FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Diaz, A Thomas, B Castillo, P Gross, B Moshary, F AF Diaz, Adrian Thomas, Benjamin Castillo, Paulo Gross, Barry Moshary, Fred TI Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID ABSORPTION-SPECTROSCOPY; SENSITIVE DETECTION; FTIR SPECTROSCOPY; GAS; SPECTROMETER; AMMONIA; CO2; ETHYLENE; PROGRESS; PLUMES AB Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at similar to 7.7 mu m wavelength range with similar to 200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed similar to 15 Hz and sufficient range (up to 45 m, similar to 148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz(-1/2) for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz(-1/2) for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks. C1 [Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred] CUNY City Coll, New York, NY 10031 USA. [Castillo, Paulo] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Thomas, B (reprint author), CUNY City Coll, New York, NY 10031 USA. EM bthomas2@ccny.cuny.edu FU National Science Foundation; Mid Infrared Technologies for Health and the Environment (MIRTHE) Engineering Research Center [0540832] FX This work was supported by the National Science Foundation, the Mid Infrared Technologies for Health and the Environment (MIRTHE) Engineering Research Center Award Number 0540832. NR 53 TC 0 Z9 0 U1 7 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD MAY PY 2016 VL 122 IS 5 AR 121 DI 10.1007/s00340-016-6396-x PG 11 WC Optics; Physics, Applied SC Optics; Physics GA DP8WM UT WOS:000378778600016 ER PT J AU Clarke, L McFarland, J Octaviano, C van Ruijven, B Beach, R Daenzer, K Martinez, SH Lucena, AFP Kitous, A Labriet, M Rodriguez, AML Mundra, A van der Zwaan, B AF Clarke, Leon McFarland, James Octaviano, Claudia van Ruijven, Bas Beach, Robert Daenzer, Kathryn Martinez, Sara Herreras Lucena, Andre F. P. Kitous, Alban Labriet, Maryse Loboguerrero Rodriguez, Ana Maria Mundra, Anupriya van der Zwaan, Bob TI Long-term abatement potential and current policy trajectories in Latin American countries SO ENERGY ECONOMICS LA English DT Article DE Scenarios; Latin America; Climate mitigation ID SCENARIOS; STABILIZATION; STRATEGIES; TARGETS; FUTURE; SYSTEM; MODEL AB This paper provides perspectives on the role of Latin American and Latin American countries in meeting global abatement goals, based on the scenarios developed through the CLIMACAP-LAMP modeling study. Abatement potential in Latin America, among other things, is influenced by its development status, the large contributions of non-CO2 and land use change CO2 emissions, and energy endowments. In most scenarios in this study, the economic potential to reduce fossil fuel CO2 as well as non-CO2 emissions in Latin America in 2050 is lower than in the rest of the world (in total) when measured against 2010 emissions, due largely to higher emission growth in Latin America than in the rest of the world in the absence of abatement. The potential to reduce land use change CO2 emissions is complicated by a wide range of factors and is not addressed in this paper (land use emissions are largely addressed in a companion paper). The study confirms the results of previous research that the variation in abatement costs across models may vary by an order of magnitude or more, limiting the value of these assessments and supporting continued calls for research on the degree to which models are effectively representing key local circumstances that influence costs and available abatement options. Finally, a review of policies in place in several Latin American countries at the time of this writing finds that they would be of varying success in meeting the emission levels proposed by the most recent IPCC reports to limit global temperature change to 2 degrees C. Published by Elsevier B.V. C1 [Clarke, Leon; Mundra, Anupriya] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. [McFarland, James] US EPA, Washington, DC 20460 USA. [Octaviano, Claudia] MIT, Joint Program Sci & Policy Global Change, Cambridge, MA 02139 USA. [van Ruijven, Bas] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Beach, Robert] Res Triangle Inst, POB 12194, Res Triangle Pk, NC 27709 USA. [Daenzer, Kathryn] Penn State Univ, University Pk, PA 16802 USA. [Martinez, Sara Herreras] Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. [Lucena, Andre F. P.] Univ Fed Rio de Janeiro, Energy Planning Program, BR-21941 Rio De Janeiro, Brazil. [Kitous, Alban] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Labriet, Maryse] Eneris Environm Energy Consultants, Madrid, Spain. [Loboguerrero Rodriguez, Ana Maria] CGIAR Res Program Climate Change Agr & Food Secur, Cali, Colombia. [van der Zwaan, Bob] Energy Res Ctr Netherlands ECN, Policy Studies, Amsterdam, Netherlands. [van der Zwaan, Bob] Johns Hopkins Univ, Sch Adv Int Studies, Bologna, Italy. [van der Zwaan, Bob] Univ Amsterdam, Fac Sci HIMS, Amsterdam, Netherlands. RP Clarke, L (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. EM leon.clarke@pnnl.gov OI Loboguerrero, Ana Maria/0000-0003-2690-0763 FU European Union [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development; U.S. Environmental Protection Agency [DW89923040, DW89923951US]; National Science Foundation [1243095] FX The research that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). Additional research support for individual authors includes van Ruijven (National Science Foundation, Grant No. 1243095) and Daenzer (U.S. EPA). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. NR 35 TC 6 Z9 6 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 513 EP 525 DI 10.1016/j.eneco.2016.01.011 PG 13 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600046 ER PT J AU van der Zwaan, B Kober, T Calderon, S Clarke, L Daenzer, K Kitous, A Labriet, M Lucena, AFP Octaviano, C Di Sbroiavacca, N AF van der Zwaan, Bob Kober, Tom Calderon, Silvia Clarke, Leon Daenzer, Katie Kitous, Alban Labriet, Maryse Lucena, Andre F. P. Octaviano, Claudia Di Sbroiavacca, Nicolas TI Energy technology roll-out for climate change mitigation: A multi-model study for Latin America SO ENERGY ECONOMICS LA English DT Article DE Climate policy; Low-carbon energy; Technological innovation; Latin America ID MODELING EXERCISE; CARBON CAPTURE; ECONOMICS; SCENARIOS; STORAGE; SYSTEM; COSTS AB In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050. We find that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of the challenges this CO2 abatement technology experiences. The extent to which different mitigation options can be used in practice varies greatly between countries within Latin America, depending on factors such as resource potentials, economic performance, environmental impacts, and availability of technical expertise. We provide concise assessments of possible deployment opportunities for some low-carbon energy options, for the region at large and with occasional country-level detail in specific cases. 2016 Battelle Memorial Institute and the Authors. Published by ELSEVIER B.V. C1 [van der Zwaan, Bob; Kober, Tom] Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. [van der Zwaan, Bob] Johns Hopkins Univ, Sch Adv Int Studies, Bologna, Italy. [van der Zwaan, Bob] Univ Amsterdam, Fac Sci, Amsterdam, Netherlands. [Calderon, Silvia] Subdirectorate Sustainable Dev, Natl Planning Dept, Bogota, Colombia. [Clarke, Leon] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Daenzer, Katie] Penn State Univ, Coll Agr Sci, University Pk, PA 16802 USA. [Kitous, Alban] European Commiss, Joint Res Ctr, Seville, Spain. [Labriet, Maryse] Eneris Environm Energy Consultants, Madrid, Spain. [Lucena, Andre F. P.] Univ Fed Rio de Janeiro, Energy Planning Program, Rio De Janeiro, Brazil. [Octaviano, Claudia] MIT, Joint Program Sci & Policy Global Change, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Di Sbroiavacca, Nicolas] Fdn Bariloche, Energy Program, San Carlos De Bariloche, Rio Negro, Argentina. RP van der Zwaan, B (reprint author), Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. EM vanderzwaan@ecn.nl FU European Union in the context of the CLIMACAP project [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development [DW89923040, DW89923951US]; U.S. Environmental Protection Agency [DW89923040, DW89923951US] FX The research that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in "the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. NR 53 TC 5 Z9 5 U1 9 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 526 EP 542 DI 10.1016/j.eneco.2015.11.019 PG 17 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600047 ER PT J AU Kober, T Falzon, J van der Zwaan, B Calvin, K Kanudia, A Kitous, A Labriet, M AF Kober, Tom Falzon, James van der Zwaan, Bob Calvin, Katherine Kanudia, Amit Kitous, Alban Labriet, Maryse TI A multi-model study of energy supply investments in Latin America under climate control policy SO ENERGY ECONOMICS LA English DT Article DE Climate policy; Low-carbon energy technology; Technology investment costs ID SCENARIOS AB In this paper we investigate energy supply investment requirements in Latin America until 2050 through a multi model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. Investment costs as share of GDP, however, decline over time in the business as-usual scenario as well as the climate policy scenarios, as a result of the fast economic growth of the region. In the business-as-usual scenario, cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in electricity supply. These investments increase when additional climate policies are introduced: under a carbon tax of 50$/tCO(2)e in 2020 growing with a rate of 4%/yr, an additional 0.6 trillion US$ (+45%) of cumulative investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily based on wind and solar resources, as well as CCS applied to fossil fuels and biomass. Our analysis suggests that, in comparison to the business-as-usual case, an average additional 21 billion US$/yr of electricity supply investment is required in Latin America until 2050 under a climate policy aiming at 2 degrees C climate stabilisation. Conversely, there is a disinvestment in fossil fuel extraction and transformation. For oil production, a growth to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario. Ambitious climate policy reduces this to 28 billion US$. Mobilising the necessary additional investment capital, in particular for low-carbon energy technologies, will be a challenge. Suitable frameworks and enabling environments for a scale-up of public and private investment will be critical to help reach the required low-carbon energy deployment levels. (C) 2016 Battelle Memorial Institute and The Authors. Published by Elsevier B.V. C1 [Kober, Tom; Falzon, James; van der Zwaan, Bob] Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. [van der Zwaan, Bob] Johns Hopkins Univ, Sch Adv Int Studies, Bologna, Italy. [van der Zwaan, Bob] Univ Amsterdam, Fac Sci, Amsterdam, Netherlands. [Calvin, Katherine] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Kanudia, Amit] KanORS EMR, Delhi, India. [Kitous, Alban] European Commiss, Joint Res Ctr, Seville, Spain. [Labriet, Maryse] Eneris Environm Energy Consultants, Madrid, Spain. RP Kober, T (reprint author), Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. EM kober@ecn.nl FU European Union in the context of the CLIMACAP project [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development [DW89923040, DW89923951US]; U.S. Environmental Protection Agency FX The research that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and the U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. NR 30 TC 2 Z9 2 U1 3 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 543 EP 551 DI 10.1016/j.eneco.2016.01.005 PG 9 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600048 ER PT J AU Di Sbroiavacca, N Nadal, G Lallana, F Falzon, J Calvin, K AF Di Sbroiavacca, Nicolas Nadal, Gustavo Lallana, Francisco Falzon, James Calvin, Katherine TI Emissions reduction scenarios in the Argentinean Energy Sector SO ENERGY ECONOMICS LA English DT Article DE Argentina; Energy sector; Mitigation measures; CO2 control policies AB In this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements.the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic cost of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving, the balance of trade. A Low CO2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO2 price leverages additional investments in hydropower. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts an 11.3% reduction. The main reasons for this difference include varying assumptions about technology cost and availability, CO2 storage capacity, and the ability to import bioenergy. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. According to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role. (C) 2016 Battelle Memorial Institute and The Authors. Published by Elsevier B.V. C1 [Di Sbroiavacca, Nicolas; Nadal, Gustavo; Lallana, Francisco] Fdn Bariloche, Energy Program, San Carlos De Bariloche, Rio Negro, Argentina. [Falzon, James] Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. [Calvin, Katherine] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. RP Di Sbroiavacca, N (reprint author), Fdn Bariloche, Energy Program, San Carlos De Bariloche, Rio Negro, Argentina. EM ndisbro@fundacionbariloche.org.ar OI Falzon, James/0000-0002-5589-9856; Calvin, Katherine/0000-0003-2191-4189 FU European Union [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development [DW89923040, DW89923951US]; U.S. Environmental Protection Agency [DW89923040, DW89923951US] FX The analysis that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP-LAMP project partners for enabling the research results reported in this article. NR 22 TC 3 Z9 3 U1 7 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 552 EP 563 DI 10.1016/j.eneco.2015.03.021 PG 12 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600049 ER PT J AU Lucena, AFP Clarke, L Schaeffer, R Szklo, A Rochedo, PRR Nogueira, LPP Daenzer, K Gurgel, A Kitous, A Kober, T AF Lucena, Andre F. P. Clarke, Leon Schaeffer, Roberto Szklo, Alexandre Rochedo, Pedro R. R. Nogueira, Larissa P. P. Daenzer, Kathryn Gurgel, Angelo Kitous, Alban Kober, Tom TI Climate policy scenarios in Brazil: A multi-model comparison for energy SO ENERGY ECONOMICS LA English DT Article DE Climate policy; Low-carbon energy scenarios; Mitigation alternatives; Brazil ID POWER-PLANTS; EMISSIONS; CAPTURE; CCS; DEFORESTATION; INTEGRATION; GENERATION; SYSTEM; AMAZON; SOLAR AB This paper assesses the effects of market-based mechanisms and carbon emission restrictions on the Brazilian energy system by comparing the results of six different energy-economic or integrated assessment models under different scenarios for carbon taxes and abatement targets up to 2050. Results show an increase over time in emissions in the baseline scenarios due, largely, to higher penetration of natural gas and coal. Climate policy scenarios, however, indicate that such a pathway can be avoided. While taxes up to 32 US$/tCO(2)e do not significantly reduce emissions, higher taxes (from 50 LIES/tCO(2)e in 2020 to 1621.13$/tCO(2)e in 2050) induce average emission reductions around 60% when compared to the baseline. Emission constraint scenarios yield even lower reductions in most models. Emission reductions are mostly due to lower energy consumption, increased penetration of renewable energy (especially biomass and wind) and of carbon capture and storage technologies for fossil and/or biomass fuels. This paper also provides a discussion of specific issues related to mitigation alternatives in Brazil. The range of mitigation options resulting from the model runs generally falls within the limits found for specific energy sources in the country, although infrastructure investments and technology improvements are needed for the projected mitigation scenarios to achieve actual feasibility. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Lucena, Andre F. P.; Schaeffer, Roberto; Szklo, Alexandre; Rochedo, Pedro R. R.; Nogueira, Larissa P. P.] Univ Fed Rio de Janeiro, Energy Planning Program, BR-21941 Rio De Janeiro, Brazil. [Clarke, Leon] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Daenzer, Kathryn] Penn State Univ, Coll Agr Sci, University Pk, PA 16802 USA. [Gurgel, Angelo] Sao Paulo Sch Econ, Fundacao Getulio Vargas EESP FGV, Brazil MIT Joint Program Sci & Policy Climate Cha, Cambridge, MA USA. [Kitous, Alban] European Commiss, Joint Res Ctr, Seville, Spain. [Kober, Tom] Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. RP Lucena, AFP (reprint author), Univ Fed Rio de Janeiro, Energy Planning Program, BR-21941 Rio De Janeiro, Brazil. EM andrelucena@ppe.ufrj.br; larissa@ppe.ufrj.br FU US EPA; USAID; European Union [EuropeAid/131944/C/SER/Multi]; CNPq; ANP FX We acknowledge the funding from US EPA and USAID, through the LAMP, and the European Union, through the CLIMACAP project (EuropeAid/131944/C/SER/Multi), for the contributions made to the several modeling teams. We would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. We acknowledge the financial support from CNPq and ANP. Finally, we especially thank Regis Rathmann, Rafael Soria, Mauro Chavez-Rodrigues, Joana Portugal-Pereira and Alexandre Koberle for their help in some stages of the LAMP-CLIMACAP exercise. NR 85 TC 5 Z9 5 U1 10 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 564 EP 574 DI 10.1016/j.eneco.2015.02.005 PG 11 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600050 ER PT J AU Calderon, S Alvarez, AC Loboguerrero, AM Arango, S Calvin, K Kober, T Daenzer, K Fisher-Vanden, K AF Calderon, Silvia Camilo Alvarez, Andres Maria Loboguerrero, Ana Arango, Santiago Calvin, Katherine Kober, Tom Daenzer, Kathryn Fisher-Vanden, Karen TI Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets SO ENERGY ECONOMICS LA English DT Article DE Climate change mitigation; Carbon taxes; CO2 abatement targets; Energy modeling AB In this paper we investigate CO2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. An assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper. (C) 2016 Battelle Memorial Institute and The Authors. Published by Elsevier B.V. C1 [Calderon, Silvia; Camilo Alvarez, Andres] Dept Nacl Planeac, Bogota, Colombia. [Maria Loboguerrero, Ana] CGIAR Res Program Climate Change Agr & Food Secur, Cali, Colombia. [Maria Loboguerrero, Ana] Ctr Int Agr Trop, Apartado Aereo 6713, Cali, Colombia. [Arango, Santiago] Univ Nacl Colombia, Medellin, Colombia. [Calvin, Katherine] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kober, Tom] Energy Res Ctr Netherlands, Policy Studies, Amsterdam, Netherlands. [Daenzer, Kathryn; Fisher-Vanden, Karen] Penn State Univ, Coll Agr Sci, University Pk, PA 16802 USA. RP Calderon, S (reprint author), Dept Nacl Planeac, Bogota, Colombia. RI Arango-Aramburo, Santiago/B-9507-2017; OI Arango-Aramburo, Santiago/0000-0002-5009-0986; Loboguerrero, Ana Maria/0000-0003-2690-0763 FU European Union [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development [DW89923040, DW89923951US]; U.S. Environmental Protection Agency [DW89923040, DW89923951US] FX The research that allowed the publication of this paper has been produced with the financial assistance of the European Union (Grant EuropeAid/131944/C/SER/Multi) in the context of the CLIMACAP project and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. NR 19 TC 3 Z9 3 U1 8 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 575 EP 586 DI 10.1016/j.eneco.2015.05.010 PG 12 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600051 ER PT J AU Veysey, J Octaviano, C Calvin, K Martinez, SH Kitous, A McFarland, J van der Zwaan, B AF Veysey, Jason Octaviano, Claudia Calvin, Katherine Martinez, Sara Herreras Kitous, Alban McFarland, James van der Zwaan, Bob TI Pathways to Mexico's climate change mitigation targets: A multi-model analysis SO ENERGY ECONOMICS LA English DT Article DE Climate policy; Mexico; Modeling; Mitigation; Mitigation pathway AB Mexico's climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets-30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico's emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along with changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country. (C) 2016 Battelle Memorial Institute and The Authors. Published by Elsevier B.V. C1 [Veysey, Jason] Stockholm Environm Inst, 11 Curtis Ave, Somerville, MA 02144 USA. [Octaviano, Claudia] MA Inst Technol, Joint Program Sci & Policy Global Change, Cambridge, MA USA. [Octaviano, Claudia] Mario Molina Ctr Strateg Studies Energy & Environ, Mexico City, DF, Mexico. [Calvin, Katherine] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Ct,Suite 3500, College Pk, MD 20740 USA. [Martinez, Sara Herreras] Univ Utrecht, Copernicus Inst Sustainable Dev, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. [Kitous, Alban] European Commiss, DG Joint Res Ctr JRC, IPTS, Unit Econ Climate Change Energy & Transport J1, Edificio Expo,C Inca Garcilaso 3, E-41092 Seville, Spain. [McFarland, James] US EPA, USEPA Headquarters, William Jefferson Clinton Bldg,1200 Penn Ave NW, Washington, DC 20460 USA. [van der Zwaan, Bob] Energy Res Ctr Netherlands ECN, Policy Studies, Radarweg 60, NL-1043 NT Amsterdam, Netherlands. [van der Zwaan, Bob] Johns Hopkins Univ, Sch Adv Int Studies, Bologna, Italy. [van der Zwaan, Bob] Univ Amsterdam, Fac Sci, Amsterdam, Netherlands. RP Veysey, J (reprint author), Stockholm Environm Inst, 11 Curtis Ave, Somerville, MA 02144 USA. EM jason.veysey@sei-us.org; claus@mit.edu; katherine.calvin@pnnl.gov; S.D.HerrerasMartinez@uu.nl; alban.kitous@ec.europa.eu; mcfarland.james@epa.gov; vanderzwaan@ecn.nl FU European Union [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development [DW89923040, DW89923951US]; U.S. Environmental Protection Agency [DW89923040, DW89923951US] FX The research that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government The authors would like to thank all CLIMACAP and LAMP project partners for their feedback and efforts to enable the research results reported in this article. NR 31 TC 5 Z9 5 U1 5 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 587 EP 599 DI 10.1016/j.eneco.2015.04.011 PG 13 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600052 ER PT J AU Calvin, KV Beach, R Gurgel, A Labriet, M Rodriguez, AML AF Calvin, Katherine V. Beach, Robert Gurgel, Angelo Labriet, Maryse Loboguerrero Rodriguez, Ana Maria TI Agriculture, forestry, and other land-use emissions in Latin America SO ENERGY ECONOMICS LA English DT Article DE Agriculture and land use; Greenhouse gas emissions; Latin America ID ENERGY; BIOENERGY; CARBON; MODEL AB Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this article, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climate mitigation policy, and (4) N2O and CH4 emission intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions. (C) 2016 Battelle Memorial Institute and The Authors. Published by Elsevier B.V. C1 [Calvin, Katherine V.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Beach, Robert] Res Triangle Inst, POB 12194, Res Triangle Pk, NC 27709 USA. [Gurgel, Angelo] Fundacao Getulio Vargas EESP FGV, Sao Paulo Sch Econ, Brazil MIT Joint Program Sci & Policy Climate Cha, Cambridge, MA USA. [Labriet, Maryse] Eneris Environm Energy Consultants, Madrid, Spain. [Loboguerrero Rodriguez, Ana Maria] CGIAR Res Program Climate Change Agr & Food Secur, Internat Ctr Trop Agr, Cali, Colombia. RP Calvin, KV (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. EM katherine.calvin@pnnl.gov OI Loboguerrero, Ana Maria/0000-0003-2690-0763; Calvin, Katherine/0000-0003-2191-4189 FU European Union [EuropeAid/131944/C/SER/Multi]; U.S. Agency for International Development [DW89923040, DW89923951US]; U.S. Environmental Protection Agency [DW89923040, DW89923951US] FX The research that allowed the publication of this paper has been produced with the financial assistance of the European Union in the context of the CLIMACAP project (EuropeAid/131944/C/SER/Multi) and of the U.S. Agency for International Development and U.S. Environmental Protection Agency in the context of the LAMP project (under Interagency Agreements DW89923040 and DW89923951US). The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union or the U.S. government. The authors would like to thank the feedback and efforts from all CLIMACAP and LAMP project partners for enabling the research results reported in this article. NR 43 TC 5 Z9 5 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD MAY PY 2016 VL 56 BP 615 EP 624 DI 10.1016/j.eneco.2015.03.020 PG 10 WC Economics SC Business & Economics GA DP4DO UT WOS:000378446600054 ER PT J AU Nielson, CM Jones, KS Chun, RF Jacobs, JM Wang, Y Hewison, M Adams, JS Swanson, CM Lee, CG Vanderschueren, D Pauwels, S Prentice, A Smith, RD Shi, TJ Gao, YQ Schepmoes, AA Zmuda, JM Lapidus, J Cauley, JA Bouillon, R Schoenmakers, I Orwoll, ES AF Nielson, Carrie M. Jones, Kerry S. Chun, Rene F. Jacobs, Jon M. Wang, Ying Hewison, Martin Adams, John S. Swanson, Christine M. Lee, Christine G. Vanderschueren, Dirk Pauwels, Steven Prentice, Ann Smith, Richard D. Shi, Tujin Gao, Yuqian Schepmoes, Athena A. Zmuda, Joseph M. Lapidus, Jodi Cauley, Jane A. Bouillon, Roger Schoenmakers, Inez Orwoll, Eric S. CA Osteoporotic Fractures Men MrOS TI Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations SO JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM LA English DT Article ID BONE-MINERAL DENSITY; CLINICAL POPULATIONS; GENETIC-VARIANTS; D DEFICIENCY; HUMAN-SERUM; AFFINITY; METABOLITES; STATEMENT; AMERICANS; CALCIUM AB Context: Total 25-hydroxyvitamin D (25OHD) is a marker of vitamin D status and is lower in African Americans than in whites. Whether this difference holds for free 25OHOD (f25OHD) is unclear, considering reported genetic-racial differences in vitamin D binding protein (DBP) used to calculate f25OHD. Objectives: Our objective was to assess racial-geographic differences in f25OHD and to understand inconsistencies in racial associations with DBP and calculated f25OHD. Design: This study used a cross-sectional design. Setting: The general community in the United States, United Kingdom, and The Gambia were included in this study. Participants: Men in Osteoporotic Fractures in Men and Medical Research Council studies (N = 1057) were included. Exposures: Total 25OHD concentration, race, and DBP (GC) genotype exposures were included. Outcome Measures: Directly measured f25OHD, DBP assessed by proteomics, monoclonal and polyclonal immunoassays, and calculated f25OHD were the outcome measures. Results: Total 25OHD correlated strongly with directly measured f25OHD (Spearman r = 0.84). Measured by monoclonal assay, mean DBP in African-ancestry subjects was approximately 50% lower than in whites, whereas DBP measured by polyclonal DBP antibodies or proteomic methods was not lower in African-ancestry. Calculated f25OHD (using polyclonal DBP assays) correlated strongly with directly measured f25OHD (r = 0.80-0.83). Free 25OHD, measured or calculated from polyclonal DBP assays, reflected total 25OHD concentration irrespective of race and was lower in African Americans than in US whites. Conclusions: Previously reported racial differences in DBP concentration are likely from monoclonal assay bias, as there was no racial difference in DBP concentration by other methods. This confirms the poor vitamin D status of many African-Americans and the utility of total 25OHD in assessing vitamin D in the general population. C1 [Nielson, Carrie M.; Wang, Ying; Swanson, Christine M.; Orwoll, Eric S.] Oregon Hlth & Sci Univ, Bone & Mineral Unit, Portland, OR 97239 USA. [Nielson, Carrie M.; Lapidus, Jodi] Oregon Hlth & Sci Univ, Sch Publ Hlth, Portland, OR 97239 USA. [Jones, Kerry S.; Prentice, Ann; Schoenmakers, Inez] MRC, Human Nutr Res, Cambridge CB1 9NL, England. [Chun, Rene F.] Univ Calif Los Angeles, Dept Orthoped, Los Angeles, CA 90095 USA. [Jacobs, Jon M.; Smith, Richard D.; Shi, Tujin; Gao, Yuqian; Schepmoes, Athena A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Hewison, Martin] Univ Birmingham, Inst Metab & Syst Res, Birmingham B15 2TT, W Midlands, England. [Adams, John S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Swanson, Christine M.; Lee, Christine G.; Orwoll, Eric S.] Oregon Hlth & Sci Univ, Sch Med, Portland, OR 97239 USA. [Lee, Christine G.] Portland VA Med Ctr, Portland, OR 97239 USA. [Vanderschueren, Dirk] Katholieke Univ Leuven, Lab Diagnost Med, B-3000 Leuven, Belgium. [Vanderschueren, Dirk; Bouillon, Roger] Katholieke Univ Leuven, Lab Clin & Expt Endocrinol, B-3000 Leuven, Belgium. [Pauwels, Steven] Katholieke Univ Leuven, Dept Cardiovasc Sci, B-3000 Leuven, Belgium. [Pauwels, Steven] Univ Hosp Leuven, Dept Lab Med, B-3000 Leuven, Belgium. [Prentice, Ann] MRC Keneba, Keneba, Gambia. [Zmuda, Joseph M.; Cauley, Jane A.] Univ Pittsburgh, Dept Epidemiol, Pittsburgh, PA 15261 USA. RP Bouillon, R (reprint author), Katholieke Univ Leuven, Clin & Expt Endocrinol, O&NI Herestr 49,Box 902, B-3000 Leuven, Belgium. EM roger.bouillon@med.kuleuven.be RI Smith, Richard/J-3664-2012; Chun, Rene/A-9415-2010 OI Smith, Richard/0000-0002-2381-2349; Chun, Rene/0000-0002-0190-0807 FU National Institutes of Health (NIH); National Institute on Aging; National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); National Center for Advancing Translational Sciences; NIH Roadmap for Medical Research [U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, UL1 TR000128]; Medical Research Council [U105960371, U123261351, MC-A760-5QX00]; Department for International Development (DFID) under the MRC/DFID Concordat; Department of Energy [DE-AC05-76RL0 1830]; NIH [P41GM103493] FX The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health (NIH) funding. The following institutes provide support: the National Institute on Aging, the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences, and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The research in the United Kingdom and The Gambia were funded by the Medical Research Council (program codes U105960371, U123261351, MC-A760-5QX00) and the Department for International Development (DFID) under the MRC/DFID Concordat agreement. Additionally, portions of the experimental work described herein were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL0 1830. Portions of this work were supported by NIH P41GM103493 (to R.D.S.). Free 25OHD assay provided by DIAsource ImmunoAssays SA (Belgium) and Future Diagnostics Solutions BV (Netherlands), an ELISA based on DIAsource patented monoclonal antibodies. NR 40 TC 15 Z9 15 U1 3 U2 3 PU ENDOCRINE SOC PI WASHINGTON PA 2055 L ST NW, SUITE 600, WASHINGTON, DC 20036 USA SN 0021-972X EI 1945-7197 J9 J CLIN ENDOCR METAB JI J. Clin. Endocrinol. Metab. PD MAY PY 2016 VL 101 IS 5 BP 2226 EP 2234 DI 10.1210/jc.2016-1104 PG 9 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA DP9MG UT WOS:000378819700041 PM 27007693 ER PT J AU Shao, J Zhou, XH Luo, YQ Zhang, GD Yan, W Li, JX Li, B Dan, L Fisher, JB Gao, ZQ He, Y Huntzinger, D Jain, AK Mao, JF Meng, JH Michalak, AM Parazoo, NC Peng, CH Poulter, B Schwalm, CR Shi, XY Sun, R Tao, FL Tian, HQ Wei, YX Zeng, N Zhu, Q Zhu, WQ AF Shao, Junjiong Zhou, Xuhui Luo, Yiqi Zhang, Guodong Yan, Wei Li, Jiaxuan Li, Bo Dan, Li Fisher, Joshua B. Gao, Zhiqiang He, Yong Huntzinger, Deborah Jain, Atul K. Mao, Jiafu Meng, Jihua Michalak, Anna M. Parazoo, Nicholas C. Peng, Changhui Poulter, Benjamin Schwalm, Christopher R. Shi, Xiaoying Sun, Rui Tao, Fulu Tian, Hanqin Wei, Yaxing Zeng, Ning Zhu, Qiuan Zhu, Wenquan TI Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005 SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE China; interannual variability; model structure; net primary productivity; net biome productivity; uncertainty ID MODEL INTERCOMPARISON PROJECT; PROGRAM MULTISCALE SYNTHESIS; CARBON-DIOXIDE; INTERANNUAL VARIABILITY; ECOSYSTEM EXCHANGE; LAND-USE; NITROGEN DEPOSITION; GLOBAL CHANGE; SOIL RESPIRATION; BIOSPHERE MODELS AB Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.351.25 and 0.140.094PgCyr(-1), respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012PgCyr(-1) during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models. C1 [Shao, Junjiong; Zhou, Xuhui] E China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Field Observat Stn Forest Ecosyst, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China. [Shao, Junjiong; Zhang, Guodong; Li, Bo] Fudan Univ, Sch Life Sci, Minist Educ,Key Lab Biodivers Sci & Ecol Engn, Coastal Ecosyst Res Stn Yangtze River Estuary,Ins, Shanghai 200433, Peoples R China. [Zhou, Xuhui] E China Normal Univ, Ctr Global Change & Ecol Forecasting, Shanghai 200062, Peoples R China. [Luo, Yiqi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Yan, Wei; Li, Jiaxuan] E China Normal Univ, Shanghai Key Lab Urban Ecol Proc & EcoRestorat, Shanghai 200062, Peoples R China. [Dan, Li] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Fisher, Joshua B.; Parazoo, Nicholas C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gao, Zhiqiang; Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resource Res, Beijing, Peoples R China. [He, Yong] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. [Huntzinger, Deborah] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. [Jain, Atul K.] Univ Illinois, Dept Atmospher Sci, Urbana, IL USA. [Mao, Jiafu; Shi, Xiaoying; Wei, Yaxing] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Mao, Jiafu; Shi, Xiaoying; Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Meng, Jihua] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Parazoo, Nicholas C.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Peng, Changhui] Univ Quebec, Inst Environm Sci, Montreal, PQ H3C 3P8, Canada. [Peng, Changhui; Zhu, Qiuan] Northwest A&F Univ, Coll Forestry, Lab Ecol Forecasting & Global Change, Yangling, Peoples R China. [Poulter, Benjamin] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Schwalm, Christopher R.] Woods Hole Res Ctr, Falmouth, MA USA. [Sun, Rui] Beijing Normal Univ, Sch Geog & Remote Sensing Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China. [Tao, Fulu] Nat Resources Inst Finland Luke, Vantaa, Finland. [Tian, Hanqin] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Zeng, Ning] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Zeng, Ning] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Zhu, Wenquan] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resourc, Beijing 100875, Peoples R China. RP Zhou, XH (reprint author), E China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Field Observat Stn Forest Ecosyst, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China.; Zhou, XH (reprint author), E China Normal Univ, Ctr Global Change & Ecol Forecasting, Shanghai 200062, Peoples R China. EM xhzhou@des.ecnu.edu.cn RI Zhou, Xuhui/H-4332-2011; Zeng, Ning/A-3130-2008; Mao, Jiafu/B-9689-2012; Jain, Atul/D-2851-2016; OI Zeng, Ning/0000-0002-7489-7629; Mao, Jiafu/0000-0002-2050-7373; Jain, Atul/0000-0002-4051-3228; Fisher, Joshua/0000-0003-4734-9085 FU National Natural Science Foundation of China [31370489]; Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning; national "Thousand Young Talents" Program in China; NASA ROSES [NNX10AG01A, NNH10AN681]; U. S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research; DOE [DE-AC05-00OR22725]; U. S. DOE [DE-AC05-76RLO1830]; NASA Interdisciplinary Science Program; NASA Land Cover/Land Use Change Program (LCLUC); NASA Terrestrial Ecology Program; NASA Atmospheric Composition Modeling and Analysis Program; NSF Dynamics of Coupled Natural-Human System Program, Decadal and Regional Climate Prediction using Earth System Models; DOE National Institute for Climate Change Research; USDA AFRI Program; EPA STAR Program; Office of Science of the U. S. Department of Energy [DE-AC0205CH11231]; National Science Foundation [OCI-0725070, ACI-1238993]; state of Illinois; National Basic Research Program of China [2013CB956602] FX The data used in this analysis are shown in the supporting information. We thank the three anonymous reviewers for their constructive comments and suggestions. This research was financially supported by the National Natural Science Foundation of China (Grant 31370489), the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning, and the national "Thousand Young Talents" Program in China. Funding for the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP; http://nacp.ornl.gov/MsTMIP. shtm) activity was provided through NASA ROSES Grant NNX10AG01A. Data management support for preparing, documenting, and distributing model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory (ORNL; http://nacp. ornl. gov), with funding through NASA ROSES Grant NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC (http://daac. ornl. gov). This is MsTMIP contribution # 5. Acknowledgments for specific MsTMIP participating models: Biome- BGC: Biome- BGC code was provided by the Numerical Terradynamic Simulation Group at the University of Montana. The computational facilities provided by NASA Earth Exchange at NASA Ames Research Center. CLM: This research is supported in part by the U. S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research. Oak Ridge National Laboratory is managed by UTBATTELLE for DOE under contract DE-AC05-00OR22725. CLM4VIC: CLM4VIC simulations were supported in part by the U. S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research (BER) through the Earth SystemModeling program and performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U. S. DOE- BER and located at Pacific NorthwestNational Laboratory (PNNL). Participation of M. Huang in the MsTMIP synthesis is supported by the U. S. DOE- BER through the Subsurface Biogeochemical Research Program (SBR) as part of the SBR Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U. S. DOE by BATTELLE Memorial Institute under contract DE-AC05-76RLO1830. DLEM: The Dynamic Land Ecosystem Model (DLEM) developed in the International Center for Climate and Global Change Research at Auburn University has been supported by NASA Interdisciplinary Science Program, NASA Land Cover/Land Use Change Program (LCLUC), NASA Terrestrial Ecology Program, NASA Atmospheric Composition Modeling and Analysis Program; NSF Dynamics of Coupled Natural-Human System Program, Decadal and Regional Climate Prediction using Earth System Models; DOE National Institute for Climate Change Research; USDA AFRI Program; and EPA STAR Program. ISAM: Integrated Science Assessment Model (ISAM) simulations were supported by the U.S. National Science Foundation (NSF-AGS12-43071 and NSF-EFRI-083598), the USDA National Institute of Food and Agriculture (2011-68002-30220), the U.S. Department of Energy (DOE) Office of Science (DOE-DE-SC0006706), and the NASA Land Cover and Land Use Change Program (NNX14AD94G). ISAM simulations were carried out at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S.; Department of Energy under contract DE-AC0205CH11231, and at the Blue Waters sustained-petascale computing, University of Illinois at UrbanaChampaign, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. LPJ-wsl: This work was conducted at LSCE, France, using a modified version of the LPJ version 3.1 model, originally made available by the Potsdam Institute for Climate Impact Research. ORCHIDEE-LSCE: ORCHIDEE is a global land surface model developed at the IPSL institute in France. The simulationswere performed with the support of the GhG Europe FP7 grant with computing facilities provided by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) or TGCC (Trs Grand Centre de Calcul). TRIPLEX-GHG: TRIPLEXGHG developed at University of Quebec at Montreal (Canada) and Northwest A& F University (China) has been supported by the National Basic Research Program of China (2013CB956602) and the National Science and Engineering Research Council of Canada (NSERC) Discover Grant. VISIT: VISIT was developed at the National Institute for Environmental Studies, Japan. This work was mostly conducted during a visiting stay at Oak Ridge National Laboratory. NR 113 TC 0 Z9 0 U1 21 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAY PY 2016 VL 121 IS 5 BP 1372 EP 1393 DI 10.1002/2015JG003062 PG 22 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DP7TX UT WOS:000378703200011 ER PT J AU Zhao, YS Qu, D Zhou, R Ma, YG Wang, H Ren, HJ AF Zhao, Yongsheng Qu, Dan Zhou, Rui Ma, Yunge Wang, Hao Ren, Hejun TI Bioaugmentation with GFP-Tagged Pseudomonas migulae AN-1 in Aniline-Contaminated Aquifer Microcosms: Cellular Responses, Survival and Effect on Indigenous Bacterial Community SO JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Aniline; bioaugmentation; cellular responses; GFP-tagged Pseudomonas migulae AN-1; survival ID SURFACE HYDROPHOBICITY; TRIPHENYLTIN BIODEGRADATION; MICROBIAL COMMUNITY; WASTE-WATER; SOIL; DEGRADATION; BIOSORPTION; PLASMID; MICROORGANISMS; GROUNDWATER AB The recently isolated aniline-degrading bacterium Pseudomonas migulae AN-1 was tagged with green fluorescent protein (GFP) to investigate its bioaugmentation potential against aniline-contaminated groundwater through microcosm experiments. The survival and cellular response of GFP-tagged AN-1 introduced in a lab-scale aquifer corresponded directly with aniline consumption. During the process, the GFP-tagged AN-1 biomass increased from 7.52 x 10(5) cells/ml to 128 x 10(5) cells/ml and the degradation rate of aniline was 6.04 mg/l/h. GFP-tagged AN-1 was moderately hydrophobic (41.74%-47.69%) when treated with 20100 mg/l aniline and exhibited relatively strong hydrophobicity (55.25%-65.78%) when the concentration of aniline was >= 100 mg/l. The membrane permeability of AN-1 increased followed by a rise in aniline below 100 mg/l and was invariable with aniline above 100 mg/l. Pyrosequencing analysis showed that the relative abundance of Proteobacteria (accounted for 99.22% in the non-bioaugmentation samples) changed to 89.23% after bioaugmentation with GFP-tagged AN-1. Actinobacteria increased from 0.29% to 2.01%, whereas the abundance of Firmicutes barely changed. These combined findings demonstrate the feasibility of removing aniline in aquifers by introducing the strain AN-1 and provide valuable information on the changes in the diversity of dominant populations during bioaugmentation. C1 [Zhao, Yongsheng; Qu, Dan; Zhou, Rui; Ma, Yunge; Wang, Hao; Ren, Hejun] Jilin Univ, Coll Environm & Resources, Key Lab Groundwater Resources & Environm, Minist Educ, Changchun 130021, Peoples R China. [Zhou, Rui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Ren, HJ (reprint author), Jilin Univ, Coll Environm & Resources, Key Lab Groundwater Resources & Environm, Minist Educ, Changchun 130021, Peoples R China. EM renhejun@126.com FU National Natural Science Foundation of China [41530636, 41471252]; Scientific Frontier and Interdisciplinary Research Project of Jilin University; Outstanding Youth Cultivation Plan of Jilin University FX The authors are grateful to Professor Yanzheng Gao (Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, China) for providing the plasmids pBBRGRP-45 and pRK2013. This work was financially supported by the Key Project of National Natural Science Foundation of China (Grant No. 41530636), National Natural Science Foundation of China (Grant No. 41471252), and Scientific Frontier and Interdisciplinary Research Project of Jilin University, Outstanding Youth Cultivation Plan of Jilin University. NR 44 TC 0 Z9 0 U1 3 U2 7 PU KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY PI SEOUL PA KOREA SCI TECHNOL CENTER #507, 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 1017-7825 EI 1738-8872 J9 J MICROBIOL BIOTECHN JI J. Microbiol. Biotechnol. PD MAY PY 2016 VL 26 IS 5 BP 891 EP 899 DI 10.4014/jmb.1511.11070 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DP8QA UT WOS:000378761500010 PM 26907759 ER PT J AU Artemev, AN Artemiev, NA AF Artemev, A. N. Artemiev, N. A. TI Large-Aperture X-Ray Refractive Lens SO JOURNAL OF SURFACE INVESTIGATION LA English DT Article DE X-ray refractive lens; multilens; aperture; light-gathering power; image ID FLUORESCENCE MICROTOMOGRAPHY; MICROSCOPE; RESOLUTION; ENERGY AB An X-ray refractive lens with an enlarged aperture (multilens) is developed and a procedure for obtaining images using this lens and methods of their processing are proposed. The multilens is compared with conventional X-ray refractive lenses, and the method of processing is compared to known techniques. It is shown that the proposed multilens can receive X-ray images with an aperture ratio of two to three orders of magnitude greater than a conventional X-ray refractive lens. Possible applications of the multilens are considered. Most attractive is use of the proposed multilens for imaging biological objects with a very low concentration of contrast agent. Quantitative estimates show that images of such objects can be obtained using modern synchrotron-radiation sources with a resolution of approximately 1 mu m in hundreds of seconds. C1 [Artemev, A. N.] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia. [Artemiev, N. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Artemev, AN (reprint author), Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia. EM alartemev@mail.ru NR 23 TC 0 Z9 0 U1 2 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1027-4510 EI 1819-7094 J9 J SURF INVESTIG JI J. Surf. Ingestig. PD MAY PY 2016 VL 10 IS 3 BP 490 EP 494 DI 10.1134/S1027451016030034 PG 5 WC Physics, Condensed Matter SC Physics GA DP4WI UT WOS:000378497500004 ER PT J AU Acar, H Banerjee, S Shi, HL Jamshidi, R Hashemi, N Cho, MW Montazami, R AF Acar, Handan Banerjee, Saikat Shi, Heliang Jamshidi, Reihaneh Hashemi, Nastaran Cho, Michael W. Montazami, Reza TI Transient Biocompatible Polymeric Platforms for Long-Term Controlled Release of Therapeutic Proteins and Vaccines SO MATERIALS LA English DT Article DE transient platform; controlled release; polymer platform; long-term release ID NETWORK COMPOSITE ACTUATORS; CROSS-LINKING; DRUG-DELIVERY; GELATIN FILMS; INTERPENETRATING NETWORKS; MECHANICAL-PROPERTIES; BIOELECTRONICS; MICROSPHERES; SORBITOL; HYDROGEL AB Polymer-based interpenetrating networks (IPNs) with controllable and programmable degradation and release kinetics enable unique opportunities for physisorption and controlled release of therapeutic proteins or vaccines while their chemical and structural integrities are conserved. This paper presents materials, a simple preparation method, and release kinetics of a series of long-term programmable, biocompatible, and biodegradable polymer-based IPN controlled release platforms. Release kinetics of the gp41 protein was controlled over a 30-day period via tuning and altering the chemical structure of the IPN platforms. Post-release analysis confirmed structural conservation of the gp41 protein throughout the process. Cell viability assay confirmed biocompatibility and non-cytotoxicity of the IPNs. C1 [Acar, Handan; Jamshidi, Reihaneh; Hashemi, Nastaran; Montazami, Reza] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Banerjee, Saikat; Shi, Heliang; Cho, Michael W.] Iowa State Univ, Dept Biomed Sci, Coll Vet Med, Ames, IA 50011 USA. [Banerjee, Saikat; Shi, Heliang; Jamshidi, Reihaneh; Hashemi, Nastaran; Cho, Michael W.; Montazami, Reza] Iowa State Univ, Ctr Adv Host Def Immunobiot & Translat Med, Ames, IA 50011 USA. [Hashemi, Nastaran; Montazami, Reza] US DOE, Ames Lab, Ames, IA 50011 USA. RP Montazami, R (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA.; Montazami, R (reprint author), Iowa State Univ, Ctr Adv Host Def Immunobiot & Translat Med, Ames, IA 50011 USA.; Montazami, R (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM acarhandan@gmail.com; skt3187@iastate.edu; shiyxtox@iastate.edu; reihaneh@iastate.edu; nastaran@iastate.edu; mcho@iastate.edu; reza@iastate.edu RI Hashemi, Nastaran/A-7645-2012; OI Hashemi, Nastaran/0000-0001-8921-7588; Montazami, Reza/0000-0002-8827-0026 FU NIH [P01 AI074286]; ISU PIIR (Presidential Initiative for Interdisciplinary Research) grant; William March Scholar program at Iowa State University; Office of Naval Research [N000141612246] FX The following reagent was obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: NC-1 hybridoma from Shibo Jiang. This work was supported in part by NIH grant P01 AI074286, ISU PIIR (Presidential Initiative for Interdisciplinary Research) grant, the William March Scholar program at Iowa State University, and Office of Naval Research grant N000141612246. Reza Montazami would like to thank Ashley Christopherson for her help and contribution to this research paper by providing scientific illustrations. NR 58 TC 1 Z9 1 U1 3 U2 7 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD MAY PY 2016 VL 9 IS 5 AR 321 DI 10.3390/ma9050321 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA DP6SG UT WOS:000378628500016 ER PT J AU Yoon, S Ha, J Chae, SR Kilcoyne, DA Jun, Y Oh, JE Monteiro, PJM AF Yoon, Seyoon Ha, Juyoung Chae, Sejung Rosie Kilcoyne, David A. Jun, Yubin Oh, Jae Eun Monteiro, Paulo J. M. TI Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution SO MATERIALS LA English DT Article DE cement chemistry; STXM; XANES; chloride; Kuzel's salt; Friedel's salt; monosulfate ID HARDENED CEMENT PASTE; AL-27 MAS NMR; CHLORIDE BINDING; FRIEDELS SALT; PORTLAND-CEMENT; PORE SOLUTION; TRANSITION; CONCRETE; SULFATE; IONS AB Monosulfoaluminate (Ca4Al2(SO4)(OH)(12)center dot 6H(2)O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO42- and OH-) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel's salt or Friedel's salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed. C1 [Yoon, Seyoon] Kyonggi Univ, Dept Civil Engn, Suwon 16227, South Korea. [Yoon, Seyoon; Jun, Yubin; Oh, Jae Eun] UNIST, Sch Urban & Environm Engn, 50 UNIST Gil, Ulsan 44919, South Korea. [Ha, Juyoung] Kean Univ, Sch Environm & Life Sci, Union, NJ 07083 USA. [Chae, Sejung Rosie; Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Kilcoyne, David A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Oh, JE (reprint author), UNIST, Sch Urban & Environm Engn, 50 UNIST Gil, Ulsan 44919, South Korea. EM yoonseyoon@kyonggi.ac.kr; juyoung@gmail.com; busyrosy@berkeley.edu; alkilcoyne@lbl.gov; ssjun97@gmail.com; ohjaeeun@unist.ac.kr; monteiro@berkeley.edu RI Kilcoyne, David/I-1465-2013; OI Oh, Jae Eun/0000-0002-2318-3001; Yoon, Seyoon/0000-0002-3451-5518; Jun, Yubin/0000-0002-0312-6966 FU Commercializations Promotion Agency for R&D Outcomes (COMPA) [2015K000130]; National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning (MISP), Republic of Korea [NRF-2014R1A1A3052424]; Office of Science, Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Commercializations Promotion Agency for R&D Outcomes (COMPA) (2015K000130) and Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2014R1A1A3052424) funded by the Ministry of Science, ICT & Future Planning (MISP), Republic of Korea. Data were acquired at beamline 5.3.2 at the Advanced Light Source, supported by the Director of the Office of Science, Department of Energy, under Contract No. DE-AC02-05CH11231. NR 40 TC 0 Z9 0 U1 4 U2 6 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD MAY PY 2016 VL 9 IS 5 AR 401 DI 10.3390/ma9050401 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA DP6SG UT WOS:000378628500096 ER PT J AU Arefiev, AV Khudik, VN Robinson, APL Shvets, G Willingale, L Schollmeier, M AF Arefiev, A. V. Khudik, V. N. Robinson, A. P. L. Shvets, G. Willingale, L. Schollmeier, M. TI Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID INTENSITY; PULSE AB We examine a regime in which a linearly polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by the development of significant oscillations perpendicular to the plane of the driven motion, making trajectories of energetic electrons three-dimensional. Proper electron injection into the laser beam can further boost the electron energy gain. Published by AIP Publishing. C1 [Arefiev, A. V.; Khudik, V. N.; Shvets, G.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Arefiev, A. V.] Univ Texas Austin, Ctr High Energy Dens Sci, Austin, TX 78712 USA. [Robinson, A. P. L.] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Willingale, L.] Univ Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109 USA. [Schollmeier, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Arefiev, AV (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA.; Arefiev, AV (reprint author), Univ Texas Austin, Ctr High Energy Dens Sci, Austin, TX 78712 USA. RI Arefiev, Alexey/A-8550-2016 OI Arefiev, Alexey/0000-0002-0597-0976 NR 32 TC 5 Z9 5 U1 5 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056704 DI 10.1063/1.4946024 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900167 ER PT J AU Bardoczi, L Rhodes, TL Carter, TA Crocker, NA Peebles, WA Grierson, BA AF Bardoczi, L. Rhodes, T. L. Carter, T. A. Crocker, N. A. Peebles, W. A. Grierson, B. A. TI Non-perturbative measurement of cross-field thermal diffusivity reduction at the O-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak SO PHYSICS OF PLASMAS LA English DT Article ID BOOTSTRAP CURRENT; FLUCTUATIONS; PLASMAS; UPGRADE; TEXT AB Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (chi(perpendicular to)) is presented. This model is used to derive chi(perpendicular to) at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that chi(perpendicular to) at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of chi(perpendicular to) are often attributed to turbulence driven transport, the reduction of the O-point chi(perpendicular to) is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced chi(perpendicular to) at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced chi(perpendicular to) at the O-point on NTM saturation. Published by AIP Publishing. C1 [Bardoczi, L.; Rhodes, T. L.; Carter, T. A.; Crocker, N. A.; Peebles, W. A.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Grierson, B. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bardoczi, L (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. FU U.S. Department of Energy [DE-FG02-08ER54984, DE-FG03-86ER53266, DE-FC02-04ER54698] FX The authors thank the Plasma Science and Technology Institute for travel support. This work was supported in part by the U.S. Department of Energy under DE-FG02-08ER54984, DE-FG03-86ER53266, and DE-FC02-04ER54698. NR 32 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052507 DI 10.1063/1.4948560 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900043 ER PT J AU Barrios, MA Liedahl, DA Schneider, MB Jones, O Brown, GV Regan, SP Fournier, KB Moore, AS Ross, JS Landen, O Kauffman, RL Nikroo, A Kroll, J Jaquez, J Huang, H Hansen, SB Callahan, DA Hinkel, DE Bradley, D Moody, JD AF Barrios, M. A. Liedahl, D. A. Schneider, M. B. Jones, O. Brown, G. V. Regan, S. P. Fournier, K. B. Moore, A. S. Ross, J. S. Landen, O. Kauffman, R. L. Nikroo, A. Kroll, J. Jaquez, J. Huang, H. Hansen, S. B. Callahan, D. A. Hinkel, D. E. Bradley, D. Moody, J. D. TI Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID SPECTROSCOPY AB The first measurement of the electron temperature (T-e) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T-e via the collisional-radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T-e is evaluated at the measured dot trajectory. The peak T-e, measured to be 4.2 keV +/- 0.2 keV, is similar to 0.5 keV hotter than the simulation prediction. Published by AIP Publishing. C1 [Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Regan, S. P.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Jaquez, J.; Huang, H.] Gen Atom Co, San Diego, CA 92121 USA. [Hansen, S. B.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Barrios, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 34 TC 2 Z9 2 U1 4 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056307 DI 10.1063/1.4948276 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900158 ER PT J AU Bulanov, SS Esarey, E Schroeder, CB Bulanov, SV Esirkepov, TZ Kando, M Pegoraro, F Leemans, WP AF Bulanov, S. S. Esarey, E. Schroeder, C. B. Bulanov, S. V. Esirkepov, T. Zh. Kando, M. Pegoraro, F. Leemans, W. P. TI Radiation pressure acceleration: The factors limiting maximum attainable ion energy SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID TERRESTRIAL LASER-BEAM; IN-CELL SIMULATION; RELATIVISTIC TRANSPARENCY; COLLIMATED BEAMS; HIGH-INTENSITY; FAST IGNITION; PROTON-BEAMS; THIN FOIL; PLASMA; PULSES AB Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy. Published by AIP Publishing. C1 [Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.] Natl Inst Quantum & Radiol Sci & Technol, KPSI, Kyoto 6190215, Japan. [Bulanov, S. V.] RAS, AM Prokhorov Inst Gen Phys, Moscow 119991, Russia. [Pegoraro, F.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. [Pegoraro, F.] CNR, Ist Nazl Ott, I-56127 Pisa, Italy. [Leemans, W. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Bulanov, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 93 TC 0 Z9 0 U1 6 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056703 DI 10.1063/1.4946025 PG 13 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900166 ER PT J AU Burgos, JMM Agostini, M Scarin, P Stotler, DP Unterberg, EA Loch, SD Schmitz, O Tritz, K Stutman, D AF Burgos, J. M. Munoz Agostini, M. Scarin, P. Stotler, D. P. Unterberg, E. A. Loch, S. D. Schmitz, O. Tritz, K. Stutman, D. TI Evaluation of thermal helium beam and line-ratio fast diagnostic on the National Spherical Torus Experiment-Upgrade SO PHYSICS OF PLASMAS LA English DT Article ID NEUTRAL HELIUM; PLASMAS; SCATTERING; EXCITATION; STATES AB A 1-D kinetic collisional radiative model with state-of-the-art atomic data is developed and employed to simulate line emission to evaluate the Thermal Helium Beam (THB) diagnostic on NSTX-U. This diagnostic is currently in operation on RFX-mod, and it is proposed to be installed on NSTX-U. The THB system uses the intensity ratios of neutral helium lines 667.8, 706.5, and 728.1 nm to derive electron temperature (eV) and density (cm(-3)) profiles. The purpose of the present analysis is to evaluate the applications of this diagnostic for determining fast (similar to 4 mu s) electron temperature and density radial profiles on the scrape-off layer and edge regions of NSTX-U that are needed in turbulence studies. The diagnostic is limited by the level of detection of the 728.1 nm line, which is the weakest of the three. This study will also aid in future design of a similar 2-D diagnostic system on the divertor. Published by AIP Publishing. C1 [Burgos, J. M. Munoz; Tritz, K.; Stutman, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Agostini, M.; Scarin, P.] Univ Padua, Ist Nazl Fis Nucl, Consorzio RFX, CNR,ENEA,Acciaierie Venete SpA, Corso Stati Uniti 4, I-35127 Padua, Italy. [Stotler, D. P.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Loch, S. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Schmitz, O.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Burgos, JMM (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM jmunozbu@pppl.gov; matteo.agostini@igi.cnr.it; paolo.scarin@igi.cnr.it; dstotler@pppl.gov; unterberge@fusion.gat.com; loch@physics.auburn.edu; oschmitz@wisc.edu; ktritz@pppl.gov; dstutma1@jhu.edu RI Stutman, Dan/P-4048-2015; Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 FU U.S. Department of Energy (DoE) [DE-S0000787]; U.S. DoE [DE-AC02-09ch11466, DE-SC0012315]; RFX-mod team FX The work at Johns Hopkins University was supported by the U.S. Department of Energy (DoE) under Grant No. DE-S0000787. The work at PPPL was supported under U.S. DoE Grant No. DE-AC02-09ch11466. The work at University of Wisconsin-Madison was supported under U.S. DoE Grant No. DE-SC0012315. The authors wish to acknowledge the support of the RFX-mod team, and also Dr. Stewart J. Zweben from PPPL for all his guidance and support. NR 31 TC 2 Z9 2 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 053302 DI 10.1063/1.4948554 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900089 ER PT J AU Burrell, KH Barada, K Chen, X Garofalo, AM Groebner, RJ Muscatello, CM Osborne, TH Petty, CC Rhodes, TL Snyder, PB Solomon, WM Yan, Z Zeng, L AF Burrell, K. H. Barada, K. Chen, X. Garofalo, A. M. Groebner, R. J. Muscatello, C. M. Osborne, T. H. Petty, C. C. Rhodes, T. L. Snyder, P. B. Solomon, W. M. Yan, Z. Zeng, L. TI Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID PEDESTAL PROFILES; ASDEX UPGRADE; STABILITY; TOKAMAK; ROTATION; REGIME; JT-60U; ELMS AB Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H98y2 international tokamak energy confinement scaling (H-98y2 = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E x B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E x B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transportlimited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant beta(N) = 1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production. (C) 2016 AIP Publishing LLC. C1 [Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Snyder, P. B.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Barada, K.; Rhodes, T. L.; Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Yan, Z.] Univ Wisconsin, Madison, WI 53706 USA. RP Burrell, KH (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. OI Barada, Kshitish/0000-0001-7724-8491; Solomon, Wayne/0000-0002-0902-9876 NR 35 TC 3 Z9 3 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056103 DI 10.1063/1.4943521 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900139 ER PT J AU Clark, DS Weber, CR Milovich, JL Salmonson, JD Kritcher, AL Haan, SW Hammel, BA Hinkel, DE Hurricane, OA Jones, OS Marinak, MM Patel, PK Robey, HF Sepke, SM Edwards, MJ AF Clark, D. S. Weber, C. R. Milovich, J. L. Salmonson, J. D. Kritcher, A. L. Haan, S. W. Hammel, B. A. Hinkel, D. E. Hurricane, O. A. Jones, O. S. Marinak, M. M. Patel, P. K. Robey, H. F. Sepke, S. M. Edwards, M. J. TI Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID TARGETS AB In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (wNIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsuleonly simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition. (C) 2016 AIP Publishing LLC. C1 [Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RP Clark, DS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RI Patel, Pravesh/E-1400-2011 NR 56 TC 19 Z9 19 U1 9 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056302 DI 10.1063/1.4943527 PG 18 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900153 ER PT J AU Dorf, MA Dorr, MR Hittinger, JA Cohen, RH Rognlien, TD AF Dorf, M. A. Dorr, M. R. Hittinger, J. A. Cohen, R. H. Rognlien, T. D. TI Continuum kinetic modeling of the tokamak plasma edge SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID COLLISION OPERATOR; CODE; PROGRESS AB The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport. (C) 2016 AIP Publishing LLC. C1 [Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.; Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cohen, R. H.] CompX, POB 2672, Del Mar, CA 92014 USA. RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 27 TC 1 Z9 1 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056102 DI 10.1063/1.4943106 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900138 ER PT J AU Ernst, DR Burrell, KH Guttenfelder, W Rhodes, TL Dimits, AM Bravenec, R Grierson, BA Holland, C Lohr, J Marinoni, A McKee, GR Petty, CC Rost, JC Schmitz, L Wang, G Zemedkun, S Zeng, L AF Ernst, D. R. Burrell, K. H. Guttenfelder, W. Rhodes, T. L. Dimits, A. M. Bravenec, R. Grierson, B. A. Holland, C. Lohr, J. Marinoni, A. McKee, G. R. Petty, C. C. Rost, J. C. Schmitz, L. Wang, G. Zemedkun, S. Zeng, L. CA DIII-D Team TI Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID DIII-D TOKAMAK; DOUBLE-BARRIER REGIME; ASDEX UPGRADE; CONFINEMENT; TRANSPORT; PLASMAS; INJECTION; PROFILE; SIMULATIONS; DEPENDENCE AB A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-mode plasmas during strong electron cyclotron heating (ECH). Adding 3.4MW ECH doubles T-e/T-i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This suggests that fusion a-heating may degrade inner core confinement in H-mode plasmas with moderate density peaking and low collisionality, with equal electron and ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] (and GENE [Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes but also density fluctuation spectra from Doppler backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q(0) > q(min) > 1. Published by AIP Publishing. C1 [Ernst, D. R.; Marinoni, A.; Rost, J. C.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Burrell, K. H.; Lohr, J.; Petty, C. C.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Guttenfelder, W.; Grierson, B. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.] Univ Calif Los Angeles, POB 957099, Los Angeles, CA 90095 USA. [Dimits, A. M.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Bravenec, R.] Fourth State Res, 503 Lockhart Dr, Austin, TX 78704 USA. [Holland, C.] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. [McKee, G. R.] Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. [Zemedkun, S.] Univ Colorado, DUAN F827, Boulder, CO 80309 USA. RP Ernst, DR (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM dernst@psfc.mit.edu NR 72 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056112 DI 10.1063/1.4948723 PG 16 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900148 ER PT J AU Faust, IC Brunner, D LaBombard, B Parker, RR Terry, JL Whyte, DG Baek, SG Edlund, E Hubbard, AE Hughes, JW Kuang, AQ Reinke, ML Shiraiwa, S Wallace, GM Walk, JR AF Faust, I. C. Brunner, D. LaBombard, B. Parker, R. R. Terry, J. L. Whyte, D. G. Baek, S. G. Edlund, E. Hubbard, A. E. Hughes, J. W. Kuang, A. Q. Reinke, M. L. Shiraiwa, S. Wallace, G. M. Walk, J. R. TI Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID CURRENT DRIVE; ENERGY-TRANSPORT; PLASMAS; JET; FREQUENCY; ELECTRONS; LHCD AB For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Ly(alpha) ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t < tau(E)) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density (n(e) > 1.0 x 10(20) (m(-3))). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. Published by AIP Publishing. C1 [Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Reinke, M. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Faust, IC (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. OI Brunner, Daniel/0000-0002-8753-1124; Kuang, Adam/0000-0002-8917-2911; Terry, James/0000-0003-4255-5509; Hughes, Jerry/0000-0003-4802-4944 NR 45 TC 1 Z9 1 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056115 DI 10.1063/1.4951736 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900151 ER PT J AU Ferraro, NM Jardin, SC Lao, LL Shephard, MS Zhang, F AF Ferraro, N. M. Jardin, S. C. Lao, L. L. Shephard, M. S. Zhang, F. TI Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID FINITE-ELEMENT; DISRUPTIONS; PLASMA; FLOW AB Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall. Published by AIP Publishing. C1 [Ferraro, N. M.; Lao, L. L.] Gen Atom Co, San Diego, CA 92186 USA. [Ferraro, N. M.; Jardin, S. C.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Shephard, M. S.; Zhang, F.] Rensselaer Polytech Inst, Troy, NY 12180 USA. RP Ferraro, NM (reprint author), Gen Atom Co, San Diego, CA 92186 USA.; Ferraro, NM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM nferraro@pppl.gov NR 35 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056114 DI 10.1063/1.4948722 PG 13 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900150 ER PT J AU Gates, DA Brennan, DP Delgado-Aparicio, L Teng, Q White, RB AF Gates, D. A. Brennan, D. P. Delgado-Aparicio, L. Teng, Q. White, R. B. TI Thermo-resistive disruptions and the tokamak density limit SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID TEARING MODES; PLASMAS AB The physical mechanism behind the tokamak density limit scaling is described in terms of a nonlinear theory of tearing mode growth in cylindrical geometry coupled to a model for thermal transport in the island. Important new physics features of the model include: (1) island asymmetry due to finite island width in cylindrical geometry, (2) a model of radiation based on local coronal equilibrium including impurity radiation, (3) current perturbations due the perturbed resistivity, and (4) numerical solution of the cylindrical eigenfunctions and Delta'. The semi-analytic cylindrical model is then solved for a wide range of current profiles, magnetic field values, and plasma currents using reasonable assumptions for impurity densities and the Greenwald limit [M. Greenwald et al., Nucl. Fusion 28, 2199 (1988)] is reproduced. The limit is shown to be only weakly dependent on variations in the assumed parameters. Published by AIP Publishing. C1 [Gates, D. A.; Brennan, D. P.; Delgado-Aparicio, L.; Teng, Q.; White, R. B.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Gates, DA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 21 TC 2 Z9 2 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056113 DI 10.1063/1.4948624 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900149 ER PT J AU Guo, F Li, H Daughton, W Li, XC Liu, YH AF Guo, Fan Li, Hui Daughton, William Li, Xiaocan Liu, Yi-Hsin TI Particle acceleration during magnetic reconnection in a low-beta pair plasma SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID GAMMA-RAY BURSTS; ELECTRON ACCELERATION; NONTHERMAL PARTICLES; CRAB-NEBULA; CURRENT SHEETS; SOLAR-FLARE; DISSIPATION; FIELDS; REGION; MODEL AB Plasma energization through magnetic reconnection in the magnetically dominated regime featured by low plasma beta (beta = 8 pi nkT(0)/B-2 << 1) and/or high magnetization (sigma = B-2/(4 pi nmc(2)) >> 1) is important in a series of astrophysical systems such as solar flares, pulsar wind nebula, and relativistic jets from black holes. In this paper, we review the recent progress on kinetic simulations of this process and further discuss plasma dynamics and particle acceleration in a low-beta reconnection layer that consists of electron-positron pairs. We also examine the effect of different initial thermal temperatures on the resulting particle energy spectra. While earlier papers have concluded that the spectral index is smaller for higher sigma, our simulations show that the spectral index approaches p = 1 for sufficiently low plasma beta, even if sigma similar to 1. Since this predicted spectral index in the idealized limit is harder than most observations, it is important to consider effects that can lead to a softer spectrum such as open boundary simulations. We also remark that the effects of three-dimensional reconnection physics and turbulence on reconnection need to be addressed in the future. Published by AIP Publishing. C1 [Guo, Fan; Li, Hui; Daughton, William] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Li, Xiaocan] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. [Liu, Yi-Hsin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guo, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Daughton, William/L-9661-2013 NR 86 TC 2 Z9 2 U1 8 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055708 DI 10.1063/1.4948284 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900132 ER PT J AU Guttenfelder, W Kaye, SM Ren, Y Solomon, W Bell, RE Candy, J Gerhardt, SP LeBlanc, BP Yuh, H AF Guttenfelder, W. Kaye, S. M. Ren, Y. Solomon, W. Bell, R. E. Candy, J. Gerhardt, S. P. LeBlanc, B. P. Yuh, H. TI Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENCE SIMULATIONS; VELOCITY SHEAR; ASPECT-RATIO; TRANSPORT; TOKAMAKS; STABILIZATION; CONFINEMENT; ROTATION; PLASMA; MODES AB This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important. Published by AIP Publishing. C1 [Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Guttenfelder, W (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM wgutten@pppl.gov OI Solomon, Wayne/0000-0002-0902-9876 FU DOE [DE-AC02-09CH11466] FX We would like to thank C. Angioni, Y. Camenen, and T. Tala for useful discussions. This work was funded by DOE Contract No. DE-AC02-09CH11466. The digital data for this paper can be found at http://arks.princeton.edu/ark:/88435/dsp0137720g13x. NR 69 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052508 DI 10.1063/1.4948791 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900044 ER PT J AU Jia, Q Barth, I Edwards, MR Mikhailova, JM Fisch, NJ AF Jia, Qing Barth, Ido Edwards, Matthew R. Mikhailova, Julia M. Fisch, Nathaniel J. TI Distinguishing Raman from strongly coupled Brillouin amplification for short pulses SO PHYSICS OF PLASMAS LA English DT Article ID ULTRASHORT LASER-PULSE; PLASMA; SCATTERING; COMPRESSION; REGIME; GENERATION; AMPLIFIERS; BEAMS AB Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointed out. Published by AIP Publishing. C1 [Jia, Qing; Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. [Barth, Ido; Fisch, Nathaniel J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Edwards, Matthew R.; Mikhailova, Julia M.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA. [Mikhailova, Julia M.] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia. RP Jia, Q (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. OI Barth, Ido/0000-0001-8198-896X; Fisch, Nathaniel/0000-0002-0301-7380 FU U.S. DTRA [HDTRA1-11-1-0037]; AFOSR [FA9550-15-1-0391]; NNSA [DE-NA0002948]; U.S. DOE [DE-AC02-09CH1-1466]; NSF; UK EPSRC [EP/G054950/1, EP/G056803/1, EP/G055165/1, EP/M022463/1] FX This work was supported by the U.S. DTRA Grant No. HDTRA1-11-1-0037, AFOSR Grant No. FA9550-15-1-0391, NNSA Grant No. DE-NA0002948, and the U.S. DOE Grant No. DE-AC02-09CH1-1466. The authors gratefully acknowledge A. A. Balakin and C. Z. Xiao for the constructive discussions. M.R.E. acknowledges the support of the NSF through a Graduate Research Fellowship. This work was partially performed at PPPL's Research Computing Center and the High Performance Computing Center at Princeton University. The development of the EPOCH code was funded in part by UK EPSRC Grant Nos. EP/G054950/1, EP/G056803/1, EP/G055165/1, and EP/M022463/1. NR 49 TC 4 Z9 4 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 053118 DI 10.1063/1.4951027 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900084 ER PT J AU Kline, JL Yi, SA Simakov, AN Olson, RE Wilson, DC Kyrala, GA Perry, TS Batha, SH Zylstra, AB Dewald, EL Tommasini, R Ralph, JE Strozzi, DJ MacPhee, AG Callahan, DA Hinkel, DE Hurricane, OA Milovich, JL Rygg, JR Khan, SF Haan, SW Celliers, PM Clark, DS Hammel, BA Kozioziemski, B Schneider, MB Marinak, MM Rinderknecht, HG Robey, HF Salmonson, JD Patel, PK Ma, T Edwards, MJ Stadermann, M Baxamusa, S Alford, C Wang, M Nikroo, A Rice, N Hoover, D Youngblood, KP Xu, H Huang, H Sio, H AF Kline, J. L. Yi, S. A. Simakov, A. N. Olson, R. E. Wilson, D. C. Kyrala, G. A. Perry, T. S. Batha, S. H. Zylstra, A. B. Dewald, E. L. Tommasini, R. Ralph, J. E. Strozzi, D. J. MacPhee, A. G. Callahan, D. A. Hinkel, D. E. Hurricane, O. A. Milovich, J. L. Rygg, J. R. Khan, S. F. Haan, S. W. Celliers, P. M. Clark, D. S. Hammel, B. A. Kozioziemski, B. Schneider, M. B. Marinak, M. M. Rinderknecht, H. G. Robey, H. F. Salmonson, J. D. Patel, P. K. Ma, T. Edwards, M. J. Stadermann, M. Baxamusa, S. Alford, C. Wang, M. Nikroo, A. Rice, N. Hoover, D. Youngblood, K. P. Xu, H. Huang, H. Sio, H. TI First beryllium capsule implosions on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID FUSION; GAIN AB The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the back-scattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments. Published by AIP Publishing. C1 [Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. [Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.] Gen Atom Co, San Diego, CA 92121 USA. [Sio, H.