Industrial Implementation for Distribution System Automation and Control SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Benefit analysis; distribution system automation and control; energy saving estimation; smart grid; volt/var control (VVC); volt/var optimization (VVO) ID CONSERVATION VOLTAGE REDUCTION; LOADS AB Smart grid technologies are expected to increase system efficiency and reliability using advancement in automation, communication, computation, and optimization. Several control algorithms have been developed or enhanced for operation and control of smart distribution grid. In recent years, volt/var control (VVC) algorithms have been proposed for energy saving in distribution systems due to advancement provided by smart grid automation and control. VVC helps to lower distribution feeder voltage to decrease energy consumption. However, quantification of this impact is hard due to several external factors such as weather and end users' behavior. On the other hand, existing evaluation methods of VVC algorithms are either not suitable for long-term study or intrusive. This paper addresses these issues by proposing a new technique to estimate "distribution system demand without smart grid implementation" utilizing "data measured from system with smart grid implementation." Interdependence of voltage and load is considered based on estimated load characteristic. Our key contribution is developing a method for quantifying the real-time energy saving of smart grid automation and control focused on VVC and implementing in an electric utility in eastern Washington, USA. The algorithm is developed using both commercial and open-source software. C1 [Shariatzadeh, Farshid] Spirae Inc, Ft Collins, CO 80524 USA. [Chanda, Sayonsom; Srivastava, Anurag K.; Bose, Anjan] Washington State Univ, Pullman, WA 99164 USA. [Chanda, Sayonsom] Idaho Natl Lab, Energy Sci & Technol Dept, Idaho Falls, ID 83415 USA. RP Shariatzadeh, F (reprint author), Spirae Inc, Ft Collins, CO 80524 USA.; Chanda, S; Srivastava, AK; Bose, A (reprint author), Washington State Univ, Pullman, WA 99164 USA.; Chanda, S (reprint author), Idaho Natl Lab, Energy Sci & Technol Dept, Idaho Falls, ID 83415 USA. EM farshid.shariatzade@gmail.com; sayon@ieee.org; asrivast@eecs.wsu.edu; bose@wsu.edu FU U.S. Department of Energy; AVISTA utilities FX Paper 2015-IACC-0105.R1, presented at the 2014 IEEE Industry Applications Society Annual Meeting, Vancouver, BC, Canada, October 5-9, and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Industrial Automation and Control Committee of the IEEE Industry Applications Society. This work was supported in part by the U.S. Department of Energy and in part by AVISTA utilities. NR 32 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD JAN-FEB PY 2016 VL 52 IS 1 BP 444 EP 454 DI 10.1109/TIA.2015.2477488 PG 11 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA DE0WI UT WOS:000370345800049 ER PT J AU Fitzsimmons, JM Medvedev, DG Mausner, LF AF Fitzsimmons, J. M. Medvedev, D. G. Mausner, L. F. TI Specific activity and isotope abundances of strontium in purified strontium-82 SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID GE-68; ZN-65 AB A linear accelerator was used to irradiate a rubidium chloride target with protons to produce strontium-82 (Sr-82), and the Sr-82 was purified by ion exchange chromatography. The amount of strontium associated with the purified Sr-82 was determined by either: ICP-OES or method B which consisted of a summation of strontium quantified by gamma spectroscopy and ICP-MS. The summation method agreed within 10% to the ICP-OES for the total mass of strontium and the subsequent specific activities were determined to be 0.25-0.52 TBq mg(-1). Method B was used to determine the isotope abundances by weight% of the purified Sr-82, and the abundances were: Sr-82 (10-20.7%), Sr-83 (0-0.05%), Sr-84 (35-48.5%), Sr-85 (16-25%), Sr-86 (12.5-23%), Sr-87 (0%), and Sr-88 (0-10%). The purified strontium contained mass amounts of Sr-82, Sr-84, Sr-85, Sr-86, and Sr-88 in abundances not associated with natural abundance, and 90% of the strontium was produced by the proton irradiation. A comparison of ICP-OES and method B for the analysis of Sr-82 indicated analysis by ICP-OES would be easier to determine total mass of strontium and comply with regulatory requirements. An ICP-OES analytical method for Sr-82 analysis was established and validated according to regulatory guidelines. C1 [Fitzsimmons, J. M.; Medvedev, D. G.; Mausner, L. F.] Brookhaven Natl Lab, Med Isotope Res & Prod Program, Collider Accelerator Dept, Bldg 801, Upton, NY 11973 USA. RP Fitzsimmons, JM (reprint author), Brookhaven Natl Lab, Med Isotope Res & Prod Program, Collider Accelerator Dept, Bldg 801, Upton, NY 11973 USA. EM jfitzsimmons@bnl.gov FU Department of Energy, Office of Nuclear Physics [ST-50-01-03, ST-50-01-02]; ARRA FX This study was supported by funding provided by the Department of Energy, Office of Nuclear Physics, subprogram Isotope Development and Production for Research and Applications core research (ST-50-01-03), BLIP research (ST-50-01-02). Instruments were purchased with ARRA funding. Special thanks to Albert Hanson for calculating the strontium abundances at 7 and 30 days post irradiation, Micheal Nelson for help with the ICP instruments and discussions of the data, and the BNL isotope production team: Louis Evers Jr, Anna Goldberg, Elizabeth Korach, Slawko Kurczak, Lisa Muench, Suzanne Smith, and Cathy Cutler. NR 16 TC 2 Z9 2 U1 1 U2 2 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2016 VL 31 IS 2 BP 458 EP 463 DI 10.1039/c5ja00419e PG 6 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DD8GI UT WOS:000370163400011 ER PT J AU LaHaye, NL Phillips, MC Duffin, AM Eiden, GC Harilal, SS AF LaHaye, Nicole L. Phillips, Mark C. Duffin, Andrew M. Eiden, Gregory C. Harilal, Sivanandan S. TI The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID INDUCED BREAKDOWN SPECTROSCOPY; PLASMA-MASS SPECTROMETRY; NANOSECOND LASER-ABLATION; FEMTOSECOND; SAMPLES; NM AB Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conducted by evaluating excitation temperature and electron density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP- MS and LIBS results for both ns- and fs-LA. C1 [LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.; Eiden, Gregory C.; Harilal, Sivanandan S.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [LaHaye, Nicole L.] Purdue Univ, W Lafayette, IN 47907 USA. RP Harilal, SS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM hari@pnnl.gov RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; LaHaye, Nicole/0000-0001-5047-8078 FU Laboratory Directed Research and Development (LDRD) Program of PNNL; DOE/NNSA Office of Nonproliferation and Verification Research and Development [NA-22]; U.S. Department of Energy [DE-AC05-76RLO1830] FX This work was supported in part by the Laboratory Directed Research and Development (LDRD) Program of PNNL and DOE/NNSA Office of Nonproliferation and Verification Research and Development (NA-22). Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830. NR 32 TC 6 Z9 6 U1 4 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2016 VL 31 IS 2 BP 515 EP 522 DI 10.1039/c5ja00317b PG 8 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DD8GI UT WOS:000370163400018 ER PT J AU Miller, PR Narayan, RJ Polsky, R AF Miller, Philip R. Narayan, Roger J. Polsky, Ronen TI Microneedle-based sensors for medical diagnosis SO JOURNAL OF MATERIALS CHEMISTRY B LA English DT Article ID MICROFABRICATED MICRONEEDLES; ARRAY; EXTRACTION; BIOSENSOR; DELIVERY; PATCH; DRUG; SKIN AB Recently microneedles have been explored for transdermal monitoring of biomarkers with the goal to achieve time-sensitive clinical information for routine point-of-care health monitoring. In this highlight we provide a general overview of recent progress in microneedle-based sensing research, including: (a) glucose monitoring, (b) ex vitro microneedle diagnostic systems for general health monitoring with an emphasis on sensor construction, and (c) in vivo use of microneedle sensors. C1 [Miller, Philip R.; Polsky, Ronen] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Narayan, Roger J.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Narayan, Roger J.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Polsky, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Narayan, RJ (reprint author), Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA.; Narayan, RJ (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM roger_narayan@unc.edu; rpolsky@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DTRA [HDTRA1-12-17FRWMD] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. R.P would like to acknowledge DTRA for financial support under contract HDTRA1-12-17FRWMD. NR 25 TC 8 Z9 9 U1 16 U2 45 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-750X EI 2050-7518 J9 J MATER CHEM B JI J. Mat. Chem. B PY 2016 VL 4 IS 8 BP 1379 EP 1383 DI 10.1039/c5tb02421h PG 5 WC Materials Science, Biomaterials SC Materials Science GA DE6CI UT WOS:000370720600001 ER PT J AU Rus, SF Vlazan, P Herklotz, A AF Rus, S. F. Vlazan, P. Herklotz, A. TI Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Nanostructures; Chemical Synthesis; X-ray Diffraction; Magnetic Properties ID MAGNETIC-PROPERTIES; COFE2O4 NANOPARTICLES; BIOMEDICAL APPLICATIONS; COPRECIPITATION METHOD; COLOSSAL REDUCTION; CURIE-TEMPERATURE; FE NANOPARTICLES; POWDERS AB Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials. C1 [Rus, S. F.; Vlazan, P.] Natl Inst Res & Dev Electrochem & Condensed Matte, Timisoara 300569, Romania. [Herklotz, A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Rus, SF (reprint author), Natl Inst Res & Dev Electrochem & Condensed Matte, Timisoara 300569, Romania. RI rus, florina stefania/E-8465-2016 OI rus, florina stefania/0000-0001-8505-0733 NR 36 TC 1 Z9 1 U1 3 U2 7 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1533-4880 EI 1533-4899 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JAN PY 2016 VL 16 IS 1 BP 851 EP 855 DI 10.1166/jnn.2016.11775 PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD1KK UT WOS:000369680400106 PM 27398535 ER PT J AU Keane, R Berleman, J AF Keane, Ryan Berleman, James TI The predatory life cycle of Myxococcus xanthus SO MICROBIOLOGY-SGM LA English DT Review ID ENHANCER-BINDING PROTEINS; FRUITING BODY DEVELOPMENT; 2 MOTILITY SYSTEMS; GLIDING MOTILITY; BACILLUS-SUBTILIS; ESCHERICHIA-COLI; MULTICELLULAR DEVELOPMENT; SOCIAL MOTILITY; MIXED CULTURES; CELL-MOVEMENT AB Myxococcus xanthus is a predatory bacterium and a model system for social behaviour in bacteria. Myx. xanthus forms thin biofilms, where cells work together to colonize new territory, invade prey colonies and lyse prey cells. Prey-cell lysis occurs at close proximity, and utilizes antibiotics such as myxovirescin, hydrolytic enzymes such as the protease MepA and extracellular outer-membrane vesicles that may facilitate delivery. Many questions about the mechanism of prey lysis remain, as well as a complete understanding of the vast hydrolytic and secondary metabolite potential present in the Myx. xanthus genome. However, it is clear that predation presents unique challenges for this bacterium, which are solved, in part, through the social behaviours at the disposal of Myx. xanthus. Here, we discuss the life cycle of Myx. xanthus, and the hypothesis that multicellular behaviour in this organism is critical to, and derives from, the challenges of growth as a bacterial predator. C1 [Keane, Ryan; Berleman, James] St Marys Coll, Dept Biol, Moraga, CA 94556 USA. [Keane, Ryan; Berleman, James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Berleman, J (reprint author), St Marys Coll, Dept Biol, Moraga, CA 94556 USA.; Berleman, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM jeb8@stmarys-ca.edu FU Faculty Development Funds from Saint Mary's College of California FX The authors thank Alexandra Worth, Armaity Nasarabadi and Kathleen Lundeberg for their help with editing this manuscript. This work was supported by Faculty Development Funds from Saint Mary's College of California. NR 86 TC 3 Z9 3 U1 4 U2 15 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD JAN PY 2016 VL 162 BP 1 EP 11 DI 10.1099/mic.0.000208 PN 1 PG 11 WC Microbiology SC Microbiology GA DE2MN UT WOS:000370461500001 PM 26518442 ER PT J AU Fontana, CL Chen, CH Crespillo, ML Graham, JT Xue, HZ Zhang, YW Weber, WJ AF Fontana, Cristiano L. Chen, Chien-Hung Crespillo, Miguel L. Graham, Joseph T. Xue, Haizhou Zhang, Yanwen Weber, William J. TI Stopping power measurements with the Time-of-Flight (ToF) technique SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Stopping power; Time-of-Flight; Elastic Recoil Detection Analysis; Ion Beam Analysis; Energy loss ID SWIFT HEAVY-IONS; ELASTIC RECOIL DETECTION; ENERGY-LOSS; CROSS-SECTIONS; ERDA SETUP; TRANSMISSION TECHNIQUE; HIGH-PRECISION; SI-28 IONS; HE-4 IONS; SI AB A review of measurements of the stopping power of ions in matter is presented along with new measurements of the stopping powers of O, Si, Ti, and Au ions in self-supporting thin foils of SiO2, Nb2O5, and Ta2O5. A Time-of-Flight system at the Ion Beam Materials Laboratory at the University of Tennessee, Knoxville, was used in transmission geometry in order to reduce experimental uncertainties. The resulting stopping powers show good precision and accuracy and corroborate previously quoted values in the literature. New stopping data are determined. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fontana, Cristiano L.; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Chen, Chien-Hung; Crespillo, Miguel L.; Graham, Joseph T.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fontana, CL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM fontana@pd.infn.it RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU U.S. DOE; BES; MSED; ORNL LDRD FX C. L. Fontana was supported by the U.S. DOE, BES, MSED in the development and demonstration of unique capabilities for damage accumulation studies, and by ORNL LDRD for the ToF-ERDA development. NR 88 TC 1 Z9 1 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JAN 1 PY 2016 VL 366 BP 104 EP 116 DI 10.1016/j.nimb.2015.10.048 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DE2NQ UT WOS:000370464400016 ER PT J AU Engle, JW Mashnik, SG Parker, LA Jackman, KR Bitteker, LJ Ullmann, JL Gulley, MS Pillai, C John, KD Birnbaum, ER Nortier, FM AF Engle, Jonathan W. Mashnik, Stepan G. Parker, Lauren A. Jackman, Kevin R. Bitteker, Leo J. Ullmann, John L. Gulley, Mark S. Pillai, Chandra John, Kevin D. Birnbaum, Eva R. Nortier, Francois M. TI Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Terbium; Proton irradiation; MCNP6; Radiotherapy; Radionuclide production ID PRECOMPOUND DECAY MODEL; CROSS-SECTIONS; ANGULAR-DISTRIBUTIONS; FISSION; TARGETS; SPECTRA; TB AB Nuclear formation cross sections are reported for 26 radionuclides, measured with 40-200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., Tb-152, Th-155, (EU)-E-155, and Eu-156) and Gd-153, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data. (C) 2015 Elsevier B.V. All rights reserved. C1 [Engle, Jonathan W.; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Engle, JW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jwengle@lanl.gov OI John, Kevin/0000-0002-6181-9330; Nortier, Francois/0000-0002-7549-8101 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; US DOE Office of Science via Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics; Los Alamos National Laboratory LDRD program FX We are grateful for technical assistance from LANL C-NR, C-IIAC, AOT-OPS, and LANSCE-NS groups' staff. This study was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA253996 with partial funding by the US DOE Office of Science via an funding from the Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics. JWE is grateful for fellowship support from the Los Alamos National Laboratory LDRD program. NR 43 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JAN 1 PY 2016 VL 366 BP 206 EP 216 DI 10.1016/j.nimb.2015.10.049 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DE2NQ UT WOS:000370464400029 ER PT J AU McLerran, L Tribedy, P AF McLerran, Larry Tribedy, Prithwish TI Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p plus p collisions SO NUCLEAR PHYSICS A LA English DT Article DE Color glass condensate; High multiplicity p plus p collisions ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; HIGH-ENERGY; BFKL POMERON; LARGE NUCLEI; EVOLUTION; QCD; SCATTERING AB High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. We show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. The origin of such intrinsic fluctuations is presumably non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. We find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to rare high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions. (C) 2015 Elsevier B.V. All rights reserved. C1 [McLerran, Larry; Tribedy, Prithwish] Brookhaven Natl Lab, Dept Phys, Bdg 510A, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Tribedy, P (reprint author), Brookhaven Natl Lab, Dept Phys, Bdg 510A, Upton, NY 11973 USA. EM ptribedy@bnl.gov FU Department of Energy [DE-SC0012704] FX We would like to thank M. Praszalowicz for important discussions. We thank E. Iancu, C. Marquet, B. Schenke, S. Schlichting and R. Venugopalan for their important comments on the manuscript. The authors are supported under Department of Energy contract number Contract No. DE-SC0012704. NR 39 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD JAN PY 2016 VL 945 BP 216 EP 225 DI 10.1016/j.nuclphysa.2015.10.008 PG 10 WC Physics, Nuclear SC Physics GA DE2MV UT WOS:000370462300016 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W Dunlop, ED AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm Dunlop, Ewan D. TI Solar cell efficiency tables (version 47) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID CONVERSION EFFICIENCY; CONCENTRATOR; STABILITY AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2015 are reviewed. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta RCPV, Cent 2,Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Characterisat & Simulat CalLab Cells, Heidenhofstr 2, D-79110 Freiburg, Germany. [Dunlop, Ewan D.] European Commiss, Joint Res Ctr, Renewable Energy Unit, Inst Energy, Via E Fermi 2749, I-21027 Ispra, VA, Italy. RP Green, MA (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Japanese New Energy and Industrial Technology Development Organisation (NEDO); Japanese Ministry of Economy, Trade and Industry (METI); Australian Government through the Australian Renewable Energy Agency (ARENA) FX The Australian Centre for Advanced Photovoltaics commenced operation in February 2013 with support from the Australian Government through the Australian Renewable Energy Agency (ARENA). The Australian Government does not accept responsibility for the views, information or advice expressed herein. The work by K. Emery was supported by the U.S. Department of Energy under Contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The work at AIST was supported in part by the Japanese New Energy and Industrial Technology Development Organisation (NEDO) and by the Japanese Ministry of Economy, Trade and Industry (METI). NR 50 TC 195 Z9 199 U1 50 U2 200 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JAN PY 2016 VL 24 IS 1 BP 3 EP 11 DI 10.1002/pip.2728 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DE0MX UT WOS:000370320100001 ER PT J AU Savariraj, AD Kim, HJ Viswanathan, KK Vijaykumar, M Prabakar, K AF Savariraj, A. Dennyson Kim, Hee-Je Viswanathan, K. K. Vijaykumar, M. Prabakar, Kandasamy TI Growth mechanisms and origin of localized surface plasmon resonance coupled exciton effects in Cu2-xS thin films SO RSC ADVANCES LA English DT Article ID COPPER SULFIDE; SEMICONDUCTOR NANOCRYSTALS; OXIDE NANOCRYSTALS; QUANTUM DOTS; SHAPE; ASSEMBLIES; SIZE; SUPERSTRUCTURES; NANOSTRUCTURES; TRANSFORMATION AB We have demonstrated a robust protocol to prepare Cu2-xS thin films with a controlled crystal phase and size which exhibit localized surface plasmon resonance (LSPR) coupled exciton effects by a simple template free single step wet chemical method without any surfactant. The LSPR frequency can be tuned in the Cu2-xS thin films by the growth temperature and time which controls the free carrier density. These selectively grown Cu2-xS thin films possess a tunable band gap (2.6-1.4 eV) due to the quantum size effect. The origin of the LSPR coupled exciton effects are discussed. C1 [Savariraj, A. Dennyson; Kim, Hee-Je; Prabakar, Kandasamy] Pusan Natl Univ, Dept Elect & Comp Engn, San 30, Busan 609735, South Korea. [Viswanathan, K. K.] Univ Teknol Malaysia, UTM Ctr Ind & Appl Math, Ibnu SIna Inst Sci & Ind Res, Dept Math Sci,Fac Sci, Johor Baharu 81310, Johor, Malaysia. [Vijaykumar, M.; Prabakar, Kandasamy] PNNL, POB 999, Richland, WA 99354 USA. RP Prabakar, K (reprint author), Pusan Natl Univ, Dept Elect & Comp Engn, San 30, Busan 609735, South Korea.; Prabakar, K (reprint author), PNNL, POB 999, Richland, WA 99354 USA. EM prabakar@pusan.ac.kr FU Basic Science Research Program through National Research Foundation of Korea (NRF) grant - Korea government [2014005051] FX This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2014005051). NR 50 TC 1 Z9 1 U1 3 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 23 BP 19034 EP 19040 DI 10.1039/c5ra26744g PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DE5YX UT WOS:000370710500034 ER PT J AU Chong, J Zhang, JP Xie, HM Song, XY Liu, G Battaglia, V Xun, SD Wang, RS AF Chong, Jin Zhang, Jingping Xie, Haiming Song, Xiangyun Liu, Gao Battaglia, Vincent Xun, Shidi Wang, Rongsun TI High performance LiNi0.5Mn1.5O4 cathode material with a bi-functional coating for lithium ion batteries SO RSC ADVANCES LA English DT Article ID 5 V; ELECTROCHEMICAL PROPERTIES; COATED LINI0.5MN1.5O4; SPINEL LINI0.5MN1.5O4; RATE CAPABILITY; ELEVATED-TEMPERATURES; SURFACE MODIFICATION; HOLLOW MICROSPHERES; INSERTION MATERIAL; PARTICLE-SIZE AB LiPO3, one of the compounds from the Li2O-P2O5 binary phase diagram, is successfully coated on LiNi0.5Mn1.5O4 particles as a bifunctional layer with respect to its good ionic conductivity and chemical passivation properties. The coating layer with a thickness of 1 nm is identified by X-ray diffraction (XRD) and high resolution transition electron microscopy (TEM). Fourier transform-infrared spectrometer (FT-IR) and Raman spectra reveal that LiPO3 coated LiNi0.5Mn1.5O4 (LiPO3/LiNi0.5Mn1.5O4) possesses a cubic spinel structure with a space group of Fd (3) over barm. The electrochemical properties of synthesized materials are evaluated in both Li ion half cells and full cells. LiPO3/LiNi0.5Mn1.5O4 exhibits significantly enhanced rate performance and superior cyclability compared with non-coated LiNi0.5Mn1.5O4. Impedance analysis indicates that the LiPO3 coating dramatically reduces the LiPO3/LiNi0.5Mn1.5O4 cell impedance, especially the resistances of the lithium ion migration compared with non-coated LiNi0.5Mn1.5O4. In addition, the LiPO3 coating can effectively act as a passivation layer to minimize electrolyte-electrode interface side reactions and thus improve the long-term cyclability. C1 [Chong, Jin; Zhang, Jingping; Xie, Haiming; Wang, Rongsun] NE Normal Univ, Natl & Local United Engn Lab Power Battery, Inst Funct Mat Chem, Fac Chem, Changchun 130024, Jilin, Peoples R China. [Song, Xiangyun; Liu, Gao; Battaglia, Vincent; Xun, Shidi] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Wang, RS (reprint author), NE Normal Univ, Natl & Local United Engn Lab Power Battery, Inst Funct Mat Chem, Fac Chem, Changchun 130024, Jilin, Peoples R China.; Xun, SD (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM shidixun@gmail.com; wangrs@nenu.edu.cn RI Zhang, Jingping/C-1312-2014 OI Zhang, Jingping/0000-0001-8004-3673 FU National High Technology Research and Development Program of China [2013AA110103]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National High Technology Research and Development Program of China (2013AA110103) and the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The National Center for Electron Microscopy at LBNL is acknowledged for the TEM experiments. NR 66 TC 2 Z9 2 U1 9 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 23 BP 19245 EP 19251 DI 10.1039/c6ra00119j PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DE5YX UT WOS:000370710500058 ER PT J AU Zayas, J AF Zayas, Jose TI Strengthening US Ocean Renewable Energy: 2015 Success Stories SO SEA TECHNOLOGY LA English DT Article C1 [Zayas, Jose] US DOE, Wind & Water Power Technol Off, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. RP Zayas, J (reprint author), US DOE, Wind & Water Power Technol Off, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU COMPASS PUBLICATIONS, INC PI ARLINGTON PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA SN 0093-3651 J9 SEA TECHNOL JI Sea Technol. PD JAN PY 2016 VL 57 IS 1 BP 16 EP 19 PG 4 WC Engineering, Ocean SC Engineering GA DE0JC UT WOS:000370310200004 ER PT J AU Gebraad, PMO Teeuwisse, FW van Wingerden, JW Fleming, PA Ruben, SD Marden, JR Pao, LY AF Gebraad, P. M. O. Teeuwisse, F. W. van Wingerden, J. W. Fleming, P. A. Ruben, S. D. Marden, J. R. Pao, L. Y. TI Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study SO WIND ENERGY LA English DT Article DE wind plant control; wind turbine yaw control; wind turbine wakes; optimization ID FARM; TURBINES; FRAMEWORK; LOAD AB This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect. Copyright (C) 2014 John Wiley & Sons, Ltd. C1 [Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands. [Fleming, P. A.] Natl Renewable Energy Lab, Golden, CO USA. [Ruben, S. D.; Marden, J. R.; Pao, L. Y.] Univ Colorado, Boulder, CO 80309 USA. RP van Wingerden, JW (reprint author), Mekelweg 2, NL-2628 CD Delft, Netherlands. EM J.W.vanWingerden@TUDelft.nl FU Far Large Offshore Wind project [201101]; NWO Veni Grant [11930]; US Department of Energy [DE-AC36-08GO28308]; NREL FX This work is supported by the Far Large Offshore Wind project no. 201101 'Offshore wind power plant control for minimal loading' and by the NWO Veni Grant no. 11930 'Reconfigurable floating wind plant'. The contribution of the National Renewable Energy Laboratory (NREL) to this work were supported by the US Department of Energy under contract no. DE-AC36-08GO28308 with NREL. NR 46 TC 17 Z9 17 U1 4 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD JAN PY 2016 VL 19 IS 1 BP 95 EP 114 DI 10.1002/we.1822 PG 20 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA DD9OP UT WOS:000370255600006 ER PT J AU McCue, I Ryan, S Hemker, K Xu, XD Li, N Chen, MW Erlebacher, J AF McCue, Ian Ryan, Stephen Hemker, Kevin Xu, Xiandong Li, Nan Chen, Mingwei Erlebacher, Jonah TI Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID NANOPOROUS GOLD; YIELD STRENGTH; SINGLE-CRYSTALS; AU; DEFORMATION; BEHAVIOR; COMPOSITES; DEPENDENCE; EVOLUTION; POROSITY C1 [McCue, Ian; Ryan, Stephen; Hemker, Kevin; Erlebacher, Jonah] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Hemker, Kevin] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Xu, Xiandong; Chen, Mingwei] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Li, Nan] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. RP Erlebacher, J (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. EM Jonah.Erlebacher@jhu.edu RI Chen, Mingwei/A-4855-2010; McCue, Ian/B-5480-2013; Li, Nan /F-8459-2010 OI Chen, Mingwei/0000-0002-2850-8872; McCue, Ian/0000-0002-9393-1255; Li, Nan /0000-0002-8248-9027 FU National Science Foundation [DMR-1003901]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG0207-ER46437]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX I.M. and J.E. are grateful for funding from the National Science Foundation under Grant DMR-1003901. KJH's participation was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Grant DE-FG0207-ER46437. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. ((Supporting Information is available online from Wiley Online Library or from the author)). NR 44 TC 7 Z9 7 U1 14 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD JAN PY 2016 VL 18 IS 1 BP 46 EP 50 DI 10.1002/adem.201500219 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA DD8AL UT WOS:000370146000005 ER PT J AU Casper, KM Wagner, JL Beresh, SJ Henfling, JF Spillers, RW Pruett, BOM AF Casper, Katya M. Wagner, Justin L. Beresh, Steven J. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. TI Complex Geometry Effects on Cavity Resonance SO AIAA JOURNAL LA English DT Article ID RECTANGULAR CAVITY; WEAPONS BAY; FLOW; OSCILLATIONS; LOADS AB The flow over an aircraft bay is often represented using a rectangular cavity; however, this simplification neglects many features of actual flight geometry that could affect the unsteady pressure field and resulting loading in the bay. To address this shortcoming, a complex cavity geometry was developed to incorporate more realistic aircraft-bay features including shaped inlets, internal cavity structure, and doors. A parametric study of these features was conducted based on fluctuating pressure measurements at subsonic and supersonic Mach numbers. Resonance frequencies and amplitudes increased in the complex geometry compared to a simple rectangular cavity that could produce severe loading conditions for store carriage. High-frequency content and dominant frequencies were generated by features that constricted the flow such as leading-edge overhangs, internal cavity variations, and the presence of closed doors. Broadband frequency components measured at the aft wall of the complex cavities were also significantly higher than in the rectangular geometry. These changes highlight the need to consider complex geometric effects when predicting the flight loading of aircraft bays. C1 [Casper, Katya M.; Wagner, Justin L.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Casper, KM (reprint author), Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. EM kmcaspe@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Srinivasan Arunajatesan and Matthew Barone for helpful discussions on cavity dynamics. Tom Grasser designed and oversaw construction of the complex geometry hardware. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. NR 25 TC 1 Z9 1 U1 0 U2 5 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD JAN PY 2016 VL 54 IS 1 BP 320 EP 330 DI 10.2514/1.J054273 PG 11 WC Engineering, Aerospace SC Engineering GA DD6TE UT WOS:000370056600025 ER PT J AU Crane, NA Lavrik, NV Sepaniak, MJ AF Crane, Nichole A. Lavrik, Nickolay V. Sepaniak, Michael J. TI Manipulating the inter pillar gap in pillar array ultra-thin layer planar chromatography platforms SO ANALYST LA English DT Article ID LIQUID-CHROMATOGRAPHY; CORE-SHELL; COLUMNS; PARTICLES; CAPILLARY; SEPARATIONS; INTEGRATION; EQUATION; WICKING AB An advantage of separation platforms based on deterministic micro-and nano-fabrications, relative to traditional systems based on packed beds of particles, is the exquisite control of all morphological parameters. For example, with planar platforms based on lithographically-prepared pillar arrays, the size, shape, height, geometric arrangement, and inter pillar gaps can be independently adjusted. Since the inter pillar gap is expected to be important in determining resistance to mass transfer in the mobile phase as well as the flow rate, which influences the mass transfer effect and axial diffusion, we herein study the effect of reducing inter pillar gaps on capillary action-based flow and band dispersion. Atomic layer deposition is used to narrow the gap between the pillars for photo-lithographically defined pillar arrays. The plate height of gap-adjusted arrays is modeled based on predicted and observed flow rates. A reduction in the flow rate with smaller gaps hinders the efficiency in the modeled case and is correlated with actual separations. A conclusion is drawn that simultaneously reducing both the gap and the pillar diameter is the best approach in terms of improving the chromatographic efficiency. C1 [Crane, Nichole A.; Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Sepaniak, MJ (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM msepania@utk.edu RI Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU National Science Foundation [1144947]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US. Department of Energy FX This material is based upon work supported by the National Science Foundation under the Grant no. 1144947 with the University of Tennessee, Knoxville. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at the Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US. Department of Energy. NR 30 TC 1 Z9 1 U1 2 U2 8 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 4 BP 1239 EP 1245 DI 10.1039/c5an02274f PG 7 WC Chemistry, Analytical SC Chemistry GA DD0NV UT WOS:000369617600009 PM 26824088 ER PT J AU Austin, KG McLellan, TM Farina, EK McGraw, SM Lieberman, HR AF Austin, Krista G. McLellan, Tom M. Farina, Emily K. McGraw, Susan M. Lieberman, Harris R. TI Soldier use of dietary supplements, including protein and body building supplements, in a combat zone is different than use in garrison SO APPLIED PHYSIOLOGY NUTRITION AND METABOLISM LA English DT Article DE vitamins; minerals; military; warfare; exercise; sex differences; strength training; aerobic training ID ARMY SOLDIERS; MILITARY PERSONNEL; PHYSICAL-FITNESS; AFGHANISTAN; DEPLOYMENT; ADULTS; EXERCISE; HEALTH; MASS AB United States Army personnel in garrison who are not deployed to combat theater report using dietary supplements (DSs) to promote health, increase physical and mental strength, and improve energy levels. Given the substantial physical and cognitive demands of combat, DS use may increase during deployment. This study compared DS use by garrison soldiers with DS use by personnel deployed to a combat theater in Afghanistan. Prevalence and patterns of DS use, demographic factors, and health behaviors were assessed by survey (deployed n = 221; garrison n = 1001). Eighty-two percent of deployed and 74% of garrison soldiers used DSs >= 1 time.week(-1). Logistic regression analyses, adjusted for significant demographic and health predictors of DS use, showed deployed personnel were more likely than garrison soldiers to use protein, amino acids, and combination products. Deployed females were more likely to use protein supplements and deployed males were more likely to use multivitamins, combination products, protein, and body building supplements than garrison respondents. Significantly more deployed (17%) than garrison (10%) personnel spent more than $50.month(-1) on DSs. Higher protein supplement use among deployed personnel was associated with higher frequency of strength training and lower amounts of aerobic exercise for males but similar amounts of strength training and aerobic exercise for females. Protein supplements and combination products are used more frequently by deployed than garrison soldiers with the intent of enhancing strength and energy. C1 [Austin, Krista G.; McLellan, Tom M.; Farina, Emily K.] Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA. [Austin, Krista G.; Farina, Emily K.] USARIEM, Mil Nutr Div, Natick, MA 01760 USA. [McLellan, Tom M.] TM McLellan Res Inc, Stouffville, ON L4A 8A7, Canada. [McGraw, Susan M.; Lieberman, Harris R.] USARIEM, Mil Nutr Div, Natick, MA 01760 USA. RP Lieberman, HR (reprint author), USARIEM, Mil Nutr Div, Natick, MA 01760 USA. EM harris.r.lieberman.civ@mail.mil FU United States Army Medical Research and Materiel Command (USAMRMC); Department of Defense Center Alliance for Dietary Supplements Research FX Financial support: This work was supported by the United States Army Medical Research and Materiel Command (USAMRMC) and the Department of Defense Center Alliance for Dietary Supplements Research. NR 23 TC 2 Z9 2 U1 3 U2 9 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 1715-5312 EI 1715-5320 J9 APPL PHYSIOL NUTR ME JI Appl. Physiol. Nutr. Metab. PD JAN PY 2016 VL 41 IS 1 BP 88 EP 95 DI 10.1139/apnm-2015-0387 PG 8 WC Nutrition & Dietetics; Physiology; Sport Sciences SC Nutrition & Dietetics; Physiology; Sport Sciences GA DD6LC UT WOS:000370034700013 PM 26702674 ER PT J AU Lopez, DH Rabbani, MR Crosbie, E Raman, A Arellano, AF Sorooshian, A AF Lopez, David H. Rabbani, Michael R. Crosbie, Ewan Raman, Aishwarya Arellano, Avelino F., Jr. Sorooshian, Armin TI Frequency and Character of Extreme Aerosol Events in the Southwestern United States: A Case Study Analysis in Arizona SO ATMOSPHERE LA English DT Article DE aerosol; dust; IMPROVE; Asian dust; Arizona; air quality; extreme events ID ASIAN DUST EVENT; FORECAST MODEL; NORTH-AMERICA; AIR-POLLUTION; APRIL 1998; TRENDS; US; PROJECTIONS; SATELLITE; WILDFIRES AB This study uses more than a decade's worth of data across Arizona to characterize the spatiotemporal distribution, frequency, and source of extreme aerosol events, defined as when the concentration of a species on a particular day exceeds that of the average plus two standard deviations for that given month. Depending on which of eight sites studied, between 5% and 7% of the total days exhibited an extreme aerosol event due to either extreme levels of PM10, PM2.5, and/or fine soil. Grand Canyon exhibited the most extreme event days (120, i.e., 7% of its total days). Fine soil is the pollutant type that most frequently impacted multiple sites at once at an extreme level. PM10, PM2.5, fine soil, non-Asian dust, and Elemental Carbon extreme events occurred most frequently in August. Nearly all Asian dust extreme events occurred between March and June. Extreme Elemental Carbon events have decreased as a function of time with statistical significance, while other pollutant categories did not show any significant change. Extreme events were most frequent for the various pollutant categories on either Wednesday or Thursday, but there was no statistically significant difference in the number of events on any particular day or on weekends versus weekdays. C1 [Lopez, David H.; Rabbani, Michael R.; Sorooshian, Armin] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA. [Crosbie, Ewan] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. [Crosbie, Ewan] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Raman, Aishwarya; Arellano, Avelino F., Jr.; Sorooshian, Armin] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. RP Sorooshian, A (reprint author), Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA.; Sorooshian, A (reprint author), Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. EM davidlopez3@email.arizona.edu; michaelrabbani@email.arizona.edu; ewan.c.crosbie@nasa.gov; aishwaryaraman@email.arizona.edu; arellano@atmo.arizona.edu; armin@email.arizona.edu OI Sorooshian, Armin/0000-0002-2243-2264 FU National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program, NIH [2 P42 ES04940-11]; Center for Environmentally Sustainable Mining through the TRIF Water Sustainability Program at the University of Arizona FX This work was funded by Grant 2 P42 ES04940-11 from the National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program, NIH and the Center for Environmentally Sustainable Mining through the TRIF Water Sustainability Program at the University of Arizona. The authors acknowledge Andrew Huerta and the UROC-PREP program in the Graduate College at the University of Arizona. The authors gratefully acknowledge data provided by EPA IMPROVE and the NRL NAAPS model. Some of the analyses and visualizations used in this study were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. NR 43 TC 3 Z9 3 U1 0 U2 4 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4433 J9 ATMOSPHERE-BASEL JI Atmosphere PD JAN PY 2016 VL 7 IS 1 DI 10.3390/atmos7010001 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD3QL UT WOS:000369837500001 ER PT J AU Park, JY Somorjai, GA AF Park, Jeong Young Somorjai, Gabor A. TI Hot Electron Surface Chemistry at Oxide-Metal Interfaces: Foundation of Acid-base Catalysis SO CATALYSIS LETTERS LA English DT Article DE Hot electron; Metal-oxide interface; Acid-base catalysis; Heterogeneous catalysis; Charge transfer; Pt nanoparticles; Catalytic nanodiodes ID NANOPARTICLE CATALYSTS; SUPPORT INTERACTIONS; MESOPOROUS ZEOLITES; LIGHT IRRADIATION; OXIDATION; HYDROGEN; FLOW; EXCITATION; SCATTERING; SCIENCE AB The development of catalytic nanodiodes to measure the flow of hot electrons generated at metal-oxide interfaces has proven that exothermic catalytic reactions on platinum induce a steady flux of hot electrons. Based on the simultaneous measurement of hot electrons and chemical reactions, it was found that chemicurrent is correlated with turnover frequency. It was shown that charge transport between the metal and oxide interfaces also influences the catalytic activity and product distribution of multipath reactions. Metal-oxide interfaces appear to produce ions that carry out reactions; these reactions have long been called "acid-base catalysis" by the organic chemistry community. A typical catalytic structure is a mesoporous oxide that is produced to hold metal nanoparticles. The structures provide high-surface-area oxide-metal interfaces that create the catalytic architecture for acid-base catalysis. Studies where the transition metal oxide is changed and only a single metal (i.e., platinum) is used for the nanoparticles show a tremendous amplification effect of the oxide-metal interfaces in the reactions (e.g., carbon monoxide oxidation). In this Perspective, we address the role of metal-oxide interfaces in generating a flow of charge carriers, thus implying a link between acid-base catalysis, the spillover process, and hot electron chemistry. We highlight recent studies on the amplification of catalytic activity when using Pt nanoparticles and various oxides (e.g., cobalt oxide, nickel oxide, manganese oxide, iron oxide) under CO oxidation, n-hexane isomerization, and cyclisation reactions, which imply that charge transfer between the metal and the oxide plays a key role in catalytic activity and selectivity. We suggest that catalytic nanodiodes can be used to detect hot electron flow, spillover, and charged reactive intermediates, which can improve a fundamental understanding of electronic excitation and charge flow in chemical reactions. [GRAPHICS] . C1 [Park, Jeong Young] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea. [Park, Jeong Young] Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea. [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Park, JY (reprint author), Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea.; Park, JY (reprint author), Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea.; Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jeongypark@kaist.ac.kr; somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Science, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; [IBS-R004-G4] FX This work was supported by IBS-R004-G4, Republic of Korea, and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Science, Geological and Biosciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 59 TC 0 Z9 0 U1 13 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD JAN PY 2016 VL 146 IS 1 BP 1 EP 11 DI 10.1007/s10562-015-1657-6 PG 11 WC Chemistry, Physical SC Chemistry GA DD7AK UT WOS:000370075800001 ER PT S AU Werner, BT Antoun, BR Sartor, GB AF Werner, Brian T. Antoun, Bonnie R. Sartor, George B. BE Antoun, B TI Thermal Degradation of Extension Springs SO CHALLENGES IN MECHANICS OF TIME DEPENDENT MATERIALS, VOL 2 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Time-dependent response; Thermomechanical behavior; Creep; Relaxation AB Extension springs are used to apply a constant force at a set displacement in a wide variety of components. When subjected to an abnormal thermal event, such as in a fire, the load carrying capacity of these springs can degrade. In this study, relaxation tests were conducted on extension springs where the heating rate and dwell temperature were varied to investigate the reduction in force provided by the springs. Two commonly used spring material types were tested, 304 stainless steel and Elgiloy, a cobalt-chrome-nickel alloy. Challenges associated with obtaining accurate spring response to an abnormal thermal event are discussed. The resulting data can be used to help develop and test models for thermally activated creep in springs and to provide designers with recommendations to help ensure the reliability of the springs for the duration of the thermal event. C1 [Werner, Brian T.; Antoun, Bonnie R.; Sartor, George B.