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Kline, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RI Wang, Yinmin (Morris)/F-2249-2010; Patel, Pravesh/E-1400-2011; Perry, Theodore/K-3333-2014; Tommasini, Riccardo/A-8214-2009; OI Perry, Theodore/0000-0002-8832-2033; Tommasini, Riccardo/0000-0002-1070-3565; Simakov, Andrei/0000-0001-7064-9153 NR 51 TC 4 Z9 4 U1 7 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056310 DI 10.1063/1.4948277 PG 10 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900161 ER PT J AU Kritcher, AL Hinkel, DE Callahan, DA Hurricane, OA Clark, D Casey, DT Dewald, EL Dittrich, TR Doppner, T Garcia, MAB Haan, S Hopkins, LFB Jones, O Landen, O Ma, T Meezan, N Milovich, JL Pak, AE Park, HS Patel, PK Ralph, J Robey, HF Salmonson, JD Sepke, S Spears, B Springer, PT Thomas, CA Town, R Celliers, PM Edwards, MJ AF Kritcher, A. L. Hinkel, D. E. Callahan, D. A. Hurricane, O. A. Clark, D. Casey, D. T. Dewald, E. L. Dittrich, T. R. Doppner, T. Garcia, M. A. Barrios Haan, S. Hopkins, L. F. Berzak Jones, O. Landen, O. Ma, T. Meezan, N. Milovich, J. L. Pak, A. E. Park, H. -S. Patel, P. K. Ralph, J. Robey, H. F. Salmonson, J. D. Sepke, S. Spears, B. Springer, P. T. Thomas, C. A. Town, R. Celliers, P. M. Edwards, M. J. TI Integrated modeling of cryogenic layered highfoot experiments at the NIF SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL-CONFINEMENT FUSION; DIAGNOSTICS; FACILITY; TARGETS AB Integrated radiation hydrodynamic modeling in two dimensions, including the hohlraum and capsule, of layered cryogenic HighFoot Deuterium-Tritium (DT) implosions on the NIF successfully predicts important data trends. The model consists of a semi-empirical fit to low mode asymmetries and radiation drive multipliers to match shock trajectories, one dimensional inflight radiography, and time of peak neutron production. Application of the model across the HighFoot shot series, over a range of powers, laser energies, laser wavelengths, and target thicknesses predicts the neutron yield to within a factor of two for most shots. The Deuterium-Deuterium ion temperatures and the DT down scattered ratios, ratio of (10-12)/(13-15) MeV neutrons, roughly agree with data at peak fuel velocities <340 km/s and deviate at higher peak velocities, potentially due to flows and neutron scattering differences stemming from 3D or capsule support tent effects. These calculations show a significant amount alpha heating, 1-2.5 x for shots where the experimental yield is within a factor of two, which has been achieved by increasing the fuel kinetic energy. This level of alpha heating is consistent with a dynamic hot spot model that is matched to experimental data and as determined from scaling of the yield with peak fuel velocity. These calculations also show that low mode asymmetries become more important as the fuel velocity is increased, and that improving these low mode asymmetries can result in an increase in the yield by a factor of several. Published by AIP Publishing. C1 [Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.; Hurricane, O. A.; Clark, D.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doppner, T.; Garcia, M. A. Barrios; Haan, S.; Hopkins, L. F. Berzak; Jones, O.; Landen, O.; Ma, T.; Meezan, N.; Milovich, J. L.; Pak, A. E.; Park, H. -S.; Patel, P. K.; Ralph, J.; Robey, H. F.; Salmonson, J. D.; Sepke, S.; Spears, B.; Springer, P. T.; Thomas, C. A.; Town, R.; Celliers, P. M.; Edwards, M. J.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RP Kritcher, AL (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI Patel, Pravesh/E-1400-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 50 TC 6 Z9 6 U1 9 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052709 DI 10.1063/1.4949351 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900060 ER PT J AU Le Pape, S Hopkins, LFB Divol, L Meezan, N Turnbull, D Mackinnon, AJ Ho, D Ross, JS Khan, S Pak, A Dewald, E Benedetti, LR Nagel, S Biener, J Callahan, DA Yeamans, C Michel, P Schneider, M Kozioziemski, B Ma, T Macphee, AG Haan, S Izumi, N Hatarik, R Sterne, P Celliers, P Ralph, J Rygg, R Strozzi, D Kilkenny, J Rosenberg, M Rinderknecht, H Sio, H Gatu-Johnson, M Frenje, J Petrasso, R Zylstra, A Town, R Hurricane, O Nikroo, A Edwards, MJ AF Le Pape, S. Hopkins, L. F. Berzak Divol, L. Meezan, N. Turnbull, D. Mackinnon, A. J. Ho, D. Ross, J. S. Khan, S. Pak, A. Dewald, E. Benedetti, L. R. Nagel, S. Biener, J. Callahan, D. A. Yeamans, C. Michel, P. Schneider, M. Kozioziemski, B. Ma, T. Macphee, A. G. Haan, S. Izumi, N. Hatarik, R. Sterne, P. Celliers, P. Ralph, J. Rygg, R. Strozzi, D. Kilkenny, J. Rosenberg, M. Rinderknecht, H. Sio, H. Gatu-Johnson, M. Frenje, J. Petrasso, R. Zylstra, A. Town, R. Hurricane, O. Nikroo, A. Edwards, M. J. TI The near vacuum hohlraum campaign at the NIF: A new approach SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID NATIONAL IGNITION FACILITY; TARGETS AB The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30x). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30x implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry. Published by AIP Publishing. C1 [Le Pape, S.; Hopkins, L. F. Berzak; Divol, L.; Meezan, N.; Turnbull, D.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Rosenberg, M.; Rinderknecht, H.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mackinnon, A. J.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,MS 19, Menlo Pk, CA 94025 USA. [Kilkenny, J.] Gen Atom Co, San Diego, CA 92186 USA. [Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Zylstra, A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Le Pape, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI IZUMI, Nobuhiko/J-8487-2016 OI IZUMI, Nobuhiko/0000-0003-1114-597X NR 25 TC 6 Z9 6 U1 6 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056311 DI 10.1063/1.4950843 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900162 ER PT J AU Lee, W Leem, J Yun, GS Park, HK Ko, SH Choi, MJ Wang, WX Budny, RV Ethier, S Park, YS Luhmann, NC Domier, CW Lee, KD Ko, WH Kim, KW AF Lee, W. Leem, J. Yun, G. S. Park, H. K. Ko, S. H. Choi, M. J. Wang, W. X. Budny, R. V. Ethier, S. Park, Y. S. Luhmann, N. C., Jr. Domier, C. W. Lee, K. D. Ko, W. H. Kim, K. W. CA KSTAR Team TI E x B flow velocity deduced from the poloidal motion of fluctuation patterns in neutral beam injected L-mode plasmas on KSTAR SO PHYSICS OF PLASMAS LA English DT Article ID REVERSED SHEAR PLASMAS; RADIAL ELECTRIC-FIELD; DOPPLER REFLECTOMETRY; MAGNETIC SHEAR; TOKAMAK; CONFINEMENT; PARAMETERS; TURBULENCE; TRANSPORT; ROTATION AB A method for direct assessment of the equilibrium E x B flow velocity (E x B flow shear is responsible for the turbulence suppression and transport reduction in tokamak plasmas) is investigated based on two facts. The first one is that the apparent poloidal rotation speed of density fluctuation patterns is close to the turbulence rotation speed in the direction perpendicular to the local magnetic field line within the flux surface. And the second "well-known" fact is that the turbulence rotation velocity consists of the equilibrium E x B flow velocity and intrinsic phase velocity of turbulence in the E x B flow frame. In the core region of the low confinement (L-mode) discharges where a strong toroidal rotation is induced by neutral beam injection, the apparent poloidal velocities (and turbulence rotation velocities) are good approximations of the E x B flow velocities since linear gyrokinetic simulations suggest that the intrinsic phase velocity of the dominant turbulence is significantly lower than the apparent poloidal velocity. In the neutral beam injected L-mode plasmas, temporal and spatial scales of the measured turbulence are studied by comparing with the local equilibrium parameters relevant to the ion-scale turbulence. Published by AIP Publishing. C1 [Lee, W.; Park, H. K.] Ulsan Natl Inst Sci & Technol, Ulsan 44919, South Korea. [Leem, J.; Yun, G. S.] Pohang Univ Sci & Technol, Pohang 37673, Gyeongbuk, South Korea. [Ko, S. H.; Choi, M. J.; Lee, K. D.; Ko, W. H.] Natl Fus Res Inst, Daejeon 34133, South Korea. [Wang, W. X.; Budny, R. V.; Ethier, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Park, Y. S.] Columbia Univ, New York, NY 10027 USA. [Luhmann, N. C., Jr.; Domier, C. W.] Univ Calif Davis, Davis, CA 95616 USA. [Kim, K. W.] Kyungpook Natl Univ, Daegu 41566, South Korea. RP Lee, W (reprint author), Ulsan Natl Inst Sci & Technol, Ulsan 44919, South Korea. FU National R&D Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [NRF-2014M1A7A1A03029865]; U.S. DoE [DE-FG02-99ER54531] FX We thank T. S. Hahm at Seoul National University and Y.-C. Ghim at Korea Advanced Institute of Science and Technology for valuable discussion on the poloidal velocity of the turbulent structure measured by MIR. This research was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014M1A7A1A03029865), and the U.S. DoE under Grant No. DE-FG02-99ER54531. NR 29 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052510 DI 10.1063/1.4949350 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900046 ER PT J AU Li, JC Diamond, PH Xu, XQ Tynan, GR AF Li, J. C. Diamond, P. H. Xu, X. Q. Tynan, G. R. TI Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields SO PHYSICS OF PLASMAS LA English DT Article ID MOMENTUM-TRANSPORT; PLASMA ROTATION; SIMULATIONS; TURBULENCE; VELOCITY; TOKAMAK AB A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity. Published by AIP Publishing. C1 [Li, J. C.; Diamond, P. H.; Tynan, G. R.] Univ Calif San Diego, CMTFO, La Jolla, CA 92093 USA. [Li, J. C.; Diamond, P. H.; Tynan, G. R.] Univ Calif San Diego, CASS, La Jolla, CA 92093 USA. [Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tynan, G. R.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Tynan, G. R.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RP Li, JC (reprint author), Univ Calif San Diego, CMTFO, La Jolla, CA 92093 USA.; Li, JC (reprint author), Univ Calif San Diego, CASS, La Jolla, CA 92093 USA. FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-04ER54738, DE-AC52-07NA27344]; CMTFO Award [DE-SC0008378] FX We are grateful to R. Hong, Y. Kosuga, A. Ashourvan, J. E. Rice, L. Cui, L. Wang, O. D. Gurcan, S. C. Thukar, and W. X. Wang for useful discussions. P. H. Diamond thanks participants in the 2013 and 2015 Festival de Theorie for many useful and interesting discussions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Nos. DE-FG02-04ER54738 and DE-AC52-07NA27344, and CMTFO Award No. DE-SC0008378. NR 30 TC 2 Z9 2 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052311 DI 10.1063/1.4950830 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900036 ER PT J AU Logan, NC Paz-Soldan, C Park, JK Nazikian, R AF Logan, Nikolas C. Paz-Soldan, Carlos Park, Jong-Kyu Nazikian, Raffi TI Identification of multi-modal plasma responses to applied magnetic perturbations using the plasma reluctance SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID RESISTIVE WALL MODE; ERROR FIELD AMPLIFICATION; DIII-D; FEEDBACK; STABILIZATION; STABILITY; TOKAMAKS AB Using the plasma reluctance, the Ideal Perturbed Equilibrium Code is able to efficiently identify the structure of multi-modal magnetic plasma response measurements and the corresponding impact on plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n = 2. This multi-modal response is in good agreement with ideal magnetohydrodynamic models, but detailed decompositions presented here show that the mode structures are not fully described by either the least stable modes or the resonant plasma response. This work identifies the measured response fields as the first eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on performance from external sensors. The reluctance shows, for example, how very stable modes compose a significant portion of the multimodal plasma response field and that these stable modes drive significant resonant current. This work is an overview of the first experimental applications using the reluctance to interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport. Published by AIP Publishing. C1 [Logan, Nikolas C.; Park, Jong-Kyu; Nazikian, Raffi] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Paz-Soldan, Carlos] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RP Logan, NC (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 48 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056110 DI 10.1063/1.4948281 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900146 ER PT J AU Loizu, J Hudson, SR Helander, P Lazerson, SA Bhattacharjee, A AF Loizu, J. Hudson, S. R. Helander, P. Lazerson, S. A. Bhattacharjee, A. TI Pressure-driven amplification and penetration of resonant magnetic perturbations SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID MAGNETOHYDRODYNAMIC EQUILIBRIA; MHD STABILITY; PLASMA; ISLANDS; CODE AB We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma screw-pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the core. The response is significantly amplified with increasing plasma pressure. We present a rigorous verification of nonlinear equilibrium codes against linear theory, showing excellent agreement. (C) 2016 AIP Publishing LLC. C1 [Loizu, J.; Helander, P.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Loizu, J.; Hudson, S. R.; Lazerson, S. A.; Bhattacharjee, A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Loizu, J (reprint author), Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany.; Loizu, J (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hudson, Stuart/H-7186-2013; Lazerson, Samuel/E-4816-2014 OI Hudson, Stuart/0000-0003-1530-2733; Lazerson, Samuel/0000-0001-8002-0121 NR 26 TC 3 Z9 3 U1 4 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055703 DI 10.1063/1.4944818 PG 8 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900127 ER PT J AU Meyerhofer, DD Mauel, ME AF Meyerhofer, D. D. Mauel, M. E. TI Foreword to Special Issue: Papers from the 57th Annual Meeting of the APS Division of Plasma Physics, November 16-20, 2015, Savannah, Georgia, USA SO PHYSICS OF PLASMAS LA English DT Editorial Material C1 [Meyerhofer, D. D.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Mauel, M. E.] Columbia Univ, New York, NY 10027 USA. RP Meyerhofer, DD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Mauel, Michael/0000-0003-2490-7478 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055301 DI 10.1063/1.4950842 PG 2 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900120 ER PT J AU Montgomery, DS AF Montgomery, David S. TI Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannah, GA SP APS, Div Plasma Phys ID STIMULATED RAMAN-SCATTERING; INDUCED SPATIAL INCOHERENCE; NATIONAL-IGNITION-FACILITY; EXPLODING FOIL PLASMAS; HOT-SPOT EXPERIMENTS; ION-ACOUSTIC-WAVES; BRILLOUIN-SCATTERING; BEAM DEFLECTION; PARAMETRIC-INSTABILITIES; HOHLRAUM PLASMAS AB Our understanding of laser-plasma instability (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments-ns pulses with similar to kJ energy incident on hundred-micron-scale target plasmas with similar to keV electron temperatures-to ones involving nearly 2MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures similar to 4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to their control. These efforts have led to a change in paradigm for LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. A tutorial is provided that reviews the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect-and direct-drive) and other applications will also be discussed. Published by AIP Publishing. C1 [Montgomery, David S.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Montgomery, DS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 85 TC 0 Z9 0 U1 4 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055601 DI 10.1063/1.4946016 PG 15 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900123 ER PT J AU Nakamura, TKM Nakamura, R Narita, Y Baumjohann, W Daughton, W AF Nakamura, T. K. M. Nakamura, R. Narita, Y. Baumjohann, W. Daughton, W. TI Multi-scale structures of turbulent magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID HYBRID-DRIFT INSTABILITY; ION KINK INSTABILITY; CURRENT SHEETS; MAGNETOTAIL; SIMULATIONS AB We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Daughton, W.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Nakamura, TKM (reprint author), Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. EM takuma.nakamura@oeaw.ac.at RI Nakamura, Rumi/I-7712-2013; Baumjohann, Wolfgang/A-1012-2010; Daughton, William/L-9661-2013; OI Nakamura, Rumi/0000-0002-2620-9211; Baumjohann, Wolfgang/0000-0001-6271-0110; Nakamura, Takuma/0000-0003-4550-2947 FU Austrian Research Fund (FWF) [I2016-N20] FX This work was supported by Austrian Research Fund (FWF): I2016-N20. Simulations were performed on Kraken and supported by an allocation of advanced computing resources provided by the National Science Foundation at the National Institute for Computational Sciences. The simulation data shown in this paper were analyzed with resources at the National Center for Computational Sciences at the Oak Ridge National Laboratory and with resources at the Space Research Institute of Austrian Academy of Sciences. We would like to acknowledge useful discussions with H. Comisel, Y. Nariyuki, and S. Saito. NR 33 TC 1 Z9 2 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052116 DI 10.1063/1.4951025 PG 10 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900021 ER PT J AU Podesta, M Gorelenkova, M Fredrickson, ED Gorelenkov, NN White, RB AF Podesta, M. Gorelenkova, M. Fredrickson, E. D. Gorelenkov, N. N. White, R. B. TI Phase space effects on fast ion distribution function modeling in tokamaks SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID INDUCED ALFVEN EIGENMODE; PHYSICS; SIMULATION; TRANSPORT; PLASMAS; MODES; NSTX AB Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities. Published by AIP Publishing. C1 [Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mpodesta@pppl.gov NR 32 TC 0 Z9 0 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056106 DI 10.1063/1.4946027 PG 8 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900142 ER PT J AU Radha, PB Hohenberger, M Edgell, DH Marozas, JA Marshall, FJ Michel, DT Rosenberg, MJ Seka, W Shvydky, A Boehly, TR Collins, TJB Campbell, EM Craxton, RS Delettrez, JA Dixit, SN Frenje, JA Froula, DH Goncharov, VN Hu, SX Knauer, JP McCrory, RL McKenty, PW Meyerhofer, DD Moody, J Myatt, JF Petrasso, RD Regan, SP Sangster, TC Sio, H Skupsky, S Zylstra, A AF Radha, P. B. Hohenberger, M. Edgell, D. H. Marozas, J. A. Marshall, F. J. Michel, D. T. Rosenberg, M. J. Seka, W. Shvydky, A. Boehly, T. R. Collins, T. J. B. Campbell, E. M. Craxton, R. S. Delettrez, J. A. Dixit, S. N. Frenje, J. A. Froula, D. H. Goncharov, V. N. Hu, S. X. Knauer, J. P. McCrory, R. L. McKenty, P. W. Meyerhofer, D. D. Moody, J. Myatt, J. F. Petrasso, R. D. Regan, S. P. Sangster, T. C. Sio, H. Skupsky, S. Zylstra, A. TI Direct drive: Simulations and results from the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR INSTABILITY; POLAR-DIRECT-DRIVE; LASER FUSION; TRANSPORT; SYSTEM; OMEGA AB Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat. Published by AIP Publishing. C1 [Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Myatt, J. F.; Regan, S. P.; Sangster, T. C.; Skupsky, S.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Dixit, S. N.; Moody, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Frenje, J. A.; Petrasso, R. D.; Sio, H.; Zylstra, A.] MIT, Plasma Fus Sci Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Meyerhofer, D. D.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Radha, PB (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM rbah@lle.rochester.edu RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 NR 54 TC 3 Z9 3 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056305 DI 10.1063/1.4946023 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900156 ER PT J AU Robey, HF Smalyuk, VA Milovich, JL Doppner, T Casey, DT Baker, KL Peterson, JL Bachmann, B Hopkins, LFB Bond, E Caggiano, JA Callahan, DA Celliers, PM Cerjan, C Clark, DS Dixit, SN Edwards, MJ Gharibyan, N Haan, SW Hammel, BA Hamza, AV Hatarik, R Hurricane, OA Jancaitis, KS Jones, OS Kerbel, GD Kroll, JJ Lafortune, KN Landen, OL Ma, T Marinak, MM MacGowan, BJ MacPhee, AG Pak, A Patel, M Patel, PK Perkins, LJ Sayre, DB Sepke, SM Spears, BK Tommasini, R Weber, CR Widmayer, CC Yeamans, C Giraldez, E Hoover, D Nikroo, A Hohenberger, M Johnson, MG AF Robey, H. F. Smalyuk, V. A. Milovich, J. L. Doppner, T. Casey, D. T. Baker, K. L. Peterson, J. L. Bachmann, B. Hopkins, L. F. Berzak Bond, E. Caggiano, J. A. Callahan, D. A. Celliers, P. M. Cerjan, C. Clark, D. S. Dixit, S. N. Edwards, M. J. Gharibyan, N. Haan, S. W. Hammel, B. A. Hamza, A. V. Hatarik, R. Hurricane, O. A. Jancaitis, K. S. Jones, O. S. Kerbel, G. D. Kroll, J. J. Lafortune, K. N. Landen, O. L. Ma, T. Marinak, M. M. MacGowan, B. J. MacPhee, A. G. Pak, A. Patel, M. Patel, P. K. Perkins, L. J. Sayre, D. B. Sepke, S. M. Spears, B. K. Tommasini, R. Weber, C. R. Widmayer, C. C. Yeamans, C. Giraldez, E. Hoover, D. Nikroo, A. Hohenberger, M. Johnson, M. Gatu TI Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR INSTABILITY; TAILORED DENSITY PROFILES; INERTIAL FUSION; TARGETS; SHOCK AB A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results. (C) 2016 AIP Publishing LLC. C1 [Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Doppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Hopkins, L. F. Berzak; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatarik, R.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kerbel, G. D.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; Marinak, M. M.; MacGowan, B. J.; MacPhee, A. G.; Pak, A.; Patel, M.; Patel, P. K.; Perkins, L. J.; Sayre, D. B.; Sepke, S. M.; Tommasini, R.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.; Nikroo, A.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. [Giraldez, E.; Hoover, D.] Gen Atom Co, San Diego, CA 92186 USA. [Hohenberger, M.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Johnson, M. Gatu] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Robey, HF (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RI Patel, Pravesh/E-1400-2011; Tommasini, Riccardo/A-8214-2009; OI Tommasini, Riccardo/0000-0002-1070-3565; Peterson, Luc/0000-0002-5167-5708 NR 61 TC 11 Z9 12 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056303 DI 10.1063/1.4944821 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900154 ER PT J AU Solomon, WM Snyder, PB Bortolon, A Burrell, KH Garofalo, AM Grierson, BA Groebner, RJ Loarte, A Leonard, AW Meneghini, O Nazikian, R Osborne, TH Petty, CC Poli, F AF Solomon, W. M. Snyder, P. B. Bortolon, A. Burrell, K. H. Garofalo, A. M. Grierson, B. A. Groebner, R. J. Loarte, A. Leonard, A. W. Meneghini, O. Nazikian, R. Osborne, T. H. Petty, C. C. Poli, F. TI Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID EDGE LOCALIZED MODES; TOROIDAL PLASMAS; D TOKAMAK; TRANSPORT; STABILITY; PEDESTAL; CONFINEMENT; BARRIER; PHYSICS; LIMITS AB A new high pedestal regime ("Super H-mode") has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance. (C) 2016 AIP Publishing LLC. C1 [Solomon, W. M.; Bortolon, A.; Grierson, B. A.; Nazikian, R.; Poli, F.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Snyder, P. B.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Leonard, A. W.; Meneghini, O.; Osborne, T. H.; Petty, C. C.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Loarte, A.] ITER Org, Route Vinon Sur Verdon CS 90 046, F-13067 St Paul Les Durance, France. RP Solomon, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM solomon@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 NR 45 TC 1 Z9 1 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056105 DI 10.1063/1.4944822 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900141 ER PT J AU Steinke, S van Tilborg, J Benedetti, C Geddes, CGR Daniels, J Swanson, KK Gonsalves, AJ Nakamura, K Shaw, BH Schroeder, CB Esarey, E Leemans, WP AF Steinke, S. van Tilborg, J. Benedetti, C. Geddes, C. G. R. Daniels, J. Swanson, K. K. Gonsalves, A. J. Nakamura, K. Shaw, B. H. Schroeder, C. B. Esarey, E. Leemans, W. P. TI Staging of laser-plasma accelerators SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID ELECTRON-BEAMS AB We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100MeV energy gain. Published by AIP Publishing. C1 [Steinke, S.; van Tilborg, J.; Benedetti, C.; Geddes, C. G. R.; Daniels, J.; Swanson, K. K.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Daniels, J.] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands. [Swanson, K. K.; Shaw, B. H.; Leemans, W. P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Steinke, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ssteinke@lbl.gov RI Steinke, Sven/D-8086-2011; OI Steinke, Sven/0000-0003-0507-698X; Daniels, Joost/0000-0002-9480-6077 NR 35 TC 2 Z9 2 U1 7 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056705 DI 10.1063/1.4948280 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900168 ER PT J AU Swadling, GF Lebedev, SV Hall, GN Suzuki-Vidal, F Burdiak, GC Pickworth, L De Grouchy, P Skidmore, J Khoory, E Suttle, L Bennett, M Hare, JD Clayson, T Bland, SN Smith, RA Stuart, NH Patankar, S Robinson, TS Harvey-Thompson, AJ Rozmus, W Yuan, J Sheng, L AF Swadling, G. F. Lebedev, S. V. Hall, G. N. Suzuki-Vidal, F. Burdiak, G. C. Pickworth, L. De Grouchy, P. Skidmore, J. Khoory, E. Suttle, L. Bennett, M. Hare, J. D. Clayson, T. Bland, S. N. Smith, R. A. Stuart, N. H. Patankar, S. Robinson, T. S. Harvey-Thompson, A. J. Rozmus, W. Yuan, J. Sheng, L. TI Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID Z-PINCH EXPERIMENTS; PLASMAS; FLOWS AB Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment. Published by AIP Publishing. C1 [Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Harvey-Thompson, A. J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Rozmus, W.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. [Yuan, J.] CAE, Inst Fluid Phys, Key Lab Pulsed Power, Mianyang 621900, Peoples R China. [Sheng, L.] Northwest Inst Nucl Technol, Dept Pulsed Plasma Diagnost, Xian 710024, Peoples R China. [Swadling, G. F.; Hall, G. N.; Pickworth, L.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Skidmore, J.] AWE, Reading RG7 4PR, Berks, England. [Khoory, E.] Dubai Govt, Sci Res Lab, POB 548, Al Qusais, Dubai, U Arab Emirates. RP Swadling, GF (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. RI Swadling, George/S-5980-2016; OI Swadling, George/0000-0001-8370-8837; Suzuki Vidal, Francisco/0000-0002-7792-4960; Stuart, Nicholas/0000-0003-2882-2500 NR 24 TC 1 Z9 1 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056309 DI 10.1063/1.4948279 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900160 ER PT J AU Tobias, B Chen, M Classen, IGJ Domier, CW Fitzpatrick, R Grierson, BA Luhmann, NC Muscatello, CM Okabayashi, M Olofsson, KEJ Paz-Soldan, C AF Tobias, B. Chen, M. Classen, I. G. J. Domier, C. W. Fitzpatrick, R. Grierson, B. A. Luhmann, N. C., Jr. Muscatello, C. M. Okabayashi, M. Olofsson, K. E. J. Paz-Soldan, C. TI Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID NEOCLASSICAL TEARING MODES; DIII-D TOKAMAK; FIELD PINCHES; INSTABILITIES; DISRUPTIONS; DISCHARGES; STABILITY; TRANSPORT; GEOMETRY; LOCKING AB The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor-a key issue for ITER. Published by AIP Publishing. C1 [Tobias, B.; Grierson, B. A.; Okabayashi, M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Chen, M.; Domier, C. W.; Luhmann, N. C., Jr.; Muscatello, C. M.] Univ Calif Davis, Davis, CA 95616 USA. [Classen, I. G. J.] DIFFER, Rhinjuizen, Netherlands. [Fitzpatrick, R.] Univ Texas Austin, Austin, TX 78705 USA. [Olofsson, K. E. J.; Paz-Soldan, C.] Gen Atom Co, San Diego, CA 92121 USA. RP Tobias, B (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 44 TC 1 Z9 1 U1 4 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 056107 DI 10.1063/1.4946026 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900143 ER PT J AU Turnbull, D Hopkins, LFB Le Pape, S Divol, L Meezan, N Landen, OL Ho, DD Mackinnon, A Zylstra, AB Rinderknecht, HG Sio, H Petrasso, RD Ross, JS Khan, S Pak, A Dewald, EL Callahan, DA Hurricane, O Hsing, WW Edwards, MJ AF Turnbull, D. Hopkins, L. F. Berzak Le Pape, S. Divol, L. Meezan, N. Landen, O. L. Ho, D. D. Mackinnon, A. Zylstra, A. B. Rinderknecht, H. G. Sio, H. Petrasso, R. D. Ross, J. S. Khan, S. Pak, A. Dewald, E. L. Callahan, D. A. Hurricane, O. Hsing, W. W. Edwards, M. J. TI Symmetry control in subscale near-vacuum hohlraums SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL IGNITION FACILITY; PHYSICS BASIS; TARGETS; FUSION; GAIN AB Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter ( case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length. Published by AIP Publishing. C1 [Turnbull, D.; Hopkins, L. F. Berzak; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Rinderknecht, H. G.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.] LLNL, Natl Ignit Facil, Livermore, CA 94550 USA. [Mackinnon, A.] SLAC, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Zylstra, A. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Turnbull, D (reprint author), LLNL, Natl Ignit Facil, Livermore, CA 94550 USA. EM turnbull2@llnl.gov OI /0000-0003-4969-5571 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We thank the NIF facility, target fabrication, and diagnostic analysis groups for enabling a successful series of experiments. NR 27 TC 2 Z9 2 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052710 DI 10.1063/1.4950825 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900061 ER PT J AU Xu, XQ Xia, TY Yan, N Liu, ZX Kong, DF Diallo, A Groebner, RJ Hubbard, AE Hughes, JW AF Xu, X. Q. Xia, T. Y. Yan, N. Liu, Z. X. Kong, D. F. Diallo, A. Groebner, R. J. Hubbard, A. E. Hughes, J. W. TI Toward integrated multi-scale pedestal simulations including edge-localized-mode dynamics, evolution of edge-localized-mode cycles, and continuous fluctuations SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID TURBULENCE; CONFINEMENT; TRANSPORT; TOKAMAK; DEVICES; REGIME AB The high-fidelity BOUT++ two-fluid code suite has demonstrated significant recent progress toward integrated multi-scale simulations of tokamak pedestal, including Edge-Localized-Mode (ELM) dynamics, evolution of ELM cycles, and continuous fluctuations, as observed in experiments. Nonlinear ELM simulations show three stages of an ELM event: (1) a linear growing phase; (2) a fast crash phase; and (3) a slow inward turbulence spreading phase lasting until the core heating flux balances the ELM energy loss and the ELM is terminated. A new coupling/splitting model has been developed to perform simulations of multi-scale ELM dynamics. Simulation tracks five ELM cycles for 10 000 Alfven times for small ELMs. The temporal evolution of the pedestal pressure is similar to that of experimental measurements for the pedestal pressure profile collapses and recovers to a steep gradient during ELM cycles. To validate BOUT++ simulations against experimental data and develop physics understanding of the fluctuation characteristics for different tokamak operation regimes, both quasi-coherent fluctuations (QCFs) in ELMy H-modes and Weakly Coherent Modes in I-modes have been simulated using three dimensional 6-field 2-fluid electromagnetic model. The H-mode simulation results show that (1) QCFs are localized in the pedestal region having a predominant frequency at f similar or equal to 300 - 400 kHz and poloidal wavenumber at k(0) similar or equal to 0.7 cm(-1), and propagate in the electron diamagnetic direction in the laboratory frame. The overall signatures of simulation results for QCFs show good agreement with C-Mod and DIII-D measurements. (2) The pedestal profiles giving rise to QCFs are near the marginal instability threshold for ideal peeling-ballooning modes for both C-Mod and DIII-D, while the collisional electromagnetic drift-Alfven wave appears to be dominant for DIII-D. (3) Particle diffusivity is either smaller than the heat diffusivity for DIII-D or similar to the heat diffusivity for C-Mod. Key I-mode simulation results are that (1) a strong instability exists at n >= 20 for resistive ballooning mode and drift-Alfven wave; (2) the frequency spectrum of nonlinear BOUT++ simulation features a peak around 300 kHz for the mode number n = 20, consistent with a reflectometer measurement at nearby position; (3) the calculated particle diffusivity is larger than the calculated heat diffusivity, which is consistent with a key feature of the I-mode pedestal with no particle barrier. Published by AIP Publishing. C1 [Xu, X. Q.; Xia, T. Y.; Yan, N.; Liu, Z. X.; Kong, D. F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Xia, T. Y.; Yan, N.; Liu, Z. X.; Kong, D. F.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Diallo, A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Groebner, R. J.] Gen Atom Co, San Diego, CA 92186 USA. [Hubbard, A. E.; Hughes, J. W.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. OI Hughes, Jerry/0000-0003-4802-4944 NR 38 TC 1 Z9 1 U1 4 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055901 DI 10.1063/1.4948283 PG 13 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900136 ER PT J AU Yamada, M Yoo, J Myers, CE AF Yamada, Masaaki Yoo, Jongsoo Myers, Clayton E. TI Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 57th Annual Meeting of the APS-Division-of-Plasma-Physics (DPP) CY NOV 16-20, 2015 CL Savannath, GA SP APS, Div Plasma Phys ID SOLAR-FLARES; SWEET-PARKER; FLUX ROPES; ERUPTIONS; KINK; INSTABILITIES; EQUILIBRIUM; PROMINENCES; CONVERSION; EJECTIONS AB Magnetic reconnection is a fundamental process at work in laboratory, space, and astrophysical plasmas, in which magnetic field lines change their topology and convert magnetic energy to plasma particles by acceleration and heating. One of the most important problems in reconnection research has been to understand why reconnection occurs so much faster than predicted by magnetohydrodynamics theory. Following the recent pedagogical review of this subject [Yamada et al., Rev. Mod. Phys. 82, 603 (2010)], this paper presents a review of more recent discoveries and findings in the research of fast magnetic reconnection in laboratory, space, and astrophysical plasmas. In spite of the huge difference in physical scales, we find remarkable commonality between the characteristics of the magnetic reconnection in laboratory and space plasmas. In this paper, we will focus especially on the energy flow, a key feature of the reconnection process. In particular, the experimental results on the energy conversion and partitioning in a laboratory reconnection layer [Yamada et al., Nat. Commun. 5, 4474 (2014)] are discussed and compared with quantitative estimates based on two-fluid analysis. In the Magnetic Reconnection Experiment, we find that energy deposition to electrons is localized near the X-point and is mostly from the electric field component perpendicular to the magnetic field. The mechanisms of ion acceleration and heating are also identified, and a systematic and quantitative study on the inventory of converted energy within a reconnection layer with a well-defined but variable boundary. The measured energy partition in a reconnection region of similar effective size (L approximate to 3 ion skin depths) of the Earth's magneto-tail [Eastwood et al., Phys. Rev. Lett. 110, 225001 (2013)] is notably consistent with our laboratory results. Finally, to study the global aspects of magnetic reconnection, we have carried out a laboratory experiment on the stability criteria for solar flare eruptions, including "storage and release" mechanisms of magnetic energy. We show that toroidal magnetic flux generated by magnetic relaxation (reconnection) processes generates a new stabilizing force which prevents plasma eruption. This result has led us to discover a new stabilizing force for solar flares [Myers et al., Nature 528, 526 (2015)]. Published by AIP Publishing. C1 [Yamada, Masaaki; Yoo, Jongsoo; Myers, Clayton E.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Yamada, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Yoo, Jongsoo/0000-0003-3881-1995 NR 93 TC 4 Z9 4 U1 6 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 055402 DI 10.1063/1.4948721 PG 21 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900122 ER PT J AU Zhou, Y Cabot, WH Thornber, B AF Zhou, Ye Cabot, William H. Thornber, Ben TI Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows SO PHYSICS OF PLASMAS LA English DT Article ID CORE COLLAPSE SUPERNOVAE; NUMERICAL-SIMULATION; RESOLUTION; TURBULENCE; INTERFACE; EVOLUTION; VELOCITY; DRIVEN; NUMBER AB Rayleigh-Taylor instability (RTI) and Richtmyer-Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixed mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Psi) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass W is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Psi is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Xi and Theta. Published by AIP Publishing. C1 [Zhou, Ye; Cabot, William H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Thornber, Ben] Univ Sydney, Sch Aerosp Mech & Mech Engn, Sydney, NSW 2006, Australia. RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Thornber, Ben/0000-0002-7665-089X FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; Australian Research Council [DP150101059] FX The authors are very grateful to an anonymous referee for constructive comments and insightful suggestions. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, under Contract No. DE-AC52-07NA27344. This research was supported under Australian Research Council's Discovery Projects funding scheme (Project No. DP150101059). The authors would like to acknowledge the computational resources at the National Computational Infrastructure through the National Computational Merit Allocation Scheme, which were employed for all RMI cases presented here. NR 50 TC 0 Z9 0 U1 6 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2016 VL 23 IS 5 AR 052712 DI 10.1063/1.4951018 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DP3WZ UT WOS:000378427900063 ER PT J AU Thompson, EC Chidester, BA Fischer, RA Myers, GI Heinz, DL Prakapenka, VB Campbell, AJ AF Thompson, Elizabeth C. Chidester, Bethany A. Fischer, Rebecca A. Myers, Gregory I. Heinz, Dion L. Prakapenka, Vitali B. Campbell, Andrew J. TI Equation of state of pyrite to 80 GPa and 2400 K SO AMERICAN MINERALOGIST LA English DT Article DE High-pressure; diamond-anvil cell; equation of state; X-ray diffraction ID X-RAY-DIFFRACTION; LASER-HEATING SYSTEM; HIGH-PRESSURE; EARTHS CORE; SULFUR-CONTENT; FES2 PYRITE; OUTER CORE; IRON; ALLOYS; CONSTRAINTS AB The high-cosmic abundance of sulfur is not reflected in the terrestrial crust, implying it is either sequestered in the Earth's interior or was volatilized during accretion. As it has widely been suggested that sulfur could be one of the contributing light elements leading to the density deficit of Earth's core, a robust thermal equation of state of iron sulfide is useful for understanding the evolution and properties of Earth's interior. We performed X-ray diffraction measurements on FeS2 achieving pressures from 15 to 80 GPa and temperatures up to 2400 K using laser-heated diamond-anvil cells. No phase transitions were observed in the pyrite structure over the pressure and temperature ranges investigated. Combining our new P-V-Tdata with previously published room-temperature compression and thermochemical data, we fit a Debye temperature of 624(14) K and determined a Mie-Gruneisen equation of state for pyrite having bulk modulus K-T = 141.2(18) GPa, pressure derivative K-T' = 5.56(24), Gruneisen parameter gamma(0) = 1.41, anharmonic coefficient A(2) = 2.53(27) x 10(-3) J/(K-2.mol), and q = 2.06(27). These findings are compared to previously published equation of state parameters for pyrite from static compression, shock compression, and ab initio studies. This revised equation of state for pyrite is consistent with an outer core density deficit satisfied by 11.4(10) wt% sulfur, yet matching the bulk sound speed of PREM requires an outer core composition of 4.8(19) wt% S. This discrepancy suggests that sulfur alone cannot satisfy both seismological constraints simultaneously and cannot be the only light element within Earth's core, and so the sulfur content needed to satisfy density constraints using our FeS2 equation of state should be considered an upper bound for sulfur in the Earth's core. C1 [Thompson, Elizabeth C.; Chidester, Bethany A.; Fischer, Rebecca A.; Myers, Gregory I.; Heinz, Dion L.; Campbell, Andrew J.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. [Prakapenka, Vitali B.] Univ Chicago, Argonne Natl Lab, GeoSoilEnviroCARS, Argonne, IL 60439 USA. [Fischer, Rebecca A.] Smithsonian Inst, Natl Museum Nat Hist, Santa Cruz, CA 95064 USA. [Fischer, Rebecca A.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Thompson, EC (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM ecthompson@uchicago.edu FU National Science Foundation; American Association of University Women Educational Foundation Dissertation Fellowship; National Science Foundation [EAR-1427123]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-GeoSciences [DE-FG02-94ER14466]; DOE Office of Science [DE-AC02-06CH11357]; NSF [EAR 11-57758]; GSECARS through NSF [EAR -1128799]; DOE [DE-FG0294ER14466] FX We thank the editors and the two reviewers for their helpful comments on the manuscript. This research is supported by National Science Foundation Graduate Research Fellowships to E.C.T. and B.A.C., an American Association of University Women Educational Foundation Dissertation Fellowship to R.A.F., and National Science Foundation Grant no. EAR-1427123 to A.J.C. This work was completed at HPCAT (Sector 16) and GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). This work was made possible by the generous assistance of the APS beamline scientists at both Sector 13 and Sector 16. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF grant EAR -1128799 and DOE grant DE-FG0294ER14466. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-ACO2-06CH11357. NR 47 TC 0 Z9 0 U1 6 U2 8 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2016 VL 101 IS 5-6 BP 1046 EP 1051 DI 10.2138/am-2016-5527 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DP0ND UT WOS:000378185600006 ER PT J AU Solomatova, NV Jackson, JM Sturhahn, W Wicks, JK Zhao, JY Toellner, TS Kalkan, B Steinhardt, WM AF Solomatova, Natalia V. Jackson, Jennifer M. Sturhahn, Wolfgang Wicks, June K. Zhao, Jiyong Toellner, Thomas S. Kalkan, Bora Steinhardt, William M. TI Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary SO AMERICAN MINERALOGIST LA English DT Article DE (Mg,Fe)O; ferropericlase; spin crossover; equation of state; X-ray diffraction; synchrotron Mossbauer spectroscopy; lower mantle; ultralow-velocity zones ID EARTHS LOWER MANTLE; VELOCITY ZONES; FERROPERICLASE; TRANSITION; IRON; MAGNESIOWUSTITE; PHASE; GPA; COMPRESSION; PEROVSKITE AB Iron-bearing periclase is thought to represent a significant fraction of Earth's lower mantle. However, the concentration of iron in (Mg,Fe)O is not well constrained at all mantle depths. Therefore, understanding the effect of iron on the density and elastic properties of this phase plays a major role in interpreting seismically observed complexity in the deep Earth. Here we examine the high-pressure behavior of polycrystalline (Mg,Fe)O containing 48 mol% FeO, loaded hydrostatically with neon as a pressure medium. Using X-ray diffraction and synchrotron Mossbauer spectroscopy, we measure the equation of state to about 83 GPa and hyperfine parameters to 107 GPa at 300 K. A gradual volume drop corresponding to a high-spin (HS) to low-spin (LS) crossover is observed between similar to 45 and 83 GPa with a volume drop of 1.85% at 68.8(2.7) GPa, the calculated spin transition pressure. Using a newly formulated spin crossover equation of state, the resulting zero-pressure isothermal bulk modulus K-0T,K-HS for the HS state is 160(2) GPa with a K-0T,K-HS' of 4.12(14) and a V-0,V-HS of 77.29(0) angstrom(3). For the LS state, the K-0T,K-LS is 173(13) GPa with a K-0T,K-LS' fixed to 4 and a V-0,V-LS of 73.64(94) angstrom(3). To confirm that the observed volume drop is due to a spin crossover, the quadrupole splitting (QS) and isomer shift (IS) are determined as a function of pressure. At low pressures, the Mossbauer spectra are well explained with two Fe2+-like sites. At pressure between 44 and 84, two additional Fe2+-like sites with a QS of 0 are required, indicative of low-spin iron. Above 84 GPa, two low-spin Fe2+-like sites with increasing weight fraction explain the data well, signifying the completion of the spin crossover. To systematically compare the effect of iron on the equation of state parameters for (Mg,Fe)O, a spin crossover equation of state was fitted to the pressure-volume data of previous measurements. Our results show that K-0,K-HS is insensitive to iron concentration between 10 to 60 mol% FeO, while the spin transition pressure and width generally increases from about 50-80 and 2-25 GPa, respectively. A key implication is that iron-rich (Mg,Fe)O at the core-mantle boundary would likely contain a significant fraction of high-spin (less dense) iron, contributing a positive buoyancy to promote observable topographic relief in tomographic images of the lowermost mantle. C1 [Solomatova, Natalia V.; Jackson, Jennifer M.; Sturhahn, Wolfgang; Wicks, June K.; Steinhardt, William M.] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Wicks, June K.] Princeton Univ, Dept Geosci, Guyot Hall, Princeton, NJ 08544 USA. [Zhao, Jiyong; Toellner, Thomas S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kalkan, Bora] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Steinhardt, William M.] Harvard Univ, Earth & Planetary Sci, Cambridge, MA 02138 USA. [Kalkan, Bora] Hacettepe Univ, Dept Engn Phys, Adv Mat Res Lab, TR-06800 Ankara, Turkey. RP Solomatova, NV (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA. EM nsolomat@caltech.edu FU COMPRES; MRSEX Program of the NSF [DMR-0080065]; U.S. DOE, Office of Science [DE-AC02-06CH11357]; [NSF-EAR-CAREER-0956166]; [NSF-CSEDI-EAR-1161046] FX We thank E.E. Alp and W. Bi for the isomer shift measurement of the reference stainless steel foil. We are thankful to NSF-EAR-CAREER-0956166, NSF-CSEDI-EAR-1161046, and COMPRES, which partially supports operations at Sector 3 (APS), the Mossbauer Laboratory (APS), and Beamline 12.2.2 (ALS). Ambient X-ray diffraction experiments at 11-BM of APS were made possible by Saul Lapidus and Lynn Ribaud. Microprobe analyses at Caltech were partially funded by MRSEX Program of the NSF under DMR-0080065. Ruby fluorescence measurements for the SMS experiments were conducted at GSE-CARS. Use of the Advanced Photon Source is supported by the U.S. DOE, Office of Science (DE-AC02-06CH11357). The Advanced Light Source is supported by the U.S. DOE, Office of Science (DE-AC02-05CH11231). We thank two anonymous reviewers for their thoughtful comments. NR 63 TC 1 Z9 1 U1 8 U2 10 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2016 VL 101 IS 5-6 BP 1084 EP 1093 PG 10 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DP0ND UT WOS:000378185600010 ER PT J AU Henderson, CMB Pearce, CI Charnock, JM Harrison, RJ Rosso, KM AF Henderson, C. Michael B. Pearce, Carolyn I. Charnock, John M. Harrison, Richard J. Rosso, Kevin M. TI An X-ray magnetic circular dichroism (XMCD) study of Fe ordering in a synthetic MgAl2O4-Fe3O4 (spinel-magnetite) solid-solution series: Implications for magnetic properties and cation site ordering SO AMERICAN MINERALOGIST LA English DT Article DE MgAl2O4-Fe3O4 spinel solid solutions; Fe L-2,L-3 X-ray absorption spectroscopy; Fe L-2,L-3 X-ray magnetic circular dichroism; Mg and Fe K-edge extended X-ray absorption fine structure spectroscopy; octahedral and tetrahedral site occupancies; calculated unit-cell parameters; calculated magnetic moments; spinel-magnetite solves; hypothetical high-temperature ordering model ID 2P ABSORPTION-SPECTRA; HIGH-TEMPERATURE; MOSSBAUER-SPECTROSCOPY; FERRITE NANOPARTICLES; STRUCTURE REFINEMENTS; ELECTRONIC-STRUCTURE; NEUTRON-DIFFRACTION; DISORDERED-SYSTEMS; POWDER DIFFRACTION; IRON AB Fe L-2,L-3-edge XAS and XMCD studies have been used to unravel structural trends in the MgAl2O4-Fe3O4 solid solution where thermodynamic modeling has presented a challenge due to the complex ordering arrangements of the end-members. Partitioning of Fe3+ and Fe2+ between tetrahedral (Td) and octahedral (Oh) sites has been established. In the most Fe-rich samples, despite rapid quenching from a disordered state, Fe-Td(2+) is not present, which matches the ordered, inverse spinel nature of end-member magnetite (Mgt) at room temperature. However, in intermediate compositions Al and Mg substantially replace Fe and small amounts of Fe-Td(2+) are found, stabilized, or trapped by decreasing occurrence of the continuous nearest neighbor Fe-Fe interactions that facilitate charge redistribution by electron transfer. Furthermore, in the composition range similar to Mgt(0.4-0.9), XAS and XMCD bonding and site occupancy data suggest that nanoscale, magnetite-like Fe clusters are present. By contrast, at the spinel-rich end of the series, Mgt(0.17) and Mgt(0.23) have a homogeneous long-range distribution of Fe, Mg, and Al. These relationships are consistent with the intermediate and Fe-rich samples falling within a wide solvus in this system such that the Fe-clusters occur as proto-nuclei for phases that would exsolve following development of long-range crystalline order during slow cooling. Unit-cell edges calculated from the spectroscopy-derived site occupancies show excellent agreement with those measured by X-ray powder diffraction on the bulk samples. Calculated saturation magnetic moments (M-s) for the Fe-rich samples also show excellent agreement with measured values but for the most Mg-rich samples are displaced to slightly higher values; this displacement is due to the presence of abundant Mg and Al disrupting the anti-parallel alignment of electron spins for Fe atoms. C1 [Henderson, C. Michael B.; Pearce, Carolyn I.; Charnock, John M.; Rosso, Kevin M.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Williamson Res Ctr, Manchester M13 9PL, Lancs, England. [Henderson, C. Michael B.] STFC, Daresbury Lab, Astec, Warrington WA4 4AD, Cheshire, England. [Pearce, Carolyn I.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Pearce, Carolyn I.] Univ Manchester, Dalton Nucl Inst, Manchester M13 9PL, Lancs, England. [Harrison, Richard J.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Pearce, Carolyn I.; Rosso, Kevin M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Henderson, CMB (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Williamson Res Ctr, Manchester M13 9PL, Lancs, England.; Henderson, CMB (reprint author), STFC, Daresbury Lab, Astec, Warrington WA4 4AD, Cheshire, England. EM michael.henderson@manchester.ac.uk RI Harrison, Richard/B-3609-2010 OI Harrison, Richard/0000-0003-3469-762X FU Office of Science, Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; European Research Council under the European Union [320750]; DOE OBES Chemical Sciences, Geosciences, and Biosciences Division through the Geosciences Program at Pacific Northwest National Laboratory FX We thank Richard Pattrick and Vicky Coker for help in collecting XMCD on these samples at the Daresbury SRS and subsequently at the Advanced Light Source (ALS), Berkeley. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, and we thank Elke Arenholz for her assistance. R.J.H. acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 320750. KMR gratefully acknowledges support from the DOE OBES Chemical Sciences, Geosciences, and Biosciences Division, through the Geosciences Program at Pacific Northwest National Laboratory. We also thank Gerrit van der Laan and Nick Telling for help with XMCD data analysis; David Plant carried out the electron microprobe analyses at Manchester and Paul Schofield provided information on the natural magnesian spinel. We also thank two anonymous referees for constructive comments. NR 85 TC 1 Z9 1 U1 8 U2 14 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2016 VL 101 IS 5-6 BP 1373 EP 1388 DI 10.2138/am-2016-5612 PG 16 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DP0ND UT WOS:000378185600037 ER PT J AU Villanova-de-Benavent, C Nieto, F Viti, C Proenza, JA Gali, S Roque-Rosell, J AF Villanova-de-Benavent, Cristina Nieto, Fernando Viti, Cecilia Proenza, Joaquin A. Gali, Salvador Roque-Rosell, Josep TI Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): Mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM SO AMERICAN MINERALOGIST LA English DT Article DE Ni-laterites; garnierites; chrysotile; polygonal serpentine; lizardite; "kerolite"-"pimelite"; sepiolite-falcondoite; HRTEM ID METAMORPHIC ROCKS; NEW-CALEDONIA; NICKEL; SERPENTINES; SILICATES; GEOCHEMISTRY; DIFFRACTION; CHEMISTRY; BEHAVIOR; ZONE AB Ni-bearing magnesium phyllosilicates (garnierites) are significant Ni ores in Ni-laterites worldwide. The present paper reports a detailed TEM investigation of garnierites from the Falcondo Ni-laterite deposit (Dominican Republic). Different types of garnierites have been recognized, usually consisting of mixtures between serpentine and talc-like phases that display a wide range of textures at the nano meter scale. In particular, chrysotile tubes, polygonal serpentine, and lizardite lamellae are intergrown with less crystalline, talc-like lamellae. Samples consisting uniquely of talc-like and of sepiolite-falcondoite were also observed, occurring as distinctive thin lamellae and long ribbon-shaped fibers, respectively. HRTEM imaging indicates that serpentine is replaced by the talc-like phase, whereas TEM-AEM data show preferential concentration of Ni in the talc-like phase. We suggest, therefore, that the crystallization of Ni-bearing phyllosilicates is associated with an increase in the silica activity of the system, promoting the replacement of the Ni-poor serpentine by the Ni-enriched talc-like phase. These results have interesting implications in material science, as garnierites are natural analogs of Ni-bearing phyllosilicate-supported synthetic catalysts. Finally, SAED and HRTEM suggest that the Ni-bearing talc-like phase corresponds to a variety of talc with extra water, showing larger d(001) than talc (i.e., 9.2-9.7 angstrom), described as "kerolite"-"pimelite" in clay mineral literature. C1 [Villanova-de-Benavent, Cristina; Proenza, Joaquin A.; Gali, Salvador] Univ Barcelona, Dept Cristallog Mineral & Diposits Minerals, Fac Geol, Marti & Franques S-N, E-08028 Barcelona, Spain. [Nieto, Fernando] Univ Granada, Dept Mineral & Petrol, CSIC, Ave Fuentenueva, E-18071 Granada, Spain. [Nieto, Fernando] Univ Granada, IACT, CSIC, Ave Fuentenueva, E-18071 Granada, Spain. [Viti, Cecilia] Univ Siena, Dipartimento Sci Fis Terra & Ambiente, Via Laterina 8, I-53100 Siena, Italy. [Roque-Rosell, Josep] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd,MS 15R0317, Berkeley, CA 94720 USA. RP Villanova-de-Benavent, C (reprint author), Univ Barcelona, Dept Cristallog Mineral & Diposits Minerals, Fac Geol, Marti & Franques S-N, E-08028 Barcelona, Spain. EM cvillanovadb@ub.edu RI Roque Rosell, Josep/C-7868-2013; Nieto, Fernando/L-5377-2013; Proenza, Joaquin A./D-9151-2015 OI Roque Rosell, Josep/0000-0002-3518-1329; Nieto, Fernando/0000-0001-6250-056X; Proenza, Joaquin A./0000-0001-8738-7305 FU Spanish projects [CGL2009-10924, CGL2012-36263, CGL2011-30153, CGL2012-32169]; Catalan project [SGR 2009-444]; FPU Ph.D. grant - Ministerio de Educacion (Spain); "Estancias Breves" (Ministerio de Educacion, Spain); "Borsa de Viatges" scholarships (Universitat de Barcelona) FX This research has been financially supported by the Spanish projects CGL2009-10924, CGL2012-36263, CGL2011-30153, and CGL2012-32169, the Catalan project SGR 2009-444, an FPU Ph.D. grant sponsored by the Ministerio de Educacion (Spain), and the "Estancias Breves" (Ministerio de Educacion, Spain) and "Borsa de Viatges" scholarships (Universitat de Barcelona) to C.V.d.B. The help and hospitality extended by the staff at Falcondo Glencore-Xtrata mine, especially by F. Longo and G. Bloise, are also gratefully acknowledged. Technical support by F. Mata, A. Villuendas (UB), I. Nieto, M.M Abad, J.D. Montes (CIC-UGR), C. Magrini, and E. Mugnaioli (UniSi) was essential to this study. The authors also thank J.F. Lewis, without whom the execution of the fieldwork would not have been as profitable and instructive as it was. The careful and detailed revisions of the manuscript made by Alain Baronnet, Martin Wells, and an anonymous reviewer increased the quality and accuracy of the text and are greatly acknowledged, as well as the supervision made by Keith D. Putirka and Warren Huff. NR 55 TC 1 Z9 1 U1 5 U2 9 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2016 VL 101 IS 5-6 BP 1460 EP 1473 DI 10.2138/am-2016-5518 PG 14 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DP0ND UT WOS:000378185600045 ER PT J AU Reagan, MM Gleason, AE Daemen, L Xiao, YM Mao, WL AF Reagan, Mary M. Gleason, Arinna E. Daemen, Luke Xiao, Yuming Mao, Wendy L. TI High-pressure behavior of the polymorphs of FeOOH SO AMERICAN MINERALOGIST LA English DT Article DE Spin transitions; high-pressure studies; XES; FeOOH; XRD data ID EARTHS LOWER MANTLE; SPIN TRANSITION; SINGLE-CRYSTAL; IRON; HYDROGEN; SYMMETRIZATION; TEMPERATURE; DIFFRACTION; STATE; ICE AB The high-pressure structural and electronic behavior of alpha-, beta-, and gamma-FeOOH were studied in situ using a combination of synchrotron X-ray diffraction (XRD) and X-ray emission spectroscopy (XES). We monitored alpha-FeOOH by XES as a function of pressure up to 85 GPa and observed an electronic spin transition that began at approximately 50 GPa, which is consistent with previous results. In the gamma-FeOOH sample, we see the initiation of a spin transition at 35 GPa that remains incomplete up to 65 GPa. beta-FeOOH does not show any indication of a spin transition up to 65 GPa. Analysis of the high-pressure XRD data shows that neither beta-FeOOH nor gamma-FeOOH transform to new crystal structures, and both amorphize above 20 GPa. Comparing our EOS results for the beta and gamma phases with recently published data on the a and a phases, we found that beta-FeOOH exhibits distinct behavior from the other three polymorphs, as it is significantly less compressible and does not undergo a spin transition. A systematic examination of these iron hydroxide polymorphs as a function of pressure can provide insight into the relationship between electronic spin transitions and structural transitions in these OH- and Fe3+-bearing phases that may have implications on our understanding of the water content and oxidation state of the mantle. C1 [Reagan, Mary M.; Mao, Wendy L.] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA. [Gleason, Arinna E.] LANL, Shock & Detonat Phys, Los Alamos, NM 87545 USA. [Daemen, Luke] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. [Xiao, Yuming] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Mao, Wendy L.] SLAC Natl Accelerator Lab, Photon Sci, Menlo Pk, CA 94025 USA. RP Reagan, MM (reprint author), Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA. EM mreagan@stanford.edu FU NSF Geophysics Program [EAR-1446969]; Office of Science, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; DOE Office of Science [DE-AC02-06CH11357] FX M.M. Reagan, A.E. Gleason, and W.L. Mao are supported by the NSF Geophysics Program (EAR-1446969). We thank Paul Chow (APS), Alastair MacDowell (ALS), and Jinyuan Yan (ALS) for their assistance with the synchrotron experiments, and Jinfu Shu (Geophysical Lab) for help with sample loading. Portions of this work were performed at beamline 12.2.2 of ALS, LBNL. ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Portions of this work were also performed at HPCAT (Sector 16), APS, ANL. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is a DOE-BES User Facility operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357. NR 31 TC 0 Z9 0 U1 5 U2 11 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2016 VL 101 IS 5-6 BP 1483 EP 1488 DI 10.2138/am-2016-5449 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DP0ND UT WOS:000378185600047 ER PT J AU Gyrya, V Lipnikov, K Manzini, G AF Gyrya, Vitaliy Lipnikov, Konstantin Manzini, Gianmarco TI THE ARBITRARY ORDER MIXED MIMETIC FINITE DIFFERENCE METHOD FOR THE DIFFUSION EQUATION SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE LA English DT Article DE Mimetic finite difference method; polygonal mesh; high-order discretization; Poisson problem; mixed formulation ID 2ND-ORDER ELLIPTIC PROBLEMS; POLYGONAL MESHES; WEAK GALERKIN; DISCONTINUOUS GALERKIN; UNSTRUCTURED GRIDS; ANISOTROPIC MEDIA; POLYHEDRAL MESHES; ELEMENT METHODS; VOLUME METHOD; DISCRETIZATION AB We propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux and scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect. C1 [Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco] Los Alamos Natl Lab, Div Theoret, Grp T-5,MS B284, Los Alamos, NM 87545 USA. [Manzini, Gianmarco] CNR, Ist Matemat Appl & Tecnol Informat, Via Ferrata 1, I-27100 Pavia, Italy. [Manzini, Gianmarco] Ctr Simulaz Numer Avanzata CeSNA IUSS Pavia, Vle Lungo Ticino Sforza 56, I-27100 Pavia, Italy. RP Gyrya, V (reprint author), Los Alamos Natl Lab, Div Theoret, Grp T-5,MS B284, Los Alamos, NM 87545 USA. EM gyrya@lanl.gov; lipnikov@lanl.gov; gm.manzini@gmail.com OI Gyrya, Vitaliy/0000-0002-5083-8878 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics FX This work was partially supported by the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics. NR 51 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0764-583X EI 1290-3841 J9 ESAIM-MATH MODEL NUM JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. PD MAY-JUN PY 2016 VL 50 IS 3 BP 851 EP 877 DI 10.1051/m2an/2015088 PG 27 WC Mathematics, Applied SC Mathematics GA DO9DB UT WOS:000378083400011 ER PT J AU de Dios, BA Lipnikov, K Manzini, G AF de Dios, Blanca Ayuso Lipnikov, Konstantin Manzini, Gianmarco TI THE NONCONFORMING VIRTUAL ELEMENT METHOD SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE LA English DT Article DE Virtual element method; nonconforming method; Poisson equation; elliptic problems; unstructured meshes ID FINITE-DIFFERENCE METHOD; ELLIPTIC PROBLEMS; LINEAR ELASTICITY; ARBITRARY-ORDER; POLYHEDRAL MESHES; GENERAL MESHES; STOKES PROBLEM; DISCRETIZATION; APPROXIMATION; CONVERGENCE AB We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method. C1 [de Dios, Blanca Ayuso] Tech Univ Hamburg, Inst Math, Schwarzenberg Campus 3, D-21073 Hamburg, Germany. [de Dios, Blanca Ayuso; Manzini, Gianmarco] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy. [Lipnikov, Konstantin] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. RP de Dios, BA (reprint author), Tech Univ Hamburg, Inst Math, Schwarzenberg Campus 3, D-21073 Hamburg, Germany. EM blanca.ayuso@tuhh.de; lipnikov@lanl.gov; marco.manzini@imati.cnr.it RI Ayuso de Dios, Blanca /C-4716-2012 FU KAUST [BAS/1/1636-01-01, 1000000193]; Laboratory Directed Research and Development Program (LDRD), U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research under National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX The first author is in-debt with Proff. F. Brezzi and D. Marini from Pavia, for the multiple and fruitful discussions and specially for the encouragement to carry out this work. The work of the first author was partially supported by KAUST grants BAS/1/1636-01-01 and Pocket ID 1000000193. She thanks KAUST for the support and hospitality, where part of the work was completed while she was Research Scientist with Peter Markowich. The work of the second and third authors was partially supported by the Laboratory Directed Research and Development Program (LDRD), U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract DE-AC52-06NA25396. NR 42 TC 3 Z9 3 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0764-583X EI 1290-3841 J9 ESAIM-MATH MODEL NUM JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. PD MAY-JUN PY 2016 VL 50 IS 3 BP 879 EP 904 DI 10.1051/m2an/2015090 PG 26 WC Mathematics, Applied SC Mathematics GA DO9DB UT WOS:000378083400012 ER PT J AU Sluiter, JB Chum, H Gomes, AC Tavares, RPA Azevedo, V Pimenta, MTB Rabelo, SC Marabezi, K Curvelo, AAS Alves, AR Garcia, WT Carvalho, W Esteves, PJ Mendonca, S Oliveira, PA Ribeiro, JAA Mendes, TD Vicentin, MP Duarte, CL Mori, MN AF Sluiter, Justin B. Chum, Helena Gomes, Absai C. Tavares, Renata P. A. Azevedo, Vinicius Pimenta, Maria T. B. Rabelo, Sarita C. Marabezi, Karen Curvelo, Antonio A. S. Alves, Aparecido R. Garcia, Wokimar T. Carvalho, Walter Esteves, Paula J. Mendonca, Simone Oliveira, Patricia A. Ribeiro, Jose A. A. Mendes, Thais D. Vicentin, Marcos P. Duarte, Celina L. Mori, Manoel N. TI Evaluation of Brazilian Sugarcane Bagasse Characterization: An Interlaboratory Comparison Study SO JOURNAL OF AOAC INTERNATIONAL LA English DT Article AB This paper describes a study of the variability of measured composition for a single bulk sugarcane bagasse conducted across eight laboratories using similar analytical methods, with the purpose of determining the expected variation for compositional analysis performed by different laboratories. The results show good agreement of measured composition within a single laboratory, but greater variability when results are compared among laboratories. These interlaboratory variabilities do not seem to be associated with a specific method or technique or any single piece of instrumentation. The summary censored statistics provide mean values and pooled standard deviations as follows: total extractives 6.7% (0.6%), whole ash 1.5% (0.2%), glucan 42.3% (1.2%), xylan 22.3% (0.5%), total lignin 21.3% (0.4%), and total mass closure 99.4% (2.9%). C1 [Sluiter, Justin B.; Chum, Helena] Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. [Gomes, Absai C.; Tavares, Renata P. A.; Azevedo, Vinicius] CENPES Petrobras, Gerencia Biotecnol, Ctr Pesquisas & Desenvolvimento Leopoldo A Miguez, Ilha Fundao, Ave Horacio de Macedo 950,Cidade Univ, BR-21941598 Rio De Janeiro, RJ, Brazil. [Pimenta, Maria T. B.; Rabelo, Sarita C.; Marabezi, Karen; Curvelo, Antonio A. S.] CTBE CNPEM, Brazilian Ctr Res Energy & Mat, Brazilian Bioethanol Sci & Technol Lab, Rua Giuseppe Maximo Scolfaro 10-000, BR-13083970 Campinas, SP, Brazil. [Marabezi, Karen; Curvelo, Antonio A. S.] Univ Sao Paulo, IQSC, Ave Trabalhador Sao Carlense 400, BR-13560970 Sao Paulo, SP, Brazil. [Alves, Aparecido R.; Garcia, Wokimar T.] CTC, Fazenda Santo Antonio S-N, BR-13400970 Piracicaba, SP, Brazil. [Carvalho, Walter; Esteves, Paula J.] Univ Sao Paulo, EEL, Dept Biotecnol, Estr Municipal Campinho S-N, BR-12602810 Lorena, SP, Brazil. [Mendonca, Simone; Oliveira, Patricia A.; Ribeiro, Jose A. A.; Mendes, Thais D.] Embrapa Agroenergy, Parque Estacao Biol PqEB S-N,Ave W3 Norte Final, BR-70770901 Brasilia, DF, Brazil. [Vicentin, Marcos P.] Natl Inst Metrol Qual & Technol INMETRO, Div Chem Metrol, Lab Organ Anal, Ave N Sra Gracas 50, BR-25250020 Rio De Janeiro, RJ, Brazil. [Duarte, Celina L.; Mori, Manoel N.] Nucl & Energy Res Inst IPEN CNEN, Ave Prof Lineu Prestes 2242, BR-05508000 Sao Paulo, SP, Brazil. RP Sluiter, JB (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM justin.sluiter@nrel.gov RI Rabelo, Sarita /C-8468-2012; OI Rabelo, Sarita /0000-0002-3153-7674; Ribeiro, Jose Antonio de Aquino/0000-0001-9374-8736 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); state of Sao Paulo Research Foundation (FAPESP) FX The research reported is a result of the Memorandum of Understanding to Advance Biofuels Collaboration (16) between the governments of Brazil and the United States, which started in 2007 and transfered to the Strategic Energy Dialogue in 2011. On the Brazilian side, participants were Science, Technology and Innovation (MCTI); Mines and Energy (MME); Development, Industry and Foreign Trade (MDIC); and Agriculture, Livestock and Supply (MAPA), led by the Department of Energy of the Ministry of Foreign Relations. On the U.S. side, the Department of State led activities and the U.S. Department of Energy through the Bioenergy Technologies Office led bilateral research and development activities, which were conducted through the National Renewable Energy Laboratory for this work, with the participation of the U.S. Department of Agriculture. We also acknowledge these institutions and the managers involved, as well as their agencies, such as Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Financiadora de Estudos e Projetos (FINEP), and the state of Sao Paulo Research Foundation (FAPESP) and Helena Chum for coordination of this work. We also acknowledge the research supported by various agencies. NR 14 TC 2 Z9 2 U1 4 U2 9 PU AOAC INT PI GAITHERSBURG PA 481 N FREDRICK AVE, STE 500, GAITHERSBURG, MD 20877-2504 USA SN 1060-3271 EI 1944-7922 J9 J AOAC INT JI J. AOAC Int. PD MAY-JUN PY 2016 VL 99 IS 3 BP 579 EP 585 DI 10.5740/jaoacint.15-0063 PG 7 WC Chemistry, Analytical; Food Science & Technology SC Chemistry; Food Science & Technology GA DP0OI UT WOS:000378188700005 ER PT J AU Linder, EV Sengor, G Watson, S AF Linder, Eric V. Sengor, Gizem Watson, Scott TI Is the effective field theory of dark energy effective? SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy experiments; dark energy theory; modified gravity AB The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions - assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H(z) or dark energy equation of state w(z) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques. C1 [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, New Campbell Hall 341, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Lab, New Campbell Hall 341, Berkeley, CA 94720 USA. [Sengor, Gizem; Watson, Scott] Syracuse Univ, Dept Phys, 201 Phys Bldg, Syracuse, NY 13244 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, New Campbell Hall 341, Berkeley, CA 94720 USA.; Linder, EV (reprint author), Univ Calif Berkeley, Berkeley Lab, New Campbell Hall 341, Berkeley, CA 94720 USA. EM evlinder@lbl.gov; gsengor@syr.edu; gswatson@syr.edu FU U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-SC-0007867, DE-AC02-05CH11231]; NASA Astrophysics Theory Grant [NNH12ZDA001N]; DOE [DE-FG02-85ER40237] FX We thank the organizers of PPC 2015 for hospitality and a productive environment that began this work. EL is supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award DE-SC-0007867 and contract no. DE-AC02-05CH11231. GS and SW are supported in part by NASA Astrophysics Theory Grant NNH12ZDA001N, and DOE grant DE-FG02-85ER40237. NR 32 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAY PY 2016 IS 5 AR 053 DI 10.1088/1475-7516/2016/05/053 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DO8NY UT WOS:000378041500054 ER PT J AU Duncan, DS Jewell, KA Suen, G Jackson, RD AF Duncan, David S. Jewell, Kelsea A. Suen, Garret Jackson, Randall D. TI Detection of short-term cropping system-induced changes to soil bacterial communities differs among four molecular characterization methods SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Microbial community composition; Phospholipid fatty acids; Metagenomic sequencing; 16S rRNA; nosZ; Cellulosic bioenergy ID MICROBIAL COMMUNITIES; ARCHAEAL COMMUNITIES; AGRICULTURAL SOILS; COG DATABASE; DIVERSITY; GRASSLAND; ABUNDANCE; IMPACT; PCR; SEQUENCES AB Perennial grass-based agroecosystems are under consideration as sustainable sources of bioenergy feedstocks. Establishing these systems on land previously used for conventional agricultural production is expected to dramatically alter the composition and functional capacity of their associated soil bacterial communities, but the rate at which these changes will occur is unclear. Methods for characterizing bacterial communities are both varied and useful for documenting different aspects of the soil microbiota and their dynamics during this transition. Here, we studied the soil-associated bacterial communities of continuous corn and restored prairies systems within a cropping systems experiment 2-4 years after establishment using 1) phospholipid fatty acid (PLFA) profiling, 2) shotgun metagenomic sequencing, 3) amplicon sequencing of the 16S rRNA gene and 4) sequencing of the nitrogen-cycling gene nosZ. All characterization methods discriminated the bacterial communities between the two cropping systems, but the largest differences were observed with PLFA profiling. Differences between the two cropping systems did not significantly increase during the study period. The community compositions described by sequence-based methods were mutually correlated, but were only weakly correlated to the composition described by PLFA profiling. Shotgun metagenomics detected a much higher abundance of Actinobacteria than amplicon sequencing and revealed more consistent changes between cropping systems over time. Cropping system and interannual effects on the ratios of biomarkers associated with Gram-negative and Gram-positive bacteria were entirely different for PLFAs, rRNA amplicons, and shotgun sequenced 16S rRNA. Our findings highlight how soil bacterial community characterization methods differ in their detection of microbial community composition as a result of recent land use change. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Duncan, David S.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. [Duncan, David S.; Jackson, Randall D.] Univ Wisconsin, Dept Bacteriol, DOE Great Lakes Bioenergy Res Ctr, 1552 Univ Ave, Madison, WI 53726 USA. [Jewell, Kelsea A.; Suen, Garret] Univ Wisconsin, Dept Bacteriol, 1550 Linden Dr, Madison, WI 53706 USA. [Jewell, Kelsea A.] Centralia Coll, Biol Sci Program, 600 Centralia Coll Blvd, Centralia, WA 98531 USA. RP Duncan, DS (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA.; Duncan, DS (reprint author), Univ Wisconsin, Dept Bacteriol, DOE Great Lakes Bioenergy Res Ctr, 1552 Univ Ave, Madison, WI 53726 USA. EM dsduncan@wisc.edu OI Duncan, David/0000-0002-2867-0378 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830]; USDA NIFA Fellowship [2012-01193]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank DA Williams for PLFA extraction, HW Read for PLFA quantification, A Neumann for assistance with amplicon sequencing, and K Stahlheber and two anonymous reviewers for helpful comments. Funding was provided by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). K Jewell was supported by a USDA NIFA Fellowship Grant 2012-01193. The sequencing work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding sources were not directly involved in the study design, data analysis, manuscript preparation, or decision to publish. NR 67 TC 1 Z9 1 U1 18 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD MAY PY 2016 VL 96 BP 160 EP 168 DI 10.1016/j.soilbio.2016.02.002 PG 9 WC Soil Science SC Agriculture GA DP4JP UT WOS:000378462500019 ER PT J AU Neumeyer, C Goldston, R AF Neumeyer, Charles Goldston, Robert TI Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario SO SUSTAINABILITY LA English DT Article DE dynamic EROI; energy payback; electricity generation; climate change ID POWER-PLANTS; ENERGY; WIND AB The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform an EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed. C1 [Neumeyer, Charles; Goldston, Robert] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Neumeyer, C (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM neumeyer@princeton.edu; rjg@princeton.edu OI Neumeyer, Charles/0000-0002-9715-7244 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences; U.S. Department of Energy [DE-AC02-09CH11466] FX This manuscript is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, and has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. NR 16 TC 0 Z9 0 U1 6 U2 6 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD MAY PY 2016 VL 8 IS 5 AR 421 DI 10.3390/su8050421 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA DO7SR UT WOS:000377983800015 ER PT J AU Zhang, X Ma, YH Ye, B Chen, ZM Xiong, L AF Zhang, Xun Ma, Yuehui Ye, Bin Chen, Zhang-Ming Xiong, Ling TI Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen SO SUSTAINABILITY LA English DT Article DE renewable energy; low-carbon urbanization; hybrid energy system ID RESOURCE ASSESSMENT; DOMESTIC ENERGY; MODEL; SOLAR; WIND; EMISSIONS; DEMAND; CITIES AB As the largest carbon emission source in China, the power sector grows rapidly owing to the country's unprecedented urbanization and industrialization processes. In order to explore a low carbon urbanization pathway by reducing carbon emissions of the power sector, the Chinese government launched an international low carbon city (ILCC) project in Shenzhen. This paper presents a feasibility analysis on the potential hybrid energy system based on local renewable energy resources and electricity demand estimation over the three planning stages of the ILCC project. Wind power, solar power, natural gas and the existing power grid are components considered in the hybrid energy system. The simulation results indicate that the costs of energy in the three planning stages are 0.122, 0.105 and 0.141 $/kWh, respectively, if external wind farms and pumped storage hydro stations (PSHSs) exist. The optimization results reveal that the carbon reduction rates are 46.81%, 62.99% and 75.76% compared with the Business as Usual scenarios. The widely distributed water reservoirs in Shenzhen provide ideal conditions to construct PSHS, which is crucial in enhancing renewable energy utilization. C1 [Zhang, Xun] Tongji Univ, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China. [Ma, Yuehui] Shanghai Maritime Univ, Sci Res Acad, Shanghai 201306, Peoples R China. [Ye, Bin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Ye, Bin] Tsinghua Univ, Res Ctr Modern Logist, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. [Chen, Zhang-Ming] Renmin Univ China, Sch Econ, Dept Energy Econ, Beijing 100872, Peoples R China. [Xiong, Ling] Wuhan Univ, Inst Int Studies, CICTSMR, Wuhan 430072, Peoples R China. RP Ye, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.; Ye, B (reprint author), Tsinghua Univ, Res Ctr Modern Logist, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. EM 12tjzx@tongji.edu.cn; zs0755jj@163.com; yebin@lbl.gov; chenzhanming@ruc.edu.cn; bear2003@whu.edu.cn RI Chen, Zhan-Ming/B-1351-2011 OI Chen, Zhan-Ming/0000-0001-5239-6332 FU Natural Science Foundation of Guang Dong Province, China [2014A030310404]; National Natural Science Foundation of China [71403285] FX This work was supported by The Natural Science Foundation of Guang Dong Province, China (Grant No. 2014A030310404) and National Natural Science Foundation of China (No. 71403285). NR 42 TC 0 Z9 0 U1 12 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD MAY PY 2016 VL 8 IS 5 AR 452 DI 10.3390/su8050452 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA DO7SR UT WOS:000377983800046 ER PT J AU Naito, M Ewsuk, K Tatami, J Iijima, M AF Naito, Makio Ewsuk, Kevin Tatami, Junichi Iijima, Motoyuki TI Special issue of the 5th Int'l Conf. on the Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI2015) Preface SO ADVANCED POWDER TECHNOLOGY LA English DT Editorial Material C1 [Naito, Makio] Osaka Univ, Suita, Osaka 565, Japan. [Ewsuk, Kevin] Sandia Natl Labs, Livermore, CA 94550 USA. [Tatami, Junichi; Iijima, Motoyuki] Yokohama Natl Univ, Yokohama, Kanagawa 240, Japan. RP Naito, M (reprint author), Osaka Univ, Suita, Osaka 565, Japan. NR 0 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8831 EI 1568-5527 J9 ADV POWDER TECHNOL JI Adv. Powder Technol. PD MAY PY 2016 VL 27 IS 3 SI SI BP 797 EP 798 DI 10.1016/j.apt.2016.04.004 PG 2 WC Engineering, Chemical SC Engineering GA DO6AN UT WOS:000377864600001 ER PT J AU Dhar, SK Provino, A Manfrinetti, P Kulkarni, R Goyal, N Paudyal, D AF Dhar, S. K. Provino, A. Manfrinetti, P. Kulkarni, R. Goyal, Neeraj Paudyal, D. TI Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID DIFFRACTION; ELECTRON; METALS AB Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 angstrom) which are separated by an unusually large distance c = 11.228 angstrom along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, mu(eff) = 1.1 mu(B), a low paramagnetic Curie temperature theta(P) (below 7 K) and a temperature independent chi(0) = 6.7 x 10(-4) emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 mu(B)/f.u. The zero field heat capacity C/T shows an upturn below 7 K (similar to 190 mJ/mol K-2 at similar to 0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Dhar, S. K.; Kulkarni, R.; Goyal, Neeraj] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Provino, A.; Manfrinetti, P.] Univ Genoa, Dept Chem, Via Dodecaneso 31, I-16146 Genoa, Italy. [Paudyal, D.