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Werner, BT (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM btwerne@sandia.gov; brantou@sandia.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22443-5; 978-3-319-22442-8 J9 C PROC SOC EXP MECH PY 2016 BP 1 EP 9 DI 10.1007/978-3-319-22443-5_1 PG 9 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2QG UT WOS:000369843900001 ER PT S AU Antoun, BR Connelly, KJ AF Antoun, Bonnie R. Connelly, Kevin J. BE Antoun, B TI Effect of Applied Temperature and Strain Rate on Laser Welded Stainless Steel Structures SO CHALLENGES IN MECHANICS OF TIME DEPENDENT MATERIALS, VOL 2 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE 304L; Laser weld; Failure; Elevated temperature; Pressurization AB Sealed containers that hold organic substances can fail if organic material decomposition that occurs at elevated temperatures causes high enough pressures to cause a breach anywhere within the container or at welded or joined sections of the container. In this study, the response of stainless steel structures sealed by laser welding was of interest. Cylindrical can structures were constructed of two base materials, 304L stainless steel in tube and bar form, and joined by partial penetration laser welding. The base and weld materials contributed to the overall elastic-plastic response that led to failure in the weld region. The response of specimens constructed from sections of the cylindrical can structures was measured experimentally under thermomechanical loadings that investigated applied strain rate and temperatures (25-800 degrees C). Prior to testing, extensive measurements of the partial penetration weld geometry and cross section were completed on each specimen to enable correlation with measured response and failure. The experimental results of these sub-structure specimens tested at elevated temperatures are presented. Additionally, the material characterization results of the two 304L stainless steel materials used in constructing the cylindrical cans are presented. C1 [Antoun, Bonnie R.; Connelly, Kevin J.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Antoun, BR (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM brantou@sandia.gov NR 4 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22443-5; 978-3-319-22442-8 J9 C PROC SOC EXP MECH PY 2016 BP 11 EP 17 DI 10.1007/978-3-319-22443-5_2 PG 7 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2QG UT WOS:000369843900002 ER PT S AU Brown, AA Deibler, LA Beghini, LL Kostka, TD Antoun, BR AF Brown, Arthur A. Deibler, Lisa A. Beghini, Lauren L. Kostka, Timothy D. Antoun, Bonnie R. BE Antoun, B TI Process Modeling and Experiments for Forging and Welding SO CHALLENGES IN MECHANICS OF TIME DEPENDENT MATERIALS, VOL 2 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Modeling; Forging; Welding; Microstructure; Recrystallization AB We are developing the capability to track material changes through numerous possible steps of the manufacturing process, such as forging, machining, and welding. In this work, experimental and modeling results are presented for a multiple-step process in which an ingot of stainless steel 304L is forged at high temperature, then machined into a thin slice, and finally subjected to an autogenous GTA weld. The predictions of temperature, yield stress, and recrystallized volume fraction are compared to experimental results. C1 [Brown, Arthur A.; Deibler, Lisa A.; Beghini, Lauren L.; Kostka, Timothy D.; Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Brown, AA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM aabrown@sandia.gov NR 6 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22443-5; 978-3-319-22442-8 J9 C PROC SOC EXP MECH PY 2016 BP 19 EP 25 DI 10.1007/978-3-319-22443-5_3 PG 7 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2QG UT WOS:000369843900003 ER PT J AU Sukul, PK Bose, P Takei, T Yaghi, OM He, Y Lee, M Tashiro, K AF Sukul, Pradip K. Bose, Purnandhu Takei, Toshiaki Yaghi, Omar M. He, Ying Lee, Myongsoo Tashiro, Kentaro TI A water-soluble metal-organic complex array as a multinuclear heterometallic peptide amphiphile that shows unconventional anion dependency in its self-assembly SO CHEMICAL COMMUNICATIONS LA English DT Article ID IN-VITRO; NANOSTRUCTURES; FABRICATION; NANOFIBERS; DESIGN AB Water-soluble metal-organic complex array 1, bearing Ru(II), Pt(II) and Rh(III) complexes at the side residues of the short peptide, exhibits anion and pH-responsive self-assembly behaviours in aqueous media. NaClinduced aggregation of 1 at neutral pH was suppressed in phosphate buffered saline containing a mixture of Cl-, HPO42- and H2PO4-, which is unconventional for a peptide amphiphile. C1 [Sukul, Pradip K.; Bose, Purnandhu; Takei, Toshiaki; Yaghi, Omar M.; Tashiro, Kentaro] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. [Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yaghi, Omar M.] Univ Calif Berkeley, Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA. [He, Ying; Lee, Myongsoo] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China. RP Tashiro, K (reprint author), Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. EM TASHIRO.Kentaro@nims.go.jp OI Yaghi, Omar/0000-0002-5611-3325 FU World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics; MEXT, Japan [26620139] FX This work was partially supported by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics and a Grant-in-Aid for Challenging Exploratory Research (No. 26620139) from MEXT, Japan. NR 35 TC 0 Z9 0 U1 9 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 8 BP 1579 EP 1581 DI 10.1039/c5cc08973e PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA DC9WJ UT WOS:000369572000007 PM 26558655 ER PT J AU Donovan, ES Barry, BM Larsen, CA Wirtz, MN Geiger, WE Kemp, RA AF Donovan, Elizabeth S. Barry, Brian M. Larsen, Christopher A. Wirtz, Melissa N. Geiger, William E. Kemp, Richard A. TI Facilitated carbon dioxide reduction using a Zn(II) complex SO CHEMICAL COMMUNICATIONS LA English DT Article ID SELECTIVE ELECTROCATALYTIC REDUCTION; CO2 REDUCTION; ACTIVE-SITE; IN-SITU; ACTIVATION; CATALYST; FORMATE; WATER; INSERTION; HYDROGEN AB Two new Zn(II) complexes have been prepared and evaluated for their capacity to activate and reduce CO2. The electrochemical properties of dichloro[phenyldi(2-pyridyl)phosphine-kappa(2)-N,N']zinc(II) 1 and dichloro-[diphenyl-(2-pyridyl)phosphine-kappa(1)-N]zinc(II) 2 are compared using cyclic voltammetry. Electrochemical results indicate that 2 leads to a facilitated CO2 reduction to evolve CO at a glassy carbon electrode. C1 [Donovan, Elizabeth S.; Larsen, Christopher A.; Wirtz, Melissa N.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Barry, Brian M.] Univ Wisconsin Platteville, Dept Chem, Platteville, WI 53818 USA. [Geiger, William E.] Univ Vermont, Dept Chem, Burlington, VT 05405 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA.; Kemp, RA (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM rakemp@unm.edu FU National Science Foundation [CHE12-13529]; Laboratory Directed R&D program at Sandia National Laboratories (LDRD) [151300]; University of New Mexico [CHE04-43580]; NSF [CHE08-40523, CHE09-46690] FX This work was supported by the National Science Foundation via grant CHE12-13529 to RAK and also by the Laboratory Directed R&D program at Sandia National Laboratories (LDRD 151300). The Bruker X-ray diffractometer was purchased via an NSF CRIF:MU award to the University of New Mexico (CHE04-43580), and the NMR spectrometers were upgraded via grants from NSF (CHE08-40523 and CHE09-46690). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. We thank Professor Clark Landis and Dr. Spring Knapp of the University of Wisconsin-Madison for performing the high-pressure NMR experiments. We also thank the reviewers for valuable suggestions. NR 40 TC 6 Z9 6 U1 7 U2 52 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 8 BP 1685 EP 1688 DI 10.1039/c5cc07318a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DC9WJ UT WOS:000369572000034 PM 26660087 ER PT J AU Sun, XG Bi, ZH Liu, HS Fang, YX Bridges, CA Paranthaman, MP Dai, S Brown, GM AF Sun, Xiao-Guang Bi, Zhonghe Liu, Hansan Fang, Youxing Bridges, Craig A. Paranthaman, M. Parans Dai, Sheng Brown, Gilbert M. TI A high performance hybrid battery based on aluminum anode and LiFePO4 cathode SO CHEMICAL COMMUNICATIONS LA English DT Article ID LITHIUM-ION BATTERIES; ENERGY-STORAGE; RECHARGEABLE BATTERIES; ELECTRODEPOSITION; LIQUIDS; SODIUM; MAGNESIUM; FUTURE; SEMICONDUCTORS; ELECTROLYTES AB A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance. C1 [Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A.; Paranthaman, M. Parans; Dai, Sheng; Brown, Gilbert M.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Sun, XG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM sunx@ornl.gov RI fang, youxing/K-1972-2016; Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy's Office of Science, Basic Energy Science, Materials Sciences and Engineering Division FX This research was supported by the U.S. Department of Energy's Office of Science, Basic Energy Science, Materials Sciences and Engineering Division. NR 39 TC 7 Z9 7 U1 30 U2 108 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 8 BP 1713 EP 1716 DI 10.1039/c5cc09019a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DC9WJ UT WOS:000369572000041 PM 26666453 ER PT J AU McCormick, LJ Morris, SA Slawin, AMZ Teat, SJ Morris, RE AF McCormick, Laura J. Morris, Samuel A. Slawin, Alexandra M. Z. Teat, Simon J. Morris, Russell E. TI Coordination polymers of 5-substituted isophthalic acid SO CRYSTENGCOMM LA English DT Article ID METAL-ORGANIC FRAMEWORK; CRYSTAL-STRUCTURE; 5-METHYLISOPHTHALIC ACID; MAGNETIC-PROPERTIES; BUILDING-BLOCKS; GAS SEPARATION; HETERO-MOFS; GIANT PORES; LIGAND; COMPLEXES AB The synthesis and characterisation of five coordination polymers - Ni-2(mip)(2)(H2O)(8)center dot 2H(2)O (1), Zn-6(mip)(5)(OH)(2)(H2O)(4)center dot 7.4H(2)O (2), Zn-6(mip)(5)(OH)(2)(H2O)(2)center dot 4H(2)O (3), Mn(HMeOip)(2) (4), and Mn-3(tbip)(2)(Htbip)(2)-(EtOH) 2 (5) - are reported. Preliminary nitric oxide release data on compounds 2 and 3 are also given. C1 [McCormick, Laura J.; Morris, Samuel A.; Slawin, Alexandra M. Z.; Morris, Russell E.] Univ St Andrews, EaSTCHEM Sch Chem, North Haugh, St Andrews KY16 9ST, Fife, Scotland. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP McCormick, LJ (reprint author), Univ St Andrews, EaSTCHEM Sch Chem, North Haugh, St Andrews KY16 9ST, Fife, Scotland. EM ljm22@st-andrews.ac.uk RI McCormick, Laura/P-5490-2014 OI McCormick, Laura/0000-0002-6634-4717 FU British Heart Foundation [NH/11/8/29253]; EPSRC [EP/K005499/1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the British Heart Foundation (NH/11/8/29253) and the EPSRC (EP/K005499/1). Crystallographic data for compound 1, 2 and 5 were collected at station 11.3.1 at the Advanced Light Source, Berkeley, CA, USA. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 90 TC 1 Z9 1 U1 4 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2016 VL 18 IS 7 BP 1123 EP 1132 DI 10.1039/c5ce02091c PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DD1HB UT WOS:000369670800006 PM 27019640 ER PT J AU Dub, PA Scott, BL Gordon, JC AF Dub, Pavel A. Scott, Brian L. Gordon, John C. TI First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry SO DALTON TRANSACTIONS LA English DT Article ID PNP PINCER LIGAND; ASYMMETRIC TRANSFER HYDROGENATION; COBALT-CATALYZED HYDROGENATION; RAY CRYSTAL-STRUCTURE; MOLECULAR CATALYSTS; ACCEPTORLESS DEHYDROGENATION; REVERSIBLE DEHYDROGENATION; METHANOL DEHYDROGENATION; SELECTIVE HYDROGENATION; CHELATING DIPHOSPHINES AB The reactions of two variants of ENENES ligands, E(CH2)(2) NH(CH)(2)SR, where E = 4-morpholinyl, R = Ph (a), Bn (b) with MCl2 (M = Mn, Fe, Co, Ni and Cu) in coordinating solvents (MeCN, EtOH) affords isolable complexes, whose magnetic susceptibility measurements suggest paramagnetism and a high-spin formulation. X-Ray diffraction studies of available crystals show that the ligand coordinates to the metal in either a bidentate kappa(2)[N, N'] or tridentate kappa(3) [N, N', S] fashion, depending on the nature of ligand and/or identity of the metal atom. In the case of a less basic SPh moiety, a bidentate coordination mode was identified for harder metals (Mn, Fe), whereas a tridentate coordination mode was identified in the case of a more basic SBn moiety with softer metals (Ni, Cu). In the intermediate case of Co, ligands a and b coordinate via. kappa(2)[N, N'] and. kappa(2)[N, N', S] coordination modes, which can be conveniently predicted by DFT calculations. For the softest metal (Cu), ligand a coordinates in a kappa(3)[N, N', S] fashion. C1 [Dub, Pavel A.; Gordon, John C.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat & Phys Applicat Div, POB 1663, Los Alamos, NM 87545 USA. RP Dub, PA; Gordon, JC (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM pdub@lanl.gov; jgordon@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU J. Robert Oppenheimer (JRO) Distinguished Postdoctoral Fellowship at LANL; National Science Foundation CRIF:MU award [CHE04-43580]; U.S. Department of Energy (DOE) Office of Science [DE-AC52-06NA25396, DE-AC04-94AL85000] FX PAD is recipient of a J. Robert Oppenheimer (JRO) Distinguished Postdoctoral Fellowship at LANL. We thank Drs Michael L. Neville and Tim Boyle (Sandia National Laboratories, Albuquerque, NM) for aiding with the X-ray structure of complex 2 and are grateful for the use of the Bruker X-ray diffractometer purchased via the National Science Foundation CRIF:MU award to Prof. Rick Kemp of the University of New Mexico (CHE04-43580). Computations were performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 158 TC 2 Z9 2 U1 8 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 4 BP 1560 EP 1571 DI 10.1039/c5dt03855c PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC2ZL UT WOS:000369088000034 PM 26688119 ER PT J AU Perry, NH Stevanovic, V Lim, LY Mason, TO AF Perry, Nicola H. Stevanovic, Vladan Lim, Linda Y. Mason, Thomas O. TI Discovery of a ternary pseudobrookite phase in the earth-abundant Ti-Zn-O system SO DALTON TRANSACTIONS LA English DT Article ID ELECTRICAL-PROPERTIES; CRYSTAL-STRUCTURE; PHOTOCATALYTIC PROPERTY; TITANIUM-DIOXIDE; SOLID-SOLUTIONS; ZINC-OXIDE; ZNO-TIO2; SEMICONDUCTORS; EQUILIBRIA; EFFICIENCY AB We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-d. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi(3-x)O(5-d) composition with x approximate to 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magneli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically. C1 [Perry, Nicola H.] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan. [Perry, Nicola H.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Stevanovic, Vladan] Colorado Sch Mines, Golden, CO 80401 USA. [Stevanovic, Vladan] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lim, Linda Y.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Mason, Thomas O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Perry, Nicola H.] Northwestern Univ, Evanston, IL 60208 USA. RP Perry, NH (reprint author), Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan.; Perry, NH (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Stevanovic, V (reprint author), Colorado Sch Mines, Golden, CO 80401 USA.; Stevanovic, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM perry@i2cner.kyushu-u.ac.jp; Vladan.Stevanovic@nrel.gov RI U-ID, Kyushu/C-5291-2016 FU US Department of Energy, Office of Basic Energy Sciences, Energy Frontier Research Centers [DE-AC36-08GO28308]; I2CNER - World Premier International Research Center Initiative (WPI), MEXT, Japan; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Energy Frontier Research Centers, under Award DE-AC36-08GO28308. NHP also acknowledges partial support from I2CNER, funded by the World Premier International Research Center Initiative (WPI), MEXT, Japan. The use of NREL's computing resources is gratefully acknowledged. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. Some of the X-ray diffraction work was conducted in the J. B. Cohen X-Ray Diffraction Facility, supported by the MRSEC program of the National Science Foundation (Grant No. DMR-1121262) at the Materials Research Center of Northwestern University. NR 51 TC 3 Z9 3 U1 2 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 4 BP 1572 EP 1581 DI 10.1039/c5dt04145g PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC2ZL UT WOS:000369088000035 PM 26685894 ER PT J AU Whitehead, GFS Ferrando-Soria, J Carthy, L Pritchard, RG Teat, SJ Timco, GA Winpenny, REP AF Whitehead, George F. S. Ferrando-Soria, Jesus Carthy, Laura Pritchard, Robin G. Teat, Simon J. Timco, Grigore A. Winpenny, Richard E. P. TI Synthesis and reactions of N-heterocycle functionalised variants of heterometallic {Cr7Ni} rings SO DALTON TRANSACTIONS LA English DT Article ID RAY CRYSTAL-STRUCTURES; SPIN QUBITS; COMPLEXES; LIGAND; 2,2'-DIPYRIDYLAMINE; DINUCLEAR; COPPER; ARCHITECTURES; LUMINESCENCE; TRANSPORT AB Here we present a series of linked cage complexes of functionalised variants of the octametallic ring {Cr7Ni} with the general formula [(Pr2NH2)-Pr-n][Cr7NiF8(O(2)CtBu)(15)(O2CR)], where HO2CR is a N-heterocycle containing carboxylic acid. These compounds are made by reacting [nPr(2)NH(2)][Cr7NiF8(O(2)CtBu)(15)(O2CR)] with a variety of simple metal salts and metal dimers. The carboxylic acids studied include iso-nicotinic acid, 3-(4-pyridyl) acrylic acid and 4-pyridazine carboxylic acid. These new linked cage complexes have been studied structurally and the study highlights the versatility of functionalised {Cr7Ni} as a Lewis base ligand. As {Cr7Ni} is a putative molecular electron spin qubit this work contributes to our understanding of the chemistry that might be required to assemble molecular spin qubits. C1 [Whitehead, George F. S.; Ferrando-Soria, Jesus; Carthy, Laura; Pritchard, Robin G.; Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd,MS2-400, Berkeley, CA 94720 USA. RP Winpenny, REP (reprint author), Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. EM richard.winpenny@manchester.ac.uk RI Ferrando Soria, Jesus/P-5809-2015; Whitehead, George/E-6639-2017 OI Whitehead, George/0000-0003-1949-4250 FU EPSRC(UK) through the Centre for Doctoral Training - NoWNANO; European Commission (Marie Curie Intra-European Fellowship) [622659]; EPSRC (UK) [EP/K039547/1]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the EPSRC(UK) through the Centre for Doctoral Training - NoWNANO and the European Commission (Marie Curie Intra-European Fellowship 622659 to J. F. S.). We also thank EPSRC (UK) for funding an X-ray diffractometer (grant number EP/K039547/1). The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 54 TC 1 Z9 1 U1 2 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 4 BP 1638 EP 1647 DI 10.1039/c5dt04062k PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC2ZL UT WOS:000369088000042 PM 26696526 ER PT S AU Song, B Nelson, K Lipinski, R Bignell, J Ulrich, GB George, EP AF Song, Bo Nelson, Kevin Lipinski, Ronald Bignell, John Ulrich, G. B. George, E. P. BE Song, B Lamberson, L Casem, D Kimberley, J TI Dynamic High-Temperature Tensile Characterization of an Iridium Alloy SO DYNAMIC BEHAVIOR OF MATERIALS, VOL 1 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Kolsky bar; High temperature; Dynamic tension; Iridium alloy; Stress-strain response AB Iridium alloys have been utilized as structural materials for certain high-temperature applications due to their superior strength and ductility at elevated temperatures. In some applications where the iridium alloys are subjected to high-temperature and high-speed impact simultaneously, the high-temperature high-strain-rate mechanical properties of the iridium alloys must be fully characterized to understand the mechanical response of the components in these severe applications. In this study, the room-temperature Kolsky tension bar was modified to characterize a DOP-26 iridium alloy in tension at elevated strain rates and temperatures. The modifications include (1) a unique cooling system to cool down the bars while the specimen was heated to high temperatures with an induction heater; (2) a small-force pre-tension system to compensate for the effect of thermal expansion in the high-temperature tensile specimen; (3) a laser system to directly measure the displacements at both ends of the tensile specimen independently; and (4) a pair of high-sensitivity semiconductor strain gages to measure the weak transmitted force. The dynamic high-temperature tensile stress-strain curves of the iridium alloy were experimentally obtained with the modified high-temperature Kolsky tension bar techniques at two different strain rates (similar to 1000 and 3000 s(-1)) and temperatures (similar to 750 and 1030 degrees C). C1 [Song, Bo; Lipinski, Ronald; Bignell, John] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Nelson, Kevin] Sandia Natl Labs, Livermore, CA 94550 USA. [Ulrich, G. B.; George, E. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Song, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bsong@sandia.gov NR 9 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22452-7; 978-3-319-22451-0 J9 C PROC SOC EXP MECH PY 2016 BP 141 EP 147 DI 10.1007/978-3-319-22452-7_20 PG 7 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2OQ UT WOS:000369724800020 ER PT S AU Koohbor, B Kidane, A Lu, WY AF Koohbor, Behrad Kidane, Addis Lu, Wei-Yang BE Song, B Lamberson, L Casem, D Kimberley, J TI Dynamic Flow Response of Rigid Polymer Foam Subjected to Direct Impact SO DYNAMIC BEHAVIOR OF MATERIALS, VOL 1 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Polymeric foam; Dynamic loading; Digital image correlation; Shock tube; Direct impact ID DEFORMATION AB In this work, the dynamic response of closed-cell PMDI foam specimens with different initial densities subjected to direct impact loading was investigated using a shock-tube apparatus and digital image correlation. Cylindrical foam specimens with different densities were affixed on a rigid frame on one side while the impact load was applied to the other side. The full-field deformation of the polymeric foam specimen during the loading process was captured using stereovision high speed camera system. The load was measured using quartz impact force sensors located between the rigid frame and the specimen, while the full-field displacement and strain distributions were obtained using 3D DIC. A simple one-dimensional model was also proposed to calculate the change of specimen density at any given time during the deformation. The inertia stresses developed during high strain rate deformation were determined using the instantaneous density and the full-field acceleration distribution obtained from the displacement field measured by DIC. By using the load cell data, the calculated inertia stresses and the strain components obtained from DIC, the full field stress-strain distribution over the entire region of interest was extracted. The average stress-strain response of the specimens was also presented as a function of foam density. C1 [Koohbor, Behrad; Kidane, Addis] Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. [Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA USA. RP Koohbor, B (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM koohbor@email.sc.edu OI Koohbor, Behrad/0000-0002-5787-4644 NR 9 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22452-7; 978-3-319-22451-0 J9 C PROC SOC EXP MECH PY 2016 BP 163 EP 170 DI 10.1007/978-3-319-22452-7_23 PG 8 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2OQ UT WOS:000369724800023 ER PT S AU Prime, MB Buttler, WT Sjue, SK Jensen, BJ Mariam, FG Oro, DM Pack, CL Stone, JB Tupa, D Vogan-McNeil, W AF Prime, Michael B. Buttler, William T. Sjue, Sky K. Jensen, Brian J. Mariam, Fesseha G. Oro, David M. Pack, Cora L. Stone, Joseph B. Tupa, Dale Vogan-McNeil, Wendy BE Song, B Lamberson, L Casem, D Kimberley, J TI Using Richtmyer-Meshkov Instabilities to Estimate Metal Strength at Very High Rates SO DYNAMIC BEHAVIOR OF MATERIALS, VOL 1 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Richtmyer-Meshkov instabilities; Shock; High strain rate; Strength; Rayleigh-Taylor ID MODEL; GROWTH; DAMAGE; EJECTA AB Recently, Richtmyer-Meshkov instabilities (RMI) have been proposed for studying strength at strain rates up to 10(7)/s. RMI experiments involve shocking a metal interface that has geometrical perturbations that invert and grow subsequent to the shock. As these perturbations grow, their growth may arrest, or they may grow unstably and eventually fail. The experiments observe the growth and arrest to study the specimen's yield (deviatoric) strength. Along these lines we first review some RMI experimental results on Cu. Next, the paper presents explicit Lagrangian simulations used to help interpret the Cu RMI results and infer the strength, i. e. flow stress, of the target metal. A Preston-Tonks-Wallace (PTW) constitutive model is modified to be more accurate at the strain rates accessed in the experiment. The advantages and disadvantages of RMI, as compared to the Rayleigh-Taylor (shockless) instabilities that are used more commonly to infer strength, are discussed. The advantages of using simple velocimetry measurements in place of radiography are also discussed. C1 [Prime, Michael B.; Buttler, William T.; Sjue, Sky K.; Jensen, Brian J.; Mariam, Fesseha G.; Oro, David M.; Pack, Cora L.; Stone, Joseph B.; Tupa, Dale; Vogan-McNeil, Wendy] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Prime, MB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM prime@lanl.gov OI Prime, Michael/0000-0002-4098-5620; Tupa, Dale/0000-0002-6265-5016 NR 32 TC 0 Z9 0 U1 4 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22452-7; 978-3-319-22451-0 J9 C PROC SOC EXP MECH PY 2016 BP 191 EP 197 DI 10.1007/978-3-319-22452-7_27 PG 7 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2OQ UT WOS:000369724800027 ER PT S AU Yao, SR Nie, X Yu, X Song, B Blecke, J AF Yao, Shurong Nie, Xu Yu, Xun Song, Bo Blecke, Jill BE Song, B Lamberson, L Casem, D Kimberley, J TI Highly Stretchable Miniature Strain Sensor for Large Strain Measurement SO DYNAMIC BEHAVIOR OF MATERIALS, VOL 1 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Large strain sensor; Ultra stretchable; CNT/PDMS composite thin film; Piezo-resistive response; Frequency response AB In this research, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages. C1 [Yao, Shurong; Nie, Xu; Yu, Xun] Univ N Texas, Dept Mech & Energy Engn, 1155 Union Circle 311098, Denton, TX 76203 USA. [Song, Bo; Blecke, Jill] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Yu, X (reprint author), Univ N Texas, Dept Mech & Energy Engn, 1155 Union Circle 311098, Denton, TX 76203 USA. EM Xun.Yu@unt.edu NR 6 TC 0 Z9 0 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22452-7; 978-3-319-22451-0 J9 C PROC SOC EXP MECH PY 2016 BP 239 EP 243 DI 10.1007/978-3-319-22452-7_33 PG 5 WC Mechanics; Physics, Applied SC Mechanics; Physics GA BE2OQ UT WOS:000369724800033 ER PT J AU Abney, CW Mayes, RT Piechowicz, M Lin, Z Bryantsev, VS Veith, GM Dai, S Lin, W AF Abney, C. W. Mayes, R. T. Piechowicz, M. Lin, Z. Bryantsev, V. S. Veith, G. M. Dai, S. Lin, W. TI XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; AQUEOUS-SOLUTION; FINE-STRUCTURE; CARBONATE COMPLEXES; POLYMERIC ADSORBENT; URANIUM EXTRACTION; CRYSTAL-STRUCTURE; BINDING-SITES; SEAWATER; AMIDOXIME AB Limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or eta(2) motifs proposed by small molecule and computational studies. Samples exposed to environmental seawater also display a feature consistent with a mu(2)-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity. C1 [Abney, C. W.; Piechowicz, M.; Lin, Z.; Lin, W.] Univ Chicago, 929 East 57th St, Chicago, IL 60637 USA. [Abney, C. W.; Mayes, R. T.; Bryantsev, V. S.; Veith, G. M.; Dai, S.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Abney, CW; Lin, W (reprint author), Univ Chicago, 929 East 57th St, Chicago, IL 60637 USA.; Abney, CW (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM abneycw@ornl.gov; wenbinlin@uchicago.edu RI Mayes, Richard/G-1499-2016; Dai, Sheng/K-8411-2015; Bryantsev, Vyacheslav/M-5111-2016; Lin, Wenbin/B-4151-2010; BM, MRCAT/G-7576-2011; OI Mayes, Richard/0000-0002-7457-3261; Dai, Sheng/0000-0002-8046-3931; Bryantsev, Vyacheslav/0000-0002-6501-6594; Lin, Wenbin/0000-0001-7035-7759; Abney, Carter/0000-0002-1809-9577 FU U.S. Department of Energy (DOE); Office of Nuclear Energy's Nuclear Energy University Program [120427, 3151]; U.S. DOE, Office of Nuclear Energy; Materials Research Collaborative Access Team (MRCAT); DOE; MRCAT member institutions; X-ray Sciences, Structural Sciences Division FX This research was conducted at the University of Chicago and Oak Ridge National Laboratory (ORNL). Work at the University of Chicago was supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (Sub-Contract - 20 #120427, Project #3151). Work at ORNL was sponsored by the U.S. DOE, Office of Nuclear Energy. XAFS data were collected at the Advanced Photon Source at Argonne National Laboratory on Beamline 10BM-B, supported by the Materials Research Collaborative Access Team (MRCAT). MRCAT operations are supported by the DOE and the MRCAT member institutions. Pair distribution function data were collected at the Advanced Photon Source on Beamline 11ID-B, supported by the X-ray Sciences, Structural Sciences Division. The Advanced Photon Source is a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Centre, a DOE Office of Science User Facility supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. The authors thank Dr Gary Gill from Pacific Northwest National Laboratory for providing the seawater-contacted polymer fibres and Dr Alex Filatov from the University of Chicago for assistance with crystallographic refinement and reporting. The authors also thank the University of Chicago Physical Science Division Mass Spectrometry, NMR, and Crystallography Facilities, as well as the NSF Materials Research Science and Engineering Center (MRSEC) at the University of Chicago for instrumentation. NR 68 TC 7 Z9 7 U1 8 U2 38 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 2 BP 448 EP 453 DI 10.1039/c5ee02913a PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DD2HY UT WOS:000369744500008 ER PT J AU Hu, XK Jood, P Ohta, M Kunii, M Nagase, K Nishiate, H Kanatzidis, MG Yamamoto, A AF Hu, Xiaokai Jood, Priyanka Ohta, Michihiro Kunii, Masaru Nagase, Kazuo Nishiate, Hirotaka Kanatzidis, Mercouri G. Yamamoto, Atsushi TI Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID PERFORMANCE BULK THERMOELECTRICS; PHONON-SCATTERING; THERMAL-CONDUCTIVITY; INTERFACIAL REACTION; LEAD-TELLURIDE; MTE M; FIGURE; MERIT; EFFICIENCY; CRYSTAL AB In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 at 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved. C1 [Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro; Kunii, Masaru; Nagase, Kazuo; Nishiate, Hirotaka; Yamamoto, Atsushi] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Conservat, Tsukuba, Ibaraki 3058568, Japan. [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Ohta, M (reprint author), Natl Inst Adv Ind Sci & Technol, Res Inst Energy Conservat, Tsukuba, Ibaraki 3058568, Japan. EM ohta.michihiro@aist.go.jp RI Yamamoto, Atsushi/E-4083-2016; Ohta, Michihiro/J-8460-2015 OI Yamamoto, Atsushi/0000-0002-9210-2682; Ohta, Michihiro/0000-0002-9093-7117 FU Japan-U.S. Cooperation Project for Research and Standardization of Clean Energy Technologies - Ministry of Economy, Trade and Industry (METI); International Cooperation Project for Research and Standardization of Clean Energy Technologies - METI; JSPS [15F15068]; JSPS KAKENHI Grant [25420699]; Department of Energy, Office of Science Basic Energy Sciences [DE-SC0014520] FX The authors express our thanks to Ms Naoko Fujimoto of AIST for preparing the PbTe-based ingots and sintered compacts, Mr Hiroyuki Takazawa of Thermal Management Materials and Technology Research Association (TherMAT) for testing the modules, and Mr Noriyuki Saitou and Dr Noriko Yoshizawa of National Institute of Advanced Industrial Science and Technology (AIST) for operating the transmission electron microscope. Material preparation and module fabrication were supported as part of the Japan-U.S. Cooperation Project for Research and Standardization of Clean Energy Technologies funded by the Ministry of Economy, Trade and Industry (METI). Module testing and three-dimensional finite-element simulation were supported as part of the International Cooperation Project for Research and Standardization of Clean Energy Technologies funded by METI. Priyanka Jood as an International Research Fellow of the Japan Society for the Promotion of Science acknowledges financial support from JSPS Grant Number 15F15068. At AIST, the work supported by the JSPS KAKENHI Grant Number 25420699. At Northwestern this was supported by the Department of Energy, Office of Science Basic Energy Sciences grant DE-SC0014520. NR 81 TC 11 Z9 11 U1 20 U2 66 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 2 BP 517 EP 529 DI 10.1039/c5ee02979a PG 13 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DD2HY UT WOS:000369744500018 ER PT J AU Lohr, TL Li, Z Assary, RS Curtiss, LA Marks, TJ AF Lohr, Tracy L. Li, Zhi Assary, Rajeev S. Curtiss, Larry A. Marks, Tobin J. TI Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID O-BOND-CLEAVAGE; BIO-HYDROGENATED DIESEL; CARBON-OXYGEN BOND; C-O; BIODIESEL PRODUCTION; OXIDATIVE ADDITION; CATALYTIC DEOXYGENATION; MICROALGAE OIL; RECYCLABLE CATALYSTS; RENEWABLE FEEDSTOCKS AB The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement with theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3). C1 [Lohr, Tracy L.; Li, Zhi; Marks, Tobin J.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Li, Zhi] ShanghaiTech Univ, 100 Haike Rd, Shanghai 201210, Peoples R China. RP Marks, TJ (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM t-marks@northwestern.edu RI Li, Zhi/D-8662-2011 OI Li, Zhi/0000-0003-2770-6364 FU Institute of Atom-efficient Chemical Transformation (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Sciences, and Office of Basic Energy Sciences [DE-AC0206CH11357]; NSF [CHE-1213235, CHE-1464488]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Institute of Atom-efficient Chemical Transformation (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Sciences, and Office of Basic Energy Sciences (contract DE-AC0206CH11357), which supported Z. L., R. S. A., and L. A. C. NSF grants CHE-1213235 and CHE-1464488 supported T. L. L. and provided reactor equipment. The Pd/TiO2 catalyst was provided by Mr M. S. Liu. We thank Dr K.-L. Ding for the composition analysis of gaseous product mixtures. We gratefully acknowledge the computing resources provided on "Blues", a computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 102 TC 4 Z9 4 U1 18 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 2 BP 550 EP 564 DI 10.1039/c5ee03256c PG 15 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DD2HY UT WOS:000369744500021 ER PT J AU Guevarra, D Shinde, A Suram, SK Sharp, ID Toma, FM Haber, JA Gregoire, JM AF Guevarra, D. Shinde, A. Suram, S. K. Sharp, I. D. Toma, F. M. Haber, J. A. Gregoire, J. M. TI Development of solar fuels photoanodes through combinatorial integration of Ni-La-Co-Ce oxide catalysts on BiVO4 SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID PHOTOELECTROCHEMICAL WATER OXIDATION; OXYGEN-EVOLUTION CATALYSTS; MODIFIED ALPHA-FE2O3 PHOTOANODES; SITU OPTICAL MEASUREMENTS; BISMUTH VANADATE; HIGH-THROUGHPUT; SPLITTING PHOTOANODES; CHARGE SEPARATION; METAL-OXIDE; EFFICIENT AB The development of an efficient photoanode remains the primary materials challenge in the establishment of a scalable technology for solar water splitting. The typical photoanode architecture consists of a semiconductor light absorber coated with a metal oxide that serves a combination of functions, including corrosion protection, electrocatalysis, light trapping, hole transport, and elimination of deleterious recombination sites. To date, such coatings have been mostly limited to simple materials such as TiO2 and Co-Pi, with extensive experimental and theoretical effort required to provide an understanding of the physics and chemistry of the semiconductor-coating interface. To provide a more efficient exploration of metal oxide coatings for a given light absorber, we introduce a high throughput methodology wherein a uniform BiVO4 thin film is coated with 858 unique metal oxides covering a range of metal oxide loadings and the full Ni-La-Co-Ce oxide quaternary composition space. Photoelectrochemical characterization of each photoanode reveals that approximately one third of the coatings lower the photoanode performance while select combinations of metal oxide composition and loading provide up to a 14-fold increase in the maximum photoelectrochemical power generation for oxygen evolution in pH 13 electrolyte. Particular Ce-rich coatings also exhibit an anti-reflection effect that further amplifies the performance, yielding a 20-fold enhancement in power conversion efficiency compared to bare BiVO4. By use of in situ optical spectroscopy and comparisons between the metal oxide coatings and their extrinsic optical and electrocatalytic properties, we present a suite of data-driven discoveries, including composition regions which form optimal interfaces with BiVO4 and photoanodes that are suitable for integration with a photocathode due to their excellent power conversion and solar transmission efficiencies. The high throughput experimentation and informatics provides a powerful platform for both identifying the pertinent interfaces for further study and discovering high performance photoanodes for incorporation into efficient water splitting devices. C1 [Guevarra, D.; Shinde, A.; Suram, S. K.; Haber, J. A.; Gregoire, J. M.] CALTECH, Joint Ctr Artificial Photosynthesis, Pasadena, CA 91125 USA. [Sharp, I. D.; Toma, F. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. [Sharp, I. D.; Toma, F. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Haber, JA; Gregoire, JM (reprint author), CALTECH, Joint Ctr Artificial Photosynthesis, Pasadena, CA 91125 USA.; Toma, FM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA.; Toma, FM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM fmtoma@lbl.gov; jahaber@caltech.edu; gregoire@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). The authors thank Citrine Informatics (www.citrine.io) for data hosting. The raw potentiostat and spectrometer data for the anodic sweep of the CV for each photoanode are available at links.citrination.com/ni-la-co-ce. NR 65 TC 4 Z9 4 U1 26 U2 83 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 2 BP 565 EP 580 DI 10.1039/c5ee03488d PG 16 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DD2HY UT WOS:000369744500022 ER PT J AU Rozemeijer, JC Visser, A Borren, W Winegram, M van der Velde, Y Klein, J Broers, HP AF Rozemeijer, J. C. Visser, A. Borren, W. Winegram, M. van der Velde, Y. Klein, J. Broers, H. P. TI High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID FLOW ROUTE CONTRIBUTIONS; SURFACE-WATER; CATCHMENT DISCHARGE; UNITED-STATES; LAND-USE; GROUNDWATER; SOIL; CONSEQUENCES; QUALITY; YIELD AB High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water. C1 [Rozemeijer, J. C.; Borren, W.; Klein, J.] Deltares, POB 85467, NL-3508 AL Utrecht, Netherlands. [Visser, A.