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Goyal, Neeraj] Max Planck Inst Microstruct Phys, Dept Cognit & Spintron Technol, Weinberg 2, D-06120 Halle, Sachsen Anhalt, Germany. RP Dhar, SK (reprint author), Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. NR 16 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 055817 DI 10.1063/1.4943922 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500130 ER PT J AU Ding, J Jain, S Lapa, PN Khaire, T Lendinez, S Posada, CM Zhang, W Pearson, JE Hoffmann, A Novosad, V AF Ding, J. Jain, S. Lapa, P. N. Khaire, T. Lendinez, S. Posada, C. M. Zhang, W. Pearson, J. E. Hoffmann, A. Novosad, V. TI Gyrotropic frequency control in ferromagnetic dots using a nanoscale vortex barrier SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID STATE; NANODOTS; DISKS; FIELD; CORE AB The vortex translational mode frequency is known to be only weakly dependent on the magnitude of an in-plane magnetic field (e.g. the vortex core position) for circular ferromagnetic dots. Here we demonstrated that the frequency-field dependence becomes discrete when a nanoscale vortex barrier is introduced in the dot structure. We found that the frequency is mostly defined by the outer diameter of the dot or the barrier size for the vortex core located outside or inside the barrier, correspondingly. The experimental results are in good agreement with the micromagnetic simulation. (C) 2016 Author(s). C1 [Ding, J.; Jain, S.; Lapa, P. N.; Khaire, T.; Lendinez, S.; Posada, C. M.; Zhang, W.; Pearson, J. E.; Hoffmann, A.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lapa, P. N.] Texas A&M Univ, College Stn, TX 77843 USA. [Lendinez, S.] Univ Barcelona, Dept Fis Fonamental, Diagonal 647, E-08028 Barcelona, Spain. [Jain, S.] HGST, 3403 Yerba Buena Road, San Jose, CA 95135 USA. RP Novosad, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM novosad@anl.gov RI Khaire, Trupti/G-6342-2016; DING, Junjia/K-2277-2013; Novosad, V /J-4843-2015; OI DING, Junjia/0000-0002-9917-9156; Lendinez, Sergi/0000-0002-7360-1857 NR 23 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 056102 DI 10.1063/1.4942794 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500201 ER PT J AU Jiang, WJ Zhang, W Yu, GQ Jungfleisch, MB Upadhyaya, P Somaily, H Pearson, JE Tserkovnyak, Y Wang, KL Heinonen, O te Velthuis, SGE Hoffmann, A AF Jiang, Wanjun Zhang, Wei Yu, Guoqiang Jungfleisch, M. Benjamin Upadhyaya, Pramey Somaily, Hamoud Pearson, John E. Tserkovnyak, Yaroslav Wang, Kang L. Heinonen, Olle te Velthuis, Suzanne G. E. Hoffmann, Axel TI Mobile Neel skyrmions at room temperature: status and future SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID MAGNETIC SKYRMIONS; DOMAIN-WALLS; CHIRAL MAGNET; SPIN-TORQUE; DYNAMICS; BUBBLES; LATTICE AB Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room-temperature Neel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of Neel skyrmions that are enabled by the electrical current-induced spin-orbit torques. Towards the nanoscale Neel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Jiang, Wanjun; Zhang, Wei; Jungfleisch, M. Benjamin; Somaily, Hamoud; Pearson, John E.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Yu, Guoqiang; Upadhyaya, Pramey; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Upadhyaya, Pramey; Tserkovnyak, Yaroslav] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Somaily, Hamoud] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Jiang, WJ; te Velthuis, SGE; Hoffmann, A (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM jiangw@anl.gov; tevelthuis@anl.gov; hoffmann@anl.gov RI te Velthuis, Suzanne/I-6735-2013; Jiang, Wanjun/E-6994-2011; Jungfleisch, Matthias Benjamin/G-1069-2015; Yu, Guoqiang/F-1871-2013; OI te Velthuis, Suzanne/0000-0002-1023-8384; Jiang, Wanjun/0000-0003-0918-3862; Jungfleisch, Matthias Benjamin/0000-0001-8204-3677; Yu, Guoqiang/0000-0002-7439-6920; Heinonen, Olle/0000-0002-3618-6092 NR 35 TC 1 Z9 1 U1 12 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 055602 DI 10.1063/1.4943757 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500098 ER PT J AU Lapa, PN Khaire, T Ding, JJ Pearson, JE Novosad, V Hoffmann, A Jiang, JS AF Lapa, Pavel N. Khaire, Trupti Ding, Junjia Pearson, John E. Novosad, Valentyn Hoffmann, Axel Jiang, J. S. TI Spin valve with non-collinear magnetization configuration imprinted by a static magnetic field SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID SUPERCONDUCTIVITY; TEMPERATURE AB To control the angle between magnetizations in two adjacent ferromagnetic layers without using a rotator, a novel spin valve was designed and fabricated. A key element of the design is a replacement of a pinned ferromagnetic layer by a synthetic antiferromagnet (SAF). The predefined non-collinear magnetization configurations are produced by cooling the valve in different magnetic fields. Giant magnetoresistance (GMR) measurements allowed mapping of the angle between the magnetizations in the SAF and the free layer depending on the magnitude of the cooling field. (C) 2016 Author(s). C1 [Lapa, Pavel N.; Khaire, Trupti; Ding, Junjia; Pearson, John E.; Novosad, Valentyn; Hoffmann, Axel; Jiang, J. S.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lapa, Pavel N.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Lapa, PN (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Lapa, PN (reprint author), Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RI Novosad, V /J-4843-2015; DING, Junjia/K-2277-2013 OI DING, Junjia/0000-0002-9917-9156 NR 15 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 056107 DI 10.1063/1.4943154 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500206 ER PT J AU Ni, Y Zhang, Z Nlebedim, CI Jiles, DC AF Ni, Yan Zhang, Zhen Nlebedim, Cajetan I. Jiles, David C. TI Magnetotransport study of (Sb1-xBix)(2)Te-3 thin films on mica substrate for ideal topological insulator SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID SURFACE-STATES; BI2SE3; BI2TE3 AB We deposited high quality (Sb1-xBix)(2)Te-3 on mica substrate by molecular beam epitaxy and investigated their magnetotransport properties. It is found that the average surface roughness of thin films is lower than 2 nm. Moreover, a local maxima on the sheet resistance is obtained with x = 0.043, indicating a minimization of bulk conductivity at this composition. For (Sb0.957Bi0.043)(2)Te-3, weak antilocalization with coefficient of -0.43 is observed, confirming the existence of 2D surface states. Moreover Shubnikov-de Hass oscillation behavior occurs under high magnetic field. The 2D carrier density is then determined as 0.81 x 10(16) m(-2), which is lower than that of most TIs reported previously, indicating that (Sb(0.957B)i(0.043))(2)Te-3 is close to ideal TI composition of which the Dirac point and Fermi surface cross within the bulk bandgap. Our results thus demonstrate the best estimated composition for ideal TI is close to (Sb0.957Bi0.043)(2)Te-3 and will be helpful for designing TI-based devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Ni, Yan; Zhang, Zhen; Nlebedim, Cajetan I.; Jiles, David C.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Nlebedim, Cajetan I.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Zhang, Z (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM zhenn.zhang@gmail.com NR 21 TC 0 Z9 0 U1 7 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 055812 DI 10.1063/1.4943156 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500125 ER PT J AU Poudyal, N Liu, XB Wang, W Nguyen, VV Ma, YL Gandha, K Elkins, K Liu, JP Sun, KW Kramer, MJ Cui, J AF Poudyal, Narayan Liu, Xubo Wang, Wei Nguyen, V. Vuong Ma, Yilong Gandha, Kinjal Elkins, Kevin Liu, J. Ping Sun, Kewei Kramer, M. J. Cui, Jun TI Processing of MnBi bulk magnets with enhanced energy product SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID CRYSTAL-STRUCTURE; ELECTRONIC-STRUCTURE; COMPOUND AB We report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH)(max) of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH)(max) value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm. (C) 2016 Author(s). C1 [Poudyal, Narayan; Liu, Xubo; Wang, Wei; Nguyen, V. Vuong; Ma, Yilong; Gandha, Kinjal; Elkins, Kevin; Liu, J. Ping] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Sun, Kewei; Kramer, M. J.; Cui, Jun] Iowa State Univ, Dept Energy, Ames Lab US, Ames, IA 50011 USA. RP Liu, JP (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM pliu@uta.edu RI Liu, Xubo/A-1883-2008 OI Liu, Xubo/0000-0002-2558-0959 NR 25 TC 0 Z9 0 U1 12 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 056004 DI 10.1063/1.4942955 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500173 ER PT J AU Saleh, M Cao, Y Edwards, DJ Ramuhalli, P Johnson, BR McCloy, JS AF Saleh, Muad Cao, Yue Edwards, Danny J. Ramuhalli, Pradeep Johnson, Bradley R. McCloy, John S. TI Effects of aging time and temperature of Fe-1wt.%Cu on magnetic Barkhausen noise and FORC SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID 1ST-ORDER REVERSAL CURVES; MODEL ALLOYS; COPPER; PRECIPITATION; HYSTERESIS; STEEL; LOOPS; IRON; CU AB Magnetic Barkhausen noise (MBN), hysteresis measurements, first order reversal curves (FORC), Vickers microhardness, and Transmission Electron Microscopy (TEM) analyses were performed on Fe-1wt.%Cu (Fe-Cu) samples isothermally aged at 700 degrees C for 0.5 - 25 hours to obtain samples with different sized Cu precipitates and dislocation structures. Fe-Cu is used to simulate the thermal and irradiation-induced defects in copper-containing nuclear reactor materials such as cooling system pipes and pressure vessel materials. The sample series showed an initial increase followed by a decrease in hardness and coercivity with aging time, which is explained by Cu precipitates formation and growth as observed by TEM measurements. Further, the MBN envelope showed a continuous decrease in its magnitude and the appearance of a second peak with aging. Also, FORC diagrams showed multiple peaks whose intensity and location changed for different aging time. The changes in FORC diagrams are attributed to combined changes of the magnetic behavior due to Cu precipitate characteristics and dislocation structure. A second series of samples aged at 850 degrees C, which is above the solid solution temperature of Fe-Cu, was studied to isolate the effects of dislocations. These samples showed a continuous decrease in MBN amplitude with aging time although the coercivity and hardness did not change significantly. The decrease of MBN amplitude and the appearance of the second MBN envelope peak are attributed to the changes in dislocation density and structure. This study shows that the effect of dislocations on MBN and FORC of Fe-Cu materials can vary significantly and should be considered in interpreting magnetic signatures. (C) 2016 Author(s). C1 [Saleh, Muad; McCloy, John S.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Saleh, Muad; McCloy, John S.] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. [Edwards, Danny J.; Ramuhalli, Pradeep; Johnson, Bradley R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCloy, JS (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.; McCloy, JS (reprint author), Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. EM john.mccloy@wsu.edu OI McCloy, John/0000-0001-7476-7771 NR 26 TC 0 Z9 0 U1 9 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 055935 DI 10.1063/1.4944767 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500168 ER PT J AU Sklenar, J Zhang, W Jungfleisch, MB Jiang, WJ Saglam, H Pearson, JE Ketterson, JB Hoffmann, A AF Sklenar, Joseph Zhang, Wei Jungfleisch, Matthias B. Jiang, Wanjun Saglam, Hilal Pearson, John E. Ketterson, John B. Hoffmann, Axel TI Spin Hall effects in metallic antiferromagnets - perspectives for future spin-orbitronics SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID MAGNETIC MULTILAYERS; MAGNETORESISTANCE; INTERFACES; EXCITATION; WAVES AB We investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for c- and a-axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. We also suggest that metallic antiferromagnets may be good candidates for the investigation of various unidirectional effects related to novel spin-orbitronics phenomena. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Saglam, Hilal; Pearson, John E.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Sklenar, Joseph; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Saglam, Hilal] IIT, Dept Phys, Chicago, IL 60616 USA. [Sklenar, Joseph] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Zhang, W (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zwei@anl.gov RI Jiang, Wanjun/E-6994-2011; Jungfleisch, Matthias Benjamin/G-1069-2015 OI Jiang, Wanjun/0000-0003-0918-3862; Jungfleisch, Matthias Benjamin/0000-0001-8204-3677 NR 51 TC 3 Z9 3 U1 11 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 055603 DI 10.1063/1.4943758 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500099 ER PT J AU Sun, L Liang, JH Xiao, X Zhou, C Chen, G Huo, Y Wu, YZ AF Sun, L. Liang, J. H. Xiao, X. Zhou, C. Chen, G. Huo, Y. Wu, Y. Z. TI Magnetic stripe domains of [Pt/Co/Cu](10) multilayer near spin reorientation transition SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc ID CO/PT MULTILAYERS; CONE STATES; WALLS; FILMS; TEMPERATURE; ANISOTROPY; SKYRMIONS; DYNAMICS; DRIVEN AB The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(t(Co))/Cu](10) film stack epitaxied on Cu (111) substrate have been studied as a function of the Co layer thickness t(Co), by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as t(Co) increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while t(Co) approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversal process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence. (C) 2016 Author(s). C1 [Sun, L.; Liang, J. H.; Xiao, X.; Zhou, C.; Huo, Y.; Wu, Y. Z.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Sun, L.; Liang, J. H.; Xiao, X.; Zhou, C.; Huo, Y.; Wu, Y. Z.] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Chen, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA. RP Wu, YZ (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.; Wu, YZ (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. EM wuyizheng@fudan.edu.cn RI Chen, Gong/H-3074-2015; Wu, yizheng/P-2395-2014; OI Wu, yizheng/0000-0002-9289-1271; Liang, Jianhui/0000-0002-1787-2716 NR 40 TC 1 Z9 1 U1 4 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 056109 DI 10.1063/1.4943360 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500208 ER PT J AU Zhang, XW Jiang, YF Yang, MY Allard, LF Wang, JP AF Zhang, Xiaowei Jiang, Yanfeng Yang, Meiyin Allard, Lawrence F. Wang, Jian-Ping TI High Ms Fe16N2 thin film with Ag under layer on GaAs substrate SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 13th Joint Magnetism and Magnetic Materials (MMM)/Intermag Conference CY JAN 11-15, 2016 CL San Diego, CA SP Amer Inst Phys, IEEE Magnet soc AB (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. (C) 2016 Author(s). C1 [Zhang, Xiaowei; Jiang, Yanfeng; Yang, Meiyin; Wang, Jian-Ping] Univ Minnesota, Ctr Micromagnet & Informat Technol MINT, Minneapolis, MN 55455 USA. [Zhang, Xiaowei; Jiang, Yanfeng; Yang, Meiyin; Wang, Jian-Ping] Univ Minnesota, Elect & Comp Engn Dept, Minneapolis, MN 55455 USA. [Zhang, Xiaowei; Wang, Jian-Ping] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Zhang, XW (reprint author), Univ Minnesota, Ctr Micromagnet & Informat Technol MINT, Minneapolis, MN 55455 USA.; Zhang, XW (reprint author), Univ Minnesota, Elect & Comp Engn Dept, Minneapolis, MN 55455 USA.; Zhang, XW (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. NR 7 TC 0 Z9 0 U1 9 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAY PY 2016 VL 6 IS 5 AR 056203 DI 10.1063/1.4943236 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO7KX UT WOS:000377962500228 ER PT J AU Bollinger, AT Wu, J Bozovic, I AF Bollinger, A. T. Wu, J. Bozovic, I. TI Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy SO APL MATERIALS LA English DT Article ID INTERFACE SUPERCONDUCTIVITY; DISCOVERY; ELECTRONICS; MULTILAYERS; CHEMISTRY; PHOSPHOR AB The molecular beam epitaxy (MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system. (C) 2016 Author(s). C1 [Bollinger, A. T.; Wu, J.; Bozovic, I.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Bollinger, AT (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 26 TC 2 Z9 2 U1 6 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAY PY 2016 VL 4 IS 5 AR 053205 DI 10.1063/1.4943989 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO3ZD UT WOS:000377720400009 ER PT J AU Jaeger, HM de Pablo, JJ AF Jaeger, Heinrich M. de Pablo, Juan J. TI Perspective: Evolutionary design of granular media and block copolymer patterns SO APL MATERIALS LA English DT Article ID BONDED-PARTICLE MODEL; TOPOGRAPHICAL TEMPLATES; INVERSE DESIGN; PACKING; SIMULATIONS; SHAPE; MORPHOLOGY; SPHERES; SOLIDS; ROCK AB The creation of new materials "by design" is a process that starts from desired materials properties and proceeds to identify requirements for the constituent components. Such process is challenging because it inverts the typical modeling approach, which starts from given micro-level components to predict macro-level properties. We describe how to tackle this inverse problem using concepts from evolutionary computation. These concepts have widespread applicability and open up new opportunities for design as well as discovery. Here we apply them to design tasks involving two very different classes of soft materials, shape-optimized granular media and nanopatterned block copolymer thin films. (C) 2016 Author(s). C1 [Jaeger, Heinrich M.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Jaeger, Heinrich M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [de Pablo, Juan J.] Argonne Natl Lab, Inst Mol Engn, Lemont, IL 60439 USA. RP Jaeger, HM (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Jaeger, HM (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. FU National Science Foundation [CBET-1334426, DMR-1420709]; National Science Foundation through Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation through the US Department of Commerce, National Institute of Standards and Technology, Center for Hierarchical Materials Design (CHiMaD) [70NANB14H012] FX The work discussed here has been the result of an interdisciplinary effort involving many individuals and collaborators. We thank in particular Alec Bowen, Manolis Doxastakis, Grant Garner, Gurdaman Khaira, Joe Kline, Marc Miskin, Paul Nealey, Jian Qin, Leah Roth, Ricardo Ruiz, Yongrui Su, Dan Sunday, Lei Wan, and Shisheng Xiong. HMJ benefitted from many insightful discussions with Carolyn Phillips. Different aspects of the work were supported by the National Science Foundation through Grant Nos. CBET-1334426 and DMR-1420709, through a grant from the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, and through Award No. 70NANB14H012 from the US Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). NR 72 TC 2 Z9 2 U1 8 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAY PY 2016 VL 4 IS 5 AR 053209 DI 10.1063/1.4948270 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO3ZD UT WOS:000377720400013 ER PT J AU Jain, A Persson, KA Ceder, G AF Jain, Anubhav Persson, Kristin A. Ceder, Gerbrand TI Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases SO APL MATERIALS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LI-ION BATTERIES; MATERIALS SCIENCE; HEUSLER COMPOUNDS; BIG DATA; HETEROGENEOUS INTERFACES; STANDARD ENTHALPIES; NEGATIVE ELECTRODES; MATERIALS DISCOVERY; MARKUP LANGUAGE AB Materials innovations enable new technological capabilities and drive major societal advancements but have historically required long and costly development cycles. The Materials Genome Initiative (MGI) aims to greatly reduce this time and cost. In this paper, we focus on data reuse in the MGI and, in particular, discuss the impact of three different computational databases based on density functional theory methods to the research community. We also discuss and provide recommendations on technical aspects of data reuse, outline remaining fundamental challenges, and present an outlook on the future of MGI's vision of data sharing. (C) 2016 Author(s). C1 [Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Persson, Kristin A.; Ceder, Gerbrand] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Jain, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ajain@lbl.gov FU Materials Project (DOE Basic Energy Sciences) [EDCBEE]; U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Department [DE-AC02-05CH11231] FX This work was funded and intellectually led by the Materials Project (DOE Basic Energy Sciences Grant No. EDCBEE). Work at the Lawrence Berkeley National Laboratory was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Department under Contract No. DE-AC02-05CH11231. We thank Bryce Meredig for discussions regarding the Citrination search platform. NR 142 TC 7 Z9 7 U1 31 U2 74 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAY PY 2016 VL 4 IS 5 AR 053102 DI 10.1063/1.4944683 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO3ZD UT WOS:000377720400004 ER PT J AU Lookman, T Alexander, FJ Bishop, AR AF Lookman, Turab Alexander, Francis J. Bishop, Alan R. TI Perspective: Codesign for materials science: An optimal learning approach SO APL MATERIALS LA English DT Article ID GLOBAL OPTIMIZATION AB A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found. (C) 2016 Author(s). C1 [Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Lookman, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 17 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAY PY 2016 VL 4 IS 5 AR 053501 DI 10.1063/1.4944627 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO3ZD UT WOS:000377720400018 ER PT J AU Phillips, CL Littlewood, P AF Phillips, Carolyn L. Littlewood, Peter TI Preface: Special Topic on Materials Genome SO APL MATERIALS LA English DT Editorial Material ID LITHIUM C1 [Phillips, Carolyn L.; Littlewood, Peter] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Phillips, CL (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 18 TC 0 Z9 0 U1 15 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAY PY 2016 VL 4 IS 5 AR 053001 DI 10.1063/1.4952608 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO3ZD UT WOS:000377720400002 ER PT J AU Soderholm, L Mitchell, JF AF Soderholm, L. Mitchell, J. F. TI Perspective: Toward "synthesis by design": Exploring atomic correlations during inorganic materials synthesis SO APL MATERIALS LA English DT Article ID X-RAY-SCATTERING; AQUEOUS-SOLUTION; MATERIALS DISCOVERY; SPECIATION; CHEMISTRY; PREDICTION; NANOSCALE; CLUSTERS; GROWTH AB Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations. (C) 2016 Author(s). C1 [Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU US Department of Energy Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; US Department of Energy Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX This work supported by the US Department of Energy Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (L.S.) and the US Department of Energy Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (J.F.M.). We thank S. Skanthakumar, Mercouri Kanatzidis, and Daniel Shoemaker for their contributions to this work. NR 52 TC 3 Z9 3 U1 10 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD MAY PY 2016 VL 4 IS 5 AR 053212 DI 10.1063/1.4952712 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DO3ZD UT WOS:000377720400016 ER PT J AU Cook, RB Vannan, SKS McMurry, BF Wright, DM Wei, Y Boyer, AG Kidder, JH AF Cook, Robert B. Vannan, Suresh K. S. McMurry, Benjamin F. Wright, Daine M. Wei, Y. Boyer, Alison G. Kidder, J. H. TI Implementation of data citations and persistent identifiers at the ORNL DAAC SO ECOLOGICAL INFORMATICS LA English DT Article DE Data citation; Data citation index; Open data; Scientific impact ID EXCHANGE; ECOSYSTEM; HISTORY AB A requirement of data archives is that data holdings can be easily discovered, accessed, and used. One approach to improving data discovery and access is through data citations coupled with Digital Object Identifiers (DOI). The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) since 1998 has issued data citations that have been accepted and used in peer-reviewed journals. Citation elements established by the ORNL DAAC are similar to those used for journal articles (authors, year, product title, and information to locate), and beginning in 2007 included a DOI that is persistent, actionable, specific, and complete. The approach used at the ORNL DAAC also allows for referring to subsets of the data, by including within the citation the temporal and spatial extent, and parameters used. Data citations allow readers to find data and reproduce the results of the research article, and also use those data to test new hypotheses, design new sample collections, or construct or evaluate models. The ORNL DAAC uses a manual method to compile data citations and has developed a database that links research articles and their use of specific ORNL DAAC data products. Automation of the data citation compilation process, as is the case for articles, will enable data citations to become a more common practice. In addition to enhancing discovery and access of the data used in a research article, the citation gives credit to data generators, data centers and their funders, and, through citation indices, determine the scientific impact of a data set. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cook, Robert B.; Vannan, Suresh K. S.; McMurry, Benjamin F.; Wright, Daine M.; Wei, Y.; Boyer, Alison G.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Kidder, J. H.] Oak Ridge Natl Lab, Cent Res Lib, Oak Ridge, TN 37831 USA. RP Cook, RB (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM cookrb@ornl.gov OI Kidder, James/0000-0002-1383-2581; Boyer, Alison/0000-0002-4252-9725; Cook, Robert/0000-0001-7393-7302 FU NASA Project [NNG14HH39I] FX NASA Project No. NNG14HH39I provided funding for this work. We would like to recognize Charles Vorosmarty, City College of New York, and Chris Sabine, NOAA, who planted the seeds for the ideas behind data citations (in 1998) and use of DOIs (in 2005), respectively at the ORNL DAAC. The National Snow and Ice Data Center provided early examples of data product citations. In addition, the authors acknowledge, Bethan Keall and Hylke Koers, Elsevier Ltd. for discussions and implementing the DOI linking service with Science Direct. Madison Langseth (USGS) and Ellen B. Stroebel assisted with quality review of the ORNL DAAC's citation database. NR 49 TC 0 Z9 0 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-9541 EI 1878-0512 J9 ECOL INFORM JI Ecol. Inform. PD MAY PY 2016 VL 33 BP 10 EP 16 DI 10.1016/j.ecoinf.2016.03.003 PG 7 WC Ecology SC Environmental Sciences & Ecology GA DO5QM UT WOS:000377837900002 ER PT J AU Deshpande, A McMahon, B Daughton, AR Abeyta, EL Hodge, D Anderson, K Pillai, S AF Deshpande, Alina McMahon, Benjamin Daughton, Ashlynn R. Abeyta, Esteban L. Hodge, David Anderson, Kevin Pillai, Segaran TI SURVEILLANCE FOR EMERGING DISEASES WITH MULTIPLEXED POINT-OF-CARE DIAGNOSTICS SO HEALTH SECURITY LA English DT Article ID INFECTIOUS-DISEASES; EBOLA; COUNTRIES; HEALTH; VIRUS AB We present an analysis of the diagnostic technologies that were used to identify historical outbreaks of Ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood-borne pathogens in the healthiest age groups. With existing multiplexed diagnostic technologies, such a system could be combined with existing public health screening and reference laboratory systems for malaria, dengue, and common bacteremia or be used to develop such an infrastructure in less-developed locations. Because the needs for valid samples and accurate recording of patient attributes are aligned with needs for global biosurveillance, local public health needs, and improving patient care, co-development of these capabilities appears to be quite natural, flexible, and extensible as capabilities, technologies, and needs evolve over time. Moreover, implementation of multiplexed diagnostic technologies to enhance fundamental clinical lab capacity will increase public health monitoring and biosurveillance as a natural extension. C1 [Deshpande, Alina; Daughton, Ashlynn R.; Abeyta, Esteban L.] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA. [McMahon, Benjamin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Hodge, David; Anderson, Kevin] HSARPA, Dept Homeland Secur, Washington, DC USA. [Pillai, Segaran] US FDA, Off Lab Sci & Safety, Off Commissioner, Off Chief Scientist, Washington, DC 20204 USA. RP Deshpande, A (reprint author), Los Alamos Natl Lab, Informat Syst & Modeling, Analyt Intelligence & Technol, A-1,Mail Stop F610, Los Alamos, NM 87545 USA. EM deshpande_a@lanl.gov FU Department of Homeland Security [HSHQPM-14-X-00069] FX This work was supported by an Interagency Agreement with the Department of Homeland Security (HSHQPM-14-X-00069). NR 39 TC 0 Z9 0 U1 5 U2 5 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2326-5094 EI 2326-5108 J9 HEALTH SECUR JI Health Secur. PD MAY-JUN PY 2016 VL 14 IS 3 SI SI BP 111 EP 121 DI 10.1089/hs.2016.0005 PG 11 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DO8PU UT WOS:000378046500002 PM 27314652 ER PT J AU Doggett, NA Mukundan, H Lefkowitz, EJ Slezak, TR Chain, PS Morse, S Anderson, K Hodge, DR Pillai, S AF Doggett, Norman A. Mukundan, Harshini Lefkowitz, Elliot J. Slezak, Tom R. Chain, Patrick S. Morse, Stephen Anderson, Kevin Hodge, David R. Pillai, Segaran TI CULTURE-INDEPENDENT DIAGNOSTICS FOR HEALTH SECURITY SO HEALTH SECURITY LA English DT Article ID NUCLEIC-ACID AMPLIFICATION; LATERAL FLOW ASSAY; WHOLE-GENOME AMPLIFICATION; IMMUNOMAGNETIC-ELECTROCHEMILUMINESCENT DETECTION; COMPREHENSIVE LABORATORY EVALUATION; INFECTIOUS-DISEASE-DIAGNOSTICS; IONIZATION MASS-SPECTROMETRY; UNASSEMBLED SEQUENCING DATA; ACUTE RESPIRATORY SYNDROME; REVERSE TRANSCRIPTION-PCR AB The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop. C1 [Doggett, Norman A.] Los Alamos Natl Lab, Biosci Div, Biosecur & Publ Hlth Grp, Los Alamos, NM USA. [Mukundan, Harshini] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp, Los Alamos, NM USA. [Chain, Patrick S.] Los Alamos Natl Lab, Biosci Div, Bioenergy & Biome Sci Grp, Los Alamos, NM USA. [Lefkowitz, Elliot J.] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL USA. [Slezak, Tom R.] Lawrence Livermore Natl Lab, Informat Global Secur Comp Applicat Div, Livermore, CA USA. [Morse, Stephen] Ctr Dis Control & Prevent, Div Select Agents & Toxins, Atlanta, GA USA. [Anderson, Kevin; Hodge, David R.] Homeland Secur Adv Res Projects Agcy, Chem & Biol Def Div, Sci & Technol Directorate, US Dept Homeland Secur, Washington, DC USA. [Pillai, Segaran] US FDA, Off Lab Sci & Safety, Dept Hlth & Human Serv, Off Commissioner,Off Chief Scientist, Silver Spring, MD USA. RP Doggett, NA (reprint author), Los Alamos Natl Lab, Biosci Div, Biosecur & Publ Hlth B 10, POB 1663, Los Alamos, NM 87545 USA. EM doggett@lanl.gov OI Chain, Patrick/0000-0003-3949-3634 FU Department of Homeland Security [HSHQPM-14-X-00069, HSHQPM-15-X-00028] FX This work was supported by Interagency Agreements with the Department of Homeland Security (HSHQPM-14-X-00069 and HSHQPM-15-X-00028). We thank Andrew Bradbury for providing input on immunological assays and recent advances in antibody technologies and Jason Gans for reviewing the manuscript. We would also like to thank the external reviewers for their insightful comments. NR 190 TC 1 Z9 1 U1 8 U2 11 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2326-5094 EI 2326-5108 J9 HEALTH SECUR JI Health Secur. PD MAY-JUN PY 2016 VL 14 IS 3 SI SI BP 122 EP 142 DI 10.1089/hs.2015.0074 PG 21 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DO8PU UT WOS:000378046500003 PM 27314653 ER PT J AU Velsko, S Bates, T AF Velsko, Stephan Bates, Thomas TI A CONCEPTUAL ARCHITECTURE FOR NATIONAL BIOSURVEILLANCE: MOVING BEYOND SITUATIONAL AWARENESS TO ENABLE DIGITAL DETECTION OF EMERGING THREATS SO HEALTH SECURITY LA English DT Article ID INFECTIOUS-DISEASE SURVEILLANCE; PUBLIC-HEALTH; SYNDROMIC SURVEILLANCE; UNITED-STATES; VACCINE; CHALLENGES; NETWORK; SYSTEMS; SAFETY AB Despite numerous calls for improvement, the US biosurveillance enterprise remains a patchwork of uncoordinated systems that fail to take advantage of the rapid progress in information processing, communication, and analytics made in the past decade. By synthesizing components from the extensive biosurveillance literature, we propose a conceptual framework for a national biosurveillance architecture and provide suggestions for implementation. The framework differs from the current federal biosurveillance development pathway in that it is not focused on systems useful for "situational awareness'' but is instead focused on the long-term goal of having true warning capabilities. Therefore, a guiding design objective is the ability to digitally detect emerging threats that span jurisdictional boundaries, because attempting to solve the most challenging biosurveillance problem first provides the strongest foundation to meet simpler surveillance objectives. Core components of the vision are: (1) a whole-of-government approach to support currently disparate federal surveillance efforts that have a common data need, including those for food safety, vaccine and medical product safety, and infectious disease surveillance; (2) an information architecture that enables secure national access to electronic health records, yet does not require that data be sent to a centralized location for surveillance analysis; (3) an inference architecture that leverages advances in "big data'' analytics and learning inference engines-a significant departure from the statistical process control paradigm that underpins nearly all current syndromic surveillance systems; and (4) an organizational architecture with a governance model aimed at establishing national biosurveillance as a critical part of the US national infrastructure. Although it will take many years to implement, and a national campaign of education and debate to acquire public buy-in for such a comprehensive system, the potential benefits warrant increased consideration by the US government. C1 [Velsko, Stephan; Bates, Thomas] Lawrence Livermore Natl Lab, Global Secur Principal Directorate, Chem & Biol Threat Awareness Program, Biodefense Knowledge Ctr, Livermore, CA 94550 USA. RP Velsko, S (reprint author), Lawrence Livermore Natl Lab, Global Secur, L172 5508 East Ave, Livermore, CA 94550 USA. EM velsko2@llnl.gov FU Department of Homeland Security Science and Technology Directorate; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Funding for this study was provided by the Department of Homeland Security Science and Technology Directorate. We acknowledge assistance from a number of subject matter experts who graciously lent their time and insight during the production of this document. However, judgments made in this assessment do not necessarily reflect those of contributing subject matter experts or the Department of Homeland Security. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 62 TC 0 Z9 0 U1 8 U2 8 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2326-5094 EI 2326-5108 J9 HEALTH SECUR JI Health Secur. PD MAY-JUN PY 2016 VL 14 IS 3 SI SI BP 189 EP 201 DI 10.1089/hs.2015.0063 PG 13 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DO8PU UT WOS:000378046500009 PM 27314659 ER PT J AU Hingerl, FF Yang, FF Pini, R Xiao, XH Toney, MF Liu, YJ Benson, SM AF Hingerl, Ferdinand F. Yang, Feifei Pini, Ronny Xiao, Xianghui Toney, Michael F. Liu, Yijin Benson, Sally M. TI Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Capillary pressure; Relative permeability; Micro-tomography; Capillary heterogeneity; Heletz core; Mercury intrusion porosimetry; CT scanning; Core flooding; Carbon sequestration ID RELATIVE PERMEABILITY RELATIONSHIPS; SOIL HYDRAULIC-PROPERTIES; CAPILLARY-PRESSURE; INTERFACIAL-TENSION; GRAVITY; ROCKS; MEDIA; CO2 AB In this study we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 degrees C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomography study complements our cm-to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities. (C) 2016 Published by Elsevier Ltd. C1 [Hingerl, Ferdinand F.; Benson, Sally M.] Stanford Univ, Dept Energy Resources Engn, 473 Via Ortega, Stanford, CA 94305 USA. [Yang, Feifei] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230027, Anhui, Peoples R China. [Pini, Ronny] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England. [Xiao, Xianghui] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Toney, Michael F.; Liu, Yijin] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Hingerl, Ferdinand F.] Streamsim Technol Inc, Canada Off, Suite 400-609 14th St NW, Calgary, AB T2N 2A1, Canada. RP Hingerl, FF (reprint author), Stanford Univ, Dept Energy Resources Engn, 473 Via Ortega, Stanford, CA 94305 USA.; Hingerl, FF (reprint author), Streamsim Technol Inc, Canada Off, Suite 400-609 14th St NW, Calgary, AB T2N 2A1, Canada. EM hingerl@streamsim.com OI Liu, Yijin/0000-0002-8417-2488 FU Global Climate and Energy Project at Stanford University; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; MUSTANG project FX Without the sample rock core provided by Auli Niemi from the University of Uppsala, Sweden, this project would not have been possible. We gratefully acknowledge her support and her initiatives on the MUSTANG project. F.F. Hingerl, S.M. Benson and R. Pini acknowledge funding from the Global Climate and Energy Project at Stanford University. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 34 TC 4 Z9 4 U1 6 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAY PY 2016 VL 48 BP 69 EP 83 DI 10.1016/j.ijggc.2015.12.037 PN 1 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DO8AK UT WOS:000378004200006 ER PT J AU Coon, SA Kruse, MKG AF Coon, Sidney A. Kruse, Michael K. G. TI Properties of infrared extrapolations in a harmonic oscillator basis SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE No-core shell model; convergence of expansion in harmonic oscillator functions; ultraviolet regulator; infrared regulator ID EFFECTIVE-FIELD-THEORY; CORE-SHELL-MODEL; SCATTERING LENGTHS; LIGHT-NUCLEI; BOUND-STATE; CONVERGENCE; TRITON; VOLUME AB The success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r(2), considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods. C1 [Coon, Sidney A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Kruse, Michael K. G.] Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. RP Coon, SA (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. EM coon@physics.arizona.edu; kruse9@llnl.gov FU LLNL [DE-AC52-07NA27344]; USDOE Division of Nuclear Physics [DE-FG02-04ER41338] FX Extremely useful conversations with Sean Fleming are acknowledged. We thank the authors of Ref. 64 for sharing with us their results before publication. We also thank the Iowa State group for sharing with us their JISP16 results after publication.11,36,37 We are grateful to Petr Navratil for generously allowing us to use his manyeff Jacobi coordinate code40 for some of our calculations. Numerical calculations have been performed in part at the LLNL LC facilities supported by LLNL under Contract No. DE-AC52-07NA27344. This contribution was supported in part by USDOE Division of Nuclear Physics grant DE-FG02-04ER41338 (Effective Theories of the Strong Interaction). NR 91 TC 2 Z9 2 U1 3 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD MAY PY 2016 VL 25 IS 5 SI SI AR 1641011 DI 10.1142/S0218301316410111 PG 30 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DO4AE UT WOS:000377723100012 ER PT J AU Perez, RN Amaro, JE Arriola, ER AF Perez, R. Navarro Amaro, J. E. Ruiz Arriola, E. TI Uncertainty quantification of effective nuclear interactions SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE NN interaction; statistical analysis; effective interactions ID PROTON ELASTIC-SCATTERING; PARTIAL-WAVE ANALYSIS; TO-LEADING ORDER; LEAST-SQUARES; PARAMETRIZATION; EXPANSION; EXCHANGE; PHYSICS; MODELS; FORCES AB We give a brief review on the development of phenomenological NN interactions and the corresponding quantification of statistical uncertainties. We look into the uncertainty of effective interactions broadly used in mean field calculations through the Skyrme parameters and effective field theory counterterms by estimating both statistical and systematic uncertainties stemming from the NN interaction. We also comment on the role played by different fitting strategies on the light of recent developments. C1 [Perez, R. Navarro] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. RP Perez, RN (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. EM navarroperez1@llnl.gov; amaro@ugr.es; earriola@ugr.es RI Amaro, Jose/K-2551-2012 OI Amaro, Jose/0000-0002-3234-9755 FU Spanish DGI [FIS2014-59386-P]; Junta de Andalucia [FQM225]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0008511] FX This work is supported by Spanish DGI (grant FIS2014-59386-P) and Junta de Andalucia (grant FQM225). This work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Funding was also provided by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0008511 (NUCLEI SciDAC Collaboration). NR 72 TC 1 Z9 1 U1 2 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD MAY PY 2016 VL 25 IS 5 SI SI AR 1641009 DI 10.1142/S0218301316410093 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DO4AE UT WOS:000377723100010 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R Abolins, M Abou Zeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, A Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TP Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinhoa, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Andersb, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arduini, G Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costaa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingulb, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bluniera, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogava, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldeab, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH Bruce, R de Renstrom, PAB Brunckob, D Bruneliere, R Bruni, A Bruni, G Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Brete, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallia, ECD Cavallia, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chenc, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Ditab, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dud, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunforda, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferraria, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L Gongadze, A De la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Goessling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guoe, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Hanb, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Koi, T Kolanoski, H Kolbb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Kopernya, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewska, AB Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshovb, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le Dortz, O Le Guirriec, E Le Menedeu, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leited, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Lindquist, BE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J Andrade, LMD Ramos, JM Mann, A Mansoulie, B Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, QS Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palm, M Palma, A St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanov, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rossetti, V Rossi, E Rossia, LP Rosten, JHN Rosten, R Rotarub, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarraa, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schefer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, BS Shulga, E Shupe, MA Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenecb, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadi, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H Von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wesselsa, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. Abolins, M. Abou Zeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinhoa, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Andersb, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arduini, G. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costaa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingulb, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bluniera, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogava, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldeab, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. Bruce, R. de Renstrom, P. A. Bruckman Brunckob, D. Bruneliere, R. Bruni, A. Bruni, G. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Brete, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavallia, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chenc, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Ditab, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dud, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duhrssen, M. Dunforda, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferraria, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gongadze, A. Gonzalez De la Hoz, S. Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guoe, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Hanb, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Koehler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Koi, T. Kolanoski, H. Kolbb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Kopernya, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshovb, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leited, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Mansoulie, B. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, Q. S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palm, M. Palma, A. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanov, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rossetti, V. Rossi, E. Rossia, L. P. Rosten, J. H. N. Rosten, R. Rotarub, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarraa, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, B. S. Shulga, E. Shupe, M. A. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenecb, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsiopolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ueno, R. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadi, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. Von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wesselsa, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Data analysis; Performance of High Energy Physics Detectors ID LEP AB This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high beta* are studied. C1 [Aad, G.; Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Ciftci, A. K.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Okuyama, T.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; Van Gemmeren, P.; Vaniachine, A.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Shrestha, B. S.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsiopolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.; Villa, M.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogava, D.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Sjursen, T. B.; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Invalidenstr 110, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingulb, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarraa, C.; Sbrizzi, A.; Semprini-Cesari, N.; Shrestha, B. S.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Vittori, C.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Nussallee 12, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinhoa, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Navarro, J. L. La Rosa; Manhaes de Andrade Filho, L.; Peralva, B. S.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leited, M. A. L.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Lissauer, D.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Shrestha, B. S.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Boldeab, V.; Caprini, I.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Ditab, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotarub, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.; Smolek, K.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Cavallia, D.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arduini, G.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Bruce, R.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Palm, M.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tricoli, A.; Unal, G.; Van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Bluniera, S.; Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Salazar Loyola, J. E.] Pontificia Univ Catolica Chile, Dept Fis, Alameda 340, Santiago, Chile. [Brooks, W. K.; Kuleshovb, S.; Pezoa, R.; Prokoshin, F.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Bai, Y.; da Costaa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Hanb, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.; Zhuang, X.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chenc, S.; Guoe, J.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Dud, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Brete, M. Cano; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Brete, M. Cano; Li, L.; Yang, H.] PKU CHEP, Beijing, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Cavallia, D.; Chomont, A. R.; Donini, J.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Laboratoire Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Cavallia, D.; Chomont, A. R.; Donini, J.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand 2, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Kopernya, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Varouchas, D.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Asbah, N.; Behr, J. K.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Yildirim, E.; Zakharchuk, N.] DESY, Notkestr 85, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bessner, M.; Bloch, I.; Britzger, D.; Cavallia, D.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Yildirim, E.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.; Schorlemmer, A. L. S.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Haddad, N.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Shrestha, B. S.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossia, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nadal, J.; Quadt, A.; Rieger, J.; Shabalina, E.; Shrestha, B. S.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunforda, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wesselsa, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Andersb, C. F.; Giulini, M.; Kolbb, M.; Lisovyi, M.; Radescu, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Nagasaka, Y.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Anisenkov, A. V.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Cavallia, D.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kempster, J. J.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cavallia, D.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Cavallia, D.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Wollstadt, S. J.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Wollstadt, S. J.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Cavallia, D.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Wollstadt, S. J.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Cavallia, D.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Groh, S.; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Shrestha, B. S.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Goldfarb, S.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Aguilar-Saavedra, A.; Alimonti, G.; Andreazza, A.; Carminati, L.; Cavallia, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Cavallia, D.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bingulb, A.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Aben, R.; Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanov, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, B. S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Shrestha, B. S.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferraria, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Zoccoli, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Natl Res Ctr, Kurchatov Inst, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Oleiro Seabra, L. F.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, A.; Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dep Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Moscow, Russia. [Dewhurst, A.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Cavallia, D.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadi, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadi, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Via E Carnevale, I-00173 Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hadef, A.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU, Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Abou Zeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cavallia, D.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Rubinskiy, I.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Hamilton, A.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Brunckob, D.; Kladiva, E.; Strizenecb, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg 2050, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Cavallia, D.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; Van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Oh Okayama, Tokyo 152, Japan. [Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Beddall, A. J.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.; Truong, L.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim & Fis Ambiente, I-33100 Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Urban, S. Cabrera; Castillo Gimenez, V.; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Shrestha, B. S.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Urban, S. Cabrera; Castillo Gimenez, V.; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Urban, S. Cabrera; Castillo Gimenez, V.; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Urban, S. Cabrera; Castillo Gimenez, V.; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Urban, S. Cabrera; Castillo Gimenez, V.; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez De la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Koehler, M. K.; Lellouch, D.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Levinson, L. J.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgruppe Phys, Fak Math & Naturwissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanov, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Rua Campo Alegre 823, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellenic Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. Acad Sinica, Inst Phys, Taipei, Taiwan. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. [Aad, G.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS, IN2P3, Marseille, France. RP Aad, G (reprint author), Univ Adelaide, Dept Phys, Adelaide, SA, Australia. RI Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Gladilin, Leonid/B-5226-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; Livan, Michele/D-7531-2012; Lazzaroni, Massimo/N-3675-2015; Warburton, Andreas/N-8028-2013; Guo, Jun/O-5202-2015; Tikhomirov, Vladimir/M-6194-2015; Ippolito, Valerio/L-1435-2016; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Maneira, Jose/D-8486-2011; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Kantserov, Vadim/M-9761-2015; Chekulaev, Sergey/O-1145-2015; Gerbaudo, Davide/J-4536-2012; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Carli, Ina/C-2189-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Doyle, Anthony/C-5889-2009; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Villa, Mauro/C-9883-2009; Coccaro, Andrea/P-5261-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gavrilenko, Igor/M-8260-2015; Owen, Mark/Q-8268-2016; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015 OI Irles, Adrian/0000-0001-5668-151X; Beck, Hans Peter/0000-0001-7212-1096; Chen, Chunhui /0000-0003-1589-9955; Terzo, Stefano/0000-0003-3388-3906; Muenstermann, Daniel/0000-0001-6223-2497; Bertram, Iain/0000-0003-4073-4941; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Cristinziani, Markus/0000-0003-3893-9171; Galhardo, Bruno/0000-0003-0641-301X; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gladilin, Leonid/0000-0001-9422-8636; Prokoshin, Fedor/0000-0001-6389-5399; Livan, Michele/0000-0002-5877-0062; Lazzaroni, Massimo/0000-0002-4094-1273; Warburton, Andreas/0000-0002-2298-7315; Guo, Jun/0000-0001-8125-9433; Tikhomirov, Vladimir/0000-0002-9634-0581; Ippolito, Valerio/0000-0001-5126-1620; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Maneira, Jose/0000-0002-3222-2738; Fabbri, Laura/0000-0002-4002-8353; Kantserov, Vadim/0000-0001-8255-416X; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Doyle, Anthony/0000-0001-6322-6195; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Villa, Mauro/0000-0002-9181-8048; Coccaro, Andrea/0000-0003-2368-4559; Kukla, Romain/0000-0002-1140-2465; Owen, Mark/0000-0001-6820-0488; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, France; Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos program; Thales program; Aristeia program; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 44 TC 0 Z9 0 U1 20 U2 48 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2016 VL 11 AR P05013 DI 10.1088/1748-0221/11/05/P05013 PG 78 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DO5VU UT WOS:000377851700036 ER PT J AU Freund, B Neubuser, C Repond, J Schlereth, J Xia, L Dotti, A Grefe, C Ivantchenko, V Antequera, JB Alamillo, EC Fouz, MC Marin, J Puerta-Pelayo, J Verdugo, A Brianne, E Ebrahimi, A Gadow, K Goettlicher, P Gunter, C Hartbrich, O Hermberg, B Irles, A Krivan, F Kruger, K Kvasnicka, J Lu, S Lutz, B Morgunov, V Provenza, A Reinecke, M Sefkow, F Schuwalow, S Tran, HL Garutti, E Laurien, S Matysek, M Ramilli, M Schroeder, S Bilki, B Norbeck, E Northacker, D Onel, Y Cvach, J Gallus, P Havranek, M Janata, M Kovalcuk, M Kvasnicka, J Lednicky, D Marcisovsky, M Polak, I Popule, J Tomasek, L Tomasek, M Sicho, P Smolik, J Vrba, V Zalesak, J van Doren, B Wilson, GW Kawagoe, K Hirai, H Sudo, Y Suehara, T Sumida, H Takada, S Tomita, T Yoshioka, T Bilokin, S Bonis, J Cornebise, P Poschl, R Richard, F Thiebault, A Zerwas, D Hostachy, JY Morin, L Besson, D Chadeeva, M Danilov, M Markin, O Popova, E Gabriel, M Goecke, P Kiesling, C van der Kolk, N Simon, F Szalay, M Corriveau, F Blazey, GC Dyshkant, A Francis, K Zutshi, V Kotera, K Ono, H Takeshita, T Ieki, S Kamiya, Y Ootani, W Shibata, N Jeans, D Komamiya, S Nakanishi, H AF Freund, B. Neubueser, C. Repond, J. Schlereth, J. Xia, L. Dotti, A. Grefe, C. Ivantchenko, V. Berenguer Antequera, J. Calvo Alamillo, E. Fouz, M. -C. Marin, J. Puerta-Pelayo, J. Verdugo, A. Brianne, E. Ebrahimi, A. Gadow, K. Goettlicher, P. Guenter, C. Hartbrich, O. Hermberg, B. Irles, A. Krivan, F. Krueger, K. Kvasnicka, J. Lu, S. Lutz, B. Morgunov, V. Provenza, A. Reinecke, M. Sefkow, F. Schuwalow, S. Tran, H. L. Garutti, E. Laurien, S. Matysek, M. Ramilli, M. Schroeder, S. Bilki, B. Norbeck, E. Northacker, D. Onel, Y. Cvach, J. Gallus, P. Havranek, M. Janata, M. Kovalcuk, M. Kvasnicka, J. Lednicky, D. Marcisovsky, M. Polak, I. Popule, J. Tomasek, L. Tomasek, M. Sicho, P. Smolik, J. Vrba, V. Zalesak, J. van Doren, B. Wilson, G. W. Kawagoe, K. Hirai, H. Sudo, Y. Suehara, T. Sumida, H. Takada, S. Tomita, T. Yoshioka, T. Bilokin, S. Bonis, J. Cornebise, P. Poschl, R. Richard, F. Thiebault, A. Zerwas, D. Hostachy, J. -Y. Morin, L. Besson, D. Chadeeva, M. Danilov, M. Markin, O. Popova, E. Gabriel, M. Goecke, P. Kiesling, C. van der Kolk, N. Simon, F. Szalay, M. Corriveau, F. Blazey, G. C. Dyshkant, A. Francis, K. Zutshi, V. Kotera, K. Ono, H. Takeshita, T. Ieki, S. Kamiya, Y. Ootani, W. Shibata, N. Jeans, D. Komamiya, S. Nakanishi, H. TI DHCAL with minimal absorber: measurements with positrons SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Resistive-plate chambers ID HADRON CALORIMETRY AB In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements. C1 [Freund, B.; Neubueser, C.; Repond, J.; Schlereth, J.; Xia, L.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Dotti, A.; Grefe, C.; Ivantchenko, V.] CERN, CH-1211 Geneva 23, Switzerland. [Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, Ave Complutense 22, E-28040 Madrid, Spain. [Neubueser, C.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Goettlicher, P.; Guenter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krueger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.] DESY, Notkestr 85, D-22603 Hamburg, Germany. [Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.] Univ Hamburg, Dept Phys, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.] Univ Iowa, Dept Phys & Astron, 203 Van Allen Hall, Iowa City, IA 52242 USA. [Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.] Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. [van Doren, B.; Wilson, G. W.] Univ Kansas, Dept Phys & Astron, Malott Hall,1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. [Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.] Kyushu Univ, Dept Phys, Nishi Ku, Motooka 744, Fukuoka 8190395, Japan. [Bilokin, S.; Bonis, J.; Cornebise, P.; Poschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.] Univ Paris Sud XI, Ctr Orsay, Lab Accelerateur Lineaire, BP 34,Batiment 200, F-91898 Orsay, France. [Hostachy, J. -Y.; Morin, L.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, 31 Kashirskoye Shosse, Moscow 115409, Russia. [Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany. [Freund, B.; Corriveau, F.] McGill Univ, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.] No Illinois Univ, NICADD, Dept Phys, De Kalb, IL 60115 USA. [Kotera, K.; Ono, H.; Takeshita, T.] Shinshu Univ, Dept Phys, 3-1-1 Asaki, Matsumoto, Nagano 390861, Japan. [Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.] Univ Tokyo, ICEPP, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Jeans, D.; Komamiya, S.; Nakanishi, H.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Dotti, A.] SLAC, Stanford, CA USA. [Grefe, C.] Univ Bonn, Bonn, Germany. [Chadeeva, M.; Danilov, M.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117901, Russia. [Danilov, M.] MIPT, Moscow, Russia. [Markin, O.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Ono, H.] Nippon Dent Univ, Niigata, Japan. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@anl.gov RI Kamiya, Yoshio/L-4394-2014; Cvach, Jaroslav/G-6269-2014; Chadeeva, Marina/C-8789-2016; van der Kolk, Naomi/M-9423-2016; Danilov, Mikhail/C-5380-2014; OI Kamiya, Yoshio/0000-0001-8716-2536; Chadeeva, Marina/0000-0003-1814-1218; van der Kolk, Naomi/0000-0002-8670-0408; Danilov, Mikhail/0000-0001-9227-5164; Irles, Adrian/0000-0001-5668-151X FU Bundesministerium fur Bildung und Forschung (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Helmholtz-Gemeinschaft (HGF), Germany; Alexander von Humboldt Stiftung (AvH), Germany; Russian Ministry of Education and Science [4465.2014.2, 14.A12.31.0006]; Russian Foundation for Basic Research [14-02-00873A]; MICINN; CPAN, Spain; US Department of Energy [DE-AC02-06CH11357]; US National Science Foundation; Ministry of Education, Youth and Sports of Czech Republic [AV0 Z3407391, AV0 Z10100502, LG14033, 7E12050]; National Sciences and Engineering Research Council of Canada FX We would like to thank the technicians and the engineers who contributed to the design and construction of the prototype. This work was supported by the Bundesministerium fur Bildung und Forschung (BMBF), Germany; by the Deutsche Forschungsgemeinschaft (DFG), Germany; by the Helmholtz-Gemeinschaft (HGF), Germany; by the Alexander von Humboldt Stiftung (AvH), Germany; by the Russian Ministry of Education and Science contracts 4465.2014.2 and 14.A12.31.0006 and the Russian Foundation for Basic Research grant 14-02-00873A; by MICINN and CPAN, Spain; by the US Department of Energy under contract DE-AC02-06CH11357 and the US National Science Foundation; by the Ministry of Education, Youth and Sports of the Czech Republic under the projects AV0 Z3407391, AV0 Z10100502, LG14033 and 7E12050; and by the National Sciences and Engineering Research Council of Canada. NR 22 TC 0 Z9 0 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2016 VL 11 AR P05008 DI 10.1088/1748-0221/11/05/P05008 PG 24 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DO5VU UT WOS:000377851700031 ER PT J AU Zhang, X Liu, J Wang, J AF Zhang, X. Liu, J. Wang, J. TI Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging SO JOURNAL OF INSTRUMENTATION LA English DT Article DE X-ray mammography and scinto- and MRI-mammography; X-ray radiography and digital radiography (DR) ID INTERNAL FLOW; SPRAY CHARACTERISTICS; CAVITATION; BIODIESEL AB The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14 mu m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed. C1 [Zhang, X.; Liu, J.] Shanghai Maritime Univ, Merchant Marine Coll, Shanghai 201306, Peoples R China. [Wang, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhang, X (reprint author), Shanghai Maritime Univ, Merchant Marine Coll, Shanghai 201306, Peoples R China. EM sjtu.zhang@gmail.com FU National Natural Science Foundation of China [51309149]; DoE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (No. 51309149). This work and the use of the APS were supported by the DoE, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 21 TC 0 Z9 0 U1 8 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2016 VL 11 AR C05015 DI 10.1088/1748-0221/11/05/C05015 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DO5VU UT WOS:000377851700015 ER PT J AU Luzi, L Gonzalez, E Bruillard, P Prowant, M Skorpik, J Hughes, M Child, S Kist, D McCarthy, JE AF Luzi, Lorenzo Gonzalez, Eric Bruillard, Paul Prowant, Matthew Skorpik, James Hughes, Michael Child, Scott Kist, Duane McCarthy, John E. TI Acoustic firearm discharge detection and classification in an enclosed environment SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID ULTRASONIC WAVE-FORMS; STEROID TREATMENT; SHANNON ENTROPY; DYSTROPHIC MICE AB Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty. C1 [Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael] Pacific NW Natl Lab, Richland, WA 99354 USA. [Child, Scott; Kist, Duane] Kennewick Police Dept, SWAT Team, 211 West 6th Ave, Kennewick, WA 99336 USA. [McCarthy, John E.] Washington Univ, Dept Math, Campus Box 1146, St Louis, MO 63130 USA. RP Hughes, M (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM michael.s.hughes@pnnl.gov FU R&D funds at PNNL including the Signature Discovery Initiative; NSF [DMS 1300280] FX This study was funded by internal R&D funds at PNNL including the Signature Discovery Initiative. In addition, we would like to thank Steve Meyer, Special Response Team Commander, and Officers Barry Woodson and Steve Voit of the Hanford Patrol (U.S. Department of Energy) who assisted in acquisition of firearms data during the initial stages of this investigation. J.E.M. was partially supported by NSF grant DMS 1300280. M.S.H. and J.E.M. have a financial (ownership) interest in EntropyVision Inc. and may financially benefit if the company is successful in marketing its products that are related to this research. NR 25 TC 0 Z9 0 U1 2 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD MAY PY 2016 VL 139 IS 5 BP 2723 EP 2731 DI 10.1121/1.4948994 PG 9 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA DO3XF UT WOS:000377715100054 PM 27250165 ER PT J AU Willingham, D Naes, BE Heasler, PG Zimmer, MM Barrett, CA Addleman, RS AF Willingham, David Naes, Benjamin E. Heasler, Patrick G. Zimmer, Mindy M. Barrett, Christopher A. Addleman, R. Shane TI Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ION MASS-SPECTROMETRY; INDIVIDUAL PARTICLES; CAMECA IMS-4F; TRANSFORM; SAFEGUARDS; ALGORITHM; SAMPLES; SEM AB A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. Seeker) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five National Institute of Standards and Technology (NIST) uranium certified reference materials (CRM U129A, U015, U150, U500, and U850) were successfully identified in regions of SIMS image data (1) where a high variability in image intensity existed, (2) where particles were touching or were in close proximity to one another, and/or (3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by Seeker showed four distinct, accurately identified U-235 enrichment distributions, corresponding to the NIST certified U-235/U-238 isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500, and U850. Additionally, comparison of the minor uranium isotope (U-234, U-235, and U-236) atom percent values verified that, even in the absence of high precision isotope ratio measurements, Seeker could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, Seeker has application in addressing a broad set of image processing challenges. (C) 2016 American Vacuum Society. C1 [Willingham, David; Naes, Benjamin E.; Heasler, Patrick G.; Zimmer, Mindy M.; Barrett, Christopher A.; Addleman, R. Shane] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Willingham, D (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM david.willingham@pnnl.gov OI Barrett, Christopher/0000-0003-4629-3067; Willingham, David/0000-0002-7166-8994 FU Office of Defense Nuclear Nonproliferation Research and Development (DNN RD); Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA) FX The authors gratefully acknowledge the support of the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) and the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA). PNNL is operated for the U.S. DOE by Battelle Memorial Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the DOE, PNNL, or Battelle. NR 41 TC 1 Z9 1 U1 5 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY-JUN PY 2016 VL 34 IS 3 AR 03H106 DI 10.1116/1.4940150 PG 9 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DO3IB UT WOS:000377673400006 ER PT J AU Zinovev, AV King, BV Veryovkin, IV Pellin, MJ AF Zinovev, Alexander V. King, Bruce V. Veryovkin, Igor V. Pellin, Michael J. TI High-mass heterogeneous cluster formation by ion bombardment of the ternary alloy Au7Cu5Al4 SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SURFACE-COMPOSITION CHANGES; NONRESONANT MULTIPHOTON IONIZATION; PD ALLOYS; AU-PD; AG-AU; CU; GOLD; SPECTROMETRY; SIMULATIONS; ENERGY AB The ternary alloy Au7Cu5Al4 was irradiated with 0.1-10 keV Ar+ and the surface composition analyzed using laser sputter neutral mass spectrometry. Ejected clusters containing up to seven atoms, with masses up to 2000 amu, were observed. By monitoring the signals from sputtered clusters, the surface composition of the alloy was seen to change with 100 eV Ar+ dose, reaching equilibrium after 10 nm of the surface was eroded, in agreement with TRIDYN simulation and indicating that the changes were due to preferential sputtering of Al and Cu. Ejected gold containing clusters were found to increase markedly in intensity while aluminum containing clusters decreased in intensity as a result of Ar sputtering. Such an effect was most pronounced for low energy (<1 keV) Ar+ sputtering and was consistent with TRIDYN simulations of the depth profiling. The component sputter yields from the ternary alloy were consistent with previous binary alloy measurements but showed greater Cu surface concentrations than expected from TRIDYN simulations. (C) 2016 American Vacuum Society. C1 [Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [King, Bruce V.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. RP Zinovev, AV (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zinovev@anl.gov FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division FX The work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. NR 32 TC 0 Z9 0 U1 4 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY-JUN PY 2016 VL 34 IS 3 AR 03H108 DI 10.1116/1.4941140 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DO3IB UT WOS:000377673400008 ER PT J AU Li, GH Yu, L Hudak, BM Chang, YJ Baek, H Sundararajan, A Strachan, DR Yi, GC Guiton, BS AF Li, Guohua Yu, Lei Hudak, Bethany M. Chang, Yao-Jen Baek, Hyeonjun Sundararajan, Abhishek Strachan, Douglas R. Yi, Gyu-Chul Guiton, Beth S. TI Direct observation of Li diffusion in Li-doped ZnO nanowires SO MATERIALS RESEARCH EXPRESS LA English DT Article DE scanning transmission electron microscopy; in situ heating; p-type ZnO; lithium diffusion; photoluminescence ID P-TYPE CONDUCTION; GROUP-I ELEMENTS; ZINC-OXIDE; FILMS; EMISSION; ARRAYS AB The direct observation of Li diffusion in Li-doped zinc oxide nanowires (NWs) was realized by using in situ heating in the scanning transmission electron microscope (STEM). A continuous increase of low atomic mass regions within a singleNWwas observed between 200 degrees C and 600 degrees C when heated in vacuum, which was explained by the conversion of interstitial to substitutional Li in the ZnO NW host lattice. A kick-out mechanism is introduced to explain the migration and conversion of the interstitial Li (Li-i) to Zn-site substitutional Li (Li-Zn), and this mechanism is verified with low-temperature (11 K) photoluminescence measurements on as-grown and annealed Li-doped zinc oxide NWs, as well as the observation of an increase of NW surface roughing with applied bias. C1 [Li, Guohua; Yu, Lei; Hudak, Bethany M.; Chang, Yao-Jen; Guiton, Beth S.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Li, Guohua] Anhui Univ, Sch Elect Informat Engn, Hefei 230601, Peoples R China. [Yi, Gyu-Chul] Seoul Natl Univ, Dept Phys & Astron, Inst Appl Phys, Seoul 151747, South Korea. [Yi, Gyu-Chul] Seoul Natl Univ, Res Inst Adv Mat, Seoul 151747, South Korea. [Sundararajan, Abhishek; Strachan, Douglas R.