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Winegram, M.] Allseas Engn, Poortweg 12, NL-2612 PA Delft, Netherlands. [van der Velde, Y.] Vrije Univ Amsterdam, Dept Earth Sci, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. [Broers, H. P.] TNO Geol Survey Netherlands, POB 80015, NL-3508 TA Utrecht, Netherlands. RP Rozemeijer, JC (reprint author), Deltares, POB 85467, NL-3508 AL Utrecht, Netherlands. EM joachim.rozemeijer@deltares.nl RI Visser, Ate/G-8826-2012; OI van der Velde, Ype/0000-0002-2183-2573 FU Water Authority Rijn en IJssel FX The authors would like to thank Water Authority Rijn en IJssel for partially funding this study and especially Laurens Gerner, Annemarie Kramer and Bob van IJzendoorn are acknowledged for their cooperation. We also thank land owner Wim Kimmels for allowing our experiments on his farmland. NR 30 TC 1 Z9 1 U1 8 U2 27 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2016 VL 20 IS 1 BP 347 EP 358 DI 10.5194/hess-20-347-2016 PG 12 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA DD1GD UT WOS:000369668400020 ER PT J AU Xiong, QG Zhang, JC Xu, F Wiggins, G Daw, CS AF Xiong, Qingang Zhang, Jingchao Xu, Fei Wiggins, Gavin Daw, C. Stuart TI Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Biomass fast pyrolysis; Distributed activation energy model; Multi-fluid model; Gaussian distribution; Logistic distribution ID ENTRAINED-FLOW REACTOR; ACTIVATION-ENERGY MODEL; TG-FTIR ANALYSIS; WOOD LIGNIN; BEHAVIOR; KINETICS; HEMICELLULOSE; VALIDATION; PREDICTION; CHEMISTRY AB We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD-DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting the reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. These findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Xiong, Qingang; Wiggins, Gavin; Daw, C. Stuart] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zhang, Jingchao] Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA. [Xu, Fei] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. RP Xiong, QG; Daw, CS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM xiongq@ornl.gov; dawcs@ornl.gov OI Zhang, Jingchao/0000-0001-5289-6062 FU BioEnergy Technologies Office, U.S. Department of Energy through the Computational Pyrolysis Consortium (CPC) project FX This study was supported by the BioEnergy Technologies Office, U.S. Department of Energy through the Computational Pyrolysis Consortium (CPC) project. More information about the CPC project can be found at http://cpcbiomass.org/. NR 50 TC 7 Z9 7 U1 8 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 EI 1873-250X J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD JAN PY 2016 VL 117 BP 176 EP 181 DI 10.1016/j.jaap.2015.11.015 PG 6 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DD7LC UT WOS:000370105000020 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Archinger, M Arguelles, C Arlen, TC Enberg, F Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G De With, M DeYoung, T Diaz-Velez, JC di Lorenzo, V Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jurkovic, M Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kruckl, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Paul, L Pepper, JA de Los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Schimp, M Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schulte, L Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wiebe, K Wiebusch, CH Wille, L Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M Aab, A Abreu, P Aglietta, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andrada, B Andringa, S Aramo, C Arqueros, F Arsene, N Asorey, H Assis, P Aublin, J Avila, G Awal, N Badescu, AM Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Blaess, SG Blanco, A Blanco, M Blazek, J Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Borodai, N Botti, AM Brack, J Brancus, I Bretz, T Bridgeman, A Briechle, FL Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Diaz, JCC Chudoba, J Clay, RW Colalillo, R Coleman, A Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Cordier, A Coutu, S Covault, CE Dallier, R D'Amico, S Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM de Jong, SJ De Mauro, G Neto, JRTD De Mitri, I de Oliveira, J de Souza, V Debatin, J del Peral, L Deligny, O Dhital, N Di Giulio, C Di Matteo, A Castro, MLD Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dorofeev, A dos Anjos, RC Dova, MT Dundovic, A Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Figueira, JM Filevich, A Filipi, A Fratu, O Freire, MM Fujii, T Fuster, A Gallo, F Garcia, B Garcia-Gamez, D Garcia-Pinto, D Gate, F Gemmeke, H Gherghel-Lascu, A Ghia, PL Giaccari, U Giammarchi, M Giller, M Glas, D Glaser, C Glass, H Golup, G Berisso, MG Vitale, PFG Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Griffith, N Grillo, AF Grubb, TD Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Harton, JL Hasankiadeh, Q Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsksy, M Huege, T Insolia, A Isar, PG Jandt, I Jansen, S Jarne, C Johnsen, JA Josebachuili, M Kaaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kuempel, D Mezek, GK Kunka, N Awad, AK LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopes, L Lopez, R Casado, AL Lucero, A Malacari, M Mallamaci, M Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martinez, H Bravo, OM Meza, JJM Mathes, HJ Mathys, S Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Mello, VBB Melo, D Menshikov, A Messina, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerachl, S Montanet, F Morello, C Mostafa, M Moura, CA Muller, G Muller, MA Muller, S Naranjo, I Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Nguyen, PH Niculescu-Oglinzanu, M Niechcio, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, H Nunez, LA Ochilo, L Oikonomou, F Olinto, A Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Papenbreer, P Parente, G Parra, A Pau, T Pech, M Pekala, J Pelayo, R Pena-Rodriguez, J Pepe, IM Perrone, L Petermann, E Peters, C Petrera, S Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porowski, C Prado, RR Privitera, P Prouza, M Quell, EJ Querchfeld, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Reinert, D Revenu, B Ridky, J Risse, M Ristori, P Rizi, V de Carvalho, WR Rojo, JR Rodriguez-Frias, MD Rogozin, D Rosado, J Roth, M Roulet, E Rovero, AC Saffil, SJ Saftoiu, A Salazar, H Saleh, A Greus, FS Salina, G Gomez, JDS Sanchez, F Sanchez-Lucas, P Santos, EM Santos, E Sarazin, F Sarkar, B Sarmento, R Sarmiento-Cano, C Sato, R Scarso, C Schauer, M Scherini, V Schieler, H Schmidt, D Scholtene, . Schoorlemmer, H Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Segreto, A Settimo, M Shadkam, A Shellard, RC Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sonntag, S Sorokin, J Squartini, R Stanca, D Stanic, S Stapleton, J Stasielak, J Stephan, M Strafella, F Stutz, A Suarez, F Duran, MS Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Taborda, OA Tapia, A Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trini, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van Bodegom, P van den Berg, AM van Vliet, A Varela, E Cardenas, BV Varner, G Vasquez, R Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Wiencke, L Wilczynski, H Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yang, L Yapici, T Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zepeda, A Zimmermann, B Ziolkowski, M Zong, Z Zuccarello, F Abbasi, RU Abe, M Abu-Zayyad, T Allen, M Azuma, R Barcikowski, E Belz, JW Bergman, DR Blake, SA Cady, R Chae, MJ Cheon, BG Chiba, J Chikawa, M Cho, WR Fujii, T Fukushima, M Gotoll, T Hanlon, W Hayashi, Y Hayashida, N Hibino, K Honda, K Ikeda, D Inoue, N Ishii, T Ishimori, R Ito, H Ivanov, D Jui, CCH Kadota, K Kakimoto, F Kalashev, O Kasahara, K Kawail, H Kawakami, S Kawana, S Kawata, K Kido, E Kim, HB Kim, JH Kim, JH Kitamura, S Kitamura, Y Kuzmin, V Kwon, YJ Lan, J Lim, SI Lundquist, JP Machida, K Martens, K Matsuda, T Matsuyama, T Matthews, JN Minamino, M Mukai, Y Myers, I Nagasawa, K Nagataki, S Nakamura, T Nonaka, T Nozato, A Ogioll, S Ogura, J Ohnishi, M Ohoka, H Oki, K Okuda, T Ono, M Oshima, A Ozawa, S Park, IH Pshirkov, MS Rodriguez, DC Rubtsov, G Ryu, D Sagawa, H Sakurai, N Scott, LM Shah, PD Shibata, F Shibata, T Shimodaira, H Shins, BK Shin, HS Smith, JD Sokolsky, P Springer, RW Stokes, BT Stratton, SR Stroman, TA Suzawa, T Takamura, M Takeda, M Takeishi, R Taketa, A Takita, M Tameda, Y Tanaka, H Tanaka, K Tanaka, M Thomas, SB Thomson, GB Tinyakov, P Tkachev, I Tokuno, H Tomida, T Troitsky, S Tsunesada, Y Tsutsumi, K Uchihori, Y Udo, S Urban, F Vasiloff, G Wong, T Yamane, R Yamaoka, H Yamazaki, K Yang, J Yashiro, K Yoneda, Y Yoshida, S Yoshii, H Zollinger, R Zundel, Z AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Ansseau, I. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K-H. Beiser, E. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H-P. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. di Lorenzo, V. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Foesig, C-C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Krueckl, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Paul, L. Pepper, J. A. de Los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sander, H-G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Schimp, M. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schulte, L. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Stroem, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allison, P. Almela, A. Castillo, J. Alvarez Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anchordoqui, L. Andrada, B. Andringa, S. Aramo, C. Arqueros, F. Arsene, N. Asorey, H. Assis, P. Aublin, J. Avila, G. Awal, N. Badescu, A. M. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Blaess, S. G. Blanco, A. Blanco, M. Blazek, J. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Borodai, N. Botti, A. M. Brack, J. Brancus, I. Bretz, T. Bridgeman, A. Briechle, F. L. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Diaz, J. C. Chirinos Chudoba, J. Clay, R. W. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Cordier, A. Coutu, S. Covault, C. E. Dallier, R. D'Amico, S. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. de Jong, S. J. De Mauro, G. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. Debatin, J. del Peral, L. Deligny, O. Dhital, N. Di Giulio, C. Di Matteo, A. Castro, M. L. Diaz Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dorofeev, A. dos Anjos, R. C. Dova, M. T. Dundovic, A. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Figueira, J. M. Filevich, A. Filipi, A. Fratu, O. Freire, M. M. Fujii, T. Fuster, A. Gallo, F. Garcia, B. Garcia-Gamez, D. Garcia-Pinto, D. Gate, F. Gemmeke, H. Gherghel-Lascu, A. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glas, D. Glaser, C. Glass, H. Golup, G. Gomez Berisso, M. Gomez Vitale, P. F. Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Griffith, N. Grillo, A. F. Grubb, T. D. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Hasankiadeh, Q. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Hoerandel, J. R. Horvath, P. Hrabovsksy, M. Huege, T. Insolia, A. Isar, P. G. Jandt, I. Jansen, S. Jarne, C. Johnsen, J. A. Josebachuili, M. Kaeaepae, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kuempel, D. Mezek, G. Kukec Kunka, N. Awad, A. Kuotb LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopes, L. Lopez, R. Lopez Casado, A. Lucero, A. Malacari, M. Mallamaci, M. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martinez, H. Bravo, O. Martinez Meza, J. J. Masias Mathes, H. J. Mathys, S. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Mello, V. B. B. Melo, D. Menshikov, A. Messina, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerachl, S. Montanet, F. Morello, C. Mostafa, M. Moura, C. A. Mueller, G. Muller, M. A. Mueller, S. Naranjo, I. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Nguyen, P. H. Niculescu-Oglinzanu, M. Niechcio, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, H. Nunez, L. A. Ochilo, L. Oikonomou, F. Olinto, A. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Papenbreer, P. Parente, G. Parra, A. Pau, T. Pech, M. Pekala, J. Pelayo, R. Pena-Rodriguez, J. Pepe, I. M. Perrone, L. Petermann, E. Peters, C. Petrera, S. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porowski, C. Prado, R. R. Privitera, P. Prouza, M. Quell, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Reinert, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rizi, V. Rodrigues de Carvalho, W. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Rogozin, D. Rosado, J. Roth, M. Roulet, E. Rovero, A. C. Saffil, S. J. Saftoiu, A. Salazar, H. Saleh, A. Greus, F. Salesa Salina, G. Sanabria Gomez, J. D. Sanchez, F. Sanchez-Lucas, P. Santos, E. M. Santos, E. Sarazin, F. Sarkar, B. Sarmento, R. Sarmiento-Cano, C. Sato, R. Scarso, C. Schauer, M. Scherini, V. Schieler, H. Schmidt, D. Scholtene, . Schoorlemmer, H. Schovanek, P. Schroeder, F. G. Schulz, A. Schulz, J. Schumacher, J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sonntag, S. Sorokin, J. Squartini, R. Stanca, D. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Strafella, F. Stutz, A. Suarez, F. Duran, M. Suarez Suomijarvi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Taborda, O. A. Tapia, A. Tepe, A. Theodoro, V. M. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Elipe, G. Torralba Torres Machado, D. Travnicek, P. Trini, M. Ulrich, R. Unger, M. Urban, M. Galicia, J. F. Valdes Valino, I. Valore, L. van Aar, G. van Bodegom, P. van den Berg, A. M. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vasquez, R. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Wiencke, L. Wilczynski, H. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yang, L. Yapici, T. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zepeda, A. Zimmermann, B. Ziolkowski, M. Zong, Z. Zuccarello, F. Abbasi, R. U. Abe, M. Abu-Zayyad, T. Allen, M. Azuma, R. Barcikowski, E. Belz, J. W. Bergman, D. R. Blake, S. A. Cady, R. Chae, M. J. Cheon, B. G. Chiba, J. Chikawa, M. Cho, W. R. Fujii, T. Fukushima, M. Gotoll, T. Hanlon, W. Hayashi, Y. Hayashida, N. Hibino, K. Honda, K. Ikeda, D. Inoue, N. Ishii, T. Ishimori, R. Ito, H. Ivanov, D. Jui, C. C. H. Kadota, K. Kakimoto, F. Kalashev, O. Kasahara, K. Kawail, H. Kawakami, S. Kawana, S. Kawata, K. Kido, E. Kim, H. B. Kim, J. H. Kim, J. H. Kitamura, S. Kitamura, Y. Kuzmin, V. Kwon, Y. J. Lan, J. Lim, S. I. Lundquist, J. P. Machida, K. Martens, K. Matsuda, T. Matsuyama, T. Matthews, J. N. Minamino, M. Mukai, Y. Myers, I. Nagasawa, K. Nagataki, S. Nakamura, T. Nonaka, T. Nozato, A. Ogioll, S. Ogura, J. Ohnishi, M. Ohoka, H. Oki, K. Okuda, T. Ono, M. Oshima, A. Ozawa, S. Park, I. H. Pshirkov, M. S. Rodriguez, D. C. Rubtsov, G. Ryu, D. Sagawa, H. Sakurai, N. Scott, L. M. Shah, P. D. Shibata, F. Shibata, T. Shimodaira, H. Shins, B. K. Shin, H. S. Smith, J. D. Sokolsky, P. Springer, R. W. Stokes, B. T. Stratton, S. R. Stroman, T. A. Suzawa, T. Takamura, M. Takeda, M. Takeishi, R. Taketa, A. Takita, M. Tameda, Y. Tanaka, H. Tanaka, K. Tanaka, M. Thomas, S. B. Thomson, G. B. Tinyakov, P. Tkachev, I. Tokuno, H. Tomida, T. Troitsky, S. Tsunesada, Y. Tsutsumi, K. Uchihori, Y. Udo, S. Urban, F. Vasiloff, G. Wong, T. Yamane, R. Yamaoka, H. Yamazaki, K. Yang, J. Yashiro, K. Yoneda, Y. Yoshida, S. Yoshii, H. Zollinger, R. Zundel, Z. CA IceCube Collaboration IceCube Collaboration Pierre Auger Collaboration Pierre Auger Collaboration Telescope Array Collaboration TI Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE neutrino experiments; ultra high energy cosmic rays; cosmic ray experiments; neutrino astronomy ID GALACTIC MAGNETIC-FIELD; SURFACE DETECTOR; SPECTRUM; DEFLECTIONS; PERFORMANCE AB This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Beatty, J. J.; Silva, A. H. Cruz] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C-C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H-G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Kurahashi, N.; Richman, M.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bose, D.; In, S.; Jeong, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Luenemann, J.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de Los Heros, C. Perez; Stroem, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Becker, K-H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H-P.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, 7-3-1 Hongo, Tokyo 113, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerachl, S.; Naranjo, I.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Almela, A.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerachl, S.; Naranjo, I.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Pallotta, J.; Quell, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicaciones, San Carlos De Bariloche, Rio Negro, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Pallotta, J.; Quell, E. J.; Ristori, P.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Meza, J. J. Masias; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Salazar, H.; Supanitsky, A. D.] CONICET UBA, IAFE, Buenos Aires, DF, Argentina. [Freire, M. M.; Micheletti, M. I.] UNR, CONICET, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Freire, M. M.; Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Santa Fe, Argentina. [Garcia, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Buenos Aires, DF, Argentina. [Garcia, B.] Univ Tecnol Nacl, Fac Reg Mendoza, CONICET, CNEA, Mendoza, Argentina. [Almela, A.; Andrada, B.; Botti, A. M.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Fuster, A.; Gallo, F.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, Inst Tecnol Detecc & Astroparticulas,CNEA, Ctr Atom Constituyentes,Comis Nacl Engergia Atom, Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Salazar, H.; Sato, R.; Scarso, C.; Squartini, R.] Observ Pierre Auger, Mendoza, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, RA-1429 Buenos Aires, DF, Argentina. [Almela, A.; Etchegoyen, A.; Fuster, A.; Gallo, F.; Suarez, F.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Bellido, J. A.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffil, S. J.; Sorokin, J.; van Bodegom, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Maurizio, D.; Shellard, R. C.] CBPF, Rio De Janeiro, Brazil. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, BR-05508 Sao Paulo, Brazil. [de Souza, V.; dos Anjos, R. C.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; Daniel, B.; Castro, M. L. Diaz; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Santos, E.; Theodoro, V. M.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira de Santana, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, BR-41170290 Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed Abc, Santo Andre, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Mello, V. B. B.; Torres Machado, D.; Vasquez, R.] Univ Fed Rio de Janeiro, Inst Fis, Rio de Janeiro, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, BR-24220000 Niteroi, RJ, Brazil. [Asorey, H.; Nunez, L. A.; Pena-Rodriguez, J.; Sanabria Gomez, J. D.; Sarmiento-Cano, C.; Duran, M. Suarez] Univ Ind Santander, Santander, Spain. [Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys FZU, Prague, Czech Republic. [Horvath, P.; Hrabovsksy, M.; Nozka, H.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Nosek, D.; Novotny, V.] Univ Prague, Inst Particle & Nucl Phys, Prague, Czech Republic. [Deligny, O.; Lhenry-Yvon, I.; Suomijarvi, T.; Zong, Z.] Univ Paris 11, CNRS, IN2P3, IPNO, Orsay, France. [Cordier, A.; Garcia-Gamez, D.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Al Samarai, I.; Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 06, LPNHE, F-75252 Paris 05, France. [Al Samarai, I.; Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, F-75221 Paris 05, France. [Berat, C.; Lebrun, D.; Montanet, F.; Stutz, A.] Univ Grenoble Alpes, CNRS, IN2P3, LPSC, St Martin Dheres, France. [Dallier, R.] Stn Radioastron Nancay, Nancay, France. [Dallier, R.; Gate, F.; Lautridou, P.; Marin, V.; Ravel, O.; Revenu, B.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, F-44035 Nantes, France. [Becker, K. H.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baus, C.; Bluemer, H.; Herve, A. E.; Kambeitz, O.; Katkov, I.; Link, K.] Karlsruhe Inst Technol, IEKP, D-76021 Karlsruhe, Germany. [Bluemer, H.; Bridgeman, A.; Daumiller, K.; Debatin, J.; Engel, R.; Hasankiadeh, Q.; Haungs, A.; Heck, D.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Awad, A. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Rogozin, D.; Roth, M.; Schieler, H.; Schmidt, D.; Schroeder, F. G.; Schulz, A.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberic, D.; Weindl, A.] Karlsruhe Inst Technol, IKP, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Karlsruhe Inst Technol, IPE, D-76021 Karlsruhe, Germany. [Bretz, T.; Briechle, F. L.; Erdmann, M.; Glaser, C.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Inst Phys 3A, Aachen, Germany. [Batista, R. Alves; Dundovic, A.; Sigl, G.] Univ Hamburg, Inst Theoret Phys 2, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechcio, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany. [Segreto, A.] Ist Nazl Fis Nucl, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Boncioli, D.; Grillo, A. F.] INFN Lab Gran Sasso, Gran Sasso, Italy. [Buscemi, M.; Caruso, R.; Insolia, A.; Pirronello, V.; Segreto, A.; Zuccarello, F.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Ist Nazl Fis Nucl, Sez Aquila, Laquila, Italy. [Bleve, C.; Cataldi, G.; Coluccia, M. R.; D'Amico, S.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.; Strafella, F.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Ambrosio, M.; Aramo, C.; Colalillo, R.; Guarino, F.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aglietta, M.; Bertaina, M. E.; Castellina, A.; Cester, R.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.; Tonachini, A.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Osservatorio Astrofis Torino INAF, Turin, Italy. [Bertaina, M. E.; Cester, R.; Chiavassa, A.; Tonachini, A.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [D'Amico, S.] Univ Salento, Dipartimento Ingn, Lecce, Italy. [Bleve, C.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.; Strafella, F.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Caruso, R.; Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Chim & Fis, I-67100 Laquila, Italy. [Buscemi, M.; Insolia, A.; Pirronello, V.; Zuccarello, F.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Mallamaci, M.; Miramonti, L.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy. [Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Di Giulio, C.; Matthiae, G.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Lopez, R.; Bravo, O. Martinez; Parra, A.; Varela, E.] BUAP, Puebla, Mexico. [Martinez, H.; Zepeda, A.] CINVESTAV, Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Pelayo, R.] UPIITA IPN, Mexico City, DF, Mexico. [Caballero-Mora, K. S.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Castillo, J. Alvarez; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Galicia, J. F. Valdes; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Buitink, S.; de Jong, S. J.; De Mauro, G.; Falcke, H.; Hoerandel, J. R.; Jansen, S.; Nelles, A.; Schulz, J.; Timmermans, C.; van Aar, G.; van Vliet, A.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholtene, .; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, NL-9700 AB Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Hoerandel, J. R.; Jansen, S.; Nelles, A.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] Stichting Astron Onderzoek Nederland ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Homola, P.; Pekala, J.; Porowski, C.; Privitera, P.; Stasielak, J.; Wilczynski, H.] Inst Phys Nucl PAN, Krakow, Poland. [Giller, M.; Glas, D.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao Fis Expt Particulas LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, IST, Lisbon, Portugal. [Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Caramete, L.; Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Arsene, N.; Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Filipi, A.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipi, A.; Mezek, G. Kukec; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, E-28040 Madrid, Spain. [del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.] Univ Alcala de Henares, E-28871 Alcala De Henares, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Granada, E-18071 Granada, Spain. [Alvarez-Muniz, J.; Lopez Casado, A.; Parente, G.; Rodrigues de Carvalho, W.; Elipe, G. Torralba; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Johnsen, J. A.; Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Anchordoqui, L.; Pau, T.] CUNY, Lehman Coll, Dept Phys & Astron, New York, NY USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Matthews, J.; Shadkam, A.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Diaz, J. C. Chirinos; Dhital, N.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Awal, N.; Farrar, G.; Unger, M.] New York Univ, New York, NY USA. [Pau, T.; Swain, J.] Northeastern Univ, Boston, MA USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Greus, F. Salesa; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Fang, K.; Fujii, T.; Hollon, N.; Olinto, A.] Univ Chicago, Chicago, IL 60637 USA. [Gorham, P.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Biermann, P. L.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Scholtene, .] Vrije Univ Brussel, Brussels, Belgium. [dos Anjos, R. C.] Univ Fed Parana, Palotina, PR, Brazil. [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Ivanov, D.; Jui, C. C. H.; Kim, J. H.; Lan, J.; Lundquist, J. P.; Matthews, J. N.; Myers, I.; Rodriguez, D. C.; Shah, P. D.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Thomas, S. B.; Thomson, G. B.; Vasiloff, G.; Wong, T.; Zollinger, R.; Zundel, Z.] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT USA. [Abe, M.; Inoue, N.; Kawana, S.; Nagasawa, K.; Suzawa, T.] Saitama Univ, Grad Sch Sci & Engn, Saitama 3388570, Japan. [Azuma, R.; Ishimori, R.; Kakimoto, F.; Kitamura, S.; Kitamura, Y.; Ogura, J.; Tokuno, H.; Tsunesada, Y.; Tsutsumi, K.] Tokyo Inst Technol, Grad Sch Sci & Engn, Tokyo 152, Japan. [Chae, M. J.; Lim, S. I.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul, South Korea. [Chae, M. J.; Lim, S. I.; Yang, J.] Ewha Womans Univ, Inst Early Univ, Seoul, South Korea. [Cheon, B. G.; Kim, H. B.; Shins, B. K.] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. [Cheon, B. G.; Kim, H. B.; Shins, B. K.] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea. [Chiba, J.; Takamura, M.; Yashiro, K.] Tokyo Univ Sci, Dept Phys, Noda, Chiba 278, Japan. [Chikawa, M.; Nozato, A.] Kinki Univ, Dept Phys, Higashiosaka, Osaka 577, Japan. [Cho, W. R.; Kwon, Y. J.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Fujii, T.; Fukushima, M.; Ikeda, D.; Kawata, K.; Kido, E.; Nonaka, T.; Ohnishi, M.; Ohoka, H.; Oki, K.; Sagawa, H.; Shibata, T.; Shimodaira, H.; Shin, H. S.; Takeda, M.; Takeishi, R.; Takita, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Fukushima, M.; Martens, K.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba, Japan. [Gotoll, T.; Hayashi, Y.; Kawakami, S.; Matsuyama, T.; Minamino, M.; Ogioll, S.; Sakurai, N.; Tanaka, H.; Yamane, R.; Yoneda, Y.] Osaka City Univ, Grad Sch Sci, Osaka 558, Japan. [Hayashida, N.; Hibino, K.; Tameda, Y.; Udo, S.] Kanagawa Univ, Fac Engn, Yokohama, Kanagawa, Japan. [Honda, K.; Ishii, T.; Machida, K.; Mukai, Y.; Shibata, F.] Yamanashi Univ, Interdisciplinary Grad Sch Med & Engn, Kofu, Yamanashi 400, Japan. [Ito, H.; Nagataki, S.] RIKEN, Astrophys Big Bang Lab, Wako, Saitama, Japan. [Kadota, K.] Tokyo City Univ, Dept Phys, Setagaya Ku, Tokyo, Japan. [Kalashev, O.; Kuzmin, V.; Pshirkov, M. S.; Rubtsov, G.; Tinyakov, P.; Tkachev, I.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kasahara, K.; Ozawa, S.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo, Japan. [Kawail, H.; Yoshida, S.] Chiba Univ, Dept Phys, 1-33 Yayoi Cho, Chiba 260, Japan. [Kim, J. H.; Ryu, D.] UNIST Gil, Ulsan Natl Inst Sci & Technol, Sch Nat Sci, Dept Phys, Ulsan, South Korea. [Matsuda, T.; Tanaka, M.; Yamaoka, H.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Nakamura, T.] Kochi Univ, Fac Sci, Kochi 780, Japan. [Okuda, T.] Ritsumeikan Univ, Dept Phys Sci, Kusatsu, Shiga, Japan. [Ono, M.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Oshima, A.] Chubu Univ, Engn Sci Lab, Kasugai, Aichi 487, Japan. [Park, I. H.] Sungkyunkwan Univ, Dept Phys, Suwon, South Korea. [Pshirkov, M. S.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Scott, L. M.; Stratton, S. R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ USA. [Taketa, A.; Yamazaki, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, 7-3-1 Hongo, Tokyo 113, Japan. [Tanaka, K.] Hirosaki City Univ, Grad Sch Informat Sci, Hiroshima, Japan. [Tinyakov, P.; Urban, F.] Univ Libre Bruxelles, Serv Phys Theor, Brussels, Belgium. [Tomida, T.] Shinshu Univ, Dept Comp Sci & Engn, Nagano, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Yoshii, H.] Ehime Univ, Dept Phys, Matsuyama, Ehime, Japan. RP Aartsen, MG (reprint author), Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. RI Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; de Mello Neto, Joao/C-5822-2013; de souza, Vitor/D-1381-2012; Guarino, Fausto/I-3166-2012; Zuccarello, Francesca/R-1834-2016; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Valino, Ines/J-8324-2012; Kalashev, Oleg/R-9476-2016; Badescu, Alina/B-6087-2012; Tjus, Julia/G-8145-2012; Tome, Bernardo/J-4410-2013; Rubtsov, Grigory/K-8475-2012; Rosado, Jaime/K-9109-2014; zas, enrique/I-5556-2015; Chinellato, Jose Augusto/I-7972-2012; Pshirkov, Maxim/B-5324-2014; Caramete, Laurentiu/C-2328-2011; Chinellato, Carola Dobrigkeit /F-2540-2011; Moura Santos, Edivaldo/K-5313-2016; Horvath, Pavel/G-6334-2014; Sarkar, Subir/G-5978-2011; Wiebusch, Christopher/G-6490-2012; Koskinen, David/G-3236-2014; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Nosek, Dalibor/F-1129-2017; Troitsky, Sergey/C-1377-2014; Ridky, Jan/H-6184-2014; Alvarez-Muniz, Jaime/H-1857-2015; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Fauth, Anderson/F-9570-2012; Maruyama, Reina/A-1064-2013; KIM, JIHYUN/F-2353-2011; Abreu, Pedro/L-2220-2014; Assis, Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Cazon, Lorenzo/G-6921-2014 OI Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; de Mello Neto, Joao/0000-0002-3234-6634; Guarino, Fausto/0000-0003-1427-9885; Zuccarello, Francesca/0000-0003-1853-2550; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Valino, Ines/0000-0001-7823-0154; Kalashev, Oleg/0000-0002-7982-1842; Tome, Bernardo/0000-0002-7564-8392; Rubtsov, Grigory/0000-0002-6106-2673; Rosado, Jaime/0000-0001-8208-9480; zas, enrique/0000-0002-4430-8117; Chinellato, Jose Augusto/0000-0002-3240-6270; Pshirkov, Maxim/0000-0002-5746-2017; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Moura Santos, Edivaldo/0000-0002-2818-8813; Arguelles Delgado, Carlos/0000-0003-4186-4182; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Novotny, Vladimir/0000-0002-4319-4541; Strotjohann, Nora Linn/0000-0002-4667-6730; Garcia, Beatriz/0000-0003-0919-2734; Rizi, Vincenzo/0000-0002-5277-6527; Garcia Pinto, Diego/0000-0003-1348-6735; Perez de los Heros, Carlos/0000-0002-2084-5866; Horvath, Pavel/0000-0002-6710-5339; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Koskinen, David/0000-0002-0514-5917; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Nosek, Dalibor/0000-0001-6219-200X; Troitsky, Sergey/0000-0001-6917-6600; Ridky, Jan/0000-0001-6697-1393; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Fauth, Anderson/0000-0001-7239-0288; Maruyama, Reina/0000-0003-2794-512X; KIM, JIHYUN/0000-0002-8814-031X; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Cazon, Lorenzo/0000-0001-6748-8395 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing (SNIC), Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO) (Belspo); FWO Odysseus programme (Belspo); Flanders Institute to encourage scientific and technological research in industry (IWT) (Belspo); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF); Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Comision Nacional de Energia Atomica, Argentina; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina; Gobierno de la Provincia de Mendoza, Argentina; Municipalidad de Malargue, Argentina; NDM Holdings, Argentina; Valle Las Lenas, Argentina; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation (FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic [14-17501S]; Centre de Calcul IN2P3/CNRS, France; Centre National de la Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France, France; Departement Physique Nucleaire et Corpusculaire, France [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP) within the Investissements d'Avenir Programme, France [LABEX ANR-10-LABX-63, ANR-11-IDEX-0004-02]; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Germany; Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft, Germany; Forschung und Kunst, Germany; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Istituto Nazionale di Astrofisica (INAF), Italy; Ministero dell'Istruzione, Italy; dell'Universita e della Ricerca (MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy; CETEMPS Center of Excellence, Italy; Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Netherlands; Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Poland [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds, Portugal; FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, Romania; CNDI-UEFISCDI partnership projects, Romania [20/2012, 194/2012, 1/AS-PERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Romania; Programme Space Technology and Advanced Research (STAR), Romania; [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Educacion y Ciencia, Spain; Xunta de Galicia, Spain; European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom, U.S.A.; Department of Energy, U.S.A. [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, U.S.A. [0450696]; Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program [PIRSES-2009-GA-246806, PIOF-GA-2013-624803]; UNESCO; Japan Society for the Promotion of Science [21000002, 19104006]; Inter-University Research Program of the Institute for Cosmic Ray Research; U.S. National Science Foundation [PHY-0307098, PHY-0601915, PHY-0649681, PHY-0703893, PHY-0758342, PHY-0848320, PHY-1069280, PHY-1069286, PHY-1404495, PHY-1404502]; National Research Foundation of Korea [2007-0093860, R32-10130, 2012R1A1A2008381, 2013004883]; Russian Academy of Sciences; RFBR [11-02-01528a, 13-02-01311a (INR)]; IISN [4.4502.13]; Belgian Science Policy under IUAP (ULB) [VII/37 (ULB)]; State of Utah through its Economic Development Board; University of Utah through the Office of the Vice President for Research; [MSMT-CR LG13007]; [7AMB14AR005] FX The IceCube Collaboration acknowledges the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF).; The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/AS-PERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No.; 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806 and PIOF-GA-2013-624803; and UNESCO.; The Telescope Array experiment is supported by the Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research on Specially Promoted Research (21000002) "Extreme Phenomena in the Universe Explored by Highest Energy Cosmic Rays" and for Scientific Research (19104006), and the Inter-University Research Program of the Institute for Cosmic Ray Research; by the U.S. National Science Foundation awards PHY-0307098, PHY-0601915, PHY-0649681, PHY-0703893, PHY-0758342, PHY-0848320, PHY-1069280, PHY-1069286, PHY-1404495 and PHY-1404502; by the National Research Foundation of Korea (2007-0093860, R32-10130, 2012R1A1A2008381, 2013004883); by the Russian Academy of Sciences, RFBR grants 11-02-01528a and 13-02-01311a (INR), IISN project No. 4.4502.13, and Belgian Science Policy under IUAP VII/37 (ULB). The foundations of Dr. Ezekiel R. and Edna Wattis Dumke, Willard L. Eccles, and George S. and Dolores Dore Eccles all helped with generous donations. The State of Utah supported the project through its Economic Development Board, and the University of Utah through the Office of the Vice President for Research. The experimental site became available through the cooperation of the Utah School and Institutional Trust Lands Administration (SITLA), U.S. Bureau of Land Management, and the U.S. Air Force. We also wish to thank the people and the officials of Millard County, Utah for their steadfast and warm support. We gratefully acknowledge the contributions from the technical staffs of our home institutions. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. NR 49 TC 5 Z9 5 U1 18 U2 55 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JAN PY 2016 IS 1 AR 037 DI 10.1088/1475-7516/2016/01/037 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DD2EB UT WOS:000369734300037 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahn, SU Aiola, S Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Almaraz, JRM Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Arsene, IC Arslandok, M Audurier, B Augustinus, A Averbeck, R Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biswas, R Biswas, S Bjelogrlic, S Blair, JT Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Butt, JB Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Carnesecchi, F Castellanos, JC Castro, AJ Casula, EAR Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Cerkala, J Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Cho, S Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Chunhui, Z Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E D'Erasmo, G Dhankher, P Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Drozhzhova, T Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Engel, H Epple, E Erazmus, B Erdemir, I Erhardt, F Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Feuillard, VJG Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Gauger, EF Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Coral, DMG Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Graczykowski, LK Graham, KL Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hilden, TE Hillemanns, H Hippolyte, B Hosokawa, R Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacobs, PM Jadhav, MB Jadlovska, S Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karayan, L Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobayashi, T Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kopcik, M Kour, M Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kugathasan, T Kuhn, C Kuijer, PG Kumar, A Kumar, J Kumar, L Kumar, S Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Legrand, I Lehas, F Lemmon, RC Lenti, V Leogrande, E Monzon, IL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Luz, PHFND Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Masui, H Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Melikyan, Y Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moreno, LAP Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Mulligan, JD Munhoz, MG Munzer, RH Murray, S Musa, L Musinsky, J Naik, B Nair, R Nandi, BK Nania, R Nappi, E Naru, MU Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Noris, JCC Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Orava, R Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pajares, C Pal, SK Pan, J Pandey, AK Pant, D Papcun, P Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Lezama, EP Peskov, V Pestov, Y Petraacek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Rami, F Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Seger, JE Sekiguchi, Y Sekihata, D Selyuzhenkov, I Senosi, K Seo, J Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, M Sharma, M Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Gaard, CS Soltz, R Song, J Song, M Song, Z Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Suljic, M Sultanov, R Sumbera, M Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Tabassam, U Takahashi, J Tambave, GJ Tanaka, N Tangaro, MA Takaki, JDT Peloni, AT Tarhini, M Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trubnikov Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Palomo, LV Vallero, S Van Der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vande Vyvre, P Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Tello, AV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, P Vodopyanov, A Volkl, A Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wang, H Wang, M Watanabe, D Watanabe, Y Weber, M Weber, SG Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yang, H Yang, P Yano, S Yasar, C Yin, Z Yokoyama, H Yoo, IK Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zardoshti, N Zarochentsev, A Zavada, P Zaviyalov Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhang, Z Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahn, S. U. Aiola, S. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Molina, R. Alfaro Alici, A. Alkin, A. Almaraz, J. R. M. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Garcia Prado, C. Alves Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Armesto, N. Arnaldi, R. Arsene, I. C. Arslandok, M. Audurier, B. Augustinus, A. Averbeck, R. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Baltasar Dos Santos Pedrosa, F. Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biswas, R. Biswas, S. Bjelogrlic, S. Blair, J. T. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Butt, J. B. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Carnesecchi, F. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Cerkala, J. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Cho, S. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Chunhui, Z. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa Conesa del Valle, Z. Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Maldonado, I. Cortes Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. D'Erasmo, G. Dhankher, P. Di Bari, D. Di Mauro, A. Di Nezza, P. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Gimenez, D. Domenicis Doenigus, B. Dordic, O. Drozhzhova, T. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Engel, H. Epple, E. Erazmus, B. Erdemir, I. Erhardt, F. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Feuillard, V. J. G. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Gauger, E. F. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Gomez Coral, D. M. Gomez Ramirez, A. Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Graczykowski, L. K. Graham, K. L. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J-Y Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hilden, T. E. Hillemanns, H. Hippolyte, B. Hosokawa, R. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacobs, P. M. Jadhav, M. B. Jadlovska, S. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karayan, L. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, M. Mohisin Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobayashi, T. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kopcik, M. Kour, M. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kumar, A. Kumar, J. Kumar, L. Kumar, S. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Legrand, I. Lehas, F. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Luz, P. H. F. N. D. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Martin Blanco, J. Martinengo, P. Martinez, M. I. Martinez Garcia, G. Martinez Pedreira, M. Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Masui, H. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Melikyan, Y. Menchaca-Rocha, A. Meninno, E. Mercado Perez, J. Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. Morando, M. Moreira De Godoy, D. A. Moreno, L. A. P. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mulligan, J. D. Munhoz, M. G. Munzer, R. H. Murray, S. Musa, L. Musinsky, J. Naik, B. Nair, R. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Noris, J. C. C. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Oliveira Da Silva, A. C. Oliver, M. H. Onderwaater, J. Oppedisano, C. Orava, R. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pajares, C. Pal, S. K. Pan, J. Pandey, A. K. Pant, D. Papcun, P. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Peitzmann, T. Pereira Da Costa, H. Pereira De Oliveira Filho, E. Peresunko, D. Perez Lara, C. E. Perez Lezama, E. Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Rami, F. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J-P Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rivetti, A. Rocco, E. Rodriguez Cahuantzi, M. Rodriguez Manso, A. Roed, K. Rogochaya, E. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Seger, J. E. Sekiguchi, Y. Sekihata, D. Selyuzhenkov, I. Senosi, K. Seo, J. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, M. Sharma, M. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Gaard, C. S. Soltz, R. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Suljic, M. Sultanov, R. Sumbera, M. Symons, T. J. M. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Tabassam, U. Takahashi, J. Tambave, G. J. Tanaka, N. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Tarhini, M. Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trubnikov Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Palomo, L. Valencia Vallero, S. Van Der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vande Vyvre, P. Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Limon, S. Vergara Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Tello, A. Villatoro Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, P. Vodopyanov, A. Voelkl, A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wang, H. Wang, M. Watanabe, D. Watanabe, Y. Weber, M. Weber, S. G. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yang, H. Yang, P. Yano, S. Yasar, C. Yin, Z. Yokoyama, H. Yoo, I-K. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zardoshti, N. Zarochentsev, A. Zavada, P. Zaviyalov Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhang, Z. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmic ray experiments; cosmic rays detectors ID EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEP AB ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events. C1 [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl, Phys, Moscow, Russia. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Bello Martinez, H.; Maldonado, I. Cortes; Fernandez Tellez, A.; Martinez, M. I.; Moreno, L. A. P.; Noris, J. C. C.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Limon, S. Vergara; Tello, A. Villatoro] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Kovalenko, O.; Martynov, Y.; Shadura, O.; Trubnikov; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Ren, X.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, Y.; Zhang, Z.; Zhou, D.; Zhu, H.; Zhu, J.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Gonzalez-Zamora, P.; Montes, E.; Montero, A. J. Rubio; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Montano Zetina, L.] CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Montano Zetina, L.] CINVESTAV, Ctr Invest & Estudios Avanzados, Merida, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J-P; Zichichi, A.] Museo Stor Fis, Ctr Fermi, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J-P; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Feuillard, V. J. G.; Lardeux, A.; Pereira Da Costa, H.; Rakotozafindrabe, A.] CEA, IRFU, Saclay, France. [Butt, J. B.; Naru, M. U.; Suleymanov, M.; Tabassam, U.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roehrich, D.; Tambave, G. J.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. Mohisin; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Minervini, L. M.] Dipartimento Elettrotecn & Elettron Politecn, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Meddi, F.] Ist Nazl Fis Nucl, Sez Rome, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Fionda, F. M.; Puddu, G.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Fionda, F. M.; Masoni, A.; Puddu, G.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Suljic, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Botta, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Berzano, D.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; La Pointe, S. L.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Puccio, M.; Rivetti, A.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] ER Caianiello Univ, Dipartimento Fis, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Coll, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Coll, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; D'Erasmo, G.; Di Bari, D.; Elia, D.; Fiore, E. M.; Gago, A. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Minervini, L. M.; Nappi, E.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Gaard, C. S.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Baltasar Dos Santos Pedrosa, F.; Barth, K.; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Colella, D.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Ganoti, P.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hillemanns, H.; Hristov, P.; Kalweit, A.; Keil, M.; Klein, J.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Kugathasan, T.; Lakomov, I.; Laudi, E.; Legrand, I.; Mager, M.; Manzari, V.; Martinengo, P.; Martinez Pedreira, M.; Milano, L.; Morsch, A.; Musa, L.; Niculescu, M.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Ronchetti, F.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vande Vyvre, P.; Verweij, M.; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Excellence Cluster Univ, D-80290 Munich, Germany. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-16635 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; Bach, M.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Lindenstruth, V.; Rettig, F.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Hilden, T. E.; Mieskolainen, M. M.; Orava, R.; Rasanen, S. S.] HIP, Helsinki, Finland. [Okubo, T.; Sekihata, D.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Dash, S.; Dhankher, P.; Jadhav, M. B.; Meethaleveedu, G. Koyithatta; Kumar, J.; Kumar, S.; Naik, B.; Nandi, B. K.; Pandey, A. K.; Pant, D.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai, Maharashtra, India. [Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Cho, S.; Kweon, M. J.] Inha Univ, Inchon, South Korea. [Conesa del Valle, Z.; Das, I.; Espagnon, B.; Hadjidakis, C.; Suire, C.; Takaki, J. D. Tapia; Tarhini, M.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Gomez Ramirez, A.; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Drozhzhova, T.; Erdemir, I.; Heckel, S. T.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Ozdemir, M.; Perez Lezama, E.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Anielski, J.; Bathen, B.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Moreira De Godoy, D. A.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, Wilhelm Klemm Str 9, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Rami, F.; Roy, C.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Chunhui, Z.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van Der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Colella, D.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.; Sharma, N.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Cuautle, E.; Cervantes, I. Maldonado; Nellen, L.; Velasquez, A. Ortiz; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Molina, R. Alfaro; Belmont-Moreno, E.; Gomez Coral, D. M.; Grabski, V.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] JINR, Dubna, Russia. [Oh, S. K.; Seo, J.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Uysal, A. Karasu; Okatan, A.; Yasar, C.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Feuillard, V. J. G.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Clermont Univ, CNRS, IN2P3,LPC, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Real, J. S.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Thaeder, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Melikyan, Y.; Peresunko, D.] Moscow Phys Engn Inst, Moscow, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kovalenko, O.; Kurashvili, P.; Nair, R.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Res, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Jena, C.; Kumar, L.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Christakoglou, P.; Dobrin, A.; Kuijer, P. G.; Lehas, F.; Perez Lara, C. E.; Rodriguez Manso, A.] Natl Inst Subatomaire Fys, NIKHEF, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Cormier, T. M.; Poghosyan, M. G.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.; Marchisone, M.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Kour, M.; Kumar, A.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.; Sharma, M.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Karayan, L.; Klein, J.; Knichel, M. L.; Leardini, L.; Mercado Perez, J.; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, A.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Seo, J.; Song, J.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] EMMI, GSI Helmholtzzentrum Schwerionenforsch, Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] Div Res, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, POB 1016, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Grion, N.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Graham, K. L.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos; Zardoshti, N.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Weber, M.] Stefan Meyer Inst Subatomare Phys SMI, Vienna, Austria. [Aphecetche, L.; Audurier, B.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Graczykowski, L. K.; Martin Blanco, J.; Martinez Garcia, G.; Massacrier, L.; Moreira De Godoy, D. A.; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Cerkala, J.; Jadlovska, S.; Kopcik, M.; Papcun, P.] Tech Univ Kosice, Kosice, Slovakia. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Blair, J. T.; Gauger, E. F.; Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Almaraz, J. R. M.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Garcia Prado, C. Alves; Bregant, M.; Cosentino, M. R.; De, S.; Gimenez, D. Domenicis; Figueredo, M. A. S.; Jahnke, C.; Lagana Fernandes, C.; Luz, P. H. F. N. D.; Mas, A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.; Zanoli, H. J. C.] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Watanabe, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Hosokawa, R.; Inaba, M.; Kobayashi, T.; Masui, H.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J-Y; Paticchio, V.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS, Univ Lyon, IN2P3,IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Patra, R. N.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, P.] Variable Energy Cyclotron Ctr, Kolkata, India. [Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Epple, E.; Harris, J. W.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] ZTT, Fachhochsch Worms, Worms, Germany. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-16635 Prague, Czech Republic. RI Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Barnby, Lee/G-2135-2010; Peitzmann, Thomas/K-2206-2012; Kondratiev, Valery/J-8574-2013; Vinogradov, Leonid/K-3047-2013; Castillo Castellanos, Javier/G-8915-2013; Bregant, Marco/I-7663-2012; Vechernin, Vladimir/J-5832-2013; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Pshenichnov, Igor/A-4063-2008; Felea, Daniel/C-1885-2012; Sevcenco, Adrian/C-1832-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; OI Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Christiansen, Peter/0000-0001-7066-3473; Lemmon, Roy/0000-0002-1259-979X; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Barnby, Lee/0000-0001-7357-9904; Peitzmann, Thomas/0000-0002-7116-899X; Kondratiev, Valery/0000-0002-0031-0741; Vinogradov, Leonid/0000-0001-9247-6230; Castillo Castellanos, Javier/0000-0002-5187-2779; Vechernin, Vladimir/0000-0003-1458-8055; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Pshenichnov, Igor/0000-0003-1752-4524; Felea, Daniel/0000-0002-3734-9439; Sevcenco, Adrian/0000-0002-4151-1056; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Giubilato, Piero/0000-0003-4358-5355; Brucken, Jens Erik/0000-0001-6066-8756; Murray, Sean/0000-0003-0548-588X; Fernandez Tellez, Arturo/0000-0001-5092-9748; Riggi, Francesco/0000-0002-0030-8377; Read, Kenneth/0000-0002-3358-7667; Scarlassara, Fernando/0000-0002-4663-8216; Zhou, You/0000-0002-7868-6706; Melikyan, Yury/0000-0002-4165-505X FU Worldwide LHC Computing Grid (WLCG); State Committee of Science, Armenia; World Federation of Scientists (WFS), Armenia; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientffico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire, France; Region Alsace, France; Region Auvergne, France; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung and Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico(DGAPA), Mexico; Amerique Latine Formation academique - European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics, Romania; National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientffico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung and Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico(DGAPA), Mexico, Amerique Latine Formation academique - European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru. NR 33 TC 0 Z9 0 U1 6 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JAN PY 2016 IS 1 AR 032 DI 10.1088/1475-7516/2016/01/032 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DD2EB UT WOS:000369734300032 ER PT J AU Treiman, AH Bish, DL Vaniman, DT Chipera, SJ Blake, DF Ming, DW Morris, RV Bristow, TF Morrison, SM Baker, MB Rampe, EB Downs, RT Filiberto, J Glazner, AF Gellert, R Thompson, LM Schmidt, ME Le Deit, L Wiens, RC McAdam, AC Achilles, CN Edgett, KS Farmer, JD Fendrich, KV Grotzinger, JP Gupta, S Morookian, JM Newcombe, ME Rice, MS Spray, JG Stolper, EM Sumner, DY Vasavada, AR Yen, AS AF Treiman, Allan H. Bish, David L. Vaniman, David T. Chipera, Steve J. Blake, David F. Ming, Doug W. Morris, Richard V. Bristow, Thomas F. Morrison, Shaunna M. Baker, Michael B. Rampe, Elizabeth B. Downs, Robert T. Filiberto, Justin Glazner, Allen F. Gellert, Ralf Thompson, Lucy M. Schmidt, Mariek E. Le Deit, Laetitia Wiens, Roger C. McAdam, Amy C. Achilles, Cherie N. Edgett, Kenneth S. Farmer, Jack D. Fendrich, Kim V. Grotzinger, John P. Gupta, Sanjeev Morookian, John Michael Newcombe, Megan E. Rice, Melissa S. Spray, John G. Stolper, Edward M. Sumner, Dawn Y. Vasavada, Ashwin R. Yen, Albert S. TI Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater) SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; CheMin; MSL; Windjana; sandstone; X-ray diffraction ID NORTHWEST AFRICA 7034; A-TYPE GRANITES; ALKALINE MAGMATISM; CRYSTAL-STRUCTURE; STRUCTURAL STATE; MARTIAN MANTLE; MOSSBAUER-SPECTROSCOPY; SOUTHERN CALIFORNIA; CATION DISTRIBUTION; SEDIMENTARY-ROCKS AB The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, similar to Or(95)); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (similar to 25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cationslike ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, similar to 1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth. C1 [Treiman, Allan H.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Bish, David L.; Achilles, Cherie N.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Vaniman, David T.] Planetary Sci Inst, Tucson, AZ USA. [Chipera, Steve J.] Chesapeake Energy Corp, Oklahoma City, OK USA. [Blake, David F.; Bristow, Thomas F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ming, Doug W.; Morris, Richard V.; Rampe, Elizabeth B.] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci Div, Houston, TX USA. [Morrison, Shaunna M.; Downs, Robert T.; Fendrich, Kim V.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Baker, Michael B.; Grotzinger, John P.; Newcombe, Megan E.; Stolper, Edward M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Filiberto, Justin] So Illinois Univ, Dept Geol, Carbondale, IL 62901 USA. [Glazner, Allen F.] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC USA. [Gellert, Ralf] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Thompson, Lucy M.; Spray, John G.] Univ New Brunswick, Dept Earth Sci, Fredericton, NB, Canada. [Schmidt, Mariek E.] Brock Univ, Dept Earth Sci, St Catharines, ON L2S 3A1, Canada. [Le Deit, Laetitia] LPGN CNRS, UMR6112, Lab Planetol & Geodynam Nantes, Nantes, France. [Le Deit, Laetitia] Univ Nantes, Nantes, France. [Wiens, Roger C.] Los Alamos Natl Lab, Space Remote Sensing, Los Alamos, NM USA. [McAdam, Amy C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Edgett, Kenneth S.] Malin Space Sci Syst Inc, San Diego, CA USA. [Farmer, Jack D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Gupta, Sanjeev] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. [Morookian, John Michael; Vasavada, Ashwin R.; Yen, Albert S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rice, Melissa S.] Western Washington Univ, Dept Earth Sci, Bellingham, WA 98225 USA. [Sumner, Dawn Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. RP Treiman, AH (reprint author), Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. EM treiman@lpi.usra.edu FU NASA FX The authors are grateful to the whole MSL Curiosity team, both engineers and scientists, who have made the mission possible and these data available. We are particularly grateful to the engineers who designed and built CheMin, the drill system (SA/SpAH), and the CHIMRA sieve/delivery system. Primary data used here are publically available through the NASA Planetary Data System (https://pds.nasa.gov); additional data are in the supporting information and from the authors. We are grateful to S. Potter-McIntyre, D. Baratoux (Associate Editor), and two anonymous reviewers for insightful and helpful critiques. NASA funded this research via contracts with the Jet Propulsion Laboratory, California Institute of Technology; part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Naming of commercial products or software packages is for documentation, and does not constitute endorsement by NASA, JPL, or the authors. LPI Contribution 1888. NR 187 TC 18 Z9 18 U1 11 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JAN PY 2016 VL 121 IS 1 BP 75 EP 106 DI 10.1002/2015JE004932 PG 32 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DD8LD UT WOS:000370177100005 ER PT J AU Xie, ZL Blair, RG Orlovskaya, N Cullen, DA Lapidus, SH Kata, D Rutkowski, P Lis, J AF Xie, Zhilin Blair, Richard G. Orlovskaya, Nina Cullen, David A. Lapidus, Saul H. Kata, Dariusz Rutkowski, Pawel Lis, Jerzy TI In search of the elusive IrB2: Can mechanochemistry help? SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Iridium diboride; Mechanochemistry; Ceramics ID MECHANICAL-PROPERTIES; HEXAGONAL OSB2; CRYSTAL-STRUCTURES; OSMIUM DIBORIDE; IRIDIUM; BORIDES; HARD; 1ST-PRINCIPLES; ZIRCONIUM; PRESSURE AB The previously unknown hexagonal ReB2-type IrB2 diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 degrees C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases. produced. (C) 2015 Elsevier Inc. All rights reserved. C1 [Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Blair, Richard G.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Cullen, David A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Lapidus, Saul H.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Kata, Dariusz; Rutkowski, Pawel; Lis, Jerzy] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, Dept Ceram & Refractories, Al Mickiewicza 30, PL-30059 Krakow, Poland. RP Orlovskaya, N (reprint author), Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU NSF [DMR - 0748364]; ORNL's Center for Nanophase Materials Sciences (CNMS), DOE Office of Science User Facility; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by NSF project DMR - 0748364. Electron microscopy was performed as part of a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. We would also like to thank the DEM Solution Academic Partner program for providing reduced cost access to DEM software, which was used for modeling of ball movement and stress distribution during high energy ball mill operation. NR 41 TC 1 Z9 1 U1 4 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JAN PY 2016 VL 233 BP 108 EP 119 DI 10.1016/j.jssc.2015.10.018 PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DD4GT UT WOS:000369881200017 ER PT J AU Marchetta, CM Hamner, HC AF Marchetta, Claire M. Hamner, Heather C. TI Blood folate concentrations among women of childbearing age by race/ethnicity and acculturation, NHANES 2001-2010 SO MATERNAL AND CHILD NUTRITION LA English DT Article DE acculturation; folate biomarkers; Mexican Americans; NHANES; red blood cell folate; serum folate ID MEXICAN-AMERICAN WOMEN; NEURAL-TUBE DEFECTS; BIO-RAD RADIOASSAY; CORN MASA FLOUR; UNITED-STATES; FOLIC-ACID; MICROBIOLOGIC ASSAY; DIETARY ASSESSMENT; HISPANIC WOMEN; SPINA-BIFIDA AB Hispanic women have higher rates of neural tube defects and report lower total folic acid intakes than non-Hispanic white (NHW) women. Total folic acid intake, which is associated with neural tube defect risk reduction, has been found to vary by acculturation factors (i.e. language preference, country of origin, or time spent in the United States) among Hispanic women. It is unknown whether this same association is present for blood folate status. The objective of this research was to assess the differences in serum and red blood cell (RBC) folate concentrations between NHW women and Mexican American (MA) women and among MA women by acculturation factors. Cross-sectional data from the 2001-2010 National Health and Nutrition Examination Survey (NHANES) were used to investigate how blood folate concentrations differ among NHW or MA women of childbearing age. The impact of folic acid supplement use on blood folate concentrations was also examined. MA women with lower acculturation factors had lower serum and RBC folate concentrations compared with NHW women and to their more acculturated MA counterparts. Consuming a folic acid supplement can minimize these disparities, but MA women, especially lower acculturated MA women, were less likely to report using supplements. Public health efforts to increase blood folate concentrations among MA women should consider acculturation factors when identifying appropriate interventions. C1 [Marchetta, Claire M.; Hamner, Heather C.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, CDC, 1600 Clifton Rd,Mail Stop E-86, Atlanta, GA 30333 USA. [Marchetta, Claire M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Hamner, HC (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, CDC, 1600 Clifton Rd,Mail Stop E-86, Atlanta, GA 30333 USA. EM hfc2@cdc.gov FU Intramural CDC HHS [CC999999] NR 36 TC 1 Z9 1 U1 2 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1740-8695 EI 1740-8709 J9 MATERN CHILD NUTR JI Matern. Child Nutr. PD JAN PY 2016 VL 12 IS 1 BP 39 EP 50 DI 10.1111/mcn.12134 PG 12 WC Nutrition & Dietetics; Pediatrics SC Nutrition & Dietetics; Pediatrics GA DD5EU UT WOS:000369946300004 PM 24934272 ER PT J AU Yue, FX Chen, KL Lu, FC AF Yue, Fengxia Chen, Ke-Li Lu, Fachuang TI Low Temperature Soda-Oxygen Pulping of Bagasse SO MOLECULES LA English DT Article DE bagasse; brightness; Kappa number; low temperature; soda-oxygen pulping; environmentally friendly; energy-saving ID RICE STRAW; ACID AB Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 degrees C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 degrees C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm(3)/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 degrees C or 105 degrees C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 degrees C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 degrees C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process. C1 [Yue, Fengxia; Chen, Ke-Li] Kunming Univ Sci & Technol, Fac Chem Engn, Kunming 650500, Peoples R China. [Yue, Fengxia; Lu, Fachuang] S China Univ Technol, State Kay Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China. [Yue, Fengxia; Lu, Fachuang] Univ Wisconsin Madison, Dept Biochem, Madison, WI 53726 USA. [Yue, Fengxia; Lu, Fachuang] Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Chen, KL (reprint author), Kunming Univ Sci & Technol, Fac Chem Engn, Kunming 650500, Peoples R China.; Lu, FC (reprint author), S China Univ Technol, State Kay Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China.; Lu, FC (reprint author), Univ Wisconsin Madison, Dept Biochem, Madison, WI 53726 USA.; Lu, FC (reprint author), Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. EM fyue@wisc.edu; chenkeli_prof@sina.com; fachuanglu@wisc.edu FU National Natural Science Foundation of China [20567001, 21276119]; Provincial Natural Science Foundation of Yunan, China [2004B0013M] FX This study was financially supported by the National Natural Science Foundation of China (20567001, 21276119), and the Provincial Natural Science Foundation of Yunan (2004B0013M), China. NR 25 TC 1 Z9 1 U1 4 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD JAN PY 2016 VL 21 IS 1 AR 85 DI 10.3390/molecules21010085 PG 12 WC Chemistry, Organic SC Chemistry GA DC8RG UT WOS:000369486800007 PM 26771596 ER PT J AU Ye, YF Kawase, A Song, MK Feng, BM Liu, YS Marcus, MA Feng, J Cairns, EJ Guo, JH Zhu, JF AF Ye, Yifan Kawase, Ayako Song, Min-Kyu Feng, Bingmei Liu, Yi-Sheng Marcus, Matthew A. Feng, Jun Cairns, Elton J. Guo, Jinghua Zhu, Junfa TI X-ray Absorption Spectroscopy Characterization of a Li/S Cell SO NANOMATERIALS LA English DT Article DE lithium; sulfur cell; X-ray absorption spectroscopy; cetyltrimethylammonium bromide; synthesis; capacity decay; cycled cathode materials; insulating layer; in-situ; in-operando ID LITHIUM-SULFUR BATTERIES; K-EDGE; GRAPHENE OXIDE; PERFORMANCE; SPECTRA; CATHODES; XANES; LIFE AB The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)(15)N+(CH3)(3)Br-) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. A modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies. C1 [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230029, Peoples R China. [Ye, Yifan; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kawase, Ayako; Cairns, Elton J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Kawase, Ayako; Cairns, Elton J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Song, Min-Kyu] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Feng, Bingmei] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Zhu, JF (reprint author), Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China.; Zhu, JF (reprint author), Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230029, Peoples R China.; Guo, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.; Guo, JH (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM yifanye@lbl.gov; akawase@lbl.gov; mksong325@gmail.com; bfeng@lbl.gov; ysliu2@lbl.gov; mamarcus@lbl.gov; fjun@lbl.gov; ejcairns@lbl.gov; jguo@lbl.gov; jfzhu@ustc.edu.cn RI Zhu, Junfa/E-4020-2010; Cairns, Elton/E-8873-2012 OI Zhu, Junfa/0000-0003-0888-4261; Cairns, Elton/0000-0002-1179-7591 FU National Basic Research Program of China [2013CB834605]; National Natural Science Foundation of China [U1232102, 21173200, 21473178]; Scientific Research and Users with Potential Grants of Hefei Science Center of CAS [2015SRG-HSC031, 2015HSC-UP022]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; ALS FX Junfa Zhu gratefully acknowledges the financial support from the National Basic Research Program of China (2013CB834605), the National Natural Science Foundation of China (U1232102, 21173200, 21473178), and Scientific Research and Users with Potential Grants of Hefei Science Center of CAS (2015SRG-HSC031, 2015HSC-UP022). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Yifan Ye thanks the support of ALS doctoral fellowship. NR 34 TC 4 Z9 4 U1 6 U2 34 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2079-4991 J9 NANOMATERIALS-BASEL JI Nanomaterials PD JAN PY 2016 VL 6 IS 1 AR 14 DI 10.3390/nano6010014 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8XD UT WOS:000369502400007 ER PT J AU Grubjesic, S Ringstrand, BS Jungjohann, KL Brombosz, SM Seifert, S Firestone, MA AF Grubjesic, Simonida Ringstrand, Bryan S. Jungjohann, Katherine L. Brombosz, Scott M. Seifert, Soenke Firestone, Millicent A. TI Cascade synthesis of a gold nanoparticle-network polymer composite SO NANOSCALE LA English DT Article ID SWITCHABLE ELECTRONIC-PROPERTIES; PEO TRIBLOCK COPOLYMERS; CRYSTALLIZATION BEHAVIOR; MECHANICAL-PROPERTIES; HYDROGEL COMPOSITES; DOMINO REACTIONS; AQUEOUS-MEDIA; SIZE CONTROL; DEGRADATION; TEMPERATURE AB The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl-and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4](-). The reaction sequence begins with the auto-reduction of aqueous [AuCl4](-) by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate end-derivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4](-), formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multi-lamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Optical spectroscopy shows a notable red shift (Delta lambda similar to 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement. C1 [Grubjesic, Simonida; Brombosz, Scott M.; Seifert, Soenke] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ringstrand, Bryan S.; Firestone, Millicent A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Jungjohann, Katherine L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Firestone, MA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM firestone@lanl.gov FU US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors wish to acknowledge Dr Darrick Williams for assistance in collecting the ATR/FT-IR. This work was performed in part at the US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 65 TC 1 Z9 1 U1 11 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 5 BP 2601 EP 2612 DI 10.1039/c5nr06594a PG 12 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD0DV UT WOS:000369591400014 PM 26524426 ER PT J AU Scott, JA Totonjian, D Martin, AA Tran, TT Fang, JH Toth, M McDonagh, AM Aharonovich, I Lobo, CJ AF Scott, John A. Totonjian, Daniel Martin, Aiden A. Toan Trong Tran Fang, Jinghua Toth, Milos McDonagh, Andrew M. Aharonovich, Igor Lobo, Charlene J. TI Versatile method for template-free synthesis of single crystalline metal and metal alloy nanowires SO NANOSCALE LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; MAGNETIC-PROPERTIES; COBALT NANOWIRES; GROWTH; ARRAYS; NI; CO; DECOMPOSITION; PRECURSOR; NITRIDES AB Metal and metal alloy nanowires have applications ranging from spintronics to drug delivery, but high quality, high density single crystalline materials have been surprisingly difficult to fabricate. Here we report a versatile, template-free, self-assembly method for fabrication of single crystalline metal and metal alloy nanowires (Co, Ni, NiCo, CoFe, and NiFe) by reduction of metal nitride precursors formed in situ by reaction of metal salts with a nitrogen source. Thiol reduction of the metal nitrides to the metallic phase at 550-600 degrees C results in nanowire growth. In this process, sulfur acts as a uniaxial structure-directing agent, passivating the surface of the growing nanowires and preventing radial growth. The versatility of the method is demonstrated by achieving nanowire growth from gas-phase, solution-phase or a combination of gas- and solution-phase precursors. The fabrication method is suited to large-area CVD on a wide range of solid substrates. C1 [Scott, John A.; Totonjian, Daniel; Martin, Aiden A.; Toan Trong Tran; Fang, Jinghua; Toth, Milos; McDonagh, Andrew M.; Aharonovich, Igor; Lobo, Charlene J.] Univ Technol Sydney, Sch Math & Phys Sci, POB 123, Sydney, NSW 2007, Australia. [Martin, Aiden A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lobo, CJ (reprint author), Univ Technol Sydney, Sch Math & Phys Sci, POB 123, Sydney, NSW 2007, Australia. EM charlene.lobo@uts.edu.au FU Australian Research Council [DP140102721]; FEI Company; John Stocker Postgraduate Scholarship from Science and Industry Endowment Fund; Australian Research Council Discovery Early Career Research Award [DE130100592] FX The authors thank S. Lifshitz, M. T. Westerhausen, and C. Zachreson for discussions. The work was supported in part by the Australian Research Council (project no. DP140102721) and FEI Company. A.A.M. is the recipient of a John Stocker Postgraduate Scholarship from the Science and Industry Endowment Fund. I.A. is the recipient of an Australian Research Council Discovery Early Career Research Award (project no. DE130100592). NR 40 TC 1 Z9 1 U1 12 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 5 BP 2804 EP 2810 DI 10.1039/c5nr07307c PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD0DV UT WOS:000369591400036 PM 26763153 ER PT J AU Du, YG Li, GQ Peterson, EW Zhou, J Zhang, X Mu, RT Dohnalek, Z Bowden, M Lyubinetsky, I Chambers, SA AF Du, Yingge Li, Guoqiang Peterson, Erik W. Zhou, Jing Zhang, Xin Mu, Rentao Dohnalek, Zdenek Bowden, Mark Lyubinetsky, Igor Chambers, Scott A. TI Iso-oriented monolayer alpha-MoO3(010) films epitaxially grown on SrTiO3(001) SO NANOSCALE LA English DT Article ID OXIDE THIN-FILMS; MOLYBDENUM OXIDE; PHOTOELECTRON-SPECTROSCOPY; MOO3 NANOSTRUCTURES; LAYER MOO3; REDUCTION; TRIOXIDE; XPS; PERFORMANCE; ELECTRODES AB The ability to synthesize well-ordered two-dimensional materials under ultra-high vacuum and directly characterize them by other techniques in situ can greatly advance our current understanding on their physical and chemical properties. In this paper, we demonstrate that iso-oriented alpha-MoO3 films with as low as single monolayer thickness can be reproducibly grown on SrTiO3(001) substrates by molecular beam epitaxy ((010)(MoO3)parallel to(001)(STO), [100] (MoO3)parallel to[100] STO or [010] STO) through a self-limiting process. While one in-plane lattice parameter of the MoO3 is very close to that of the SrTiO3 (a(MoO3) = 3.96 angstrom, a(STO) = 3.905 angstrom), the lattice mismatch along other direction is large (similar to 5%, C-MoO3 = 3.70 angstrom), which leads to relaxation as clearly observed from the splitting of streaks in reflection high-energy electron diffraction (RHEED) patterns. A narrow range in the growth temperature is found to be optimal for the growth of monolayer alpha-MoO3 films. Increasing deposition time will not lead to further increase in thickness, which is explained by a balance between deposition and thermal desorption due to the weak van der Waals force between alpha-MoO3 layers. Lowering growth temperature after the initial iso-oriented alpha-MoO3 monolayer leads to thicker alpha-MoO3(010) films with excellent crystallinity. C1 [Du, Yingge; Bowden, Mark; Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Li, Guoqiang; Zhang, Xin; Mu, Rentao; Dohnalek, Zdenek; Chambers, Scott A.] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Li, Guoqiang] Henan Univ, Sch Phys & Elect, Key Lab Photovolta Mat Henan Prov, Kaifeng 475004, Peoples R China. [Peterson, Erik W.; Zhou, Jing] Univ Wyoming, Dept Chem, Laramie, WY 82072 USA. RP Du, YG (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM Yingge.Du@pnnl.gov RI Zhang, Xin/I-9221-2014; LI, Guoqiang/G-2745-2011 OI Zhang, Xin/0000-0003-2000-858X; LI, Guoqiang/0000-0002-2091-8105 FU US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering [10122]; EMSL's Intramural Research and Capability Development Program; US DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Henan University, China; National Science Foundation [CHE1151846]; Office of Biological and Environmental Research FX A portion of the work was supported by the US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award 10122. YD acknowledges support by EMSL's Intramural Research and Capability Development Program. ZD, IL, and RM acknowledge the support by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. GL acknowledges support by Henan University, China. EWP and JZ are supported by National Science Foundation (Award Number: CHE1151846). The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a DOE User Facility sponsored by the Office of Biological and Environmental Research. NR 47 TC 2 Z9 2 U1 9 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 5 BP 3119 EP 3124 DI 10.1039/c5nr07745a PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD0DV UT WOS:000369591400072 PM 26788784 ER PT J AU Napov, A Li, XYS AF Napov, Artem Li, Xiaoye S. TI An algebraic multifrontal preconditioner that exploits the low-rank property SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE preconditioning; iterative methods; sparse matrix; structured factorization; incomplete factorization ID HIERARCHICALLY SEMISEPARABLE REPRESENTATIONS; NESTED DISSECTION; SPARSE MATRICES; LINEAR-SYSTEMS; FACTORIZATIONS; ALGORITHMS; EQUATIONS; OPERATORS; SOLVER AB We present an algebraic structured preconditioner for the iterative solution of large sparse linear systems. The preconditioner is based on a multifrontal variant of sparse LU factorization used with nested dissection ordering. Multifrontal factorization amounts to a partial factorization of a sequence of logically dense frontal matrices, and the preconditioner is obtained if structured factorization is used instead. This latter exploits the presence of low numerical rank in some off-diagonal blocks of the frontal matrices. An algebraic procedure is presented that allows to identify the hierarchy of the off-diagonal blocks with low numerical rank based on the sparsity of the system matrix. This procedure is motivated by a model problem analysis, yet numerical experiments show that it is successful beyond the model problem scope. Further aspects relevant for the algebraic structured preconditioner are discussed and illustrated with numerical experiments. The preconditioner is also compared with other solvers, including the corresponding direct solver. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Napov, Artem] Univ Libre Bruxelles, Serv Metrol Nucl, CP 165-84,50,Av FD Roosevelt, B-1050 Brussels, Belgium. [Li, Xiaoye S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Napov, A (reprint author), Univ Libre Bruxelles, Serv Metrol Nucl, CP 165-84,50,Av FD Roosevelt, B-1050 Brussels, Belgium. EM anapov@ulb.ac.be FU Director, Office of Science, Office of Advanced Scientific Computing Research of the US Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Ming Gu for the numerous discussions and Yvan Notay for his generator of convection-diffusion test problems. The work of the second and (partially) the first author was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the US Department of Energy under contract no. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 36 TC 2 Z9 2 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1070-5325 EI 1099-1506 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD JAN PY 2016 VL 23 IS 1 BP 61 EP 82 PG 22 WC Mathematics, Applied; Mathematics SC Mathematics GA DD3XB UT WOS:000369855600003 ER PT J AU Balaji, P Vishnu, A Chen, Y AF Balaji, Pavan Vishnu, Abhinav Chen, Yong TI Special Issue on Parallel Programming Models and Systems Software for High-End Computing SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Balaji, Pavan] Argonne Natl Lab, Argonne, IL 60439 USA. [Vishnu, Abhinav] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, Yong] Texas Tech Univ, Lubbock, TX 79409 USA. RP Balaji, P (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA.; Vishnu, A (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.; Chen, Y (reprint author), Texas Tech Univ, Lubbock, TX 79409 USA. EM balaji@anl.gov; abhinay.vishnu@pnnl.gov; yong.chen@ttu.edu NR 7 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN PY 2016 VL 51 SI SI BP 1 EP 2 DI 10.1016/j.parco.2016.01.004 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA DD7HH UT WOS:000370093800001 ER PT J AU Bui, H Jung, ES Vishwanath, V Johnson, A Leigh, J Papka, ME AF Bui, Huy Jung, Eun-Sung Vishwanath, Venkatram Johnson, Andrew Leigh, Jason Papka, Michael E. TI Improving sparse data movement performance using multiple paths on the Blue Gene/Q supercomputer SO PARALLEL COMPUTING LA English DT Article DE Multiple paths; Sparse data movement; Topology-aware aggregation; Data-intensive; Blue Gene/Q AB In situ analysis has been proposed as a promising solution to glean faster insights and reduce the amount of data to storage. A critical challenge here is that the reduced dataset is typically located on a subset of the nodes and needs to be written out to storage. Data coupling in multiphysics codes also exhibits a sparse data movement pattern wherein data movement occurs among a subset of nodes. We evaluate the performance of data movement for sparse data patterns on the IBM Blue Gene/Q supercomputing system "Mira" and identify performance bottlenecks. We propose a multipath data movement algorithm for sparse data patterns based on an adaptation of a maximum flow algorithm together with breadth-first search that fully exploits all the underlying data paths and I/O nodes to improve data movement. We demonstrate the efficacy of our solutions through a set of microbenchmarks and application benchmarks on Mira scaling up to 131,072 compute cores. The results show that our approach achieves up to 5 x improvement in achievable throughput compared with the default mechanisms. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bui, Huy; Johnson, Andrew] Univ Illinois, Elect Visualizat Lab, 842 Taylor St, Chicago, IL 60607 USA. [Jung, Eun-Sung; Vishwanath, Venkatram] Argonne Natl Lab, Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Papka, Michael E.] Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. [Leigh, Jason] Univ Hawaii, LAVA, 1680 East West Rd, Honolulu, HI 96822 USA. [Papka, Michael E.] No Illinois Univ, 300 Normal Rd, De Kalb, IL 60115 USA. RP Bui, H (reprint author), Univ Illinois, Elect Visualizat Lab, 842 Taylor St, Chicago, IL 60607 USA. EM anhhuybk@gmail.com OI Johnson, Andrew/0000-0002-0814-6093 FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. We thank the ALCF team for discussions and help related to this paper. NR 20 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN PY 2016 VL 51 SI SI BP 3 EP 16 DI 10.1016/j.parco.2015.09.002 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA DD7HH UT WOS:000370093800002 ER PT J AU Herbein, S McDaniel, S Podhorszki, N Logan, J Klasky, S Taufer, M AF Herbein, S. McDaniel, S. Podhorszki, N. Logan, J. Klasky, S. Taufer, M. TI Performance characterization of irregular I/O at the extreme scale SO PARALLEL COMPUTING LA English DT Article DE Exascale; Irregular I/O; QMCPack; ENZO; ADIOS; HDF5 AB This paper reports our experience with irregular I/O and describes lessons learned when running applications with such I/O on supercomputers at the extreme scale. Specifically, we study how irregularities in I/O patterns (i.e., irregular amount of data written per process at each I/O step) in scientific simulations can cause increasing I/O times and substantial loss in scalability. To this end, we quantify the impact of irregular I/O patterns on the I/O performance of scientific applications at the extreme scale by statistically modeling the irregular I/O behavior of two scientific applications: the Monte Carlo application QMCPack and the adaptive mesh refinement application ENZO. For our testing, we feed our model into I/O kernels of two well-known I/O data models (i.e., ADIOS and HDF) to measure the performance of the two applications' I/O under different I/O settings. Empirically, we show how the growing data sizes and the irregular I/O patterns in these applications are both relevant factors impacting performance. (C) 2015 Elsevier B.V. All rights reserved. C1 [Herbein, S.; McDaniel, S.; Taufer, M.] Univ Delaware, Newark, DE 19716 USA. [Podhorszki, N.; Logan, J.; Klasky, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Taufer, M (reprint author), Univ Delaware, Newark, DE 19716 USA. EM taufer@acm.org RI Herbein, Stephen/J-2017-2016 OI Herbein, Stephen/0000-0003-0141-0653 FU NSF [CCF 1318445]; Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Science (BES), Department of Energy (DOE); Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work is supported in part by the NSF Grant CCF 1318445 and through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Science (BES), Department of Energy (DOE). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC05-00OR22725. NR 18 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN PY 2016 VL 51 SI SI BP 17 EP 36 DI 10.1016/j.parco.2015.10.009 PG 20 WC Computer Science, Theory & Methods SC Computer Science GA DD7HH UT WOS:000370093800003 ER PT J AU Pena, AJ Balaji, P AF Pena, Antonio J. Balaji, Pavan TI A data-oriented profiler to assist in data partitioning and distribution for heterogeneous memory in HPC SO PARALLEL COMPUTING LA English DT Article DE Data-oriented profiling; Object-differentiated profiling; Heterogeneous memory; Scratchpad memory; Valgrind AB Profiling is of great assistance in understanding and optimizing an application's behavior. Today's profiling techniques help developers focus on the pieces of code leading to the highest penalties according to a given performance metric. In this paper we describe a profiling tool we have developed by extending the Valgrind framework and one of its tools: Callgrind. Our extended profiling tool provides new object-differentiated profiling capabilities that help software developers and hardware designers (1) understand access patterns, (2) identify unexpected access patterns, and (3) determine whether a particular memory object is consistently featuring a troublesome access pattern. We use this tool to assist in the partition of big data objects so that smaller portions of them can be placed in small, fast memory subsystems of heterogeneous memory systems such as scratchpad memories. We showcase the potential benefits of this technique by means of the XSBench miniapplication from the CESAR codesign project. The benefits include being able to identify the optimal portion of data to be placed in a small scratchpad memory, leading to more than 19% performance improvement, compared with nonassisted partitioning approaches, in our proposed scratchpad-equipped compute node. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pena, Antonio J.; Balaji, Pavan] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Pena, AJ (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM apenya@mcs.anl.gov; balaji@anl.gov OI Pena Monferrer, Antonio J./0000-0002-3575-4617 FU U.S. Dept. of Energy, Office of Science, Advanced Scientific Computing Research [SC-21, DE-AC02-06CH11357] FX This material was based upon work supported by the U.S. Dept. of Energy, Office of Science, Advanced Scientific Computing Research (SC-21), under contract DE-AC02-06CH11357. NR 22 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN PY 2016 VL 51 SI SI BP 46 EP 55 DI 10.1016/j.parco.2015.10.006 PG 10 WC Computer Science, Theory & Methods SC Computer Science GA DD7HH UT WOS:000370093800005 ER PT J AU Balzuweit, E Bunde, DP Leung, VJ Finley, A Lee, ACS AF Balzuweit, Evan Bunde, David P. Leung, Vitus J. Finley, Austin Lee, Alan C. S. TI Local search to improve coordinate-based task mapping SO PARALLEL COMPUTING LA English DT Article DE Task mapping; Stencil communication pattern; Non-contiguous allocation; Local search ID PROCESSOR ALLOCATION AB We present a local search strategy to improve the coordinate-based mapping of a parallel job's tasks to the MPI ranks of its parallel allocation in order to reduce network congestion and the job's communication time. The goal is to reduce the number of network hops between communicating pairs of ranks. Our target is applications with a nearest-neighbor stencil communication pattern running on mesh systems with non-contiguous processor allocation, such as Cray XE and XK Systems. Using the miniGhost mini-app, which models the shock physics application CTH, we demonstrate that our strategy reduces application running time while also reducing the runtime variability. We further show that mapping quality can vary based on the selected allocation algorithm, even between allocation algorithms of similar apparent quality. (C) 2015 Elsevier B.V. All rights reserved. C1 [Balzuweit, Evan] Washington Univ, Dept Comp Sci & Engn, St Louis, MO USA. [Bunde, David P.; Finley, Austin; Lee, Alan C. S.] Knox Coll, Dept Comp Sci, Galesburg, IL USA. [Leung, Vitus J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Bunde, DP (reprint author), Knox Coll, Dept Comp Sci, Galesburg, IL USA. EM ebalzuwe@knox.edu; dbunde@knox.edu; vjleung@sandia.gov; afinley@knox.edu; cslee@knox.edu FU Sandia National Laboratories [899808]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX E. Balzuweit, D.P. Bunde, A. Finley, and A.C.S. Lee were partially supported by contract 899808 from Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We also thank Moe Jette for contributing the LLNL-Atlas trace to the Parallel Workloads Archive. NR 37 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN PY 2016 VL 51 SI SI BP 67 EP 78 DI 10.1016/j.parco.2015.10.012 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA DD7HH UT WOS:000370093800007 ER PT J AU Liu, XK Zhang, YH Yu, T Qiao, XS Gresback, R Pi, XD Yang, DR AF Liu, Xiangkai Zhang, Yuheng Yu, Ting Qiao, Xvsheng Gresback, Ryan Pi, Xiaodong Yang, Deren TI Optimum Quantum Yield of the Light Emission from 2 to 10 nm Hydrosilylated Silicon Quantum Dots SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION LA English DT Article ID POROUS SILICON; SOLAR-CELLS; PHOTOLUMINESCENCE DECAY; NANOCRYSTALS SYNTHESIS; OPTICAL-PROPERTIES; SURFACE-CHEMISTRY; SI NANOCRYSTALS; SOLUTION ROUTE; NANOPARTICLES; LUMINESCENCE AB Optimizing the light-emitting efficiency of silicon quantum dots (Si QDs) has been recently intensified by the demand of the practical use of Si QDs in a variety of fields such as optoelectronics, photovoltaics, and bioimaging. It is imperative that an understanding of the optimum light-emitting efficiency of Si QDs should be obtained to guide the design of the synthesis and processing of Si QDs. Here an investigation is presented on the characteristics of the photoluminescence (PL) from hydrosilylated Si QDs in a rather broad size region (approximate to 2-10 nm), which enables an effective mass approximation model to be developed, which can very well describe the dependence of the PL energy on the QD size for Si QDs in the whole quantum-confinement regime, and demonstrates that an optimum PL quantum yield (QY) appears at a specific QD size for Si QDs. The optimum PL QY results from the interplay between quantum-confinement effect and surface effect. The current work has important implications for the surface engineering of Si QDs. To optimize the light-emission efficiency of Si QDs, the surface of Si QDs must be engineered to minimize the formation of defects such as dangling bonds at the QD surface and build an energy barrier that can effectively prevent carriers in Si QDs from tunneling out. C1 [Liu, Xiangkai; Zhang, Yuheng; Yu, Ting; Qiao, Xvsheng; Pi, Xiaodong; Yang, Deren] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Liu, Xiangkai; Zhang, Yuheng; Yu, Ting; Qiao, Xvsheng; Pi, Xiaodong; Yang, Deren] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Gresback, Ryan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gresback, Ryan] Cree Inc, 340 Storke Rd, Goleta, CA 93117 USA. RP Pi, XD (reprint author), Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China.; Pi, XD (reprint author), Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. EM xdpi@zju.edu.cn RI yang, deren/J-3311-2012 OI yang, deren/0000-0002-1745-2105 FU National Basic Research Program of China [2013CB632101]; NSFC [61222404]; Fundamental Research Funds for the Central Universities [2014XZZX003-09] FX This work was mainly supported by the National Basic Research Program of China (Grant No. 2013CB632101) and the NSFC for excellent young researchers (Grant No. 61222404). Partial support from the Fundamental Research Funds for the Central Universities (2014XZZX003-09) is acknowledged. The Center for Electron Microscopy of Zhejiang University is acknowledged for providing TEM characterization. NR 80 TC 12 Z9 12 U1 17 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0934-0866 EI 1521-4117 J9 PART PART SYST CHAR JI Part. Part. Syst. Charact. PD JAN PY 2016 VL 33 IS 1 BP 44 EP 52 DI 10.1002/ppsc.201500148 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DD8ON UT WOS:000370186600007 ER PT J AU Hansen, C Interrante, JD Ailes, EC Frey, MT Broussard, CS Godoshian, VJ Lewis, C Polen, KND Garcia, AP Gilboa, SM AF Hansen, Craig Interrante, Julia D. Ailes, Elizabeth C. Frey, Meghan T. Broussard, Cheryl S. Godoshian, Valerie J. Lewis, Courtney Polen, Kara N. D. Garcia, Amanda P. Gilboa, Suzanne M. TI Assessment of YouTube videos as a source of information on medication use in pregnancy SO PHARMACOEPIDEMIOLOGY AND DRUG SAFETY LA English DT Article DE YouTube; medications; pregnancy; social media; drug safety; pharmacoepidemiology ID WEB; DRUGS AB Background When making decisions about medication use in pregnancy, women consult many information sources, including the Internet. The aim of this study was to assess the content of publicly accessible YouTube videos that discuss medication use in pregnancy. Methods Using 2023 distinct combinations of search terms related to medications and pregnancy, we extracted metadata from YouTube videos using a YouTube video Application Programming Interface. Relevant videos were defined as those with a medication search term and a pregnancy-related search term in either the video title or description. We viewed relevant videos and abstracted content from each video into a database. We documented whether videos implied each medication to be "safe" or "unsafe" in pregnancy and compared that assessment with the medication's Teratogen Information System (TERIS) rating. Results After viewing 651 videos, 314 videos with information about medication use in pregnancy were available for the final analyses. The majority of videos were from law firms (67%), television segments (10%), or physicians (8%). Selective serotonin reuptake inhibitors (SSRIs) were the most common medication class named (225 videos, 72%), and 88% of videos about SSRIs indicated that they were unsafe for use in pregnancy. However, the TERIS ratings for medication products in this class range from "unlikely" to "minimal" teratogenic risk. Conclusion For the majority of medications, current YouTube video content does not adequately reflect what is known about the safety of their use in pregnancy and should be interpreted cautiously. However, YouTube could serve as a platform for communicating evidence-based medication safety information. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Hansen, Craig] South Australian Hlth & Med Res Inst, POB 11060, Adelaide, SA 5001, Australia. [Hansen, Craig; Interrante, Julia D.; Ailes, Elizabeth C.; Frey, Meghan T.; Broussard, Cheryl S.; Godoshian, Valerie J.; Lewis, Courtney; Polen, Kara N. D.; Garcia, Amanda P.; Gilboa, Suzanne M.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Interrante, Julia D.; Garcia, Amanda P.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Godoshian, Valerie J.] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. RP Hansen, C (reprint author), South Australian Hlth & Med Res Inst, POB 11060, Adelaide, SA 5001, Australia. EM craig.hansen@sahmri.com FU Intramural CDC HHS [CC999999] NR 19 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1053-8569 EI 1099-1557 J9 PHARMACOEPIDEM DR S JI Pharmacoepidemiol. Drug Saf. PD JAN PY 2016 VL 25 IS 1 BP 35 EP 44 DI 10.1002/pds.3911 PG 10 WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy GA DD6TI UT WOS:000370057000006 PM 26541372 ER PT J AU Linville, JL Shen, YW Urgun-Demirtas, M Snyder, SW AF Linville, Jessica L. Shen, Yanwen Urgun-Demirtas, Meltem Snyder, Seth W. TI Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures SO PROCESS BIOCHEMISTRY LA English DT Article DE Anaerobic digestion; Carbon sequestration; Mineral carbonation; Biogas upgrading; Olivine; Wastewater treatment plants ID RESPONSE-SURFACE METHODOLOGY; WATER TREATMENT PLANTS; WASTE-WATER; MICROBIAL COMMUNITY; MINERAL CARBONATION; METHANE PRODUCTION; CO2 SEQUESTRATION; BIOGAS PRODUCTION; ZEOLITE ADDITION; NATURAL ZEOLITE AB Biogas from anaerobic digestion of sludge at wastewater treatment plants consists of methane, carbon dioxide and trace contaminants which can be upgraded for utilization. Compared to current costly upgrading technologies, mineral carbonation has many benefits by using natural magnesium and calcium rich ores capable of sequestering CO2. The feasibility of olivine to sequester CO2 in-situ during batch anaerobic digestion of sludge was tested for (1) ambient versus mesophilic temperatures, (2) placement of olivine in the digester, and (3) olivine particle size and concentration. Increasing the temperature, increasing the olivine surface area via increased dose and decreased particle size, and elevating the olivine in the reactor increased mineral carbonation rates during anaerobic digestion. At mesophilic temperature, the elevated 5% w/v fine olivine digester had a 17.5% reduction in CO2 which equated to a 3.6% increase in methane content (%) and at ambient temperature, the same condition had a 21.7% CO2 sequestration resulting in an 8.8% increase in methane content compared to the control. Response surface methodology was applied for optimization of digestion time and olivine surface area at both temperatures. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Linville, Jessica L.; Shen, Yanwen; Urgun-Demirtas, Meltem; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Urgun-Demirtas, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA. EM demirtasmu@anl.gov FU Sacramento Municipal Utilities by the California Energy Commission of California Government [ARV-10-003-01]; Argonne, a US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was sponsored by via Sacramento Municipal Utilities by the California Energy Commission of California Government (ARV-10-003-01, SMUD). The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. The funding source for the work reported here did not have a role in study design, data collection, analysis, data interpretation, writing, or in the decision to publish. NR 53 TC 3 Z9 3 U1 6 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-5113 EI 1873-3298 J9 PROCESS BIOCHEM JI Process Biochem. PD JAN PY 2016 VL 51 IS 1 BP 59 EP 72 DI 10.1016/j.procbio.2015.10.015 PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering, Chemical SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering GA DC4PM UT WOS:000369202800009 ER PT J AU Everett, JK Tejero, R Murthy, SBK Acton, TB Aramini, JM Baran, MC Benach, J Cort, JR Eletsky, A Forouhar, F Guan, RJ Kuzin, AP Lee, HW Liu, GH Mani, R Mao, BC Mills, JL Montelione, AF Pederson, K Powers, R Ramelot, T Rossi, P Seetharaman, J Snyder, D Swapna, GVT Vorobiev, SM Wu, YB Xiao, R Yang, YH Arrowsmith, CH Hunt, JF Kennedy, MA Prestegard, JH Szyperski, T Tong, L Montelione, GT AF Everett, John K. Tejero, Roberto Murthy, Sarath B. K. Acton, Thomas B. Aramini, James M. Baran, Michael C. Benach, Jordi Cort, John R. Eletsky, Alexander Forouhar, Farhad Guan, Rongjin Kuzin, Alexandre P. Lee, Hsiau-Wei Liu, Gaohua Mani, Rajeswari Mao, Binchen Mills, Jeffrey L. Montelione, Alexander F. Pederson, Kari Powers, Robert Ramelot, Theresa Rossi, Paolo Seetharaman, Jayaraman Snyder, David Swapna, G. V. T. Vorobiev, Sergey M. Wu, Yibing Xiao, Rong Yang, Yunhuang Arrowsmith, Cheryl H. Hunt, John F. Kennedy, Michael A. Prestegard, James H. Szyperski, Thomas Tong, Liang Montelione, Gaetano T. TI A community resource of experimental data for NMR/X-ray crystal structure pairs SO PROTEIN SCIENCE LA English DT Review DE protein NMR spectroscopy; X-ray crystallography; structural bioinformatics; accuracy and precision of NMR structures ID RESIDUAL DIPOLAR COUPLINGS; PROTEIN-STRUCTURE DETERMINATION; MALTODEXTRIN-BINDING-PROTEIN; AUTOMATED-ANALYSIS; CHEMICAL-SHIFTS; RESONANCE ASSIGNMENTS; GENOMICS CONSORTIUM; PRODUCTION PLATFORM; STRUCTURE ENSEMBLES; SOFTWARE PACKAGE AB We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development. C1 [Everett, John K.; Murthy, Sarath B. K.; Acton, Thomas B.; Aramini, James M.; Baran, Michael C.; Guan, Rongjin; Liu, Gaohua; Mani, Rajeswari; Mao, Binchen; Montelione, Alexander F.; Rossi, Paolo; Swapna, G. V. T.; Xiao, Rong; Montelione, Gaetano T.] Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. [Everett, John K.; Murthy, Sarath B. K.; Acton, Thomas B.; Aramini, James M.; Baran, Michael C.; Guan, Rongjin; Liu, Gaohua; Mani, Rajeswari; Mao, Binchen; Montelione, Alexander F.; Rossi, Paolo; Swapna, G. V. T.; Xiao, Rong; Montelione, Gaetano T.] Rutgers State Univ, Northeast Struct Genom Consortium, Piscataway, NJ 08854 USA. [Tejero, Roberto] Univ Valencia, Dept Quim Fis, Valencia, Spain. [Benach, Jordi; Forouhar, Farhad; Kuzin, Alexandre P.; Seetharaman, Jayaraman; Vorobiev, Sergey M.; Hunt, John F.; Tong, Liang] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. [Benach, Jordi; Forouhar, Farhad; Kuzin, Alexandre P.; Seetharaman, Jayaraman; Vorobiev, Sergey M.; Hunt, John F.; Tong, Liang] Columbia Univ, Northeast Struct Genom Consortium, New York, NY 10027 USA. [Cort, John R.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Eletsky, Alexander; Mills, Jeffrey L.; Wu, Yibing; Szyperski, Thomas] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Eletsky, Alexander; Mills, Jeffrey L.; Wu, Yibing; Szyperski, Thomas] Northeast Struct Genom Consortium, Buffalo, NY 14260 USA. [Lee, Hsiau-Wei; Pederson, Kari; Prestegard, James H.] Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA. [Lee, Hsiau-Wei; Pederson, Kari; Prestegard, James H.] Univ Georgia, Northeast Struct Genom Consortium, Athens, GA 30602 USA. [Powers, Robert] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Ramelot, Theresa; Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Northeast Struct Genom Consortium, Oxford, OH 45056 USA. [Snyder, David] William Paterson Univ NJ, Coll Sci & Hlth, Dept Chem, Wayne, NJ 07470 USA. [Arrowsmith, Cheryl H.] Univ Toronto, Ontario Canc Inst, Dept Med Biophys, Canc Genom & Prote, Toronto, ON M5G 1L7, Canada. [Arrowsmith, Cheryl H.] Univ Toronto, Northeast Struct Genom Consortium, Toronto, ON M5G 1L7, Canada. [Montelione, Gaetano T.] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA. RP Montelione, GT (reprint author), Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA.; Montelione, GT (reprint author), Rutgers State Univ, Northeast Struct Genom Consortium, Piscataway, NJ 08854 USA.; Montelione, GT (reprint author), Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA.; Montelione, GT (reprint author), Rutgers State Univ, CABM, 679 Hoes Lane, Piscataway, NJ 08854 USA. EM gtm@rutgers.edu RI Tejero Toquero, Roberto/F-5104-2016; Mao, Binchen/H-9033-2016; OI Tejero Toquero, Roberto/0000-0003-2504-5988; Mao, Binchen/0000-0002-3113-7400; Snyder, David/0000-0001-6608-2975 FU National Institutes of Health Protein Structure Initiative [U54-GM094597]; Jerome and Lorraine Aresty Charitable Foundation FX Grant sponsor: National Institutes of Health Protein Structure Initiative; Grant number: U54-GM094597; Grant sponsor: Jerome and Lorraine Aresty Charitable Foundation. NR 86 TC 0 Z9 1 U1 5 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JAN PY 2016 VL 25 IS 1 SI SI BP 30 EP 45 DI 10.1002/pro.2774 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DD3KJ UT WOS:000369820800005 PM 26293815 ER PT J AU Collow, AB Ghate, VP Miller, MA Trabachino, LC AF Collow, Allison B. Ghate, Virendra P. Miller, Mark A. Trabachino, Lynne C. TI A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE radiation budget; diurnal cycle; Saharan Air Layer; cloud radiative effect; radiative flux divergence; West African Monsoon; lifting condensation level ID GEOSTATIONARY EARTH RADIATION; BUDGET GERB DATA; BOUNDARY-LAYER; LONGWAVE RADIATION; WATER-VAPOR; PART II; MONSOON; PRECIPITATION; CLIMATE; SEASON AB The diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurements of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 - 30 W m(-2) depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m(-2). A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at approximate to 150 W m(-2), and varies widely from day to day. C1 [Collow, Allison B.; Miller, Mark A.; Trabachino, Lynne C.] Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08903 USA. [Ghate, Virendra P.] Argonne Natl Lab, Div Environm Sci, Lemont, IL USA. RP Collow, AB (reprint author), NASA, Goddard Space Flight Ctr, Code 610-1, Greenbelt, MD 20771 USA. EM allison.collow@nasa.gov FU US Department of Energy Office of Biological and Environmental Research [DE-FG02-08ER64531]; US Department of Energy's Atmospheric System Research (ASR) Program, an Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX Our work is dedicated to the fond memory of Peter Lamb and Anthony Slingo whose pioneering work in the Sahel region led to the current study. We appreciate the work of the many scientists who assisted in the deployment and data collection activates that resulted in the AMF-1 and GERB datasets that are used in this study. We are particularly indebted to Kim Nitschke for his work in deploying and operating the AMF-1, Jacqueline Russell of Imperial College in London for helping us obtain the GERB data, and Ashely Williamson for his support. This work is funded by the US Department of Energy Office of Biological and Environmental Research under grant number DE-FG02-08ER64531. Virendra Ghate was supported by the US Department of Energy's Atmospheric System Research (ASR) Program, an Office of Science, Office of Biological and Environmental Research under the contract DE-AC02-06CH11357. NR 63 TC 4 Z9 4 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2016 VL 142 IS 694 BP 16 EP 29 DI 10.1002/qj.2623 PN A PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD5QE UT WOS:000369978300002 ER PT J AU Yin, SQ Sharma, V McDannald, A Reboredo, FA Jain, M AF Yin, Shiqi Sharma, Vinit McDannald, Austin Reboredo, Fernando A. Jain, Menka TI Magnetic and magnetocaloric properties of iron substituted holmium chromite and dysprosium chromite SO RSC ADVANCES LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DYCRO3 NANOPLATELETS; EARTH; ORTHOFERRITES; PEROVSKITES; SPECTRA AB In this work, HoCrO3 and Fe substituted HoCrO3 and DyCrO3 (i.e. HoCr0.7Fe0.3O3 and DyCr0.7Fe0.3O3) powder samples were synthesized via a solution route. The structural properties of the samples were examined by Raman spectroscopy and X-ray diffraction techniques, which were further confirmed using the first-principle calculations. The dc magnetic measurements indicate that the Cr3+ ordering temperatures for the HoCrO3, HoCr0.7Fe0.3O3, and DyCr0.7Fe0.3O3 samples were 140 K, 174 K, and 160 K, respectively. The ac magnetic measurements not only confirmed the Cr3+ ordering transitions in these samples (obtained using dc magnetic measurements), but also clearly showed the Ho3+ ordering at similar to 10 K in the present HoCrO3 and HoCr0.7Fe0.3O3 samples, which to our knowledge, is the first ac magnetic evidence of Ho3+ ordering in this system. The effective magnetic moments were determined to be 11.67 mu(B), 11.30 mu(B), and 11.27 mu(B) for the HoCrO3, HoCr0.7Fe0.3O3, and DyCr0.7Fe0.3O3 samples, respectively. For the first time, the magnetocaloric properties of HoCrO3 and HoCr0.7Fe0.3O3 were studied here, showing their potential for applications in magnetic refrigeration. In an applied dc magnetic field of 7 T, the maximum values of magnetic entropy change were determined to be 7.2 (at 20 K), 6.83 (at 20 K), and 13.08 J kg(-1) K-1 (at 5 K) and the relative cooling power were 408, 387, and 500 J kg(-1) for the HoCrO3, HoCr0.7Fe0.3O3, and DyCr0.7Fe0.3O3 samples, respectively. C1 [Yin, Shiqi; Jain, Menka] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Sharma, Vinit; Reboredo, Fernando A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Mat Theory Grp, Oak Ridge, TN 37831 USA. [McDannald, Austin] Univ Connecticut, Mat Sci & Engn Dept, Storrs, CT 06269 USA. [Jain, Menka] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. RP Jain, M (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.; Jain, M (reprint author), Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. EM menka.jain@uconn.edu RI sharma, Vinit/K-3407-2015; OI Jain, Menka/0000-0002-2264-6895 FU National Science Foundation [DMR-1310149]; Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy FX This work was funded by the National Science Foundation grant DMR-1310149. Authors VS and FAR are supported by the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy. NR 50 TC 6 Z9 6 U1 2 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 12 BP 9475 EP 9483 DI 10.1039/c5ra24323h PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DC9BS UT WOS:000369516100015 ER PT J AU Alaparthi, M Mariappan, K Dufek, E Hoffman, M Sykes, AG AF Alaparthi, Madhubabu Mariappan, Kadarkaraisamy Dufek, Eric Hoffman, Mariah Sykes, Andrew G. TI A new detection mechanism involving keto-enol tautomerization: selective fluorescence detection of Al(III) by dehydration of secondary alcohols in mixed DMSO/aqueous media SO RSC ADVANCES LA English DT Article ID PARKINSONS-DISEASE; ALZHEIMERS-DISEASE; SUBSTANTIA-NIGRA; ALUMINUM IONS; ON NAPHTHOL; CHEMODOSIMETER; ANTHRAQUINONE; DERIVATIVES; INCREASE; CATION AB A newmechanismfor the fluorescence detection of metal cations in solution is introduced involving a unique keto-enol tautomerization. Reduction of 1,8-anthraquinone-18-crown-5 yields the doubly reduced secondary alcohol, 2. Compound 2 acts as a chemodosimeter for Al(III) ions producing a strong blue emission due to the formation of the anthracene fluorophore, 3, via dehydration of the internal secondary alcohol in DMSO/aqueous solution. The enol form is not the most thermodynamically stable form under these conditions however and slowly converts to the keto form 4. Reduction of 1 with Fe/AcOH or the reaction of 2 with HCl directly yields compound 4, the keto tautomer of 3, which also produces the same blue emission in more polar solvents. Competition studies reveal that compound 2 produces a blue emission exclusively in the presence of the strong Lewis acidic Al(III) ion and at relatively low pH. C1 [Alaparthi, Madhubabu; Mariappan, Kadarkaraisamy; Hoffman, Mariah; Sykes, Andrew G.] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. [Dufek, Eric] Idaho Natl Lab, Energy Storage & Transportat Syst, Idaho Falls, ID USA. RP Sykes, AG (reprint author), Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. EM asykes@usd.edu RI Dufek, Eric/B-8847-2017 OI Dufek, Eric/0000-0003-4802-1997 FU NSF-EPSCOR [EPS-0554609]; South Dakota Governor's Initiative; [NSF-MRI-CHE-1229035] FX The authors thank NSF-EPSCOR (EPS-0554609) and the South Dakota Governor's 2010 Initiative for financial support and the purchase of a Bruker SMART APEX II CCD diffractometer. The 400 MHz NMR was also provided by funding from NSF-MRI-CHE-1229035. NR 28 TC 1 Z9 1 U1 2 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 14 BP 11295 EP 11302 DI 10.1039/c5ra23937k PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DC9MJ UT WOS:000369545400029 ER PT J AU Bevelhimer, MS Stewart, AJ Fortner, AM Phillips, JR Mosher, JJ AF Bevelhimer, Mark S. Stewart, Arthur J. Fortner, Allison M. Phillips, Jana R. Mosher, Jennifer J. TI CO2 is Dominant Greenhouse Gas Emitted from Six Hydropower Reservoirs in Southeastern United States during Peak Summer Emissions SO WATER LA English DT Article DE CH4; CO2; greenhouse gas emissions; hydropower; reservoir AB During August- September 2012, we sampled six hydropower reservoirs in southeastern United States for CO2 and CH4 emissions via three pathways: diffusive emissions from water surface; ebullition in the water column; and losses from dam tailwaters during power generation. Estimates of average areal emission rates of CO2 attributable to the six reservoirs ( i. e., reservoir plus tailwater emissions) ranged from 994 to 2760 mg center dot m-2 center dot day - 1, which is low to moderate compared to CO2 emissions rates reported for tropical hydropower reservoirs and boreal ponds and lakes, and similar to rates reported for other temperate reservoirs. Similar average rates for CH4 were also relatively low, ranging from 6 to 187 mg center dot m - 2 center dot day-1. On a whole- reservoir basis, estimates of total emissions of CO2 ranged 10- fold, from 42,740 kg per day for Fontana to 501,151 kg per day for Guntersville, and total emissions of CH4 ranged over 30- fold, from 251 kg per day for Fontana to 9153 kg per day for Allatoona. Emissions through the tailwater pathway varied among reservoirs, comprising from 19% to 65% of total CO2 emissions and 0% to 84% of CH4 emissions, depending on the reservoir. Emission rates were significantly correlated with several reservoir morphological and water quality characteristics, including metrics related to vertical stratification ( e. g., minimum water column temperature and maximum dissolved oxygen) and reservoir productivity ( e. g., water transparency and chlorophyll a concentration). C1 [Bevelhimer, Mark S.; Fortner, Allison M.; Phillips, Jana R.; Mosher, Jennifer J.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Stewart, Arthur J.] Xcel Engn Inc, 1066 Commerce Pk Dr, Oak Ridge, TN 37830 USA. [Stewart, Arthur J.] Oak Ridge Natl Lab, Sci Educ Programs, POB 117, Oak Ridge, TN 37831 USA. [Mosher, Jennifer J.] Marshall Univ, Dept Biol Sci, 1 John Marshall Dr, Huntington, WV 25755 USA. RP Bevelhimer, MS (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM bevelhimerms@ornl.gov; stewartaj@ornl.gov; fortneram@ornl.gov; randolphjd1@ornl.gov; mosher@marshall.edu RI Phillips, Jana/G-4755-2016; OI Phillips, Jana/0000-0001-9319-2336; Mosher, Jennifer/0000-0001-6976-2036; stewart, arthur/0000-0003-1968-5997 FU UT-Battelle, LLC [DE-AC05-00OR22725]; United States Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This research was funded by the United States Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program. We thank U.S. Army Corps of Engineers staff at Lake Hartwell and Lake Allatoona for logistical assistance during sampling. We also thank Glenn Cada, Matthew Troia, and several anonymous reviewers for constructive comments that contributed to strengthening this manuscript. NR 44 TC 0 Z9 0 U1 5 U2 18 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD JAN PY 2016 VL 8 IS 1 AR 15 DI 10.3390/w8010015 PG 14 WC Water Resources SC Water Resources GA DC9AO UT WOS:000369512800019 ER PT J AU Naqvi, KF Staker, BL Dobson, RCJ Serbzhinskiy, D Sankaran, B Myler, PJ Hudson, AO AF Naqvi, Kubra F. Staker, Bart L. Dobson, Renwick C. J. Serbzhinskiy, Dmitry Sankaran, Banumathi Myler, Peter J. Hudson, Andre O. TI Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 angstrom resolution SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE Bartonella henselae; dihydrodipicolinate synthase; diaminopimelate; lysine biosynthesis; cat-scratch disease ID LL-DIAMINOPIMELATE AMINOTRANSFERASE; LYSINE BIOSYNTHESIS PATHWAY; STRUCTURAL GENOMICS CENTER; CRYSTAL-STRUCTURE; L,L-DIAMINOPIMELATE AMINOTRANSFERASE; INFECTIOUS-DISEASE; ESCHERICHIA-COLI; ANGSTROM RESOLUTION; PROTEIN-PRODUCTION; INHIBITION AB The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of l-aspartate 4-semialdehyde and pyruvate to synthesize l-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to similar to 2.10 angstrom resolution. They belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 79.96, b = 106.33, c = 136.25 angstrom. The final R values were R-r.i.m. = 0.098, R-work = 0.183, R-free = 0.233. C1 [Naqvi, Kubra F.; Hudson, Andre O.] Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, 85 Lomb Mem Dr, Rochester, NY 14623 USA. [Staker, Bart L.; Serbzhinskiy, Dmitry; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA. [Staker, Bart L.; Serbzhinskiy, Dmitry; Myler, Peter J.] Ctr Infect Dis Res, 307 Westlake Ave North,Suite 500, Seattle, WA 98109 USA. [Dobson, Renwick C. J.] Univ Canterbury, Sch Biol Sci, Biomol Interact Ctr, Private Bag 4800, Christchurch 1, New Zealand. [Sankaran, Banumathi] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Biomed Informat & Hlth Educ, Seattle, WA 98195 USA. RP Hudson, AO (reprint author), Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, 85 Lomb Mem Dr, Rochester, NY 14623 USA. EM aohsbi@rit.edu FU College of Science Dean's Research Initiation Grant (D-RIG) Program at the Rochester Institute of Technology; Federal funds from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Department of Health and Human Services (HHS) [HHSN272200700057C, HHSN272201200025C]; NIH, National Institute of General Medical Sciences (NIGMS); Howard Hughes Medical Institute (HHMI); Office of Science, Office of Basic Energy Sciences of the US Department of Energy (DOE) [DE-AC02-05CH11231] FX AOH and KFN acknowledge the Thomas H. Gosnell School of Life Sciences for ongoing support of research in the Hudson laboratory. AOH acknowledges the College of Science Dean's Research Initiation Grant (D-RIG) Program at the Rochester Institute of Technology for support of this work. This project has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Department of Health and Human Services (HHS) under Contract Nos. HHSN272200700057C and HHSN272201200025C. The Berkeley Center for Structural Biology is supported in part by the NIH, National Institute of General Medical Sciences (NIGMS) and the Howard Hughes Medical Institute (HHMI). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. NR 41 TC 1 Z9 1 U1 1 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD JAN PY 2016 VL 72 BP 2 EP 9 DI 10.1107/S2053230X15023213 PN 1 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DC7DS UT WOS:000369379700002 PM 26750477 ER PT J AU Guardincerri, E Durham, JM Morris, C Bacon, JD Daughton, TM Fellows, S Morley, DJ Johnson, OR Plaud-Ramos, K Poulson, DC Wang, Z AF Guardincerri, E. Durham, J. M. Morris, C. Bacon, J. D. Daughton, T. M. Fellows, S. Morley, D. J. Johnson, O. R. Plaud-Ramos, K. Poulson, D. C. Wang, Z. TI Imaging the inside of thick structures using cosmic rays SO AIP ADVANCES LA English DT Article ID MUON RADIOGRAPHY AB The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as "multiple scattering muon radiography", relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result shows the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Guardincerri, E.; Durham, J. M.; Morris, C.; Bacon, J. D.; Daughton, T. M.; Fellows, S.; Morley, D. J.; Johnson, O. R.; Plaud-Ramos, K.; Poulson, D. C.; Wang, Z.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Guardincerri, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM elenaguardincerri@lanl.gov OI Durham, J. Matthew/0000-0002-5831-3398; Morris, Christopher/0000-0003-2141-0255 FU laboratory Directed Research and Development program at Los Alamos National Laboratory FX This work was funded by the laboratory Directed Research and Development program at Los Alamos National Laboratory. NR 28 TC 0 Z9 0 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JAN PY 2016 VL 6 IS 1 AR 015213 DI 10.1063/1.4940897 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DC8AL UT WOS:000369442200051 ER PT J AU Ramirez-Carvajal, L Singh, N de los Santos, T Rodriguez, LL Long, CR AF Ramirez-Carvajal, Lisbeth Singh, Neetu de los Santos, Teresa Rodriguez, Luis L. Long, Charles R. TI Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells SO ANTIVIRAL RESEARCH LA English DT Article DE CRISPR/Cas9; 4E-BPI knockout; Interferon; Pig cells ID MICE LACKING; RNA; 4E-BP1; TRANSLATION; REGULATOR; FAMILY; TARGET; GROWTH; IRF-7 AB Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFN beta treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BPI knockout (MO) porcine cells had increased expression of IFN alpha and beta, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BPI MO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ramirez-Carvajal, Lisbeth; Singh, Neetu; Long, Charles R.] Texas A&M Univ, Coll Vet Med & Biomed Sci, College Stn, TX USA. [Ramirez-Carvajal, Lisbeth; de los Santos, Teresa; Rodriguez, Luis L.] ARS, PIADC, Foreign Anim Dis Res Unit, USDA, Greenport, NY USA. [Ramirez-Carvajal, Lisbeth] ORISE, PIADC, Res Participat Program, Oak Ridge, TN USA. [Ramirez-Carvajal, Lisbeth] ARS, Plum Isl Anim Dis Ctr, NAA, USDA, POB 848, Greenport, NY 11944 USA. RP Ramirez-Carvajal, L (reprint author), Texas A&M Univ, Coll Vet Med & Biomed Sci, College Stn, TX USA.; Ramirez-Carvajal, L (reprint author), ARS, PIADC, Foreign Anim Dis Res Unit, USDA, Greenport, NY USA.; Ramirez-Carvajal, L (reprint author), ORISE, PIADC, Res Participat Program, Oak Ridge, TN USA.; Ramirez-Carvajal, L (reprint author), ARS, Plum Isl Anim Dis Ctr, NAA, USDA, POB 848, Greenport, NY 11944 USA. EM Lisbeth.ramirez@ars.usda.gov FU USDA-ARS CRIS [1940-32000-057-00D]; ARS [HSHQDC-11-X-00189]; Science and Technology Directorate of the U.S. Department of Homeland Security [HSHQDC-11-X-00189]; Texas AgriLife Research; Texas Veterinary Medical Diagnostic Laboratory FX This research was supported by USDA-ARS CRIS#1940-32000-057-00D, by an interagency agreement between ARS and the Science and Technology Directorate of the U.S. Department of Homeland Security under Award Number HSHQDC-11-X-00189 and Texas AgriLife Research and Texas Veterinary Medical Diagnostic Laboratory Exceptional Item Funding Grant. L. Ramirez-Carvajal was a participant in the PIADC Research Participation Program administered by ORISE, and Texas A&M College of Veterinary Medicine and Biomedical Sciences Graduate Student Grant Program. We thank Hanah Georges and Raena Furtado for technical assistance. NR 23 TC 0 Z9 0 U1 4 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-3542 EI 1872-9096 J9 ANTIVIR RES JI Antiviral Res. PD JAN PY 2016 VL 125 BP 8 EP 13 DI 10.1016/j.antiviral.2015.11.002 PG 6 WC Pharmacology & Pharmacy; Virology SC Pharmacology & Pharmacy; Virology GA DC4PX UT WOS:000369203900002 PM 26592975 ER PT J AU Zhou, XJ Burbey, TJ AF Zhou, Xuejun Burbey, Thomas J. TI The mechanism of faulting regimes change over depths in the sedimentary layers in an intracratonic basin SO ARABIAN JOURNAL OF GEOSCIENCES LA English DT Article DE Faulting regime; In situ stress; Intracratonic basin; Rock anisotropy; Illinois Basin ID TECTONIC STRESS; ILLINOIS BASIN; STATE; SANDSTONE; MODULI AB It has long been found that faulting regimes can change over depths at a similar location in a sedimentary basin. Such knowledge is very important for the estimation of the magnitude and orientation of the in situ stress, which are generally very difficult to estimate because of many uncertain factors, such as tectonic movement, rock heterogeneities, dis-continuities, pore pressures, heat flow, etc. In comparison with many other geological settings, a stable intracratonic basin has a relatively flat structure that allows for a tractable numerical conceptualization to be made to help understand the faulting regime conditions. Some intracratonic basins such as the Williston Basin (USA), the Tarim Basin (China), and the Siberia Basin (Russia) are important sites to host oil reservoirs and may also provide the spaces for CO2 sequestration. In this paper, numerical simulation is used to characterize the Illinois Basin in North America. This paper presents the methodology for estimating the in situ stress conditions of an intracratonic basin using a poroelastic model. The numerical simulation results show that a thrust-faulting regime is expected at shallow depths, while the three principal stresses are close in magnitude at intermediate depths. A strike-faulting regime dominates at great depths, which corresponds to the continental stress pattern. Such an in situ stress pattern is shared by another intracratonic basin in the North America-the Williston Basin. This methodology is also applicable to estimate in situ stress for other intracratonic basins worldwidely. C1 [Zhou, Xuejun] Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, 100 E Boyd St,SEC 1210, Nonnan, OK 73019 USA. [Burbey, Thomas J.] Reg Univ Alliance, Natl Energy Technol Lab, Pittsburgh, PA USA. [Burbey, Thomas J.] Virginia Tech, Dept Geosci, Blacksburg, VA 24060 USA. RP Zhou, XJ (reprint author), Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, 100 E Boyd St,SEC 1210, Nonnan, OK 73019 USA. EM zhouxj@ou.edu OI zhou, xuejun/0000-0003-0060-8422 FU National Energy Technology Laboratory's ongoing research in geologic CO2 sequestration under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in geologic CO2 sequestration under the RES contract DE-FE0004000. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily state or reflect the views of the NETL. NR 53 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1866-7511 EI 1866-7538 J9 ARAB J GEOSCI JI Arab. J. Geosci. PD JAN PY 2016 VL 9 IS 1 AR 10 DI 10.1007/s12517-015-2053-7 PG 11 WC Geosciences, Multidisciplinary SC Geology GA DC6IB UT WOS:000369322200010 ER PT J AU Dong, RB Zhu, ZH Fung, J Rafikov, R Chiang, E Wagner, K AF Dong, Ruobing Zhu, Zhaohuan Fung, Jeffrey Rafikov, Roman Chiang, Eugene Wagner, Kevin TI AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; planet-disk interactions; planets and satellites: formation; protoplanetary disks; stars: pre-main sequence; stars: variables: T Tauri, Herbig Ae/Be ID SCATTERED-LIGHT IMAGES; OBSERVATIONAL SIGNATURES; TRANSITIONAL DISKS; POLARIZED-LIGHT; DUST; STARS; CAVITY; PLANETS; TAURI; MODEL AB Recent VLT/SPHERE near-infrared imaging observations revealed two spiral arms with a near m = 2 rotational symmetry in the protoplanetary disk around the similar to 1.7 M-circle dot Herbig star HD. 100453. A similar to 0.3 M-circle dot M dwarf companion, HD. 100453. B, was also identified at a projected separation of 120 AU from the primary. In this Letter, we carry out hydrodynamic and radiative transfer simulations to examine the scattered light morphology of the HD. 100453 disk as perturbed by the companion on a circular and coplanar orbit. We find that the companion truncates the disk at similar to 45 AU in scattered light images, and excites two spiral arms in the remaining (circumprimary) disk with a near m. =. 2 rotational symmetry. Both the truncated disk size and the morphology of the spirals are in excellent agreement with the SPHERE observations at Y, J, H, and K1-bands, suggesting that the M dwarf companion is indeed responsible for the observed double-spiral-arm pattern. Our model suggests that the disk is close to face on (inclination angle similar to 5 degrees), and that the entire disk-companion system rotates counterclockwise on the sky. The HD. 100453 observations, along with our modeling work, demonstrate that double spiral arm patterns in near-infrared scattered light images can be generically produced by companions, and support future observations to identify the companions responsible for the arms observed in the MWC 758 and SAO 206462 systems. C1 [Dong, Ruobing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Dong, Ruobing; Fung, Jeffrey; Chiang, Eugene] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Zhu, Zhaohuan] Princeton Univ, Princeton, NJ 08544 USA. [Rafikov, Roman] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA. [Wagner, Kevin] Univ Arizona, Steward Observ, Dept Astron, 933 North Cherry Ave, Tucson, AZ 85721 USA. RP Dong, RB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Dong, RB (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM rdong2013@berkeley.edu FU NASA through Hubble Fellowship [HST-HF-51333.01-A, HST-HF-51320.01-A]; Space Telescope Science Institute [NAS 5-26555]; NASA; NSF; NSERC; Center for Integrative Planetary Science at the University of California, Berkeley; Ambrose Monell Foundation; National Science Foundation Graduate Research Fellowship Program [2015209499]; NASAs Science Mission Directorate; UC Berkeley Vice Chancellor for Research; Berkeley Center for Integrative Planetary Science FX We thank Daniel Apai and Paul Duffell for useful discussions, and are grateful to the anonymous referee for constructive suggestions that improved the quality of the paper. This project is supported by NASA through Hubble Fellowship grants HST-HF-51333.01-A (Z.Z.) and HST-HF-51320.01-A (R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. E.C. acknowledges support from NASA and the NSF. J.F. is grateful for the support from NSERC and the Center for Integrative Planetary Science at the University of California, Berkeley. R.R. is an IBM Einstein Fellow at IAS; he acknowledges support from NSF, NASA, and Ambrose Monell Foundation. K.W. is supported by the National Science Foundation Graduate Research Fellowship Program under grant No. 2015209499. The results reported herein benefited from collaborations and/or information exchange within NASAs Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASAs Science Mission Directorate. Numerical calculations were performed on the SAVIO cluster provided by the Berkeley Research Computing program, supported by the UC Berkeley Vice Chancellor for Research and the Berkeley Center for Integrative Planetary Science. NR 34 TC 9 Z9 9 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 1 PY 2016 VL 816 IS 1 AR L12 DI 10.3847/2041-8205/816/1/L12 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7AE UT WOS:000369369900012 ER PT J AU Werner, GR Uzdensky, DA Cerutti, B Nalewajko, K Begelman, MC AF Werner, G. R. Uzdensky, D. A. Cerutti, B. Nalewajko, K. Begelman, M. C. TI THE EXTENT OF POWER-LAW ENERGY SPECTRA IN COLLISIONLESS RELATIVISTIC MAGNETIC RECONNECTION IN PAIR PLASMAS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; galaxies: jets; gamma-ray burst: general; magnetic reconnection; pulsars: general; relativistic processes ID GAMMA-RAY FLARES; PARTICLE-ACCELERATION; CRAB-NEBULA; ELECTRON ACCELERATION; NONTHERMAL PARTICLES; CURRENT SHEET; DISSIPATION; SIMULATIONS; BLAZARS; WIND AB Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations sigma and system sizes. L. The particle spectra are well-represented by a power law gamma(-alpha), with a combination of exponential and super-exponential high-energy cutoffs, proportional to sigma and L, respectively. For large L and sigma, the power-law index alpha approaches about 1.2. C1 [Werner, G. R.; Uzdensky, D. A.] Univ Colorado, Dept Phys, Ctr Integrated Plasma Studies, 390 UCB, Boulder, CO 80309 USA. [Cerutti, B.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Nalewajko, K.; Begelman, M. C.] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. [Cerutti, B.] NIST, 440 UCB, Boulder, CO 80309 USA. [Nalewajko, K.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Nalewajko, K.] Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Begelman, M. C.] Dept Astrophys & Planetary Sci, 391 UCB, Boulder, CO 80309 USA. RP Werner, GR (reprint author), Univ Colorado, Dept Phys, Ctr Integrated Plasma Studies, 390 UCB, Boulder, CO 80309 USA. EM Greg.Werner@colorado.edu OI Cerutti, Benoit/0000-0001-6295-596X FU DOE [DE-SC0008409, DE-SC0008655]; NASA [NNX12AP17G]; NSF [AST-1411879, 0171134, 0933959, 1041709, 1041710, CNS-0821794]; National Science Foundation (NSF) [ACI-1053575]; University of Tennessee through the use of the Kraken computing resource at the National Institute for Computational Sciences; University of Colorado Boulder FX This work was supported by DOE grants DE-SC0008409 and DE-SC0008655, NASA grant NNX12AP17G, and NSF grant AST-1411879. Numerical simulations were made possible by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation (NSF) grant number ACI-1053575-and in particular by the NSF under Grant numbers 0171134, 0933959, 1041709, and 1041710 and the University of Tennessee through the use of the Kraken computing resource at the National Institute for Computational Sciences (www.nics.tennessee.edu/). This work also used the Janus supercomputer, which is supported by the NSF (award number CNS-0821794) and the University of Colorado Boulder; the Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. We gratefully acknowledge the developers responsible for the Vorpal code. NR 41 TC 15 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 1 PY 2016 VL 816 IS 1 AR L8 DI 10.3847/2041-8205/816/1/L8 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7AE UT WOS:000369369900008 ER PT J AU Murray-Tortarolo, G Friedlingstein, P Sitch, S Jaramillo, VJ Murguia-Flores, F Anav, A Liu, Y Arneth, A Arvanitis, A Harper, A Jain, A Kato, E Koven, C Poulter, B Stocker, BD Wiltshire, A Zaehle, S Zeng, N AF Murray-Tortarolo, G. Friedlingstein, P. Sitch, S. Jaramillo, V. J. Murguia-Flores, F. Anav, A. Liu, Y. Arneth, A. Arvanitis, A. Harper, A. Jain, A. Kato, E. Koven, C. Poulter, B. Stocker, B. D. Wiltshire, A. Zaehle, S. Zeng, N. TI The carbon cycle in Mexico: past, present and future of C stocks and fluxes SO BIOGEOSCIENCES LA English DT Article ID TERRESTRIAL ECOSYSTEMS; NITROGEN LIMITATION; EDDY COVARIANCE; CLIMATE MODEL; ELEVATED CO2; PRODUCTIVITY; UNCERTAINTY; DIOXIDE; BALANCE; BIOMASS AB We modeled the carbon (C) cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers) to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000-2005), the past century (1901-2000) and the remainder of this century (2010-2100). Our estimate of the gross primary productivity (GPP) for the country was 2137 +/- 1023 TgC yr(-1) and a total C stock of 34 506 +/- 7483 TgC, with 20 347 +/- 4622 TgC in vegetation and 14 159 +/- 3861 in the soil. Contrary to other current estimates for recent decades, our results showed that Mexico was a C sink over the period 1990-2009 (C 31 TgC yr(-1) ) and that C accumulation over the last century amounted to 1210 +/- 1040 TgC. We attributed this sink to the CO2 fertilization effect on GPP, which led to an increase of 3408 +/- 1060 TgC, while both climate and land use reduced the country C stocks by -458 +/- 1001 and -1740 +/- 878 TgC, respectively. Under different future scenarios, the C sink will likely continue over the 21st century, with decreasing C uptake as the climate forcing becomes more extreme. Our work provides valuable insights on relevant driving processes of the C cycle such as the role of drought in drylands (e.g., grasslands and shrublands) and the impact of climate change on the mean residence time of soil C in tropical ecosystems. C1 [Murray-Tortarolo, G.; Friedlingstein, P.; Anav, A.; Harper, A.] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England. [Sitch, S.] Univ Exeter, Coll Life & Environm Sci, Exeter, Devon, England. [Jaramillo, V. J.] Univ Nacl Autonoma Mexico, Inst Invest Ecosistemas & Sustentabilidad, Morelia, Michoacan, Mexico. [Murguia-Flores, F.] Univ Bristol, Sch Geol Sci, Bristol, Avon, England. [Liu, Y.] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia. [Arneth, A.; Arvanitis, A.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany. [Jain, A.] Univ Illinois, Dept Atmospher Sci, Urbana, IL USA. [Kato, E.] Inst Appl Energy, Div Res & Dev, Global Environm Program, Tokyo, Japan. [Koven, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Poulter, B.] Montana State Univ, Inst Ecosyst, Bozeman, MT 59717 USA. [Poulter, B.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Stocker, B. D.] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, London, England. [Wiltshire, A.] Meteorol Off, Hadley Ctr, Exeter, Devon, England. [Zaehle, S.] Max Planck Inst Biogeochem, Biogeochem Intergrat Dept, D-07745 Jena, Germany. [Zeng, N.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Zeng, N.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Murray-Tortarolo, G (reprint author), Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England. EM gnm202@exeter.ac.uk RI Koven, Charles/N-8888-2014; Zeng, Ning/A-3130-2008; Friedlingstein, Pierre/H-2700-2014; Liu, Yi/M-7169-2015; Stocker, Benjamin/K-3194-2015; Jain, Atul/D-2851-2016; Zaehle, Sonke/C-9528-2017 OI Koven, Charles/0000-0002-3367-0065; Zeng, Ning/0000-0002-7489-7629; Liu, Yi/0000-0001-9059-8269; Stocker, Benjamin/0000-0003-2697-9096; Jain, Atul/0000-0002-4051-3228; Zaehle, Sonke/0000-0001-5602-7956 FU CONACYT-CECTI; University of Exeter; Secretaria de Educacion Publica (SEP); European Commission [603542]; Joint UK DECC/Defra Met Office Hadley Centre Climate Programme [GA01101] FX The lead author (G. Murray-Tortarolo) thanks CONACYT-CECTI, the University of Exeter and Secretaria de Educacion Publica (SEP) for their funding of this project. The authors extend their thanks to Carlos Ortiz Solorio and to the Colegio de Posgraduados for the field soil data and to the Alianza Redd + Mexico for the field biomass data. This project would not have been possible without the valuable data from the CMIP5 models. A. Arneth, G. Murray-Tortarolo, A. Wiltshire and S. Sitch acknowledge the support of the European Commission-funded project LULCC4C (grant no. 603542). A. Wiltshire was part-supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). NR 58 TC 1 Z9 1 U1 10 U2 31 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 1 BP 223 EP 238 DI 10.5194/bg-13-223-2016 PG 16 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC9EN UT WOS:000369524000015 ER PT J AU Zhu, Q Riley, WJ Tang, J Koven, CD AF Zhu, Q. Riley, W. J. Tang, J. Koven, C. D. TI Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests SO BIOGEOSCIENCES LA English DT Article ID CALIFORNIA ANNUAL GRASSLAND; NITROGEN LIMITATION; TERRESTRIAL ECOSYSTEMS; ELEVATED CO2; BOREAL FORESTS; PHOSPHORUS LIMITATION; LITTER DECOMPOSITION; SENSITIVITY-ANALYSIS; GLOBAL PATTERNS; CARBON-DIOXIDE AB Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models. C1 [Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Climate Sci Dept, Berkeley, CA 94720 USA. RP Zhu, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Climate Sci Dept, Berkeley, CA 94720 USA. EM qzhu@lbl.gov RI Tang, Jinyun/M-4922-2013; Koven, Charles/N-8888-2014; Riley, William/D-3345-2015; ZHU, QING/G-2433-2015 OI Tang, Jinyun/0000-0002-4792-1259; Koven, Charles/0000-0002-3367-0065; Riley, William/0000-0002-4615-2304; ZHU, QING/0000-0003-2441-944X FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract no. DE-AC02-05CH11231 as part of the Regional and Global Climate Modeling (RGCM) and ACME programs. NR 121 TC 6 Z9 7 U1 13 U2 48 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 1 BP 341 EP 363 DI 10.5194/bg-13-341-2016 PG 23 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC9EN UT WOS:000369524000023 ER PT J AU Villa, A Wang, D Chan-Thaw, CE Campisi, S Veith, GM Prati, L AF Villa, Alberto Wang, Di Chan-Thaw, Carine E. Campisi, Sebastiano Veith, Gabriel M. Prati, Laura TI The confinement effect on the activity of Au NPs in polyol oxidation SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID MULTIWALLED CARBON NANOTUBES; LIQUID-PHASE OXIDATION; SELECTIVE OXIDATION; METAL NANOPARTICLES; GLYCEROL OXIDATION; GOLD CATALYSTS; BIMETALLIC CATALYSTS; HYDROGENATION; CINNAMALDEHYDE; REACTIVITY AB We demonstrate a confinement effect where gold nanoparticles trapped within N-functionalized carbon nanofibers (N-CNFs) are more active for polyol oxidation and promote selectivity towards di-acid products, whereas AuNPs trapped on the surface produce as a major by-product the one derived from C-C cleavage. The behaviour of NPs confined inside the N-CNF channels can be attributed to a different, possibly multiple, coordination of glycerol on the active site. C1 [Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; Prati, Laura] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy. [Wang, Di] Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Wang, Di] Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Prati, L (reprint author), Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy. EM Laura.Prati@unimi.it RI Villa, Alberto/H-7355-2013; Campisi, Sebastiano/N-9722-2013; Prati, Laura/Q-3970-2016; Chan-Thaw, Carine /O-9785-2014 OI Villa, Alberto/0000-0001-8656-6256; Prati, Laura/0000-0002-8227-9505; Chan-Thaw, Carine /0000-0002-7330-9629 NR 29 TC 0 Z9 0 U1 6 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 3 BP 598 EP 601 DI 10.1039/c5cy01593f PG 4 WC Chemistry, Physical SC Chemistry GA DC9HZ UT WOS:000369533400001 ER PT J AU Villa, A Freakley, SJ Schiavoni, M Edwards, JK Hammond, C Veith, GM Wang, W Wang, D Prati, L Dimitratos, N Hutchings, GJ AF Villa, Alberto Freakley, Simon J. Schiavoni, Marco Edwards, Jennifer K. Hammond, Ceri Veith, Gabriel M. Wang, Wu Wang, Di Prati, Laura Dimitratos, Nikolaos Hutchings, Graham J. TI Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting AuPd on oxygen functionalized carbon nanofibers SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID BENZYL ALCOHOL OXIDATION; PD CATALYSTS; SELECTIVE OXIDATION; PEROXIDE; NANOPARTICLES; PALLADIUM; O-2; H-2; NANOCARBON AB In this work, we show that the introduction of acidic oxygen functionalities to the surface of carbon nanofibers serves to depress the hydrogenation and the decomposition of hydrogen peroxide during the direct synthesis of H2O2. Moreover, the presence of acidic groups enhances the H2O2 productivity in the case of supported AuPd nanoparticles. C1 [Villa, Alberto; Schiavoni, Marco; Prati, Laura] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy. [Freakley, Simon J.; Edwards, Jennifer K.; Hammond, Ceri; Dimitratos, Nikolaos; Hutchings, Graham J.] Cardiff Univ, Sch Chem, Main Bldg,Pk Pl, Cardiff CF103AT, S Glam, Wales. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Wang, Wu; Wang, Di] Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Wang, Di] Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. RP Villa, A (reprint author), Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy.; Hutchings, GJ (reprint author), Cardiff Univ, Sch Chem, Main Bldg,Pk Pl, Cardiff CF103AT, S Glam, Wales. EM alberto.villa@unimi.it; hutch@cardiff.ac.uk RI Dimitratos, Nikolaos/B-8787-2008; Villa, Alberto/H-7355-2013; Prati, Laura/Q-3970-2016 OI Dimitratos, Nikolaos/0000-0002-6620-4335; Villa, Alberto/0000-0001-8656-6256; Prati, Laura/0000-0002-8227-9505 FU U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (GMV-XPS), Karlsruhe Nano Micro Facility (KNMF) FX Research partially supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (GMV-XPS), Karlsruhe Nano Micro Facility (KNMF). NR 28 TC 1 Z9 1 U1 7 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 3 BP 694 EP 697 DI 10.1039/c5cy01880c PG 4 WC Chemistry, Physical SC Chemistry GA DC9HZ UT WOS:000369533400012 ER PT J AU Johnson, RL Perras, FA Kobayashi, T Schwartz, TJ Dumesic, JA Shanks, BH Pruski, M AF Johnson, Robert L. Perras, Frederic A. Kobayashi, Takeshi Schwartz, Thomas J. Dumesic, James A. Shanks, Brent H. Pruski, Marek TI Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR SO CHEMICAL COMMUNICATIONS LA English DT Article ID DYNAMIC NUCLEAR-POLARIZATION; SOLID-STATE NMR; SELECTIVE HYDROGENATION; C-13 NMR; SPECTROSCOPY; PD/AL2O3; ENHANCEMENT; CHEMICALS; EFFICIENT AB DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on gamma-Al2O3-supported Pd nanoparticle catalysts. By offering >2500-fold time savings, the technique enabled the observation of C-13-C-13 cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface. C1 [Johnson, Robert L.; Shanks, Brent H.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Schwartz, Thomas J.; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Schwartz, Thomas J.] Univ Maine, Dept Chem & Biol Engn, Orono, ME 04469 USA. RP Pruski, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Pruski, M (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM mpruski@iastate.edu OI Schwartz, Thomas/0000-0002-2788-8519 FU U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; National Science Foundation Engineering Research Center program [EEC-0813570]; LDRD program; Iowa State University [DE-AC02-07CH11358] FX The authors are indebted to Dr K. Schmidt-Rohr for helpful discussions. This research is supported by the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and the National Science Foundation Engineering Research Center program (EEC-0813570). Support for F. P. is through a Spedding Fellowship funded by the LDRD program. Ames Laboratory is operated for the DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 35 TC 8 Z9 8 U1 18 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 9 BP 1859 EP 1862 DI 10.1039/c5cc06788j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DC9XU UT WOS:000369575700020 PM 26675287 ER PT J AU Li, B Woods, J Siewenie, J Hah, HY Johnson, JA Johnson, CE Louca, D AF Li, Bing Woods, John Siewenie, Joan Hah, Hien-Yoong Johnson, Jacqueline A. Johnson, Charles E. Louca, Despina TI The magnetic and crystal structures of Sr1-delta FeO2-xFx, a new oxyfluoride SO CHEMICAL COMMUNICATIONS LA English DT Article ID LANIO3 PEROVSKITE; REDUCED FORMS; IRON; SUPERCONDUCTIVITY; ENVIRONMENT; ABSORPTION; CENTERS; PHASES; STATES; OXIDE AB A new quasi-two-dimensional oxyfluoride, Sr1-delta FeO2-xFx, has been successfully synthesized by combining topotactic fluoridation and CaH2 reduction. The introduction of F through this synthesis provides a new route to introducing charge carriers into the square layered lattice through the formation of Fe1+ ions. While the average crystal symmetry and magnetic structure remain the same as in the parent compound, the addition of F results in an enhanced buckling of the Fe(O/F)(2) square plaquettes that is most likely topologically driven. C1 [Li, Bing; Woods, John; Louca, Despina] Univ Virginia, Dept Phys, 382 McCormick Rd, Charlottesville, VA 22904 USA. [Siewenie, Joan] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Hah, Hien-Yoong; Johnson, Jacqueline A.] Univ Tennessee, Inst Space, Mech Aerosp & Biomed Engn, Tullahoma, TN 37388 USA. [Hah, Hien-Yoong; Johnson, Jacqueline A.; Johnson, Charles E.] Univ Tennessee, Ctr Laser Applicat, Inst Space, Tullahoma, TN 37388 USA. RP Louca, D (reprint author), Univ Virginia, Dept Phys, 382 McCormick Rd, Charlottesville, VA 22904 USA. EM louca@virginia.edu RI Song, Yanlin/D-1230-2015; Li, Bing /A-4610-2010 FU Department of Energy [DE-FG02-01ER45927] FX This work has been supported by Department of Energy, Grant number DE-FG02-01ER45927. Thanks go to Junjie Yang for his help repeating the sample preparation process. NR 32 TC 0 Z9 0 U1 8 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 11 BP 2386 EP 2389 DI 10.1039/c5cc04497a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DD0CL UT WOS:000369587800041 PM 26734691 ER PT J AU Yu, GY Wang, X Cao, JG Wu, SJ Yan, WF Liu, G AF Yu, Guiyang Wang, Xiang Cao, Jungang Wu, Shujie Yan, Wenfu Liu, Gang TI Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution SO CHEMICAL COMMUNICATIONS LA English DT Article ID VISIBLE-LIGHT; GOLD NANOPARTICLES; CORE/SHELL NANOCRYSTALS; CHEMICAL ENERGY; O-2 EVOLUTION; WATER; NANOSTRUCTURES; GENERATION; RESONANCE; SURFACE AB The activity and stability of CdS for visible-light-driven hydrogen evolution could be significantly enhanced by embedding plasmonic Au nanoparticles. The plasmon resonance energy field of Au nanoparticles could increase the formation rate and lifetime of e(-)/h(+) pairs in CdS semiconductors. C1 [Yu, Guiyang; Cao, Jungang; Wu, Shujie; Liu, Gang] Jilin Univ, Coll Chem, Key Lab Surface & Interface Chem Jilin Prov, Jiefang Rd 2519, Changchun 130012, Peoples R China. [Wang, Xiang] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Yan, Wenfu] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Qianjin Rd 2699, Changchun 130012, Peoples R China. RP Liu, G (reprint author), Jilin Univ, Coll Chem, Key Lab Surface & Interface Chem Jilin Prov, Jiefang Rd 2519, Changchun 130012, Peoples R China. EM lgang@jlu.edu.cn FU National Natural Science Foundation of China [21473073]; Development Project of Science and Technology of Jilin Province [20130101014JC]; Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX The authors acknowledge supports from the National Natural Science Foundation of China (21473073), the Development Project of Science and Technology of Jilin Province (20130101014JC), and the Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry. Dr Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this study. NR 45 TC 11 Z9 11 U1 17 U2 66 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 11 BP 2394 EP 2397 DI 10.1039/c5cc10066f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DD0CL UT WOS:000369587800043 PM 26732587 ER PT J AU Donovan, ES Barry, BM Larsen, CA Wirtz, MN Geiger, WE Kemp, RA AF Donovan, Elizabeth S. Barry, Brian M. Larsen, Christopher A. Wirtz, Melissa N. Geiger, William E. Kemp, Richard A. TI Facilitated carbon dioxide reduction using a Zn(II) complex (vol 52, pg 1685, 2016) SO CHEMICAL COMMUNICATIONS LA English DT Correction C1 [Donovan, Elizabeth S.; Larsen, Christopher A.; Wirtz, Melissa N.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Barry, Brian M.] Univ Wisconsin Platteville, Dept Chem, Platteville, WI 53818 USA. [Geiger, William E.] Univ Vermont, Dept Chem, Burlington, VT 05405 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA.; Kemp, RA (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM rakemp@unm.edu NR 1 TC 0 Z9 0 U1 2 U2 5 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 13 BP 2854 EP 2854 DI 10.1039/c6cc90050j PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA DD0WW UT WOS:000369642800047 PM 26812211 ER PT J AU Rudolf, M Kirner, SV Guldi, DM AF Rudolf, M. Kirner, S. V. Guldi, D. M. TI A multicomponent molecular approach to artificial photosynthesis - the role of fullerenes and endohedral metallofullerenes SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID PHOTOINDUCED ELECTRON-TRANSFER; CHARGE-SEPARATED-STATE; REACTION-CENTER COMPLEX; DONOR-ACCEPTOR CONJUGATE; INTRAMOLECULAR ELECTRON; ELECTROCHEMICAL PROPERTIES; PHOTOPHYSICAL PROPERTIES; CONVERGENT SYNTHESIS; ENERGY-TRANSFER; MIMICKING PHOTOSYNTHESIS AB In this review article, we highlight recent advances in the field of solar energy conversion at a molecular level. We focus mainly on investigations regarding fullerenes as well as endohedral metallofullerenes in energy and/or electron donor-acceptor conjugates, hybrids, and arrays, but will also discuss several more advanced systems. Hereby, the mimicry of the fundamental processes occurring in natural photosynthesis, namely light harvesting (LH), energy transfer (EnT), reductive/oxidative electron transfer (ET), and catalysis (CAT), which serve as a blue print for the rational design of artificial photosynthetic systems, stand at the focalpoint. Importantly, the key processes in photosynthesis, that is, LH, EnT, ET, and CAT, define the structure of this review with the only further differentiation in terms of covalent and non-covalent systems. Fullerenes as well as endohedral metallofullerenes are chosen by virtue of their small reorganization energies in electron transfer processes, on the one hand, and their exceptional redox behaviour, on the other hand. C1 [Rudolf, M.; Kirner, S. V.; Guldi, D. M.] Univ Erlangen Nurnberg, Dept Chem & Pharm, Egerlandstr 3, D-91058 Erlangen, Germany. [Rudolf, M.; Kirner, S. V.; Guldi, D. M.] Univ Erlangen Nurnberg, Interdisciplinary Ctr Mol Mat ICMM, Egerlandstr 3, D-91058 Erlangen, Germany. [Guldi, D. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Guldi, DM (reprint author), Univ Erlangen Nurnberg, Dept Chem & Pharm, Egerlandstr 3, D-91058 Erlangen, Germany.; Guldi, DM (reprint author), Univ Erlangen Nurnberg, Interdisciplinary Ctr Mol Mat ICMM, Egerlandstr 3, D-91058 Erlangen, Germany.; Guldi, DM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM dirk.guldi@fau.de RI Guldi, Dirk/G-1422-2015 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 141 TC 15 Z9 15 U1 7 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 EI 1460-4744 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2016 VL 45 IS 3 BP 612 EP 630 DI 10.1039/c5cs00774g PG 19 WC Chemistry, Multidisciplinary SC Chemistry GA DC9HO UT WOS:000369532200010 PM 26744992 ER PT J AU Zhao, YX Zhu, K AF Zhao, Yixin Zhu, Kai TI Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID HETEROJUNCTION SOLAR-CELLS; HOLE-CONDUCTOR-FREE; PLANAR CH3NH3PBI3 PEROVSKITE; LIGHT-EMITTING-DIODES; POWER CONVERSION EFFICIENCY; HIGH-PERFORMANCE PEROVSKITE; SOLUTION-PROCESSED PEROVSKITE; CARBON COUNTER ELECTRODE; OPEN-CIRCUIT VOLTAGE; BY-LAYER GROWTH AB Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. C1 [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. [Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Zhao, YX (reprint author), Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China.; Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM yixin.zhao@sjtu.edu.cn; kai.zhu@nrel.gov RI Zhao, Yixin/D-2949-2012 FU NSFC [51372151, 21303103]; U.S. Department of Energy [DE-AC36-08-GO28308]; Hybrid Perovskite Solar Cell Program of the National Center for Photovoltaics - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office FX Y. Z. is thankful for the support of the NSFC (Grants 51372151 and 21303103). The work at the National Renewable Energy Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. K.Z. acknowledges the support by the Hybrid Perovskite Solar Cell Program of the National Center for Photovoltaics funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. NR 366 TC 76 Z9 76 U1 183 U2 604 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 EI 1460-4744 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2016 VL 45 IS 3 BP 655 EP 689 DI 10.1039/c4cs00458b PG 35 WC Chemistry, Multidisciplinary SC Chemistry GA DC9HO UT WOS:000369532200012 PM 26645733 ER PT J AU Massoudi, M Kim, J Wang, P AF Massoudi, Mehrdad Kim, Jeongho Wang, Ping TI On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review SO ENERGIES LA English DT Review DE thermal conductivity; heat conduction; slag; gasification; non-Newtonian fluids; constitutive relations; coal ID FLOWING GRANULAR-MATERIALS; FOURIERS LAW; COAL ASH; MOLTEN SLAGS; PART II; DIFFUSIVITY; DEPOSITS; THERMOELASTICITY; GASIFICATION; DEPARTURES AB The viscosity and the thermal conductivity of slag are among two of the most important material properties that need to be studied. In this paper we review the existing theoretical and experimental correlations for the thermal conductivity of slag. However, since, in general, slag behaves as a non-linear fluid, it is the heat flux vector which must be studied. Both explicit and implicit approaches are discussed and suggestions about the form of the heat flux vector and the thermal conductivity and their dependence on shear rate, porosity, deformation, etc. are provided. The discussion of the constitutive modeling of the heat flux vector for slag is from a theoretical perspective. C1 [Massoudi, Mehrdad; Wang, Ping] US Dept Energy DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. [Kim, Jeongho] Kyung Hee Univ, Dept Mech Engn, Yongin 446701, Kyunggi Do, South Korea. RP Massoudi, M (reprint author), US Dept Energy DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM mehrdad.massoudi@netl.doe.gov; kim.enoch@gmail.com; ping.wang@netl.doe.gov NR 81 TC 0 Z9 0 U1 2 U2 17 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD JAN PY 2016 VL 9 IS 1 DI 10.3390/en9010027 PG 23 WC Energy & Fuels SC Energy & Fuels GA DC8WR UT WOS:000369501100016 ER PT J AU Louw, EB Mitchell, GD Wang, J Winans, RE Mathews, JP AF Louw, Enette B. Mitchell, Gareth D. Wang, Juan Winans, Randall E. Mathews, Jonathan P. TI Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals SO ENERGY & FUELS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PULVERIZED-COAL; HEAT-TREATMENT; COMBUSTION REACTIVITY; STRUCTURAL EVOLUTION; BITUMINOUS COAL; PYROLYSIS; MACERALS; GASIFICATION; ADSORPTION AB The structural transformations of two Permian-aged South African coals, one vitrinite-rich [91.8% dry mineral matter free (dmmf)] and one inertinite-rich (87.7% dmmf), and their resultant char morphologies were compared in this study. With these two maceral-rich coals, the opportunity presented itself to compare the degree of thermoplasticity during coal-to-char formations for the macerals without the need to use maceral separation techniques. The thermoplasticity is affected by its petrographic composition and, consequently, influences the combustion behavior. Pyrolysis chars were generated from wet-screened coal (200 x 400 mesh), under rapid-heating conditions (10(4)-10(5) degrees C/s) in a drop-tube reactor, to closely resemble chars generated in pulverized combustion conditions. The chemical and physical structures of the chars were characterized through a range of different analytical techniques, including scanning electron microscopy, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), nitrogen adsorption, and optical microscopy, to quantify the factors contributing to reactivity differences. Results indicated that the inertinite-rich coal experienced limited fluidity during heat treatment, resulting in slower devolatilization, limited growth in crystallite height (11.812.6 angstrom), and only rounding of particle edges and producing >40% of mixed dense-type chars. The vitrinite char showed more significant structural transformations, producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.311.7 angstrom). Nitrogen adsorption revealed that both chars were mostly mesoporous but that the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area (3.9 m(2)/g compared to 2.7 m(2)/g). SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char, 1.6 and 2.0 g/cm(3) compared to 1.3 and 1.9 g/cm(3) (on a dry basis). To evaluate combustion reactivity, non-isothermal burnout profiles were obtained through thermogravimetrical analysis in air. The burnout profiles showed that the inertinite-rich char had a burnout temperature of 680 degrees C, slightly higher than that of the vitrinite-rich char, of 650 degrees C. This along with the peak shape and position in the burnout profiles indicates that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors, likely including less organization, greater porosity and access to the reactive site, less ash blocking, and char morphology differences. The char samples were de-ashed, which resulted in an increase in combustion reactivity, because the ash acted as a barrier to the reactive surface area. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased 80% after de-ashing, while the vitrinite-rich char, with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. C1 [Louw, Enette B.; Mitchell, Gareth D.; Mathews, Jonathan P.] Penn State Univ, Earth & Mineral Sci EMS Energy Inst, John & Willie Leone Dept Energy & Mineral Engn, 126 Hosler Bldg, University Pk, PA 16802 USA. [Wang, Juan; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wang, Juan] Peac Inst Multiscale Sci, Chengdu 610207, Sichuan, Peoples R China. [Louw, Enette B.] Sasol Grp Technol, Res & Technol, POB 1, ZA-1947 Sasolburg, Free State, South Africa. RP Mathews, JP (reprint author), Penn State Univ, Earth & Mineral Sci EMS Energy Inst, John & Willie Leone Dept Energy & Mineral Engn, 126 Hosler Bldg, University Pk, PA 16802 USA. EM jmathews@psu.edu FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to thank Nichole Wonderling for her assistance with the XRD analyses. NR 50 TC 1 Z9 1 U1 7 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2016 VL 30 IS 1 BP 112 EP 120 DI 10.1021/acs.energyfuels.5b01517 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DB6US UT WOS:000368651800014 ER PT J AU Klinger, J Bar-Ziv, E Shonnard, D Westover, T Emerson, R AF Klinger, Jordan Bar-Ziv, Ezra Shonnard, David Westover, Tyler Emerson, Rachel TI Predicting Properties of Gas and Solid Streams by Intrinsic Kinetics of Fast Pyrolysis of Wood SO ENERGY & FUELS LA English DT Article ID VOLATILE SPECIES RELEASE; SCREW CONVEYOR REACTOR; OF-THE-ART; BIOMASS PYROLYSIS; TORREFACTION KINETICS; PRODUCT DISTRIBUTION; TORREFIED BIOMASS; OIL PROPERTIES; BIO-OILS; LIGNIN AB Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, and verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. Close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition. C1 [Klinger, Jordan; Bar-Ziv, Ezra] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA. [Shonnard, David] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA. [Shonnard, David] Michigan Technol Univ, Sustainable Futures Inst, Houghton, MI 49931 USA. [Westover, Tyler; Emerson, Rachel] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Klinger, J (reprint author), Michigan Tech, 815 MEEM 1400 Townsend Dr, Houghton, MI 49931 USA. EM jlklinge@mtu.edu FU National Science Foundation [MPS/CHE - ENG/ECCS - 1230803]; Richard and Bonnie Robbins Endowment FX The authors would like to acknowledge the assistance of Daniel Carpenter (NREL), Steve Deutch (NREL), and Daniel Howe (PNNL) and the technical discussion of their work. We also acknowledge the National Science Foundation for support of this work through grant MPS/CHE - ENG/ECCS - 1230803 Sustainable Energy Pathways and the Richard and Bonnie Robbins Endowment. NR 50 TC 0 Z9 0 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2016 VL 30 IS 1 BP 318 EP 325 DI 10.1021/acs.energyfuels.5b01877 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DB6US UT WOS:000368651800037 ER PT J AU Bates, RB Altantzis, C Ghoniem, AF AF Bates, Richard B. Altantzis, Christos Ghoniem, Ahmed F. TI Modeling of Biomass Char Gasification, Combustion, and Attrition Kinetics in Fluidized Beds SO ENERGY & FUELS LA English DT Article ID CARBON CONVERSION; STEAM GASIFICATION; FUEL COMBUSTION; COAL GASIFIERS; SEWAGE-SLUDGE; MASS-TRANSFER; PARTICLES; WOOD; GAS; AIR AB Char conversion is one of the most pivotal factors governing the effectiveness of fluidized bed gasification systems. Gasification-assisted attrition is a phenomenon whereby heterogeneous reactions progressively weaken a chars structure throughout its lifetime leading to enhanced attrition and the production of a significant fraction of fines that exit the reactor unconverted. While this effect has been observed and measured experimentally, few models have been developed to quantitatively account for it, particularly for biomass chars. In this study, a transient gasification and combustion particle model is presented to describe primary fragmentation, attrition, and heterogeneous reactions of a single batch of particles. A conversion-dependent structural function is proposed to describe gasification-assisted attrition, and the model parameters are fitted to published experimental data from Ammendola, P.; Chirone, R.; Ruoppolo, G.; Scala, F. Proc. Combust. Inst. 2013, 34 (2), 2735-2740. The fragile structure of char derived from wood chips contributes to a higher initial attrition rate than char from wood pellets, but the hardness of both feedstocks is shown to deteriorate rapidly as they convert. A shrinking particle combustion model which accounts for variable feedstock properties is comprehensively presented and validated against the aforementioned data set. The combustion behaviors of both feedstocks are found to strongly depend on particle size/geometry because of significant mass transfer limitations. Using a residence time distribution approach, the model is extended to describe a continuously fed system in order to examine the sensitivity of steady-state outputs (conversion and residence time) to the operating temperature, pressure, and kinetics. As the temperature increases, the char reactivity also increases but the coupled and competing effect of gasification-assisted attrition acts to shorten the residence time of the char particles making complete char conversion very difficult even at 900 degrees C-the upper operating temperature limit for most single-stage fluidized bed gasification systems. Low operating temperatures result in longer average residence times and higher steady-state char inventories, and slower kinetics lowers the overall conversion. Because of inhibition effects, elevated operating pressures have a smaller impact on improving conversion compared to higher temperature. The steady model further provides a rigorous method for estimating the maximum stable biomass feeding rates as a function of relevant independent parameters including reactor temperature, pressure, volume, and feedstock characteristics. C1 [Bates, Richard B.; Altantzis, Christos; Ghoniem, Ahmed F.] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Altantzis, Christos] Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. RP Bates, RB (reprint author), MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM rbates@mit.edu FU BP; U.S. Department of Energy FX We gratefully acknowledge BP for funding this research. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. We also thank Amelia Brooks for her help during the initial screening of transport-kinetics correlations. NR 68 TC 6 Z9 6 U1 6 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2016 VL 30 IS 1 BP 360 EP 376 DI 10.1021/acs.energyfuels.5b02120 PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DB6US UT WOS:000368651800042 ER PT J AU Westman, M Chun, J Choi, YJ Ronnebro, ECE AF Westman, Matthew Chun, Jaehun Choi, Young Joon Roennebro, Ewa C. E. TI Materials Engineering and Scale-up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications SO ENERGY & FUELS LA English DT Article ID AMMONIA BORANE; HYDRIDES; RELEASE AB Among candidates for chemical hydrogen storage in proton exchange membrane (PEM) fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt % below 200 degrees C. Motivated by our previous study based on a model slurry of AB in silicone oil, optimized with an ultrasonic process, we proceeded to scale-up to liter size batches with solid loadings up to 50 wt % (ca. 8 wt % H-2) with viscosities less than 1000 cP at 25 degrees C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Stable homogeneous slurry of high solid loading was shown as a viable hydrogen delivery source, based on the new and efficient processing techniques and the ability to adequately control the foaming. C1 [Westman, Matthew; Chun, Jaehun; Choi, Young Joon; Roennebro, Ewa C. E.] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Choi, Young Joon] Globalfoundries, 400 Stone Break Rd Extens, Malta, NY 12020 USA. RP Ronnebro, ECE (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM ewa.ronnebro@pnnl.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; Fuel Cells Technology Office (FCTO) Award [HI-470006-15] FX We acknowledge support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and the Fuel Cells Technology Office (FCTO) Award HI-470006-15. This work was performed at the Pacific Northwest National Laboratory (PNNL) as part of the Hydrogen Storage Engineering Center of Excellence. Abhi Karkamkar (PNNL), Kriston Brooks (PNNL), Jamie Holladay (PNNL), Kevin Simmons (former PNNL), and Troy Semelsberger (LANL) are acknowledged for fruitful discussions. Pacific Northwest National Laboratory is operated for U.S. DOE by Battelle. NR 20 TC 0 Z9 0 U1 6 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2016 VL 30 IS 1 BP 560 EP 569 DI 10.1021/acs.energyfuels.5b01975 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DB6US UT WOS:000368651800062 ER PT J AU Dwivedi, D Mohanty, BP AF Dwivedi, Dipankar Mohanty, Binayak P. TI Hot Spots and Persistence of Nitrate in Aquifers Across Scales SO ENTROPY LA English DT Article DE entropy analysis; nitrate-N in groundwater; temporal variability; spatial variability; multi-scale analysis; Hurst exponent ID GROUNDWATER QUALITY; ENTROPY THEORY; WATER-TABLE; CONTAMINATION; NITROGEN; VULNERABILITY; UNCERTAINTY; TRANSPORT; DYNAMICS; STREAMS AB Nitrate-N ( NO 3 - - N ) is one of the most pervasive contaminants in groundwater. Nitrate in groundwater exhibits long-term behavior due to complex interactions at multiple scales among various geophysical factors, such as sources of nitrate-N, characteristics of the vadose zone and aquifer attributes. To minimize contamination of nitrate-N in groundwater, it is important to estimate hot spots (>10 mg/L of NO 3 - - N ), trends and persistence of nitrate-N in groundwater. To analyze the trends and persistence of nitrate-N in groundwater at multiple spatio-temporal scales, we developed and used an entropy-based method along with the Hurst exponent in two different hydrogeologic settings: the Trinity and Ogallala Aquifers in Texas at fine (2 km x 2 km), intermediate (10 km x 10 km) and coarse (100 km x 100 km) scales. Results show that nitrate-N exhibits long-term persistence at the intermediate and coarse scales. In the Trinity Aquifer, overall mean nitrate-N has declined with a slight increase in normalized marginal entropy ( N M E ) over each decade from 1940 to 2008; however, the number of hot spots has increased over time. In the Ogallala Aquifer, overall mean nitrate-N has increased with slight moderation in N M E since 1940; however, the number of hot spots has significantly decreased for the same period at all scales. C1 [Dwivedi, Dipankar] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Mohanty, Binayak P.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. RP Dwivedi, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM DDwivedi@lbl.gov; bmohanty@tamu.edu FU EPA [319(h)]; National Institute of Environmental Health Sciences [5R01ES015634]; Texas Water Resources Institute; Texas AM [02130003] FX This research was supported by the EPA 319(h) grant for Total Maximum Daily Load (TMDL) in Texas streams and partly supported by the National Institute of Environmental Health Sciences (Grant 5R01ES015634), the Texas Water Resources Institute and Texas A&M support account number 02130003. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. NR 50 TC 1 Z9 1 U1 7 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD JAN PY 2016 VL 18 IS 1 DI 10.3390/e18010025 PG 15 WC Physics, Multidisciplinary SC Physics GA DC8RR UT WOS:000369487900004 ER PT J AU Olson, D Shapeev, AV Bochev, PB Luskin, M AF Olson, Derek Shapeev, Alexander V. Bochev, Pavel B. Luskin, Mitchell TI ANALYSIS OF AN OPTIMIZATION-BASED ATOMISTIC-TO-CONTINUUM COUPLING METHOD FOR POINT DEFECTS SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE LA English DT Article DE Atomistic-to-continuum coupling; atomic lattice; constrained optimization; point defect ID DECOMPOSITION; APPROXIMATION; DIMENSIONS; SOLIDS AB We formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates. C1 [Olson, Derek; Luskin, Mitchell] Univ Minnesota, Minneapolis, MN 55455 USA. [Shapeev, Alexander V.] Skolkovo Inst Sci & Technol, Skolkovo, Russia. [Bochev, Pavel B.] Sandia Natl Labs, Computat Math, POB 5800,MS 1320, Albuquerque, NM 87185 USA. RP Olson, D; Luskin, M (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA.; Shapeev, AV (reprint author), Skolkovo Inst Sci & Technol, Skolkovo, Russia.; Bochev, PB (reprint author), Sandia Natl Labs, Computat Math, POB 5800,MS 1320, Albuquerque, NM 87185 USA. EM olso4056@umn.edu; a.shapeev@skoltech.ru; pbboche@sandia.gov; luskin@umn.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program; AFOSR [FA9550-12-1-0187]; U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR); Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4); NSF PIRE Grant [OISE-0967140]; NSF [1310835]; DOE [DE-SC0012733] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; University of Minnesota, MN 55455, USA. DO was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. olso4056@umn.edu; Skolkovo Institute of Science and Technology, Skolkovo, Russie. AS was supported in part by the AFOSR Award FA9550-12-1-0187. a. shapeev@skoltech.ru; Sandia National Laboratories, Computational Mathematics, P.O. Box 5800, MS 1320, Albuquerque, NM 87185-1320, USA. pbboche@sandia.gov. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR). Part of this research was carried under the auspices of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).; University of Minnesota, MN 55455, USA. ML was supported in part by the NSF PIRE Grant OISE-0967140, NSF Grant 1310835, DOE Award DE-SC0012733. luskin@umn.edu NR 42 TC 2 Z9 2 U1 2 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0764-583X EI 1290-3841 J9 ESAIM-MATH MODEL NUM JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. PD JAN-FEB PY 2016 VL 50 IS 1 BP 1 EP 41 DI 10.1051/m2an/2015023 PG 41 WC Mathematics, Applied SC Mathematics GA DC5ZQ UT WOS:000369299700001 ER PT J AU Sanborn, B Gunnarsson, CA Foster, M Weerasooriya, T AF Sanborn, B. Gunnarsson, C. A. Foster, M. Weerasooriya, T. TI Quantitative Visualization of Human Cortical Bone Mechanical Response: Studies on the Anisotropic Compressive Response and Fracture Behavior as a Function of Loading Rate SO EXPERIMENTAL MECHANICS LA English DT Article DE Cortical bone; Image correlation; Fracture toughness; Failure criteria ID SPLIT HOPKINSON BAR; CRACK-GROWTH-RESISTANCE; COMPACT-BONE; DYNAMIC FRACTURE; TOUGHNESS; FAILURE; MICROCRACKING; STIFFNESS; TISSUE; AGE AB Blast and impact events regularly cause damage to human tissues. Efforts to improve protective gear are made through numerical simulation of these events where human tissues are exposed to high-rate loading conditions. Accurate simulation results can only be obtained if constitutive models are used that are based on precisely carried out experimental studies. Experimental studies on bone are challenging because of the relatively brittle nature of bone as well as the importance of the bone being in a hydrated state prior to experiments to avoid changing the mechanical properties. Past studies have utilized strain gages which require a period of drying time to bond strain gages to the surface of the bone. In this study, rate dependent fracture and compressive responses of wet human femur bone are investigated with in situ quantitative visualization. The fracture properties of cortical bone are studied transverse to the longitudinal axis of the bone up to high stress intensity factor rates, and the rate dependent compressive response is investigated in both longitudinal and transverse directions. The rate dependent nature of the fracture response, and the compressive behavior of human cortical bone over a range of rates from 0.001-1000 s-1 is discussed with the aid of quantitative visualization. C1 [Sanborn, B.; Foster, M.] US Army, Res Lab, ORISE, Aberdeen, MD USA. [Gunnarsson, C. A.; Weerasooriya, T.] Army Res Lab, Aberdeen, MD USA. RP Weerasooriya, T (reprint author), Army Res Lab, Aberdeen, MD USA. EM Brett.sanborn2.ctr@mail.mil; tusit.weerasooriya.civ@mail.mil NR 41 TC 0 Z9 0 U1 3 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD JAN PY 2016 VL 56 IS 1 SI SI BP 81 EP 95 DI 10.1007/s11340-015-0060-y PG 15 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA DC6JN UT WOS:000369326200007 ER PT J AU Morris, CL Brown, EN Agee, C Bernert, T Bourke, MAM Burkett, MW Buttler, WT Byler, DD Chen, CF Clarke, AJ Cooley, JC Gibbs, PJ Imhoff, SD Jones, R Kwiatkowski, K Mariam, FG Merrill, FE Murray, MM Olinger, CT Oro, DM Nedrow, P Saunders, A Terrones, G Trouw, F Tupa, D Vogan, W Winkler, B Wang, Z Zellner, MB AF Morris, C. L. Brown, E. N. Agee, C. Bernert, T. Bourke, M. A. M. Burkett, M. W. Buttler, W. T. Byler, D. D. Chen, C. F. Clarke, A. J. Cooley, J. C. Gibbs, P. J. Imhoff, S. D. Jones, R. Kwiatkowski, K. Mariam, F. G. Merrill, F. E. Murray, M. M. Olinger, C. T. Oro, D. M. Nedrow, P. Saunders, A. Terrones, G. Trouw, F. Tupa, D. Vogan, W. Winkler, B. Wang, Z. Zellner, M. B. TI New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE) SO EXPERIMENTAL MECHANICS LA English DT Article DE Proton radiography; Dynamic materials; Static applications; Tomography; Detonation propagation; Richtmyer-Meshov instability; Metal jets; Casting; Fuel rods; Chelyabinsk; Meteorite ID COMBUSTION SYNTHESIS; X-RAY; ACCELERATOR; FACILITY; TA5SI3; TI5SI3 AB An application of nuclear physics, a facility for using protons for flash radiography, has been developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recent experiments will be reviewed and concepts for new techniques are introduced. C1 [Morris, C. L.; Brown, E. N.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; Cooley, J. C.; Gibbs, P. J.; Imhoff, S. D.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Murray, M. M.; Olinger, C. T.; Oro, D. M.; Nedrow, P.; Saunders, A.; Terrones, G.; Trouw, F.; Tupa, D.; Vogan, W.; Wang, Z.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Agee, C.; Jones, R.] Univ New Mexico, Albuquerque, NM 87131 USA. [Bernert, T.; Winkler, B.] Goethe Univ Frankfurt, Inst Geowissensch, Abt Kristallog, Altenhoferallee 1, D-60438 Frankfurt, Germany. [Zellner, M. B.] US Army, Res Lab, RDRL WMP D, Aberdeen, MD 21005 USA. RP Morris, CL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM cmorris@lanl.gov OI Brown, Eric/0000-0002-6812-7820; Morris, Christopher/0000-0003-2141-0255; Tupa, Dale/0000-0002-6265-5016 FU U.S. Department of Energy (DOE) through LANL/LDRD Program [DE-AC5206NA25396]; U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was performed under the auspices of the U.S. Department of Energy under Contract DE-AC5206NA25396. This work benefited from important contributions from the LANSCE pRad team and accelerator staff. We gratefully acknowledge the support of the U.S. Department of Energy (DOE) through the LANL/LDRD Program for this work. A. J. C., S. D. I., P. J. G. and the casting mold filling experiment were supported by A. J. C.'s Early Career award from the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 44 TC 1 Z9 1 U1 3 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD JAN PY 2016 VL 56 IS 1 SI SI BP 111 EP 120 DI 10.1007/s11340-015-0077-2 PG 10 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA DC6JN UT WOS:000369326200009 ER PT J AU Pawelko, RJ Shimada, M Katayama, K Fukada, S Humrickhouse, PW Terai, T AF Pawelko, R. J. Shimada, M. Katayama, K. Fukada, S. Humrickhouse, P. W. Terai, T. TI Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Tritium; Permeation; Lead lithium eutectic; Mass transfer properties AB This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick alpha-Fe plate to determine operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the alpha-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (alpha-Fe/LLE). We present preliminary tritium permeation data for alpha-Fe and alpha-Fe/LLE at temperatures between 400 and 600 degrees C and at tritium partial pressures between 1.7E-03 and 2.5 Pa in helium. Preliminary results for the alpha-Fe plate and alpha-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. Additional data is required to determine the existence and range of a surface-limited regime. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pawelko, R. J.; Shimada, M.; Humrickhouse, P. W.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Katayama, K.; Fukada, S.] Kyushu Univ, Higashi Ku, Fukuoka 8128581, Japan. [Terai, T.] Univ Tokyo, Bunkyo Ku, Tokyo 1130032, Japan. RP Pawelko, RJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM robert.pawelko@inl.gov RI U-ID, Kyushu/C-5291-2016; OI Shimada, Masashi/0000-0002-1592-843X FU Battelle Energy Alliance, LLC [DE-AC07-05ID14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract Number. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 6 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD JAN PY 2016 VL 102 BP 8 EP 13 DI 10.1016/j.fusengdes.2015.11.005 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC8FQ UT WOS:000369455700002 ER PT J AU Pak, S Feder, R Giacomin, T Guirao, J Iglesias, S Josseaume, F Kalish, M Loesser, D Maquet, P Ordieres, J Panizo, M Pitcher, S Portales, M Proust, M Ronden, D Serikov, A Suarez, A Tanchuk, V Udintsev, V Vacas, C Walsh, M Zhai, YH AF Pak, Sunil Feder, Russell Giacomin, Thibaud Guirao, Julio Iglesias, Silvia Josseaume, Fabien Kalish, Michael Loesser, Douglas Maquet, Philippe Ordieres, Javier Panizo, Marcos Pitcher, Spencer Portales, Mickael Proust, Maxime Ronden, Dennis Serikov, Arkady Suarez, Alejandro Tanchuk, Victor Udintsev, Victor Vacas, Christian Walsh, Michael Zhai, Yuhu TI Final design of the generic upper port plug structure for ITER diagnostic systems SO FUSION ENGINEERING AND DESIGN LA English DT Article DE ITER diagnostics; Upper port plug structure; Final design AB The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review in 2013, is described here. The diagnostic port plug is cantilevered to the vacuum vessel with a heavy payload at the front, so called the diagnostic first wall (DFW) and the diagnostic shield module (DSM). Most of electromagnetic (EM) load (similar to 80%) occurs in DFW/DSM. Therefore, the mounting design to transfer the EM load from DFW/DSM to the GUPP structure is challenging, which should also comply with thermal expansion and tolerance for assembly and manufacturing. Another key design parameter to be considered is the gap between the port plug and the vacuum vessel port. The gap should be large enough to accommodate the remote handling of the heavy port plug (max. 25 t), the structural deflection due to external loads and machine assembly tolerance. At the same time, the gap should be minimized to stop the neutron streaming according to the ALARA (as low as reasonably achievable) principle. With these design constraints, the GUPP structure should also provide space for diagnostic integration as much as possible. This requirement has led to the single wall structure having the gun-drilled water channels inside the structure. Furthermore, intensive efforts have been made on the manufacturing study including material selection, manufacturing codes and French regulation related to nuclear equipment and safety. All these main design and manufacturing aspects are discussed in this paper, including requirements, interfaces, loads and structural assessment and maintenance. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pak, Sunil] Natl Fus Res Inst, Daejeon, South Korea. [Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia; Josseaume, Fabien; Maquet, Philippe; Pitcher, Spencer; Portales, Mickael; Suarez, Alejandro; Udintsev, Victor; Vacas, Christian; Walsh, Michael] ITER Org, F-13115 St Paul Les Durance, France. [Proust, Maxime] CEA, St Paul Les Durance, France. [Ordieres, Javier; Panizo, Marcos] NATEC, Ingenieros, Gijon, Spain. [Serikov, Arkady] Karlsruhe Inst Technol, Eggenstein Leopoldshafen, Germany. [Ronden, Dennis] FOM Inst DIFFER, Nieuwegein, Netherlands. [Feder, Russell; Kalish, Michael; Loesser, Douglas; Zhai, Yuhu] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Tanchuk, Victor] DV Efremov Sci Res Inst Electrophys Apparatus, St Petersburg, Russia. RP Pak, S (reprint author), Natl Fus Res Inst, Daejeon, South Korea. EM paksunil@nfri.re.kr OI Pak, Sunil/0000-0003-3478-159X NR 21 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD JAN PY 2016 VL 102 BP 21 EP 27 DI 10.1016/j.fusengdes.2015.11.016 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC8FQ UT WOS:000369455700004 ER PT J AU Nakagawa, S Nakashima, S Korneev, VA AF Nakagawa, Seiji Nakashima, Shinichiro Korneev, Valeri A. TI Laboratory measurements of guided-wave propagation within a fluid-saturated fracture SO GEOPHYSICAL PROSPECTING LA English DT Article DE Scattering and waveguide; Fracture; Stoneley wave ID LAYER AB A fluid-saturated flat channel between solids, such as a fracture, is known to support guided wavessometimes called Krauklis waves. At low frequencies, Krauklis waves can have very low velocity and large attenuation and are very dispersive. Because they propagate primarily within the fluid channel formed by a fracture, Krauklis waves can potentially be used for geological fracture characterization in the field. Using an analogue fracture consisting of a pair of flat slender plates with a mediating fluid layera trilayer modelwe conducted laboratory measurements of the velocity and attenuation of Krauklis waves. Unlike previous experiments using ultrasonic waves, these experiments used frequencies well below 1 kHz, resulting in extremely low velocity and large attenuation of the waves. The mechanical compliance of the fracture was varied by modifying the stiffness of the fluid seal of the physical fracture model, and proppant (fracture-filling high-permeability sand) was also introduced into the fracture to examine its impact on wave propagation. A theoretical frequency equation for the trilayer model was derived using the poroelastic linear-slip interface model, and its solutions were compared to the experimental results. C1 [Nakagawa, Seiji; Nakashima, Shinichiro; Korneev, Valeri A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Nakashima, Shinichiro] Yamaguchi Univ, 2-16-1 Tokiwadai, Ube, Yamaguchi 7558611, Japan. RP Nakagawa, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM SNakagawa@lbl.gov RI Nakagawa, Seiji/F-9080-2015 OI Nakagawa, Seiji/0000-0002-9347-0903 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. Department of Energy; Research Partnership to Secure Energy for America (RPSEA) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program; Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. Department of Energy and by the Research Partnership to Secure Energy for America (RPSEA) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program, as authorized by the U.S. Energy Policy Act (EPAct) of 2005, supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 2 Z9 2 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0016-8025 EI 1365-2478 J9 GEOPHYS PROSPECT JI Geophys. Prospect. PD JAN PY 2016 VL 64 IS 1 BP 143 EP 156 DI 10.1111/1365-2478.12223 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DC7RI UT WOS:000369417500012 ER PT J AU Foston, M Samuel, R He, J Ragauskas, AJ AF Foston, Marcus Samuel, Reichel He, Jian Ragauskas, Arthur J. TI A review of whole cell wall NMR by the direct-dissolution of biomass SO GREEN CHEMISTRY LA English DT Review ID LIGNIN MODEL COMPOUNDS; SOLUTION-STATE NMR; ESTER CROSS-LINKS; IONIC LIQUID; 2D NMR; LIGNOCELLULOSIC MATERIALS; STRUCTURAL-CHANGES; H-1-NMR ANALYSIS; WOOD; CELLULOSE AB To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review is to summarize research pertaining to solution-or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. We believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts. C1 [Foston, Marcus; Ragauskas, Arthur J.] BioEnergy Sci Ctr BESC, Dept Energy DOE, Washington, DC 20585 USA. [Foston, Marcus; He, Jian] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Samuel, Reichel; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Foston, M (reprint author), BioEnergy Sci Ctr BESC, Dept Energy DOE, Washington, DC 20585 USA.; Foston, M (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. EM mfoston@wustl.edu OI Ragauskas, Arthur/0000-0002-3536-554X FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy; United States Government FX This work was supported and performed as part of the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). We also wish to thank Dr Lynnea Brumbaugh and Cindy Mittanck of Washington University's Engineering Communication Center for their editing suggestions. NR 88 TC 3 Z9 3 U1 12 U2 60 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 3 BP 608 EP 621 DI 10.1039/c5gc02828k PG 14 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DC9IO UT WOS:000369535100003 ER PT J AU Xu, C Goldstone, R Liu, Z Chen, H Neitzel, B Yu, WK AF Xu, Cong Goldstone, Robin Liu, Zhuo Chen, Hui Neitzel, Bryon Yu, Weikuan TI Exploiting Analytics Shipping with Virtualized MapReduce on HPC Backend Storage Servers SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Analytics shipping; hadoop; mapreduce; HPC; lustre AB Large-scale scientific applications on High-Performance Computing (HPC) systems are generating a colossal amount of data that need to be analyzed in a timely manner for new knowledge, but are too costly to transfer due to their sheer size. Many HPC systems have catered to in situ analytics solutions that can analyze temporary datasets as they are generated, i. e., without storing to long-term storage media. However, there is still an open question on how to conduct efficient analytics of permanent datasets that have been stored to the backend persistent storage because of their long-term value. To fill the void, we exploit the analytics shipping model for fast analysis of large-scale scientific datasets on HPC backend storage servers. Through an efficient integration of MapReduce and the popular Lustre storage system, we have developed a Virtualized Analytics Shipping (VAS) framework that can ship MapReduce programs to Lustre storage servers. The VAS framework includes three component techniques: (a) virtualized analytics shipping with fast network and disk I/O; (b) stripe-aligned data distribution and task scheduling and (c) pipelined intermediate data merging and reducing. The first technique provides necessary isolation between MapReduce analytics and Lustre I/O services. The second and third techniques optimize MapReduce on Lustre and avoid explicit shuffling. Our performance evaluation demonstrates that VAS offers an exemplary implementation of analytics shipping and delivers fast and virtualized MapReduce programs on backend Lustre storage servers. C1 [Xu, Cong; Liu, Zhuo; Chen, Hui; Yu, Weikuan] Auburn Univ, Auburn, AL 36849 USA. [Goldstone, Robin] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Neitzel, Bryon] Intel, Santa Clara, CA USA. RP Xu, C; Liu, Z; Chen, H; Yu, WK (reprint author), Auburn Univ, Auburn, AL 36849 USA.; Goldstone, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Neitzel, B (reprint author), Intel, Santa Clara, CA USA. EM congxu@auburn.edu; goldstone1@llnl.gov; zhuoliu@auburn.edu; hchen@auburn.edu; bryon.s.neitzel@intel.com; wkyu@auburn.edu FU Intel; Lawrence Livermore National Laboratory; NSF [1059376, 1320016, 1340947, 1432892] FX The authors would like to acknowledge the contributions of Yandong Wang while he was a student at Auburn and for the discussions they had with Eric Barton and Omkar Kulkarni from Intel. This work was supported in part by awards from Intel and Lawrence Livermore National Laboratory, and by the NSF awards 1059376, 1320016, 1340947 and 1432892. Weikuan Yu is the corresponding author of the article. NR 20 TC 2 Z9 2 U1 1 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD JAN PY 2016 VL 27 IS 1 BP 185 EP 196 DI 10.1109/TPDS.2015.2389262 PG 12 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DC9GZ UT WOS:000369530600016 ER PT J AU Summerscales, OT Scott, BL Viswanathan, HS Sutton, AD AF Summerscales, Owen T. Scott, Brian L. Viswanathan, Hari S. Sutton, Andrew D. TI Synthesis and reactivity of cis-FeH2(dcpe)(2) (dcpe=1,2-bis(dicyclohexylphosphino)ethane) SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Iron; Catalyst; C-H activation ID C-H BONDS; UNSATURATED IRON COMPLEX; BIS(DIPHOSPHINE) COMPLEXES; ORGANOMETALLIC CHEMISTRY; ACTIVATION; METHANE; 1,2-BIS(DICYCLOHEXYLPHOSPHINO)ETHANE; HYDROGENATION; CATALYSTS; FRONTIER AB A new six-coordinate iron dihydride cis-FeH2(dcpe)(2) (1) has been synthesized (dcpe = 1,2-bis(dicyclohexylphosphino)ethane). It has been found to react with either 1,4-cyclohexadiene or tert-butylethylene in toluene to give the respected hydrogenated hydrocarbon and the zero valent species Fe(dcpe)(toluene) (2). When this reaction with acceptor olefins was performed in methylcyclohexane, transfer dehydrogenation was observed to give low-yields of iron-bound toluene in 2. Published by Elsevier B.V. C1 [Summerscales, Owen T.; Sutton, Andrew D.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. [Viswanathan, Hari S.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Sutton, AD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM adsutton@lanl.gov RI Sutton, Andrew/D-1047-2015; Scott, Brian/D-8995-2017 OI Sutton, Andrew/0000-0001-7984-1715; Scott, Brian/0000-0003-0468-5396 FU Los Alamos National Laboratory LDRD program [LDRD20140002DR]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396] FX We are grateful to the Los Alamos National Laboratory LDRD program for financial support (LDRD20140002DR). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC5206NA25396. NR 26 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 EI 1879-0259 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD JAN PY 2016 VL 63 BP 57 EP 60 DI 10.1016/j.inoche.2015.11.021 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC4QA UT WOS:000369204200013 ER PT J AU Bruck, AM Cama, CA Gannett, CN Marschilok, AC Takeuchi, ES Takeuchi, KJ AF Bruck, Andrea M. Cama, Christina A. Gannett, Cara N. Marschilok, Amy C. Takeuchi, Esther S. Takeuchi, Kenneth J. TI Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry SO INORGANIC CHEMISTRY FRONTIERS LA English DT Review ID RAY-ABSORPTION SPECTROSCOPY; PERFORMANCE ANODE MATERIALS; CORE-SHELL NANOSTRUCTURES; CHEMICAL-VAPOR-DEPOSITION; FE3O4 NANOPARTICLES; CATHODE MATERIALS; X-RAY; RECHARGEABLE LITHIUM; MAGNETIC-PROPERTIES; CYCLIC STABILITY AB The importance of crystallite size control and direct synthesis of materials with desirable properties is broadly applicable for the rational design and development of new active materials for energy storage. Recently, the use of nanoparticles and crystallite size control has redefined electrode design strategies, due in part to the large surface area/volume ratios providing more pathways for ion movement within the bulk electrode. This review is structured primarily as a case study, where reports involving a specific densely structured iron oxide, magnetite, Fe3O4, and its use as an electrode in LIBs are used as examples. Due to the high theoretical capacity (924 mA h g(-1)), and opportunity for implementation of a low cost electrode material, magnetite was selected as the model material for this review. Notably, crystallite size, morphology, and electrode heterostructure can all play a critical role in battery relevant electrochemistry, particularly for crystallographically dense materials such as Fe3O4. Several examples of Fe3O4 based composites are described, incorporating different types of conductive materials such as carbons as part of the structure. Additionally, this review also provides a brief introduction to a newer iron oxide based material with a 2D layered structure, silver ferrite, where crystallite size control was synthetically achieved. By focusing on two specific iron oxide based nanoscale inorganic materials, this review highlights and distinguishes the contributions of electroactive material crystallite size, morphology and electrode heterostructure to electrochemical behavior, facilitating the future development of next generation of battery electrodes. C1 [Bruck, Andrea M.; Cama, Christina A.; Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Gannett, Cara N.] SUNY Coll Geneseo, Dept Chem, Geneseo, NY 14454 USA. [Gannett, Cara N.] SUNY Stony Brook, Ctr Inclus Educ, Stony Brook, NY 11794 USA. [Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. RP Marschilok, AC; Takeuchi, ES; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Marschilok, AC; Takeuchi, ES; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. EM amy.marschilok@stonybrook.edu; esther.takeuchi@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu FU Center for Mesoscale Transport Properties; National Science Foundation; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Nanotechnology for Health, Energy and the Environment at Stony Brook University FX The preparation of this manuscript was supported as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. C.N.G. acknowledges support from the National Science Foundation funded Research Experience for Undergraduates Site: Nanotechnology for Health, Energy and the Environment at Stony Brook University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 96 TC 9 Z9 9 U1 22 U2 77 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2052-1553 J9 INORG CHEM FRONT JI Inorg. Chem. Front. PY 2016 VL 3 IS 1 BP 26 EP 40 DI 10.1039/c5qi00247h PG 15 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC9BJ UT WOS:000369515000002 ER PT S AU Abousahl, S Harrington, A Martikka, E Honkamaa, T Hack, T Wiander, T Hamalainen, M Tsalas, S AF Abousahl, Said Harrington, Anne Martikka, Elina Honkamaa, Tapani Hack, Tapani Wiander, Timo Hamalainen, Marko Tsalas, Stamatios BE Maiani, L Abousahl, S Plastino, W TI Scientific and Technical Challenges to the Effective Implementation of the "3S" (Safety, Security and Safeguards) Approach SO INTERNATIONAL COOPERATION FOR ENHANCING NUCLEAR SAFETY, SECURITY, SAFEGUARDS AND NON-PROLIFERATION SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 19th Edoardo Amaldi Conference - International Cooperation for Enhancing Nuclear Safety, Security, Safeguards and Non-Proliferation CY MAR 30-31, 2015 CL Rome, ITALY SP European Commiss Directorate Gen Joint Res Ctr, Accademia Nazl Lincei, Italian Minist Foreign Affairs C1 [Abousahl, Said] Commiss European Communities, Directorate Gen Joint Res Ctr, B-1049 Brussels, Belgium. [Harrington, Anne] Natl Nucl Secur Adm, US DOE, Washington, DC USA. [Martikka, Elina; Honkamaa, Tapani; Hack, Tapani; Wiander, Timo; Hamalainen, Marko] Radiat & Nucl Safety Author, Helsinki, Finland. [Tsalas, Stamatios] EURATOM, Directorate Gen European Commiss Energy, Luxembourg, Luxembourg. RP Abousahl, S (reprint author), Commiss European Communities, Directorate Gen Joint Res Ctr, B-1049 Brussels, Belgium. EM said.abousahl@ec.europa.eu; anne.harrington@nnsa.doe.gov; elina.martikka@stuk.fi; stamatios.tsalas@ec.europa.eu NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0930-8989 BN 978-3-319-24322-1; 978-3-319-24320-7 J9 SPRINGER PROC PHYS PY 2016 VL 172 BP 89 EP 106 DI 10.1007/978-3-319-24322-1_6 PG 18 WC Nuclear Science & Technology; Physics, Applied SC Nuclear Science & Technology; Physics GA BE2QH UT WOS:000369845800006 ER PT J AU Pappas, RS Gray, N Gonzalez-Jimenez, N Fresquez, M Watson, CH AF Pappas, R. Steven Gray, Naudia Gonzalez-Jimenez, Nathalie Fresquez, Mark Watson, Clifford H. TI Triple Quad-ICP-MS Measurement of Toxic Metals in Mainstream Cigarette Smoke from Spectrum Research Cigarettes SO JOURNAL OF ANALYTICAL TOXICOLOGY LA English DT Article ID UNITED-STATES; TOBACCO; ADULTS AB We previously reported toxic metal concentrations in the mainstream smoke from 50 varieties of commercial cigarettes available in the USA using quadrupole inductively coupled plasma-mass spectrometry (ICP-MS). However, efforts to continue producing high quality data on select mainstream cigarette smoke constituents demand continued improvements in instrumentation and methodology and application of the methodology to cigarettes that differ in design or construction. Here we report a new application of 'triple quad'-ICP-MS instrumentation to analyze seven toxic metals in mainstream cigarette smoke from the Spectrum variable nicotine research cigarettes. The Spectrum cigarettes are available for research purposes in different configurations of low or conventional levels of nicotine, mentholated or nonmentholated, and tar delivery ranges described as 'low tar' or 'high tar'. Detailed characterizations of specific harmful or potentially harmful constituents delivered by these research cigarettes will help inform researchers using these cigarettes in exposure studies, cessation studies and studies related to nicotine addiction or compensation. C1 [Pappas, R. Steven; Gray, Naudia; Gonzalez-Jimenez, Nathalie; Fresquez, Mark; Watson, Clifford H.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Tobacco & Volatiles Branch, Div Lab Sci, 4770 Buford Hwy NE Mail Stop F44, Atlanta, GA 30341 USA. [Gonzalez-Jimenez, Nathalie] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Fresquez, Mark] Battelle Analyt Serv, Atlanta, GA USA. RP Pappas, RS (reprint author), Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Tobacco & Volatiles Branch, Div Lab Sci, 4770 Buford Hwy NE Mail Stop F44, Atlanta, GA 30341 USA. EM rpappas@cdc.gov FU US Food and Drug Administration Center for Tobacco Products FX This method was developed using funding from an interagency agreement with the US Food and Drug Administration Center for Tobacco Products. NR 18 TC 0 Z9 0 U1 6 U2 10 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0146-4760 EI 1945-2403 J9 J ANAL TOXICOL JI J. Anal. Toxicol. PD JAN-FEB PY 2016 VL 40 IS 1 BP 43 EP 48 DI 10.1093/jat/bkv109 PG 6 WC Chemistry, Analytical; Toxicology SC Chemistry; Toxicology GA DC5AC UT WOS:000369231100006 PM 26359486 ER PT J AU Aydemir, U Pohls, JH Zhu, H Hautier, G Bajaj, S Gibbs, ZM Chen, W Li, GD Ohno, S Broberg, D Kang, SD Asta, M Ceder, G White, MA Persson, K Jain, A Snyder, GJ AF Aydemir, Umut Poehls, Jan-Hendrik Zhu, Hong Hautier, Geoffroy Bajaj, Saurabh Gibbs, Zachary M. Chen, Wei Li, Guodong Ohno, Saneyuki Broberg, Danny Kang, Stephen Dongmin Asta, Mark Ceder, Gerbrand White, Mary Anne Persson, Kristin Jain, Anubhav Snyder, G. Jeffrey TI YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; ZINTL PHASES; CRYSTALS; PERFORMANCE; SYSTEMS AB Intrinsically doped samples of YCuTe2 were prepared by solid state reaction of the elements. Based on the differential scanning calorimetry and the high temperature X-ray diffraction analyses, YCuTe2 exhibits a first order phase transition at similar to 440 K from a low-temperature-phase crystallizing in the space group P (3) over bar m1 to a high-temperature-phase in P3. Above the phase transition temperature, partially ordered Cu atoms become completely disordered in the crystal structure. Small increases to the Cu content are observed to favour the formation of the high temperature phase. We find no indication of superionic Cu ions as for binary copper chalcogenides (e.g., Cu2Se or Cu2Te). All investigated samples exhibit very low thermal conductivities (as low as similar to 0.5 W m(-1) K-1 at 800 K) due to highly disordered Cu atoms. Electronic structure calculations are employed to better understand the high thermoelectric efficiency for YCuTe2. The maximum thermoelectric figure of merit, zT, is measured to be similar to 0.75 at 780 K for Y0.96Cu1.08Te2, which is promising for mid-temperature thermoelectric applications. C1 [Aydemir, Umut; Bajaj, Saurabh; Gibbs, Zachary M.; Li, Guodong; Ohno, Saneyuki; Kang, Stephen Dongmin; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Aydemir, Umut; Li, Guodong; Ohno, Saneyuki; Kang, Stephen Dongmin; Snyder, G. Jeffrey] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [Poehls, Jan-Hendrik; White, Mary Anne] Dalhousie Univ, Dept Phys & Atmospher Sci, 6310 Coburg Rd,POB 15000, Halifax, NS B3H 4R2, Canada. [Zhu, Hong; Ceder, Gerbrand] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Zhu, Hong] Shanghai Jiao Tong Univ, Univ Michigan, Joint Inst, Shanghai 200240, Peoples R China. [Hautier, Geoffroy] Catholic Univ Louvain, Inst Condensed Matter & Nanosci IMCN, Chem Etoiles 8,Bte L7-03-01, Louvain La Neuve, Belgium. [Chen, Wei; Ceder, Gerbrand; Persson, Kristin; Jain, Anubhav] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Chen, Wei] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA. [Broberg, Danny; Asta, Mark; Ceder, Gerbrand; Persson, Kristin] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Aydemir, U; Snyder, GJ (reprint author), CALTECH, Dept Appl Phys & Mat Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA.; Aydemir, U; Snyder, GJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM umut.aydemir@northwestern.edu; jeff.snyder@northwestern.edu RI Snyder, G. Jeffrey/E-4453-2011; Chen, Wei/B-7574-2009; Chen, Wei/B-3045-2012 OI Snyder, G. Jeffrey/0000-0003-1414-8682; Chen, Wei/0000-0002-1135-7721 FU Department of Energy Basic Energy Sciences program [EDCBEE]; DOE [DE-AC02-05CH11231]; F. R. S.-FNRS; European Union Marie Curie Career Integration (CIG) [HTforTCOs PCIG11-GA-2012-321988]; U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Research Program FX This work was intellectually led by the Materials Project which is supported by the Department of Energy Basic Energy Sciences program under Grant No. EDCBEE, DOE Contract DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. We would like to thank Dr Timothy Davenport for his assistance in HT-XRD measurements. U. A. acknowledges the financial assistance of The Scientific and Technological Research Council of Turkey. J.-H. P. acknowledges the Dalhousie Research in Energy, Advanced Materials and Sustainability (DREAMS) NSERC CREATE program, and M. B. Johnson's assistance. M. A. W. acknowledges the support of NSERC, and Dalhousie University's Institute for Research in Materials and its Facilities for Materials Characterization. G. H. acknowledges the F. R. S.-FNRS and the European Union Marie Curie Career Integration (CIG) grant HTforTCOs PCIG11-GA-2012-321988 for financial support. A. J. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Research Program. Optical measurements in this work were performed at the Molecular Materials Research Center (MMRC) in the Beckman Institute at the California Institute of Technology. NR 55 TC 1 Z9 1 U1 12 U2 59 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 7 BP 2461 EP 2472 DI 10.1039/c5ta10330d PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DD1FD UT WOS:000369665800011 ER PT S AU Kacher, J Yu, Q Chisholm, C Gammer, C Minor, AM AF Kacher, Josh Yu, Qian Chisholm, Claire Gammer, Christoph Minor, Andrew M. BE Prorok, BC Starman, L TI In Situ TEM Nanomechanical Testing SO MEMS AND NANOTECHNOLOGY, VOL 5 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE In situ TEM; Twinning; Nanowires; PLC effect; Nanomechanics ID DISLOCATION; MICROSCOPY; ALLOY AB Correlating the mechanical behavior of metals with the underlying defect mechanisms remains an outstanding challenge for the development of new material systems. In situ Transmission Electron Microscopy (TEM) nanomechanical testing provides an experimental technique whereby the behavior of defects such as dislocations and twins can be observed in real time while quantitatively correlating their behavior with an applied stress. This paper highlights recent experiments utilizing in situ TEM testing to investigate the behavior of twins and dislocations in FCC, BCC, and HCP materials. Examples of recently developed experimental approaches and future directions of in situ TEM nanomechanical testing are presented. C1 [Kacher, Josh; Yu, Qian; Chisholm, Claire; Gammer, Christoph; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. [Kacher, Josh; Yu, Qian; Chisholm, Claire; Gammer, Christoph; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Qian] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA.; Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Chisholm, Claire/I-3566-2016 OI Chisholm, Claire/0000-0002-8114-5994 NR 15 TC 0 Z9 0 U1 8 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22458-9; 978-3-319-22457-2 J9 C PROC SOC EXP MECH PY 2016 BP 9 EP 16 DI 10.1007/978-3-319-22458-9_2 PG 8 WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Engineering; Science & Technology - Other Topics; Materials Science GA BE2JU UT WOS:000369437400002 ER PT S AU Grapes, MD Zhang, Y Santala, MK Voisin, T Campbell, GH Weihs, TP AF Grapes, Michael D. Zhang, Yong Santala, Melissa K. Voisin, Thomas Campbell, Geoffrey H. Weihs, Timothy P. BE Prorok, BC Starman, L TI In Situ High-Rate Mechanical Testing in the Dynamic Transmission Electron Microscope SO MEMS AND NANOTECHNOLOGY, VOL 5 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Transmission electron microscopy; In situ testing; Piezoelectrics; Electropolishing; Femtosecond laser machining ID THIN-FILMS AB It is difficult to extract details on deformation mechanisms from conventional high strain rate testing, where microstructural analysis is typically limited to before-and-after comparisons. In situ transmission electron microscopy (TEM) can provide an alternative by allowing direct observation of defect motion during loading, but thus far limitations in the speed of conventional TEM and traditional in situ straining holders have prevented the application of this technique to very high strain rates. We present the latest progress in our efforts to develop such a capability. We have developed a novel TEM specimen holder that uses piezoelectric actuators to pull a specimen in tension at rates up to 10(3) s(-1). To fit the holder's unique sample geometry we have developed a procedure for fabricating TEM tensile specimens with a consistent, electron-transparent gauge section. These specimens can be fabricated from bulk starting materials, allowing us to retain the materials' original microstructure. The holder is designed to operate in the Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Lab, which is capable of capturing electron images with exposure times as short as 30 ns. C1 [Grapes, Michael D.; Voisin, Thomas; Weihs, Timothy P.