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Guiton, Beth S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Guiton, BS (reprint author), Univ Kentucky, Dept Chem, Lexington, KY 40506 USA.; Guiton, BS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM beth.guiton@uky.edu RI Yi, Gyu-Chul/F-1326-2011; Chang, Yao-Jen/E-6766-2017 FU Global Research Laboratory Program through the National Research Foundation of Korea (NRF) [NRF-2015K1A1A2033332]; NASA Kentucky under NASA award [NNX13AB12A]; NASA [NNX10AL96H]; Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy; Anhui Provincial Natural Science Foundation of China [1608085ME99] FX This research was funded by the Global Research Laboratory Program (NRF-2015K1A1A2033332) through the National Research Foundation of Korea (NRF) (G-CY, GL, HB), supported by NASA Kentucky under NASA award No: NNX13AB12A (LY, Y-JC, BSG), and NASA award No: NNX10AL96H (BMH), and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy (BSG). GLi also acknowledges support from Anhui Provincial Natural Science Foundation of China (No. 1608085ME99). NR 43 TC 0 Z9 0 U1 10 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1591 J9 MATER RES EXPRESS JI Mater. Res. Express PD MAY PY 2016 VL 3 IS 5 AR 054001 DI 10.1088/2053-1591/3/5/054001 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA DO5GT UT WOS:000377812300001 ER PT J AU Stoddard, R Chen, X AF Stoddard, Ryan Chen, Xing TI Electrospinning of ultra-thin nanofibers achieved through comprehensive statistical study SO MATERIALS RESEARCH EXPRESS LA English DT Article DE electrospinning; nanofibers; response surface methodology; polyvinylpyrrolidone; metal nanorods ID RESPONSE-SURFACE METHODOLOGY; FIBER DIAMETER; OPTIMIZATION AB Electrospinning is a widely used process to produce nanofibers due to the ability to precisely tune fiber morphology and other nanofiber fabric characteristics. A lot of work in the past few decades to study the various factors affecting electrospun fiber morphologies, however there has been no study to date to look at all contributing factors in a statistically systematical way. In particular, limited work has been conducted demonstrating a method to fabricate high quality, ultrathin nanofibers with mean diameter <50 nm, narrow diameter standard deviation, and low percentage of non-fiber areas (defects). We present a method using a series of statistically designed experiments to create high quality ultrathin polyvinylpyrrolidone nanofibers containing FeCo salts. Results from a Plackett-Burman screening experiment show solution surface tension and solution viscosity are the most significant variables to describe fiber morphology and show metal salt concentration, applied voltage, polymer molecular weight, and solution volume are moderately significant. The Plackett-Burman design is used to inform variables and variable ranges for a subsequent 3-factor, 3-level Box-Behnken design. The polynomial model determined from Box-Behnken experiment has close agreement to measured point validation of an optimized solution, which is determined to have 34.8 mN m(-1), viscosity of 42 cS, and metal salt concentration of 3.0% and yielded mean diameter of around 30 nm, with low beads content and diameter standard deviation. This optimized solution recipe is an excellent formulation to make as-spun fibers as precursors for many materials, such as ultrafine FeCo nanotubes or nanorods with mean diameter of around 15 nm. C1 [Stoddard, Ryan; Chen, Xing] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Chen, X (reprint author), Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. EM xchen@anl.gov FU ARPA-E REACT award [0472-1560]; US Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This research is supported by ARPA-E REACT award no. 0472-1560. The electron microscopy was accomplished at the Center of Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory. Argonne National Laboratory is a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 17 TC 0 Z9 0 U1 9 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1591 J9 MATER RES EXPRESS JI Mater. Res. Express PD MAY PY 2016 VL 3 IS 5 AR 055022 DI 10.1088/2053-1591/3/5/055022 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA DO5GT UT WOS:000377812300023 ER PT J AU Smith, JB Windels, SK Wolf, T Klaver, RW Belant, JL AF Smith, Joshua B. Windels, Steve K. Wolf, Tiffany Klaver, Robert W. Belant, Jerrold L. TI Do transmitters affect survival and body condition of American beavers Castor canadensis? SO WILDLIFE BIOLOGY LA English DT Article ID RADIO TRANSMITTERS; SOUTHERN ILLINOIS; NATIONAL-PARK; BEHAVIOR; IMPLANTATION; MINNESOTA; CANADA; FIBER; POPULATIONS; TELEMETRY AB One key assumption often inferred with using radio-equipped individuals is that the transmitter has no effect on the metric of interest. To evaluate this assumption, we used a known fate model to assess the effect of transmitter type (i.e. tail-mounted or peritoneal implant) on short-term (one year) survival and a joint live-dead recovery model and results from a mark-recapture study to compare long-term (eight years) survival and body condition of ear-tagged only American beavers Castor canadensis to those equipped with radio transmitters in Voyageurs National Park, Minnesota, USA. Short-term (1-year) survival was not influenced by transmitter type (w(i) = 0.64). Over the 8-year study period, annual survival was similar between transmitter-equipped beavers (tail-mounted and implant transmitters combined; 0.76; 95% CI = 0.45-0.91) versus ear-tagged only (0.78; 95% CI = 0.45-0.93). Additionally, we found no difference in weight gain (t(9) = 0.25, p = 0.80) or tail area (t(11) = 1.25, p = 0.24) from spring to summer between the two groups. In contrast, winter weight loss (t(22) = -2.03, p = 0.05) and tail area decrease (t(30) = -3.04, p = 0.01) was greater for transmitterequipped (weight = -3.09 kg, SE = 0.55; tail area = -33.71 cm(2), SE = 4.80) than ear-tagged only (weight = -1.80 kg, SE = 0.33; tail area = -12.38 cm(2), SE = 5.13) beavers. Our results generally support the continued use of transmitters on beavers for estimating demographic parameters, although we recommend additional assessments of transmitter effects under different environmental conditions. C1 [Smith, Joshua B.] Savannah River Ecol Lab, POB Drawer E, Aiken, SC 29803 USA. [Windels, Steve K.] Voyageurs Natl Pk, 360 Hwy 11 E, Int Falls, MN 56649 USA. [Wolf, Tiffany] Minnesota Zoo, 13000 Zoo Blvd, Apple Valley, MN 55124 USA. [Wolf, Tiffany] Univ Minnesota, Vet Populat Med, 1988 Fitch Ave, St Paul, MN 55108 USA. [Klaver, Robert W.] Iowa State Univ, US Geol Survey, Iowa Cooperat Fish & Wildlife Res Unit, Ames, IA 50011 USA. [Klaver, Robert W.] Iowa State Univ, Dept Nat Resource Ecol & Management, Ames, IA 50011 USA. [Belant, Jerrold L.] Mississippi State Univ, Forest & Wildlife Res Ctr, Carnivore Ecol Lab, Box 9690, Mississippi State, MS 39762 USA. RP Windels, SK (reprint author), Voyageurs Natl Pk, 360 Hwy 11 E, Int Falls, MN 56649 USA. EM steve_windels@nps.gov FU Voyageurs National Park; U.S. National Park Service; Minnesota Zoo; Voyageurs National Park Association FX We thank numerous field technicians, volunteers and colleagues who helped with beaver trapping. We also thank many fur trappers for reporting capture of ear-tagged beavers. Funding was provided by Voyageurs National Park, U.S. National Park Service, and the Minnesota Zoo. Funding for the analyses and manuscript preparation was provided by a generous donation from the Voyageurs National Park Association. Any use of trade, firm or product names is for descriptive purposes and does not imply endorsement by the U.S. Government. NR 48 TC 2 Z9 2 U1 14 U2 15 PU WILDLIFE BIOLOGY PI RONDE PA C/O JAN BERTELSEN, GRENAAVEJ 14, KALO, DK-8410 RONDE, DENMARK SN 0909-6396 EI 1903-220X J9 WILDLIFE BIOL JI Wildlife Biol. PD MAY PY 2016 VL 22 IS 3 BP 117 EP 123 DI 10.2981/wlb.00160 PG 7 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA DO5DP UT WOS:000377804100006 ER PT J AU Coppens, ZJ Kravchenko, II Valentine, JG AF Coppens, Zachary J. Kravchenko, Ivan I. Valentine, Jason G. TI Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion SO ADVANCED OPTICAL MATERIALS LA English DT Article ID SELECTIVE SOLAR ABSORPTION; HIGH-TEMPERATURE STABILITY; OXIDE THIN-FILMS; PHOTONIC CRYSTALS; EFFICIENCY; POWER AB A large-area metamaterial thermal emitter is fabricated using facile, lithography-free techniques. The device is composed of conductive oxides, refractory ceramics, and noble metals and shows stable, selective emission after exposure to 1173 K for 22 h in oxidizing and inert atmospheres. The results indicate that the metamaterial can be used to achieve high-performance thermophotovoltaic devices for applications such as portable power generation. C1 [Coppens, Zachary J.; Valentine, Jason G.] Vanderbilt Univ, Nashville, TN 37212 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Valentine, JG (reprint author), Vanderbilt Univ, Nashville, TN 37212 USA. EM jason.g.valentine@vanderbilt.edu RI Kravchenko, Ivan/K-3022-2015; Valentine, Jason/A-6121-2012 OI Kravchenko, Ivan/0000-0003-4999-5822; FU National Science Foundation [CBET-1336455]; National Science Foundation (NSF) Graduate Research Fellowship; NSF [EPS-1004083] FX The work was supported by the National Science Foundation under award CBET-1336455 and a National Science Foundation (NSF) Graduate Research Fellowship. The Cary Universal Measurement Accessory was acquired under NSF award EPS-1004083. ALD coating was performed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The remainder of the fabrication and electron microscopy were performed at the Vanderbilt Institute of Nanoscale Science and Engineering; the authors thank the staff for their support. NR 40 TC 1 Z9 1 U1 13 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD MAY PY 2016 VL 4 IS 5 BP 671 EP 676 DI 10.1002/adom.201500727 PG 6 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA DO2GV UT WOS:000377598900005 ER PT J AU Goodenough, D Thomas, E Tuttle, J Bednarczyk, RA AF Goodenough, Dana Thomas, Ebony Tuttle, Jessica Bednarczyk, Robert A. TI Factors Associated with Time to Appropriate Treatment in Pertussis Cases in Georgia, 2009 to 2013 SO ANTIMICROBIAL AGENTS AND CHEMOTHERAPY LA English DT Article AB Pertussis is endemic in the United States, with periodic epidemics that continue to highlight its importance as a public health issue. The clinical presentation of pertussis can vary by age and vaccination status. However, little is known about the factors that affect time to antibiotic treatment of pertussis cases. We analyzed 5 years of data from the Georgia Department of Public Health to understand how factors such as age, symptoms, and vaccination status can alter the clinical picture of pertussis and affect time to treatment. We used multivariable linear regression to assess the impact of each variable on time to antibiotic treatment. There was little consistency across age groups for symptom and demographic predictors of time to antibiotic treatment. Overall, the multivariate linear regression showed that among patients <= 18 years old, none of the variables had an impact on time to antibiotic treatment greater than -0.25 to 1.47 days. Among patients >18 years old, most variables had little impact on time to treatment, though two (paroxysmal cough in >18- to 40-year-olds and hospitalization in individuals over 40) were associated with an additional 5 days in time to treatment from cough onset. This study highlights how the difficulties in pertussis diagnosis, particularly among adults, can affect time to antibiotic treatment; adults may not begin antibiotic treatment until there is an accumulation of symptoms. Health care providers need to recognize the variety of symptoms that pertussis can present with and consider confirmatory testing early. C1 [Goodenough, Dana; Bednarczyk, Robert A.] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA. [Thomas, Ebony; Tuttle, Jessica] Georgia Dept Publ Hlth, Acute Dis Epidemiol Sect, Atlanta, GA USA. [Bednarczyk, Robert A.] Emory Univ, Rollins Sch Publ Hlth, Hubert Dept Global Hlth, Atlanta, GA 30322 USA. [Goodenough, Dana] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Oak Ridge Inst Sci & Educ, Div Human Dev & Disabil, Atlanta, GA USA. RP Goodenough, D; Bednarczyk, RA (reprint author), Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA.; Bednarczyk, RA (reprint author), Emory Univ, Rollins Sch Publ Hlth, Hubert Dept Global Hlth, Atlanta, GA 30322 USA.; Goodenough, D (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Oak Ridge Inst Sci & Educ, Div Human Dev & Disabil, Atlanta, GA USA. EM dgoodenough@cdc.gov; rbednar@emory.edu NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0066-4804 EI 1098-6596 J9 ANTIMICROB AGENTS CH JI Antimicrob. Agents Chemother. PD MAY PY 2016 VL 60 IS 5 BP 3051 EP 3056 DI 10.1128/AAC.03067-15 PG 6 WC Microbiology; Pharmacology & Pharmacy SC Microbiology; Pharmacology & Pharmacy GA DN4NX UT WOS:000377045600053 PM 26953196 ER PT J AU Lambert, CG Mazurie, AJ Lauve, NR Hurwitz, NG Young, SS Obenchain, RL Hengartner, NW Perkins, DJ Tohen, M Kerner, B AF Lambert, Christophe G. Mazurie, Aurelien J. Lauve, Nicolas R. Hurwitz, Nathaniel G. Young, S. Stanley Obenchain, Robert L. Hengartner, Nicolas W. Perkins, Douglas J. Tohen, Mauricio Kerner, Berit TI Hypothyroidism risk compared among nine common bipolar disorder therapies in a large US cohort SO BIPOLAR DISORDERS LA English DT Article DE anticonvulsants; antipsychotics; bipolar disorder; competing risks; hypothyroidism; lithium ID QUETIAPINE-INDUCED HYPOTHYROIDISM; THYROID-FUNCTION; LITHIUM TREATMENT; ANTIEPILEPTIC DRUGS; DOUBLE-BLIND; COMPETING RISK; I DISORDER; SUBCLINICAL HYPOTHYROIDISM; CLINICAL HYPOTHYROIDISM; AUTOIMMUNE-THYROIDITIS AB ObjectivesThyroid abnormalities in patients with bipolar disorder (BD) have been linked to lithium treatment for decades, yet other drugs have been less well studied. Our objective was to compare hypothyroidism risk for lithium versus the anticonvulsants and second-generation antipsychotics commonly prescribed for BD. MethodsAdministrative claims data on 24,574 patients with BD were analyzed with competing risk survival analysis. Inclusion criteria were (i) oneyear of no prior hypothyroid diagnosis nor BD drug treatment, (ii) followed by at least one thyroid test during BD monotherapy on lithium carbonate, mood-stabilizing anticonvulsants (lamotrigine, valproate, oxcarbazepine, or carbamazepine) or antipsychotics (aripiprazole, olanzapine, risperidone, or quetiapine). The outcome was cumulative incidence of hypothyroidism per drug, in the presence of the competing risk of ending monotherapy, adjusted for age, sex, physician visits, and thyroid tests. ResultsAdjusting for covariates, the four-year cumulative risk of hypothyroidism for lithium (8.8%) was 1.39-fold that of the lowest risk therapy, oxcarbazepine (6.3%). Lithium was non-statistically significantly different from quetiapine. While lithium conferred a higher risk when compared to all other treatments combined as a group, hypothyroidism risk error bars overlapped for all drugs. Treatment (p=3.86e-3), age (p=6.91e-10), sex (p=3.93e-7), and thyroid testing (p=2.79e-87) affected risk. Patients taking lithium were tested for hypothyroidism 2.26-3.05 times more frequently than those on other treatments. ConclusionsThyroid abnormalities occur frequently in patients with BD regardless of treatment. Therefore, patients should be regularly tested for clinical or subclinical thyroid abnormalities on all therapies and treated as indicated to prevent adverse effects of hormone imbalances on mood. C1 [Lambert, Christophe G.; Perkins, Douglas J.] Univ New Mexico, Hlth Sci Ctr, Dept Internal Med, Ctr Global Hlth, MSC 10-5550,915 Camino de Salud NE, Albuquerque, NM 87131 USA. [Lambert, Christophe G.] Univ New Mexico, Hlth Sci Ctr, Dept Internal Med, Div Translat Informat, MSC 10-5550,915 Camino de Salud NE, Albuquerque, NM 87131 USA. [Mazurie, Aurelien J.] Montana State Univ, Bioinformat Core, Bozeman, MT 59717 USA. [Lauve, Nicolas R.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Hurwitz, Nathaniel G.] New Mexico Behav Hlth Inst, Las Vegas, NM USA. [Young, S. Stanley] CGStat LLC, Raleigh, NC USA. [Obenchain, Robert L.] Risk Benefit Stat LLC, Bella Vista, CA USA. [Hengartner, Nicolas W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Tohen, Mauricio] Univ New Mexico, Hlth Sci Ctr, Dept Psychiat & Behav Sci, Albuquerque, NM 87131 USA. [Kerner, Berit] Univ Calif Los Angeles, David Geffen Sch Med, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USA. RP Lambert, CG (reprint author), Univ New Mexico, Hlth Sci Ctr, Dept Internal Med, Ctr Global Hlth, MSC 10-5550,915 Camino de Salud NE, Albuquerque, NM 87131 USA.; Lambert, CG (reprint author), Univ New Mexico, Hlth Sci Ctr, Dept Internal Med, Div Translat Informat, MSC 10-5550,915 Camino de Salud NE, Albuquerque, NM 87131 USA. EM cglambert@unm.edu OI Hengartner, Nicolas/0000-0002-4157-134X FU Reagan-Udall Foundation [RUF-IMEDS-SA_0010] FX MT was a full-time employee at Lilly (1997 to 2008). He has received honoraria from, or consulted for, Abbott, Actavis, AstraZeneca, Bristol Myers Squibb, GlaxoSmithKline, Lilly, Johnson & Johnson, Otsuka, Merck, Sunovion, Forest, Gedeon Richter, Roche, Elan, Alkermes, Allergan, Lundbeck, Teva, Pamlab, Wyeth and Wiley Publishing. His spouse was a full-time employee at Lilly (1998-2013). CGL and AJM received funding from the Reagan-Udall Foundation for the FDA for cloud computing costs for the project (project RUF-IMEDS-SA_0010). The Reagan-Udall foundation for the FDA provided access to the data used for the study, which is licensed from third parties. They provide a computational framework and resources for methods development and analysis. The funding agency had no role in the design and conduct of the study; analysis and interpretation of the data; preparation, review, and approval of the manuscript; or decision to submit the manuscript for publication. NR 94 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1398-5647 EI 1399-5618 J9 BIPOLAR DISORD JI Bipolar Disord. PD MAY PY 2016 VL 18 IS 3 BP 247 EP 260 DI 10.1111/bdi.12391 PG 14 WC Clinical Neurology; Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA DO0ZE UT WOS:000377506900004 PM 27226264 ER PT J AU Williams, DN Balaji, V Cinquini, L Denvil, S Duffy, D Evans, B Ferraro, R Hansen, R Lautenschlager, M Trenham, C AF Williams, Dean N. Balaji, V. Cinquini, Luca Denvil, Sebastien Duffy, Daniel Evans, Ben Ferraro, Robert Hansen, Rose Lautenschlager, Michael Trenham, Claire TI A GLOBAL REPOSITORY FOR PLANET-SIZED EXPERIMENTS AND OBSERVATIONS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article C1 [Williams, Dean N.; Hansen, Rose] Lawrence Livermore Natl Lab, Mail Stop L-103,7000 East Ave, Livermore, CA 94550 USA. [Balaji, V.] Princeton Univ, Princeton, NJ 08544 USA. [Cinquini, Luca; Ferraro, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Denvil, Sebastien] Inst Pierre Simon Laplace, Paris, France. [Duffy, Daniel] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Evans, Ben; Trenham, Claire] Australian Natl Univ, Natl Computat Infrastruct, Acton, ACT, Australia. [Lautenschlager, Michael] German Climate Comp Ctr, Hamburg, Germany. RP Williams, DN (reprint author), Lawrence Livermore Natl Lab, Mail Stop L-103,7000 East Ave, Livermore, CA 94550 USA. EM williams13@llnl.gov FU U.S. Department of Energy Office of Science/Office of Biological and Environmental Research at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Cooperative Institute for Climate Science, Princeton University from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce [NA08OAR4320752]; Australian Government; ANR Convergence project [ANR-13-MONU-0008]; FP7 IS-ENES2 project [312979] FX The authors wish to thank the participants at the 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference, whose presentations and conference report input helped considerably in the development of this article (Williams et al. 2015). This work was supported by the U.S. Department of Energy Office of Science/Office of Biological and Environmental Research under Contract DE-AC52-07NA27344 at Lawrence Livermore National Laboratory. VB is supported by the Cooperative Institute for Climate Science, Princeton University, under Award NA08OAR4320752 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Part of this work was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. Part of this activity was performed on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Part of this activity was performed on behalf of the Goddard Space Flight Center, under a contract with NASA. This work was supported by ANR Convergence project (Grant Agreement ANR-13-MONU-0008). This work was supported by FP7 IS-ENES2 project (Grant Agreement 312979). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of Princeton University, the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce. NR 10 TC 3 Z9 3 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAY PY 2016 VL 97 IS 5 BP 803 EP 816 DI 10.1175/BAMS-D-15-00132.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DN7IT UT WOS:000377249500009 ER PT J AU Qian, Y Jackson, C Giorgi, F Booth, B Duan, QY Forest, C Higdon, D Hou, ZJ Huerta, G AF Qian, Yun Jackson, Charles Giorgi, Filippo Booth, Ben Duan, Qingyun Forest, Chris Higdon, Dave Hou, Z. Jason Huerta, Gabriel TI UNCERTAINTY QUANTIFICATION IN CLIMATE MODELING AND PROJECTION SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article C1 [Qian, Yun; Hou, Z. Jason] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Jackson, Charles] Univ Texas Austin, Austin, TX 78712 USA. [Giorgi, Filippo] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy. [Booth, Ben] Hadley Ctr, Met Off, Exeter, Devon, England. [Duan, Qingyun] Beijing Normal Univ, Beijing 100875, Peoples R China. [Forest, Chris] Penn State Univ, University Pk, PA 16802 USA. [Higdon, Dave] Virginia Polytech Inst & State Univ, Arlington, VA USA. [Huerta, Gabriel] Univ New Mexico, Albuquerque, NM 87131 USA. RP Qian, Y (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM yun.qian@pnnl.gov RI Duan, Qingyun/C-7652-2011; qian, yun/E-1845-2011; Jackson, Charles/A-2202-2009; Hou, Zhangshuan/B-1546-2014; Forest, Chris/M-1993-2014 OI Duan, Qingyun/0000-0001-9955-1512; Jackson, Charles/0000-0002-2870-4494; Hou, Zhangshuan/0000-0002-9388-6060; Forest, Chris/0000-0002-2643-0186 FU Abdus Salam International Centre for Theoretical Physics (ICTP); International Union of Geodesy and Geophysics (IUGG); U.S. Department of Energy's Office of Science as part of the Earth System Modeling Program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX The workshop was jointly sponsored by the Abdus Salam International Centre for Theoretical Physics (ICTP) and the International Union of Geodesy and Geophysics (IUGG). This study was supported by the U.S. Department of Energy's Office of Science as part of the Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 0 TC 0 Z9 0 U1 4 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAY PY 2016 VL 97 IS 5 BP 821 EP 824 DI 10.1175/BAMS-D-15-00297.1 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DN7IT UT WOS:000377249500011 ER PT J AU Nitzsche, KN Verch, G Premke, K Gessler, A Kayler, ZE AF Nitzsche, Kai Nils Verch, Gernot Premke, Katrin Gessler, Arthur Kayler, Zachary E. TI Visualizing land-use and management complexity within biogeochemical cycles of an agricultural landscape SO ECOSPHERE LA English DT Article DE agricultural landscape; isoscape; land management; land-use change and impacts; spatial visualization; stable isotopes ID WATER-USE EFFICIENCY; SOIL ORGANIC-CARBON; ISOTOPIC COMPOSITION; NATURAL-ABUNDANCE; CLIMATE-CHANGE; PLANT CARBON; NITROGEN; N-15; ECOSYSTEMS; GRADIENT AB Crop fields are cultivated across continuities of soil, topography, and local climate that drive biological processes and nutrient cycling at the landscape scale; yet land management and agricultural research are often performed at the field scale, potentially neglecting the context of the surrounding landscape. Adding to this complexity is the overlap of ecosystems and their biogeochemical legacies, as a patchwork of crops fields, natural grasslands, and forests develops across the landscape. Furthermore, as new technologies and policies are introduced, management practices change, including fertilization strategies, which further alter biological productivity and nutrient cycling. All of these environmental, biological, and historical legacies are potentially recorded in the isotopic signal of plant, soil, and sediment organic matter across the landscape. We mapped over 1500 plant, soil, and sediment isotopic values and generated an isotopic landscape (isoscape) over a 40-km(2) agricultural site in NE Germany. We observed distinct patterns in the isotopic composition of organic matter sampled from the landscape that clearly reflect the landscape complexity. C-3 crop intrinsic water-use efficiency reflected a precipitation gradient, while native forest and grassland plant species did not, suggesting that native plants are more adapted to predominant climatic conditions. delta C-13(soil) patterns reflected both the long-term input of plant organic matter, which was affected by the local climate conditions, and the repeated cultivation of corn. Soil organic matter N-15 isotopic values also revealed spatial differences in fertilization regimes. Forest fragments, in which the nitrogen cycle was relatively open, were more water-use efficient. Sediments from small water bodies received substantial inputs from surrounding field vegetation but were also affected by seasonal drying. These isotopic maps can be used to visualize large spatial heterogeneity and complexity, and they are a powerful means to interpret past and current trends in agricultural landscapes. C1 [Nitzsche, Kai Nils; Premke, Katrin; Gessler, Arthur; Kayler, Zachary E.] Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Biogeochem, Eberswalder Str 84, D-15374 Muncheberg, Germany. [Verch, Gernot] Leibniz Ctr Agr Landscape Res ZALF, Res Stn, Dedelow, Steinfurther Str 14, D-17291 Prenzlau, Germany. [Premke, Katrin] Leibniz Inst Freshwater Ecol & Inland Fisheries, Mueggelseedamm 310, D-12587 Berlin, Germany. [Gessler, Arthur] Swiss Fed Inst Forest Snow & Landscape Res WSL, Zuercherstr 111, CH-8903 Birmensdorf, Switzerland. [Gessler, Arthur] Berlin Brandenburg Inst Adv Biodivers Res BBIB, D-14195 Berlin, Germany. [Kayler, Zachary E.] Lawrence Livermore Natl Lab, USDA Forest Serv, No Res Stn, Livermore, CA 94550 USA. RP Kayler, ZE (reprint author), Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Biogeochem, Eberswalder Str 84, D-15374 Muncheberg, Germany.; Kayler, ZE (reprint author), Lawrence Livermore Natl Lab, USDA Forest Serv, No Res Stn, Livermore, CA 94550 USA. EM kayler3@llnl.gov RI Gessler, Arthur/C-7121-2008 OI Gessler, Arthur/0000-0002-1910-9589 FU Pact for Innovation and Research of the Gottfried Wilhelm Leibniz association (project LandScales) FX We thank the Research Station of ZALF at Dedelow for the logistical support and Frau Remus and Thomas Wagner for their help with the sample preparation. We kindly thank the LandScales team for their support and discussions including Thomas Kalettka for assistance with kettle hole selection. This research was funded through the Pact for Innovation and Research of the Gottfried Wilhelm Leibniz association (project LandScales, http://landscales.de). NR 62 TC 1 Z9 1 U1 11 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2150-8925 J9 ECOSPHERE JI Ecosphere PD MAY PY 2016 VL 7 IS 5 AR e01282 DI 10.1002/ecs2.1282 PG 16 WC Ecology SC Environmental Sciences & Ecology GA DN6VS UT WOS:000377215200015 ER PT J AU Yao, HW Qiao, JW Gao, MC Hawk, JA Ma, SG Zhou, HF AF Yao, Hongwei Qiao, Jun-Wei Gao, Michael C. Hawk, Jeffrey A. Ma, Sheng-Guo Zhou, Hefeng TI MoNbTaV Medium-Entropy Alloy SO ENTROPY LA English DT Article DE medium-entropy alloy; high-entropy alloy; enthalpy; entropy; lattice parameter; rule of mixture; mechanical properties; hardness; yield strength; solid solution strengthening ID SOLID-SOLUTION PHASE; MULTICOMPONENT ALLOYS; DESIGN; MICROSTRUCTURE; CONSTITUTION; STABILITY; ELEMENTS AB Guided by CALPHAD (Calculation of Phase Diagrams) modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 angstrom) obeys the rule of mixtures (ROM), but the Vickers microhardness (4.95 GPa) and the yield strength (1.5 GPa) are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing. C1 [Yao, Hongwei; Qiao, Jun-Wei; Zhou, Hefeng] Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab Appl Phys & Mech Adv Mat, Taiyuan 030024, Peoples R China. [Gao, Michael C.; Hawk, Jeffrey A.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, Michael C.] AECOM, POB 1959, Albany, OR 97321 USA. [Ma, Sheng-Guo] Taiyuan Univ Technol, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Peoples R China. RP Qiao, JW (reprint author), Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab Appl Phys & Mech Adv Mat, Taiyuan 030024, Peoples R China.; Gao, MC (reprint author), Natl Energy Technol Lab, Albany, OR 97321 USA.; Gao, MC (reprint author), AECOM, POB 1959, Albany, OR 97321 USA. EM yaohongwei581@gmail.com; qiaojunwei@gmail.com; michael.gao@netl.doe.gov; jeffrey.hawk@netl.doe.gov; mashguo.cumt@163.com; zhouhefeng@tyut.edu.cn FU National Natural Science Foundation of China [51371122, 51501123]; Program for the Innovative Talents of Higher Institutions of Shanxi; Youth Natural Science Foundation of Shanxi Province, China [2015021005, 2015021006]; State Key Lab of Advanced Metals and Materials [2015-Z07]; Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL)-Strategic Center for Coal; RES contract [DE-FE-0004000] FX The authors would like to acknowledge the financial support of National Natural Science Foundation of China (No. 51371122 and No. 51501123), the Program for the Innovative Talents of Higher Institutions of Shanxi (2013), the Youth Natural Science Foundation of Shanxi Province, China (No. 2015021005 and No. 2015021006), and the financial support from State Key Lab of Advanced Metals and Materials (No. 2015-Z07). The modeling work was funded by the Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL)-Strategic Center for Coal, managed by Robert Romanosky (Technology Manager) and Charles Miller (Technology Monitor). The Research was executed through NETL's Office of Research and Development's Innovative Process Technologies (IPT) Field Work Proposal. Research performed by AECOM Staff was conducted under the RES contract DE-FE-0004000. NR 45 TC 5 Z9 5 U1 17 U2 34 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD MAY PY 2016 VL 18 IS 5 AR 189 DI 10.3390/e18050189 PG 15 WC Physics, Multidisciplinary SC Physics GA DN7NJ UT WOS:000377262900032 ER PT J AU Pan, S Yuan, CS Tagmount, A Rudel, RA Ackerman, JM Yaswen, P Vulpe, CD Leitman, DC AF Pan, Shawn Yuan, Chaoshen Tagmount, Abderrahmane Rudel, Ruthann A. Ackerman, Janet M. Yaswen, Paul Vulpe, Chris D. Leitman, Dale C. TI Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article ID ENDOCRINE-DISRUPTING CHEMICALS; PERSONAL CARE PRODUCTS; ESTROGEN-RECEPTOR; HUMAN HEALTH; HUMAN EXPOSURE; C-MYC; EPITHELIAL-CELLS; MCF-7 CELLS; EXPRESSION; PROLIFERATION AB BACKGROUND: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor alpha (ER alpha) and the human epidermal growth factor receptor (HER) family. OBJECTIVES: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). METHODS: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ER alpha- and HER2-positive human BT-474 breast cancer cells. RESULTS: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERa. BP and HRG produced a synergistic increase in ER alpha recruitment to the c-Myc gene. CONCLUSION: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ER alpha, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. C1 [Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Vulpe, Chris D.; Leitman, Dale C.] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, 44 Morgan Hall, Berkeley, CA 94720 USA. [Rudel, Ruthann A.; Ackerman, Janet M.] Silent Spring Inst, Newton, MA USA. [Yaswen, Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. RP Leitman, DC (reprint author), Univ Calif Berkeley, Dept Nutr Sci & Toxicol, 44 Morgan Hall, Berkeley, CA 94720 USA. EM dale@leitmanlab.com FU California Breast Cancer Research Program [17UB-8708]; [501(c)3] FX This work was supported by a grant (17UB-8708) from the California Breast Cancer Research Program to C.D.V. R.A.R. and J.M.A. are employed at the Silent Spring Institute, a scientific research organization dedicated to studying environmental factors in women's health. The Institute is a 501(c)3 public charity funded by federal grants and contracts, foundation grants, and private donations, including from breast cancer organizations. NR 58 TC 0 Z9 0 U1 18 U2 27 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD MAY PY 2016 VL 124 IS 5 BP 563 EP 569 DI 10.1289/ehp.1409200 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA DN4ZZ UT WOS:000377077000011 PM 26502914 ER PT J AU Herath, A Wawrik, B Qin, YJ Zhou, JZ Callaghan, AV AF Herath, Anjumala Wawrik, Boris Qin, Yujia Zhou, Jizhong Callaghan, Amy V. TI Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE anaerobic; alkane; transcription; microarray; alkylsuccinate synthase ID SULFATE-REDUCING BACTERIUM; HORIZON OIL-SPILL; HYDROCARBON-IMPACTED ENVIRONMENTS; ALKYLSUCCINATE SYNTHASE GENES; AROMATICA STRAIN T1; DENITRIFYING BACTERIUM; ANAEROBIC OXIDATION; N-ALKANES; BENZYLSUCCINATE SYNTHASE; DEEP-SEA AB Microbial transformation of n-alkanes in anaerobic ecosystems plays a pivotal role in biogeochemical carbon cycling and bioremediation, but the requisite genetic machinery is not well elucidated. Desulfatibacillum alkenivorans AK-01 utilizes n-alkanes (C-13 to C-18) and contains two genomic loci encoding alkylsuccinate synthase (ASS) gene clusters. ASS catalyzes alkane addition to fumarate to form methylalkylsuccinic acids. We hypothesized that the genes in the two clusters would be differentially expressed depending on the alkane substrate utilized for growth. RT-qPCR was used to investigate ass-gene expression across AK-01's known substrate range, and microarray-based transcriptomic analysis served to investigate whole-cell responses to growth on n-hexadecane versus hexadecanoate. RT-qPCR revealed induction of ass gene cluster 1 during growth on all tested alkane substrates, and the transcriptional start sites in cluster 1 were determined via 5'RACE. Induction of ass gene cluster 2 was not observed under the tested conditions. Transcriptomic analysis indicated that the upregulation of genes potentially involved in methylalkylsuccinate metabolism, including methylmalonyl-CoA mutase and a putative carboxyl transferase. These findings provide new directions for studying the transcriptional regulation of genes involved in alkane addition to fumarate, fumarate recycling and the processing of methylalkylsuccinates with regard to isolates, enrichment cultures and ecological datasets. C1 [Herath, Anjumala; Wawrik, Boris; Qin, Yujia; Zhou, Jizhong; Callaghan, Amy V.] Univ Oklahoma, Dept Microbiol & Plant Biol, 770 Van Vleet Oval, Norman, OK 73019 USA. [Qin, Yujia; Zhou, Jizhong] Stephenson Res Ctr, Inst Environm Genom, 101 David L Boren Blvd, Norman, OK 73019 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94270 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Callaghan, AV (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, 770 Van Vleet Oval, Norman, OK 73019 USA. EM acallaghan@ou.edu FU National Science Foundation [MCB 091265, MCB 1329890] FX This work was supported by the National Science Foundation [grant numbers MCB 091265, MCB 1329890]. NR 77 TC 1 Z9 1 U1 5 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD MAY PY 2016 VL 92 IS 5 AR fiw062 DI 10.1093/femsec/fiw062 PG 14 WC Microbiology SC Microbiology GA DO0MM UT WOS:000377473000014 PM 27009900 ER PT J AU Weise, L Ulrich, A Moreano, M Gessler, A Kayler, ZE Steger, K Zeller, B Rudolph, K Knezevic-Jaric, J Premke, K AF Weise, Lukas Ulrich, Andreas Moreano, Matilde Gessler, Arthur Kayler, Zachary E. Steger, Kristin Zeller, Bernd Rudolph, Kristin Knezevic-Jaric, Jelena Premke, Katrin TI Water level changes affect carbon turnover and microbial community composition in lake sediments SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE carbon dioxide emission; phospholipid fatty acids; keeling plot; stable isotope; water level changes ID DISSOLVED ORGANIC-CARBON; FRESH-WATER; VERTICAL-DISTRIBUTION; MATTER; SOILS; DECOMPOSITION; CYCLE; MINERALIZATION; TERRESTRIAL; PHOSPHORUS AB Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. C-13-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA-and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. C1 [Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E.; Premke, Katrin] Leibniz Ctr Agr Landscape Res ZALF Muncheberg, Inst Landscape Biogeochem, Eberswalderstr 84, D-15374 Muncheberg, Germany. [Gessler, Arthur] Swiss Fed Res Inst WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland. [Gessler, Arthur] Berlin Brandenburg Inst Adv Biodivers Res BBIB, D-14195 Berlin, Germany. [Steger, Kristin] Univ Calif Davis, Dept Viticulture & Enol, One Shields Ave, Davis, CA 95616 USA. [Zeller, Bernd] INRA, Ctr Nancy Lorraine, Biogeochim Ecosyst Forestiers, Labex ARBRE,UR 1138, F-54280 Champenoux, France. [Rudolph, Kristin] TU Chemnitz, Dept Psychol Res Methods & Evaluat, D-09107 Chemnitz, Germany. [Knezevic-Jaric, Jelena; Premke, Katrin] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Chem Analyt & Biogeochem, Muggelseedamm 310, D-12587 Berlin, Germany. [Kayler, Zachary E.] Lawrence Livermore Natl Lab, US Forest Serv, USDA, No Res Stn, Livermore, CA 94550 USA. RP Premke, K (reprint author), Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Chem Analyt & Biogeochem, Muggelseedamm 310, D-12587 Berlin, Germany. EM premke@igb-berlin.de RI Gessler, Arthur/C-7121-2008; Ulrich, Andreas/G-3956-2012 OI Gessler, Arthur/0000-0002-1910-9589; Ulrich, Andreas/0000-0003-3854-9608 FU LandScales project ('Connecting processes and structures driving the landscape carbon dynamics over scales') - Leibniz Association within the Joint Initiative for Research and Innovation FX Financial support was provided by the LandScales project ('Connecting processes and structures driving the landscape carbon dynamics over scales') financed by the Leibniz Association within the Joint Initiative for Research and Innovation. NR 74 TC 5 Z9 5 U1 14 U2 31 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD MAY PY 2016 VL 92 IS 5 AR fiw035 DI 10.1093/femsec/fiw035 PG 14 WC Microbiology SC Microbiology GA DO0MM UT WOS:000377473000003 PM 26902802 ER PT J AU Grana, J Wolpert, D Neil, J Xie, DP Bhattacharya, T Bent, R AF Grana, Justin Wolpert, David Neil, Joshua Xie, Dongping Bhattacharya, Tanmoy Bent, Russell TI A likelihood ratio anomaly detector for identifying within-perimeter computer network attacks SO JOURNAL OF NETWORK AND COMPUTER APPLICATIONS LA English DT Article DE Anomaly detection; Computer network defense; Cyber security; Likelihood ratio detection; ROC analysis; Model misspecification ID INTRUSION DETECTION AB The rapid detection of attackers within firewalls of enterprise computer networks is of paramount importance. Anomaly detectors address this problem by quantifying deviations from baseline statistical models of normal network behavior and signaling an intrusion when the observed data deviates significantly from the baseline model. However, many anomaly detectors do not take into account plausible attacker behavior. As a result, anomaly detectors are prone to a large number of false positives due to unusual but benign activity. This paper first introduces a stochastic model of attacker behavior which is motivated by real world attacker traversal. Then, we develop a likelihood ratio detector that compares the probability of observed network behavior under normal conditions against the case when an attacker has possibly compromised a subset of hosts within the network. Since the likelihood ratio detector requires integrating over the time each host becomes compromised, we illustrate how to use Monte Carlo methods to compute the requisite integral. We then present Receiver Operating Characteristic (ROC) curves for various network parameterizations that show for any rate of true positives, the rate of false positives for the likelihood ratio detector is no higher than that of a simple anomaly detector and is often lower. We conclude by demonstrating the superiority of the proposed likelihood ratio detector when the network topologies and parameterizations are extracted from real-world networks. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Grana, Justin; Xie, Dongping] Amer Univ, Dept Econ, 4400 Massachusetts Ave NW, Washington, DC 20016 USA. [Bhattacharya, Tanmoy; Bent, Russell] Los Alamos Natl Lab, POB 1663,MS B264, Los Alamos, NM USA. [Wolpert, David] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA. [Neil, Joshua] Ernst & Young, 370 17th St, Denver, CO 80202 USA. RP Xie, DP (reprint author), Amer Univ, Dept Econ, 4400 Massachusetts Ave NW, Washington, DC 20016 USA.; Bhattacharya, T; Bent, R (reprint author), Los Alamos Natl Lab, POB 1663,MS B264, Los Alamos, NM USA.; Wolpert, D (reprint author), Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA.; Neil, J (reprint author), Ernst & Young, 370 17th St, Denver, CO 80202 USA. EM jg3705a@student.american.edu; david.h.wolpert@gmail.com; joshua.neil@ey.com; xdp668@gmail.com; tanmoy@santafe.edu; rbent@lanl.gov OI Bent, Russell/0000-0002-7300-151X NR 31 TC 2 Z9 2 U1 2 U2 3 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1084-8045 J9 J NETW COMPUT APPL JI J. Netw. Comput. Appl. PD MAY PY 2016 VL 66 BP 166 EP 179 DI 10.1016/j.jnca.2016.03.008 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA DN8EK UT WOS:000377311800011 ER PT J AU Gorelenkov, NN AF Gorelenkov, N. N. TI Ion cyclotron emission studies: Retrospects and prospects SO PLASMA PHYSICS REPORTS LA English DT Article ID FAST MAGNETOACOUSTIC EIGENMODES; FUSION TEST REACTOR; COMPRESSIONAL ALFVEN EIGENMODES; SPHERICAL TOKAMAK EXPERIMENT; ASPECT-RATIO PLASMAS; ALPHA-PARTICLES; CONTAINED MODES; ENERGETIC IONS; INSTABILITY; WAVES AB Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar to driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics. C1 [Gorelenkov, N. N.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Gorelenkov, NN (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ngorelen@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466] FX This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 59 TC 0 Z9 0 U1 1 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X EI 1562-6938 J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD MAY PY 2016 VL 42 IS 5 BP 430 EP 439 DI 10.1134/S1063780X16050044 PG 10 WC Physics, Fluids & Plasmas SC Physics GA DO0EO UT WOS:000377452400007 ER PT J AU Chern, M Xu, QF Bart, RS Bai, W Ruan, DL Sze-To, WH Canlas, PE Jain, R Chen, XW Ronald, PC AF Chern, Mawsheng Xu, Qiufang Bart, Rebecca S. Bai, Wei Ruan, Deling Sze-To, Wing Hoi Canlas, Patrick E. Jain, Rashmi Chen, Xuewei Ronald, Pamela C. TI A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1)-Mediated Immunity SO PLOS GENETICS LA English DT Article ID SYSTEMIC ACQUIRED-RESISTANCE; ENHANCED DISEASE RESISTANCE; LESION MIMIC MUTANTS; SALICYLIC-ACID; TRANSCRIPTION FACTORS; ARABIDOPSIS NPR1; PSEUDOMONAS-SYRINGAE; NEGATIVE REGULATOR; XANTHOMONAS-ORYZAE; BTB/POZ DOMAIN AB Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression. C1 [Chern, Mawsheng; Xu, Qiufang; Bart, Rebecca S.; Bai, Wei; Ruan, Deling; Sze-To, Wing Hoi; Canlas, Patrick E.; Jain, Rashmi; Chen, Xuewei; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Chern, Mawsheng; Xu, Qiufang; Bart, Rebecca S.; Bai, Wei; Ruan, Deling; Sze-To, Wing Hoi; Canlas, Patrick E.; Jain, Rashmi; Chen, Xuewei; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Chern, Mawsheng; Xu, Qiufang; Bart, Rebecca S.; Ruan, Deling; Sze-To, Wing Hoi; Canlas, Patrick E.; Jain, Rashmi; Chen, Xuewei; Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA USA. [Xu, Qiufang] Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing, Jiangsu, Peoples R China. [Bai, Wei] Inner Mongolia Agr Univ, Coll Life Sci, Hohhot, Peoples R China. [Chen, Xuewei] Sichuan Agr Univ Chengdu, Rice Res Inst, Chengdu, Sichuan, Peoples R China. [Bart, Rebecca S.] Donald Danforth Ctr, St Louis, MO USA. RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA.; Ronald, PC (reprint author), Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA.; Ronald, PC (reprint author), Joint Bioenergy Inst, Emeryville, CA USA. EM pcronald@ucdavis.edu RI Bart, Rebecca/M-2838-2013; OI Bart, Rebecca/0000-0003-1378-3481 FU NIH [GM59962]; NSF [1237975]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by a grant to PCR from NIH (GM59962) and NSF (1237975). The work conducted by the US Department of Energy Joint Genome Institute was supported by the Office of Science of the US Department of Energy under Contract no. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 56 TC 2 Z9 2 U1 9 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD MAY PY 2016 VL 12 IS 5 AR e1006049 DI 10.1371/journal.pgen.1006049 PG 20 WC Genetics & Heredity SC Genetics & Heredity GA DN6PH UT WOS:000377197100049 PM 27176732 ER PT J AU Ruiz, AM Lacaze, G Oefelein, JC Mari, R Cuenot, B Selle, L Poinsot, T AF Ruiz, A. M. Lacaze, G. Oefelein, J. C. Mari, R. Cuenot, B. Selle, L. Poinsot, T. TI Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients SO AIAA JOURNAL LA English DT Article ID LARGE-EDDY SIMULATION; MIXING LAYERS; TRANSPORT-PROPERTIES; BOUNDARY-CONDITIONS; MULTIPARAMETER CORRELATION; THERMAL-CONDUCTIVITY; FLUID INJECTION; VISCOUS FLOWS; SHEAR-LAYER; JETS AB Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems. C1 [Ruiz, A. M.; Lacaze, G.; Oefelein, J. C.] Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94551 USA. [Mari, R.; Cuenot, B.] Ctr Europeen Rech & Format Avancee, Calcul Sci, CFD Team, 42 Ave Coriolis, F-31057 Toulouse 01, France. [Selle, L.; Poinsot, T.] Univ Toulouse, INPT UPS, Inst Mecan Fluides Toulouse IMFT, Allee Prof Camille Soula, F-31400 Toulouse, France. [Selle, L.; Poinsot, T.] CNRS, IMFT, F-31400 Toulouse, France. RP Ruiz, AM (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94551 USA. EM ruizanthony@gmail.com RI Selle, Laurent/I-6369-2013 OI Selle, Laurent/0000-0002-5997-3646 FU U.S. Department of Energy Office of Science, Basic Energy Sciences program [KC0301020, VT0401000]; Office of Energy Efficiency and Renewable Energy, Vehicle Technologies (VT) program [KC0301020, VT0401000]; Snecma, the prime contractor for the European launcher Ariane 5 cryogenic propulsion systems; Centre National d'Etudes Spatiales, the government agency responsible for shaping and implementing France's space policy in Europe; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX Support for this research was provided jointly by the U.S. Department of Energy Office of Science, Basic Energy Sciences program; and the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies (VT) program, under grant numbers KC0301020 and VT0401000. Support for this research was also provided by Snecma, the prime contractor for the European launcher Ariane 5 cryogenic propulsion systems; and Centre National d'Etudes Spatiales, the government agency responsible for shaping and implementing France's space policy in Europe. Their support is gratefully acknowledged. The RAPTOR simulations used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC05-00OR22725. The AVBP simulations used resources of the high-performance computing resources of Centre Informatique National de l'Enseignement Superieur under the allocation 2011-c2011025082 made by Grand Equipement National de Calcul Intensif. NR 93 TC 1 Z9 1 U1 5 U2 9 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD MAY PY 2016 VL 54 IS 5 BP 1445 EP 1460 DI 10.2514/1.J053931 PG 16 WC Engineering, Aerospace SC Engineering GA DN6SA UT WOS:000377205000001 ER PT J AU Furusawa, H Kashikawa, N Kobayashi, MAR Dunlop, JS Shimasaku, K Takata, T Sekiguchi, K Naito, Y Furusawa, J Ouchi, M Nakata, F Yasuda, N Okura, Y Taniguchi, Y Yamada, T Kajisawa, M Fynbo, JPU Le Fevre, O AF Furusawa, Hisanori Kashikawa, Nobunari Kobayashi, Masakazu A. R. Dunlop, James S. Shimasaku, Kazuhiro Takata, Tadafumi Sekiguchi, Kazuhiro Naito, Yoshiaki Furusawa, Junko Ouchi, Masami Nakata, Fumiaki Yasuda, Naoki Okura, Yuki Taniguchi, Yoshiaki Yamada, Toru Kajisawa, Masaru Fynbo, Johan P. U. Le Fevre, Olivier TI A NEW CONSTRAINT ON THE Ly alpha FRACTION OF UV VERY BRIGHT GALAXIES AT REDSHIFT 7 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark ages, reionization, first stars; galaxies: evolution; galaxies: high-redshift ID LYMAN-BREAK GALAXIES; ULTRA-DEEP SURVEY; WIDE-FIELD CAMERA; EQUAL-TO 7; LUMINOSITY FUNCTION; SPECTROSCOPIC CONFIRMATION; KECK SPECTROSCOPY; ULTRAVIOLET-SPECTRA; COSMIC REIONIZATION; PHOTOMETRIC SYSTEM AB We study the extent to which very bright (-23.0 < M-UV < -21.75) Lyman-break-selected galaxies at redshifts z similar or equal to 7 display detectable Ly alpha emission. To explore this issue, we obtained follow-up optical spectroscopy of 9 z similar or equal to 7 galaxies from a parent sample of 24 z similar or equal to 7 galaxy candidates selected from the 1.65 deg(2) COSMOS-UltraVISTA and SXDS-UDS survey fields using the latest near-infrared public survey data, and new ultra-deep Subaru z'-band imaging (which we also present and describe in this paper). Our spectroscopy yielded only one possible detection of Ly alpha at z=7.168 with a rest-frame equivalent width EW0 = 3.7(-1.1)(+1.7) angstrom. The relative weakness of this line, combined with our failure to detect Ly alpha emission from the other spectroscopic targets, allows us to place a new upper limit on the prevalence of strong Ly alpha emission at these redshifts. For conservative calculation and to facilitate comparison with previous studies at lower redshifts, we derive a 1 sigma upper limit on the fraction of UV-bright galaxies at z similar or equal to 7 that display EW0 > 50 angstrom, which we estimate to be < 0.23. This result may indicate a weak trend where the fraction of strong Ly alpha emitters ceases to rise, and possibly falls between z similar or equal to 6 and z similar or equal to 7. Our results also leave open the possibility that strong Ly alpha may still be more prevalent in the brightest galaxies in the reionization era than their fainter counterparts. A larger spectroscopic sample of galaxies is required to derive a more reliable constraint on the neutral hydrogen fraction at z similar or equal to 7 based on the Ly alpha fraction in the bright galaxies. C1 [Furusawa, Hisanori; Kashikawa, Nobunari; Takata, Tadafumi; Sekiguchi, Kazuhiro; Furusawa, Junko] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Kashikawa, Nobunari; Takata, Tadafumi; Sekiguchi, Kazuhiro] SOKENDAI Grad Univ Adv Studies, Sch Sci, Dept Astron, Mitaka, Tokyo 1818588, Japan. [Kobayashi, Masakazu A. R.; Taniguchi, Yoshiaki; Kajisawa, Masaru] Ehime Univ, Res Ctr Space & Cosm Evolut, 2-5 Bunkyo Cho, Matsuyama, Ehime 7908577, Japan. [Dunlop, James S.] Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Shimasaku, Kazuhiro] Univ Tokyo, Sch Sci, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Naito, Yoshiaki; Ouchi, Masami] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Ouchi, Masami; Yasuda, Naoki] Univ Tokyo, WPI, Kavli Inst Phys & Math Univers Kavli IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Nakata, Fumiaki] Natl Astron Observ Japan, Subaru Telescope, 650 N Aohoku Pl, Hilo, HI 96720 USA. [Okura, Yuki] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Okura, Yuki] RIKEN BNL Res Ctr, Dept Phys, Brookhaven Natl Lab, Bldg 510, Upton, NY USA. [Taniguchi, Yoshiaki] Open Univ Japan, Mihama Ku, 2-11 Wakaba, Chiba 2618586, Japan. [Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, 6-3 Aramaki, Sendai, Miyagi 9808578, Japan. [Fynbo, Johan P. U.] Univ Copenhagen, 1Dark Cosmol Ctr, Niels Bohr Inst, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Le Fevre, Olivier] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. RP Furusawa, H (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. FU ESO Telescopes at the La Silla Paranal Observatory under ESO programme [179.A-2005]; European Research Council; JSPS KAKENHI grant [23740159, 15H03645] FX We thank the anonymous referee for helpful comments that have improved the manuscript. We are grateful to Rebecca Bowler for her valuable contribution to the proposals for spectroscopic observations. We express our gratitude to Yutaka Ihara, Yuko Ideue, and Nana Morimoto for their contributions to imaging observations, data reduction, and data evaluation, and Kimihiko Nakajima for data evaluation. We are grateful to Takashi Hattori for supporting observations and data reduction. We thank Omar Almaini for preparing the UDS data, and Mark Dijkstra for providing his latest theoretical model of the Ly alpha EW-PDF. The Subaru imaging observations were assisted by Yoshiyuki Inoue, Misae Kitamura, Kohki Konishi, Mariko Kubo, Yu Niino, and Takahiro Ohno. We thank Satoshi Miyazaki and Suprime-Cam team for commissioning Suprime-Cam FDCCDs, which has realized this work. This work is based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. UltraVISTA is based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. Data analysis were in part carried out on the common use data analysis computer system at the Astronomy Data Center, ADC, of the National Astronomical Observatory of Japan. UKIDSS uses the UKIRT/WFCAM (Casali et al 2007) and a photometric system described in Hewett et al. (2006), and the calibration is described in Hodgkin et al. (2009). The pipeline processing and science archive are described in Irwin et al. (2016, in preparation) and Hambly et al. (2008). J.S.D. acknowledges the support of the European Research Council via the award of an Advanced grant. This work is partly supported by JSPS KAKENHI grant Number 23740159 (HF) and 15H03645 (NK). NR 65 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2016 VL 822 IS 1 AR 46 DI 10.3847/0004-637X/822/1/46 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN6AS UT WOS:000377154100046 ER PT J AU Acero, F Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Chekhtman, A Chiang, J Chiaro, G Ciprini, S Claus, R Cohen, JM Cohen-Tanugi, J Cominsky, LR Condon, B Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Digel, SW Di Venere, L Drell, PS Drlica-Wagner, A Favuzzi, C Ferrara, EC Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Grenier, IA Grondin, MH Guillemot, L Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashida, M Hays, E Hewitt, JW Hill, AB Horan, D Hou, X Iafrate, G Jogler, T Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Katsuta, J Kerr, M Knodlseder, J Kocevski, D Kuss, M Laffon, H Lande, J Larsson, S Latronico, L Lemoine-Goumard, M Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Magill, J Maldera, S Marelli, M Mayer, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nemmen, R Nuss, E Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Petrosian, V Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Renaud, M Reposeur, T Rousseau, R Parkinson, PMS Schmid, J Schulz, A Sgro, C Siskind, EJ Spada, F Spandre, G Spinelli, P Strong, AW Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Troja, E Uchiyama, Y Vianello, G Wells, B Wood, KS Wood, M Yassine, M den Hartog, PR Zimmer, S AF Acero, F. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen, J. M. Cohen-Tanugi, J. Cominsky, L. R. Condon, B. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Digel, S. W. Di Venere, L. Drell, P. S. Drlica-Wagner, A. Favuzzi, C. Ferrara, E. C. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Grenier, I. A. Grondin, M. -H. Guillemot, L. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Hewitt, J. W. Hill, A. B. Horan, D. Hou, X. Iafrate, G. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Katsuta, J. Kerr, M. Knodlseder, J. Kocevski, D. Kuss, M. Laffon, H. Lande, J. Larsson, S. Latronico, L. Lemoine-Goumard, M. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Magill, J. Maldera, S. Marelli, M. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nemmen, R. Nuss, E. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Petrosian, V. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Renaud, M. Reposeur, T. Rousseau, R. Parkinson, P. M. Saz Schmid, J. Schulz, A. Sgro, C. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Vianello, G. Wells, B. Wood, K. S. Wood, M. Yassine, M. den Hartog, P. R. Zimmer, S. TI THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE acceleration of particles; catalogs; cosmic rays; gamma-rays: ISM; ISM: supernova remnants; radiation mechanisms: nonthermal ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; VERY-HIGH-ENERGY; PULSAR-WIND NEBULA; DIFFUSIVE SHOCK ACCELERATION; HARD X-RAY; MHZ MASER EMISSION; XMM-NEWTON OBSERVATIONS; GALACTIC PLANE SURVEY; HIGH MAGNETIC-FIELD AB To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays. C1 [Acero, F.; Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Schmid, J.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; Drell, P. S.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.; den Hartog, P. R.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; Drell, P. S.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.; den Hartog, P. R.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Kuss, M.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.; Raino, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Ist Nazl Fis Nucl, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Cohen, J. M.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Kocevski, D.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Renaud, M.; Yassine, M.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caputo, R.; Parkinson, P. M. Saz; Wells, B.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Caputo, R.; Parkinson, P. M. Saz; Wells, B.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Roma, Italy. [Cohen, J. M.; Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Cohen, J. M.; Magill, J.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Condon, B.; Grondin, M. -H.; Laffon, H.; Lemoine-Goumard, M.; Reposeur, T.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France. [Conrad, J.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, Box 50005, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Drlica-Wagner, A.; Raino, S.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Fukazawa, Y.; Katsuta, J.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Ave Vicuna Mackenna 4860, Santiago, Chile. [Guillemot, L.] Univ Orleans, Lab Phys & Chim Environm & Espace, CNRS, F-45071 Orleans 02, France. [Guillemot, L.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, F-18330 Nancay, France. [Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Hadasch, D.; Reimer, A.; Reimer, O.] Leopold Fanzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Hadasch, D.; Reimer, A.; Reimer, O.] Leopold Fanzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Hewitt, J. W.] Univ N Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hou, X.] Chinese Acad Sci, Yunnan Observ, Kunming 650216, Peoples R China. [Hou, X.] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Kunming 650216, Peoples R China. [Iafrate, G.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Katagiri, H.] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. [Kerr, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Knodlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knodlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Lande, J.] Twitter Inc, 1355 Market St 900, San Francisco, CA 94103 USA. [Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Space Sci IEEC, Campus UAB, E-08193 Barcelona, Spain. [Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Mitthumsiri, W.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moretti, E.; Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Nemmen, R.] Univ Sao Paulo, Inst Astron Geofis & Cincias Atmosfer, Rua Matdo 1226, BR-05508090 Sao Paulo, SP, Brazil. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Rousseau, R.] Lycee Fresnel, Paris, France. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tanaka, T.] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto, Japan. [Tibolla, O.] Univ Autonoma Chiapas UNACH, MCTP, Carretera Emiliano Zapata Km 4, Tuxtla Gutierrez 29050, Chiapas, Mexico. [Torres, D. F.] ICREA, Barcelona, Spain. [Uchiyama, Y.] 3-34-1 Nishi Ikebukuro,Toshima Ku, Tokyo 1718501, Japan. [Guiriec, S.; den Hartog, P. R.] HAL24K Data Intelligence Labs, Barbara Strozzilaan, NL-1083 HN Amsterdam, Netherlands. RP de Palma, F (reprint author), Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.; de Palma, F (reprint author), Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. EM t.j.brandt@nasa.gov; francesco.depalma@ba.infn.it RI Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Mazziotta, Mario Nicola/0000-0001-9325-4672; Larsson, Stefan/0000-0003-0716-107X FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 290 TC 9 Z9 9 U1 6 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 8 DI 10.3847/0067-0049/224/1/8 PG 50 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200008 ER PT J AU Narayan, G Rest, A Tucker, BE Foley, RJ Wood-Vasey, WM Challis, P Stubbs, C Kirshner, RP Aguilera, C Becker, AC Blondin, S Clocchiatti, A Covarrubias, R Damke, G Davis, TM Filippenko, AV Ganeshalingam, M Garg, A Garnavich, PM Hicken, M Jha, SW Krisciunas, K Leibundgut, B Li, W Matheson, T Miknaitis, G Pignata, G Prieto, JL Riess, AG Schmidt, BP Silverman, JM Smith, RC Sollerman, J Spyromilio, J Suntzeff, NB Tonry, JL Zenteno, A AF Narayan, G. Rest, A. Tucker, B. E. Foley, R. J. Wood-Vasey, W. M. Challis, P. Stubbs, C. Kirshner, R. P. Aguilera, C. Becker, A. C. Blondin, S. Clocchiatti, A. Covarrubias, R. Damke, G. Davis, T. M. Filippenko, A. V. Ganeshalingam, M. Garg, A. Garnavich, P. M. Hicken, M. Jha, S. W. Krisciunas, K. Leibundgut, B. Li, W. Matheson, T. Miknaitis, G. Pignata, G. Prieto, J. L. Riess, A. G. Schmidt, B. P. Silverman, J. M. Smith, R. C. Sollerman, J. Spyromilio, J. Suntzeff, N. B. Tonry, J. L. Zenteno, A. TI LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; methods: data analysis; supernovae: general; surveys ID DIGITAL SKY SURVEY; PHOTOMETRIC STANDARD STARS; HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; SPECTRAL-ENERGY DISTRIBUTION; DARK ENERGY; COSMOLOGICAL CONSTRAINTS; LEGACY SURVEY; DATA RELEASE; SYSTEMATIC UNCERTAINTIES AB The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is similar to 1%. C1 [Narayan, G.; Matheson, T.] Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA. [Narayan, G.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Garg, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Narayan, G.; Stubbs, C.; Hicken, M.] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. [Rest, A.; Riess, A. G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Tucker, B. E.; Schmidt, B. P.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Via Cotter Rd, Weston, ACT 2611, Australia. [Foley, R. J.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Wood-Vasey, W. M.; Smith, R. C.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilera, C.; Zenteno, A.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Becker, A. C.; Covarrubias, R.] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Blondin, S.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Damke, G.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Davis, T. M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Filippenko, A. V.; Ganeshalingam, M.; Li, W.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Garnavich, P. M.] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. [Krisciunas, K.; Suntzeff, N. B.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Leibundgut, B.; Spyromilio, J.] European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Miknaitis, G.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Pignata, G.] Univ Andres Bello, Dept Ciencias Fis, Avda Republ 252, Santiago, Santiago Rm, Chile. [Prieto, J. L.] Univ Diego Port, Fac Engn, Astron Nucleus, Ejercito 441, Santiago, Santiago Rm, Chile. [Riess, A. G.] Johns Hopkins Univ, 3400 North Charles St, Baltimore, MD 21218 USA. [Silverman, J. M.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. [Sollerman, J.] Stockholm Univ, Alballova, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Tonry, J. L.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Clocchiatti, A.] Millennium Inst Astrophys, Santiago, Chile. RP Narayan, G (reprint author), Natl Opt Astron Observ, 950 North Cherry Ave, Tucson, AZ 85719 USA.; Narayan, G (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.; Narayan, G (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. EM gnarayan@noao.edu RI Davis, Tamara/A-4280-2008; OI Davis, Tamara/0000-0002-4213-8783; Sollerman, Jesper/0000-0003-1546-6615; Narayan, Gautham/0000-0001-6022-0484; Schmidt, Brian/0000-0001-6589-1287; Tucker, Brad/0000-0002-4283-5159 FU NSF [AST-0507475, AST-0908886, AST-1211916]; Department of Energy; European Southern Observatory, Chile (ESO Programme) [170.A-0519, 176.A-0319]; CONICET (Argentina) [GN-2002B-Q-14, GS-2003B-Q-11, GN-2003B-Q-14, GS-2004B-Q-4, GN-2004B-Q-6, GS-2005B-Q-31, GN-2005B-Q-35]; W. M. Keck Foundation; Danish National Research Foundation; U.S. National Science Foundation [AST-0507475, AST-0443378]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1302771]; Ministry of Economy, Development and Tourism [IC120009]; grant Basal CATA PFB 06/09 from CONICYT FX G.N. is supported by NSF award AST-0507475 and the Department of Energy. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory (CTIO), part of the National Optical Astronomy Observatory (NOAO), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation (NSF); the European Southern Observatory, Chile (ESO Programmes 170.A-0519 and 176.A-0319); the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina) (Programs GN-2002B-Q-14, GS-2003B-Q-11, GN-2003B-Q-14, GS-2004B-Q-4, GN-2004B-Q-6, GS-2005B-Q-31, GN-2005B-Q-35); the Magellan Telescopes at Las Campanas Observatory; the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona; and the F.L. Whipple Observatory, which is operated by the Smithsonian Astrophysical Observatory. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; A.V.F.'s group at UC Berkeley received additional assistance from NSF grants AST-0908886 and AST-1211916, the TABASGO foundation, and the Christopher R. Redlich fund. The Dark Cosmology Centre is funded by the Danish National Research Foundation. The ESSENCE survey team is very grateful to the scientific and technical staff at the observatories we have been privileged to use.; The survey is supported by the U.S. National Science Foundation through grants AST-0443378 and AST-0507475. The Dark Cosmology Centre is funded by the Danish National Research Foundation.; J.M.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. A.C. acknowledges support from grant IC120009 awarded to the Millennium Institute of Astrophysics, MAS, by the Ministry of Economy, Development and Tourism, and grant Basal CATA PFB 06/09 from CONICYT. NR 110 TC 0 Z9 0 U1 6 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 3 DI 10.3847/0067-0049/224/1/3 PG 36 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200003 ER PT J AU Rykoff, ES Rozo, E Hollowood, D Bermeo-Hernandez, A Jeltema, T Mayers, J Romer, AK Rooney, P Saro, A Cervantes, CV Wechsler, RH Wilcox, H Abbott, TMC Abdalla, FB Allam, S Annis, J Benoit-Levy, A Bernstein, GM Bertin, E Brooks, D Burke, DL Capozzi, D Rosell, AC Kind, MC Castander, FJ Childress, M Collins, CA Cunha, CE D'Andrea, CB da Costa, LN Davis, TM Desai, S Diehl, HT Dietrich, JP Doel, P Evrard, AE Finley, DA Flaugher, B Fosalba, P Frieman, J Glazebrook, K Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Hilton, M Honscheid, K Hoyle, B James, DJ Kay, ST Kuehn, K Kuropatkin, N Lahav, O Lewis, GF Lidman, C Lima, M Maia, MAG Mann, RG Marshall, JL Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Sahlen, M Sanchez, E Santiago, B Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Stott, JP Suchyta, E Swanson, MEC Tarle, G Thomas, D Tucker, D Uddin, S Viana, PTP Vikram, V Walker, AR Zhang, Y AF Rykoff, E. S. Rozo, E. Hollowood, D. Bermeo-Hernandez, A. Jeltema, T. Mayers, J. Romer, A. K. Rooney, P. Saro, A. Cervantes, C. Vergara Wechsler, R. H. Wilcox, H. Abbott, T. M. C. Abdalla, F. B. Allam, S. Annis, J. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Castander, F. J. Childress, M. Collins, C. A. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Davis, T. M. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Evrard, A. E. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Glazebrook, K. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Hilton, M. Honscheid, K. Hoyle, B. James, D. J. Kay, S. T. Kuehn, K. Kuropatkin, N. Lahav, O. Lewis, G. F. Lidman, C. Lima, M. Maia, M. A. G. Mann, R. G. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Sahlen, M. Sanchez, E. Santiago, B. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Stott, J. P. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. Uddin, S. Viana, P. T. P. Vikram, V. Walker, A. R. Zhang, Y. CA DES Collaboration TI THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: clusters: general ID DIGITAL SKY SURVEY; DARK ENERGY SURVEY; STELLAR POPULATION SYNTHESIS; RICHNESS-MASS RELATION; X-RAY; DATA RELEASE; COSMOLOGICAL CONSTRAINTS; SDSS-III; SPECTROSCOPIC SURVEY; PLANCK 2013 AB We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150 deg(2) of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters with richness lambda > 20 (roughly equivalent to M500c greater than or similar to 10(14) h(70)(-1)M(circle dot)) and 0.2 < z < 0.9. The DR8 catalog consists of 26,311 clusters with 0.08 < z < 0.6, with a sharply increasing richness threshold as a function of redshift for z greater than or similar to 0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the sigma(z)/(1+ z) similar to 0.01 level for z greater than or similar to 0.7, rising to similar to 0.02 at z similar to 0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass-richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks. C1 [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.; Gruen, D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Gruen, D.; Reil, K.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Hollowood, D.; Jeltema, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Hollowood, D.; Jeltema, T.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bermeo-Hernandez, A.; Mayers, J.; Romer, A. K.; Rooney, P.; Cervantes, C. Vergara] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Saro, A.; Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Wilcox, H.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Allam, S.; Annis, J.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Univ Sorbonne, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, G. M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Castander, F. J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Childress, M.] Australian Natl Univ, ARC Ctr Excellence All Sky Astrophys CAASTRO, Canberra, ACT 2611, Australia. [Childress, M.] Australian Natl Univ, Res Sch Astron & Astrophys, GPO Box 4, Canberra, ACT 2601, Australia. [Collins, C. A.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool Sci Pk,Brownlow Hill, Liverpool L5 3AF, Merseyside, England. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Davis, T. M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Glazebrook, K.; Uddin, S.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.; Hoyle, B.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Hilton, M.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus, ZA-4041 Durban, South Africa. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kay, S. T.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Kuehn, K.; Lidman, C.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lewis, G. F.] Univ Sydney, Sch Phys, Sydney Inst Astron, A28, Sydney, NSW 2006, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Mann, R. G.] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sahlen, M.; Stott, J. P.] Univ Oxford, Dept Phys, BIPAC, Denys Wilkinson Bldg,1 Keble Rd, Oxford OX1 3RH, England. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Viana, P. T. P.] Univ Porto, CAUP, Inst Astrofis & Ciencias Espaco, Rua Estrelas, P-4150762 Oporto, Portugal. [Viana, P. T. P.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 687, P-4169007 Oporto, Portugal. [Vikram, V.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Rykoff, ES (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.; Rykoff, ES (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM erykoff@slac.stanford.edu RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Davis, Tamara/A-4280-2008; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Davis, Tamara/0000-0002-4213-8783; Sahlen, Martin/0000-0003-0973-4804; Abdalla, Filipe/0000-0003-2063-4345; Stott, John/0000-0002-1679-9983 FU U.S. Department of Energy [DE-AC02-76SF00515]; DOE [DE-SC0007093, DE-SC0013541]; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory, the University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory, Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Unions Seventh Framework Programme (FP7) ERC grant [240672, 291329, 306478]; Australian Astronomical Observatory [A/2013B/012]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory, University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Pennsylvania State University; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; National Aeronautics and Space Administration; STFC (UK); ARC (Australia); AAO FX This work was supported in part by the U.S. Department of Energy contract to SLAC No. DE-AC02-76SF00515, as well as DOE grants DE-SC0007093 (DH) and DE-SC0013541 (DH and TJ).; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under grant No. AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; Based in part on observations taken at the Australian Astronomical Observatory under program A/2013B/012.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www,sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalog is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT, and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. NR 93 TC 13 Z9 13 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2016 VL 224 IS 1 AR 1 DI 10.3847/0067-0049/224/1/1 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DN4PR UT WOS:000377050200001 ER PT J AU Verduzco-Castro, EA Michalska, K Endres, M Juarez-Vazquez, AL Noda-Garcia, L Chang, C Henry, CS Babnigg, G Joachimiak, A Barona-Gomez, F AF Verduzco-Castro, Ernesto A. Michalska, Karolina Endres, Michael Juarez-Vazquez, Ana L. Noda-Garcia, Lianet Chang, Changsoo Henry, Christopher S. Babnigg, Gyorgy Joachimiak, Andrzej Barona-Gomez, Francisco TI Co-occurrence of analogous enzymes determines evolution of a novel (beta alpha)(8)-isomerase sub-family after non-conserved mutations in flexible loop SO BIOCHEMICAL JOURNAL LA English DT Article DE analogous enzymes; (beta alpha)(8)-barrel; PriA; Streptomyces; substrate specificity; TrpF ID TRYPTOPHAN BIOSYNTHESIS; CORYNEBACTERIUM-GLUTAMICUM; STREPTOMYCES-COELICOLOR; HISTIDINE BIOSYNTHESIS; SUBSTRATE-SPECIFICITY; DIRECTED EVOLUTION; GENE-TRANSFER; ISOMERASE; MODEL; SYSTEM AB We investigate the evolution of co-occurring analogous enzymes involved in L-tryptophan and L-histidine biosynthesis in Actinobacteria. Phylogenetic analysis of trpF homologues, a missing gene in certain clades of this lineage whose absence is complemented by a dual-substrate HisA homologue, termed PriA, found that they fall into three categories: (i) trpF-1, an L-tryptophan biosynthetic gene horizontally acquired by certain Corynebacterium species; (ii) trpF-2, a paralogue known to be involved in synthesizing a pyrrolopyrrole moiety and (iii) trpF-3, a variable non-conserved orthologue of trpF-1. We previously investigated the effect of trpF-1 upon the evolution of PriA substrate specificity, but nothing is known about the relationship between trpF-3 and priA. After in vitro steady-state enzyme kinetics we found that trpF-3 encodes a phosphoribosyl anthranilate isomerase. However, mutation of this gene in Streptomyces sviceus did not lead to auxothrophy, as expected from the biosynthetic role of trpF-1. Biochemical characterization of a dozen co-occurring TrpF-2 or TrpF-3, with PriA homologues, explained the prototrophic phenotype, and unveiled an enzyme activity trade-off between TrpF and PriA. X-ray structural analysis suggests that the function of these PriA homologues is mediated by non-conserved mutations in the flexible L5 loop, which may be responsible for different substrate affinities. Thus, the PriA homologues that co-occur with TrpF-3 represent a novel enzyme family, termed PriB, which evolved in response to PRA isomerase activity. The characterization of co-occurring enzymes provides insights into the influence of functional redundancy on the evolution of enzyme function, which could be useful for enzyme functional annotation. C1 [Verduzco-Castro, Ernesto A.; Juarez-Vazquez, Ana L.; Noda-Garcia, Lianet; Barona-Gomez, Francisco] Cinvestav IPN, Evolut Metab Divers Lab, Unidad Genom Avanzada Langebio, Irapuato 36821, Mexico. [Michalska, Karolina; Endres, Michael; Chang, Changsoo; Babnigg, Gyorgy] Argonne Natl Lab, Midwest Ctr Struct Genom, 9700 S Cass Ave, Argonne, IL 60439 USA. [Michalska, Karolina; Chang, Changsoo] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. [Henry, Christopher S.] Argonne Natl Lab, Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Joachimiak, Andrzej] Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA. [Noda-Garcia, Lianet] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. RP Barona-Gomez, F (reprint author), Cinvestav IPN, Evolut Metab Divers Lab, Unidad Genom Avanzada Langebio, Irapuato 36821, Mexico. EM fbarona@langebio.cinvestav.mx FU Conacyt Mexico [179290]; National Institutes of Health [GM094585]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX This work was supported by the Conacyt Mexico [grant number 179290 (to F.B.