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Zhang, Yong] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Santala, Melissa K.; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Grapes, MD (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. EM mike.grapes@gmail.com RI Weihs, Timothy/A-3313-2010 NR 8 TC 0 Z9 0 U1 4 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22458-9; 978-3-319-22457-2 J9 C PROC SOC EXP MECH PY 2016 BP 25 EP 30 DI 10.1007/978-3-319-22458-9_4 PG 6 WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Engineering; Science & Technology - Other Topics; Materials Science GA BE2JU UT WOS:000369437400004 ER PT S AU Tochigi, E Zepeda, E Wenk, HR Minor, AM AF Tochigi, E. Zepeda, E. Wenk, H. -R. Minor, A. M. BE Prorok, BC Starman, L TI In Situ TEM Observation of Twinning, Detwinning and Retwinning in Quartz SO MEMS AND NANOTECHNOLOGY, VOL 5 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT Annual Conference and Exposition of the Society-for-Experimental-Mechanics on Experimental and Applied Mechanics CY JUN 08-11, 2015 CL Costa Mesa, CA SP Soc Expt Mech DE Quartz; Twinning; In situ; TEM; Compression ID PRESSURE AB Quartz nanopillars were fabricated by focused ion beam technique from a natural crystal. The nanopillars were deformed by in situ compression test in a transmission electron microscope. During loading and unloading operations, nucleation, extension and contraction of Dauphine twins were observed in a pillar. The twinning phenomena appear to include a memory effect, where the same twin can reappear upon successive loading and unloading events. We discuss the twinning phenomena with mechanical data taken during the compression test. C1 [Tochigi, E.] Univ Tokyo, Inst Engn Innovat, Tokyo, Japan. [Zepeda, E.; Wenk, H. -R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. RP Tochigi, E (reprint author), Univ Tokyo, Inst Engn Innovat, Tokyo, Japan. EM tochigi@sigma.t.u-tokyo.ac.jp NR 5 TC 0 Z9 0 U1 4 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 2191-5644 BN 978-3-319-22458-9; 978-3-319-22457-2 J9 C PROC SOC EXP MECH PY 2016 BP 31 EP 34 DI 10.1007/978-3-319-22458-9_5 PG 4 WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Engineering; Science & Technology - Other Topics; Materials Science GA BE2JU UT WOS:000369437400005 ER PT J AU Shen, CF Ge, MY Zhang, AY Fang, X Liu, YH Rong, JP Zhou, CW AF Shen, Chenfei Ge, Mingyuan Zhang, Anyi Fang, Xin Liu, Yihang Rong, Jiepeng Zhou, Chongwu TI Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density SO NANO ENERGY LA English DT Article DE Lithium-ion battery; Full cell; Nafion; Porous Si; Lithium-sulfur battery ID LITHIUM-SULFUR BATTERIES; LONG CYCLE-LIFE; ION BATTERIES; S BATTERIES; CATHODE; PERFORMANCE; NANOWIRES; GRAPHENE; OXIDE; NANOPARTICLES AB Lithium-ion batteries have attracted great attention as one of the most versatile electro-chemical energy storage devices. However, to meet the ever-growing energy needs for wide applications, further improvements on energy density of batteries are expected, which requires the development of innovative high-energy electrode materials. Silicon (Si) and sulfur (S) are two promising candidates and have been studied intensively as anode and cathode materials in lithium-ion batteries. Nevertheless, the excellent performance achieved with Li-Si and Li-S half cells usually does not easily translate to high-performance Si-S full cell. Here, we will discuss the challenges in the Si-S full cell integration, and a failure mechanism of Si-S full cell is proposed, which is due to the spontaneous reaction between Si (and lithiated Si) and polysulfides. On this basis, we report one prototype of Si-S full cells using lithiated Nafioncoated porous Si as anode and sulfur as cathode, and our study on the functionality of Nafion in shielding Si from reaction with polysulfides. With optimized mass ratio between sulfur and silicon, the full cell yields specific capacity of 330 mA h/g and energy density of 590 W h/kg after 100 cycles based on the total mass of sulfur and silicon. The achieved energy density is more than 2 times higher than commercially available lithium-ion batteries. The investigation of issues in Si-S full cell research and the proposed full cell prototype will shed light on the development of next-generation lithium-ion batteries. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Shen, Chenfei; Ge, Mingyuan; Zhang, Anyi; Fang, Xin; Rong, Jiepeng; Zhou, Chongwu] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. [Liu, Yihang; Zhou, Chongwu] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA. [Ge, Mingyuan] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Zhou, CW (reprint author), Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. EM chongwuz@usc.edu RI Shen, Chenfei/A-2471-2016; Liu, Yihang/E-6958-2013; Zhou, Chongwu/F-7483-2010 OI Shen, Chenfei/0000-0001-8635-3429; Liu, Yihang/0000-0002-2491-9439; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704]; Brookhaven National Laboratory FX SEM and TEM images used in this article were generated at the Center for Electron Microscopy and Microanalysis, University of Southern California. Mingyuan Ge finished the research reported in this paper at University of Southern California, and contributed to discussions after he joined Brookhaven National Laboratory. Mingyuan Ge acknowledged the support of Brookhaven National Laboratory, which was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-SC0012704. NR 43 TC 7 Z9 7 U1 30 U2 115 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 68 EP 77 DI 10.1016/j.nanoen.2015.11.013 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400008 ER PT J AU Zhao, DW Ke, WJ Grice, CR Cimaroli, AJ Tan, XX Yang, MJ Collins, RW Zhang, HM Zhu, K Yan, YF AF Zhao, Dewei Ke, Weijun Grice, Corey R. Cimaroli, Alexander J. Tan, Xinxuan Yang, Mengjin Collins, Robert W. Zhang, Hongmei Zhu, Kai Yan, Yanfa TI Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers SO NANO ENERGY LA English DT Article DE Perovskite solar cells; Vacuum-deposition; Electron-selective layer; Hole blocking layer; C-60 and C-70 (fullerenes) ID HALIDE PEROVSKITES; VAPOR-DEPOSITION; LOW-TEMPERATURE; HETEROJUNCTION; CH3NH3PBI3; PERFORMANCE; PASSIVATION; LENGTHS; FILMS; OXIDE AB We present efficient metal oxide-free and annealing-free planar perovskite solar cells with the regular cell structure using vacuum-deposited fullerenes C-60 and C-70 as the electron-selective layers and vacuum-processed perovskites as the light absorbers. The devices with an ultrathin C-60 layer (5.5 nm) yielded an average power conversion efficiency of 14.3% and a maximum efficiency of 15.7%. The best-performing cell produced a steady-state efficiency of 14.6%. The high performance is attributed to the efficient blocking of holes and extraction of electrons by C-60 due to a favorable energy level alignment between the C-60 and the fluorine-doped tin oxide electrodes. With the realization of efficient cells, the annealing-free vacuum deposition of perovskite absorbers and C-60 or C-70 electron-selective layers and intermediate layers demonstrates its power for fabricating all-perovskite tandem solar cells. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zhao, Dewei; Ke, Weijun; Grice, Corey R.; Cimaroli, Alexander J.; Tan, Xinxuan; Collins, Robert W.; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Zhao, Dewei; Ke, Weijun; Grice, Corey R.; Cimaroli, Alexander J.; Tan, Xinxuan; Collins, Robert W.; Yan, Yanfa] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA. [Zhao, Dewei; Yang, Mengjin; Zhu, Kai] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Zhang, Hongmei] Nanjing Univ Posts & Telecommun, Inst Adv Mat, Nanjing 210023, Jiangsu, Peoples R China. [Zhang, Hongmei] Nanjing Univ Posts & Telecommun, Key Lab Organ Elect & Informat Displays, Nanjing 210023, Jiangsu, Peoples R China. RP Zhao, DW; Yan, YF (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA.; Zhao, DW; Yan, YF (reprint author), Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA. EM dewei_zhao@hotmail.com; yanfa.yan@utoledo.edu OI Grice, Corey/0000-0002-0841-5943; Yang, Mengjin/0000-0003-2019-4298 FU U.S. Department of Energy (DOE) SunShot Initiative under Next Generation Photovoltaics 3 program [DE-FOA-0000990]; Ohio Research Scholar Program; U.S. Department of Energy [DE-AC36-08-GO28308]; 973 Program of China [2015CB932203] FX The work at The University of Toledo is supported by the U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990) and the Ohio Research Scholar Program. The work at the National Renewable Energy Laboratory is supported by the U.S. Department of Energy under Contract no. DE-AC36-08-GO28308. MY and KZ acknowledge support by the U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990). H.M.Z thanks the support from the 973 Program of China (2015CB932203). NR 51 TC 17 Z9 17 U1 21 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 88 EP 97 DI 10.1016/j.nanoen.2015.11.008 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400010 ER PT J AU Zhang, K Wang, SR Qiu, JJ Blackburn, JL Zhang, X Ferguson, AJ Millers, EM Weeks, BL AF Zhang, Kun Wang, Shiren Qiu, Jingjing Blackburn, Jeffrey L. Zhang, Xin Ferguson, Andrew J. Millers, Elisa M. Weeks, Brandon L. TI Effect of host-mobility dependent carrier scattering on thermoelectric power factors of polymer composites SO NANO ENERGY LA English DT Article DE Thermoelectric; Polymer hybrid; Carrier scattering; Host mobility ID CONDUCTING POLYMER; THERMAL-CONDUCTIVITY; THIN-FILM; POLY(3,4-ETHYLENEDIOXYTHIOPHENE) POLY(STYRENESULFONATE); ELECTROCHEMICAL TRANSISTOR; ORGANIC SEMICONDUCTORS; TRANSPARENT ELECTRODE; CARBON NANOTUBES; CHARGE-TRANSPORT; HYBRID FILMS AB The interfacial carrier scattering was thought to be ineffective in enhancing thermoelectric (TE) properties of polymer hybrids and there was also a lack of fundamental understanding of carrier scattering at polymer/polymer interfaces. Here we unravel the mechanism behind the role of polymer/polymer interfacial scattering on the TE properties through integration of computation and experiments. We discover that the effect of interfacial scattering at polymer/polymer interfaces on TE properties of polymer hybrids is strongly dependent on the carrier mobility of host polymers besides interfacial barriers. Only when the host carrier mobility is above a threshold, the effect of interfacial scattering on TE enhancement can be significant. Simulation suggests that the host mobility threshold is similar to 1 cm(2) V-1 s(-1) for PEDOT-based polymers. The polymer hybrid system of poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires/PEDOT was successfully employed to verify the theoretical results. These findings offer groundbreaking knowledge on polymer/polymer interfacial carrier-transport and will advance the design and fabrication of high-efficiency organic thermoelectric materials. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zhang, Kun; Wang, Shiren] Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77843 USA. [Zhang, Kun; Wang, Shiren] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Qiu, Jingjing] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Blackburn, Jeffrey L.; Ferguson, Andrew J.; Millers, Elisa M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhang, Xin; Weeks, Brandon L.] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. RP Wang, SR (reprint author), Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77843 USA. EM S.Wang@tamu.edu RI Zhang, Xin/I-9221-2014; OI Zhang, Xin/0000-0003-2000-858X; Ferguson, Andrew/0000-0003-2544-1753 FU National Science Foundation CAREER Award [0953674]; NREL's Laboratory Directed Research and Development (LDRD) program; NREL Director's Fellowship Program FX K. Z. and S.R.W. acknowledge the funding support from National Science Foundation CAREER Award (0953674). J.L.B., A.J.F and E.M.M. acknowledge NREL's Laboratory Directed Research and Development (LDRD) program and the NREL Director's Fellowship Program for funding. Valuable discussions on the linear mobility measurement with Dr. Qingshuo Wei (National Institute of Advanced Industrial Science and Technology (AIST), Japan) are greatly appreciated. NR 62 TC 3 Z9 3 U1 27 U2 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 128 EP 137 DI 10.1016/j.nanoen.2015.11.005 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400014 ER PT J AU Bhattacharya, P Nandasiri, MI Lv, DP Schwarz, AM Darsell, JT Henderson, WA Tomalia, DA Liu, J Zhang, JG Xiao, J AF Bhattacharya, Priyanka Nandasiri, Manjula I. Lv, Dongping Schwarz, Ashleigh M. Darsell, Jens T. Henderson, Wesley A. Tomalia, Donald A. Liu, Jun Zhang, Ji-Guang Xiao, Jie TI Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes SO NANO ENERGY LA English DT Article DE PAMAM dendrimers; Lithium-sulfur batteries; Binder; Energy storage; High sulfur loading ID CARBON-FIBERS; PERFORMANCE; STABILITY; POLYMERS; NITROGEN; PROGRESS; GELATIN AB Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage. To realize their practical application, however, a high S active material loading is essential. The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries. Utilizing the high degree of surface functionalities, interior porosities, and polarity of the PAMAM dendrimers, it is demonstrated that high S loadings (>4 mg cm(-2)) can be easily achieved using simple processing methods. An exceptional electrochemical cycling performance was obtained as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR), which was attributed to better interfacial interactions between the dendrimers and the C/S composite materials, as well as better electrolyte wetting due to the dendrimer spherical molecular, porous architectures. Furthermore, the dendrimer-based binders also physically and chemically trapped the polar polysulfides, thus demonstrating the significant utility of this new nanosized binder architecture. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bhattacharya, Priyanka; Lv, Dongping; Darsell, Jens T.; Henderson, Wesley A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Nandasiri, Manjula I.; Schwarz, Ashleigh M.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Tomalia, Donald A.] Nanosynthons LLC, 1200 N Fancher Ave, Mt Pleasant, MI 48858 USA. RP Bhattacharya, P; Xiao, J (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM priyanka.bhattacharya@pnnl.gov; jie.xiao@pnnl.gov OI Bhattacharya, Priyanka/0000-0003-0368-8480 FU Office of Vehicle Technologies of DOE [DEAC02-5CH11231, DEAC02-98CH10886]; U.S. Department of Energy (DOE) Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL); DOE Office of Biological and Environmental Research; Linus Pauling Distinguished Postdoctoral Fellowship at PNNL FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of DOE under Contract no. DEAC02-5CH11231 for PNNL and under the DEAC02-98CH10886 Battery Materials Research (BMR) program (for D.L. and J.X.), and the U.S. Department of Energy (DOE) Laboratory Directed Research and Development funding at Pacific Northwest National Laboratory (PNNL). A portion of the research was performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the DOE by Battelle. P.B. is grateful for support from a Linus Pauling Distinguished Postdoctoral Fellowship at PNNL. P.B. and M.I.N. contributed equally to this work. NR 35 TC 11 Z9 11 U1 33 U2 143 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 176 EP 186 DI 10.1016/j.nanoen.2015.11.012 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400019 ER PT J AU Xiao, LF Cao, YL Henderson, WA Sushko, ML Shao, YY Xiao, J Wang, W Engelhard, MH Nie, ZM Liu, J AF Xiao, Lifen Cao, Yuliang Henderson, Wesley A. Sushko, Maria L. Shao, Yuyan Xiao, Jie Wang, Wei Engelhard, Mark H. Nie, Zimin Liu, Jun TI Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries SO NANO ENERGY LA English DT Article DE Hard carbon; Ionic diffusion coefficient; Electrochemical impedance; Anode; Na-ion battery ID LONG-CYCLE LIFE; SUPERIOR RATE CAPABILITY; LITHIUM INTERCALATION; CATHODE MATERIAL; LOW-COST; ENERGY-STORAGE; POLYANILINE; PERFORMANCE; ELECTRODES; INSERTION AB Hard carbon nanoparticles (HCNP) were synthesized by the pyrolysis of a polyaniline precursor. The measured Na+ cation diffusion coefficient (10(-13)-10(-15) cm(2) s(-1)) in the HCNP obtained at 1150 degrees C is two orders of magnitude lower than that of Li+ in graphite (10(-10)-10(-13) cm(2) s(-1)), indicating that reducing the carbon particle size is very important for improving electrochemical performance. These measurements also enable a clear visualization of the stepwise reaction phases and rate changes which occur throughout the insertion/extraction processes in HCNP, The electrochemical measurements also show that the nano -sized HCNP obtained at 1150 degrees C exhibited higher practical capacity at voltages lower than 1.2 V (vs. Na/Na+), as well as a prolonged cycling stability, which is attributed to an optimum spacing of 0.366 nm between the graphitic layers and the nano particular size resulting in a low -barrier Na+ cation insertion. These results suggest that HCNP is a very promising high-capacity/stability anode for low cost sodium-ion batteries (SIBS). (C) 2015 Elsevier Ltd. All rights reserved. C1 [Xiao, Lifen] Cent China Normal Univ, Coll Chem, Wuhan 430079, Peoples R China. [Cao, Yuliang] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China. [Xiao, Lifen; Cao, Yuliang; Henderson, Wesley A.; Sushko, Maria L.; Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Nie, Zimin; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cao, YL (reprint author), Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China.; Cao, YL; Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ylcao@whu.edu.cn; Jun.Liu@pnnl.gov RI Shao, Yuyan/A-9911-2008; Wang, Wei/F-4196-2010; Sushko, Maria/C-8285-2014; OI Shao, Yuyan/0000-0001-5735-2670; Wang, Wei/0000-0002-5453-4695; Sushko, Maria/0000-0002-7229-7072; Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; National Natural Science Foundation of China [21273090, 21373155]; Program for New Century Excellent Talents in University [NCET-12-0419]; Hubei National Funds for Distinguished Young Scientists [2014CFA038]; Department of Energy's Office of Biological and Environmental Research FX This research was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. Lifen Xiao would like to acknowledge the support by the National Natural Science Foundation of China (No. 21273090). Yuliang Cao would like to acknowledge the support by the National Natural Science Foundation of China (No. 21373155) and Program for New Century Excellent Talents in University (NCET-12-0419) and Hubei National Funds for Distinguished Young Scientists (2014CFA038). The TEM and XPS measurements were conducted at the Environmental and Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). NR 41 TC 21 Z9 21 U1 57 U2 209 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 279 EP 288 DI 10.1016/j.nanoen.2015.10.034 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400028 ER PT J AU Vissers, DR Isheim, D Zhan, C Chen, ZH Lu, J Amine, K AF Vissers, Daniel R. Isheim, Dieter Zhan, Chun Chen, Zonghai Lu, Jun Amine, Khalil TI Understanding atomic scale phenomena within the surface layer of a long-term cycled 5 V spinet electrode SO NANO ENERGY LA English DT Article DE Atom probe tomography; 5 V spinet; Scanning transmission electron microscopy ID COATED LINI0.5MN1.5O4 SPINEL; RECHARGEABLE LITHIUM BATTERIES; FLUORINATED ELECTROLYTES; ION BATTERIES; ELEVATED-TEMPERATURES; CATHODE MATERIALS; PERFORMANCE; CHEMISTRY; PROGRESS; OXIDES AB Lithium-ion batteries utilizing 5 V spinet material, LixMn1.5Ni0.5O4 have received considerable interest in recent years for their ability to deliver high energy and power densities. In this paper, we report an atomic scale analysis of the surface layer of a core-shell 5 V spinet structure where a small amount of the manganese lattice sites have been substituted with cobalt in the shell to reach a stoichiometry of LixMn1.18Ni0.55Co0.27O4. Our analyses include electrochemical analysis, atom probe tomography (APT) analysis, kinetic analysis of the interfacial reactions, and high resolution scanning transmission electron microscopy (HR-TEM) analysis. The APT analysis is performed on the material before and after long-term cycling at room temperature to provide insights into the atomic scale phenomena within the surface layer of the electrode material. Our APT data reveals a 25-30 nano-meter (nm) region which forms after cycling. From our analyses, we believe that the outer few nanometers of this region stabilizes the 5 V spinet within the chemical environment of the lithium-ion cell such that its structure is not compromised and thereby enables this material to cycle without significant capacity fading. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zhan, Chun; Chen, Zonghai; Lu, Jun; Amine, Khalil] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Vissers, Daniel R.] Univ Illinois, Urbana, IL 61801 USA. [Isheim, Dieter] Northwestern Univ, Evanston, IL 60208 USA. RP Amine, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.; Vissers, DR (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM vissersd@anl.gov; amine@anl.gov FU Center for Electro-chemical Energy Science, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences; US Department of Energy [DE-AC02-06CH11357]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Initiative for Sustain ability and Energy at Northwestern University; DOE Vehicle Technologies Program (VTP) within Applied Battery Research (ABR) for Transportation Program FX This work was supported as part of the Center for Electro-chemical Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Argonne National Laboratory is operated for the US Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. Use of the Center for Nanoscale Materials, including resources in the Electron Microscopy Center, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, as well as NUANCE-EPIC facility supported by the Initiative for Sustain ability and Energy at Northwestern University. We are grateful to Andrew Jansen, Bryant Polzin, and Stephen Trask from the U.S. Department of Energy's (DOE) Cell Fabrication Facility (CFF), Argonne. The CFF is fully supported by the DOE Vehicle Technologies Program (VTP) within the core funding of the Applied Battery Research (ABR) for Transportation Program. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois Urbana Champaign (UIUC). The authors also gratefully acknowledge the assistance and valuable discussions with Jim Mabon and Matthew D. Bresin from UIUC and Michael Thackeray and Larry Curtiss from Argonne National Laboratory. NR 34 TC 3 Z9 3 U1 5 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 297 EP 306 DI 10.1016/j.nanoen.2015.11.031 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400030 ER PT J AU Yuan, YF Ma, L He, K Yao, WT Nie, A Bi, XX Amine, K Wu, TP Lu, J Shahbazian-Yassr, R AF Yuan, Yifei Ma, Lu He, Kun Yao, Wentao Nie, Anmin Bi, Xuanxuan Amine, Khalil Wu, Tianpin Lu, Jun Shahbazian-Yassr, Reza TI Dynamic study of (De)sodiation in alpha-MnO2 nanowires SO NANO ENERGY LA English DT Article DE In situ TEM; Tunnel; Alpha-MnO2; Sodium ion battery; Mn valence ID SODIUM-ION BATTERIES; LITHIUM BATTERIES; MANGANESE-DIOXIDE; LITHIATION; MNO2; MECHANISM; ELECTRODE; NANORODS; CATHODE; STORAGE AB In this report, the electrochemical sodiation and desodiation in single crystalline alpha-MnO2 nanowires are studied dynamically at both single particle level using in situ transmission electron microscopy (TEM) and bulk level using in situ synchrotron X-ray. The TEM results suggest that the first sodiation process starts with tunnel-based Na+ intercalation, experiences the formation of Na0.5MnO2 as a result of tunnel degradation, and ends with the Mn2O3 phase. The inserted Na+ can be partially extracted out of the sodiated products, and the following cycles are dominated by the reversible conversion reaction between Na0.5MnO2 and Mn2O3. The Mn valence evolution inside a cycling coin using alpha-MnO2 nanowire electrode also exhibits partially reversible characteristic, agreeing well with the in situ TEM analysis. The sodiation is compared with lithiation in the same alpha-MnO2 nanowires. Both Na+ and Li+ interact with the tunneled structure via a similar tunnel -driven intercalation mechanism before Mn4+ is reduced to Mn3.5+. For the following deep insertion, the tunnels survive up. to LiMnO2 (Mn3+) during lithiation, while the sodiation proceeds via a different mechanism that involves obvious phase transition and fast tunnel degradation after Mn's valence is below 3.5+. The difference in charge carrier insertion mechanisms can be ascribed to the strong interaction between the tunnel frame and inserted Na+ possessing a larger ionic size than inserted Li+. Published by Elsevier Ltd. C1 [Yuan, Yifei; He, Kun; Yao, Wentao] Michigan Technol Univ, Dept Mat Sci & Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. [Yuan, Yifei; Bi, Xuanxuan; Amine, Khalil; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ma, Lu; Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [He, Kun] Shandong Univ, Dept Mat Sci & Engn, 17923 Jingshi Rd, Jinan 250100, Peoples R China. [Shahbazian-Yassr, Reza] Michigan Technol Univ, Dept Mech Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. [Nie, Anmin; Shahbazian-Yassr, Reza] Univ Illinois, Dept Mech & Ind Engn, 845 West Taylor St, Chicago, IL 60607 USA. RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Wu, TP (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Shahbazian-Yassr, R (reprint author), Univ Illinois, Dept Mech & Ind Engn, 845 West Taylor St, Chicago, IL 60607 USA. EM twu@aps.anl.gov; junlu@anl.gov; rsyassar@uic.edu RI Nie, Anmin/N-7859-2014 OI Nie, Anmin/0000-0002-0180-1366 FU National Science Foundation [CMMI-1200383, DMR-0959470]; Argonne National Laboratory [4F31422]; Center for Electrochemical Energy Science (CEES), an Energy Frontier Research Center (EFRC) - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; UIC Research Resources Center; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX R. Shahbazian-Yassar acknowledges the financial support from the National Science Foundation (Award No. CMMI-1200383). Partial funding from Argonne National Laboratory under subcontract No. 4F31422 is acknowledged. We also acknowledge support from the Center for Electrochemical Energy Science (CEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (X-ray measurements and analysis).The acquisition of the UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Award No. DMR-0959470). Support from the UIC Research Resources Center is also acknowledged. Use of the Advanced Photon Source (9-BM) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 24 TC 8 Z9 8 U1 40 U2 112 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 382 EP 390 DI 10.1016/j.nanoen.2015.11.028 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400036 ER PT J AU Holmes, NP Marks, M Kumar, P Kroon, R Barr, MG Nicolaidis, N Feron, K Pivrikas, A Fahy, A Mendaza, ADD Kilcoyne, ALD Milller, C Zhou, XJ Andersson, MR Dastoor, PC Belcher, WJ AF Holmes, Natalie P. Marks, Melissa Kumar, Pankaj Kroon, Renee Barr, Matthew G. Nicolaidis, Nicolas Feron, Krishna Pivrikas, Almantas Fahy, Adam Mendaza, Amaia Diaz de Zerio Kilcoyne, A. L. David Milller, Christian Zhou, Xiaojing Andersson, Mats R. Dastoor, Paul C. Belcher, Warwick J. TI Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics SO NANO ENERGY LA English DT Article DE Water processable solar cells; Nanoparticle; Organic photovoltaic; Blend morphology; Glass transition temperature; Scanning transmission X-ray microscopy ID POLYMER SOLAR-CELLS; FULLERENE CRYSTALLIZATION; SEMICONDUCTING POLYMER; DEVICE PERFORMANCE; GLASS-TRANSITION; MOLECULAR-WEIGHT; STABILITY; MORPHOLOGY; QUINOXALINE; EFFICIENCY AB Here we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (T-g) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PC71BM (phenyl C-71 butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the T-g (sub-T-g and post-T-g), both in the active layer drying stage and post-cathode deposition annealing stage of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. In addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously-been observed, that of PC71BM nano-pathway formation between dispersed PC71BM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Holmes, Natalie P.; Marks, Melissa; Kumar, Pankaj; Barr, Matthew G.; Nicolaidis, Nicolas; Feron, Krishna; Fahy, Adam; Zhou, Xiaojing; Dastoor, Paul C.; Belcher, Warwick J.] Univ Newcastle, Ctr Organ Elect, Univ Dr, Callaghan, NSW 2308, Australia. [Kumar, Pankaj] CSIR Natl Phys Lab, Dr KS Krishnan Marg, New Delhi 110012, India. [Kroon, Renee; Andersson, Mats R.] Univ S Australia, Ian Wark Res Inst, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia. [Feron, Krishna] CSIRO Energy Flagship, Newcastle, NSW 2300, Australia. [Pivrikas, Almantas] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia. [Pivrikas, Almantas] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Pivrikas, Almantas] Murdoch Univ, Sch Engn & Informat Technol, Perth, WA 6150, Australia. [Mendaza, Amaia Diaz de Zerio; Milller, Christian; Andersson, Mats R.] Chalmers, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Holmes, NP (reprint author), Univ Newcastle, Ctr Organ Elect, Univ Dr, Callaghan, NSW 2308, Australia. EM natalie.holmes@uon.edu.au RI Feron, Krishna/L-2963-2013; Kilcoyne, David/I-1465-2013; OI Kroon, Renee/0000-0001-8053-4288; Fahy, Adam/0000-0001-7590-394X FU University of Newcastle; Australian Renewable Energy Agency (ARENA); Commonwealth of Australia through the Access to Major Research Facilities Program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Australian Research Council [ARC DECRA DE120102271]; [UQ ECR59-2011002311]; [UQ NSRSF-2011002734] FX Special thanks to at the University of Newcastle Electron Microscopy and X-ray Unit. The University of Newcastle and the Australian Renewable Energy Agency (ARENA) are gratefully acknowledged for Ph.D. scholarships (NH). ARENA is further acknowledged for financial support (KF). We acknowledge financial support from the Commonwealth of Australia through the Access to Major Research Facilities Program. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed in part at the Materials node of the Australian National Fabrication Facility, which is a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and microfabrication facilities for Australia's researchers. AP acknowledges Australian Research Council Discovery Early Career Researcher Award (Projects: ARC DECRA DE120102271) and projects UQ ECR59-2011002311, UQ NSRSF-2011002734. Special thanks to Rickard Hansson for assistance with sample preparation. NR 44 TC 9 Z9 9 U1 15 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 495 EP 510 DI 10.1016/j.nanoen.2015.11.021 PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400047 ER PT J AU Li, Y Xu, R Ren, Y Lu, J Wu, HM Wang, LF Miller, DJ Sun, YK Amine, K Chen, ZH AF Li, Yan Xu, Rui Ren, Yang Lu, Jun Wu, Huiming Wang, Lifen Miller, Dean J. Sun, Yang-Kook Amine, Khalil Chen, Zonghai TI Synthesis of full concentration gradient, cathode studied by high energy X-ray diffraction SO NANO ENERGY LA English DT Article DE In situ XRD; Full concentration gradient cathode; Lithium ion battery ID LITHIUM-ION BATTERIES; POSITIVE ELECTRODE MATERIAL; ELECTROCHEMICAL PROPERTIES; VOLTAGE FADE; NICKEL-RICH; PERFORMANCE; COPRECIPITATION; TEMPERATURE; MORPHOLOGY; PARTICLES AB Nickel-rich metal oxides have been widely pursued as promising cathode materials for high energy density lithium-ion batteries. Nickel-rich lithium transition metal oxides can deliver a high specific capacity during cycling, but can react with non-aqueous electrolytes. In this work, we have employed a full concentration gradient (FCG) design to provide a nickel-rich core to deliver high capacity and a manganese-rich outer layer to provide enhanced stability and cycle life. In situ high-energy X-ray diffraction was utilized to study the structural evolution of oxides during the solid-state synthesis of FCG lithium transition metal oxide with a nominal composition of LiNi0.6Mn0.2Co0.2O2. We found that both the pre-heating step and the sintering temperature were critical in controlling phase separation of the transition metal oxides and minimizing the content of Li2CO3 and NiO, both of which deteriorate the electrochemical performance of the final material. The insights revealed in this work can also be utilized for the design of other nickel-rich high energy-density cathode materials. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Yan; Xu, Rui; Lu, Jun; Wu, Huiming; Amine, Khalil; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wang, Lifen; Miller, Dean J.] Argonne Natl Lab, Ctr Nanoscale Mat, Electron Microscopy Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. [Sun, Yang-Kook] Hanyang Univ, Dept WCU Energy Engn, Seoul 133791, South Korea. RP Amine, K; Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@anl.gov; zonghai.chen@anl.gov RI Li, Yan/H-2957-2012 OI Li, Yan/0000-0002-9801-7243 FU U.S. Department of Energy (DOE), Vehicle Technologies Office; US Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Global Frontier R&D Program on Center for Hybrid Interface Materials (HIM) - Ministry of Science, ICT & Future Planning [2013M3A6B1078875]; National Research Foundation of Korea (NRF) - Korea government (MEST) [2014R1A2A1A13050479] FX Research was funded by U.S. Department of Energy (DOE), Vehicle Technologies Office. Support from David Howell and Peter Faguy of the U.S. DOE's Office of Vehicle Technologies Program is gratefully acknowledged. Argonne National Laboratory is operated for the US Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. Use of the Advanced Photon Source (APS) and the Center for Nanoscale Materials, including resources in the Electron Microscopy Center, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357.; This work was also supported by the Global Frontier R&D Program (2013M3A6B1078875) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2014R1A2A1A13050479). NR 33 TC 7 Z9 7 U1 22 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD JAN PY 2016 VL 19 BP 522 EP 531 DI 10.1016/j.nanoen.2015.07.019 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DC9UA UT WOS:000369565400049 ER PT J AU Simpson, JP Ohlrogge, JB AF Simpson, Jeffrey P. Ohlrogge, John B. TI A Novel Pathway for Triacylglycerol Biosynthesis Is Responsible for the Accumulation of Massive Quantities of Glycerolipids in the Surface Wax of Bayberry (Myrica pensylvanica) Fruit SO PLANT CELL LA English DT Article ID SAFFLOWER CARTHAMUS-TINCTORIUS; FATTY-ACID-COMPOSITION; MICROSOMAL PREPARATIONS; GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE; DIACYLGLYCEROL ACYLTRANSFERASE; DEVELOPING OILSEEDS; CUTIN POLYESTER; LIPID EXPORT; RNA-SEQ; ARABIDOPSIS AB Bayberry (Myrica pensylvanica) fruits synthesize an extremely thick and unusual layer of crystalline surface wax that accumulates to 32% of fruit dry weight, the highest reported surface lipid accumulation in plants. The composition is also striking, consisting of completely saturated triacylglycerol, diacylglycerol, and monoacylglycerol with palmitate and myristate acyl chains. To gain insight into the unique properties of Bayberry wax synthesis, we examined the chemical and morphological development of the wax layer, monitored wax biosynthesis through [C-14]-radiolabeling, and sequenced the transcriptome. Radiolabeling identified sn-2 monoacylglycerol as an initial glycerolipid intermediate. The kinetics of [C-14]DAG and [C-14]-TAG accumulation and the regiospecificity of their [C-14]-acyl chains indicated distinct pools of acyl donors and that final TAG assembly occurs outside of cells. The most highly expressed lipid-related genes were associated with production of cutin, whereas transcripts for conventional TAG synthesis were >50-foldless abundant. The biochemical and expression data together indicate that Bayberry surface glycerolipids are synthesized by a pathway for TAG synthesis that is related to cutin biosynthesis. The combination of a unique surface wax and massive accumulation may aid understanding of how plants produce and secrete non-membrane glycerolipids and also how to engineer alternative pathways for lipid production in non-seeds. C1 [Simpson, Jeffrey P.; Ohlrogge, John B.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Simpson, Jeffrey P.; Ohlrogge, John B.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Ohlrogge, JB (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.; Ohlrogge, JB (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM ohlrogge@msu.edu FU Department of Energy-Great Lakes Bioenergy Research Center Cooperative Agreement [DE-FC02-07ER64494]; National Science and Engineering Research Council of Canada postgraduate fellowship [PGS-D3] FX We thank Mike Pollard and Henrik Tjellstrom for suggestions, advice, and help with labeling and lipid analysis. We also thank Patrick Horn and Anthony Schilmiller for critical reading of the manuscript (all of Michigan State University [MSU]). We thank Abby Vanderberg and Melinda Frame of the MSU Center for Advanced Microscopy for sample preparation and assistance with scanning electron and confocal microcopy, respectively. Mathias Schuetz (University of British Columbia) also helped with confocal microscopy, and Starla Zemelis (MSU) provided guidance for fixation of Bayberry tissue for microscopy. Adam Rice (MSU) performed the differential scanning calorimetry analysis of Bayberry wax. RNA-seq was performed by the DOE JGI, with special assistance from Kerrie Barry, Erika Lindquist, and Anna Lipzen. Transcriptome assembly and databases were provided by Nick Thrower (MSU) and Curtis Wilkerson (MSU). We also thank Kurt Stepnitz (MSU) for assistance with time-lapse photography and the MSU Grounds department for maintenance of the Bayberry shrubs. We thank three anonymous reviewers for very helpful suggestions on improving the manuscript. This work was supported by Department of Energy-Great Lakes Bioenergy Research Center Cooperative Agreement DE-FC02-07ER64494. J.P.S. received a National Science and Engineering Research Council of Canada postgraduate fellowship (PGS-D3). NR 80 TC 6 Z9 6 U1 6 U2 28 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD JAN PY 2016 VL 28 IS 1 BP 248 EP 264 DI 10.1105/tpc.15.00900 PG 17 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA DD3IC UT WOS:000369814300020 PM 26744217 ER PT J AU Vandavasi, VG Putnam, DK Zhang, Q Petridis, L Heller, WT Nixon, BT Haigler, CH Kalluri, U Coates, L Langan, P Smith, JC Meiler, J O'Neill, H AF Vandavasi, Venu Gopal Putnam, Daniel K. Zhang, Qiu Petridis, Loukas Heller, William T. Nixon, B. Tracy Haigler, Candace H. Kalluri, Udaya Coates, Leighton Langan, Paul Smith, Jeremy C. Meiler, Jens O'Neill, Hugh TI A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers SO PLANT PHYSIOLOGY LA English DT Article ID SMALL-ANGLE SCATTERING; HYGROMETRICA PROTONEMA CELLS; RAY SOLUTION SCATTERING; HIGHER-PLANTS; SYNTHASE COMPLEX; X-RAY; NEUTRON-SCATTERING; INCLUSION-BODIES; PLASMA-MEMBRANE; PARTICLE ROSETTES AB A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. C1 [Vandavasi, Venu Gopal; Zhang, Qiu; Heller, William T.; Coates, Leighton; O'Neill, Hugh] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Petridis, Loukas; Kalluri, Udaya] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Petridis, Loukas; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Langan, Paul] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Putnam, Daniel K.; Meiler, Jens] Vanderbilt Univ, Dept Biomed Informat, Nashville, TN 37232 USA. [Meiler, Jens] Vanderbilt Univ, Dept Chem, Nashville, TN 37232 USA. [Nixon, B. Tracy] Penn State Univ, Biochem & Mol Biol, University Pk, PA 16802 USA. [Haigler, Candace H.] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA. [Haigler, Candace H.] N Carolina State Univ, Dept Plant & Microbial Biol, Raleigh, NC 27695 USA. [Smith, Jeremy C.; O'Neill, Hugh] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP O'Neill, H (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.; O'Neill, H (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM oneillhm@ornl.gov RI smith, jeremy/B-7287-2012; Petridis, Loukas/B-3457-2009; Langan, Paul/N-5237-2015; OI smith, jeremy/0000-0002-2978-3227; KALLURI, UDAYA/0000-0002-5963-8370; Petridis, Loukas/0000-0001-8569-060X; Vandavasi, Venu Gopal/0000-0002-8894-1395; Heller, William/0000-0001-6456-2975; Langan, Paul/0000-0002-0247-3122; Putnam, Daniel/0000-0001-8080-775X; Meiler, Jens/0000-0001-8945-193X; O'Neill, Hugh/0000-0003-2966-5527 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This work has been authored by UT-Battelle, LLC, under Contract Number DE-AC05-00OR22725 with the U.S. Department of Energy. NR 75 TC 10 Z9 10 U1 9 U2 31 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD JAN PY 2016 VL 170 IS 1 BP 123 EP 135 DI 10.1104/pp.15.01356 PG 13 WC Plant Sciences SC Plant Sciences GA DC6OB UT WOS:000369338300010 PM 26556795 ER PT J AU Conway, JM Perelson, AS AF Conway, Jessica M. Perelson, Alan S. TI Residual Viremia in Treated HIV+ Individuals SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID CD4(+) T-CELLS; IMMUNODEFICIENCY-VIRUS TYPE-1; ACTIVE ANTIRETROVIRAL THERAPY; LATENTLY INFECTED-CELLS; IN-VIVO; COMBINATION THERAPY; RALTEGRAVIR INTENSIFICATION; DRUG-RESISTANCE; VIRAL LOAD; LIFE-SPAN AB Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. The source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. However, phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived from activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir reseeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy. C1 [Conway, Jessica M.] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Conway, Jessica M.] Penn State Univ, CIDD, University Pk, PA 16802 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. RP Conway, JM (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA.; Conway, JM (reprint author), Penn State Univ, CIDD, University Pk, PA 16802 USA. EM jmconway@psu.edu FU US Department of Energy [DE-AC52-06NA25396]; National Institutes of Health [R01-AI028433, R01-OD011095] FX This work was performed under the auspices of US Department of Energy under Contract DE-AC52-06NA25396 and supported by National Institutes of Health Grants R01-AI028433 and R01-OD011095. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 6 Z9 6 U1 2 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JAN PY 2016 VL 12 IS 1 AR e1004677 DI 10.1371/journal.pcbi.1004677 PG 19 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA DC6YS UT WOS:000369366100019 PM 26735135 ER EF