-G.)]; the National Institutes of Health [grant number GM094585 (to A.J.)]; the U.S. Department of Energy, Office of Biological and Environmental Research [grant number DE-AC02-06CH11357]. NR 48 TC 1 Z9 1 U1 2 U2 5 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0264-6021 EI 1470-8728 J9 BIOCHEM J JI Biochem. J. PD MAY 1 PY 2016 VL 473 BP 1141 EP 1152 DI 10.1042/BJ20151271 PN 9 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DN6TF UT WOS:000377208400004 PM 26929404 ER PT J AU Fleming, MB Decker, SR Bedinger, PA AF Fleming, Margaret B. Decker, Stephen R. Bedinger, Patricia A. TI Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance SO BIORESOURCES LA English DT Article DE Extensin; Hydroxyproline-rich glycoprotein; Cellulosic biofuel; Biomass recalcitrance; Acid fungal protease; Poplar; Pretreatment ID PLANT-CELL-WALL; HYDROXYPROLINE-RICH GLYCOPROTEIN; SUSPENSION-CULTURES; LIGNOCELLULOSIC BIOMASS; CARROT EXTENSIN; GENE-EXPRESSION; CROSS-LINKING; AMINO-ACID; PRETREATMENT; ARABIDOPSIS AB The biological conversion of cellulosic biomass to biofuel is hindered by cell wall recalcitrance, which can limit the ability of cellulases to access and break down cellulose. The purpose of this study was to investigate whether hydroxyproline-rich cell wall proteins (extensins) are present in poplar stem biomass, and whether these proteins may contribute to recalcitrance. Three classical extensin genes were identified in Populus trichocarpa through bioinformatic analysis of poplar genome sequences, with the following proposed names: PtEXTENSIN1 (Potri. 001G019700); PtEXTENSIN2 (Potri. 001G020100); PtEXTENSIN3 (Potri. 018G050100). Tissue print immunoblots localized the extensin proteins in poplar stems to regions near the vascular cambium. Different thermochemical pretreatments reduced but did not eliminate hydroxyproline (Hyp, a proxy for extensins) from the biomass. Protease treatment of liquid hot water pretreated poplar biomass reduced Hyp content by a further 16% and increased subsequent glucose yield by 20%. These data suggest that extensins may contribute to recalcitrance in pretreated poplar biomass, and that incorporating protease treatment into pretreatment protocols could result in a small but significant increase in the yield of fermentable glucose. C1 [Fleming, Margaret B.; Bedinger, Patricia A.] Colorado State Univ, Dept Biol, Campus Delivery 1878, Ft Collins, CO 80523 USA. [Fleming, Margaret B.] USDA ARS, Natl Lab Genet Resources Preservat, 1111 South Mason St, Ft Collins, CO 80524 USA. [Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Decker, Stephen R.] Natl Renewable Energy Lab, BioEnergy Sci Ctr BESC, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Bedinger, PA (reprint author), Colorado State Univ, Dept Biol, Campus Delivery 1878, Ft Collins, CO 80523 USA. EM Pafricia.Bedinger@colostate.edu FU Colorado Center for Biorefining and Biofuels [013-7]; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office FX The authors thank the Colorado Center for Biorefining and Biofuels (Grant # 013-7), the Colorado State University Libraries Open Access Research and Scholarship Fund, CarboSource (Athens, GA) for JIM20, PlantProbes (Leeds, UK) for LM1, Dr. L. A. Staehelin (University of Colorado, Boulder) for gE-1, Dr. Suzanne Royer and Dr. Lorrie Anderson (CSU) for imaging assistance, Bronwyn Phillips and Olivia Todd for research assistance, Dr. Melvin P. Tucker (NREL) for providing the liquid hot water and dilute-acid pretreated poplar, and Dr. Emily Fox (University of Maryland) for a helpful and critical review of the manuscript.; The pretreatment and analytical work was partially supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding was provided by the DOE Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. NR 75 TC 1 Z9 1 U1 3 U2 3 PU NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI PI RALEIGH PA CAMPUS BOX 8005, RALEIGH, NC 27695-8005 USA SN 1930-2126 J9 BIORESOURCES JI BioResources PD MAY PY 2016 VL 11 IS 2 BP 4727 EP 4744 PG 18 WC Materials Science, Paper & Wood SC Materials Science GA DL6YT UT WOS:000375786700128 ER PT J AU Hatakeyama, M Ogata, K Fujii, K Yachandra, VK Yano, J Nakamura, S AF Hatakeyama, Makoto Ogata, Koji Fujii, Katsushi Yachandra, Vittal K. Yano, Junko Nakamura, Shinichiro TI Structural changes in the S-3 state of the oxygen evolving complex in photosystem II SO CHEMICAL PHYSICS LETTERS LA English DT Article ID PHOTOSYNTHETIC WATER OXIDATION; ELECTRONIC-STRUCTURE; PROTON RELEASE; MN4CA CLUSTER; SPECTROSCOPY; TRANSITIONS; EXCHANGE; MODEL; CYCLE AB The S-3 state of the Mn4CaO5-cluster in photosystem II was investigated by DFT calculations and compared with EXAFS data. Considering previously proposed mechanism; a water molecule is inserted into an open coordination site of Mn upon S-2 to S-3 transition that becomes a substrate water, we examined if the water insertion is essential for the S-3 formation, or if one cannot eliminate other possible routes that do not require a water insertion at the S-3 stage. The novel S-3 state structure consisting of only short 2.7-2.8 angstrom Mn Mn distances was discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Hatakeyama, Makoto; Ogata, Koji; Nakamura, Shinichiro] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Fujii, Katsushi] Univ Tokyo, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan. [Yachandra, Vittal K.; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Nakamura, S (reprint author), RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM snakamura@riken.jp OI Ogata, Koji/0000-0001-9002-9621 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy [DE-AC02-05CH11231]; NIH [GM55302] FX We thank the HOKUSAI Greatwave of RIKEN. J.Y. and V.K.Y. are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy under contract DE-AC02-05CH11231, and NIH grant GM55302 (V.K.Y.). NR 31 TC 1 Z9 1 U1 10 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY PY 2016 VL 651 BP 243 EP 250 DI 10.1016/j.cplett.2016.03.010 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DN6RK UT WOS:000377203300046 ER PT J AU Choi, S Peake, GM Keeler, GA Geib, KM Briggs, RD Beechem, TE Shaffer, RA Clevenger, J Patrizi, GA Klem, JF Tauke-Pedretti, A Nordquist, CD AF Choi, Sukwon Peake, Gregory M. Keeler, Gordon A. Geib, Kent M. Briggs, Ronald D. Beechem, Thomas E. Shaffer, Ryan A. Clevenger, Jascinda Patrizi, Gary A. Klem, John F. Tauke-Pedretti, Anna Nordquist, Christopher D. TI Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs SO IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY LA English DT Article DE III-V semiconductor materials; heterojunction bipolar transistors (HBTs); infrared (IR) imaging; integrated circuit technology; temperature measurement; thermal management of electronics; thermoreflectance imaging ID CONDUCTIVITY; RESISTANCE; SUBSTRATE AB Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor I-V characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i. e., positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. The suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III-V/Si heterogeneously integrated electronics. C1 [Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; Geib, Kent M.; Briggs, Ronald D.; Beechem, Thomas E.; Shaffer, Ryan A.; Clevenger, Jascinda; Patrizi, Gary A.; Klem, John F.; Tauke-Pedretti, Anna; Nordquist, Christopher D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Choi, Sukwon] Penn State Univ, University Pk, PA 16802 USA. RP Choi, S; Peake, GM; Keeler, GA; Geib, KM; Briggs, RD; Beechem, TE; Shaffer, RA; Clevenger, J; Patrizi, GA; Klem, JF; Tauke-Pedretti, A; Nordquist, CD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Choi, S (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM sukwon.choi@psu.edu; gmpeake@sandia.gov; gakeele@sandia.gov; kmgeib@sandia.gov; rdbrigg@sandia.gov; tebeech@sandia.gov; rshaffe@sandia.gov; jcleven@sandia.gov; gapatri@sandia.gov; jklem@sandia.gov; ataukep@sandia.gov; cdnordq@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Recommended for publication by Associate Editor C. C. Lee upon evaluation of reviewers' comments. NR 22 TC 0 Z9 0 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3950 EI 2156-3985 J9 IEEE T COMP PACK MAN JI IEEE Trans. Compon. Pack. Manuf. Technol. PD MAY PY 2016 VL 6 IS 5 BP 740 EP 748 DI 10.1109/TCPMT.2016.2541615 PG 9 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DN5MN UT WOS:000377112700009 ER PT J AU Mitra, J Vallem, MR Singh, C AF Mitra, Joydeep Vallem, Mallikarjuna R. Singh, Chanan TI Optimal Deployment of Distributed Generation Using a Reliability Criterion SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article; Proceedings Paper CT Annual Meeting of the IEEE-Industry-Applications-Society CY OCT 18-22, 2015 CL Addision, TX SP IEEE Ind Applicat Soc DE Distributed generation (DG); microgrid; reliability; simulated annealing (SA); siting and sizing ID DISTRIBUTION-SYSTEMS; PLACEMENT AB This paper presents an optimal planning approach toward the design of cost-efficient and reliable microgrids. The proposed approach uses simulated annealing (SA) to determine the optimal size and location of a mix of distributed generation (DG) candidate technologies to achieve stipulated reliability criteria. The deployment plan consists of adding suitable quantities of DG at appropriate locations, and is optimal in that the cost of expansion is minimized. The paper develops the models and the approach, and describes an SA-based implementation. The method is demonstrated on a standard test system, and the application of the method as a planning tool is illustrated by means of two case studies: 1) optimal expansion of an existing distribution system into a microgrid and 2) evaluation of the impact of projected prices on the deployment strategy. Relative penetration of different DG technologies is also analyzed. C1 [Mitra, Joydeep] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48823 USA. [Vallem, Mallikarjuna R.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Singh, Chanan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Mitra, J (reprint author), Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48823 USA. EM mitraj@msu.edu; mallikarjuna.vallem@pnnl.gov; singh@ece.tamu.edu RI Mitra, Joydeep/M-4265-2016 OI Mitra, Joydeep/0000-0001-9287-0983 NR 28 TC 3 Z9 3 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD MAY-JUN PY 2016 VL 52 IS 3 BP 1989 EP 1997 DI 10.1109/TIA.2016.2517067 PG 9 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA DN5LY UT WOS:000377110900006 ER PT J AU Yang, M Lin, Y Han, XS AF Yang, Ming Lin, You Han, Xueshan TI Probabilistic Wind Generation Forecast Based on Sparse Bayesian Classification and Dempster-Shafer Theory SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article; Proceedings Paper CT Annual Meeting of the IEEE-Industry-Applications-Society CY OCT 18-22, 2015 CL Addision, TX SP IEEE Ind Applicat Soc DE Dempster-Shafer theory (DST); nonparametric approach; probabilistic wind generation forecast; sparse Bayesian classification (SBC); support vector machine (SVM) ID SHORT-TERM PREDICTION; POWER-GENERATION; STATISTICAL-ANALYSIS; MACHINE; FARMS; ERROR; MODEL AB Probabilistic wind generation forecast results are crucial for power system operational dispatch. In this paper, a nonparametric approach for short-term probabilistic wind generation forecast based on the sparse Bayesian classification (SBC) and Dempster-Shafer theory (DST) is proposed. This approach is composed of the following four steps. 1) A spot forecast of wind generation is performed based on support vector machine (SVM). 2) The range of SVM forecast error is discretized into multiple intervals, and the conditional probability of each interval is estimated by a sparse Bayesian classifier. 3) DST is applied to combine the probabilities of all the intervals to form a unified probability distribution function (pdf) of the SVM forecast error. 4) The pdf of wind generation is achieved by combining the SVM wind generation spot forecast result and corresponding forecast error distribution. The distinguishing features of the proposed approach are as follows. 1) The approach is a nonparametric one and the forecast error caused by the misjudgement of probability distribution type can be avoided. 2) The proposed approach has good generalization capability by using the sparse learning mechanism. 3) The range constraint of wind generation can be systematically considered in the approach by applying DST. Tests on a 74-MW wind farm illustrate the improvement of spot forecast accuracy of the proposed approach and validate that this paper provides better calibrated and sharper probabilistic forecasts than the empirical approach and quantile regression model. Comparison to the state-of-the-art of the Global Energy Forecasting Competition 2014 demonstrates the probabilistic forecast performance of the proposed approach. C1 [Yang, Ming; Lin, You; Han, Xueshan] Shandong Univ, Minist Educ, Key Lab Power Syst Intelligent Dispatch & Control, Jinan 250061, Peoples R China. [Yang, Ming] Argonne Natl Lab, Lemont, IL 60439 USA. RP Yang, M (reprint author), Shandong Univ, Minist Educ, Key Lab Power Syst Intelligent Dispatch & Control, Jinan 250061, Peoples R China. EM myang@sdu.edu.cn; linyou@sdu.edu.cn; xshan@sdu.edu.cn NR 29 TC 1 Z9 1 U1 8 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD MAY-JUN PY 2016 VL 52 IS 3 BP 1998 EP 2005 DI 10.1109/TIA.2016.2518995 PG 8 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA DN5LY UT WOS:000377110900007 ER PT J AU Ren, SJ Ye, XP Borole, AP Kim, P Labbe, N AF Ren, Shoujie Ye, X. Philip Borole, Abhijeet P. Kim, Pyoungchung Labbe, Ncole TI Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Bio-oil; Partition; Bio-oil aqueous phase; HPLC-PDA; GC/MS; GC-FID ID HYDROGEN-PRODUCTION; FLASH PYROLYSIS; BED REACTOR; BIOMASS; EXTRACTION; LIQUID; LEVOGLUCOSAN; BIOFUELS; FUEL; GAS AB To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, this study investigated the physicochemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from the crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compounds into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels was extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. A better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations. Published by Elsevier B.V. C1 [Ren, Shoujie; Ye, X. Philip] Univ Tennessee, Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Borole, Abhijeet P.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Kim, Pyoungchung; Labbe, Ncole] Univ Tennessee, Ctr Renewable Carbon, Knoxville, TN 37996 USA. RP Ye, XP (reprint author), Univ Tennessee, Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. EM xye2@utk.edu OI Borole, Abhijeet/0000-0001-8423-811X FU Department of Energy, BioEnergy Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-Oil Conversion Pathways program [DE-FOA-0000812] FX We acknowledge funding for this work from the Department of Energy, BioEnergy Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-Oil Conversion Pathways program, DE-FOA-0000812. NR 36 TC 5 Z9 5 U1 5 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 EI 1873-250X J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD MAY PY 2016 VL 119 BP 97 EP 103 DI 10.1016/j.jaap.2016.03.013 PG 7 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DM9UK UT WOS:000376711000012 ER PT J AU Lai, LM Kumar, S Chintala, R Owens, VN Clay, D Schumacher, J Nizami, AS Lee, SS Rafique, R AF Lai, Liming Kumar, Sandeep Chintala, Rajesh Owens, Vance N. Clay, David Schumacher, Joseph Nizami, Abdul-Sattar Lee, Sang Soo Rafique, Rashad TI Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland SO JOURNAL OF ENVIRONMENTAL SCIENCES LA English DT Article DE Carbon dioxide; Switchgrass; DAYCENT; Climate change ID CROPPING SYSTEMS; CARBON-DIOXIDE; RESPIRATION; ECOSYSTEM; CLIMATE; WATER; MANIPULATION; CALIBRATION; COMPONENTS; GRASSLAND AB Switchgrass (Panicum virgatum L.) is a perennial C-4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. (C) 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. C1 [Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Clay, David; Schumacher, Joseph] S Dakota State Univ, Dept Plant Sci, Brookings, SD 57007 USA. [Owens, Vance N.] S Dakota State Univ, North Cent Sun Grant Ctr, Brookings, SD 57007 USA. [Nizami, Abdul-Sattar] King Abdulaziz Univ, Ctr Excellence Environm Studies, Jeddah 22254, Saudi Arabia. [Lee, Sang Soo] Kangwon Natl Univ, Chunchon 200701, South Korea. [Rafique, Rashad] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Kumar, S (reprint author), S Dakota State Univ, Dept Plant Sci, Brookings, SD 57007 USA. EM liming.lai@sdstate.edu; Sandeep.Kumar@sdstate.edu RI Nizami, Abdul-Sattar/G-5226-2014 OI Nizami, Abdul-Sattar/0000-0003-3294-9256 FU South Dakota State University (SDSU); North Central Regional Sun Grant Center at SDSU through US Department of Energy Bioenergy Technologies Office [DE-FG36-05GO85041] FX The authors would like to thank Mr. Jerry Roitsch for providing the land for the experimental study. This work was supported by the South Dakota State University (SDSU) and North Central Regional Sun Grant Center at SDSU through a grant provided by the US Department of Energy Bioenergy Technologies Office under award number DE-FG36-05GO85041. NR 39 TC 1 Z9 1 U1 5 U2 15 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-0742 EI 1878-7320 J9 J ENVIRON SCI-CHINA JI J. Environ. Sci. PD MAY PY 2016 VL 43 BP 15 EP 25 DI 10.1016/j.jes.2015.08.019 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA DN5VN UT WOS:000377139500003 PM 27155405 ER PT J AU Dogan, F Sanjeewa, LD Hwu, SJ Vaughey, JT AF Dogan, Fulya Sanjeewa, Liurukara D. Hwu, Shiou-Jyh Vaughey, J. T. TI Electrodeposited copper foams as substrates for thin film silicon electrodes SO SOLID STATE IONICS LA English DT Article; Proceedings Paper CT 20th International Conference on Solid State Ionics (SSI) CY JUN 14-19, 2015 CL Keystone, CO DE Silicon; Thin film; Lithium-ion battery; Copper foam; Electrodeposition ID LITHIUM-ION BATTERIES; SI-BASED MATERIALS; NEGATIVE ELECTRODES; HIGH-CAPACITY; ANODES; MECHANISM; NMR AB Although a significant amount of effort has been put into investigating elemental silicon as a lithium-ion battery anode material, limited progress has occurred in translating these results to create a long lived electrode. Several electrode level solutions have been reported including utilizing Si nanowires, thin films, and nanoparticle assemblies, where the physical diffusion distances are kept very short. For thin film based electrodes, the benefits of the simplified structure of the electrode are countered by the low surface area and low silicon loadings. In this study we have utilized electrodeposition techniques to deposit silicon films on a porous copper substrate. This greatly increases the electrode surface area and loadings while maintaining the advantages of a thin film electrode. Using 3d-silicon electrodes without a binder or conductive matrix, stable capacities of similar to 1000 mAh/g have been achieved. In general, electrodes with lower loadings of active silicon (<1 mg/cm(2)) displayed better rate capability than electrodes with higher loadings (>2.5 mg/cm(2)). (C) 2016 Elsevier B.V. All rights reserved. C1 [Dogan, Fulya; Vaughey, J. T.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Sanjeewa, Liurukara D.; Hwu, Shiou-Jyh] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Vaughey, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vaughey@anl.gov OI Vaughey, John/0000-0002-2556-6129 NR 17 TC 1 Z9 1 U1 14 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD MAY PY 2016 VL 288 SI SI BP 204 EP 206 DI 10.1016/j.ssi.2016.02.001 PG 3 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DM9UJ UT WOS:000376710900038 ER PT J AU Chen, CL Zuckermann, RN DeYoreo, JJ AF Chen, Chun-Long Zuckermann, Ronald N. DeYoreo, James J. TI Surface-Directed Assembly of Sequence Defined Synthetic Polymers into Networks of Hexagonally Patterned Nanoribbons with Controlled Functionalities SO ACS NANO LA English DT Article DE sequence-defined polymer; surface-directed assembly; in situ AFM; dynamic force spectroscopy; surface coating ID SOLID-PHASE SYNTHESIS; PROTEIN-STRUCTURE; PEPTOID POLYMERS; FOLDAMERS; PEPTIDES; DESIGN; GROWTH; POLYPEPTOIDS; BIOMATERIALS; COORDINATION AB The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to the design and synthesis of biomimetic materials. While sequence-defined polymers hold great promise to mimic proteins and peptides for functions, controlled assembly of them on surfaces still remains underdeveloped. Here, we report the assembly of 12-mer peptoids containing alternating acidic and aromatic monomers into networks of hexagonally patterned nanoribbons on mica surfaces. Ca2+-carboxylate coordination creates peptoid peptoid and peptoid mica interactions that control self-assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles; these particles then transform into hexagonally patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy studies show that peptoid mica interactions are much stronger than peptoid peptoid interactions, illuminating the driving forces for mica-directed peptoid assembly. We further demonstrate the display of functional domains at the N-terminus of assembling peptoids to produce extended networks with similar hierarchical structures. This research demonstrates that surface-directed peptoid assembly can be used as a robust platform to develop biomimetic coating materials for applications. C1 [Chen, Chun-Long; DeYoreo, James J.] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. [Chen, Chun-Long; Zuckermann, Ronald N.; DeYoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [DeYoreo, James J.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [DeYoreo, James J.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Chen, CL (reprint author), Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA.; Chen, CL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM chunlong.chen@pnnl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-0SCH11231]; Materials Synthesis and Simulation Across Scales (MS3) Initiative through the Laboratory Directed Research & Development (LDRD) fund at Pacific Northwest National Laboratory (PNNL); DARPA Fold F(x) program; U.S. Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL; Department of Energy [DE-AC05-76RL01830] FX Synthesis and data collection were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, a Scientific User Facility supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-0SCH11231. Data analysis and interpretation were supported by the Materials Synthesis and Simulation Across Scales (MS3) Initiative through the Laboratory Directed Research & Development (LDRD) fund at Pacific Northwest National Laboratory (PNNL). Peptoid synthesis was partially supported by the DARPA Fold F(x) program. Peptoid synthesis and in situ AFM studies were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. PNNL is multiprogram national laboratory operated for Department of Energy by Battelle under Contract No. DE-AC05-76RL01830. NR 53 TC 1 Z9 1 U1 20 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAY PY 2016 VL 10 IS 5 BP 5314 EP 5320 DI 10.1021/acsnano.6b01333 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DN1KQ UT WOS:000376825100045 PM 27136277 ER PT J AU Kornienko, N Gibson, NA Zhang, H Eaton, SW Yu, Y Aloni, S Leone, SR Yang, PD AF Kornienko, Nikolay Gibson, Natalie A. Zhang, Hao Eaton, Samuel W. Yu, Yi Aloni, Shaul Leone, Stephen R. Yang, Peidong TI Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays SO ACS NANO LA English DT Article DE nanowire synthesis; energy conversion; photoelectrochemistry; catalysis; chemical vapor deposition ID LIQUID-SOLID GROWTH; SURFACE RECOMBINATION VELOCITY; CHEMICAL-VAPOR-DEPOSITION; III-V NANOWIRES; INP NANOWIRES; SEMICONDUCTOR NANOWIRE; THIN-FILM; HYDROGEN-PRODUCTION; WATER REDUCTION; CUPROUS-OXIDE AB Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%. C1 [Kornienko, Nikolay; Gibson, Natalie A.; Zhang, Hao; Eaton, Samuel W.; Yu, Yi; Leone, Stephen R.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gibson, Natalie A.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Nanosci Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Kavli Nanosci Inst, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU Physical Chemistry of Inorganic Nanostructures Program, Office of Basic Energy Sciences of the United States Department of Energy [KC3103, DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy under Contract No. DE-AC02-05CH11231. Electron microscopy was carried out at the National Center of Electron Microscopy (NCEM), which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Yude Su for help with optical data. NR 77 TC 4 Z9 4 U1 28 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAY PY 2016 VL 10 IS 5 BP 5525 EP 5535 DI 10.1021/acsnano.6b02083 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DN1KQ UT WOS:000376825100071 PM 27124203 ER PT J AU Kirschner, MS Lethiec, CM Lin, XM Schatz, GC Chen, LX Schaller, RD AF Kirschner, Matthew S. Lethiec, Clotilde M. Lin, Xiao-Min Schatz, George C. Chen, Lin X. Schaller, Richard D. TI Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins SO ACS PHOTONICS LA English DT Article DE gold nanoparticles; time-resolved spectroscopy; coherent acoustic phonons ID ACOUSTIC VIBRATIONS; METAL NANOSTRUCTURES; NANOPARTICLES; DYNAMICS; SEMICONDUCTOR; NANOCRYSTALS; OSCILLATIONS; RESONANCE; ULTRAFAST; MECHANISM AB Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensembles with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation. C1 [Kirschner, Matthew S.; Lethiec, Clotilde M.; Schatz, George C.; Chen, Lin X.; Schaller, Richard D.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kirschner, Matthew S.; Lin, Xiao-Min; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 Cass Ave, Argonne, IL 60439 USA. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 Cass Ave, Argonne, IL 60439 USA. RP Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Schaller, RD (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 Cass Ave, Argonne, IL 60439 USA. EM schaller@anl.gov FU Ultrafast Initiative of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through Argonne National Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge support from the Ultrafast Initiative of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 32 TC 2 Z9 2 U1 10 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD MAY PY 2016 VL 3 IS 5 BP 758 EP 763 DI 10.1021/acsphotonics.6b00136 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DM4RF UT WOS:000376333700006 ER PT J AU Gach, PC Shih, SCC Sustarich, J Keasling, JD Hillson, NJ Adams, PD Singh, AK AF Gach, Philip C. Shih, Steve C. C. Sustarich, Jess Keasling, Jay D. Hillson, Nathan J. Adams, Paul D. Singh, Anup K. TI A Droplet Microfluidic Platform for Automating Genetic Engineering SO ACS SYNTHETIC BIOLOGY LA English DT Article DE digital microfluidics; molecular biology; transformation; cell culture ID DIGITAL MICROFLUIDICS; SYNTHETIC BIOLOGY; ESCHERICHIA-COLI; TRANSFORMATION; SYSTEMS; ASPERGILLUS; EXPRESSION; PLASMIDS; BACTERIA; CULTURE AB We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (similar to 5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput. C1 [Gach, Philip C.; Shih, Steve C. C.; Sustarich, Jess; Hillson, Nathan J.; Adams, Paul D.; Singh, Anup K.] Joint BioEnergy Inst JBEI, Div Technol, Emeryville, CA 94608 USA. [Gach, Philip C.; Shih, Steve C. C.; Sustarich, Jess; Singh, Anup K.] Sandia Natl Labs, Appl Biosci & Engn, Livermore, CA 94550 USA. [Keasling, Jay D.; Hillson, Nathan J.] Joint BioEnergy Inst JBEI, Fuels Synth Div, Emeryville, CA 94608 USA. [Keasling, Jay D.; Hillson, Nathan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Keasling, Jay D.; Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Hillson, Nathan J.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. RP Gach, PC; Singh, AK (reprint author), Joint BioEnergy Inst JBEI, Div Technol, Emeryville, CA 94608 USA.; Gach, PC; Singh, AK (reprint author), Sandia Natl Labs, Appl Biosci & Engn, Livermore, CA 94550 USA. EM pcgach@sandia.gov; aksingh@sandia.gov OI Shih, Steve/0000-0003-3540-0808 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors thank Anna Lechner and Leopold d'Espaux for assistance with yeast transformation. A. niger protoplast and peGFP-glaA plasmid were kindly provided by Saori Campen and Jinxiang Zhang. NR 29 TC 3 Z9 3 U1 22 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD MAY PY 2016 VL 5 IS 5 BP 426 EP 433 DI 10.1021/acssynbio.6b00011 PG 8 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA DM6QG UT WOS:000376476900007 PM 26830031 ER PT J AU Du, SH Zheng, LG Zhang, WJ AF Du, Shanghai Zheng, Liange Zhang, Wenjing TI Assessment of shallow aquifer remediation capacity under different groundwater management conditions in CGS field SO ARABIAN JOURNAL OF GEOSCIENCES LA English DT Article DE Carbon dioxide leakage; Groundwater; Remediation; Calcite ID FRESH-WATER RESOURCES; CO2 LEAKAGE; STORAGE; TRANSPORT; QUALITY; IMPACTS; SITE AB Because of unknown faults and fractures in the overlying rock, CO2 stored deep underground may move upward, and the intrusion may impact shallow groundwater quality. After leakage of CO2 has ceased, the affected aquifer may show remediation capacity under natural conditions and injections and extractions. In this study, the reactive transport modeling software TOUGHREACT was used to simulate the remediation capacity of a study aquifer. The simulation results show that the intrusion of leaked CO2 would decrease the pH of the target aquifer and trigger the dissolution of calcite minerals. After CO2 leakage has ceased, the pH would increase as would the concentration of Ca because of the dissolution of calcite along the flow path. Scenario simulation results of amelioration of groundwater quality by water injection and extraction show that single injection is the best option and a combination approach of injection and extraction could control the range of the affected area. The pH value should not be regarded as the single indicator for remediation capacity assessment. Parameter sensitive analysis results show that the rates of injection and extraction affect the repair results significantly. C1 [Du, Shanghai; Zhang, Wenjing] Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun 130021, Peoples R China. [Du, Shanghai; Zhang, Wenjing] Jilin Univ, Inst Water Resources & Environm, Changchun 130021, Peoples R China. [Du, Shanghai; Zheng, Liange] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, WJ (reprint author), Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun 130021, Peoples R China.; Zhang, WJ (reprint author), Jilin Univ, Inst Water Resources & Environm, Changchun 130021, Peoples R China. EM zhangwenjing80@hotmail.com RI zheng, liange/B-9748-2011 OI zheng, liange/0000-0002-9376-2535 FU Electric Power Research Institute; EPA, Office of Water; US Department of Energy (DOE) at LBNL [DE-AC02-05CH11231]; National Energy Technology Laboratory (NETL), National Risk Assessment Program (NRAP), of the US Department of Energy [DEAC02-05CH11231]; Jilin Province Science and Technology Development Plan [20140520143JH]; Multi-Subjects Research Program for Ph.D. Student in Jilin University [2011J012] FX This work was supported by the Electric Power Research Institute; the EPA, Office of Water, under an Interagency Agreement with the US Department of Energy (DOE) at LBNL, under contract number DE-AC02-05CH11231; and the Assistant Secretary for Fossil Energy, National Energy Technology Laboratory (NETL), National Risk Assessment Program (NRAP), of the US Department of Energy under contract number DEAC02-05CH11231. This work also was supported by the Jilin Province Science and Technology Development Plan (No. 20140520143JH) and the Multi-Subjects Research Program for Ph.D. Student in Jilin University (2011J012). Thanks to the anonymous reviewers' and editor's suggestions and comments which greatly helped the authors to improve the quality of the paper. NR 29 TC 0 Z9 0 U1 6 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1866-7511 EI 1866-7538 J9 ARAB J GEOSCI JI Arab. J. Geosci. PD MAY PY 2016 VL 9 IS 6 AR 448 DI 10.1007/s12517-016-2479-6 PG 17 WC Geosciences, Multidisciplinary SC Geology GA DM8KH UT WOS:000376611000022 ER PT J AU Masini, A Comastri, A Balokovic, M Zaw, I Puccetti, S Ballantyne, DR Bauer, FE Boggs, SE Brandt, WN Brightman, M Christensen, FE Craig, WW Gandhi, P Hailey, CJ Harrison, FA Koss, MJ Madejski, G Ricci, C Rivers, E Stern, D Zhang, WW AF Masini, A. Comastri, A. Balokovic, M. Zaw, I. Puccetti, S. Ballantyne, D. R. Bauer, F. E. Boggs, S. E. Brandt, W. N. Brightman, M. Christensen, F. E. Craig, W. W. Gandhi, P. Hailey, C. J. Harrison, F. A. Koss, M. J. Madejski, G. Ricci, C. Rivers, E. Stern, D. Zhang, W. W. TI NuSTAR observations of water megamaser AGN SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE masers; galaxies: active; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; H2O MASER EMISSION; SEYFERT 2 GALAXIES; ACCRETION DISK; CIRCINUS GALAXY; NGC 4945; BLACK-HOLE; UGC 3789; OPTICAL-PROPERTIES; OBSCURING TORUS AB Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping. Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of similar to 10(23) cm(-2); in particular, 79% are Compton-thick (N-H > 1.5 x 10(24) cm(-2)). When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect. C1 [Masini, A.; Comastri, A.] Osservatorio Astron Bologna, INAF, Via Ranzani 1, I-40127 Bologna, Italy. [Masini, A.] Univ Bologna, Dipartimento Fis & Astron DIFA, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Balokovic, M.; Brightman, M.; Harrison, F. A.; Rivers, E.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Zaw, I.] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates. [Zaw, I.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Puccetti, S.] ASI, ASDC, Via Politecn, I-00133 Rome, Italy. [Puccetti, S.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Bauer, F. E.; Ricci, C.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 306 22, Chile. [Bauer, F. E.] MAS, Millennium Inst Astrophys, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Bauer, F. E.; Ricci, C.] EMBIGGEN Anillo, Concepcion, Chile. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gandhi, P.] Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England. [Gandhi, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Koss, M. J.] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Madejski, G.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Masini, A (reprint author), Osservatorio Astron Bologna, INAF, Via Ranzani 1, I-40127 Bologna, Italy. EM alberto.masini4@unibo.it RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ASI/INAF [I/037/12/0-011/13]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; CONICYT-Chile grants Basal-CATA [PFB-06/2007]; FONDECYT [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; NuSTAR [44A-1092750] FX We thank the anonymous referee for useful suggestions that helped to improve the paper. This work was supported under NASA Contract NNG08FD60C, and it made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). A.M., A.C., and S.P. acknowledge support from the ASI/INAF grant I/037/12/0-011/13. M.B. acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H. We acknowledge support from CONICYT-Chile grants Basal-CATA PFB-06/2007 (F.E.B., C.R.), FONDECYT 1141218 (F.E.B., C.R.), "EMBIGGEN" Anillo ACT1101 (F.E.B., C.R.), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.). W.N.B. acknowledges support from NuSTAR subcontract 44A-1092750. NR 69 TC 3 Z9 3 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR A59 DI 10.1051/0004-6361/201527689 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300071 ER PT J AU Palanque-Delabrouille, N Magneville, C Yeche, C Paris, I Petitjean, P Burtin, E Dawson, K McGreer, I Myers, AD Rossi, G Schlegel, D Schneider, D Streblyanska, A Tinker, J AF Palanque-Delabrouille, N. Magneville, Ch Yeche, Ch Paris, I. Petitjean, P. Burtin, E. Dawson, K. McGreer, I. Myers, A. D. Rossi, G. Schlegel, D. Schneider, D. Streblyanska, A. Tinker, J. TI The extended Baryon Oscillation Spectroscopic Survey: Variability selection and quasar luminosity function (vol 587, A41, 2016) SO ASTRONOMY & ASTROPHYSICS LA English DT Correction DE quasars: general; large-scale structure of Universe; surveys; errata, addenda C1 [Palanque-Delabrouille, N.; Magneville, Ch; Yeche, Ch; Burtin, E.] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Paris, I.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Petitjean, P.] UPMC, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Dawson, K.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [McGreer, I.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Myers, A. D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Rossi, G.] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Schlegel, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Schneider, D.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Schneider, D.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Streblyanska, A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Streblyanska, A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Tinker, J.] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA. RP Palanque-Delabrouille, N (reprint author), CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. EM nathalie.palanque-delabrouille@cea.fr NR 1 TC 1 Z9 1 U1 2 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2016 VL 589 AR C2 DI 10.1051/0004-6361/201527392e PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0JI UT WOS:000375318300002 ER PT J AU Zhang, RL Liu, J Qin, H Tang, YF He, Y Wang, YL AF Zhang, Ruili Liu, Jian Qin, Hong Tang, Yifa He, Yang Wang, Yulei TI Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Lie algebra; Lie group; volume-preserving algorithm; charged particles dynamics ID SYSTEMS AB Volume-preserving algorithms (VPAs) for the charged particles dynamics is preferred because of their long-term accuracy and conservativeness for phase space volume. Lie algebra and the Baker-Campbell-Hausdorff (BCH) formula can be used as a fundamental theoretical tool to construct VPAs. Using the Lie algebra structure of vector fields, we split the volume-preserving vector field for charged particle dynamics into three volume-preserving parts (sub-algebras), and find the corresponding Lie subgroups. Proper combinations of these subgroups generate volume preserving, second order approximations of the original solution group, and thus second order VPAs. The developed VPAs also show their significant effectiveness in conserving phase-space volume exactly and bounding energy error over long-term simulations. C1 [Zhang, Ruili; Liu, Jian; Qin, Hong; He, Yang; Wang, Yulei] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruili; Liu, Jian; Qin, Hong; He, Yang; Wang, Yulei] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Tang, Yifa] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China. RP Liu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. EM rlzhang@ustc.edu.cn; jliuphy@ustc.edu.cn; hongqin@ustc.edu.cn; tyf@lsec.cc.ac.cn; heyang14@ustc.edu.cn; wyulei@mail.ustc.edu.cn FU National Natural Science Foundation of China (NSFC) [11305171, 11371357, 11505186, 11575185, 11575186]; ITER-China Program [2015GB111003, 2014GB124005]; Fundamental Research Funds for the Central Universities [WK2030040068]; China Postdoctoral Science Foundation [2015M581994]; CAS Program for Interdisciplinary Collaboration Team; Geo-Algorithmic Plasma Simulator (GAPS) Project FX This research is supported by the National Natural Science Foundation of China (NSFC-11305171, 11371357, 11505186, 11575185, 11575186), ITER-China Program (2015GB111003, 2014GB124005), the Fundamental Research Funds for the Central Universities (WK2030040068), China Postdoctoral Science Foundation (No. 2015M581994), the CAS Program for Interdisciplinary Collaboration Team, and the Geo-Algorithmic Plasma Simulator (GAPS) Project. NR 19 TC 0 Z9 0 U1 1 U2 6 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD MAY PY 2016 VL 19 IS 5 BP 1397 EP 1408 DI 10.4208/cicp.scpde14.33s PG 12 WC Physics, Mathematical SC Physics GA DM6JA UT WOS:000376456600015 ER PT J AU Holmes, SM AF Major Holmes, Sue TI A new approach to glass-metal joints SO DYNA LA Spanish DT Article C1 [Major Holmes, Sue] Sandia Labs, Albuquerque, NM 87123 USA. RP Holmes, SM (reprint author), Sandia Labs, Albuquerque, NM 87123 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERACION ASOCIACIONES INGENIEROS INDUSTRIALES ESPANA PI BILBAO PA ALAMEDA DE MAZARREDO, BILBAO, 69-48009, SPAIN SN 0012-7361 EI 1989-1490 J9 DYNA-BILBAO JI Dyna PD MAY-JUN PY 2016 VL 91 IS 3 BP 245 EP 246 PG 2 WC Engineering, Multidisciplinary SC Engineering GA DM2MI UT WOS:000376180500004 ER PT J AU Khadilkar, AB Rozelle, PL Pisupati, SV AF Khadilkar, Aditi B. Rozelle, Peter L. Pisupati, Sarma V. TI Review of Particle Physics and Chemistry in Fluidized Beds for Development of Comprehensive Ash Agglomeration Prediction Models SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 16th International Conference on Petroleum Phase Behavior and Fouling (PetroPhase) CY JUN 07-11, 2015 CL Playa del Carmen, MEXICO ID GAS-SOLID FLOW; COAL ASH; KINETIC-THEORY; MELT GRANULATION; SINTERING PROPENSITY; CHEMICAL-COMPOSITION; POPULATION BALANCES; BIOMASS COMBUSTION; HIGH-TEMPERATURES; CFBC BOILERS AB This work elucidates the fundamental concepts that are essential to understand fluidized bed agglomeration and reviews the development of tools used to predict it. The process of agglomeration in fluidized bed combustion and gasification systems has been explained, along with the associated mechanisms. The ash chemistry and particle physics that influence the agglomeration process have been reviewed to help choose the type of fuel and reactor configurations that can minimize the problem. The parameters that affect agglomeration and their interdependence have been reviewed in detail in order to understand the demands placed on detection, modeling, and prediction tools. Further, the current status of various prediction methods, their challenges, and avenues for further development have been identified. Insights into the development of comprehensive mathematical models to predict agglomerate growth kinetics have also been provided. C1 [Khadilkar, Aditi B.; Pisupati, Sarma V.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Khadilkar, Aditi B.; Pisupati, Sarma V.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Rozelle, Peter L.] US DOE, Off Fossil Energy, FE-221,Germantown Bldg,1000 Independence Ave SW, Washington, DC 20585 USA. RP Pisupati, SV (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA.; Pisupati, SV (reprint author), Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. EM sxp17@psu.edu NR 142 TC 0 Z9 0 U1 7 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAY PY 2016 VL 30 IS 5 BP 3714 EP 3734 DI 10.1021/acs.energyfuels.6b00079 PG 21 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DM5VF UT WOS:000376417600018 ER PT J AU Wen, H Li, L Crandall, D Hakala, A AF Wen, Hang Li, Li Crandall, Dustin Hakala, Alexandra TI Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Dissolution SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 16th International Conference on Petroleum Phase Behavior and Fouling (PetroPhase) CY JUN 07-11, 2015 CL Playa del Carmen, MEXICO ID ROUGH-WALLED FRACTURES; LOCAL CUBIC LAW; FLUID-FLOW; SINGLE FRACTURE; HYDROTHERMAL CONDITIONS; NUMERICAL-SIMULATION; POROUS-MEDIA; TRACER TESTS; PERMEABILITY; TRANSPORT AB Fractured rocks are essential for flow, solute transport and energy production in geosystems. Existing studies on mineral reactions in fractured rocks mostly consider single mineral systems where reactions occur at the fracture wall without changing rock matrix properties. This work presents multicomponent reactive transport numerical experiments in a fractured rock from the Brady's field, a geothermal reservoir at a depth of 1,396 m in the Hot Springs Mountains, Nevada. Initial porosity, permeability, mineral composition (quartz, clay, and calcite), and fracture geometry are based on microscopy characterization and X-ray tomography. The model was calibrated using a CO2-saturated water flooding experiment. Three numerical experiments were carried out with the same initial physical properties however different calcite content. Although total dissolved masses are similar among the three cases, abundant calcite (50% (v/v), calcite50) leads to a localized, thick zone of large porosity increase while low calcite content (10% (v/v), calcite10) creates an extended and narrow zone of small porosity increase resulting in surprisingly larger change in effective transport property. After 300 days of dissolution, effective matrix diffusion coefficients increase by 9.9 and 19.6 times in cakite50 and calcite10, respectively, inducing corresponding 2.1 and 3.2 times rise in the slopes of power law tailing, a measure of transport properties. This counterintuitive results suggest that lower abundance of reactive minerals leads to greater alteration in the fractured media. Detailed analysis show that the effective rates of the fast-dissolving calcite are limited by diffusive transport in the altered matrix and the shape of the altered zone. In contrast, the while effective dissolution of slow-dissolving quartz depends on effective diffusion within the entire rock matrix. Calcite dissolution only occurs at the thin altered unaltered matrix interface of tens of micrometers thickness occupying less than 1% of the total calcite content. In contrast, all quartz are effectively dissolving. This work highlights the importance of mineralogical complexity in determining mineral dissolution and rock matrix property evolution. C1 [Wen, Hang; Li, Li] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Crandall, Dustin; Hakala, Alexandra] Natl Energy Technol Lab, Geol & Environm Syst Directorate, Res & Innovat Ctr, Pittsburgh, PA 15236 USA. RP Li, L (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA.; Li, L (reprint author), Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.; Li, L (reprint author), Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. EM lili@eme.psu.edu RI Li, Li/A-6077-2008 OI Li, Li/0000-0002-1641-3710 NR 95 TC 3 Z9 3 U1 4 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAY PY 2016 VL 30 IS 5 BP 4197 EP 4208 DI 10.1021/acs.energyfuels.5b02932 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DM5VF UT WOS:000376417600070 ER PT J AU Hegre, H Buhaug, H Calvin, KV Nordkvelle, J Waldhoff, ST Gilmore, E AF Hegre, Havard Buhaug, Halvard Calvin, Katherine V. Nordkvelle, Jonas Waldhoff, Stephanie T. Gilmore, Elisabeth TI Forecasting civil conflict along the shared socioeconomic pathways SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE armed conflict; shared socioeconomic pathways; forecasting; climate change mitigation and adaptation ID ARMED CONFLICT; POLITICAL INSTABILITY; CLIMATE-CHANGE; WAR; VARIABILITY; DURATION; RULE AB Climate change and armed civil conflict are both linked to socioeconomic development, although conditions that facilitate peace may not necessarily facilitate mitigation and adaptation to climate change. While economic growth lowers the risk of conflict, it is generally associated with increased greenhouse gas emissions and costs of climate mitigation policies. This study investigates the links between growth, climate change, and conflict by simulating future civil conflict using new scenario data for five alternative socioeconomic pathways with different mitigation and adaptation assumptions, known as the shared socioeconomic pathways (SSPs). We develop a statistical model of the historical effect of key socioeconomic variables on country-specific conflict incidence, 1960-2013. We then forecast the annual incidence of conflict, 2014-2100, along the five SSPs. We find that SSPs with high investments in broad societal development are associated with the largest reduction in conflict risk. This is most pronounced for the least developed countries-poverty alleviation and human capital investments in poor countries are much more effective instruments to attain global peace and stability than further improvements to wealthier economies. Moreover, the SSP that describes a sustainability pathway, which poses the lowest climate change challenges, is as conducive to global peace as the conventional development pathway. C1 [Hegre, Havard; Waldhoff, Stephanie T.] Uppsala Univ, Dept Peace & Conflict Res, POB 541, SE-75105 Uppsala, Sweden. [Hegre, Havard; Buhaug, Halvard; Nordkvelle, Jonas] Peace Res Inst Oslo, POB 9229, NO-0134 Oslo, Norway. [Buhaug, Halvard] Norwegian Univ Sci & Technol, Dept Sociol & Polit Sci, NO-7491 Trondheim, Norway. [Calvin, Katherine V.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20742 USA. [Nordkvelle, Jonas] Univ Oslo, Dept Polit Sci, POB 1072 Blindern, NO-0316 Oslo, Norway. [Gilmore, Elisabeth] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. RP Hegre, H (reprint author), Uppsala Univ, Dept Peace & Conflict Res, POB 541, SE-75105 Uppsala, Sweden.; Hegre, H (reprint author), Peace Res Inst Oslo, POB 9229, NO-0134 Oslo, Norway. EM havard.hegre@pcr.uu.se RI Buhaug, Halvard/E-8814-2011; Hegre, Havard/A-8204-2008 OI Hegre, Havard/0000-0002-5076-0994 FU US Army Research Laboratory; US Army Research Office via the Minerva Initiative grant [W911NF-13-1-0307]; European Research Council [648291]; Research Council of Norway [217995/V10] FX This work is supported by the US Army Research Laboratory and the US Army Research Office via the Minerva Initiative grant no. W911NF-13-1-0307, the European Research Council grant no. 648291, and by the Research Council of Norway grant no. 217995/V10. We acknowledge the assistance of Ryna Cui, Kevin Jones, Idunn Kristiansen, Havard M Nygard, and John Steinbruner. NR 45 TC 5 Z9 5 U1 8 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD MAY PY 2016 VL 11 IS 5 AR 054002 DI 10.1088/1748-9326/11/5/054002 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DM6TC UT WOS:000376484300002 ER PT J AU Isenberg, SL Carter, MD Crow, BS Graham, LA Johnson, D Beninato, N Steele, K Thomas, JD Johnson, RC AF Isenberg, Samantha L. Carter, Melissa D. Crow, Brian S. Graham, Leigh Ann Johnson, Darryl Beninato, Nick Steele, Kandace Thomas, Jerry D. Johnson, Rudolph C. TI Quantification of Hydrazine in Human Urine by HPLC-MS-MS SO JOURNAL OF ANALYTICAL TOXICOLOGY LA English DT Article ID MASS-SPECTROMETRY; HEPATOTOXICITY; METABOLISM; MECHANISM; EXPOSURE; WORKERS AB Currently used on F-16 fighter jets and some space shuttles, hydrazine could be released at toxic levels to humans as a result of an accidental leakage or spill. Lower-level exposures occur in industrial workers or as a result of the use of some pharmaceuticals. A method was developed for the quantitation of hydrazine in human urine and can be extended by dilution with water to cover at least six orders of magnitude, allowing measurement at all clinically significant levels of potential exposure. Urine samples were processed by isotope dilution, filtered, derivatized and then quantified by HPLC-MS-MS. The analytical response ratio was linearly proportional to the urine concentration of hydrazine from 0.0493 to 12.3 ng/mL, with an average correlation coefficientR of 0.9985. Inter-run accuracy for 21 runs, expressed as percent relative error (% RE), was a parts per thousand currency sign14%, and the corresponding precision, expressed as percent relative standard deviation (% RSD), was a parts per thousand currency sign15%. Because this method can provide a quantitative measurement of clinical samples over six orders of magnitude, it can be used to monitor trace amounts of hydrazine exposure as well as industrial and environmental exposure levels. C1 [Isenberg, Samantha L.; Graham, Leigh Ann] Ctr Dis Control & Prevent, Battelle Mem Inst, Atlanta, GA 30341 USA. [Carter, Melissa D.; Crow, Brian S.; Thomas, Jerry D.; Johnson, Rudolph C.] Ctr Dis Control & Prevent, Div Lab Sci, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Johnson, Darryl; Steele, Kandace] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Atlanta, GA 30341 USA. [Beninato, Nick] Chem Threat Analyt Response Sect, Div Sci Lab, New Mexico Dept Hlth, Albuquerque, NM, Mexico. RP Carter, MD (reprint author), Ctr Dis Control & Prevent, Div Lab Sci, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. EM vsm8@cdc.gov FU Centers for Disease Control and Prevention; Oak Ridge Institute for Science and Education FX This work was supported by the Centers for Disease Control and Prevention and the Oak Ridge Institute for Science and Education. NR 34 TC 0 Z9 0 U1 6 U2 12 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0146-4760 EI 1945-2403 J9 J ANAL TOXICOL JI J. Anal. Toxicol. PD MAY PY 2016 VL 40 IS 4 BP 248 EP 254 DI 10.1093/jat/bkw015 PG 7 WC Chemistry, Analytical; Toxicology SC Chemistry; Toxicology GA DM4CL UT WOS:000376293100002 PM 26977107 ER PT J AU Crow, BS Quinones-Gonzalez, J Pantazides, BG Perez, JW Winkeljohn, WR Garton, JW Thomas, JD Blake, TA Johnson, RC AF Crow, Brian S. Quinones-Gonzalez, Jennifer Pantazides, Brooke G. Perez, Jonas W. Winkeljohn, W. Rucks Garton, Joshua W. Thomas, Jerry D. Blake, Thomas A. Johnson, Rudolph C. TI Simultaneous Measurement of 3-Chlorotyrosine and 3,5-Dichlorotyrosine in Whole Blood, Serum and Plasma by Isotope Dilution HPLC-MS-MS SO JOURNAL OF ANALYTICAL TOXICOLOGY LA English DT Article ID CHLORINE GAS; TYROSYL RESIDUES; HYPOCHLOROUS ACID; HUMAN NEUTROPHILS; TRAIN DERAILMENT; MYELOPEROXIDASE; EXPOSURE; QUANTIFICATION; OXIDATION; PRODUCTS AB Chlorine is a public health concern and potential threat due to its high reactivity, ease and scale of production, widespread industrial use, bulk transportation, massive stockpiles and history as a chemical weapon. This work describes a new, sensitive and rapid stable isotope dilution method for the retrospective detection and quantitation of two chlorine adducts. The biomarkers 3-chlorotyrosine (Cl-Tyr) and 3,5-dichlorotyrosine (Cl-2-Tyr) were isolated from the pronase digest of chlorine exposed whole blood, serum or plasma by solid-phase extraction (SPE), separated by reversed-phase HPLC and detected by tandem mass spectrometry (MS-MS). The calibration range is 2.50-1,000 ng/mL (R-2 a parts per thousand yen 0.998) with a lowest reportable limit (LRL) of 2.50 ng/mL for both analytes, an accuracy of a parts per thousand yen93% and an LOD of 0.443 ng/mL for Cl-Tyr and 0.396 ng/mL for Cl-2-Tyr. Inter- and intra-day precision of quality control samples had coefficients of variation of a parts per thousand currency sign10% and a parts per thousand currency sign7.0%, respectively. Blood and serum samples from 200 healthy individuals and 175 individuals with chronic inflammatory disease were analyzed using this method to assess background levels of chlorinated tyrosine adducts. Results from patients with no known inflammatory disease history (healthy) showed baseline levels of < LRL-4.26 ng/mL Cl-Tyr and < LRL Cl-2-Tyr. Patients with inflammatory disease had baseline levels of < LRL-15.4 ng/mL Cl-Tyr and < LRL-5.22 ng/mL Cl-2-Tyr. Blood exposed to 2.02 ppm chlorine gas for 15 min produced 941 ng/mL Cl-Tyr and 223 ng/mL Cl-2-Tyr. This high-throughput method has been developed and analytically validated for the diagnosis of human exposure to chlorine. C1 [Crow, Brian S.; Quinones-Gonzalez, Jennifer; Pantazides, Brooke G.; Perez, Jonas W.; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.] Ctr Dis Control & Prevent, Div Lab Sci, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Winkeljohn, W. Rucks] Battelle Mem Inst, Atlanta, GA 30329 USA. [Garton, Joshua W.] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Atlanta, GA 30341 USA. RP Crow, BS (reprint author), Ctr Dis Control & Prevent, Div Lab Sci, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. EM jgz8@cdc.gov OI Blake, Thomas/0000-0001-8536-9998 FU Centers for Disease Control and Prevention; Office of Public Health Preparedness and Response; Oak Ridge Institute for Science and Education FX This work was supported by the Centers for Disease Control and Prevention, Office of Public Health Preparedness and Response and the Oak Ridge Institute for Science and Education. NR 30 TC 3 Z9 3 U1 6 U2 10 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0146-4760 EI 1945-2403 J9 J ANAL TOXICOL JI J. Anal. Toxicol. PD MAY PY 2016 VL 40 IS 4 BP 264 EP 271 DI 10.1093/jat/bkw011 PG 8 WC Chemistry, Analytical; Toxicology SC Chemistry; Toxicology GA DM4CL UT WOS:000376293100004 PM 26977104 ER PT J AU Sundermann, M Strigari, F Willers, T Weinen, J Liao, YF Tsuei, KD Hiraoka, N Ishii, H Yamaoka, H Mizuki, J Zekko, Y Bauer, ED Sarrao, JL Thompson, JD Lejay, P Muro, Y Yutani, K Takabatake, T Tanaka, A Hollmann, N Tjeng, LH Severing, A AF Sundermann, M. Strigari, F. Willers, T. Weinen, J. Liao, Y. F. Tsuei, K. -D. Hiraoka, N. Ishii, H. Yamaoka, H. Mizuki, J. Zekko, Y. Bauer, E. D. Sarrao, J. L. Thompson, J. D. Lejay, P. Muro, Y. Yutani, K. Takabatake, T. Tanaka, A. Hollmann, N. Tjeng, L. H. Severing, A. TI Quantitative study of the f occupation in CeMIn5 and other cerium compounds with hard X-rays SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Heavy fermion; Valence; Hard X-ray photoelectron spectroscopy; L-edge X-ray absorption; Full multiplet; Single impurity Anderson model ID SURFACE ELECTRONIC-STRUCTURE; ABSORPTION-SPECTROSCOPY; QUANTUM CRITICALITY; CE COMPOUNDS; PHOTOEMISSION; SUPERCONDUCTIVITY; VALENCE; SYSTEM; SCATTERING; PRESSURE AB We present bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES) data of the Ce3d core levels and lifetime-reduced L-edge X-ray absorption spectroscopy (XAS) in the partial fluorescence yield (PFY) mode of the CeMIn5 family with M=Co, Rh, and Ir. The HAXPES data are analyzed quantitatively with a combination of full multiplet and configuration interaction model which allows correcting for the strong plasmons in the CeMIn5 HAXPES data, and reliable weights w(n) of the different f(n) contributions in the ground state are determined. The CeMIn5 results are compared to HAXPES data of other heavy fermion compounds and a systematic decrease of the hybridization strength V-eff from CePd3 to CeRh3B2 to CeRu2Si2 is observed, while it is smallest for the three CeMIn5 compounds. The f-occupation, however, increases in the same sequence and is close to one for the CeMIn5 family. The PFY-XAS data confirm an identical f-occupation in the three CeMIn5 compounds and a phenomenological fit to these PFY-XAS data combined with a configuration interaction model yields consistent results. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Sundermann, M.; Strigari, F.; Willers, T.; Severing, A.] Univ Cologne, Inst Phys 2, Zulpicher Str 77, D-50937 Cologne, Germany. [Weinen, J.; Hollmann, N.; Tjeng, L. H.] Max Planck Inst Chem Phys Solids, Nothnizer Str 40, D-01187 Dresden, Germany. [Liao, Y. F.; Tsuei, K. -D.; Hiraoka, N.; Ishii, H.] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu 30077, Taiwan. [Yamaoka, H.] RIKEN SPring 8 Ctr, 1-1-1 Kouto, Sayo, Hyogo 6795148, Japan. [Mizuki, J.] Japan Atom Energy Agcy, SPring 8,1-1-1 Kouto, Sayo, Hyogo 6795148, Japan. [Mizuki, J.; Zekko, Y.] Kwansei Gakuin Univ, Grad Sch Sci & Technol, Sanda, Hyogo 6691337, Japan. [Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Lejay, P.] CNRS, Inst NEEL, 25 Rue Martyrs, F-38042 Grenoble 9, France. [Muro, Y.] Toyama Prefectural Univ, Fac Engn, Izumi 9390398, Japan. [Yutani, K.; Takabatake, T.; Tanaka, A.] Hiroshima Univ, AdSM, Dept Quantum Matter, Higashihiroshima 7398530, Japan. [Takabatake, T.] Hiroshima Univ, Inst Adv Mat Res, Higashihiroshima 7398530, Japan. RP Sundermann, M; Severing, A (reprint author), Univ Cologne, Inst Phys 2, Zulpicher Str 77, D-50937 Cologne, Germany. EM sundermann@ph2.uni-koeln.de; severing@ph2.uni-koeln.de RI Takabatake, Toshiro/L-2882-2014; OI Takabatake, Toshiro/0000-0002-3293-8592; Bauer, Eric/0000-0003-0017-1937 FU DFG [600575]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX For M.S., F.S. and A.S. this work was supported by DFG through project 600575. We thank S. Wirth for fruitful discussions and reading the manuscript. The PFY experiment was performed under the approvals with Japan Synchrotron Radiation Research Institute (Proposal No. 2011A4254, 2012A4252, 2012B4251) and National Synchrotron Radiation Research Center, Taiwan (2011-2-053, 2012-3-078). Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 70 TC 0 Z9 0 U1 9 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD MAY PY 2016 VL 209 BP 1 EP 8 DI 10.1016/j.elspec.2016.02.002 PG 8 WC Spectroscopy SC Spectroscopy GA DM7NK UT WOS:000376547100001 ER PT J AU Montgomery, BL Lechno-Yossef, S Kerfeld, CA AF Montgomery, Beronda L. Lechno-Yossef, Sigal Kerfeld, Cheryl A. TI Interrelated modules in cyanobacterial photosynthesis: the carbon-concentrating mechanism, photorespiration, and light perception SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Carbon-concentrating mechanisms; complementary chromatic acclimation; cyanobacteria; module; photoreceptor; photorespiration; photosynthesis; phytochrome ID COMPLEMENTARY CHROMATIC ADAPTATION; BICARBONATE TRANSPORTER OPERON; LOW CO2-INDUCED ACTIVATION; FREMYELLA-DIPLOSIPHON; ARABIDOPSIS-THALIANA; MALATE-DEHYDROGENASE; CELLULAR MORPHOLOGY; CARBOXYSOME SHELL; GENE-EXPRESSION; PCC 6803 AB Inorganic carbon uptake and photorespiratory pathway genes in Fremyella are affected by the cyanobacteriochrome regulator of chromatic acclimation RcaE, suggesting that there is interplay among photorespiration, light reactions, and the CCM.Here we consider the cyanobacterial carbon-concentrating mechanism (CCM) and photorespiration in the context of the regulation of light harvesting, using a conceptual framework borrowed from engineering: modularity. Broadly speaking, biological 'modules' are semi-autonomous functional units such as protein domains, operons, metabolic pathways, and (sub)cellular compartments. They are increasingly recognized as units of both evolution and engineering. Modules may be connected by metabolites, such as NADPH, ATP, and 2PG. While the Calvin-Benson-Bassham Cycle and photorespiratory salvage pathways can be considered as metabolic modules, the carboxysome, the core of the cyanobacterial CCM, is both a structural and a metabolic module. In photosynthetic organisms, which use light cues to adapt to the external environment and which tune the photosystems to provide the ATP and reducing power for carbon fixation, light-regulated modules are critical. The primary enzyme of carbon fixation, RuBisCO, uses CO2 as a substrate, which is accumulated via the CCM. However RuBisCO also has a secondary reaction in which it utilizes O-2, a by-product of the photochemical modules, which leads to photorespiration. A complete understanding of the interplay among CCM and photorespiration is predicated on uncovering their connections to the light reactions and the regulatory factors and pathways that tune these modules to external cues. We probe this connection by investigating light inputs into the CCM and photorespiratory pathways in the chromatically acclimating cyanobacterium Fremyella diplosiphon. C1 [Montgomery, Beronda L.; Lechno-Yossef, Sigal; Kerfeld, Cheryl A.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Montgomery, Beronda L.; Kerfeld, Cheryl A.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Kerfeld, CA (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.; Kerfeld, CA (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.; Kerfeld, CA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.; Kerfeld, CA (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM ckerfeld@lbl.gov FU Office of Science of the US. Department of Energy [DE-FG02-91ER20021] FX This research was supported by the Office of Science of the US. Department of Energy DE-FG02-91ER20021 with infrastructure support from MSU AgBIO Research. NR 77 TC 1 Z9 1 U1 12 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD MAY PY 2016 VL 67 IS 10 SI SI BP 2931 EP 2940 DI 10.1093/jxb/erw162 PG 10 WC Plant Sciences SC Plant Sciences GA DM9BH UT WOS:000376658300004 PM 27117337 ER PT J AU Bukovsky, EV Larson, BW Clikeman, TT Chen, YS Popov, AA Boltalina, OV Strauss, SH AF Bukovsky, Eric V. Larson, Bryon W. Clikeman, Tyler T. Chen, Yu-Sheng Popov, Alexey A. Boltalina, Olga V. Strauss, Steven H. TI Structures and structure-related electronic properties of new C-60(CF3)(10) isomers SO JOURNAL OF FLUORINE CHEMISTRY LA English DT Article DE Fullerene; Trifluoromethyl; Perfluoroalkyl; X-ray structure; Isomers; Molecular structure; Electronic structure ID HIGHLY FLUORINATED FULLERENES; X-RAY; TRIFLUOROMETHYL DERIVATIVES; PHOTOELECTRON-SPECTROSCOPY; STRUCTURE ELUCIDATION; CAGE ISOMERS; F-19 NMR; C-60; STABILITY; DFT AB The largest collection of well-characterized homoleptic fullerene derivatives C-60(X)(n) is for X = CF3 and n = 2-18. The largest subset of these with a given composition is the set of 27 isomers of C-60(CF3)(10). The X-ray structures of five of them were reported previously. In this paper we report the X-ray structures of, and extensive DFT calculations on, eight additional C-60(CF3)(10) isomers and the electrochemical reduction potentials of eight of the (now) 13 structurally-characterized isomers. The connections between their molecular structures (i.e., their addition patterns), the positions, extents of delocalization, and relative energies of their DFT-predicted LUMOs, and their first reduction potentials are compared and contrasted with each other and with the previously reported isomers. It is shown that addition patterns that produce the greatest number of non-terminal double bonds in fullerene pentagons are the best electron acceptors and tend to exhibit relatively small HOMO-LUMO gaps. A detailed analysis of the nearest-neighbor packing patterns in the 13 X-ray structures reveals significant differences in the number of nearest neighbor fullerene molecules and differences in the ranges of fullerene centroid...centroid distances even when the number of nearest neighbors is constant. Nevertheless, ten solvent-free structures exhibit nearly equally-efficient lattice packing arrays as far as crystal density is concerned. When the addition pattern results in two sterically-accessible C(sp(2))(6) hexagons on the fullerene surface, a one-dimensional chain of electronically-coupled nearest-neighbor C-60(CF3)(10) molecules is formed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Bukovsky, Eric V.; Larson, Bryon W.; Clikeman, Tyler T.; Boltalina, Olga V.; Strauss, Steven H.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Chen, Yu-Sheng] Univ Chicago, Adv Photon Source, ChemMatCARS, Argonne, IL 60439 USA. [Popov, Alexey A.] Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany. RP Boltalina, OV; Strauss, SH (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA.; Popov, AA (reprint author), Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany. EM ebukovsky@gmail.com; bwlarson@gmail.com; yschen@cars.uchicago.edu; a.popov@ifw-dresden.de; olga.boltalina@colostate.edu; steven.strauss@colostate.edu RI Popov, Alexey/A-9937-2011 OI Popov, Alexey/0000-0002-7596-0378 FU DFG [PO 1602/1-2]; European Research Council under the European Union [648295]; U.S. National Science Foundation [CHE 1362302]; Colorado State University Foundation; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-06CH11357] FX We thank Igor Kuvychko for assistance with X-ray data collection at the Advanced Photon Source and Ulrike Nitzsche for help with local computational resources in IFW Dresden. The Center for Information Services and High Performance Computing of Technical University of Dresden is acknowledged for computing time. AAP acknowleges the DFG (projects PO 1602/1-2) and the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 648295 "GraM3") for financial support. OVB and SHS acknowledge the U.S. National Science Foundation (grant CHE 1362302) and the Colorado State University Foundation for financial support. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grant Number NSF/CHE-0822838. The Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-06CH11357. NR 68 TC 0 Z9 0 U1 3 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-1139 EI 1873-3328 J9 J FLUORINE CHEM JI J. Fluor. Chem. PD MAY PY 2016 VL 185 BP 103 EP 117 DI 10.1016/j.jfluchem.2016.02.007 PG 15 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA DM9PB UT WOS:000376697100011 ER PT J AU Rao, PK Kong, ZY Duty, CE Smith, RJ Kunc, V Love, LJ AF Rao, Prahalad K. Kong, Zhenyu Duty, Chad E. Smith, Rachel J. Kunc, Vlastimil Love, Lonnie J. TI Assessment of Dimensional Integrity and Spatial Defect Localization in Additive Manufacturing Using Spectral Graph Theory SO JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE additive manufacturing (AM); fused filament fabrication (FFF); dimensional integrity; geometric deviations; 3D point cloud data; defect localization; spectral graph theory; Fiedler number ID MEDICAL APPLICATIONS; ACCURACY; BENCHMARKING; METROLOGY AB The ability of additive manufacturing (AM) processes to produce components with virtually any geometry presents a unique challenge in terms of quantifying the dimensional quality of the part. In this paper, a novel spectral graph theory (SGT) approach is proposed for resolving the following critical quality assurance concern in the AM: how to quantify the relative deviation in dimensional integrity of complex AM components. Here, the SGT approach is demonstrated for classifying the dimensional integrity of standardized test components. The SGT-based topological invariant Fiedler number (lambda(2)) was calculated from 3D point cloud coordinate measurements and used to quantify the dimensional integrity of test components. The Fiedler number was found to differ significantly for parts originating from different AM processes (statistical significance p-value <1%). By comparison, prevalent dimensional integrity assessment techniques, such as traditional statistical quantifiers (e.g., mean and standard deviation) and examination of specific facets/landmarks failed to capture part-to-part variations, proved incapable of ranking the quality of test AM components in a consistent manner. In contrast, the SGT approach was able to consistently rank the quality of the AM components with a high degree of statistical confidence independent of sampling technique used. Consequently, from a practical standpoint, the SGT approach can be a powerful tool for assessing the dimensional integrity of the AM components, and thus encourage wider adoption of the AM capabilities. C1 [Rao, Prahalad K.] SUNY Binghamton, Dept Syst Sci & Ind Engn, Binghamton, NY 13902 USA. [Kong, Zhenyu] Virginia Tech, Grado Dept Ind & Syst Engn, Blacksburg, VA 24061 USA. [Duty, Chad E.; Kunc, Vlastimil; Love, Lonnie J.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Duty, Chad E.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Smith, Rachel J.] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92617 USA. RP Kong, ZY (reprint author), Virginia Tech, Grado Dept Ind & Syst Engn, Blacksburg, VA 24061 USA. EM zkong@vt.edu RI Kunc, Vlastimil/E-8270-2017; Love, Lonnie/P-3010-2015 OI Kunc, Vlastimil/0000-0003-4405-7917; Love, Lonnie/0000-0002-5934-7135 FU National Science Foundation CMMI [1436592]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC FX This research was sponsored by the following federal research Grant Nos.: National Science Foundation CMMI 1436592; and U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. We thank the journal associate editor and the three anonymous reviewers for their helpful suggestions. NR 32 TC 2 Z9 2 U1 5 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1087-1357 EI 1528-8935 J9 J MANUF SCI E-T ASME JI J. Manuf. Sci. Eng.-Trans. ASME PD MAY PY 2016 VL 138 IS 5 AR 051007 DI 10.1115/1.4031574 PG 12 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA DM8DM UT WOS:000376590900007 ER PT J AU Paik, D Haranczyk, M Kim, J AF Paik, Dooam Haranczyk, Maciej Kim, Jihan TI Towards accurate porosity descriptors based on guest-host interactions SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING LA English DT Article DE Porous material; Void fraction; Surface area; Largest included sphere; Largest free sphere ID METAL-ORGANIC FRAMEWORKS; CRYSTALLINE POROUS MATERIALS; CARBON-DIOXIDE CAPTURE; SURFACE-AREA; AB-INITIO; ADSORPTION; ZEOLITES; STORAGE; CO2; TOOLS AB For nanoporous materials at the characterization level, geometry-based approaches have become the methods of choice to provide information, often encoded in numerical descriptors, about the pores and the channels of a porous material. Examples of most common descriptors of the latter are pore limiting diameters, accessible surface area and accessible volume. The geometry-based methods exploit hard sphere approximation for atoms, which (1) reduces costly computations of the interatomic interactions between the probe guest molecule and the porous material framework atoms, (2) effectively exploit applied mathematics methods such as Voronoi decomposition to represent and characterize porosity. In this work, we revisit and quantify the shortcoming of the geometry-based approaches. To do so, we have developed a series of algorithms to calculate pore descriptors such as void fraction, accessible surface area, pore limiting diameters (largest included sphere, and largest free sphere) based on a classical force field model of interactions between the guest and the framework atoms. Our resulting energy-based methods are tested on diverse sets of metal-organic frameworks and zeolite structures and comparisons against results obtained from geometric-based method indicate deviations in the cases for structures with small pore sizes. The method provides both high accuracy and performance making it suitable when screening a large database of materials. (C) 2016 Elsevier Inc. All rights reserved. C1 [Paik, Dooam; Kim, Jihan] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon, South Korea. [Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Haranczyk, Maciej] IMDEA Mat Inst, Calle Eric Kandel 2, Madrid 28906, Spain. RP Kim, J (reprint author), Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon, South Korea. EM libimor@kaist.ac.kr; mharanczyk@lbl.gov; jihankim@kaist.ac.kr RI Kim, Jihan/H-8002-2013 FU Saudi Aramco-KAIST CO2 Management Center; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362] FX Dooam Paik and Jihan Kim gratefully acknowledge the financial support from Saudi Aramco-KAIST CO2 Management Center. Maciej Haranczyk was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362. NR 32 TC 0 Z9 0 U1 3 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1093-3263 EI 1873-4243 J9 J MOL GRAPH MODEL JI J. Mol. Graph. PD MAY PY 2016 VL 66 BP 91 EP 98 DI 10.1016/j.jmgm.2016.03.007 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Computer Science, Interdisciplinary Applications; Crystallography; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Crystallography; Mathematical & Computational Biology GA DN1DH UT WOS:000376806000011 PM 27054971 ER PT J AU Rockhill, KM Tong, VT Farr, SL Robbins, CL D'Angelo, DV England, LJ AF Rockhill, Karilynn M. Tong, Van T. Farr, Sherry L. Robbins, Cheryl L. D'Angelo, Denise V. England, Lucinda J. TI Postpartum Smoking Relapse After Quitting During Pregnancy: Pregnancy Risk Assessment Monitoring System, 2000-2011 SO JOURNAL OF WOMENS HEALTH LA English DT Article ID UNITED-STATES; PRENATAL SMOKING; WOMEN; CESSATION; ASSOCIATION; PRAMS; BEHAVIOR; HEALTH; TRENDS; SITES AB Background: Relapsing to smoking postpartum jeopardizes a woman's health and her infant's health. Our study estimated the proportion and identified characteristics associated with postpartum relapse using a large population-based sample. Materials and Methods: We analyzed Pregnancy Risk Assessment Monitoring System data among women with live births. Relapse was defined as smoking at survey completion among those who quit by the last 3 months of pregnancy. We assessed linear trends for relapse during 2000-2011 in 40 sites overall and individually using logistic regression. Adjusted prevalence ratios (aPRs) were calculated to assess characteristics associated with relapse during 2009-2011 (n = 13,076). Results: During 2000-2011, the proportion of women who relapsed postpartum remained unchanged overall (p = 0.84) and by site (p >= 0.05 for each), ranging in 2011 from 30.8% to 52.2% (Wyoming-Arkansas). Characteristics associated with relapse compared with reference groups were prepregnancy daily smoking (aPR = 1.80; 95% confidence interval (CI): 1.59-2.04); age < 20 years (aPR = 1.51; 1.24-1.84), 20-24 years (aPR = 1.39; 1.17-1.65), or 25-34 years (aPR = 1.26; 1.07-1.48); not initiating breastfeeding (aPR = 1.34; 1.24-1.44); not having a complete home smoking ban (aPR = 1.27; 1.14-1.42); being black non-Hispanic (aPR = 1.25; 1.14-1.38); being multiparous (aPR = 1.20; 1.11-1.28); experiencing 3-5 stressors during pregnancy (aPR = 1.12; 1.01-1.24); having an unintended pregnancy (aPR = 1.11; 1.03-1.19); and having 12 years of education (aPR = 1.09; 1.01-1.17). Conclusions: There was no change in the proportion of women relapsing postpartum during 2000-2011. In 2011, nearly half (42%) of women relapsed after quitting smoking during pregnancy. Disparities exist by site and by maternal characteristics. A comprehensive approach maximizing tobacco control efforts and developing effective clinical interventions delivered across sectors is necessary for long-term tobacco abstinence among women. C1 [Rockhill, Karilynn M.; Tong, Van T.; Farr, Sherry L.; Robbins, Cheryl L.; D'Angelo, Denise V.] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Div Reprod Hlth, Atlanta, GA USA. [Rockhill, Karilynn M.] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Oak Ridge Inst Sci & Educ, Atlanta, GA USA. [England, Lucinda J.] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Off Smoking & Hlth, Atlanta, GA USA. RP Tong, VT (reprint author), Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Div Reprod Hlth, 4770 Buford Highway NE,MS F-74, Chamblee, GA 30341 USA. EM vct2@cdc.gov NR 37 TC 1 Z9 1 U1 2 U2 3 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1540-9996 EI 1931-843X J9 J WOMENS HEALTH JI J. Womens Health PD MAY PY 2016 VL 25 IS 5 BP 480 EP 488 DI 10.1089/jwh.2015.5244 PG 9 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Obstetrics & Gynecology; Women's Studies SC Public, Environmental & Occupational Health; General & Internal Medicine; Obstetrics & Gynecology; Women's Studies GA DM6QS UT WOS:000376478100012 PM 26717489 ER PT J AU Tselev, A Yu, P Cao, Y Dedon, LR Martin, LW Kalinin, SV Maksymovych, P AF Tselev, Alexander Yu, Pu Cao, Ye Dedon, Liv R. Martin, Lane W. Kalinin, Sergei V. Maksymovych, Petro TI Microwave a.c. conductivity of domain walls in ferroelectric thin films SO NATURE COMMUNICATIONS LA English DT Article ID SOLID-SOLUTION SYSTEM; THERMODYNAMIC THEORY; ATOMIC-SCALE; CHARGE; CONDUCTANCE; CRYSTALS; BATIO3; BIFEO3; MODEL AB Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. C1 [Tselev, Alexander; Cao, Ye; Kalinin, Sergei V.; Maksymovych, Petro] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Yu, Pu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Yu, Pu] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Yu, Pu] RIKEN, CEMS, Wako, Saitama 3510198, Japan. [Dedon, Liv R.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Dedon, Liv R.; Martin, Lane W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Martin, Lane W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tselev, A; Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM atselev@utk.edu; maksymovychp@ornl.gov RI Cao, Ye/L-1271-2016; Tselev, Alexander/L-8579-2015; Martin, Lane/H-2409-2011 OI Cao, Ye/0000-0002-7365-7447; Tselev, Alexander/0000-0002-0098-6696; Martin, Lane/0000-0003-1889-2513 FU Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; National Basic Research Program of China [2015CB921700]; National Natural Science Foundation of China [11274194]; Office of Basic Energy Sciences, US Department of Energy [DE-SC0012375] FX We thank Stuart Friedman for technical support and Ramamoorthy Ramesh for assistance with film growth, and Long-Qing Chen for input in the phase-field model. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US Department of Energy (A.T., S.V.K. and P.M.). Scanning probe measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. P.Y. was financially supported by the National Basic Research Program of China (grant 2015CB921700) and National Natural Science Foundation of China (grant 11274194). L.R.D. and L.W.M. acknowledge support from the Office of Basic Energy Sciences, US Department of Energy under grant no. DE-SC0012375. NR 46 TC 4 Z9 4 U1 26 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11630 DI 10.1038/ncomms11630 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DN1JV UT WOS:000376823000001 PM 27240997 ER PT J AU Rivas-Ubach, A Sardans, J Hodar, JA Garcia-Porta, J Guenther, A Oravec, M Urban, O Penuelas, J AF Rivas-Ubach, A. Sardans, J. Hodar, J. A. Garcia-Porta, J. Guenther, A. Oravec, M. Urban, O. Penuelas, J. TI Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth SO PLANT BIOLOGY LA English DT Article DE Folivory; metabolomics; phenolics; plant-insect; stoichiometry; systemic responses ID THAUMETOPOEA-PITYOCAMPA; ELEMENTAL STOICHIOMETRY; ACQUIRED-RESISTANCE; DEFENSE-MECHANISMS; INSECT HERBIVORES; HYLOBIUS-ABIETIS; PLANT-RESISTANCE; EMISSIONS; DROUGHT; WEEVIL AB Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at element and molecular levels have focused on the elemental composition or/and certain molecular compounds or specific families of defence metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and avoid those with higher levels of defence compounds. We performed stoichiometric and metabolomics, both local and systemic, analyses in two subspecies of Pinus sylvestris under attack from caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Both pine subspecies responded locally to folivory mainly by increasing relative concentrations of terpenes and some phenolics. Systemic responses differed between pine subspecies, and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Our results support the hypothesis that foliar nutrient concentrations are not a key factor for plant selection by adult female processionary moths for oviposition, since folivory was not associated with any of the elements analysed. Phenolic compounds generally did not increase in the attacked trees, questioning the suggestion of induction of phenolics following folivory attack and the anti-feeding properties of phenolics. Herbivory attack produced a general systemic shift in pines, in both primary and secondary metabolism, which was less intense and chemically different from the local responses. Local pine responses were similar between pine subspecies, while systemic responses were more distant. C1 [Rivas-Ubach, A.] Pacific NW Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. [Rivas-Ubach, A.; Sardans, J.; Penuelas, J.] CREAF CEAB CSIC UAB, Global Ecol Unit, CSIC, Cerdanyola Del Valles, Catalonia, Spain. [Rivas-Ubach, A.; Sardans, J.; Penuelas, J.] CREAF, Cerdanyola Del Valles, Catalonia, Spain. [Hodar, J. A.] Univ Granada, Fac Ciencias, Dept Biol Anim & Ecol, Grp Ecol Terr, Granada, Spain. [Garcia-Porta, J.] Univ Pompeu Fabra, CSIC, Inst Evolutionary Biol, Barcelona, Spain. [Guenther, A.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Guenther, A.; Oravec, M.; Urban, O.] Acad Sci Czech Republic, Global Change Res Ctr, Brno, Czech Republic. RP Rivas-Ubach, A (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. EM albert.rivas.ubach@gmail.com RI Urban, Otmar/J-7432-2012; OI Sardans, Jordi/0000-0003-2478-0219; Penuelas, Josep/0000-0002-7215-0150 FU CSIC; European Research Council Synergy grant [SyG-2013-610028 IMBALANCE-P]; Spanish Government [CGL2013-48074-P, OAPN 022/2008]; Catalan Government [SGR 2014-274]; Department of Energy of the United States of America (Environmental Molecular Sciences Laboratori (EMSL)); AS CR [M200871201]; MSMT [CZ.1.07/2.3.00/20.0246] FX The authors thank Karim Senhadji, Laia Mateu-Castell, Sara Ferez, Ander Achotegui-Castells and Joan Llusia for field and laboratory support. ARU appreciates financial support of a research fellowship (JAE) from the CSIC. This research was supported by the European Research Council Synergy grant SyG-2013-610028 IMBALANCE-P, the Spanish Government projects CGL2013-48074-P and OAPN 022/2008 (PROPI-NOL), the Catalan Government project SGR 2014-274 and the Department of Energy of the United States of America (Environmental Molecular Sciences Laboratori (EMSL)). MO and OU were supported by projects M200871201 (AS CR) and CZ.1.07/2.3.00/20.0246 (MSMT). NR 96 TC 3 Z9 3 U1 4 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1435-8603 EI 1438-8677 J9 PLANT BIOLOGY JI Plant Biol. PD MAY PY 2016 VL 18 IS 3 BP 484 EP 494 DI 10.1111/plb.12422 PG 11 WC Plant Sciences SC Plant Sciences GA DJ6UP UT WOS:000374349000016 PM 26642818 ER PT J AU Ramirez, G Cabral, R Patterson, M Schoenbachler, BT Bedell, D Smith, BD Vellozzi, C Beckett, GA AF Ramirez, Gilberto Cabral, Rebecca Patterson, Margaret Schoenbachler, Ben T. Bedell, Deborah Smith, Bryce D. Vellozzi, Claudia Beckett, Geoff A. TI Early Identification and Linkage to Care for People with Chronic HBV and HCV Infection: The HepTLC Initiative SO PUBLIC HEALTH REPORTS LA English DT Article ID C VIRUS-INFECTION; HEPATITIS-B; UNITED-STATES; RECOMMENDATIONS; ACCESS AB Objective. In 2012, CDC's Division of Viral Hepatitis launched a public health initiative to increase hepatitis B virus (HBV) and hepatitis C virus (HCV) infection testing for those at risk and to improve linkage to medical care for those infected. We describe testing outcomes of previously unidentified people at risk for HBV and HCV infection and the lessons learned while linking patients to care. Methods. CDC's Hepatitis Testing and Linkage to Care (HepTLC) initiative provided 34 financial awards to U.S. organizations that serve people at risk for viral hepatitis, 25 of which focused on HCV and nine of which focused on HBV. Grantees offered testing and test result notification to people at risk for HBV and/or HCV infection, as well as counseling, referral, and verification or notification of linkage to care for people with positive test results. We entered demographic data, self-reported risk factors, country of origin (for HBV), and testing outcomes into a confidential database. Results. The 34 grantees tested 87,860 people at more than 260 sites in 17 states. Of the 23,144 people tested for HBV, 1,317 (6%) were positive. Of the 64,716 people tested for HCV, 57,570 (89%) received an HCV antibody (anti-HCV) test, of whom 7,580 (13%) tested anti-HCV positive. Of the 4,765 people who received an HCV RNA test, 3,449 (72%) tested positive. Of the 4,766 people who tested positive for either HBV or HCV infection, 2,116 (44%) were linked to care. Conclusion. Interventions targeting people at risk for HBV and HCV infection reached a substantial number of people for whom testing is recommended and identified a large proportion of those who had previously unrecognized infection. Patient navigation was critical for follow-up and linkage to care. C1 [Ramirez, Gilberto; Cabral, Rebecca; Patterson, Margaret; Bedell, Deborah; Smith, Bryce D.; Vellozzi, Claudia; Beckett, Geoff A.] Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30329 USA. [Schoenbachler, Ben T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Smith, Bryce D.] Ctr Dis Control & Prevent, Div Diabet Translat, Translat Hlth Educ & Evaluat Branch, Atlanta, GA 30329 USA. RP Ramirez, G (reprint author), Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30329 USA. EM ghr0@cdc.gov NR 16 TC 1 Z9 1 U1 0 U2 0 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 5 EP 11 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900002 PM 27168655 ER PT J AU Patel, RC Vellozzi, C Smith, BD AF Patel, Rajiv C. Vellozzi, Claudia Smith, Bryce D. TI Results of Hepatitis C Birth-Cohort Testing and Linkage to Care in Selected US Sites, 2012-2014 SO PUBLIC HEALTH REPORTS LA English DT Article ID VIRUS-INFECTION; UNITED-STATES; EMERGENCY-DEPARTMENT; PERSONS BORN; HIV CARE; PREVALENCE; HCV; MORTALITY; CONTINUUM AB Objective. Following its recommendation for one-time hepatitis C virus (HCV) testing of people born between 1945 and 1965, CDC implemented the Hepatitis Testing and Linkage to Care (HepTLC) initiative to conduct birth-cohort hepatitis testing in U.S. health-care settings. We describe demographic characteristics, HCV infection prevalence, and HCV-related risk factors among people born between 1945 and 1965 who were tested as part of the program, which ran from 2012 to 2014. Methods. As part of the HepTLC initiative, 14 grantees supporting 104 health-care sites in 21 U.S. municipalities tested participants born between 1945 and 1965 for HCV antibody (anti-HCV). Demographic characteristics and HCV risk factors were reported for people tested for anti-HCV and who were anti-HCV or HCV RNA positive. We evaluated outcomes along the HCV testing-to-care continuum using the following indicators: anti-HCV positive, HCV RNA test offered, HCV RNA positive, referred to care, and attended first medical appointment. Results. Among 24,966 people tested for HCV infection, 2,900 (11.6%) were anti-HCV positive. Anti-HCV positivity was highest among those who self-identified as non-Hispanic black (n=1,701 of 12,202, 13.9%), men (n=2,073 of 12,130, 17.1%), and people born between 1951 and 1955 (n=795 of 5,768, 13.8%). Of the 2,900 people testing anti-HCV positive, 2,108 (72.7%) received an HCV RNA test, 1,497 (51.6%) were HCV RNA positive, 1,201 (41.4%) were referred to care, and 938 (32.3%) attended their first appointment. Conclusion. Testing for HCV infection among those born between 1945 and 1965 without soliciting HCV risk factors was successful. Providers implementing birth-cohort testing should develop and evaluate strategies to improve outcomes along the testing-to-care continuum. C1 [Patel, Rajiv C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Vellozzi, Claudia; Smith, Bryce D.] Ctr Dis Control & Prevent, Div Viral Hepatitis, Atlanta, GA 30333 USA. [Smith, Bryce D.] Ctr Dis Control & Prevent, Div Diabet Translat, Translat Hlth Educ & Evaluat Branch, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30333 USA. RP Smith, BD (reprint author), Ctr Dis Control & Prevent, Div Diabet Translat, Translat Hlth Educ & Evaluat Branch, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30333 USA. EM bsmith6@cdc.gov FU CDC FX The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). This study reported on a CDC-funded programmatic activity for which institutional review board approval was waived. NR 30 TC 1 Z9 1 U1 0 U2 0 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 12 EP 19 PG 8 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900003 PM 27168656 ER PT J AU Harris, AM Schoenbachler, BT Ramirez, G Vellozzi, C Beckett, GA AF Harris, Aaron M. Schoenbachler, Ben T. Ramirez, Gilberto Vellozzi, Claudia Beckett, Geoff A. TI Testing and Linking Foreign-Born People with Chronic Hepatitis B Virus Infection to Care at Nine US Programs, 2012-2014 SO PUBLIC HEALTH REPORTS LA English DT Article ID SAN-FRANCISCO; UNITED-STATES; COST-EFFECTIVENESS; KNOWLEDGE; AMERICANS; IDENTIFICATION; COMMUNITIES; CALIFORNIA; ANTIGEN; LINKAGE AB Objective. Hepatitis B virus (HBV) infection continues to be a public health threat in the United States. As many as 2.2 million people are infected, approximately 70% of whom are foreign-born, and fewer than one-third are aware of their infection. We launched an HBV testing and linkage-to-care initiative among foreign-born people. Methods. As part of the Hepatitis Testing and Linkage to Care (HepTLC) initiative, which promoted viral hepatitis B and hepatitis C screening, posttest counseling, and linkage to care at 34 U.S. sites, nine U.S. programs in seven states conducted HBV screening from October 2012 to September 2014. The nine programs partnered with health-care centers and community-based organizations to recruit foreign-born people recommended for HBV testing. We assessed patient characteristics, region of origin, risk factors, hepatitis B surface antigen (HBsAg) status, and referral to medical care. Results. Of 23,144 participants tested for HBV, 1,317 (5.7%) were HBsAg positive. Of these, the median age was 47 years, 1,205 (91%) had at least one risk factor for HBV infection, 1,117 (85%) received posttest counseling, 1,098 (83%) were referred to care, and 606 (46%) attended a first medical appointment. The proportion of HBsAg-positive participants by region of origin included Africa (10%, 206/2,129), Western Pacific (6%, 616/9,673), Eastern Mediterranean (5%, 174/3,337), Southeast Asia (5%, 191/3,891), South America (2%, 6/252), Eastern Europe (2%, 6/262), and North America (1%, 17/1,936). Conclusion. Community-based HBV testing initiatives can identify substantial numbers of people with chronic HBV infection, inform them of their infection status, and provide posttest counseling and linkage to care. However, strategies are needed to improve linkage to HBV-directed medical care for foreign born individuals living with chronic HBV infection. C1 [Harris, Aaron M.; Ramirez, Gilberto; Vellozzi, Claudia; Beckett, Geoff A.] Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30329 USA. [Schoenbachler, Ben T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Harris, AM (reprint author), Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30329 USA. EM amharris@cdc.gov FU African Services Committee in New York, New York; University of California, Davis, Davis, California; Minnesota Department of Health, Saint Paul, Minnesota; Ohio Asian American Health Coalition, Columbus, Ohio; City and County of San Francisco, San Francisco, California; Asian Health Coalition, Chicago, Illinois; University of Florida, Gainesville, Florida; University of California at San Diego, San Diego, California; Multnomah County Health Department, Portland, Oregon; U.S. Department of Health and Human Services Prevention and Public Health Fund; CDC's human subjects office FX The authors thank the following programs for their participation in the Hepatitis Testing and Linkage to Care (HepTLC) initiative: African Services Committee in New York, New York; University of California, Davis, Davis, California; Minnesota Department of Health, Saint Paul, Minnesota; Ohio Asian American Health Coalition, Columbus, Ohio; City and County of San Francisco, San Francisco, California; Asian Health Coalition, Chicago, Illinois; University of Florida, Gainesville, Florida; University of California at San Diego, San Diego, California; and Multnomah County Health Department, Portland, Oregon. The authors thank Deborah Bedell, Margaret Patterson, and Rebecca Cabral from the Centers for Disease Control and Prevention's (CDC's) Division of Viral Hepatitis for their programmatic support throughout this initiative and input into the development of the article.; The HepTLC initiative was supported by the U.S. Department of Health and Human Services Prevention and Public Health Fund. The HepTLC initiative was a programmatic public health activity and received a non-research project determination by CDC's human subjects office. As such, institutional review board review was not required. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of CDC. NR 34 TC 0 Z9 0 U1 1 U2 1 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 20 EP 28 PG 9 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900004 PM 27168657 ER PT J AU Jorgensen, C Chen, S Carnes, CA Block, J Chen, D Caballero, J Moraras, K Cohen, C AF Jorgensen, Cynthia Chen, Sherry Carnes, C. Amanda Block, Joan Chen, Daniel Caballero, Jeffrey Moraras, Kate Cohen, Chari TI "Know Hepatitis B:" A Multilingual Communications Campaign Promoting Testing for Hepatitis B Among Asian Americans and Pacific Islanders SO PUBLIC HEALTH REPORTS LA English DT Article ID VIRUS INFECTION; MANAGEMENT AB The "Know Hepatitis B" campaign was the first national, multilingual communications campaign to promote testing for hepatitis B virus (HBV) among Asian Americans and Pacific Islanders (AAPIs). This population comprises fewer than 5% of the total U.S. population but accounts for more than half of the up to 1.4 million Americans living with chronic HBV infection. To address this health disparity with a national campaign, CDC partnered with Hep B United, a national coalition of community-based partners working to educate AAPIs about hepatitis B and the need for testing. Guided by formative research, the "Know Hepatitis B" campaign was implemented in 2013 with a two pronged communications strategy. CDC used available Chinese, Korean, and Vietnamese media outlets on a national level and relied on Hep B United to incorporate campaign materials into educational efforts at the local level. This partnership helped facilitate HBV testing among the priority population. C1 [Jorgensen, Cynthia; Carnes, C. Amanda] Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30333 USA. [Chen, Sherry; Chen, Daniel; Moraras, Kate; Cohen, Chari] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Block, Joan; Chen, Daniel; Moraras, Kate; Cohen, Chari] Hepatitis B Fdn, Doylestown, PA USA. [Block, Joan; Caballero, Jeffrey] Hep B United, London, England. [Caballero, Jeffrey] Assoc Asian Pacific Community Hlth Org, Oakland, CA USA. RP Jorgensen, C (reprint author), Ctr Dis Control & Prevent, Div Viral Hepatitis, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30333 USA. EM cjorgensen@cdc.gov NR 14 TC 0 Z9 0 U1 1 U2 1 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 35 EP 40 PG 6 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900006 PM 27168659 ER PT J AU Hebert, AJ Lamia, TL Schoenbachler, BT Richardson, AK AF Hebert, Andrew J. Lamia, Tamara L. Schoenbachler, Ben T. Richardson, Ayasha K. TI Data Collection for Monitoring Hepatitis Testing Programs: The HepTLC Data Management System SO PUBLIC HEALTH REPORTS LA English DT Editorial Material C1 [Hebert, Andrew J.; Lamia, Tamara L.; Richardson, Ayasha K.] ICF Int Inc, 3 Corp Blvd,Ste 370, Atlanta, GA 30329 USA. [Schoenbachler, Ben T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Hebert, AJ (reprint author), ICF Int Inc, 3 Corp Blvd,Ste 370, Atlanta, GA 30329 USA. EM andrew.j.hebert.1@gmail.com NR 3 TC 0 Z9 0 U1 0 U2 0 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 41 EP 43 PG 3 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900007 PM 27168660 ER PT J AU Blackburn, NA Patel, RC Zibbell, JE AF Blackburn, Natalie A. Patel, Rajiv C. Zibbell, Jon E. TI Improving Screening Methods for Hepatitis C Among People Who Inject Drugs: Findings from the HepTLC Initiative, 2012-2014 SO PUBLIC HEALTH REPORTS LA English DT Article ID UNITED-STATES; VIRUS; BARRIERS; INFECTION; CARE AB Objective. People who inject drugs (PWID) are at increased risk for hepatitis C virus (HCV) infection. We examined HCV testing outcomes among PWID through CDC's Hepatitis Testing and Linkage to Care initiative, which promoted viral hepatitis B and hepatitis C screening, posttest counseling, and linkage to care at 34 U.S. sites during 2012-2014. Ten grantees in nine geographically diverse cities conducted HCV testing among PWID. Methods. Among those testing positive for HCV antibody (anti-HCV), we calculated the proportion who were offered a confirmatory HCV ribonucleic acid (RNA) test, positively diagnosed, and referred to a specialist for care. We stratified anti-HCV-positive people who completed each step by same-day testing (i.e., an HCV RNA test administered on the same date as an anti-HCV test) vs. person not receiving same-day testing to evaluate whether the need for follow-up testing affected diagnosis of chronic infection and linkage to care. Results. A total of 15,274 people received an anti-HCV test at 84 testing sites targeting PWID. Of those, 11,159 (73%) reported having injected drugs in their lifetime, 7,789 (51%) reported injecting drugs in the past 12 months, and 3,495 (23%) tested anti-HCV positive. A total of 1,630 people received testing for HCV RNA, of whom 1,244 (76%) were HCV RNA positive. When not receiving both tests on the same day, 601 of 2,465 (24%) anti-HCV-positive people received an HCV RNA test. Conclusion. Strategies to diagnose PWID for HCV infection are needed to reduce associated morbidity and mortality. Agencies can substantially increase the number of PWID who are diagnosed and informed of their HCV infection by administering both anti-HCV and HCV RNA tests during a single testing event. C1 [Blackburn, Natalie A.; Patel, Rajiv C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Zibbell, Jon E.] Ctr Dis Control & Prevent, Div Viral Hepatitis, Atlanta, GA 30341 USA. [Zibbell, Jon E.] Ctr Dis Control & Prevent, Div Unintent Injury Prevent, 4770 Buford Hwy NE,MS F-62, Atlanta, GA 30341 USA. RP Zibbell, JE (reprint author), Ctr Dis Control & Prevent, Div Unintent Injury Prevent, 4770 Buford Hwy NE,MS F-62, Atlanta, GA 30341 USA. EM vqu5@cdc.gov NR 26 TC 0 Z9 0 U1 0 U2 0 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 91 EP 97 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900014 PM 27168667 ER PT J AU Schoenbachler, BT Smith, BD Sena, AC Hilton, A Bachman, S Lunda, M Spaulding, AC AF Schoenbachler, Ben T. Smith, Bryce D. Sena, Arlene C. Hilton, Alison Bachman, Sallie Lunda, Mulamba Spaulding, Anne C. TI Hepatitis C Virus Testing and Linkage to Care in North Carolina and South Carolina Jails, 2012-2014 SO PUBLIC HEALTH REPORTS LA English DT Article ID UNITED-STATES; EMERGING EPIDEMIC; HCV INFECTION; SEROPREVALENCE; PREVALENCE; SYSTEM AB Objective. We evaluated a hepatitis C virus (HCV) testing and linkage-to-care post-release program among detainees of small- to medium-sized jails in North Carolina and South Carolina as part of the Hepatitis Testing and Linkage to Care initiative. Methods. An HCV testing and linkage-to-care program was implemented in selected jails in North Carolina and South Carolina from December 2012 to March 2014. Health-care workers not affiliated with the jails conducted HCV antibody (anti-HCV) and HCV ribonucleic acid (RNA) testing and linkage-to-care activities. The North Carolina jail provided universal opt-out testing for HCV; South Carolina jails initially targeted high-risk individuals before expanding to routine testing. Results. Of 669 detainees tested for HCV in North Carolina, 88 (13.2%) tested anti-HCV positive, of whom 81 (92.0%) received an HCV RNA test, 66 (81.5%) of whom tested HCV RNA positive (i.e., currently infected). Of the 66 detainees with current HCV infection, 18 were referred to HCV medical care post-release and 10 attended their first appointment. Of 224 detainees tested for HCV in South Carolina, 18 (8.0%) tested anti-HCV positive, of whom 13 received an HCV RNA test. Nine of 13 detainees tested HCV RNA positive, seven detainees were referred to post-release medical care, and two detainees attended their first appointment. Overall, 106 of 893 (11.9%) detainees were anti-HCV positive. Conclusion. This study demonstrated that HCV testing, identification of infection, and linkage to care are feasible among jail populations. The rate of anti-HCV positivity was lower than that found in national studies of incarcerated populations, suggesting that HCV infection prevalence in jails may vary across U.S. states or regions. C1 [Schoenbachler, Ben T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Smith, Bryce D.] Ctr Dis Control & Prevent, Div Viral Hepatitis, Atlanta, GA 30333 USA. [Sena, Arlene C.; Hilton, Alison] Durham Cty Dept Publ Hlth, Durham, NC USA. [Sena, Arlene C.] Univ N Carolina, Div Infect Dis, Chapel Hill, NC USA. [Bachman, Sallie] HopeHealth Inc, Orangeburg, SC USA. [Lunda, Mulamba] HopeHealth Inc, Florence, SC USA. [Spaulding, Anne C.] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA. [Spaulding, Anne C.] Emory Univ, Sch Med, Dept Med, Div Infect Dis, Atlanta, GA USA. RP Schoenbachler, BT (reprint author), Ctr Dis Control & Prevent, 1600 Clifton Rd NE,MS G-37, Atlanta, GA 30333 USA. EM xmr7@cdc.gov NR 25 TC 2 Z9 2 U1 0 U2 0 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1900 M ST NW, STE 710, WASHINGTON, DC 20036 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2016 VL 131 SU 2 BP 98 EP 104 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DM3AJ UT WOS:000376218900015 PM 27168668 ER PT J AU Chang, PY Cucinotta, FA Bjornstad, KA Bakke, J Rosen, CJ Du, N Fairchild, DG Cacao, E Blakely, EA AF Chang, Polly Y. Cucinotta, Francis A. Bjornstad, Kathleen A. Bakke, James Rosen, Chris J. Du, Nicholas Fairchild, David G. Cacao, Eliedonna Blakely, Eleanor A. TI Harderian Gland Tumorigenesis: Low-Dose and LET Response SO RADIATION RESEARCH LA English DT Article ID INDUCED GENOMIC INSTABILITY; INITIATION-PROMOTION MODEL; SPACE-RADIATION; CHROMOSOMAL-ABERRATIONS; IONIZING-RADIATION; TUMOR PREVALENCE; COSMIC-RADIATION; IN-VIVO; MICE; PARTICLE AB Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/mu m. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET similar to 70 keV/mu m) and 1,000 MeV/u titanium (LET similar to 100 keV/mu m) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the results from single 0.13 or 0.26 Gy acute titanium exposures. Theoretical modeling of the data show that a nontargeted effect model provides a better fit than the targeted effect model, providing important information at space-relevant doses of heavy ions. (C) 2016 by Radiation Research Society C1 [Chang, Polly Y.; Bakke, James; Rosen, Chris J.] SRI Int, Biosci Div, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. [Chang, Polly Y.; Bjornstad, Kathleen A.; Du, Nicholas; Fairchild, David G.; Blakely, Eleanor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Cucinotta, Francis A.; Cacao, Eliedonna] Univ Nevada, Dept Hlth Phys & Diagnost Sci, Las Vegas, NV 89154 USA. RP Blakely, EA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Biosci Area, Berkeley, CA 94720 USA. EM EABlakely@lbl.gov FU NASA [NNJ11HA94I]; U.S. Department of Energy Office of Science (BER) [DE-AC02-05CH11231]; U.S. Department of Energy [DE-SC0012640] FX The authors would like to acknowledge the support of Peter Guida, Adam Rusek, MaryAnn Petry and their staff at Brookhaven National Laboratory for their support in helping us conduct our particle radiation studies, and to Ms. Lori Chappell for support on power calculations early on in the study. The authors would also like to acknowledge the outstanding technical and animal care support by the staff at LBNL and at SRI International. This research was supported by NASA [Grant no. NNJ11HA94I (EAB)], under the auspices of the U.S. Department of Energy Office of Science (BER) under Contract No. DE-AC02-05CH11231, and by the U.S. Department of Energy [Low Dose Grant No. DE-SC0012640 (FAC)]. NR 46 TC 1 Z9 1 U1 1 U2 2 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD MAY PY 2016 VL 185 IS 5 BP 449 EP 460 DI 10.1667/RR14335.1 PG 12 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA DN0LI UT WOS:000376755000002 PM 27092765 ER PT J AU Livescu, D Ryu, J AF Livescu, D. Ryu, J. TI Vorticity dynamics after the shock-turbulence interaction SO SHOCK WAVES LA English DT Article DE Compressible turbulence; Shock-turbulence interaction; Vorticity; LIA; DNS; Lamb vector ID HOMOGENEOUS TURBULENCE; ISOTROPIC TURBULENCE; SCALAR GRADIENT; SHEAR-FLOW; ALIGNMENT; STRAIN; WAVE AB The interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756:R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, , up to . It is shown that, as increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock. C1 [Livescu, D.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Ryu, J.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Livescu, D (reprint author), Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. EM livescu@lanl.gov OI Livescu, Daniel/0000-0003-2367-1547 NR 30 TC 1 Z9 1 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-1287 EI 1432-2153 J9 SHOCK WAVES JI Shock Waves PD MAY PY 2016 VL 26 IS 3 BP 241 EP 251 DI 10.1007/s00193-015-0580-5 PG 11 WC Mechanics SC Mechanics GA DM6UP UT WOS:000376488400003 ER PT J AU Leonard, JA Tan, YM Gilbert, M Isaacs, K El-Masri, H AF Leonard, Jeremy A. Tan, Yu-Mei Gilbert, Mary Isaacs, Kristin El-Masri, Hisham TI Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling SO TOXICOLOGICAL SCIENCES LA English DT Article DE thyroid peroxidase; adverse outcome pathway; margin of exposure; PBPK; PD model; high-throughput in vitro assay ID NEWLY DEVELOPED RADIOIMMUNOASSAY; ADVERSE OUTCOME PATHWAYS; THYROPEROXIDASE INHIBITION; TISSUE DISTRIBUTION; ANTITHYROID DRUGS; RAT; TRICLOSAN; HORMONES; PHARMACOKINETICS; METHIMAZOLE AB Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T-4) and triiodothyronine (T-3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T-4 and T-3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses. C1 [Leonard, Jeremy A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Leonard, Jeremy A.; Tan, Yu-Mei; Isaacs, Kristin] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27709 USA. [Gilbert, Mary; El-Masri, Hisham] US EPA, Natl Hlth & Environm Effects Res Lab, 109 TW Alexander Dr Mail Code B105-03, Res Triangle Pk, NC 27709 USA. RP El-Masri, H (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, 109 TW Alexander Dr Mail Code B105-03, Res Triangle Pk, NC 27709 USA. EM el-masri.hisham@epa.gov FU Oak Ridge Institute for Science and Education Research Participation Program at the U.S. EPA FX Jeremy Leonard was funded through the Oak Ridge Institute for Science and Education Research Participation Program at the U.S. EPA. NR 62 TC 0 Z9 0 U1 6 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD MAY PY 2016 VL 151 IS 1 BP 57 EP 70 DI 10.1093/toxsci/kfw022 PG 14 WC Toxicology SC Toxicology GA DM9CU UT WOS:000376662800006 PM 26865668 ER PT J AU Ryan, N Chorley, B Tice, RR Judson, R Corton, JC AF Ryan, Natalia Chorley, Brian Tice, Raymond R. Judson, Richard Corton, J. Christopher TI Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor alpha Modulation in a Microarray Compendium SO TOXICOLOGICAL SCIENCES LA English DT Article DE estrogen receptor; gene expression profiling; MCF-7 cell line; biomarker ID BREAST-CANCER-CELLS; ENDOCRINE-DISRUPTING CHEMICALS; CHIP-SEQ DATA; IN-VITRO; CONNECTIVITY MAP; PROTEIN; TRANSCRIPTION; ACTIVATION; ESTRADIOL; PATHWAYS AB Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor alpha (ER alpha), often modulated by potential endocrine disrupting chemicals. ER alpha biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ER alpha agonists and 3 ER alpha antagonists in ER alpha-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ER alpha as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ER alpha-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ER alpha activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including "very weak" agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ER alpha signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ER alpha gene expression biomarker can accurately identify ER alpha modulators in large collections of microarray data derived from MCF-7 cells. C1 [Ryan, Natalia] US EPA, ORISE, Res Triangle Pk, NC 27711 USA. [Ryan, Natalia; Chorley, Brian; Corton, J. Christopher] US EPA, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA. [Tice, Raymond R.] US EPA, NIEHS, Div Natl Toxicol Program, Res Triangle Pk, NC 27711 USA. [Judson, Richard] US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA. RP Corton, JC (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Integrated Syst Toxicol Div, 109 TW Alexander Dr MD-B143-06, Res Triangle Pk, NC 27711 USA. EM corton.chris@epa.gov FU U.S. EPA; National Institute of Environmental Health Sciences FX The information in this document has been funded in part by the U.S. EPA and by the National Institute of Environmental Health Sciences. NR 59 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD MAY PY 2016 VL 151 IS 1 BP 88 EP 103 DI 10.1093/toxsci/kfw026 PG 16 WC Toxicology SC Toxicology GA DM9CU UT WOS:000376662800008 PM 26865669 ER PT J AU Huang, SZ Chang, JX Huang, Q Chen, YT Leng, GY AF Huang, Shengzhi Chang, Jianxia Huang, Qiang Chen, Yutong Leng, Guoyong TI Quantifying the Relative Contribution of Climate and Human Impacts on Runoff Change Based on the Budyko Hypothesis and SVM Model SO WATER RESOURCES MANAGEMENT LA English DT Article DE The heuristic segmentation method; The Budyko hypothesis; Support vector machine; The wei river basin ID SUPPORT VECTOR MACHINE; RIVER-BASIN; WATER-BALANCE; CHINA; STREAMFLOW; SENSITIVITY; CATCHMENT; REGION AB The Wei River Basin (WRB), the largest tributary of the Yellow River in China, has experienced a noticeable decrease in annual runoff during the last 50 years. Quantifying the relative contributions of climate change and human activities on runoff changes is thus important for local water resources management and sustainable water resources utilizations. In this study, the heuristic segmentation method was first adopted to detect the change points of annual runoff at Linjiacun and Huaxian stations which lies in the middle and lower reaches of the basin, respectively. Then, the Budyko hypothesis and SVM-based model were applied to attribute the detected runoff changes to climate change and human activities. Results showed that: (1) two change points were detected for the annual runoff at the Linjiacun station (1971 and 1993), and Huaxian station (1969 and 1993); (2) based on the Budyko hypothesis, the relative contributions of climate change and human activities to runoff changes at Linjiacun and Huaxian stations are 42.2 %, 57.8 % and 30.5 %, 69.8 %, respectively, whilst those based on the SVM-based model are 45.3 %, 54.7 % and 34.7 %, 65.3 %, respectively. The high consistence between the two approaches indicates that human activities are the dominate factor on historical runoff changes in the WRB. C1 [Huang, Shengzhi; Chang, Jianxia; Huang, Qiang; Chen, Yutong] Xian Univ Technol, State Key Lab Base Ecohydraul Engn Arid Area, Xian 710048, Peoples R China. [Leng, Guoyong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Huang, SZ (reprint author), Xian Univ Technol, State Key Lab Base Ecohydraul Engn Arid Area, Xian 710048, Peoples R China. EM huangshengzhi7788@126.com FU National Department Public Benefit Research Foundation of Ministry of Water Resources [201501058]; National Major Fundamental Research Program [2011CB403306-2] FX This research was supported by National Department Public Benefit Research Foundation of Ministry of Water Resources (201501058) and the National Major Fundamental Research Program (2011CB403306-2). Sincere gratitude is extended to editor and anonymous reviewers for their professional comments and corrections, which greatly improved the presentation of the paper. NR 43 TC 1 Z9 1 U1 8 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-4741 EI 1573-1650 J9 WATER RESOUR MANAG JI Water Resour. Manag. PD MAY PY 2016 VL 30 IS 7 BP 2377 EP 2390 DI 10.1007/s11269-016-1286-x PG 14 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA DK0HO UT WOS:000374593700017 ER PT J AU Mulfort, KL Utschig, LM AF Mulfort, Karen L. Utschig, Lisa M. TI Modular Homogeneous Chromophore-Catalyst Assemblies SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID DRIVEN HYDROGEN-PRODUCTION; CYANOBACTERIAL PHOTOSYSTEM-I; CHARGE SEPARATION DYNAMICS; STRUCTURAL-CHARACTERIZATION; ARTIFICIAL PHOTOSYNTHESIS; PHOTOCATALYTIC SYSTEMS; COBALOXIME CATALYSTS; FUNCTIONAL MODELS; AQUEOUS PROTONS; COMPLEXES AB CONSPECTUS: Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule-nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis. C1 [Mulfort, Karen L.; Utschig, Lisa M.] Argonne Natl Lab, Div Chem Sci & Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Mulfort, KL (reprint author), Argonne Natl Lab, Div Chem Sci & Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mulfort@anl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357] FX The authors gratefully acknowledge support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357. NR 64 TC 3 Z9 3 U1 21 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD MAY PY 2016 VL 49 IS 5 BP 835 EP 843 DI 10.1021/acs.accounts.5b00539 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DM4QI UT WOS:000376331400008 PM 27104312 ER PT J AU Feng, ZX Hong, WT Fong, DD Lee, YL Yacoby, Y Morgan, D Shao-Horn, Y AF Feng, Zhenxing Hong, Wesley T. Fong, Dillon D. Lee, Yueh-Lin Yacoby, Yizhak Morgan, Dane Shao-Horn, Yang TI Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID PEROVSKITE THIN-FILMS; OXYGEN REDUCTION KINETICS; FUEL-CELLS; IN-SITU; STRONTIUM SEGREGATION; EXCHANGE; ENHANCEMENT; INTERFACE; EVOLUTION; (LA,SR)COO3/(LA,SR)(2)COO4 AB Electrocatalysts, play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-delta and (La1-ySry)(2)CoO4 +/-delta/La1-xSrxCoO3-delta oxide thin films, and the physical origin of segregation is discussed in comparison with (La1-ySry)(2)CoO4 +/-delta/La1-xSrxCo0.2Fe0.8O3-delta. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-delta (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3-delta, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst's activity while maintaining stability to design efficient, cost-effective electrocatalysts. C1 [Feng, Zhenxing; Hong, Wesley T.; Lee, Yueh-Lin; Shao-Horn, Yang] MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Feng, Zhenxing; Lee, Yueh-Lin; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Hong, Wesley T.; Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Feng, Zhenxing] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Fong, Dillon D.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lee, Yueh-Lin; Morgan, Dane] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Yacoby, Yizhak] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RP Feng, ZX; Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Feng, ZX; Shao-Horn, Y (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA.; Shao-Horn, Y (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Feng, ZX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM z-feng@u.northwestern.edu; shaohorn@mit.edu RI LEE, YUEH-LIN/F-6274-2011 OI LEE, YUEH-LIN/0000-0003-2477-6412 FU United States Department of Energy (DOE) [SISGR DESC0002633]; King Abdullah University of Science and Technology; U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Israel Science Foundation [1005/11]; DOE, National Energy Technology Laboratory, Solid State Energy Conversion Alliance Core Technology Program [DEFE0009435]; DOE [DE-AC02-06CH11357, CNMS2012-284] FX This work was partially supported by United States Department of Energy (DOE) (No. SISGR DESC0002633) and King Abdullah University of Science and Technology. DDF was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Y.Y. was supported by the Israel Science Foundation (No. 1005/11). Y.L.L. was supported by DOE, National Energy Technology Laboratory, Solid State Energy Conversion Alliance Core Technology Program (No. DEFE0009435). The use of Advanced Photon Source of Argonne National Laboratory is supported by DOE under Contract No. DE-AC02-06CH11357. The use of Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is supported by DOE under Contract No. CNMS2012-284. NR 40 TC 3 Z9 3 U1 49 U2 111 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD MAY PY 2016 VL 49 IS 5 BP 966 EP 973 DI 10.1021/acs.accounts.6b00555 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DM4QI UT WOS:000376331400021 PM 27149528 ER PT J AU Gao, F Zheng, Y Kukkadapu, RK Wang, YL Walter, ED Schwenzer, B Szanyi, J Peden, CHF AF Gao, Feng Zheng, Yang Kukkadapu, Ravi K. Wang, Yilin Walter, Eric D. Schwenzer, Birgit Szanyi, Janos Peden, Charles H. F. TI Iron Loading Effects in Fe/SSZ-13 NH3-SCR Catalysts: Nature of the Fe Ions and Structure-Function Relationships SO ACS CATALYSIS LA English DT Article DE selective catalytic reduction; Fe/SSZ-13; Mossbauer; UV-vis; EPR; temperature programmed desorption; reaction kinetics ID ACTIVE-SITES; EXCHANGED ZEOLITES; NO OXIDATION; MOSSBAUER-SPECTROSCOPY; SELECTIVE REDUCTION; FE-ZSM-5 CATALYSTS; DENO(X) CATALYSTS; REACTION-KINETICS; NITRIC-OXIDE; AMMONIA AB Using a traditional aqueous solution ion exchange method under a protecting atmosphere of N-2, a series of Fe/SSZ-13 catalysts with various Fe loadings were synthesized. UV-vis, EPR, and Mossbauer spectroscopic methods, coupled with temperature-programmed reduction and desorption techniques, were used to probe the nature of the Fe sites. The major Fe species are extraframework Fe(III) species: [Fe(OH)(2)](+) (monomeric) and [HO-Fe-O-Fe-OH](2+) (dimeric). Larger oligomers with unknown nuclearity, poorly crystallized Fe oxide particles, together with isolated Fe2+ ions, are minor Fe-containing moieties. Reaction rate and Fe loading correlations, and temperature and Fe loading effects on SCR selectivities, suggest that isolated Fe3+ ions are the active sites for low-temperature standard SCR, and dimeric sites provide the majority of reactivity at higher temperatures. For NO oxidation, dimeric sites are the active centers. NH3 oxidation, on the other hand, is catalyzed by sites with higher nuclearity. C1 [Gao, Feng; Wang, Yilin; Schwenzer, Birgit; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. [Kukkadapu, Ravi K.; Walter, Eric D.] Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. RP Gao, F; Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM feng.gao@pnnl.gov; chuck.peden@pnnl.gov RI Walter, Eric/P-9329-2016; OI Schwenzer, Birgit/0000-0002-7872-1372 FU U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office; DOE's Office of Biological and Environmental Research; Pacific Northwest National Laboratory (PNNL) FX The authors gratefully acknowledge the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office, for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. Discussions with Drs. A. Yezerets, K. Kamasamudram, N. Currier, Y. H. Zha, and J. Y. Luo from Cummins, Inc., and H. Y. Chen, H. Hess, and Z. H. Wei from Johnson-Matthey are greatly appreciated. The authors thank Dr. Arun Devaraj (PNNL) for atom probe tomography measurements. NR 72 TC 4 Z9 4 U1 21 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAY PY 2016 VL 6 IS 5 BP 2939 EP 2954 DI 10.1021/acscatal.6b00647 PG 16 WC Chemistry, Physical SC Chemistry GA DL8LW UT WOS:000375894500025 ER PT J AU Sener, C Wesley, TS Alba-Rubio, AC Kumbhalkar, MD Hakim, SH Ribeiro, FH Miller, JT Dumesic, JA AF Sener, Canan Wesley, Thejas S. Alba-Rubio, Ana C. Kumbhalkar, Mrunmayi D. Hakim, Sikander H. Ribeiro, Fabio H. Miller, Jeffrey T. Dumesic, James A. TI PtMo Bimetallic Catalysts Synthesized by Controlled Surface Reactions for Water Gas Shift (vol 6, pg 1334, 2016) SO ACS CATALYSIS LA English DT Correction C1 [Sener, Canan; Wesley, Thejas S.; Alba-Rubio, Ana C.; Kumbhalkar, Mrunmayi D.; Hakim, Sikander H.; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. [Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Energy Div, 9700 S Cass Ave,Bldg 200, Argonne, IL 60439 USA. [Sener, Canan; Dumesic, James A.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Dumesic, JA (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA.; Dumesic, JA (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. NR 1 TC 0 Z9 0 U1 6 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAY PY 2016 VL 6 IS 5 BP 3083 EP 3083 DI 10.1021/acscatal.6b00916 PG 1 WC Chemistry, Physical SC Chemistry GA DL8LW UT WOS:000375894500040 ER PT J AU Sener, C Wesley, TS Alba-Rubio, AC Kumbhalkar, MD Hakim, SH Ribeiro, FH Miller, JT Dumesic, JA AF Sener, Canan Wesley, Thejas S. Alba-Rubio, Ana C. Kumbhalkar, Mrunmayi D. Hakim, Sikander H. Ribeiro, Fabio H. Miller, Jeffrey T. Dumesic, James A. TI PtMo Bimetallic Catalysts Synthesized by Controlled Surface Reactions for Water Gas Shift (vol 6, pg 1334, 2016) SO ACS CATALYSIS LA English DT Correction C1 [Sener, Canan; Wesley, Thejas S.; Alba-Rubio, Ana C.; Kumbhalkar, Mrunmayi D.; Hakim, Sikander H.; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. [Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Energy Div, 9700 S Cass Ave,Bldg 200, Argonne, IL 60439 USA. [Sener, Canan; Dumesic, James A.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Dumesic, JA (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA.; Dumesic, JA (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. NR 1 TC 0 Z9 0 U1 8 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAY PY 2016 VL 6 IS 5 BP 3083 EP 3083 PG 1 WC Chemistry, Physical SC Chemistry GA DL8LW UT WOS:000375894500041 ER PT J AU Schwartz, TJ Lyman, SD Motagamwala, AH Mellmer, MA Dumesic, JA AF Schwartz, Thomas J. Lyman, Spencer D. Motagamwala, Ali Hussain Mellmer, Max A. Dumesic, James A. TI Selective Hydrogenation of Unsaturated Carbon-Carbon Bonds in Aromatic-Containing Platform Molecules (vol 6, pg 2047, 2016) SO ACS CATALYSIS LA English DT Correction C1 [Schwartz, Thomas J.] Univ Maine, Dept Chem & Biol Engn, Orono, ME 04469 USA. [Schwartz, Thomas J.; Lyman, Spencer D.; Motagamwala, Ali Hussain; Mellmer, Max A.; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Motagamwala, Ali Hussain; Mellmer, Max A.; Dumesic, James A.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Dumesic, JA (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.; Dumesic, JA (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. OI Schwartz, Thomas/0000-0002-2788-8519 NR 1 TC 0 Z9 0 U1 8 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAY PY 2016 VL 6 IS 5 BP 3127 EP 3127 DI 10.1021/acscatal.6b00915 PG 1 WC Chemistry, Physical SC Chemistry GA DL8LW UT WOS:000375894500048 ER PT J AU Pruski, M Sadow, AD Slowing, II Marshall, CL Stair, P Rodriguez, J Harris, A Somorjai, GA Biener, J Matranga, C Wang, CJ Schaidle, JA Beckham, GT Ruddy, DA Deutsch, T Alia, SM Narula, C Overbury, S Toops, T Bullock, RM Peden, CHF Wang, Y Allendorf, MD Norskov, J Bligaard, T AF Pruski, Marek Sadow, Aaron D. Slowing, Igor I. Marshall, Christopher L. Stair, Peter Rodriguez, Jose Harris, Alex Somorjai, Gabor A. Biener, Juergen Matranga, Christopher Wang, Congjun Schaidle, Joshua A. Beckham, Gregg T. Ruddy, Daniel A. Deutsch, Todd Alia, Shaun M. Narula, Chaitanya Overbury, Steve Toops, Todd Bullock, R. Morris Peden, Charles H. F. Wang, Yong Allendorf, Mark D. Norskov, Jens Bligaard, Thomas TI Virtual Special Issue on Catalysis at the US Department of Energy's National Laboratories SO ACS CATALYSIS LA English DT Editorial Material ID ATOMIC LAYER DEPOSITION; GAS SHIFT REACTION; HYDROGEN EVOLUTION REACTION; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; IN-SITU; WATER-GAS; CO OXIDATION; SURFACE-CHEMISTRY; MOLECULAR ELECTROCATALYSTS C1 [Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.] Ames Lab, Ames, IA 50011 USA. [Marshall, Christopher L.; Stair, Peter] Argonne Natl Lab, Argonne, IL 60439 USA. [Rodriguez, Jose; Harris, Alex] Brookhaven Natl Lab, Upton, NY 11973 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Biener, Juergen] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Matranga, Christopher; Wang, Congjun] Natl Energy Technol Lab, S Park Township, PA 15129 USA. [Schaidle, Joshua A.; Beckham, Gregg T.; Ruddy, Daniel A.; Deutsch, Todd; Alia, Shaun M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Narula, Chaitanya; Overbury, Steve; Toops, Todd] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bullock, R. Morris; Peden, Charles H. F.; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA. [Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94550 USA. [Norskov, Jens; Bligaard, Thomas] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yong.wang@pnnl.gov RI Bullock, R. Morris/L-6802-2016; Norskov, Jens/D-2539-2017; OI Bullock, R. Morris/0000-0001-6306-4851; Norskov, Jens/0000-0002-4427-7728; Slowing, Igor/0000-0002-9319-8639; Deutsch, Todd/0000-0001-6577-1226 NR 134 TC 0 Z9 0 U1 31 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAY PY 2016 VL 6 IS 5 BP 3227 EP 3235 DI 10.1021/acscatal.6b00823 PG 9 WC Chemistry, Physical SC Chemistry GA DL8LW UT WOS:000375894500060 ER PT J AU Liu, SQ Senses, E Jiao, Y Narayanan, S Akcora, P AF Liu, Siqi Senses, Erkan Jiao, Yang Narayanan, Suresh Akcora, Pinar TI Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles SO ACS MACRO LETTERS LA English DT Article ID VISCOSITY; FILMS; MELTS AB Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure-dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. This work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. Particles within highly ordered strings and aggregated systems experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics is diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer. C1 [Liu, Siqi; Senses, Erkan; Jiao, Yang; Akcora, Pinar] Stevens Inst Technol, Dept Chem Engn & Mat Sci, Hoboken, NJ 07030 USA. [Narayanan, Suresh] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Akcora, P (reprint author), Stevens Inst Technol, Dept Chem Engn & Mat Sci, Hoboken, NJ 07030 USA. EM pakcora@stevens.edu FU NSF-DMR CAREER grant [1048865]; DOE Office of Science [DE-AC02-06CH11357] FX We acknowledge financial support from NSF-DMR CAREER grant (#1048865). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 25 TC 1 Z9 1 U1 13 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD MAY PY 2016 VL 5 IS 5 BP 569 EP 573 DI 10.1021/acsmacrolett.6b00089 PG 5 WC Polymer Science SC Polymer Science GA DM3DA UT WOS:000376225800004 ER PT J AU Xiong, YJ Ford, NR Hecht, KA Roesijadi, G Squier, TC AF Xiong, Yijia Ford, Nicole R. Hecht, Karen A. Roesijadi, Guritno Squier, Thomas C. TI Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices SO BIOCONJUGATE CHEMISTRY LA English DT Article ID GREEN FLUORESCENT PROTEIN; THALASSIOSIRA-PSEUDONANA; SILICA IMMOBILIZATION; ANTIBODY FRAGMENTS; 2,4,6-TRINITROTOLUENE; ANISOTROPY; DIFFUSION; SILAFFINS; RECOVERY; ENZYMES AB Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3(T8)) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. Like proteins in solution, proteins within isolated frustules undergo isotropic rotational motion, but with 2-fold increases in rotational correlation times that are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibodies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). Together, these results argue that dramatic increases in protein conformational stability within the biosilica matrices arise through molecular crowding, acting to retain native protein folds and associated functionality with the potential to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations. C1 [Ford, Nicole R.; Hecht, Karen A.; Roesijadi, Guritno] Pacific NW Natl Lab, Marine Biotechnol Grp, Sequim, WA 98382 USA. [Roesijadi, Guritno] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Xiong, Yijia; Squier, Thomas C.] Western Univ Hlth Sci, Dept Basic Med Sci, Lebanon, OR 97355 USA. RP Squier, TC (reprint author), Western Univ Hlth Sci, Dept Basic Med Sci, Lebanon, OR 97355 USA. EM tsquier@westernu.edu FU Defense Threat Reduction Agency; Office of Naval Research FX We thank Drs. Nils Kroger and Nicole Poulsen (CUBE Center for Molecular Bioengineering, Dresden, DE) for providing Sil3 clones and Drs. Ellen Goldman and Igor Medintz (Naval Research Laboratory, Washington D.C.) for providing clones for the scFv and assistance in preparing the fluorescent TNT surrogate compounds. This work was supported by the Defense Threat Reduction Agency (G.R. and T.C.S.) and Office of Naval Research (G.R.). NR 31 TC 1 Z9 1 U1 4 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD MAY PY 2016 VL 27 IS 5 BP 1205 EP 1209 DI 10.1021/acs.bioconjchem.6b00165 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA DM4QL UT WOS:000376331700004 PM 27139003 ER PT J AU Zhang, YM Goldberg, M Tan, E Meyer, PA AF Zhang, Yimin Goldberg, Marshall Tan, Eric Meyer, Pimphan Aye TI Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE Economic impact; job growth; cellulosic biorefinery; construction; operation ID ENVIRONMENTAL SUSTAINABILITY IMPACTS; DESIGNS; SYSTEM AB The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the construction of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. Our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries. (C) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Zhang, Yimin; Tan, Eric] Natl Renewable Energy Lab, RSF 300,15013 Denver W Pkwy, Golden, CO 80401 USA. [Goldberg, Marshall] MRG & Associates, Nevada City, NV USA. [Meyer, Pimphan Aye] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, YM (reprint author), Natl Renewable Energy Lab, RSF 300,15013 Denver W Pkwy, Golden, CO 80401 USA. EM yimin.zhang@nrel.gov NR 26 TC 1 Z9 1 U1 8 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAY-JUN PY 2016 VL 10 IS 3 BP 281 EP 298 DI 10.1002/bbb.1637 PG 18 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DM2UZ UT WOS:000376204900018 ER PT J AU Love, TMT Park, SY Giorgi, EE Mack, WJ Perelson, AS Lee, HY AF Love, Tanzy M. T. Park, Sung Yong Giorgi, Elena E. Mack, Wendy J. Perelson, Alan S. Lee, Ha Youn TI SPMM: estimating infection duration of multivariant HIV-1 infections SO BIOINFORMATICS LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; IN-VIVO; INCIDENCE ASSAY; FOUNDER VIRUS; EM ALGORITHM; RECOMBINATION; VARIANTS; DYNAMICS; ANTIBODY; VIREMIA AB Motivation: Illustrating how HIV-1 is transmitted and how it evolves in the following weeks is an important step for developing effective vaccination and prevention strategies. It is currently possible through DNA sequencing to account for the diverse array of viral strains within an infected individual. This provides an unprecedented opportunity to pinpoint when each patient was infected and which viruses were transmitted. Results: Here we develop a mathematical tool for early HIV-1 evolution within a subject whose infection originates either from a single or multiple viral variants. The shifted Poisson mixture model (SPMM) provides a quantitative guideline for segregating viral lineages, which in turn enables us to assess when a subject was infected. The infection duration estimated by SPMM showed a statistically significant linear relationship with that by Fiebig laboratory staging (

right temporoparietal cortex). In conclusion, tau imaging-contrary to amyloid-beta imaging-shows a strong regional association with clinical and anatomical heterogeneity in Alzheimer's disease. Although preliminary, these results are consistent with and expand upon findings from post-mortem, animal and cerebrospinal fluid studies, and suggest that the pathological aggregation of tau is closely linked to patterns of neurodegeneration and clinical manifestations of Alzheimer's disease. C1 [Ossenkoppele, Rik; Schonhaut, Daniel R.; Ayakta, Nagehan; Lazaris, Andreas; Cantwell, Averill; Santos, Miguel; Miller, Zachary A.; Bettcher, Brianne M.; Vossel, Keith A.; Kramer, Joel H.; Gorno-Tempini, Maria L.; Miller, Bruce L.; Rabinovici, Gil D.] Univ Calif San Francisco, Memory & Aging Ctr, 675 Nelson Rising Lane,Suite 190, San Francisco, CA 94158 USA. [Ossenkoppele, Rik; Schonhaut, Daniel R.; Schoell, Michael; Lockhart, Samuel N.; Ayakta, Nagehan; Vogel, Jacob; Jagust, William J.; Rabinovici, Gil D.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Ossenkoppele, Rik] Vrije Univ Amsterdam, Med Ctr, Dept Neurol, Neurosci Campus Amsterdam, Amsterdam, Netherlands. [Ossenkoppele, Rik] Vrije Univ Amsterdam, Med Ctr, Alzheimer Ctr, Neurosci Campus Amsterdam, Amsterdam, Netherlands. [Schoell, Michael] Univ Gothenburg, MedTech West, Gothenburg, Sweden. [Schoell, Michael] Univ Gothenburg, Dept Clin Neurosci & Rehabil, Gothenburg, Sweden. [Baker, Suzanne L.; O'Neil, James P.; Janabi, Mustafa; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bettcher, Brianne M.] Univ Colorado Denver, Rocky Mt Alzheimers Dis Ctr, Dept Neurosurg, Anschutz Med Campus, Aurora, CO USA. [Bettcher, Brianne M.] Univ Colorado Denver, Rocky Mt Alzheimers Dis Ctr, Dept Neurol, Anschutz Med Campus, Aurora, CO USA. RP Ossenkoppele, R (reprint author), Univ Calif San Francisco, Memory & Aging Ctr, 675 Nelson Rising Lane,Suite 190, San Francisco, CA 94158 USA. EM r.ossenkoppele@vumc.nl RI Scholl, Michael/A-4184-2014 OI Scholl, Michael/0000-0001-7800-1781 FU Marie Curie FP7 International Outgoing Fellowship [628812]; BrightFocus Foundation; Tau Consortium; National Institute on Aging [R01-AG045611, R01-AG034570, P50-AG023501, K23-AG038357]; John Douglas French Alzheimer's Foundation; State of California Department of Health Services Alzheimer's Disease Research Centre of California grant [04-33516]; Swedish Medical Association; Swedish Foundation of Nuclear Medicine FX This research was funded by Marie Curie FP7 International Outgoing Fellowship (628812; to R.O.); The donors of (Alzheimer's Disease Research), a program of BrightFocus Foundation (to R.O.); Tau Consortium (to G.D.R. and W.J.J); National Institute on Aging grants (R01-AG045611; to G.D.R.), (R01-AG034570; to W.J.J.), (P50-AG023501; to B.L.M.), and (K23-AG038357; to K.A.V.); John Douglas French Alzheimer's Foundation (to G.D.R. and B.L.M.); State of California Department of Health Services Alzheimer's Disease Research Centre of California grant (04-33516; to B.L.M); Swedish Medical Association and the Swedish Foundation of Nuclear Medicine (to M.S.). Avid Radiopharmaceuticals enabled use of the 18F-AV1451 tracer, but did not provide direct funding and was not involved in data analysis or interpretation. NR 89 TC 33 Z9 33 U1 3 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-8950 EI 1460-2156 J9 BRAIN JI Brain PD MAY 1 PY 2016 VL 139 BP 1551 EP 1567 DI 10.1093/brain/aww027 PN 5 PG 17 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA DM1LQ UT WOS:000376107200023 PM 26962052 ER PT J AU Tinetti, ME Esterson, J Ferris, R Posner, P Blaum, CS AF Tinetti, Mary E. Esterson, Jessica Ferris, Rosie Posner, Philip Blaum, Caroline S. TI Patient Priority-Directed Decision Making and Care for Older Adults with Multiple Chronic Conditions SO CLINICS IN GERIATRIC MEDICINE LA English DT Article DE Multiple chronic conditions; Fragmented and burdensome care; Patient priorities; Patient's health outcome goals and care preferences; Patient priority-directed care; Current care planning ID HEALTH OUTCOME PRIORITIES; PRACTICE GUIDELINES; CLINICAL-TRIALS; MULTIMORBIDITY; MEDICARE; PREVENTION; BURDEN AB Older adults with multiple conditions receive care that is often fragmented, burdensome, and of unclear benefit. An advisory group of patients, caregivers, clinicians, health system engineers, health care system leaders, payers, and others identified three modifiable contributors to this fragmented, burdensome care: decision making and care focused on diseases, not patients; inadequate delineation of roles and responsibilities and accountability among clinicians; and lack of attention to what matters to patients and caregivers (ie, their health outcome goals and care preferences). The advisory group identified patient priority-directed care as a feasible, sustainable approach to addressing these modifiable factors. C1 [Tinetti, Mary E.; Esterson, Jessica] Yale Univ, Sch Med, Dept Med, Sect Geriatr, 333 Cedar St,POB 208025, New Haven, CT 06520 USA. [Tinetti, Mary E.] Yale Univ, Sch Publ Hlth, 60 Coll St, New Haven, CT 06520 USA. [Ferris, Rosie; Blaum, Caroline S.] NYU, Langone Med Ctr, Dept Med, Div Geriatr Med & Palliat Care, 462 First Ave,C&D Bldg,Room CD612-613, New York, NY 10016 USA. [Ferris, Rosie; Blaum, Caroline S.] NYU, Langone Med Ctr, Dept Populat Hlth, 550 First Ave,BCD612, New York, NY 10016 USA. [Posner, Philip] Oak Ridge Associated Univ, Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. RP Tinetti, ME (reprint author), Yale Univ, Sch Med, New Haven, CT USA. EM mary.tinetti@yale.edu FU John A. Hartford Foundation; Patient-Centered Outcomes Research Institute FX Supported by grants from the John A. Hartford Foundation and the Patient-Centered Outcomes Research Institute. NR 36 TC 3 Z9 3 U1 7 U2 7 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0749-0690 EI 1879-8853 J9 CLIN GERIATR MED JI Clin. Geriatr. Med. PD MAY PY 2016 VL 32 IS 2 BP 261 EP + DI 10.1016/j.cger.2016.01.012 PG 16 WC Geriatrics & Gerontology SC Geriatrics & Gerontology GA DM2XZ UT WOS:000376212700005 PM 27113145 ER PT J AU Almohaini, M Chalasani, L Bafail, D Akopiants, K Zhou, T Yannone, SM Ramsden, DA Hartman, MCT Povirk, LF AF Almohaini, Mohammed Chalasani, Lakshmi Bafail, Duaa Akopiants, Konstantin Zhou, Tong Yannone, Steven M. Ramsden, Dale A. Hartman, Matthew C. T. Povirk, Lawrence F. TI Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair SO DNA REPAIR LA English DT Article ID DEPENDENT PROTEIN-KINASE; WHOLE-CELL EXTRACTS; IONIZING-RADIATION; ESCHERICHIA-COLI; ARTEMIS NUCLEASE; MAMMALIAN-CELLS; IV COMPLEX; DAMAGE; POLYMERASE; INDUCTION AB DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSB5 with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. (c) 2016 Elsevier B.V. All rights reserved. C1 [Almohaini, Mohammed; Chalasani, Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Povirk, Lawrence F.] Virginia Commonwealth Univ, Massey Canc Ctr, Dept Pharmacol & Toxicol, Med Coll Virginia Campus, Richmond, VA 23298 USA. [Yannone, Steven M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ramsden, Dale A.] Univ N Carolina, Dept Biochem & Biophys, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Hartman, Matthew C. T.] Virginia Commonwealth Univ, Massey Canc Ctr, Dept Chem, Med Coll Virginia Campus, Richmond, VA 23298 USA. RP Povirk, LF (reprint author), VCU Massey Canc Ctr, 401 Coll St, Richmond, VA 23298 USA. EM LPOVIRK@vcu.edu FU National Cancer Institute, USDHHS [CA40615, CA166264]; Massey Cancer Center [A35320] FX We thank David Pederson for providing hNTH. This work was supported by grants CA40615 and CA166264 from the National Cancer Institute, USDHHS, and by Pilot Project Grant A35320 from Massey Cancer Center. NR 41 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 EI 1568-7856 J9 DNA REPAIR JI DNA Repair PD MAY PY 2016 VL 41 BP 16 EP 26 DI 10.1016/j.dnarep.2016.03.003 PG 11 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA DM0QR UT WOS:000376051400003 PM 27049455 ER PT J AU Zhang, LW Soeder, DJ AF Zhang, Liwei Soeder, Daniel J. TI Modeling of Methane Migration in Shallow Aquifers from Shale Gas Well Drilling SO GROUNDWATER LA English DT Article ID DRINKING-WATER WELLS; MARCELLUS; CONTAMINATION; PENNSYLVANIA AB The vertical portion of a shale gas well, known as the "tophole" is often drilled using an air-hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3-D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high-pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre-existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane. C1 [Zhang, Liwei] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. [Soeder, Daniel J.] US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. RP Zhang, LW (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM liwei.zhang@netl.doe.gov OI Soeder, Daniel/0000-0003-2248-6235 FU Office of Research and Development at NETL FX This work was completed as part of National Energy Technology Laboratory (NETL) research for the Department of Energy's Research and Development Program. The authors would like to thank the Office of Research and Development at NETL for funding support and providing access to research article databases, computing devices, etc. The authors also would like to thank Dr. Robert Dilmore at NETL Pittsburgh site for valued suggestions on model set up and result interpretation. NR 25 TC 2 Z9 2 U1 6 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUNDWATER JI Groundwater PD MAY-JUN PY 2016 VL 54 IS 3 BP 345 EP 353 DI 10.1111/gwat.12361 PG 9 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA DM2WU UT WOS:000376209600007 PM 26280927 ER PT J AU Denner, DR Sangwan, N Becker, JB Hogarth, DK Oldham, J Castillo, J Sperling, AI Solway, J Naureckas, ET Gilbert, JA White, SR AF Denner, Darcy R. Sangwan, Naseer Becker, Julia B. Hogarth, D. Kyle Oldham, Justin Castillo, Jamee Sperling, Anne I. Solway, Julian Naureckas, Edward T. Gilbert, Jack A. White, Steven R. TI Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY LA English DT Article DE Asthma; microbiome; corticosteroids; FEV1; bacteria; 16S ribosomal RNA ID CHILDHOOD ASTHMA; INFLAMMATION; LUNG; AZITHROMYCIN; SPUTUM; HYPERRESPONSIVENESS; ANTIBIOTICS; BACTERIAL; EXPOSURE; DISEASE AB Background: The lung has a diverse microbiome that is modest in biomass. This microbiome differs in asthmatic patients compared with control subjects, but the effects of clinical characteristics on the microbial community composition and structure are not clear. Objectives: We examined whether the composition and structure of the lower airway microbiome correlated with clinical characteristics of chronic persistent asthma, including airflow obstruction, use of corticosteroid medications, and presence of airway eosinophilia. Methods: DNA was extracted from endobronchial brushings and bronchoalveolar lavage fluid collected from 39 asthmatic patients and 19 control subjects, along with negative control samples. 16S rRNA V4 amplicon sequencing was used to compare the relative abundance of bacterial genera with clinical characteristics. Results: Differential feature selection analysis revealed significant differences in microbial diversity between brush and lavage samples from asthmatic patients and control subjects. Lactobacillus, Pseudomonas, and Rickettsia species were significantly enriched in samples from asthmatic patients, whereas Prevotella, Streptococcus, and Veillonella species were enriched in brush samples from control subjects. Generalized linear models on brush samples demonstrated oral corticosteroid use as an important factor affecting the relative abundance of the taxa that were significantly enriched in asthmatic patients. In addition, bacteriala-diversity in brush samples from asthmatic patients was correlated with FEV1 and the proportion of lavage eosinophils. Conclusion: The diversity and composition of the bronchial airway microbiome of asthmatic patients is distinct from that of nonasthmatic control subjects and influenced by worsening airflow obstruction and corticosteroid use. C1 [Denner, Darcy R.; Becker, Julia B.; Hogarth, D. Kyle; Oldham, Justin; Castillo, Jamee; Sperling, Anne I.; Solway, Julian; Naureckas, Edward T.; White, Steven R.] Univ Chicago, Dept Med, Sect Pulm & Crit Care Med, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Inst Genet Gen & Syst Biol, Chicago, IL 60637 USA. [Sangwan, Naseer; Gilbert, Jack A.] Argonne Natl Lab, Biosci Div BIO, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. RP White, SR (reprint author), Univ Chicago, Sect Pulm & Crit Care Med, 5841 S Maryland Ave,MC6076, Chicago, IL 60637 USA. EM swhite@bsd.uchicago.edu FU National Institutes for Allergy and Infectious Diseases [U19-AI095230]; National Heart, Lung, and Blood Institute [T32-HL007605]; National Center for Advancing Translational Sciences of the National Institutes of Health [UL1-TR000430]; Institute for Translational Medicine of the University of Chicago FX Supported by grant U19-AI095230 from the National Institutes for Allergy and Infectious Diseases; grant T32-HL007605 from the National Heart, Lung, and Blood Institute; grant UL1-TR000430 from the National Center for Advancing Translational Sciences of the National Institutes of Health; and the Institute for Translational Medicine of the University of Chicago. NR 41 TC 8 Z9 8 U1 1 U2 2 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0091-6749 EI 1097-6825 J9 J ALLERGY CLIN IMMUN JI J. Allergy Clin. Immunol. PD MAY PY 2016 VL 137 IS 5 BP 1398 EP + DI 10.1016/j.jaci.2015.10.017 PG 11 WC Allergy; Immunology SC Allergy; Immunology GA DM2MF UT WOS:000376180200014 PM 26627545 ER PT J AU Macal, CM AF Macal, C. M. TI Everything you need to know about agent-based modelling and simulation SO JOURNAL OF SIMULATION LA English DT Article DE agent-based modeling and simulation; multi-agent system; modeling human behavior; computational social simulation ID OF-THE-ART; SENSITIVITY-ANALYSIS; ARTIFICIAL LIFE; SYSTEMS; HEALTH; INNOVATION; DECISIONS; DYNAMICS; INSIGHTS; RISK AB This paper addresses the background and current state of the field of agent-based modelling and simulation (ABMS). It revisits the issue of ABMS represents as a new development, considering the extremes of being an overhyped fad, doomed to disappear, or a revolutionary development, shifting fundamental paradigms of how research is conducted. This paper identifies key ABMS resources, publications, and communities. It also proposes several complementary definitions for ABMS, based on practice, intended to establish a common vocabulary for understanding ABMS, which seems to be lacking. It concludes by suggesting research challenges for ABMS to advance and realize its potential in the coming years. C1 [Macal, C. M.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Macal, C. M.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Macal, CM (reprint author), Argonne Natl Lab, Global Secur Sci Div, 9700 S Cass Ave,Bldg 221, Argonne, IL 60439 USA. EM macal@anl.gov FU US Department of Energy [DE-AC02-06CH11357] FX The author bears sole responsibility for the opinions expressed in this paper. Portions of this paper were based on works prepared by the author that were included in Tolk et al (2015), Taylor et al (2013), and Heath et al (2011). This work was supported by the US Department of Energy under contract number DE-AC02-06CH11357. NR 126 TC 2 Z9 2 U1 10 U2 18 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1747-7778 EI 1747-7786 J9 J SIMUL JI J. Simul. PD MAY PY 2016 VL 10 IS 2 SI SI BP 144 EP 156 DI 10.1057/jos.2016.7 PG 13 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA DM2RZ UT WOS:000376195900009 ER PT J AU Bonner, I McNunn, G Muth, D Tyner, W Leirer, J Dakins, M AF Bonner, I. McNunn, G. Muth, D., Jr. Tyner, W. Leirer, J. Dakins, M. TI Development of integrated bioenergy production systems using precision conservation and multicriteria decision analysis techniques SO JOURNAL OF SOIL AND WATER CONSERVATION LA English DT Article DE bioenergy; biomass; corn stover; Landscape Environmental Assessment Framework (LEAF); precision agriculture; switchgrass ID AGRICULTURAL RESIDUE REMOVAL; ENERGY CROP PRODUCTION; STOVER REMOVAL; SUBFIELD SCALE; CORN STOVER; PROFITABILITY; SUSTAINABILITY; LANDSCAPES; ETHANOL; CARBON AB Development of a productive advanced biofuels economy will require a suite of lignocellulosic feedstocks, including both agricultural residues and dedicated energy crops. This research utilizes Precision conservation and multicriteria decision analysis (MCDA) techniques to model the integration of switchgrass (Panicum virgatum L.), a perennial bioenergy crop, into a corn (Zea mays L.)-producing field in Iowa, United States. The impacts of energy crop integration are quantified in terms of productivity, economics, and environmental performance. Management areas identified using a multi-objective optimization method are modeled using the Landscape Environmental Assessment Framework (LEAF) to calculate biomass availability and impacts to soil health, while the Water Quality Index for Agricultural Lands (WQIag) is used to assess the risk to surface water quality. The results show that subfield management zones optimized to reduce economic losses and maximize environmental performance are capable of improving the field's annual rate of soil organic carbon (SOC) gain by 69%, reducing annual soil erosion by 63%, and increasing sustainable biomass availability by 35%. Environmental improvements are valued at US$158 ha(-1) (US$64 ac(-1)), making the integrated management system an effective financial loss mitigation strategy compared to conventional corn production when feedstock prices are greater than US$107 Mg-1 (US$97 tn(-1)). The results of this work demonstrate that the production of bioenergy crops integrated with commodity row crops can be a tenable means to improve the overall production of a field, improve the profitability of row crop farming, and preserve or improve water and soil resources. C1 [Bonner, I.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID USA. [McNunn, G.; Muth, D., Jr.] AgSolver Inc, Ames, IA USA. [Tyner, W.; Leirer, J.] Purdue Univ, Dept Agr Econ, W Lafayette, IN 47907 USA. [Dakins, M.] Univ Idaho, Dept Environm Sci, Idaho Falls, ID USA. RP Bonner, I (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID USA. FU US Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office [DE-AC07-051D14517] FX This work is supported by the US Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office Contract DE-AC07-051D14517. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 50 TC 1 Z9 1 U1 8 U2 27 PU SOIL WATER CONSERVATION SOC PI ANKENY PA 945 SW ANKENY RD, ANKENY, IA 50023-9723 USA SN 0022-4561 EI 1941-3300 J9 J SOIL WATER CONSERV JI J. Soil Water Conserv. PD MAY-JUN PY 2016 VL 71 IS 3 BP 182 EP 193 DI 10.2489/jswc.71.3.182 PG 12 WC Ecology; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DM3BC UT WOS:000376220800006 ER PT J AU Rodriguez-Morales, F Gogineni, S Ahmed, F Carabajal, C Paden, A Leuschen, C Paden, J Li, J Fields, W Vaughan, J AF Rodriguez-Morales, F. Gogineni, S. Ahmed, F. Carabajal, C. Paden, A. Leuschen, C. Paden, J. Li, J. Fields, W. Vaughan, J. TI T/R Switches and Modules for Ice Sounding/Imaging Radar SO MICROWAVE JOURNAL LA English DT Article ID GREENLAND; GLACIER AB High-power transmit/receive (T/R) switches for use in multi-channel ice penetrating imaging radars are capable of sustaining peak power levels exceeding 1000 W. They are based on a balanced topology and built using quadrature hybrids and actively biased PIN diodes. Insertion loss is lower than 1.3 dB from 100 to 350 MHz and lower than 1.6 dB from 150 to 600 MHz. Isolation in transmit mode is higher than 85 dB across both bands with turn-on and turn-off times shorter than 1300 ns and 200 ns, respectively. Both designs were successfully used in multi-channel radars for measurements in the Arctic and Antarctic. C1 [Rodriguez-Morales, F.; Gogineni, S.; Ahmed, F.; Carabajal, C.; Paden, A.; Leuschen, C.; Paden, J.; Li, J.] Univ Kansas, Lawrence, KS 66045 USA. [Fields, W.] Cobham Aeroflex Metel, Sunnyvale, CA USA. [Vaughan, J.] Los Alamos Natl Lab, Albuquerque, NM USA. RP Rodriguez-Morales, F (reprint author), Univ Kansas, Lawrence, KS 66045 USA. FU NSF [ANT- 0424589, 1229716]; NASA [NNX-10AT68G] FX This work was supported by the NSF (grants ANT- 0424589 and 1229716) and NASA (grant NNX-10AT68G). The authors would like to thank R. Hale, P. Place, B. Townley, D-Gomez-Garcia, A. Awasthi, S. Yan, A. Mahmood, A.R. Harish, E. Arnold, Z. Wang, B. Camps-Raga, J. Lyle, J. Citrolo, R. Crowe and M. Lowe for their contribution and support. NR 14 TC 1 Z9 1 U1 0 U2 1 PU HORIZON HOUSE PUBLICATIONS INC PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA SN 0192-6225 J9 MICROWAVE J JI Microw. J. PD MAY PY 2016 SU S BP 6 EP 18 PG 13 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DM3EH UT WOS:000376229100001 ER PT J AU De Yoreo, J Whitelam, S AF De Yoreo, Jim Whitelam, Stephen TI Nucleation in atomic, molecular, and colloidal systems SO MRS BULLETIN LA English DT Article AB Nucleation is the first step in the formation of many materials; understanding its microscopic dynamics is crucial for improving synthesis of existing materials and predicting under what conditions novel materials will form. The simple picture of nucleation that prevailed for more than a century does not account for complex nucleation pathways observed in recent years in experiments and simulations. A more general framework is needed to explain reported phenomena; such a framework must account for the peaks and valleys in the free-energy landscape across which nucleation takes place and for the microscopic dynamic factors that dictate how a system explores this landscape. The articles of this issue illustrate and describe the many complex nucleation pathways seen across a range of material systems. C1 [De Yoreo, Jim] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Whitelam, Stephen] Lawrence Berkeley Natl Lab, Mol Foundry, Los Angeles, CA USA. RP De Yoreo, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.; Whitelam, S (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Los Angeles, CA USA. EM james.deyoreo@pnnl.gov; swhitelam@lbl.gov NR 10 TC 0 Z9 0 U1 8 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD MAY PY 2016 VL 41 IS 5 BP 357 EP 360 DI 10.1557/mrs.2016.91 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL8XT UT WOS:000375926200006 ER PT J AU Gang, O Tkachenko, AV AF Gang, Oleg Tkachenko, Alexei V. TI DNA-programmable particle superlattices: Assembly, phases, and dynamic control SO MRS BULLETIN LA English DT Article ID MEDIATED COLLOIDAL CRYSTALLIZATION; NANOPARTICLE SUPERLATTICES; GOLD NANOPARTICLES; COATED COLLOIDS; QUANTUM DOTS; TRANSFORMATIONS; INTERFACES; CRYSTALS; CLUSTERS; ORIGAMI AB Nanoparticles (NPs) have emerged as new functional blocks for optical, energy, and biomedical applications, opening a new frontier of rational self-assembly of materials. One of the most controllable assembly strategies relies on programming interparticle interactions using the complementarity of DNA strands, providing selective and reversible interactions between particles of different sizes and shapes. Much progress has been achieved in DNA-guided assembly of particle superlattices. By tuning the interactions, sizes, and shapes of NPs, a wide variety of structures have been assembled. This article discusses the most significant achievements and challenges in assembly of DNA-programmable particle superlattices. C1 [Gang, Oleg; Tkachenko, Alexei V.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gang, O; Tkachenko, AV (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov; oleksiyt@bnl.gov RI Tkachenko, Alexei/I-9040-2012 OI Tkachenko, Alexei/0000-0003-1291-243X FU US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX Research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, and is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 70 TC 0 Z9 0 U1 17 U2 41 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD MAY PY 2016 VL 41 IS 5 BP 381 EP 387 DI 10.1557/mrs.2016.92 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL8XT UT WOS:000375926200010 ER PT J AU Hill, J Mulholland, G Persson, K Seshadri, R Wolverton, C Meredig, B AF Hill, Joanne Mulholland, Gregory Persson, Kristin Seshadri, Ram Wolverton, Chris Meredig, Bryce TI Materials science with large-scale data and informatics: Unlocking new opportunities SO MRS BULLETIN LA English DT Article ID CRYSTALLOGRAPHY; PERFORMANCE; PARADIGM; API; CIF AB Universal access to abundant scientific data, and the software to analyze the data at scale, could fundamentally transform the field of materials science. Today, the materials community faces serious challenges to bringing about this data-accelerated research paradigm, including diversity of research areas within materials, lack of data standards, and missing incentives for sharing, among others. Nonetheless, the landscape is rapidly changing in ways that should benefit the entire materials research enterprise. We provide an overview of the current state of the materials data and informatics landscape, highlighting a few selected efforts that make more data freely available and useful to materials researchers. C1 [Hill, Joanne; Mulholland, Gregory; Meredig, Bryce] Citrine Informat, Washington, DC USA. [Persson, Kristin] Lawrence Berkeley Natl Lab, Los Angeles, CA USA. [Seshadri, Ram] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Wolverton, Chris] Northwestern Univ, Evanston, IL 60208 USA. RP Hill, J; Mulholland, G; Meredig, B (reprint author), Citrine Informat, Washington, DC USA.; Persson, K (reprint author), Lawrence Berkeley Natl Lab, Los Angeles, CA USA.; Seshadri, R (reprint author), Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.; Wolverton, C (reprint author), Northwestern Univ, Evanston, IL 60208 USA. EM jo@citrine.io; greg@citrine.io; kapersson@lbl.gov; seshadri@mrl.ucsb.edu; c-wolverton@northwestern.edu; bryce@citrine.io RI Seshadri, Ram/C-4205-2013; Wolverton, Christopher/B-7542-2009 OI Seshadri, Ram/0000-0001-5858-4027; FU Materials Project [EDCBEE]; US Department of Energy Office of Science, Office of Basic Energy Sciences Department [DE-AC02-05CH11231]; National Science Foundation [NSF-DMR 1121053]; DOC NIST award [70NANB14H012] FX K.P. was supported by the Materials Project (Grant # EDCBEE), supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences Department under Contract No. DE-AC02-05CH11231. R.S. thanks the National Science Foundation for support of this research through NSF-DMR 1121053 (MRSEC). C.W. gratefully acknowledges funding support from DOC NIST award 70NANB14H012 (CHiMaD). NR 55 TC 7 Z9 7 U1 12 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD MAY PY 2016 VL 41 IS 5 BP 399 EP 409 DI 10.1557/mrs.2016.93 PG 11 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL8XT UT WOS:000375926200013 ER PT J AU Ciricosta, O Vinko, SM Barbrel, B Rackstraw, DS Preston, TR Burian, T Chalupsky, J Cho, BI Chung, HK Dakovski, GL Engelhorn, K Hajkova, V Heimann, P Holmes, M Juha, L Krzywinski, J Lee, RW Toleikis, S Turner, JJ Zastrau, U Wark, JS AF Ciricosta, O. Vinko, S. M. Barbrel, B. Rackstraw, D. S. Preston, T. R. Burian, T. Chalupsky, J. Cho, B. I. Chung, H-K Dakovski, G. L. Engelhorn, K. Hajkova, V. Heimann, P. Holmes, M. Juha, L. Krzywinski, J. Lee, R. W. Toleikis, S. Turner, J. J. Zastrau, U. Wark, J. S. TI Measurements of continuum lowering in solid-density plasmas created from elements and compounds SO NATURE COMMUNICATIONS LA English DT Article ID IONIZATION-POTENTIAL DEPRESSION; EQUATION-OF-STATE; LASER; MATTER; PURGATORIO; ENERGY; MODEL AB The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. Here we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. The results have implications for the standard approaches to the equation of state calculations. C1 [Ciricosta, O.; Vinko, S. M.; Rackstraw, D. S.; Preston, T. R.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. [Barbrel, B.] Univ Calif Berkeley, Dept Phys, LeConte Hall, Berkeley, CA 94720 USA. [Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.] Acad Sci Czech Republic, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic. [Cho, B. I.] Inst Basic Sci, Ctr Relativist Laser Sci, Gwangju 500712, South Korea. [Cho, B. I.] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 500712, South Korea. [Chung, H-K] IAEA, Nucl Data Sect, Atom & Mol Data Unit, POB 100, A-1400 Vienna, Austria. [Dakovski, G. L.; Heimann, P.; Holmes, M.; Krzywinski, J.; Turner, J. J.; Zastrau, U.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Engelhorn, K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Lee, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Toleikis, S.] Deutsch Elektronensynchrotron DESY, Notkestr 85, D-22603 Hamburg, Germany. [Zastrau, U.] Univ Jena, IOQ, Max Wien Pl 1, D-07743 Jena, Germany. RP Ciricosta, O (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM orlando.ciricosta@physics.ox.ac.uk RI Cho, Byoung-ick/A-6294-2011 FU UK EPSRC [EP/H035877/1]; AWE; Czech Science Foundation [P205/11/0571]; IBS [IBS-R012-D1]; MSIP, Korea; PAL XFEL project, Korea; Volkswagen Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; LCLS; Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL); University of Hamburg through the BMBF priority programme [FSP 301]; Center for Free Electron Laser Science (CFEL) FX O.C., S.M.V., D.S.R. and J.S.W. thank the UK EPSRC for support under grant EP/H035877/1. T.R.P. is grateful for support from AWE. T.B., J.C., V.H. and L.J. thank the Czech Science Foundation for support under grant P205/11/0571. B.I.C. is supported by IBS under IBS-R012-D1, and MSIP and PAL XFEL project, Korea. U.Z. thanks the Volkswagen Foundation for support via a Peter-Paul-Ewald fellowship. Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract Number. DE-AC02-76SF00515. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL), University of Hamburg through the BMBF priority programme FSP 301 and the Center for Free Electron Laser Science (CFEL). NR 35 TC 0 Z9 0 U1 14 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11713 DI 10.1038/ncomms11713 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM2VL UT WOS:000376206100001 PM 27210741 ER PT J AU Kim, BJ Kim, DH Kwon, SL Park, SY Li, Z Zhu, K Jung, HS AF Kim, Byeong Jo Kim, Dong Hoe Kwon, Seung Lee Park, So Yeon Li, Zhen Zhu, Kai Jung, Hyun Suk TI Selective dissolution of halide perovskites as a step towards recycling solar cells SO NATURE COMMUNICATIONS LA English DT Article ID DIPOLAR APROTIC-SOLVENTS; LEAD; FABRICATION; REMOVAL; WASTE; ADSORPTION AB Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. C1 [Kim, Byeong Jo; Kwon, Seung Lee; Park, So Yeon; Jung, Hyun Suk] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea. [Kim, Dong Hoe; Li, Zhen; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. RP Jung, HS (reprint author), Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea. EM hsjung1@skku.edu RI Jung, Hyun Suk/H-3659-2015; OI Jung, Hyun Suk/0000-0002-7803-6930 FU Global Frontier RAMP;D Program of the Center for Multiscale Energy System [NRF-2012M3A6A7054855]; National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF-2012M3A7B4049967, NRF-2014R1A4A1008474]; U.S. Department of Energy [DE-AC36-08-GO28308] FX This work was financially supported by the Global Frontier R&D Program of the Center for Multiscale Energy System (NRF-2012M3A6A7054855). The work was also supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2012M3A7B4049967 and NRF-2014R1A4A1008474). The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. NR 31 TC 3 Z9 3 U1 21 U2 61 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11735 DI 10.1038/ncomms11735 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM2VR UT WOS:000376206700001 PM 27211006 ER PT J AU Picon, A Lehmann, CS Bostedt, C Rudenko, A Marinelli, A Osipov, T Rolles, D Berrah, N Bomme, C Bucher, M Doumy, G Erk, B Ferguson, KR Gorkhover, T Ho, PJ Kanter, EP Krassig, B Krzywinski, J Lutman, AA March, AM Moonshiram, D Ray, D Young, L Pratt, ST Southworth, SH AF Picon, A. Lehmann, C. S. Bostedt, C. Rudenko, A. Marinelli, A. Osipov, T. Rolles, D. Berrah, N. Bomme, C. Bucher, M. Doumy, G. Erk, B. Ferguson, K. R. Gorkhover, T. Ho, P. J. Kanter, E. P. Kraessig, B. Krzywinski, J. Lutman, A. A. March, A. M. Moonshiram, D. Ray, D. Young, L. Pratt, S. T. Southworth, S. H. TI Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics SO NATURE COMMUNICATIONS LA English DT Article ID RADIATION-DAMAGE; IONIZATION; TIME AB New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site. C1 [Picon, A.; Lehmann, C. S.; Bostedt, C.; Bucher, M.; Doumy, G.; Ho, P. J.; Kanter, E. P.; Kraessig, B.; March, A. M.; Moonshiram, D.; Young, L.; Pratt, S. T.; Southworth, S. H.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Bostedt, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Rudenko, A.; Rolles, D.] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. [Marinelli, A.; Osipov, T.; Bucher, M.; Ferguson, K. R.; Gorkhover, T.; Krzywinski, J.; Lutman, A. A.; Ray, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rolles, D.; Bomme, C.; Erk, B.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Berrah, N.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Ray, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lehmann, C. S.] Univ Marburg, Fachbereich Chem, Hans Meerwein Str, D-35032 Marburg, Germany. RP Picon, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Antonio.Picon.Alvarez@gmail.com RI Moonshiram, Dooshaye/J-5138-2014; Rudenko, Artem/C-7412-2009 OI Moonshiram, Dooshaye/0000-0002-9075-3035; Rudenko, Artem/0000-0002-9154-8463 FU US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-06CH11357, DE-FG02-86ER13491, DE-SC0012376]; Helmholtz Gemeinschaft through the Young Investigator Program; Volkswagen foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX A. P. and C.S.L. acknowledge Lutz Foucar and Achim Czasch for fruitful discussions and their help with the data analysis. We thank Jeff Hammond, Lan Cheng and John Stanton for discussions of quantum chemical methods. The US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division supported the Argonne group under contract no. DE-AC02-06CH11357, A.R. and D.R. under contract no. DE-FG02-86ER13491, and N.B. under contract no. DE-SC0012376. D.R. also acknowledges support from the Helmholtz Gemeinschaft through the Young Investigator Program. T.G. acknowledges the Peter-Ewald-Fellowship from the Volkswagen foundation. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 32 TC 5 Z9 5 U1 7 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11652 DI 10.1038/ncomms11652 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DM2UU UT WOS:000376204300001 PM 27212390 ER PT J AU Basunia, MS Hurst, AM AF Basunia, M. S. Hurst, A. M. TI Nuclear Data Sheets for A=26 SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-RICH NUCLEI; FERMI BETA-DECAY; D SHELL NUCLEI; BEAM GAMMA-SPECTROSCOPY; INELASTIC PROTON-SCATTERING; COUPLED-CHANNELS ANALYSIS; PRODUCTION CROSS-SECTIONS; ACCELERATOR MASS-SPECTROMETRY; ELECTRIC QUADRUPOLE-MOMENTS; DOPPLER-SHIFT ATTENUATION AB Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for O-26, F-26, Ne-26, Na-26, Mg-26, Al-26 ,Si-26, P-26, and S-26. This evaluation for A=26 supersedes the earlier one by P. M. Endt (1998En04) and updates for some nuclides in ENSDF. Highlights of this evaluation are the following: This evaluation includes search results for S-26 nuclide and its proton-decay mode (2011Fo08). An isomeric state (2.2 ms) in F-26 has been discovered by 2013Le03. The state is proposed at 643.4 keV 1 from gamma-ray measurements. Internal-transition and beta-decay branches for the state are also determined. New excited levels in Ne-26 have been identified from F-26 beta(-) decay (2.2 ms). For some Si-26 resonance states conflicting spin-parity assignments exist in the literature. Those are identified by footnotes. 20150007 (He-3,n gamma) propose the first 0+ state above proton separation energy at an excitation energy of 5890 keV and suggested for additional independent measurements to confirm or refute the existence of 5946 keV 4. 2016Ch09 consider 5946 keV level as a distinct excited state in their reanalysis of the literature data with possible spin-parity assignment of 0+ or 4+ This evaluation also includes discovery of an isomeric state, at 164.1 keV 1, in P-26 by 2014NiZZ. C1 [Basunia, M. S.; Hurst, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 88R0192,1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 88R0192,1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231] FX This work was supported by Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231. NR 395 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY-JUN PY 2016 VL 134 BP 1 EP 148 DI 10.1016/j.nds.2016.04.001 PG 148 WC Physics, Nuclear SC Physics GA DL7MC UT WOS:000375823800001 ER PT J AU Baglin, CM AF Baglin, Coral M. TI Nuclear Data Sheets for A=183 SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-DEFICIENT ISOTOPES; HIGH-SPIN STATES; LOW-LYING LEVELS; HIGH-RESOLUTION MEASUREMENTS; GAMMA-RAY SPECTRA; LOW-ENERGY STATES; ALPHA-DECAY; COULOMB-EXCITATION; GROUND-STATE; ODD-A AB Evaluated nuclear structure and decay data for all nuclides with mass number A=183 (Yb, Lu, Hf, Ta, W, Re, Os, lr, Pt, Au, Hg, Tl, Pb) are presented hero. At, Po and Fr have not yet been observed, but for prediction of ground state and/or isomer properties see, e.g., 2015Bh08 (At, Fr), 2013Ba41 (Tl), 2013Ho05 (Po). This evaluation includes structure and decay data information available by 15 April 2015 and supersedes that by R.B. Firestone published in Nuclear Data Sheets 66, 589 (1992) (literature cutoff 9 January 1991), and subsequent revisions by C.M. Baglin for Au-183 in ENSDF database (literature cutoff 13 March 1999), Hg-183 in Nuclear Data Sheets 91, 117 (2000) (literature cutoff 25 September 2000), 18311 in Nuclear Data Sheets 95, 49 (2002) (literature cutoff I January 2002) and Pb-183 in ENSDF (literature cutoff 6 January 2003). Since the prior Nuclear Data Sheets publication of this mass chain: Yb-183, (2012Ku26) and Pb-189 (2006An11, 2006Se18,2007De09,2009Se13) have been observed; our knowledge of high spin states has been significantly expanded for Ta-183 (2009Sh17), W-183 (1999Sa60), Re-188 (1998Ha51,2001Sh41), Au-183 (2002Jo18,2005So01) and Tl-188 (2001Mu26,2004Ra28); a large amount of new structure information for W-183 has been obtained from transfer reactions (1997Pr02,2011Bo09), (n,n'gamma) (1993Pr09) and thermal neutron capture (1993Pr09,1997Pr02,2011Bo09, 2014Hu02), as well as from the two photon cascade study by 2005Su29. C1 [Baglin, Coral M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Baglin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU US Department of Energy, Office of Nuclear Physics [DE-AC02-05CH11231] FX This work was supported by the director, US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-05CH11231. NR 255 TC 0 Z9 0 U1 2 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY-JUN PY 2016 VL 134 BP 149 EP 430 DI 10.1016/j.nds.2016.04.002 PG 282 WC Physics, Nuclear SC Physics GA DL7MC UT WOS:000375823800002 ER PT J AU Egami, T AF Egami, T. TI How to characterize disorder SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Disorder; Lattice defects; Amorphous state; Irradiation effects ID INDUCED STRUCTURAL-CHANGE; FINE-STRUCTURE TECHNIQUE; X-RAY-DIFFRACTION; HF-NB ALLOY; METALLIC GLASSES; ELECTRON-IRRADIATION; MULTICOMPONENT ALLOYS; COMPUTER-SIMULATION; AMORPHOUS SOLIDS; FLUCTUATIONS AB Researchers working on nuclear materials encounter disorder in the atomic structure all the time, usually caused by irradiation. The nature of disorder varies widely, from lattice defects to amorphous phase formation. Generally it is not easy to characterize the state of disorder with the accuracy necessary to elucidate the properties caused by structural disorder. However, owing to advances in the tools of characterization and rapid rise in computer power, significant progress has been made in characterizing structural disorder. We discuss how to describe and determine the structure and dynamics of disordered materials using scattering measurements and modeling. Lattice defects caused by irradiation usually has negative effects on properties, but glasses and highly disordered materials can be irradiation resistant, and could be useful as nuclear materials. Characterizing and controlling disorder is becoming an important endeavor in the field of nuclear materials. (C) 2015 Elsevier B.V. All rights reserved. C1 [Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Egami, T (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. NR 48 TC 0 Z9 0 U1 15 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 1 PY 2016 VL 374 BP 2 EP 7 DI 10.1016/j.nimb.2015.10.075 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DL7KL UT WOS:000375819500002 ER PT J AU Conradson, SD Andersson, DA Bagus, PS Boland, KS Bradley, JA Byler, DD Clark, DL Conradson, DR Espinosa-Faller, FJ Pacheco, JSL Martucci, MB Nordlund, D Seidler, GT Valdez, JA AF Conradson, Steven D. Andersson, David A. Bagus, Paul S. Boland, Kevin S. Bradley, Joseph A. Byler, Darrin D. Clark, David L. Conradson, Dylan R. Espinosa-Faller, Francisco J. Pacheco, Juan S. Lezama Martucci, Mary B. Nordlund, Dennis Seidler, Gerald T. Valdez, James A. TI Anomalous dispersion and band gap reduction in UO2+x and its possible coupling to the coherent polaronic quantum state SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE UO2+x; Covalency; Coherence; Band structure; XAS ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; OXYGEN K-EDGE; NEUTRON-DIFFRACTION; URANIUM-DIOXIDE; CRYSTAL-STRUCTURE; URANYL-ION; OXIDES; SPECTROSCOPY; COVALENCY AB Hypervalent UO2, UO2(+x) formed by both addition of excess O and photoexcitation, exhibits a number of unusual or often unique properties that point to it hosting a polaronic Bose-Einstein(-Mott) condensate. A more thorough analysis of the O X-ray absorption spectra of UO2, U4O9, and U3O7 shows that the anomalous increase in the width of the spectral features assigned to predominantly U 5f and 6d final states that points to increased dispersion of these bands occurs on the low energy side corresponding to the upper edge of the gap bordered by the conduction or upper Hubbard band. The closing of the gap by 1.5 eV is more than twice as much as predicted by calculations, consistent with the dynamical polaron found by structural measurements. In addition to fostering the excitation that is the proposed mechanism for the coherence, the likely mirroring of this effect on the occupied, valence side of the gap below the Fermi level points to increased complexity of the electronic structure that could be associated with the Fermi topology of BEC-BCS crossover and two band superconductivity. (C) 2015 Published by Elsevier B.V. C1 [Conradson, Steven D.] Synchrotron Soleil, St Aubin BP-48, F-91192 Gif Sur Yvette, France. [Andersson, David A.; Boland, Kevin S.; Bradley, Joseph A.; Byler, Darrin D.; Clark, David L.; Conradson, Dylan R.; Pacheco, Juan S. Lezama; Martucci, Mary B.; Valdez, James A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Bagus, Paul S.] Univ N Texas, Denton, TX 76203 USA. [Espinosa-Faller, Francisco J.] Univ Marista Merida, Merida 97300, Yucatan, Mexico. [Seidler, Gerald T.] Univ Washington, Seattle, WA 98195 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Conradson, SD (reprint author), Synchrotron Soleil, St Aubin BP-48, F-91192 Gif Sur Yvette, France. NR 56 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 1 PY 2016 VL 374 BP 45 EP 50 DI 10.1016/j.nimb.2015.10.073 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DL7KL UT WOS:000375819500010 ER PT J AU Isotalo, A Pusa, M AF Isotalo, Aarno Pusa, Maria TI Improving the Accuracy of the Chebyshev Rational Approximation Method Using Substeps SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE CRAM; substeps; decay calculations ID BURNUP CALCULATIONS; BATEMAN SOLUTIONS; MATRIX; DEPLETION AB The Chebyshev rational approximation method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant substeps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the lower-upper decompositions for the linear solutions required in CRAM need to be formed only on the first substep. The improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. With substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit. C1 [Isotalo, Aarno] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Isotalo, Aarno] Aalto Univ, POB 14100, FI-00076 Aalto, Finland. [Pusa, Maria] VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. RP Isotalo, A (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.; Isotalo, A (reprint author), Aalto Univ, POB 14100, FI-00076 Aalto, Finland. EM aarno.isotalo@aalto.fi FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Finnish Research Program on Nuclear Power Plant Safety; Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the DOE; [SAFIR2018] FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). Funding from SAFIR2018, the Finnish Research Program on Nuclear Power Plant Safety, and the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the DOE is acknowledged. NR 15 TC 1 Z9 1 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2016 VL 183 IS 1 BP 65 EP 77 DI 10.13182/NSE15-67 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM3CL UT WOS:000376224300005 ER PT J AU Hummel, AJ Palmer, TS AF Hummel, Andrew J. Palmer, Todd S. TI Analysis of Multiple TRIGA-Based Molybdenum Production Reactor Cores Using a New Low-Enriched Uranium Target as Fuel SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Molybdenum-99; low-enriched uranium; reactor analysis AB The most widely used and versatile medical radioisotope today is Tc-99m. Roughly 30 million people depend on this radioisotope for diagnostic imaging procedures each year, and this demand is expected to grow. Although there are numerous ways of producing this isotope, the most common is from fission product Mo-99, which is produced in all nuclear reactors fueled with U-235 as a fission fragment with a yield of around 6.1%. Molybdenum-99 has a half-life of just over 2.5 days, and it will decay to Tc-99m 87% of the time. The Reduced Enrichment for Research Test Reactors program was established at Argonne National Laboratory in 1978 to investigate technology that would aid in converting highly enriched uranium (HEU) facilities to low-enriched uranium (LEU) fuel. Since the majority of all Mo-99 produced currently comes from the irradiation of HEU fuel targets, there has been a growing effort to design LEU targets that can yield comparable quantities of high specific activity Mo-99. Recently, a novel LEU target design has been developed for use in TRIGA reactors for the production of Mo-99. The simulation tool MCNP5 was used to examine the neutronic behavior of multiple core configurations fueled solely with this new target. C1 [Hummel, Andrew J.] Idaho Natl Lab, Nucl Syst Design & Anal, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. [Palmer, Todd S.] Oregon State Univ, Sch Nucl Sci & Engn, Corvallis, OR 97331 USA. RP Hummel, AJ (reprint author), Idaho Natl Lab, Nucl Syst Design & Anal, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. EM andrew.hummel@inl.gov NR 19 TC 0 Z9 0 U1 3 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2016 VL 183 IS 1 BP 149 EP 159 DI 10.13182/NSE15-37 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM3CL UT WOS:000376224300013 ER PT J AU Krahn, SL Worrall, A AF Krahn, Steven L. Worrall, Andrew TI The Reemergence of the Thorium Fuel Cycle: A Special Issue of Nuclear Technology SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 [Krahn, Steven L.] Vanderbilt Univ, Sch Engn, Dept Civil & Environm Engn, 2301 Vanderbilt Pl,PMB 351831, Nashville, TN 37235 USA. [Worrall, Andrew] Oak Ridge Natl Lab, One Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. RP Krahn, SL (reprint author), Vanderbilt Univ, Sch Engn, Dept Civil & Environm Engn, 2301 Vanderbilt Pl,PMB 351831, Nashville, TN 37235 USA. NR 7 TC 0 Z9 0 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP III EP IV PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400001 ER PT J AU Taiwo, TA Kim, TK Wigeland, RA AF Taiwo, Temitope A. Kim, Taek K. Wigeland, Roald A. TI Thorium Fuel Cycle Option Screening in the United States SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Thorium; fuel cycle; evaluation and screening AB As part of a nuclear fuel cycle evaluation and screening (E&S) study, widely ranging thorium fuel cycle options were evaluated, and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy. The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally driven nuclear energy systems. The E&S study found that the continuous recycle of U-233/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cycle option with high effective fuel resource utilization and low waste generation, but they did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts, the thorium-based systems tended to have higher radioactivity in the short term (similar to 100 years postirradiation), because of differences in the fission product yield curves, and in the long term (100 000 years postirradiation), because of the decay of U-233 and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need to develop recycle fuel fabrication, fuels separations, and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities; however, their deployment challenges are expected to be greater since past development of such facilities has not reached a comparable level of maturity. C1 [Taiwo, Temitope A.; Kim, Taek K.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wigeland, Roald A.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Kim, TK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tkkim@anl.gov FU DOE [DE-AC02-06CH11357] FX The Argonne National Laboratory portion of this work was supported by the DOE under contract DE-AC02-06CH11357. The development of fuel cycle options for the E&S study was a multi-national-laboratory effort, and the contributions of other national laboratories are gratefully acknowledged, particularly the leadership of B. Dixon and G. Youinou at Idaho National Laboratory, M. Todosow at Brookhaven National Laboratory, J. Gehin at Oak Ridge National Laboratory, and W. Halsey (retired) at Lawrence Livermore National Laboratory. NR 1 TC 0 Z9 0 U1 5 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 127 EP 135 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400002 ER PT J AU Gehin, JC Powers, JJ AF Gehin, Jess C. Powers, Jeffrey J. TI Liquid Fuel Molten Salt Reactors for Thorium Utilization SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Molten salt reactors; thorium fuel cycle; MSBR AB Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride based or chloride based, as either a coolant with a solid fuel (such as fluoride salt cooled high-temperature reactors) or as a combined coolant and fuel with the fuel dissolved in a carrier salt. For liquid-fueled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as for introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the U-233/thorium fuel cycle, as the nuclear properties of U-233 combined with the online removal of parasitic absorbers enable the design of a thermal-spectrum breeder reactor. However, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at Oak Ridge National Laboratory in the 1950s and 1960s: the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR) with multiple configurations that could breed additional fissile material or maintain self-sustaining operation and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation resistance. MSRs have been selected as one of the Generation IV systems, and development activity has been seen in fast-spectrum MSRs, waste-burning MSRs, and MSRs fueled with low-enriched uranium as well as in more traditional thorium fuel cycle based MSRs. This paper provides a historical background of MSR R&D efforts, surveys and summarizes many of the recent developments, and provides analysis comparing thorium-based MSRs by way of example. C1 [Gehin, Jess C.; Powers, Jeffrey J.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Gehin, JC (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM gehinjc@ornl.gov OI Powers, Jeffrey/0000-0003-3653-3880 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 17 TC 2 Z9 2 U1 14 U2 21 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 152 EP 161 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400004 ER PT J AU Ade, B Worrall, A Powers, J Bowman, S AF Ade, Brian Worrall, Andrew Powers, Jeffrey Bowman, Steve TI Analysis of Key Safety Metrics of Thorium Utilization in LWRs SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Thorium; reactivity coefficients; decay heat ID ANALYSIS CAPABILITIES; WATER REACTORS; SCALE; FUEL AB Thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the Th-232 isotope into a fissile fuel (U-233). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2) or that add fertile thorium (ThO2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO2 + ThO2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety related issues have been studied at Oak Ridge National Laboratory and documented in "Safety and Regulatory Issues of the Thorium Fuel Cycle" (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO2 + UO2 and ThO2 + PuO2 against those of UO2 and typical UO2 + PuO2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of knowledge gaps that require additional analysis or research to develop a technical basis for the licensing of thorium fuel are idengfied. C1 [Ade, Brian; Worrall, Andrew; Powers, Jeffrey; Bowman, Steve] Oak Ridge Natl Lab, POB 2008,MS6172, Oak Ridge, TN 37831 USA. RP Ade, B (reprint author), Oak Ridge Natl Lab, POB 2008,MS6172, Oak Ridge, TN 37831 USA. EM adebj@ornl.gov OI Powers, Jeffrey/0000-0003-3653-3880 FU U.S. Department of Energy [DE-AC0500OR22725]; U.S. Nuclear Regulatory Commission; M. Aissa of the Office of Nuclear Regulatory Research FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the U.S. Department of Energy. The authors would like to thank the U.S. Nuclear Regulatory Commission and M. Aissa of the Office of Nuclear Regulatory Research for funding and providing guidance and feedback throughout this research. The authors would also like to thank ORNL staff members G. Ilas and M. Francis for their thoughtful technical reviews and D. Stevens and W. Koncinski for technical editing. NR 17 TC 0 Z9 0 U1 6 U2 12 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 162 EP 177 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400005 ER PT J AU Andrews, N Shirvan, K Pilat, EE Kazimi, MS AF Andrews, Nathan Shirvan, Koroush Pilat, Edward E. Kazimi, Mujid S. TI Steady State and Accident Transient Analysis Burning Weapons-Grade Plutonium in Thorium and Uranium with Silicon Carbide Cladding SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Thorium; plutonium burning; silicon carbide AB A comparison of burning weapons-grade plutonium in a standard pressurized water reactor (PWR) using thoria or urania as a fuel matrix has been performed. Two cladding options were considered: a silicon carbide (SiC) matrix of 0.76-mm thickness and Zircaloy of 0.57-mm thickness. As expected, in terms of percentage and total plutonium mass burned, there was a large benefit in using thoria as a matrix compared to urania. Additionally, a smaller amount of plutonium is required in a core when SiC is the cladding because of lower neutron absorption in SiC. The thorium system was also better from a plutonium burning viewpoint. It resulted in less weapons-useable U and Pu at discharge and more burned over an assembly's lifetime. At discharge, the fuel was shown to have lower multiples of minimum amounts needed for weapons, even when U-233 breeding was taken into account. Thoria-plutonia fuel has different kinetic characteristics from urania-plutonia or enriched urania fuel, so a limited safety comparison of such fuels was made for two reactivity insertion accidents: (1) the highest worth rod ejection and (2) main-steam-line break (MSLB). The accident analyses were performed at both beginning and end of cycle. While the control rod worths are higher in the simulated thoria-plutonia and urania-plutonia cores than in conventional urania-loaded cores, the enthalpy added during the accident was lower than current safety limits for conventional cores. During the MSLB accident, all cases showed acceptable behavior, indicating that the less negative moderator temperature coefficients of thoria-plutonia and urania-plutonia fuel were not limiting. C1 [Andrews, Nathan; Shirvan, Koroush; Pilat, Edward E.; Kazimi, Mujid S.] MIT, 77 Massachusetts Ave,Room 24-215, Cambridge, MA 02139 USA. [Andrews, Nathan] Sandia Natl Labs, Livermore, CA 94550 USA. RP Andrews, N (reprint author), MIT, 77 Massachusetts Ave,Room 24-215, Cambridge, MA 02139 USA.; Andrews, N (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM nandrews@mit.edu FU Lockheed Martin LLC through the Massachusetts Institute of Technology Energy Initiative FX This work was funded by Lockheed Martin LLC through the Massachusetts Institute of Technology Energy Initiative. NR 19 TC 1 Z9 1 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 204 EP 216 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400008 ER PT J AU Brown, NR Powers, JJ Todosow, M Fratoni, M Ludewig, H Sunny, EE Raitses, G Aronson, A AF Brown, Nicholas R. Powers, Jeffrey J. Todosow, Michael Fratoni, Massimiliano Ludewig, Hans Sunny, Eva E. Raitses, Gilad Aronson, Arnold TI Thorium Fuel Cycles with Externally Driven Systems SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Thorium; accelerator-driven system; fusion-fission hybrid ID LIFE ENGINE; FUSION; DESIGN; ENERGY AB Externally driven subcritical systems are closely associated with thorium, partially because thorium has no naturally occurring fissile isotopes. Both accelerator-driven systems (ADSs) and fusion driven systems have been proposed. This paper highlights key literature related to the use of thorium in externally driven systems (EDSs) and builds upon this foundation to identify potential roles for EDSs in thorium fuel cycles. In fuel cycles with natural thorium feed and no enrichment, the potential roles are (1) a once-through breed-and-burn fuel cycle and (2) a fissile breeder (mainly U-233) to support a fleet of critical reactors. If enriched uranium is used in the fuel cycle in addition to thorium, EDSs may be used to burn transuranic material. These fuel cycles were evaluated in the recently completed U.S. Department of Energy Evaluation and Screening of nuclear fuel cycle options relative to the current once-through commercial nuclear fuel cycle in the United States. The evaluation was performed with respect to nine specified high-level criteria, such as waste management and resource utilization. Each of these fuel cycles presents significant potential benefits per unit energy generation compared to the present once-through uranium fuel cycle. A parametric study indicates that fusion-fission hybrid systems per form better than ADSs in some missions due to a higher neutron source relative to the energy required to produce it. However, both potential externally driven technology choices face significant development and deployment challenges. In addition, there are significant challenges associated with the use of thorium fuel and with the transition from a uranium-based fuel cycle to a thorium-based fuel cycle. C1 [Brown, Nicholas R.; Todosow, Michael; Ludewig, Hans; Raitses, Gilad; Aronson, Arnold] Brookhaven Natl Lab, Upton, NY 11973 USA. [Brown, Nicholas R.; Powers, Jeffrey J.; Sunny, Eva E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Fratoni, Massimiliano] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Todosow, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM todosowm@bnl.gov OI Powers, Jeffrey/0000-0003-3653-3880 FU DOE Office of Nuclear Energy Fuel Cycle Options Campaign; DOE [DE-AC02-98CH10886, DE-AC05-00OR22725] FX Some analyses described in this paper were supported by the DOE Office of Nuclear Energy Fuel Cycle Options Campaign. This manuscript has been authored by employees of Brookhaven Science Associates LLC under contract DE-AC02-98CH10886 and of Oak Ridge National Laboratory, managed by UT-Battelle LLC under contract DE-AC05-00OR22725 with the DOE. NR 30 TC 3 Z9 3 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 233 EP 251 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400010 ER PT J AU Croff, AG Collins, ED Del Cul, GD Wymer, RG Krichinsky, AM Spencer, BB Patton, BD AF Croff, Allen G. Collins, Emory D. Del Cul, G. D. Wymer, R. G. Krichinsky, Alan M. Spencer, B. B. Patton, Brad D. TI ORNL Experience and Perspectives Related to Processing of Thorium and U-233 for Nuclear Fuel SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Thorium; U-233; reprocessing ID DISSOLUTION; CONVERSION; URANIUM AB Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable U-233 for recycle in thermal reactors, fast reactors, or externally driven systems. Lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing U-233. This paper first identifies recent literature that has resulted from the renewed interest in thorium-based fuel cycles. Next, differences in the radiation characteristics of nuclear materials associated with thorium based and uranium-based fuels are discussed, and the generic implications of the differences to nuclear material processing are identified. Then, experience at Oak Ridge National Laboratory concerning processing of thorium and U-233 is described in terms of the processing projects and campaigns undertaken and the facilities in which the processing was implemented. This experience then provides the basis for a generalized discussion of processing nuclear materials associated with thorium-based fuel cycles as compared to uranium-based fuel cycles. This comparative discussion focuses on key out-of-reactor fuel cycle operations: reprocessing of metal-clad oxide and graphite-matrix oxide used nuclear fuels (UNFs) including head-end processing (shearing and dissolution), solvent extraction, product conversion, fuel fabrication, and waste management. It is concluded that the recycle of thorium-based UNF constituents (U-233 and thorium) is more technically challenging than the recycle of uranium-based UNF constituents (plutonium and uranium) based on the radiation, chemical, and physical characteristics of nuclear materials in thorium-based fuel cycles as compared to uranium-based fuel cycles. C1 [Croff, Allen G.; Wymer, R. G.] Vanderbilt Univ, Dept Civil & Environm Engn, 2301 Vanderbilt Pl,PMB 351831, Nashville, TN 37235 USA. [Collins, Emory D.; Del Cul, G. D.; Krichinsky, Alan M.; Spencer, B. B.; Patton, Brad D.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Croff, AG (reprint author), Vanderbilt Univ, Dept Civil & Environm Engn, 2301 Vanderbilt Pl,PMB 351831, Nashville, TN 37235 USA. EM croffag@gmail.com FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been partially authored by ORNL, managed by UT-Battelle LLC under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 50 TC 0 Z9 0 U1 5 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 252 EP 270 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400011 ER PT J AU Worrall, LG Worrall, A Flanagan, GF Croft, S Krichinsky, AM Pickett, CA McElroy, RD Cleveland, SL Kovacic, DN Whitaker, JM White-Horton, JL AF Worrall, Louise G. Worrall, Andrew Flanagan, George F. Croft, Stephen Krichinsky, Alan M. Pickett, Chris A. McElroy, Robert D., Jr. Cleveland, Steven L. Kovacic, Donald N. Whitaker, J. Michael White-Horton, Jessica L. TI Safeguards Considerations for Thorium Fuel Cycles SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT GLOBAL 2013 International Nuclear Fuel Cycle Conference CY SEP 29-OCT 03, 2013 CL Salt Lake City, UT DE Safeguards; nondestructive assay; uranium-233 AB By around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocols and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional U-235- and (PU)-P-239-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles. C1 [Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Stephen; Krichinsky, Alan M.; Pickett, Chris A.; McElroy, Robert D., Jr.; Cleveland, Steven L.; Kovacic, Donald N.; Whitaker, J. Michael; White-Horton, Jessica L.] Oak Ridge Natl Lab, One Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. RP Worrall, LG (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM worralllg@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 30 TC 0 Z9 0 U1 3 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2016 VL 194 IS 2 SI SI BP 281 EP 293 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DM0RL UT WOS:000376053400013 ER PT J AU Chapline, G AF Chapline, George TI Highlighting the usefulness of string theory SO PHYSICS TODAY LA English DT Letter C1 [Chapline, George] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Chapline, G (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM chapline1@llnl.gov NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD MAY PY 2016 VL 69 IS 5 BP 11 EP 12 PG 3 WC Physics, Multidisciplinary SC Physics GA DL7YZ UT WOS:000375857600003 ER PT J AU Strzelec, A Vander Wal, RL Thompson, TN Toops, TJ Daw, CS AF Strzelec, Andrea Vander Wal, Randy L. Thompson, Thomas N. Toops, Todd J. Daw, C. Stuart TI NO2 Oxidation Reactivity and Burning Mode of Diesel Particulates SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 18th Rideal Conference on Chemisorption and Catalysis (RIDEAL) CY MAR 25-27, 2015 CL Fritz Haber Inst Max Planck Gesell, Berlin, GERMANY HO Fritz Haber Inst Max Planck Gesell DE Soot oxidation; Passive oxidation; Biofuel; Diesel soot; NO2 oxidation; Nanostructure; HRTEM ID SOOT OXIDATION; KINETIC-ANALYSIS; COMBUSTION; CARBON; OXYGEN; BEHAVIOR; EXHAUST; MATTER; FILTERS; SYSTEM AB The NO2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O-2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activation energy measured, specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O-2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. This preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison. C1 [Strzelec, Andrea; Thompson, Thomas N.] Texas A&M Univ, Dept Mech Engn, 3123 TAMU, College Stn, TX 77843 USA. [Strzelec, Andrea; Toops, Todd J.; Daw, C. Stuart] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Vander Wal, Randy L.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Vander Wal, Randy L.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. RP Strzelec, A (reprint author), Texas A&M Univ, Dept Mech Engn, 3123 TAMU, College Stn, TX 77843 USA.; Strzelec, A (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. EM astrzelec@tamu.edu NR 48 TC 1 Z9 1 U1 2 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2016 VL 59 IS 8-9 BP 686 EP 694 DI 10.1007/s11244-016-0544-8 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA DM3VN UT WOS:000376274900008 ER PT J AU Gabitto, J Tsouris, C AF Gabitto, Jorge Tsouris, Costas TI Modeling the Capacitive Deionization Process in Dual-Porosity Electrodes SO TRANSPORT IN POROUS MEDIA LA English DT Article DE CDI; Volume average; Porous media; Dual-Porosity ID LOCAL THERMAL-EQUILIBRIUM; NANOPOROUS CARBON SUPERCAPACITORS; POROUS-MEDIA; MESOPOROUS CARBON; MULTIPHASE SYSTEMS; AVERAGING THEOREM; AQUEOUS-SOLUTIONS; HEAT-CONDUCTION; 2-PHASE SYSTEMS; TRANSPORT AB In many areas of the world, there is a need to increase water availability. Capacitive deionization (CDI) is an electrochemical water treatment process that can be a viable alternative for treating water and for saving energy. A model is presented to simulate the CDI process in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two steps volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. A one-equation model based on the principle of local equilibrium is derived. The constraints determining the range of application of the one-equation model are presented. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. The source terms that appear in the average equations are calculated using theoretical derivations. The global diffusivity is calculated by solving the closure problem. C1 [Gabitto, Jorge] Prairie View A&M Univ, Dept Chem Engn, Prairie View, TX 77446 USA. [Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gabitto, J (reprint author), Prairie View A&M Univ, Dept Chem Engn, Prairie View, TX 77446 USA. EM jgabitto@aol.com RI Tsouris, Costas/C-2544-2016 OI Tsouris, Costas/0000-0002-0522-1027 FU Laboratory Director's Research and Development Seed Program of ORNL; U.S. Department of Energy [DE-AC05-0096OR22725] FX This research was partially conducted at the Oak Ridge National Laboratory (ORNL) and supported by the Laboratory Director's Research and Development Seed Program of ORNL. ORNL is managed by UT-Battelle, LLC, under Contract DE-AC05-0096OR22725 with the U.S. Department of Energy. NR 61 TC 2 Z9 2 U1 8 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2016 VL 113 IS 1 BP 173 EP 205 DI 10.1007/s11242-016-0688-9 PG 33 WC Engineering, Chemical SC Engineering GA DM1PF UT WOS:000376117800009 ER PT J AU Mittal, S AF Mittal, Sparsh TI A Survey of Techniques for Approximate Computing SO ACM COMPUTING SURVEYS LA English DT Article DE Design; Performance; Review; classification; approximate computing technique (ACT); approximate storage; quality configurability; CPU; GPU; FPGA; neural networks ID SIMD ARCHITECTURES; POWER; ACCELERATION; MEMOIZATION; FRAMEWORK; PROGRAMS; HARDWARE AB Approximate computing trades off computation quality with effort expended, and as rising performance demands confront plateauing resource budgets, approximate computing has become not merely attractive, but even imperative. In this article, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU, and FPGA), processor components, memory technologies, and so forth, as well as programming frameworks for AC. We classify these techniques based on several key characteristics to emphasize their similarities and differences. The aim of this article is to provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems. C1 [Mittal, Sparsh] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. RP Mittal, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM mittals@ornl.gov FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research FX Support for this work was provided by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. NR 83 TC 1 Z9 1 U1 4 U2 11 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD MAY PY 2016 VL 48 IS 4 AR 62 DI 10.1145/2893356 PG 33 WC Computer Science, Theory & Methods SC Computer Science GA DL5VQ UT WOS:000375705500014 ER PT J AU Mittal, S AF Mittal, Sparsh TI A Survey of Architectural Techniques for Managing Process Variation SO ACM COMPUTING SURVEYS LA English DT Article DE Design; Performance; Review; die to die (D2D); within die (WID); core to core (C2C); delay and leakage variation; parametric variation; CPU; GPU; 3D processor; nonvolatile memory (NVM); DRAM; resilience ID CHIP MULTIPROCESSORS; PARAMETER VARIATIONS; CACHE ARCHITECTURES; NONVOLATILE MEMORY; LEAKAGE REDUCTION; TIMING ERRORS; MANAGEMENT; DESIGN; YIELD; POWER AB Process variation-deviation in parameters from their nominal specifications-threatens to slow down and even pause technological scaling, and mitigation of it is the way to continue the benefits of chip miniaturization. In this article, we present a survey of architectural techniques for managing process variation (PV) in modern processors. We also classify these techniques based on several important parameters to bring out their similarities and differences. The aim of this article is to provide insights to researchers into the state of the art in PV management techniques and motivate them to further improve these techniques for designing PV-resilient processors of tomorrow. C1 [Mittal, Sparsh] Oak Ridge Natl Lab, Future Technol Grp, 1 Bethel Valley Rd,Bldg 5100,MS-6173, Oak Ridge, TN 37830 USA. RP Mittal, S (reprint author), Oak Ridge Natl Lab, Future Technol Grp, 1 Bethel Valley Rd,Bldg 5100,MS-6173, Oak Ridge, TN 37830 USA. EM mittals@ornl.gov FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research FX Support for this work was provided by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. NR 119 TC 2 Z9 2 U1 0 U2 6 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD MAY PY 2016 VL 48 IS 4 AR 54 DI 10.1145/2871167 PG 29 WC Computer Science, Theory & Methods SC Computer Science GA DL5VQ UT WOS:000375705500006 ER PT J AU Dauter, Z AF Dauter, Zbigniew TI Objective evaluation of radiation damage in a nucleoprotein complex SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Editorial Material DE radiation damage; nucleoproteins ID X-RAY-ENERGIES; CRYSTALS C1 [Dauter, Zbigniew] NCI, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. EM zdauter@anl.gov NR 10 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD MAY PY 2016 VL 72 BP 601 EP 602 DI 10.1107/S2059798316006550 PN 5 PG 2 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DL7WS UT WOS:000375851700001 PM 27139623 ER PT J AU Stevenson, HP Lin, GW Barnes, CO Sutkeviciute, I Krzysiak, T Weiss, SC Reynolds, S Wu, Y Nagarajan, V Makhov, AM Lawrence, R Lamm, E Clark, L Gardella, TJ Hogue, BG Ogata, CM Ahn, J Gronenborn, AM Conway, JF Vilardaga, JP Cohen, AE Calero, G AF Stevenson, Hilary P. Lin, Guowu Barnes, Christopher O. Sutkeviciute, Ieva Krzysiak, Troy Weiss, Simon C. Reynolds, Shelley Wu, Ying Nagarajan, Veeranagu Makhov, Alexander M. Lawrence, Robert Lamm, Emily Clark, Lisa Gardella, Timothy J. Hogue, Brenda G. Ogata, Craig M. Ahn, Jinwoo Gronenborn, Angela M. Conway, James F. Vilardaga, Jean-Pierre Cohen, Aina E. Calero, Guillermo TI Transmission electron microscopy for the evaluation and optimization of crystal growth SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE nanocrystallography; crystal optimization; transmission electron microscopy; structural biology; X-ray free-electron lasers; XFELs; crystal optimization; micro-electron diffraction ID PROTEIN-COUPLED RECEPTOR; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; X-RAY LASER; MACROMOLECULAR CRYSTALS; CRYSTALLIZATION; RESOLUTION; RNA; TRANSCRIPTION; EXPRESSION; STABILITY AB The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed. C1 [Stevenson, Hilary P.; Lin, Guowu; Barnes, Christopher O.; Krzysiak, Troy; Weiss, Simon C.; Reynolds, Shelley; Wu, Ying; Makhov, Alexander M.; Lamm, Emily; Clark, Lisa; Ahn, Jinwoo; Gronenborn, Angela M.; Conway, James F.; Calero, Guillermo] Univ Pittsburgh, Sch Med, Dept Biol Struct, 3501 Fifth Ave, Pittsburgh, PA 15260 USA. [Sutkeviciute, Ieva; Vilardaga, Jean-Pierre] Univ Pittsburgh, Sch Med, Dept Pharmacol & Chem Biol, M240 Scaife Hall,3550 Terrace St, Pittsburgh, PA 15261 USA. [Nagarajan, Veeranagu] JAN Sci Inc, 4726 11th Ave NE,Suite 101, Seattle, WA 98105 USA. [Lawrence, Robert; Hogue, Brenda G.] Arizona State Univ, Sch Life Sci, POB 874501, Tempe, AZ 85287 USA. [Gardella, Timothy J.] Massachusetts Gen Hosp, Endocrine Unit, Boston, MA 02114 USA. [Gardella, Timothy J.] Harvard Univ, Sch Med, Boston, MA 02114 USA. [Ogata, Craig M.] Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Cohen, Aina E.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Calero, G (reprint author), Univ Pittsburgh, Sch Med, Dept Biol Struct, 3501 Fifth Ave, Pittsburgh, PA 15260 USA. EM guc9@pitt.edu OI Sutkeviciute, Ieva/0000-0002-2168-3344 FU LCLS Ultrafast Science Instruments (LUSI) project - US Department of Energy (DOE) Office of Basic Energy Sciences; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE Office of Biological and Environmental Research; National Institute of Diabetes and Digestive and Kidney Diseases (NIDKK); National Institute of General Medical Sciences (NIGMS) of the US National Institutes of Health (NIH) [DK102495, DK011794, GM112686, P50GM082251]; NIH [F31-GM112497]; [BioXFEL-STC1231306] FX HPS, COB and GL contributed to this work equally. HPS performed the electron microscopy with guidance from AMM, JFC and GC. GL, COB, SR, YW, SCW, EL, LJC, TK, RL and IS were responsible for crystallization and fragmentation. VN, SR and COB were responsible for UV-microscopy data analysis and crystal-fragment counting. COB, GL and AEC were responsible for X-ray data collection and analysis. CMO was responsible for crystal-rastering protocols and data analysis. JPV, TJG, BGH, AMG and JA provided reagents and data analysis. HPS, COB, GL and GC wrote the manuscript. All authors commented on and approved the manuscript. Portions of this research were carried out at the Linac Coherent Light Source (LCLS), a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. We thank Sebastien Boutet, Marc Messerschmidt, Daniel DePonte and Garth Williams of LCLS and Robert L. Shoeman and Sabine Botha of the Max Plank Institute for Medical Research for support during data collection at the coherent X-ray imaging (CXI) station. The CXI instrument was funded through the LCLS Ultrafast Science Instruments (LUSI) project funded by the US Department of Energy (DOE) Office of Basic Energy Sciences. Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory is supported by the DOE Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research. The authors thank Sebastien Granier for his generous gift of the plasmid encoding BRIL-PTHR, Mark Gladwin for purified globin-X and Elena G. Kovaleva for crystals of the H200Q variant of homo-protecatechuate 2,3-dioxygenase. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDKK) and the National Institute of General Medical Sciences (NIGMS) of the US National Institutes of Health (NIH) under Award Nos. DK102495 (JPV), DK011794 (TJG), GM112686 (GC), DK102495 (GC) and P50GM082251 (AMG). COB acknowledges support from NIH F31-GM112497. HPS and GC acknowledge support from BioXFEL-STC1231306. NR 43 TC 2 Z9 2 U1 5 U2 16 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD MAY PY 2016 VL 72 BP 603 EP 615 DI 10.1107/S2059798316001546 PN 5 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DL7WS UT WOS:000375851700002 PM 27139624 ER PT J AU Ullah, MW Aidhy, DS Zhang, YW Weber, WJ AF Ullah, Mohammad W. Aidhy, Dilpuneet S. Zhang, Yanwen Weber, William J. TI Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys SO ACTA MATERIALIA LA English DT Article DE Molecular dynamics simulations; Ion irradiation; Concentrated solid-solution alloys; Ni-based alloys; Defect cluster; Frenkel pair ID HIGH-ENTROPY ALLOY; MOLECULAR-DYNAMICS SIMULATION; DEFECT PRODUCTION; ELECTRICAL-RESISTIVITY; DISPLACEMENT CASCADES; MULTICOMPONENT ALLOYS; MATERIALS CHALLENGES; FE-CR; ENERGY; EVOLUTION AB Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys are investigated using molecular dynamics (MD) simulations to assess possible enhanced radiation-resistance in these face centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni. The Ni0.8Cr0.2 and Ni0.8Fe0.2 alloys demonstrate higher radiation resistance compared to Ni. The total number of point defects produced in Ni0.8Cr0.2 and Ni0.8Fe0.2 is approximately 2.5 and 1.4 times lower than in Ni, respectively, due to efficient defect recombination in the chemically disordered alloys. Both interstitial and vacancy clusters are formed in all three materials. In Ni, large interstitial clusters are produced; whereas in Ni0.8Cr0.2, smaller interstitial clusters are produced but with a higher number. This indicates a higher mobility of interstitials in Ni compared to Ni0.8Cr0.2. Moreover, Ni0.8Cr0.2 shows better radiation resistance than Ni0.8Fe0.2. Larger interstitial clusters and 1.7 times higher numbers of accumulated point defects are observed in Ni0.8Fe0.2, in comparison with Ni0.8Cr0.2. Due to the low mobility of vacancies on the MD time scales, they are found primarily as single point defects and small clusters in all materials. While performance improvement is observed in the alloys, the difference in irradiation response between Ni0.8Cr0.2 and Ni0.8Fe0.2 indicates the importance of element choice to achieve the desired property. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Ullah, Mohammad W.; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Aidhy, Dilpuneet S.] Univ Wyoming, Dept Mech Engn, Laramie, WY 82071 USA. [Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Ullah, MW (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM ullahm@ornl.gov RI Weber, William/A-4177-2008; Ullah, Mohammad/E-1526-2017 OI Weber, William/0000-0002-9017-7365; Ullah, Mohammad/0000-0001-6190-591X FU Energy Dissipation to Defect Evolution (EDDE) an Energy Frontier Research Center - the U.S. Department of Energy, Office of Science, Basic Energy Sciences; Office of Science, US Department of Energy [DEAC02-05CH11231] FX This work was supported by Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The simulation used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy, under Contract No. DEAC02-05CH11231. NR 46 TC 7 Z9 7 U1 18 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY 1 PY 2016 VL 109 BP 17 EP 22 DI 10.1016/j.actamat.2016.02.048 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DK0QP UT WOS:000374617600003 ER PT J AU Zhang, P Maldonis, JJ Besser, MF Kramer, MJ Voyles, PM AF Zhang, Pei Maldonis, Jason J. Besser, M. F. Kramer, M. J. Voyles, Paul M. TI Medium-range structure and glass forming ability in Zr-Cu-Al bulk metallic glasses SO ACTA MATERIALIA LA English DT Article DE Fluctuation electron microscopy; Medium range order; Metallic glass; Glass forming ability; Hybrid reverse Monte Carlo ID MONTE-CARLO METHOD; FLUCTUATION MICROSCOPY; DISORDERED MATERIALS; SUPERCOOLED LIQUID; CARBON POTENTIALS; LOCAL-STRUCTURE; ATOMIC PACKING; ORDER; ALLOYS; MODEL AB Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr-Cu-Al bulk metallic glass (BMG) alloys. Both Zr50Cu35Al15 and Zr50Cu45Al5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr50Cu35Al15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T-g, than in Zr50Cu45Al5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr50Cu35Al15 on sub-T-g annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Overall, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zhang, Pei; Maldonis, Jason J.; Voyles, Paul M.] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Besser, M. F.; Kramer, M. J.] Ames Lab DOE, Ames, IA 50011 USA. [Besser, M. F.; Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Voyles, PM (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM paul.voyles@wisc.edu OI Voyles, Paul/0000-0001-9438-4284 FU National Science Foundation [DMR-1205899, CMMI-1232731]; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the National Science Foundation under Contract No. DMR-1205899 and CMMI-1232731 (JJM, PZ, and PMV). The facilities and instrumentation for microscopy and calorimetry were supported by the University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288). The synthesis of alloys was supported by U.S. DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division, through the Ames Laboratory (MFB and MJK), Iowa State University under contract DE-AC02-07CH11358. NR 52 TC 7 Z9 7 U1 22 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY 1 PY 2016 VL 109 BP 103 EP 114 DI 10.1016/j.actamat.2016.02.006 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DK0QP UT WOS:000374617600011 ER PT J AU Lo, WC Sposito, G Lee, JW Chu, H AF Lo, Wei-Cheng Sposito, Garrison Lee, Jhe-Wei Chu, Hsiuhua TI One-dimensional consolidation in unsaturated soils under cyclic loading SO ADVANCES IN WATER RESOURCES LA English DT Article DE Unsaturated soil; Consolidation; Cyclic loading; Poroelasticity; Dimensionless excitation frequency ID POROUS-MEDIA; HYDRAULIC CONDUCTIVITY; WAVES AB The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lo, Wei-Cheng; Lee, Jhe-Wei] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan. [Sposito, Garrison] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Chu, Hsiuhua] Ind Technol Res Inst, Informat & Commun Res Labs, Tainan 70955, Taiwan. RP Lee, JW (reprint author), Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan. EM jheweilee@gmail.com FU Ministry of Science and Technology, Taiwan [MOST-103-2116-M-006-003]; University of California at Berkeley FX Gratitude is expressed for financial support to the Ministry of Science and Technology, Taiwan, under Contract no. MOST-103-2116-M-006-003. The second author acknowledges support under the auspices of his appointment as Chancellor's Professor in the University of California at Berkeley. NR 29 TC 0 Z9 0 U1 6 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAY PY 2016 VL 91 BP 122 EP 137 DI 10.1016/j.advwatres.2016.03.001 PG 16 WC Water Resources SC Water Resources GA DJ8QY UT WOS:000374478700011 ER PT J AU Fucic, A Bonassi, S Gundy, S Lazutka, J Sram, R Ceppi, M Lucas, JN AF Fucic, Aleksandra Bonassi, Stefano Gundy, Sarolta Lazutka, Juozas Sram, Radim Ceppi, Marcello Lucas, Joe N. TI Frequency of Acentric Fragments Are Associated with Cancer Risk in Subjects Exposed to Ionizing Radiation SO ANTICANCER RESEARCH LA English DT Article DE Ionizing radiation; cancer risk; acentric fragments; chromosomal aberrations; carcinogenesis; chromosome damage; acentric fragments ID PERIPHERAL-BLOOD LYMPHOCYTES; IN-SITU HYBRIDIZATION; UNSTABLE CHROMOSOME-ABERRATIONS; BIOLOGICAL DOSIMETRY; CYTOGENETIC ANALYSIS; DNA HYBRIDIZATION; LOW-LEVEL; HUMANS; SUSPENSION; WORKERS AB Background/Aim: Biomonitoring is currently applied in the estimation of health risks after overexposure to ionizing radiation (IR). The aim of this study was to compare the association of dicentric chromosomes and acentric fragments (AF) with cancer risk in subjects exposed to IR, as well as in control subjects. Materials and Methods: The study was performed on 3,574 subjects (2,030 subjects exposed to IR and 1,544 control subjects). The mean follow-up period was 8 years. Results: In subjects reporting exposure to IR, the presence of AFs and dicentric chromosomes was associated with a significant increase in cancer risk, hazard ratio (HR)=1.78 (95% confidence interval (CI)=1.01-3.13) and HR=1.73 (95% CI=1.03-2.90), respectively. Conclusion: AFs are associated with cancer risk and have a similar sensitivity to dicentric chromosomes in subjects exposed to IR. Because automated AF scoring can be easily introduced using fast flow cytometry combined with the pan-centromere staining, this biomarker may hold promise as a potential sensitive biomarker of exposure to IR and cancer risk. C1 [Fucic, Aleksandra] Inst Med Res & Occupat Hlth, Ksaverska c 2, Zagreb 10000, Croatia. [Bonassi, Stefano] IRCCS San Raffaele Pisana, Unit Clin & Mol Epidemiol, Rome, Italy. [Gundy, Sarolta] Natl Inst Oncol, Budapest, Hungary. [Lazutka, Juozas] Vilnius State Univ, Inst Biotechnol, Vilnius, Lithuania. [Sram, Radim] Inst Expt Med AS CR, Prague, Czech Republic. [Ceppi, Marcello] IRCCS AOU San Martino IST, Genoa, Italy. [Lucas, Joe N.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Fucic, A (reprint author), Inst Med Res & Occupat Hlth, Ksaverska c 2, Zagreb 10000, Croatia. EM afucic@imi.hr NR 47 TC 1 Z9 1 U1 6 U2 8 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0250-7005 EI 1791-7530 J9 ANTICANCER RES JI Anticancer Res. PD MAY PY 2016 VL 36 IS 5 BP 2451 EP 2457 PG 7 WC Oncology SC Oncology GA DL2IA UT WOS:000375456200053 PM 27127157 ER PT J AU Xu, ZJ Tipireddy, R Lin, G AF Xu, Zhijie Tipireddy, Ramakrishna Lin, Guang TI Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients SO APPLIED MATHEMATICAL MODELLING LA English DT Article DE Stochastic; Elliptic equation; Random field; Uncertainty; Monte-Carlo; Polynomial chaos ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; RANDOM INPUT DATA; PROBABILISTIC COLLOCATION; DIFFUSION EQUATION; POLYNOMIAL CHAOS; SPARSE GRIDS; DECOMPOSITION; SYSTEMS; MEDIA AB In this work, we study a one-dimensional elliptic equation with a random coefficient and derive an explicit analytical approximation. We model the random coefficient with a spatially varying random field, K(x, co) with known covariance function. We derive the relation between the standard deviation of the solution T(x, co) and the correlation length, 77 of IC(x, co). We observe that, the standard deviation, UT of the solution, T(x, co), initially increases with the correlation length eta up to a maximum value, QT, max at eta(max) root x(1 x)/3 and decreases beyond nmax. We observe a scaling law between criand 77, that is, QT alpha eta(1/2) for eta -> 0 and sigma(T) proportional to n(-1/2) for eta -> infinity. We show that, for a small value of coefficient of variation (sK = 1.4K) of the random coefficient, the solution T(x, co) can be approximated with a Gaussian random field regardless of the underlying probability distribution of K(x, co). This approximation is valid for large value of 6K, if the correlation length, s of input random field (epsilon(K) = sigma(K)/mu(k)) is small. We compare the analytical results with numerical ones obtained from Monte-Carlo method and polynomial chaos based stochastic collocation method. Under aforementioned conditions, we observe a good agreement between the numerical simulations and the analytical results. For a given random coefficient K(x, co) with known mean and variance we can quickly estimate the variance of the solution at any location for a given correlation length. If the correlation length is not available which is the case in most practical situations, we can still use this analytical solution to estimate the maximum variance of the solution at any location. (C) 2016 Elsevier Inc. All rights reserved. C1 [Xu, Zhijie; Tipireddy, Ramakrishna] Pacific NW Natl Lab, Computat Math Dept, POB 999, Richland, WA 99352 USA. [Lin, Guang] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Computat Math Dept, POB 999, Richland, WA 99352 USA. EM zhijie.xu@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU Applied Mathematics Program within the Department of Energy's (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4); DOE [DE-AC05-76RL01830] FX This work was supported by the Applied Mathematics Program within the Department of Energy's (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). The research was performed using Pacific Northwest National Laboratory (PNNL) Institutional Computing. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 31 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0307-904X EI 1872-8480 J9 APPL MATH MODEL JI Appl. Math. Model. PD MAY PY 2016 VL 40 IS 9-10 BP 5542 EP 5559 DI 10.1016/j.apm.2015.12.041 PG 18 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA DL3CN UT WOS:000375511900026 ER PT J AU Zhang, YW Allerman, AA Krishnamoorthy, S Akyol, F Moseley, MW Armstrong, AM Rajan, S AF Zhang, Yuewei Allerman, Andrew A. Krishnamoorthy, Sriram Akyol, Fatih Moseley, Michael W. Armstrong, Andrew M. Rajan, Siddharth TI Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs SO APPLIED PHYSICS EXPRESS LA English DT Article ID DIODES AB The efficiency of ultraviolet (UV) light-emitting diodes (LEDs) is critically limited by absorption losses in p-type and metal layers. In this work, surface-roughening-based light extraction structures were combined with tunneling-based top-layer contacts to achieve highly efficient top-side light extraction in UV LEDs. By using self-assembled Ni nanoclusters as an etch mask, the top surface-roughened LEDs were found to enhance the external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can be used for fabricating highly efficient UV LEDs without the need for complex manufacturing techniques such as flip chip bonding. (C) 2016 The Japan Society of Applied Physics C1 [Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Rajan, Siddharth] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Rajan, Siddharth] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. RP Zhang, YW; Rajan, S (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.; Rajan, S (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. EM zhang.3789@osu.edu; rajan@ece.osu.edu RI Krishnamoorthy, Sriram/B-2258-2012 OI Krishnamoorthy, Sriram/0000-0002-4682-1002 FU National Science Foundation [ECCS-1408416]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX S.R., Y.Z., S.K., and F.A. acknowledge funding from the National Science Foundation (ECCS-1408416). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 4 Z9 4 U1 5 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD MAY PY 2016 VL 9 IS 5 AR 052102 DI 10.7567/APEX.9.052102 PG 4 WC Physics, Applied SC Physics GA DL6LD UT WOS:000375749800009 ER PT J AU Hjelm, RME Garcia, KE Babanova, S Artyushkova, K Matanovic, I Banta, S Atanassov, P AF Hjelm, Rachel M. E. Garcia, Kristen E. Babanova, Sofia Artyushkova, Kateryna Matanovic, Ivana Banta, Scott Atanassov, Plamen TI Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Biomimetic; Enzymatic fuel cell; Enzymatic cascade; DNA-CNT matrix; Small laccase; Zinc finger ID DIRECT ELECTRON-TRANSFER; CARBON NANOTUBES; BUILDING-BLOCKS; BIOFUEL CELL; RECOGNITION; DEHYDROGENASE; CONVERSION; REDUCTION; OXIDATION; HYDROGELS AB The development of 3D structures exploring the properties of nano-materials and biological molecules has been shown through the years as an effective path forward for the design of advanced bio-nano architectures for enzymatic fuel cells, photo-bio energy harvesting devices, nano-biosensors and bio-actuators and other bio-nano-interfacial architectures. In this study we demonstrate a scaffold design utilizing carbon nanotubes, deoxyribose nucleic acid (DNA) and a specific DNA binding transcription factor that allows for directed immobilization of a single enzyme. Functionalized carbon nanotubes were covalently bonded to a diazonium salt modified gold surface through carbodiimide chemistry creating a brush-type nanotube alignment. The aligned nanotubes created a highly ordered structure with high surface area that allowed for the attachment of a protein assembly through a designed DNA scaffold. The enzyme immobilization was controlled by a zinc finger (ZNF) protein domain that binds to a specific dsDNA sequence. ZNF 268 was genetically fused to the small laccase (SLAC) from Streptomyces coelicolor, an enzyme belonging to the family of multi-copper oxidases, and used to demonstrate the applicability of the developed approach. Analytical techniques such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and enzymatic activity analysis, allowed characterization at each stage of development of the bio-nano architecture. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hjelm, Rachel M. E.] 1 Univ New Mexico, Nanoscience & Microsyst, MSC01 1120, Albuquerque, NM 87131 USA. [Babanova, Sofia; Artyushkova, Kateryna; Atanassov, Plamen] 1 Univ New Mexico, Dept Chem & Biol Engn, Farris Engn Ctr 209, MSC01 1120, Albuquerque, NM 87131 USA. [Garcia, Kristen E.; Banta, Scott] Columbia Univ, Dept Chem Engn, 500 W 120th St, New York, NY 10027 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Atanassov, P (reprint author), 1 Univ New Mexico, Dept Chem & Biol Engn, Farris Engn Ctr 209, MSC01 1120, Albuquerque, NM 87131 USA. EM rhjelm@unm.edu; keg2135@columbia.edu; babanova@unm.edu; kartyush@unm.edu; igonzales@unm.edu; sb2373@columbia.edu; plamen@unm.edu RI bagheri, amir/C-3274-2017 FU Air Force Office of Scientific Research [FA9550-12-1-0112] FX The authors would like to thank the Air Force Office of Scientific Research (Grant FA9550-12-1-0112) for funding this collaborative project. NR 38 TC 1 Z9 1 U1 12 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD MAY PY 2016 VL 1857 IS 5 SI SI BP 612 EP 620 DI 10.1016/j.bbabio.2015.12.012 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DL7MM UT WOS:000375824800015 PM 26751397 ER PT J AU She, FY Nimmagadda, A Teng, P Su, M Zuo, XB Cai, JF AF She, Fengyu Nimmagadda, Alekhya Teng, Peng Su, Ma Zuo, Xiaobing Cai, Jianfeng TI Helical 1:1 alpha/Sulfono-gamma-AA Heterogeneous Peptides with Antibacterial Activity SO BIOMACROMOLECULES LA English DT Article ID HOST-DEFENSE PEPTIDES; ANTIMICROBIAL PEPTIDES; SYNTHETIC MIMICS; BETA-PEPTIDES; AAPEPTIDES; FOLDAMERS; PEPTIDOMIMETICS; OLIGOMERS; DESIGN; STRATEGIES AB As one of the greatest threats facing the 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multi-drug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-gamma-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 alpha/sulfono-gamma-AA heterogeneous peptides, in which regular amino acids and sulfono-gamma-AA-peptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small angle X-ray scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future. C1 [She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Cai, Jianfeng] Univ S Florida, Dept Chem, 4202 East Fowler Ave, Tampa, FL 33620 USA. [Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Cai, JF (reprint author), Univ S Florida, Dept Chem, 4202 East Fowler Ave, Tampa, FL 33620 USA. EM jianfengcai@usf.edu FU NSF CAREER [1351265]; NIH [1R01GM112652-01A1] FX This work is supported by NSF CAREER 1351265 and NIH 1R01GM112652-01A1. NR 36 TC 3 Z9 3 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD MAY PY 2016 VL 17 IS 5 BP 1854 EP 1859 DI 10.1021/acs.biomac.6b00286 PG 6 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA DL8IU UT WOS:000375886500031 PM 27030636 ER PT J AU Gao, Z He, Y Wang, XW Chang, W Zhang, RF Zhu, ZL Zhang, SH Chen, Q Powers, T AF Gao, Zheng He, Yuan Wang, Xian-Wu Chang, Wei Zhang, Rui-Feng Zhu, Zheng-Long Zhang, Sheng-Hu Chen, Qi Powers, Tom TI Study on transient beam loading compensation for China ADS proton linac injector II SO CHINESE PHYSICS C LA English DT Article DE beam loading; LLRF; feedforward; cavity; FPGA AB Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. C1 [Gao, Zheng; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Gao, Zheng; Chen, Qi] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Powers, Tom] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Gao, Z (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China.; Gao, Z (reprint author), Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. EM gaozheng@impcas.ac.cn FU National Natural Science Foundation of China [91426303, 11525523] FX Supported by National Natural Science Foundation of China (91426303, 11525523) NR 16 TC 0 Z9 0 U1 1 U2 4 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAY PY 2016 VL 40 IS 5 AR 057005 DI 10.1088/1674-1137/40/5/057005 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DL8YJ UT WOS:000375927800017 ER PT J AU Kriegler, E Mouratiadou, I Luderer, G Edmonds, J Edenhofer, O AF Kriegler, Elmar Mouratiadou, Ioanna Luderer, Gunnar Edmonds, Jae Edenhofer, Ottmar TI Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection SO CLIMATIC CHANGE LA English DT Editorial Material ID MITIGATION; EMISSIONS; SCENARIOS; TARGETS; POLICY; COSTS; CHINA; MODEL C1 [Kriegler, Elmar; Mouratiadou, Ioanna; Luderer, Gunnar; Edenhofer, Ottmar] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Edmonds, Jae] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20742 USA. [Edenhofer, Ottmar] Tech Univ Berlin, Berlin, Germany. [Edenhofer, Ottmar] Mercator Res Inst Global Commons & Climate Change, Berlin, Germany. RP Kriegler, E (reprint author), Potsdam Inst Climate Impact Res, Potsdam, Germany. EM kriegler@pik-potsdam.de RI Edenhofer, Ottmar/E-1886-2013; Kriegler, Elmar/I-3048-2016; Luderer, Gunnar/G-2967-2012 OI Edenhofer, Ottmar/0000-0001-6029-5208; Kriegler, Elmar/0000-0002-3307-2647; NR 43 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2016 VL 136 IS 1 BP 1 EP 6 DI 10.1007/s10584-016-1667-4 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL5MV UT WOS:000375682100001 ER PT J AU Kriegler, E Mouratiadou, I Luderer, G Bauer, N Brecha, RJ Calvin, K De Cian, E Edmonds, J Jiang, KJ Tavoni, M Edenhofer, O AF Kriegler, Elmar Mouratiadou, Ioanna Luderer, Gunnar Bauer, Nico Brecha, Robert J. Calvin, Katherine De Cian, Enrica Edmonds, Jae Jiang, Kejun Tavoni, Massimo Edenhofer, Ottmar TI Will economic growth and fossil fuel scarcity help or hinder climate stabilization? Overview of the RoSE multi-model study SO CLIMATIC CHANGE LA English DT Article ID POLICY AB We investigate the extent to which future energy transformation pathways meeting ambitious climate change mitigation targets depend on assumptions about economic growth and fossil fuel availability. The analysis synthesizes results from the RoSE multi-model study aiming to identify robust and sensitive features of mitigation pathways under these inherently uncertain drivers of energy and emissions developments. Based on an integrated assessment model comparison exercise, we show that economic growth and fossil resource assumptions substantially affect baseline developments, but in no case they lead to the significant greenhouse gas emission reduction that would be needed to achieve long-term climate targets without dedicated climate policy. The influence of economic growth and fossil resource assumptions on climate mitigation pathways is relatively small due to overriding requirements imposed by long-term climate targets. While baseline assumptions can have substantial effects on mitigation costs and carbon prices, we find that the effects of model differences and the stringency of the climate target are larger compared to that of baseline assumptions. We conclude that inherent uncertainties about socio-economic determinants like economic growth and fossil resource availability can be effectively dealt with in the assessment of mitigation pathways. C1 [Kriegler, Elmar; Mouratiadou, Ioanna; Luderer, Gunnar; Bauer, Nico; Brecha, Robert J.; Edenhofer, Ottmar] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Brecha, Robert J.] Univ Dayton, Dayton, OH 45469 USA. [Calvin, Katherine; Edmonds, Jae] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20742 USA. [De Cian, Enrica; Tavoni, Massimo] FEEM, Milan, Italy. [De Cian, Enrica; Tavoni, Massimo] Euromediterranen Ctr Climate Change CMCC, Milan, Italy. [Edmonds, Jae; Jiang, Kejun] Natl Dev & Reform Commiss, Energy Res Inst, Beijing, Peoples R China. [Edenhofer, Ottmar] Tech Univ Berlin, Berlin, Germany. [Edenhofer, Ottmar] Mercator Res Inst Global Commons & Climate Change, Berlin, Germany. RP Kriegler, E (reprint author), Potsdam Inst Climate Impact Res, Potsdam, Germany. EM kriegler@pik-potsdam.de RI Edenhofer, Ottmar/E-1886-2013; Kriegler, Elmar/I-3048-2016; Luderer, Gunnar/G-2967-2012 OI Edenhofer, Ottmar/0000-0001-6029-5208; Kriegler, Elmar/0000-0002-3307-2647; FU Stiftung Mercator; German-American Fulbright Foundation while at PIK FX The RoSE project, this work and the additional studies presented in the RoSE special issue were supported by Stiftung Mercator. RJB acknowledges support from the German-American Fulbright Foundation while at PIK. NR 41 TC 3 Z9 3 U1 5 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2016 VL 136 IS 1 BP 7 EP 22 DI 10.1007/s10584-016-1668-3 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL5MV UT WOS:000375682100002 ER PT J AU Calvin, K Wise, M Luckow, P Kyle, P Clarke, L Edmonds, J AF Calvin, Katherine Wise, Marshall Luckow, Patrick Kyle, Page Clarke, Leon Edmonds, Jae TI Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions SO CLIMATIC CHANGE LA English DT Article ID LAND-USE AB The magnitude and character of the global resource base of fossil fuels is a key determinant of the evolution of the future global energy system and corresponding fossil fuel carbon emissions. What is less well understood is the potential magnitude of impact of the availability of fossil fuels, due to the interaction with biomass energy, on agriculture, land use, ecosystems and therefore carbon emissions from land-use change. This paper explores these links and implications. We show that if oil resources are limited, then the consequently higher price for liquids induces both the use of coal-to-liquids technology deployment, but also enhanced production of bioenergy crops particularly in a business-as-usual scenario. This in turn implies greater pressure to convert unmanaged ecosystems to produce bioenergy, and higher rates of terrestrial carbon emissions from land use. C1 [Calvin, Katherine; Wise, Marshall; Kyle, Page; Clarke, Leon; Edmonds, Jae] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Luckow, Patrick] Synapse Energy Econ Inc, Cambridge, MA USA. RP Calvin, K (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. EM katherine.calvin@pnnl.gov OI Calvin, Katherine/0000-0003-2191-4189 FU Stiftung Mercator; DOE SC-IARP FX The authors are grateful for research support provided by Stiftung Mercator (www.stiftung-mercator.de). The authors also wish to express appreciation to the Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy for long-term support that enabled the development of the Global Change Assessment Model, which was used in the conduct of this research. This research also used Evergreen computing resources at the Pacific Northwest National Laboratory's Joint Global Change Research Institute at the University of Maryland in College Park, which is supported by DOE SC-IARP. NR 13 TC 5 Z9 5 U1 3 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2016 VL 136 IS 1 BP 57 EP 68 DI 10.1007/s10584-013-0923-0 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL5MV UT WOS:000375682100005 ER PT J AU Luderer, G Bertram, C Calvin, K De Cian, E Kriegler, E AF Luderer, Gunnar Bertram, Christoph Calvin, Katherine De Cian, Enrica Kriegler, Elmar TI Implications of weak near-term climate policies on long-term mitigation pathways SO CLIMATIC CHANGE LA English DT Article ID COPENHAGEN ACCORD PLEDGES; COSTS; MODEL AB While the international community has agreed on the long-term target of limiting global warming to no more than 2 degrees C above pre-industrial levels, only a few concrete climate policies and measures to reduce greenhouse gas (GHG) emissions have been implemented. We use a set of three global integrated assessment models to analyze the implications of current climate policies on long-term mitigation targets. We define a weak-policy baseline scenario, which extrapolates the current policy environment by assuming that the global climate regime remains fragmented and that emission reduction efforts remain unambitious in most of the world's regions. These scenarios clearly fall short of limiting warming to 2 degrees C. We investigate the cost and achievability of the stabilization of atmospheric GHG concentrations at 450 ppm CO(2)e by 2100, if countries follow the weak policy pathway until 2020 or 2030 before pursuing the long-term mitigation target with global cooperative action. We find that after a deferral of ambitious action the 450 ppm CO(2)e is only achievable with a radical up-scaling of efforts after target adoption. This has severe effects on transformation pathways and exacerbates the challenges of climate stabilization, in particular for a delay of cooperative action until 2030. Specifically, reaching the target with weak near-term action implies (a) faster and more aggressive transformations of energy systems in the medium term, (b) more stranded investments in fossil-based capacities, (c) higher long-term mitigation costs and carbon prices and (d) stronger transitional economic impacts, rendering the political feasibility of such pathways questionable. C1 [Luderer, Gunnar; Bertram, Christoph; Kriegler, Elmar] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Calvin, Katherine] Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD USA. [De Cian, Enrica] FEEM, Milan, Italy. [De Cian, Enrica] Euromediterranean Ctr Climate Change CMCC, Milan, Italy. RP Luderer, G (reprint author), Potsdam Inst Climate Impact Res, Potsdam, Germany. EM luderer@pik-potsdam.de RI Kriegler, Elmar/I-3048-2016; Luderer, Gunnar/G-2967-2012; OI Kriegler, Elmar/0000-0002-3307-2647; DE CIAN, Enrica/0000-0001-7134-2540; Calvin, Katherine/0000-0003-2191-4189 FU Stiftung Mercator FX This work was supported by Stiftung Mercator in the context of the RoSE project. NR 21 TC 6 Z9 6 U1 7 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2016 VL 136 IS 1 BP 127 EP 140 DI 10.1007/s10584-013-0899-9 PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL5MV UT WOS:000375682100010 ER PT J AU Kim, SH Hejazi, M Liu, L Calvin, K Clarke, L Edmonds, J Kyle, P Patel, P Wise, M Davies, E AF Kim, Son H. Hejazi, Mohamad Liu, Lu Calvin, Katherine Clarke, Leon Edmonds, Jae Kyle, Page Patel, Pralit Wise, Marshall Davies, Evan TI Balancing global water availability and use at basin scale in an integrated assessment model SO CLIMATIC CHANGE LA English DT Article ID SHARED SOCIOECONOMIC PATHWAYS; RESOURCES; SCARCITY; 21ST-CENTURY; PATTERNS; ENERGY AB Water is essential for the world's food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world's scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economic growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants-energy, land, and economy-are reconciled with water resource availability-from renewable water, non-renewable groundwater and desalinated water sources-across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. This study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions. C1 [Kim, Son H.; Hejazi, Mohamad; Liu, Lu; Calvin, Katherine; Clarke, Leon; Edmonds, Jae; Kyle, Page; Patel, Pralit; Wise, Marshall] Joint Global Res Inst, Pacific NW Natl Lab, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. [Davies, Evan] Univ Alberta, Edmonton, AB T6G 1H9, Canada. RP Kim, SH (reprint author), Joint Global Res Inst, Pacific NW Natl Lab, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM skim@pnnl.gov OI Davies, Evan/0000-0003-0536-333X FU Office of Science of the U.S. Department of Energy through the Integrated Assessment Research Program; DOE [DE-AC05-76RL01830] FX This research was supported by the Office of Science of the U.S. Department of Energy through the Integrated Assessment Research Program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 45 TC 5 Z9 5 U1 10 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2016 VL 136 IS 2 BP 217 EP 231 DI 10.1007/s10584-016-1604-6 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL5NG UT WOS:000375683200005 ER PT J AU Scott, MJ Daly, DS Hejazi, MI Kyle, GP Liu, L McJeon, HC Mundra, A Patel, PL Rice, JS Voisin, N AF Scott, Michael J. Daly, Don S. Hejazi, Mohamad I. Kyle, G. Page Liu, Lu McJeon, Haewon C. Mundra, Anupriya Patel, Pralit L. Rice, Jennie S. Voisin, Nathalie TI Sensitivity of future US Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework SO CLIMATIC CHANGE LA English DT Article ID RESOURCE MANAGEMENT; CHANGE IMPACTS; SUPPLY SYSTEM; LAND-SURFACE; REPRESENTATION; UNCERTAINTY; INCLUSION AB One of the most important interactions between humans and climate is in the demand and supply of water. Humans withdraw, use, and consume water and return waste water to the environment for a variety of socioeconomic purposes, including domestic, commercial, and industrial use, production of energy resources and cooling thermal-electric power plants, and growing food, fiber, and chemical feed stocks for human consumption. Uncertainties in the future human demand for water interact with future impacts of climatic change on water supplies to impinge on water management decisions at the international, national, regional, and local level, but until recently tools were not available to assess the uncertainties surrounding these decisions. This paper demonstrates the use of a multi-model framework in a structured sensitivity analysis to project and quantify the sensitivity of future deficits in surface water in the context of climate and socioeconomic change for all U.S. states and sub-basins. The framework treats all sources of water demand and supply consistently from the world to local level. The paper illustrates the capabilities of the framework with sample results for a river sub-basin in the U.S. state of Georgia. C1 [Scott, Michael J.; Daly, Don S.; Rice, Jennie S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hejazi, Mohamad I.; Kyle, G. Page; Liu, Lu; McJeon, Haewon C.; Mundra, Anupriya; Patel, Pralit L.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20742 USA. [Voisin, Nathalie] Battelle Seattle Res Ctr, Pacific NW Natl Lab, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. RP Voisin, N (reprint author), Battelle Seattle Res Ctr, Pacific NW Natl Lab, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM Nathalie.Voisin@pnnl.gov OI Voisin, Nathalie/0000-0002-6848-449X NR 43 TC 0 Z9 0 U1 2 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2016 VL 136 IS 2 BP 233 EP 246 DI 10.1007/s10584-016-1602-8 PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL5NG UT WOS:000375683200006 ER PT J AU Uram, TD Papka, ME AF Uram, Thomas D. Papka, Michael E. TI Expanding the Scope of High-Performance Computing Facilities SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material ID SCIENCE C1 [Uram, Thomas D.; Papka, Michael E.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Papka, Michael E.] Argonne Natl Lab, Comp Environm & Life Sci, Argonne, IL 60439 USA. [Papka, Michael E.] No Illinois Univ, Comp Sci, De Kalb, IL 60115 USA. RP Uram, TD; Papka, ME (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA.; Papka, ME (reprint author), Argonne Natl Lab, Comp Environm & Life Sci, Argonne, IL 60439 USA.; Papka, ME (reprint author), No Illinois Univ, Comp Sci, De Kalb, IL 60115 USA. EM turam@anl.gov; papka@anl.gov NR 3 TC 0 Z9 0 U1 3 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAY-JUN PY 2016 VL 18 IS 3 BP 84 EP 87 PG 4 WC Computer Science, Interdisciplinary Applications SC Computer Science GA DL6IN UT WOS:000375743000009 ER PT J AU Wibowo, AC Malliakas, CD Li, H Stoumpos, CC Chung, DY Wessels, BW Freeman, AJ Kanatzidis, MG AF Wibowo, Arief C. Malliakas, Christos D. Li, Hao Stoumpos, Constantinos C. Chung, Duck Young Wessels, Bruce W. Freeman, Arthur J. Kanatzidis, Mercouri G. TI An Unusual Crystal Growth Method of the Chalcohalide Semiconductor, beta-Hg3S2Cl2: A New Candidate for Hard Radiation Detection SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ION-EXCHANGE PROPERTIES; GAMMA-RAY DETECTION; X-RAY; LIQUID ENCAPSULATION; CS; PHOTOCONDUCTIVITY; CHALCOGENIDES; FAMILY; GAAS; SE AB We assess the mercury chalcohalide compound, beta-Hg3S2Cl2, as a potential semiconductor material for X-ray and gamma-ray detection. It has a high density (6.80 g/cm(3)) and wide band gap (2.56 eV) and crystallizes in the cubic Pm (3) over barn space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of beta-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of beta-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into beta-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 10(10) Omega.cm and mobility-lifetime products of electron and hole carriers of 1.4(4) X 10(-4) cm(2)/V and 7.5(3) X 10(-5) cm(2)/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of beta-Hg3S2Cl2 as a hard radiation detector material. C1 [Wibowo, Arief C.; Malliakas, Christos D.; Li, Hao; Stoumpos, Constantinos C.; Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wessels, Bruce W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Freeman, Arthur J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Wibowo, Arief C.] Univ Malaya, Fac Sci, Dept Chem, Kuala Lumpur 50603, Malaysia. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Wibowo, Arief/D-9418-2014; Wessels, Bruce/B-7541-2009 OI Wibowo, Arief/0000-0002-2454-4307; FU Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development; Argonne National Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Homeland Security; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development and carried out at Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials at Argonne National Laboratory, including resources in the Electron Microscopy Center, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works in Northwestern University (B.W.W. and A.J.F.) were supported by a grant from the Department of Homeland Security. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 47 TC 1 Z9 1 U1 5 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAY PY 2016 VL 16 IS 5 BP 2678 EP 2684 DI 10.1021/acs.cgd.5b01802 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DL3FZ UT WOS:000375520900029 ER PT J AU Tselev, A Vasudevan, RK Gianfrancesco, AG Qiao, L Meyer, TL Lee, HN Biegalski, MD Baddorf, AP Kalinin, SV AF Tselev, Alexander Vasudevan, Rama K. Gianfrancesco, Anthony G. Qiao, Liang Meyer, Tricia L. Lee, Ho Nyung Biegalski, Michael D. Baddorf, Arthur P. Kalinin, Sergei V. TI Growth Mode Transition in Complex Oxide Heteroepitaxy: Atomically Resolved Studies SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; THIN-FILMS; SURFACES; PEROVSKITES; ELECTRONICS; SRTIO3(001); SUBSURFACE; DYNAMICS; ENERGY; ATOMS AB We performed investigations of the atomic-scale surface structure of epitaxial La5/8Ca3/8MnO3 thin films as a model system dependent on growth conditions in pulsed laser deposition with emphasis on film growth kinetics. Postdeposition in situ scanning tunneling microscopy was combined with in operando reflective high-energy electron diffraction to monitor the film growth and ex situ. X-ray diffraction for structural analysis. We find a correlation between the out-of-plane lattice parameter and both adspecies mobility and height of the Ehrlich Schwoebel barrier, with mobility of adatoms greater over the cationically stoichiometric terminations. The data suggest that the out-of-plane lattice parameter is dependent on the mechanism of epitaxial strain relaxation, which is controlled by the oxidative power of the deposition environment. C1 [Tselev, Alexander; Vasudevan, Rama K.; Qiao, Liang; Meyer, Tricia L.; Lee, Ho Nyung; Biegalski, Michael D.; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gianfrancesco, Anthony G.] Univ Tennessee, UT ORNL Bredesen Ctr, Knoxville, TN 37996 USA. [Qiao, Liang] Univ Manchester, Sch Mat, Grosvenor Str, Manchester M13 9PL, Lancs, England. RP Tselev, A; Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM atselev@utk.edu; sergei2@onil.gov RI Baddorf, Arthur/I-1308-2016; Lee, Ho Nyung/K-2820-2012 OI Baddorf, Arthur/0000-0001-7023-2382; Lee, Ho Nyung/0000-0002-2180-3975 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; CNMS; UT/ORNL Bredesen Center for Interdisciplinary Research and Graduate Education FX This research was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (A.T., R.K.V., A.G.G., T.L.M., H.N.L., S.V.K.). Research was conducted at CNMS, which also provided support (A.P.B., M.D.B., L.Q.) and which is a DOE Office of Science User Facility. A.G. acknowledges fellowship support from the UT/ORNL Bredesen Center for Interdisciplinary Research and Graduate Education. NR 54 TC 1 Z9 1 U1 8 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAY PY 2016 VL 16 IS 5 BP 2708 EP 2716 DI 10.1021/acs.cgd.5b01826 PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DL3FZ UT WOS:000375520900032 ER PT J AU Luna, LE Ophus, C Johanson, J Maboudian, R Carraro, C AF Luna, Lunet E. Ophus, Colin Johanson, Jonas Maboudian, Roya Carraro, Carlo TI Demonstration of Hexagonal Phase Silicon Carbide Nanowire Arrays with Vertical Alignment SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SEMICONDUCTOR NANOWIRES; FIELD EMITTERS; SIC POLYTYPES; GROWTH; ENERGY; CARBON; SCALE AB SiC nanowire based electronics hold promise for data collection in harsh environments wherein conventional semiconductor platforms would fail. However, the full adaptation of SiC nanowires as a material platform necessitates strict control of nanowire crystal structure and orientation for reliable performance. Toward such efforts, we report the growth of hexagonal phase SiC nanowire arrays grown with vertical alignment on commercially available single crystalline SiC substrates. The nanowire hexagonality, confirmed with Raman spectroscopy and atomic resolution microscopy, displays a polytypic distribution of predominantly 2H and 4H. Employing a theoretical growth model, the polytypic distribution of hexagonal phase nanowires is accurately predicted in the regime of high supersaturation. Additionally, the reduction of disorder-induced phonon density of states is achieved while maintaining nanowire morphology through a postgrowth anneal. The results of this work expand the repertoire of SiC nanowires by implementing a low-temperature method that promotes polytypes outside the well-studied cubic phase and introduces uniform, vertical alignment on industry standard SiC Substrates. C1 [Luna, Lunet E.; Maboudian, Roya; Carraro, Carlo] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Ophus, Colin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Nat Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Johanson, Jonas] Lund Univ, Solid State Phys & NanoLund, Box 118, S-22100 Lund, Sweden. RP Maboudian, R (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM maboudia@berkeley.edu RI Johansson, Jonas/B-6433-2008 OI Johansson, Jonas/0000-0002-2730-7550 FU National Science Foundation [1207053]; University of California-Berkeley Chancellor's Fellowship; NSF Graduate Research Fellowship; Gates Millennium Scholarship; NanoLund (the Center for Nanoscience at Lund University); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge the National Science Foundation Grant # 1207053 for support. L.E.L. thanks the University of California-Berkeley Chancellor's Fellowship, NSF Graduate Research Fellowship, and the Gates Millennium Scholarship for additional support. The authors also thank Chengyu Song for assistance with STEM imaging. J.J. acknowledges NanoLund (the Center for Nanoscience at Lund University) for funding. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 0 Z9 0 U1 10 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAY PY 2016 VL 16 IS 5 BP 2887 EP 2892 DI 10.1021/acs.cgd.6b00203 PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DL3FZ UT WOS:000375520900052 ER PT J AU Ren, YX Oswald, IWH Wang, XP McCandless, GT Chan, JY AF Ren, Yixin Oswald, Iain W. H. Wang, Xiaoping McCandless, Gregory T. Chan, Julia Y. TI Orientation of Organic Cations in Hybrid Inorganic-Organic Perovskite CH3NH3PbI3 from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies SO CRYSTAL GROWTH & DESIGN LA English DT Article ID LEAD IODIDE; SOLAR-CELLS; HALIDES AB We report the crystal growth of well-faceted single crystals of methylammonium lead iodide, CH3NH3PbI3, and detailed single crystal neutron diffraction structural studies aimed at elucidating the orientation of the methylammonium (CH3NH3+) cation in the tetragonal and Cubic phases of the hybrid inorganic organic perovskite. Room temperature experiments reveal a tetragonal structure where the protonated amine substituent (-NH3+) of the cation is disordered in four positions, each preferentially located near the neighboring iodine of the [PbI6] octahedra, while the methyl substituent (-CH3) is disordered in eight positions located near the body position of the unit cell. High temperature experiments show 4 cubic structure where the cation aligns along the [011] (edge), the [111] (diagonal), and the [100] (face) directions of the unit cell. The resulting site occupancy ratio suggests the CH3NH3+ cation resides primarily along the [011] direction, in agreement with reported DFT calculations. One important feature that was observed for both tetragonal and cubic structures measured at 295 and 350 K, respectively, is the middle point of the C-N bond being located off-center from the high symmetry sites in the crystal structure, induced by the formation of hydrogen bond-like interactions between the -NH3+ substituent of the organic cation and the iodine atoms of [PbI6] octahedra. C1 [Ren, Yixin; Oswald, Iain W. H.; McCandless, Gregory T.; Chan, Julia Y.] Univ Texas Dallas, Dept Chem & Biochem, Richardson, TX 75080 USA. [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 39831 USA. RP Chan, JY (reprint author), Univ Texas Dallas, Dept Chem & Biochem, Richardson, TX 75080 USA.; Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 39831 USA. EM wangx@ornl.gov; Julia.Chan@utdallas.edu RI Chan, Julia/C-5392-2008; Wang, Xiaoping/E-8050-2012 OI Chan, Julia/0000-0003-4434-2160; Wang, Xiaoping/0000-0001-7143-8112 FU NSF [DMR-1360863]; Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE.-AC05-00OR22725]; UT-Battelle, LLC FX J.Y.C. acknowledges NSF-DMR-1360863 for partial funding of this work. Neutron single crystal diffraction measurements were performed at the Spallation Neutron Source, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE.-AC05-00OR22725 with UT-Battelle, LLC. NR 24 TC 9 Z9 9 U1 16 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAY PY 2016 VL 16 IS 5 BP 2945 EP 2951 DI 10.1021/acs.cgd.6b00297 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DL3FZ UT WOS:000375520900059 ER PT J AU Monti, G Petrone, F AF Monti, Giorgio Petrone, Floriana TI Analytical thermo-mechanics 3D model of friction pendulum bearings SO EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS LA English DT Article DE thermo-mechanics 3D model; friction pendulum motion equations; tri-directional earthquake excitation; dynamic stiffness ID TEFLON BEARINGS; SEISMIC RESPONSE; BASE-ISOLATION; SYSTEM AB Among the most effective seismic protection devices, friction pendulum (FP), whose conceptual basis lies in the pendulum motion and its simple analytical description, has now gained a widespread acceptance. All the studies carried out so far have explored almost all the remarkable features of this device. Among the most appealing are constant stiffness, constant oscillation period, and recentering capability. These studies - and the authors found no exception - have systematically made reference to the classical gravity pendulum equation, whose motion occurs only in one dimension (1D), according to one DOF: the polar angle . When the presence of bi-directional seismic excitation required a 2D model, authors have resorted to the vector combination of the response of two orthogonal 1D pendulums, which we refer to as '1.5D' pendulum. Actually, FP is more correctly described as a 2D spherical pendulum, consisting of a mass moving on a sphere with friction, according to two DOFs: the polar angle and the azimuth angle phi. The relevant analytical equations of motion are presented in this paper, also accounting for thermo-mechanical coupling, to model the friction-induced temperature on the contact surface. The so-developed equations have been the object of an ample parametric study. This has allowed to observe some - sometimes notable - features in the FP response, both in free oscillation state and under bi-directional or tri-directional earthquake-like action, which in some cases lead to a different response with respect to what is generally computed - and designed - under the simplified assumptions of 1D or '1.5D' pendulum motion. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Monti, Giorgio] Univ Roma La Sapienza, Dept Struct & Geotech Engn, I-00197 Rome, Italy. [Monti, Giorgio] Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China. [Petrone, Floriana] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Petrone, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM FlorianaPetrone@lbl.gov RI Monti, Giorgio/C-9212-2009 OI Monti, Giorgio/0000-0002-5673-5706 NR 23 TC 0 Z9 0 U1 5 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0098-8847 EI 1096-9845 J9 EARTHQ ENG STRUCT D JI Earthq. Eng. Struct. Dyn. PD MAY PY 2016 VL 45 IS 6 BP 957 EP 977 DI 10.1002/eqe.2693 PG 21 WC Engineering, Civil; Engineering, Geological SC Engineering GA DJ9SU UT WOS:000374554000006 ER PT J AU Nuccio, EE Anderson-Furgeson, J Estera, KY Pett-Ridge, J de Valpine, P Brodie, EL Firestone, MK AF Nuccio, Erin E. Anderson-Furgeson, James Estera, Katerina Y. Pett-Ridge, Jennifer de Valpine, Perry Brodie, Eoin L. Firestone, Mary K. TI Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass SO ECOLOGY LA English DT Article DE Avena; climate; community assembly; microbiome; plant-microbial interactions; rhizosphere; soil ID BACTERIAL ROOT MICROBIOTA; SOIL BACTERIAL; AVENA-BARBATA; PLANT; DIVERSITY; PATTERNS; DIVERGENCE; RESPONSES; ECOLOGY; ENVIRONMENTS AB The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacent to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. These results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non-rhizosphere soil. C1 [Nuccio, Erin E.; Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Nuccio, Erin E.; Anderson-Furgeson, James] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Estera, Katerina Y.; de Valpine, Perry; Brodie, Eoin L.; Firestone, Mary K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Brodie, Eoin L.; Firestone, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. RP Nuccio, EE (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA.; Nuccio, EE (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM nuccio1@llnl.gov RI Brodie, Eoin/A-7853-2008 OI Brodie, Eoin/0000-0002-8453-8435 FU U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research Genomic Science Program [DE-SC0004730, DE-SC0010570]; Kearney Foundation of Soil Science; Mildred E. Mathias grant; DOE [DE-AC52-07NA27344, SCW1421, DE-AC02-05CH11231] FX This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research Genomic Science Program, under awards no. DE-SC0004730 and DE-SC0010570 to M.K.F., E.L.B., and J.P.R; a Kearney Foundation of Soil Science grant to M.K.F; and a Mildred E. Mathias grant to E.E.N. We thank Steve Lindow and Ellen Simms for thoughtful comments on this manuscript; Jia Tian, Donald Herman, Damon Bradbury, Steve Blazewicz for assistance with fieldwork; and Ulas Karaoz and Hsiao Chien Lim for assistance with sequencing. Work at LLNL was performed under DOE contracts DE-AC52-07NA27344 and SCW1421. Work at LBNL was performed under DOE contract DE-AC02-05CH11231. Fieldwork was supported by the Sierra Foothills REC, Hopland REC, and Sedgwick Reserve. GIS analyses were conducted at the Geospatial Innovation Facility at UC Berkeley. NR 71 TC 3 Z9 3 U1 26 U2 60 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD MAY PY 2016 VL 97 IS 5 BP 1307 EP 1318 DI 10.1890/15-0882.1 PG 12 WC Ecology SC Environmental Sciences & Ecology GA DL3XL UT WOS:000375566800019 PM 27349106 ER PT J AU Pi, M Kapoor, K Ye, RS Nishimoto, SK Smith, JC Baudry, J Quarles, LD AF Pi, Min Kapoor, Karan Ye, Ruisong Nishimoto, Satoru Kenneth Smith, Jeremy C. Baudry, Jerome Quarles, Leigh Darryl TI Evidence for Osteocalcin Binding and Activation of GPRC6A in beta-Cells SO ENDOCRINOLOGY LA English DT Article ID GAMMA-CARBOXYGLUTAMIC ACID; PROTEIN-COUPLED RECEPTOR; CALCIUM-SENSING RECEPTOR; METABOLIC SYNDROME; CLASS-C; TRANSMEMBRANE DOMAIN; OSTEOSARCOMA CELLS; INSULIN-SECRETION; ENERGY-METABOLISM; PANCREATIC-ISLETS AB The possibility that G protein-coupled receptor family C member A (GPRC6A) is the osteocalcin (Ocn)-sensing G protein-coupled receptor that directly regulates pancreatic beta-cell functions is controversial. In the current study, we found that Ocn and an Ocn-derived C-terminal hexapeptide directly activate GPRC6A-dependent ERK signaling in vitro. Computational models probe the structural basis of Ocn binding to GPRC6A and predict that the C-terminal hexapeptide docks to the extracellular side of the transmembrane domain of GPRC6A. Consistent with the modeling, mutations in the computationally identified binding pocket of GPRC6A reduced Ocn and C-terminal hexapeptide activation of this receptor. In addition, selective deletion of Gprc6a in beta-cells (Gprc6a(beta-cell-cko)) by crossing Gprc6a(flox/flox) mice with Ins2-Cre mice resulted in reduced pancreatic weight, islet number, insulin protein content, and insulin message expression. Both islet size and beta-cell proliferation were reduced in Gprc6a(beta-cell-cko) compared with control mice. Gprc6a(beta-cell-cko) exhibited abnormal glucose tolerance, but normal insulin sensitivity. Islets isolated from Gprc6a(beta-cell-cko) mice showed reduced insulin simulation index in response to Ocn. These data establish the structural basis for Ocn direct activation of GPRC6A and confirm a role for GPRC6A in regulating beta-cell proliferation and insulin secretion. C1 [Pi, Min; Ye, Ruisong; Quarles, Leigh Darryl] Univ Tennessee, Ctr Hlth Sci, Dept Med, 19 South Manassas St, Memphis, TN 38163 USA. [Nishimoto, Satoru Kenneth] Univ Tennessee, Ctr Hlth Sci, Dept Microbiol Immunol & Biochem, Memphis, TN 38163 USA. [Kapoor, Karan; Smith, Jeremy C.; Baudry, Jerome] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Pi, M; Quarles, LD (reprint author), Univ Tennessee, Ctr Hlth Sci, Dept Med, 19 South Manassas St, Memphis, TN 38163 USA. EM mpi@uthsc.edu; dquarles@uthsc.edu FU National Institutes of Health [R01-AR37308]; Americans Diabetes Association [1-13-BS-149-BR] FX This work was supported by National Institutes of Health Grant R01-AR37308 and Americans Diabetes Association Grant 1-13-BS-149-BR (to L.D.Q.). NR 66 TC 4 Z9 5 U1 2 U2 3 PU ENDOCRINE SOC PI WASHINGTON PA 2055 L ST NW, SUITE 600, WASHINGTON, DC 20036 USA SN 0013-7227 EI 1945-7170 J9 ENDOCRINOLOGY JI Endocrinology PD MAY PY 2016 VL 157 IS 5 BP 1866 EP 1880 DI 10.1210/en.2015-2010 PG 15 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA DL3XT UT WOS:000375567600018 PM 27007074 ER PT J AU Nair, SS Preston, BL King, AW Mei, R AF Nair, Sujithkumar Surendran Preston, Benjamin L. King, Anthony W. Mei, Rui TI Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Socioecological systems; Landscape typology; Socioecological typology; High-dimensional statistics; Agroecosystem; Adaptive capacity ID SOCIAL-ECOLOGICAL SYSTEMS; CLIMATE-CHANGE; ADAPTIVE CAPACITY; VULNERABILITY ANALYSIS; RESILIENCE; SUSTAINABILITY; IMPACTS; DROUGHT; SCIENCE; SCALE AB The complexity of socioecological systems (SES) has posed a persistent challenge to the development of methods for diagnostic and prognostic analyses of global change. We developed a high dimensional statistical framework where cluster analysis was used to characterize regional landscape typologies and those typologies are linked to the outcome of interest through regression modeling. For demonstration, we applied the framework to agroecosystem of the United States Gulf Coast to evaluate the determinants of spatial variability in crop yield. Regional biophysical typologies (BPT; integrated climate, soil, and topography clusters) and socioecological typologies (SET; BPT combined with socioeconomic clusters) were developed. The SET corn model (R2 = 0.89) outperformed the BPT corn model (R2 = 0.72) and a county fixed-effect model (R2 = 0.53), which reflects the socioeconomic influence over agricultural productivity. The SET model also showed similar predictive skill for soybean and cotton yield. Therefore impact analysis for agroecosystems can lead to incorrect conclusions if biophysical factors are not examined jointly with socioeconomic factors. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Nair, Sujithkumar Surendran; Preston, Benjamin L.; King, Anthony W.; Mei, Rui] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Nair, Sujithkumar Surendran; Preston, Benjamin L.; King, Anthony W.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Mei, Rui] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Nair, SS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6301, Oak Ridge, TN 37831 USA. EM surendrannas@ornl.gov OI Preston, Benjamin/0000-0002-7966-2386 FU U.S. Department of Energy, Office of Science, Biological and Environment Research, Integrated Assessment Program; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the U.S. Department of Energy, Office of Science, Biological and Environment Research, Integrated Assessment Program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 73 TC 0 Z9 0 U1 5 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD MAY PY 2016 VL 79 BP 85 EP 95 DI 10.1016/j.envsoft.2016.01.008 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA DK0KP UT WOS:000374602000007 ER PT J AU Smith, JG Baker, TF Murphy, CA Jetty, RT AF Smith, John G. Baker, Tyler F. Murphy, Cheryl A. Jetty, R. Trent TI SPATIAL AND TEMPORAL TRENDS IN CONTAMINANT CONCENTRATIONS IN HEXAGENIA NYMPHS FOLLOWING A COAL ASH SPILL AT THE TENNESSEE VALLEY AUTHORITY'S KINGSTON FOSSIL PLANT SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Coal ash; Metals; Contaminants; Exposure; Mayfly nymphs; Ecotoxicology ID WATTS BAR RESERVOIR; ECOLOGICAL RISK-ASSESSMENT; UPPER MISSISSIPPI RIVER; LAKE ST-CLAIR; FLY-ASH; PARTICLE-SIZE; METAL BIOACCUMULATION; CHEMICAL CONTROL; BED SEDIMENT; TRACE-METALS AB A dike failure at the Tennessee Valley Authority Kingston Fossil Plant in East Tennessee, United States, in December 2008, released approximately 4.1 million m(3) of coal ash into the Emory River. From 2009 through 2012, samples of mayfly nymphs (Hexagenia bilineata) were collected each spring from sites in the Emory, Clinch, and Tennessee Rivers upstream and downstream of the spill. Samples were analyzed for 17 metals. Concentrations of metals were generally highest the first 2 miles downstream of the spill, and then decreased with increasing distance from the spill. Arsenic, B, Ba, Be, Mo, Sb, Se, Sr, and V appeared to have strong ash signatures, whereas Co, Cr, Cu, Ni, and Pb appeared to be associated with ash and other sources. However, the concentrations for most of these contaminants were modest and are unlikely to cause widespread negative ecological effects. Trends in Hg, Cd, and Zn suggested little (Hg) or no (Cd, Zn) association with ash. Temporal trends suggested that concentrations of ash-related contaminants began to subside after 2010, but because of the limited time period of that analysis (4 yr), further monitoring is needed to verify this trend. The present study provides important information on the magnitude of contaminant exposure to aquatic receptors from a major coal ash spill, as well as spatial and temporal trends for transport of the associated contaminants in a large open watershed. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. C1 [Smith, John G.; Jetty, R. Trent] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Baker, Tyler F.] Tennessee Valley Author, Chattanooga, TN USA. [Murphy, Cheryl A.] Michigan State Univ, Lyman Briggs Coll, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. RP Smith, JG (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM smithjg@ornl.gov FU Tennessee Valley Authority; US Department of Energy [DE-AC05-00OR22725] FX The present study was sponsored by the Tennessee Valley Authority. Many Oak Ridge National Laboratory and Tennessee Valley Authority staff, as well as subcontractors, assisted with field and/or laboratory work, but special thanks go to A. Fortner and G. Morris (Oak Ridge National Laboratory) for their assistance throughout the project. M. Peterson, R. McManamay, and C. Brandt (Oak Ridge National Laboratory) provided many useful suggestions on content and data analysis. The comments and suggestions provided by T. Mathews (Oak Ridge National Laboratory), B. Pracheil (Oak Ridge National Laboratory), and N. Carriker (Tennessee Valley Authority) in their reviews of an early draft were invaluable. Finally, the reviews and many good comments of 3 anonymous reviewers greatly improved this manuscript. Oak Ridge National Laboratory is managed by UT-Battelle, for the US Department of Energy under contract DE-AC05-00OR22725. NR 61 TC 2 Z9 2 U1 3 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD MAY PY 2016 VL 35 IS 5 BP 1159 EP 1171 DI 10.1002/etc.3253 PG 13 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA DJ9QH UT WOS:000374547500016 PM 26387560 ER PT J AU Webster, SC Byrne, ME Lance, SL Love, CN Hinton, TG Shamovich, D Beasley, JC AF Webster, Sarah C. Byrne, Michael E. Lance, Stacey L. Love, Cara N. Hinton, Thomas G. Shamovich, Dmitry Beasley, James C. TI Where the wild things are: influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Article ID ABUNDANCE; MODELS AB Although nearly 30 years have passed since the Chernobyl Nuclear Power Plant accident near the town of Pripyat, Ukraine, the status and health of mammal populations within the Chernobyl Exclusion Zone (CEZ) remain largely unknown, and are of substantial scientific and public interest. Information regarding the response of flora and fauna to chronic radiation exposure is important in helping us understand the ecological consequences of past (eg Chernobyl and Fukushima) and potential future nuclear accidents. We present the results of the first remote-camera scent-station survey conducted within the CEZ. We observed individuals of 14 mammalian species in total; for those species with sufficiently robust visitation rates to allow occupancy to be modeled (gray wolf [Canis lupus], raccoon dog [Nyctereutes procyonoides], Eurasian boar [Sus scrofa], and red fox [Vulpes vulpes]), we found no evidence to suggest that their distributions were suppressed in highly contaminated areas within the CEZ. These data support the results of other recent studies, and contrast with research suggesting that wildlife populations are depleted within the CEZ. C1 [Webster, Sarah C.; Byrne, Michael E.; Lance, Stacey L.; Love, Cara N.; Beasley, James C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Webster, Sarah C.; Byrne, Michael E.; Beasley, James C.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Byrne, Michael E.] Nova SE Univ, Guy Harvey Res Inst, Halmos Coll Nat Sci & Oceanog, Dania, FL USA. [Love, Cara N.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Hinton, Thomas G.] Fukushima Univ, Inst Environm Radioact, Fukushima, Japan. RP Webster, SC (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA.; Webster, SC (reprint author), Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. EM swebster@srel.uga.edu FU US Department of Energy [DE-FC09-07SR22506]; National Geographic Society; Institut de Radioprotection et de Surete Nucleaire; Norwegian Radiation Protection Authority FX We thank PM Kudan, Y Bondar, S Kutschmel, S Smalovski, and the staff at the PSRER for their assistance; I Filipkova and A Bundtzen for their invaluable knowledge and hard work with this research; and J-M Metivier (IRSN) for digitizing 137Cs data from contamination maps of the PSRER. Funding was provided by the US Department of Energy (Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation), the National Geographic Society, the Institut de Radioprotection et de Surete Nucleaire, and the Norwegian Radiation Protection Authority. None of these funding sources were involved in the design, implementation, or analysis of this research. NR 21 TC 1 Z9 1 U1 39 U2 66 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1540-9295 EI 1540-9309 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD MAY PY 2016 VL 14 IS 4 BP 185 EP 190 DI 10.1002/fee.1227 PG 6 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA DL5KP UT WOS:000375676200015 ER PT J AU Ganeriwala, R Zohdi, TI AF Ganeriwala, Rishi Zohdi, Tarek I. TI A coupled discrete element-finite difference model of selective laser sintering SO GRANULAR MATTER LA English DT Article DE Additive manufacturing; Selective laser sintering; Selective laser melting; Computational mechanics; Discrete elements ID METAL POWDERS; SIMULATION; DENSIFICATION; MECHANISM; RADIATION; FRAMEWORK; BED AB Selective laser sintering (SLS) is an additive manufacturing technology whereby one can 3D print parts out of a powdered material. However, in order to produce defect free parts of sufficient strength, the process parameters (laser power, scan speed, powder layer thickness, etc.) must be carefully optimized depending on material, part geometry, and desired final part characteristics. Computational methods are very useful in the quick optimization of such parameters without the need to run numerous costly experiments. Most published models of this process involve continuum-based techniques, which require the homogenization of the powder bed and thus do not capture the stochastic nature of this process. Thus, the aim of this research is to produce a reduced order computational model of the SLS process which combines the essential physics with fast computation times. In this work the authors propose a coupled discrete element-finite difference model of this process. The powder particles are modeled as discrete, thermally and mechanically interacting spheres. The solid, underneath substrate is modeled via the finite difference method. The model is validated against experimental results in the literature and three-dimensional simulations are presented. C1 [Ganeriwala, Rishi] Univ Calif Berkeley, Dept Mech Engn, 6102 Etcheverry Hall, Berkeley, CA 94720 USA. [Ganeriwala, Rishi] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zohdi, Tarek I.] Univ Calif Berkeley, Dept Mech Engn, 6117 Etcheverry Hall, Berkeley, CA 94720 USA. RP Ganeriwala, R (reprint author), Univ Calif Berkeley, Dept Mech Engn, 6102 Etcheverry Hall, Berkeley, CA 94720 USA.; Ganeriwala, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM rkganeri@berkeley.edu OI Ganeriwala, Rishi/0000-0001-6924-3172 FU Siemens Energy, Inc. FX The authors would like to express their gratitude towards Ramesh Subramanian and Marco Brunelli of Siemens Energy, Inc. for funding this research. Additionally, the input of other members of the Siemens Corporation was useful in the formulation and validation of this approach. Finally the authors would like to thank fellow members of the CMRL lab at UC Berkeley for many fruitful discussions and their aid in the proofreading and editing of this paper. NR 42 TC 0 Z9 0 U1 18 U2 51 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-5021 EI 1434-7636 J9 GRANUL MATTER JI Granul. Matter PD MAY PY 2016 VL 18 IS 2 AR 21 DI 10.1007/s10035-016-0626-0 PG 15 WC Materials Science, Multidisciplinary; Mechanics; Physics, Applied SC Materials Science; Mechanics; Physics GA DL4ML UT WOS:000375611000008 ER PT J AU Castellanos, S Ekstrom, KE Autruffe, A Jensen, MA Morishige, AE Hofstetter, J Yen, P Lai, B Stokkan, G del Canizo, C Buonassisi, T AF Castellanos, Sergio Ekstrom, Kai E. Autruffe, Antoine Jensen, Mallory A. Morishige, Ashley E. Hofstetter, Jasmin Yen, Patricia Lai, Barry Stokkan, Gaute del Canizo, Carlos Buonassisi, Tonio TI High-Performance and Traditional Multicrystalline Silicon: Comparing Gettering Responses and Lifetime-Limiting Defects SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Defects; dislocation recombination activity; dislocations; eccentricity variation; high-performance multicrystalline silicon (HPMC-Si); minority-carrier lifetime; photovoltaics; recombination; synchrotron ID MULTI-CRYSTALLINE SILICON; SOLAR-CELLS; DISLOCATION CLUSTERS; MISFIT DISLOCATIONS; TRANSITION-METALS; IMPURITIES; EFFICIENCY; IRON; INGOTS; SOLIDIFICATION AB In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which is suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si. The lifetime in the remainder of HPMC-Si material is found to be limited by grain-boundary recombination. To reduce the recombination activity of grain boundaries in HPMC-Si, coordinated impurity control during growth, gettering, and passivation must be developed. C1 [Castellanos, Sergio; Jensen, Mallory A.; Morishige, Ashley E.; Hofstetter, Jasmin; Yen, Patricia; Buonassisi, Tonio] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Ekstrom, Kai E.; Autruffe, Antoine] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway. [Lai, Barry] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Stokkan, Gaute] SINTEF, Mat & Chem Sect Sustainable Energy Technol, N-7465 Trondheim, Norway. [del Canizo, Carlos] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. RP Castellanos, S; Jensen, MA; Morishige, AE; Hofstetter, J; Yen, P; Buonassisi, T (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Ekstrom, KE; Autruffe, A (reprint author), Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway.; Lai, B (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.; Stokkan, G (reprint author), SINTEF, Mat & Chem Sect Sustainable Energy Technol, N-7465 Trondheim, Norway.; del Canizo, C (reprint author), Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. EM sergioc@alum.mit.edu; kai.e.ekstrom@ntnu.no; antoine.autruffe@material.ntnu.no; jensenma@mit.edu; aemorish@mit.edu; jhofstet@mit.edu; paxty@mit.edu; blai@aps.anl.gov; Gaute.Stokkan@sintef.no; carlos.canizo@upm.es; buonassisi@mit.edu FU National Science Foundation (NSF); U.S. Department of Energy (DOE) [NSF CA EEC-1041895]; NSF Graduate Research Fellowship [1122374]; Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program; Centre for Environment-Friendly Energy Research under the Research Council of Norway; Department of Mechanical Engineering, MIT; Spanish Ministerio de Economa y Competitividad [ENE2014-56069-C4-2-R]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; NSF [ECS-0335765] FX The work at the Massachusetts Institute of Technology (MIT) was supported by the National Science Foundation (NSF) and the U.S. Department of Energy (DOE) under Grant NSF CA EEC-1041895. The work of M. A. Jensen and P. Yen was supported by the NSF Graduate Research Fellowship under Grant 1122374. The work of A. E. Morishige was supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program. The work at the Norwegian University of Science and Technology was supported by the Centre for Environment-Friendly Energy Research under the Research Council of Norway and was performed in cooperation with SINTEF Materials and Chemistry. The work of C. del Caizo was supported by the Department of Mechanical Engineering, MIT, through the Peabody Visiting Professorship and the Spanish Ministerio de Economa y Competitividad through the TABACO project ENE2014-56069-C4-2-R. Micro-X-ray fluorescence was performed at the Advanced Photon Source: a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. ALD was performed at the Center for Nanoscale Systems: a Member of the National Nanotechnology Infrastructure Network, which was supported by the NSF under Award ECS-0335765. NR 58 TC 0 Z9 0 U1 5 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD MAY PY 2016 VL 6 IS 3 BP 632 EP 640 DI 10.1109/JPHOTOV.2016.2540246 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DL5ZW UT WOS:000375717100006 ER PT J AU Kazmerski, LL Diniz, ASAC Maia, CB Viana, MM Costa, SC Brito, PP Campos, CD Neto, LVM Hanriot, SD Cruz, LRD AF Kazmerski, Lawrence L. Diniz, Antonia Sonia A. C. Maia, Cristiana Brasil Viana, Marcelo Machado Costa, Suellen C. Brito, Pedro P. Campos, Claudio Dias Macheto Neto, Lauro V. Hanriot, Sergio de Morais de Oliveira Cruz, Leila R. TI Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Adhesion; characterization; composition; dust; microscale; mitigation; module; performance; photovoltaics; reliability ID ATOMIC-FORCE MICROSCOPY; PERFORMANCE; DEPOSITION; FRICTION; IMPACT; PANELS; SCALE; WEAR AB Photovoltaic (PV) module soiling is a growing area of concern for performance and reliability. This paper provides evaluations of the fundamental interactions of dust/soiling particles with several PV module surfaces. The purpose is to investigate the basic mechanisms involving the chemistry, morphology, and resulting particle adhesion to the first photon-incident surface. The evaluation and mapping of the chemistry and composition of single dust particles collected from operating PV module surfaces are presented. The first correlated direct measurements of the adhesive force of individual grains from field-operating collectors on identical PV module glass are reported, including correlations with specific compositions. Special microscale atomic force microscopy techniques are adapted to determine the force between the particle and the module glass surface. Results are presented for samples under dry and moisture-exposed conditions, confirming the effects of cementation for surfaces having soluble mineral and/or organic concentrations. Additionally, the effects of hydrocarbon fuels on the enhanced bonding of soiling particles to surfaces are determined for samples from urban and highly trafficked regions. Comparisons between glass and dust-mitigating superhydrophobic and superhydrophilic coatings are presented. Potential limitations of this proximal probe technique are discussed in terms of results and initial proof-of-concept experiments. C1 [Kazmerski, Lawrence L.] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. [Kazmerski, Lawrence L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Diniz, Antonia Sonia A. C.] Pontificia Univ Catolica Minas Gerais, Energy Ctr GREEN, BR-30535901 Belo Horizonte, MG, Brazil. [Maia, Cristiana Brasil; Costa, Suellen C.; Brito, Pedro P.; Campos, Claudio Dias; Macheto Neto, Lauro V.; Hanriot, Sergio de Morais] Pontificia Univ Catolica Minas Gerais, BR-30535901 Belo Horizonte, MG, Brazil. [Viana, Marcelo Machado] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil. [de Oliveira Cruz, Leila R.] Inst Mil Engn, BR-22290270 Rio De Janeiro, Brazil. RP Kazmerski, LL (reprint author), Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA.; Kazmerski, LL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Diniz, ASAC (reprint author), Pontificia Univ Catolica Minas Gerais, Energy Ctr GREEN, BR-30535901 Belo Horizonte, MG, Brazil.; Maia, CB; Costa, SC; Brito, PP; Campos, CD; Neto, LVM; Hanriot, SD (reprint author), Pontificia Univ Catolica Minas Gerais, BR-30535901 Belo Horizonte, MG, Brazil.; Viana, MM (reprint author), Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil.; Cruz, LRD (reprint author), Inst Mil Engn, BR-22290270 Rio De Janeiro, Brazil. EM solarpvkaz@gmail.com; asacd@PUCMinas.br; cristiana@pucminas.br; marcelomachadov@pucminas.br; suellencscosta@gmail.com; pbrito@pucminas.br; compos@pucminas.br; lvilhena@pucminas.br; hanriot@pucminas.br; leilacruz@ime.eb.br FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) FX This work was supported by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) (www.capes.gov.br). NR 47 TC 2 Z9 2 U1 6 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD MAY PY 2016 VL 6 IS 3 BP 719 EP 729 DI 10.1109/JPHOTOV.2016.2528409 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DL5ZW UT WOS:000375717100018 ER PT J AU Perl, EE Simon, J Geisz, JF Olavarria, W Young, M Duda, A Friedman, DJ Steiner, MA AF Perl, Emmett E. Simon, John Geisz, John F. Olavarria, Waldo Young, Michelle Duda, Anna Friedman, Daniel J. Steiner, Myles A. TI Development of High-Bandgap AlGaInP Solar Cells Grown by Organometallic Vapor-Phase Epitaxy SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Photovoltaic cells; semiconductor epitaxial layers; solar energy; III-V semiconductor materials ID EFFICIENCY; DEVICES AB AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing similar to 2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000 W/m(2) (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from similar to 1.9 to similar to 2.2 eV. While the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of similar to 2.1 eV. C1 [Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Friedman, Daniel J.; Steiner, Myles A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Perl, Emmett E.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. RP Perl, EE; Simon, J; Geisz, JF; Olavarria, W; Young, M; Duda, A; Friedman, DJ; Steiner, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Perl, EE (reprint author), Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. EM emmett.perl@nrel.gov; john.simon@nrel.gov; john.geisz@nrel.gov; waldo.olavarria@nrel.gov; michelle.young@nrel.gov; anna.duda@nrel.gov; daniel.friedman@nrel.gov; myles.steiner@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; ARPA-E FOCUS program [DE-AR0000508] FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory and funded in part by the ARPA-E FOCUS program under Award DE-AR0000508. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 35 TC 2 Z9 2 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD MAY PY 2016 VL 6 IS 3 BP 770 EP 776 DI 10.1109/JPHOTOV.2016.2537543 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DL5ZW UT WOS:000375717100025 ER PT J AU Jeon, JH Chang, JT Pham, AV AF Jeon, Jae H. Chang, John T. Pham, Anh-Vu TI Characterization, Analysis, and Implementation of Integrated Bandstop Structures on Ultra-Wideband Archimedean Spiral Antenna SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Bandstop filters; notch filters; spiral antennas; ultra wideband ID UWB AB A subsection of the radiating spiral arm, placed in parallel, induces a bandstop response at a notch frequency proportional to the resonant length of the strip. Detailed parametric study on the effect of variation of design parameters for an Archimedean spiral antenna and the resonant parallel strip (RPS) is presented. Empirical analysis on phase velocity on the radiating spiral arms allows characterization of RPS in terms of its resonant length. Identified systematic relation between design parameters and filter response is applied to design an antenna for the 3.1-10.5 GHz operating band with the notch response over the IEEE 802.11a band, 5.15-5.95 GHz. Successful implementation is demonstrated through performance comparison between simulated and experimental results. C1 [Jeon, Jae H.; Chang, John T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Jeon, Jae H.; Pham, Anh-Vu] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. RP Jeon, JH; Chang, JT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Jeon, JH; Pham, AV (reprint author), Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. EM jeon2@llnl.gov; chang16@llnl.gov; pham@ece.ucdavis.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 16 TC 0 Z9 0 U1 13 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD MAY PY 2016 VL 64 IS 5 BP 1999 EP 2004 DI 10.1109/TAP.2016.2539368 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DL4HX UT WOS:000375596100046 ER PT J AU Wolfram, PJ Lorenz, WF AF Wolfram, Phillip J. Lorenz, Wayne F. TI Longstanding Design: Roman Engineering of Aqueduct Arcades SO INTERNATIONAL JOURNAL FOR THE HISTORY OF ENGINEERING & TECHNOLOGY LA English DT Article DE Roman engineering; aqueduct arcade; arch geometric design principles; Barbegal Mill and aqueduct system; retrospective analysis AB Ancient Roman engineers are famous for their use of arcades, or arched bridges, to elevate roads and aqueducts across valleys. The Romans first designed and built arches using stone blocks and then later changed to special concrete construction. In this paper, we illustrate how early unmortared arches could have been built using geometric design principles. This simplified analysis is sufficient to demonstrate, via retrospective analysis, the need for reconstruction efforts for arches violating these design criteria. Well-preserved remnants at the Simian Bridge and Vallon des Arcs arcades, located in southern France near Arles, are excellent examples of Roman arch engineering and are used as case studies to understand geometric arch design in practice. These arcades are vital parts of a larger aqueduct system used to provide the water-powered industrial Barbegal Mill and city of Arles with water in the first century A.D. Analysis of currently standing arches implies that Roman engineers may have relied extensively upon geometrical rules of thumb for design of these structures. In particular, modern stability analysis demonstrates the effectiveness of geometrical rules of thumb in determining structural failure requiring reconstruction at the Simian Bridge. The reconstruction that exists at the Simian bridge shows a shift from stone blocks to concrete. This shift may have occurred as a result of the Roman engineers' increased awareness of geometrical criteria for arch design. C1 [Wolfram, Phillip J.] Los Alamos Natl Lab, Theoret Div T3, Climate Ocean & Sea Ice Modeling COSIM Grp, Los Alamos, NM 87545 USA. [Wolfram, Phillip J.] Wright Paleohydrol Inst, Denver, CO USA. RP Wolfram, PJ (reprint author), Los Alamos Natl Lab, Theoret Div T3, Climate Ocean & Sea Ice Modeling COSIM Grp, Los Alamos, NM 87545 USA.; Wolfram, PJ (reprint author), Wright Paleohydrol Inst, Denver, CO USA. EM phillipwolfram@gmail.com; wlorenz@wrightwater.com NR 26 TC 0 Z9 0 U1 7 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1758-1206 EI 1750-3523 J9 INT J HIST ENG TECHN JI Int. J. Hist. Eng. Technol. PD MAY PY 2016 VL 86 IS 1 BP 56 EP 69 DI 10.1080/17581206.2015.1119484 PG 14 WC History & Philosophy Of Science SC History & Philosophy of Science GA DL6BJ UT WOS:000375722200005 ER PT J AU Min, JW Hwang, HY Kang, EK Park, K Kim, CH Lee, DS Jho, YD Bae, SY Lee, YT AF Min, Jung-Wook Hwang, Hyeong-Yong Kang, Eun-Kyu Park, Kwangwook Kim, Ci-Hyun Lee, Dong-Seon Jho, Young-Dahl Bae, Si-Young Lee, Yong-Tak TI Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal-organic chemical vapor deposition SO JAPANESE JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 6th International Symposium on Growth of III-Nitrides (ISGN) CY NOV 08-13, 2015 CL Hamamatsu, JAPAN ID SINGLE-CRYSTALLINE GAN; POLYCRYSTALLINE GAN; LATERAL OVERGROWTH; DOPED GAN; PHOTOLUMINESCENCE; GROWTH; TEMPERATURE; LAYER; DISLOCATIONS; MOCVD AB Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances. (C) 2016 The Japan Society of Applied Physics C1 [Min, Jung-Wook] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea. [Hwang, Hyeong-Yong; Kang, Eun-Kyu; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Lee, Yong-Tak] Gwangju Inst Sci & Technol, Sch Informat & Commun, Gwangju 61005, South Korea. [Park, Kwangwook] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bae, Si-Young] Nagoya Univ, Dept Elect Engn & Comp Sci, Nagoya, Aichi 4668550, Japan. RP Lee, YT (reprint author), Gwangju Inst Sci & Technol, Sch Informat & Commun, Gwangju 61005, South Korea.; Bae, SY (reprint author), Nagoya Univ, Dept Elect Engn & Comp Sci, Nagoya, Aichi 4668550, Japan. EM siyoubae@gmail.com; ytlee@gist.ac.kr NR 32 TC 1 Z9 1 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0021-4922 EI 1347-4065 J9 JPN J APPL PHYS JI Jpn. J. Appl. Phys. PD MAY PY 2016 VL 55 IS 5 SI SI AR 05FB03 DI 10.7567/JJAP.55.05FB03 PG 6 WC Physics, Applied SC Physics GA DK1TQ UT WOS:000374697600016 ER PT J AU Lin, L AF Lin, Lin TI Adaptively Compressed Exchange Operator SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL APPROXIMATIONS; WANNIER FUNCTIONS; ELECTRON-GAS; MATRICES AB The Fock exchange operator plays a central role in modern quantum chemistry. The large computational cost associated with the Fock exchange operator hinders Hartree Fock calculations and Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, even for systems consisting of hundreds of atoms. We develop the adaptively compressed exchange operator (ACE) formulation, which greatly reduces the computational cost associated with the Fock exchange operator without loss of accuracy. The ACE formulation is not dependent on the size of the band gap, and thus can be applied to insulating and semiconducting systems, as well as metallic systems. In an iterative framework for solving Hartree Fock-like systems, such as that observed in planewave-based methods, the ACE formulation only requires moderate modification of the code. The ACE formulation can also be advantageous for other types of basis sets, especially when the storage cost of the exchange operator is expensive. Numerical results indicate that the ACE formulation can become advantageous, even for small systems with tens of atoms. In particular, the cost of each self-consistent field iteration for the electron density in the ACE formulation is only marginally larger than that of the generalized gradient approximation (GGA) calculation, and thus offers orders-of-magnitude acceleration for Hartree-Fock-like calculations. C1 [Lin, Lin] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Lin, Lin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Lin, L (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.; Lin, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM linlin@math.berkeley.edu FU Laboratory Directed Research and Development (LDRD) from Berkeley Lab; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; Scientific Discovery through Advanced Computing (SciDAC) program; Center for Applied Mathematics for Energy Research Applications (CAMERA) - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; Alfred P. Sloan fellowship FX This work was partially supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the Scientific Discovery through Advanced Computing (SciDAC) program and the Center for Applied Mathematics for Energy Research Applications (CAMERA) funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, and by the Alfred P. Sloan fellowship. We thank the anonymous referee for bringing our attention to ref 31, which inspires us to extend the ACE formulation to Gaussian orbitals and atomic orbitals. NR 45 TC 5 Z9 5 U1 4 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2016 VL 12 IS 5 BP 2242 EP 2249 DI 10.1021/acs.jctc.6b00092 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DL7GW UT WOS:000375810000013 PM 27045571 ER PT J AU Easley, D de Prado, ML O'Hara, M AF Easley, David de Prado, Marcos Lopez O'Hara, Maureen TI Discerning information from trade data SO JOURNAL OF FINANCIAL ECONOMICS LA English DT Article DE Trade classification; Bulk volume classification; Flow toxicity; Volume imbalance; Market microstructure ID LIQUIDITY; CLASSIFICATION; PRICES AB How best to discern trading intentions from market data? We examine the accuracy of three methods for classifying trade data: bulk volume classification (BVC), tick rule and aggregated tick rule. We develop a Bayesian model of inferring information from trade executions and "show the conditions under which tick rules or bulk volume classification predominates. Empirically, we find that tick rule approaches and BVC are relatively good classifiers of the aggressor side of trading, but bulk volume classifications are better linked to proxies of information-based trading. Thus, BVC would appear to be a useful tool for discerning trading intentions from market data. (C) 2016 Elsevier B.V. All rights reserved. C1 [Easley, David] Cornell Univ, Dept Econ, Ithaca, NY 14853 USA. [de Prado, Marcos Lopez] Guggenheim Partners, Chicago, IL USA. [de Prado, Marcos Lopez] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA. [O'Hara, Maureen] Cornell Univ, Johnson Grad Sch Management, Ithaca, NY 14853 USA. RP O'Hara, M (reprint author), Cornell Univ, Johnson Grad Sch Management, Ithaca, NY 14853 USA. EM mo19@cornell.edu NR 27 TC 3 Z9 3 U1 10 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0304-405X J9 J FINANC ECON JI J. Financ. Econ. PD MAY PY 2016 VL 120 IS 2 BP 269 EP 285 DI 10.1016/j.jfineco.2016.01.018 PG 17 WC Business, Finance; Economics SC Business & Economics GA DL3GT UT WOS:000375522900004 ER PT J AU Coughlan, HD Darmanin, C Kirkwood, HJ Phillips, NW Hoxley, D Clark, JN Harder, RJ Maxey, E Abbey, B AF Coughlan, H. D. Darmanin, C. Kirkwood, H. J. Phillips, N. W. Hoxley, D. Clark, J. N. Harder, R. J. Maxey, E. Abbey, B. TI Three-dimensional reconstruction of the size and shape of protein microcrystals using Bragg coherent diffractive imaging SO JOURNAL OF OPTICS LA English DT Article DE Bragg coherent diffractive imaging; reciprocal space mapping; crystal size; nanocrystals ID CRYSTALS; NANOCRYSTALS; DYNAMICS AB Three-dimensional imaging of protein crystals during x-ray diffraction experiments opens up a range of possibilities for optimizing crystal quality and gaining new insights into the fundamental processes that drive radiation damage. Obtaining this information at the appropriate length-scales however is extremely challenging. One approach that has been recently demonstrated as a promising avenue for characterizing the size and shape of protein crystals at nanometre length-scales is Bragg coherent diffractive imaging (BCDI). BCDI is a recently developed technique that is able to recover the phase of the continuous diffraction intensity signal around individual Bragg peaks. When data is collected at multiple points on a rocking curve, a reciprocal space map (RSM) can be assembled and then inverted using BCDI to obtain a three-dimensional image of the crystal. The first demonstration of two-dimensional biological BCDI was reported by Boutet et al on holoferritin, recently this work was extended to the study of radiation damage in micron-sized protein crystals. Here we present the first three-dimensional reconstructions of a Lysozyme protein crystal using BDI. The results are validated against RSM and transmission electron microscopy data and have implications for both radiation damage studies and for developing new approaches for structure retrieval from micron-sized protein crystals. C1 [Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; Phillips, N. W.; Hoxley, D.; Abbey, B.] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, ARC Ctr Adv Mol Imaging, Bundoora, Vic 3086, Australia. [Coughlan, H. D.; Phillips, N. W.] CSIRO Mfg Flagship, Parkville, Vic 3052, Australia. [Clark, J. N.] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Clark, J. N.] Deutsch Elektronensynchrotron DESY, Ctr Free Electron Laser Sci CFEL, Notkestr 85, D-22607 Hamburg, Germany. [Harder, R. J.; Maxey, E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Abbey, B.] Melbourne Ctr Nanofabricat, Melbourne, Vic 3168, Australia. RP Darmanin, C; Abbey, B (reprint author), La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, ARC Ctr Adv Mol Imaging, Bundoora, Vic 3086, Australia.; Abbey, B (reprint author), Melbourne Ctr Nanofabricat, Melbourne, Vic 3168, Australia. EM C.Darmanin@latrobe.edu.au; B.Abbey@latrobe.edu.au OI Phillips, Nicholas/0000-0002-9742-7937 FU U S Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; CSIRO Manufacturing Flagship; International Synchrotron Access Program (ISAP) by the Australian Synchrotron; Australian Research Council Centre of Excellence in Advanced Molecular Imaging [CE140100011]; Volkswagen Foundation; Physical Sciences Disciplinary Research Program (DRP) of La Trobe University FX Use of the Advanced Photon Source was supported by the U S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research was undertaken on the MX2 beamlines at the Australian Synchrotron, Victoria, Australia. This work was partly funded by the CSIRO Manufacturing Flagship and the International Synchrotron Access Program (ISAP) by the Australian Synchrotron. This work was supported by the Australian Research Council Centre of Excellence in Advanced Molecular Imaging (CE140100011) www.imagingcoe.org. JNC gratefully acknowledges financial support from the Volkswagen Foundation. DH gratefully acknowledges the Physical Sciences Disciplinary Research Program (DRP) of La Trobe University for financial support. NR 25 TC 1 Z9 1 U1 9 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD MAY PY 2016 VL 18 IS 5 AR 054003 DI 10.1088/2040-8978/18/5/054003 PG 9 WC Optics SC Optics GA DL6MT UT WOS:000375754000007 ER PT J AU Robinson, I Clark, J Harder, R AF Robinson, Ian Clark, Jesse Harder, Ross TI Materials science in the time domain using Bragg coherent diffraction imaging SO JOURNAL OF OPTICS LA English DT Article DE oxides; coherence; Bragg diffraction; laser excitation; phase tranformation; phase retrieval ID FREE-ELECTRON LASER; X-RAY LASER; NANOCRYSTAL; DYNAMICS; STRAIN; PULSES; PHASE AB Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials such as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C-60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Prospective methods for carrying out such XFEL experiments are discussed. C1 [Robinson, Ian] UCL, London Ctr Nanotechnol, Mortimer St, London WC1E 6BT, England. [Robinson, Ian] Res Complex Harwell, Didcot OX11 0DE, Oxon, England. [Clark, Jesse] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Robinson, I (reprint author), UCL, London Ctr Nanotechnol, Mortimer St, London WC1E 6BT, England.; Robinson, I (reprint author), Res Complex Harwell, Didcot OX11 0DE, Oxon, England. EM i.robinson@ucl.ac.uk FU European Research Council; EPSRC [EP/I022562/1]; Volkswagen Foundation; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The work reported in this paper was supported by a European Research Council 'Advanced' Grant, 'Exploration of strains in synthetic nanocrystals' and an EPSRC grant EP/I022562/1 on 'Phase modulation technology for x-ray imaging'. JNC gratefully acknowledges financial support from the Volkswagen Foundation. The experimental work was carried out at the Linac coherent light source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. We thank D M Fritz, H T Lemke, Diling Zhu, M Chollet, G J Williams, M M Messerschmidt for valuable assistance with operating the XPP station at LCLS and B Abbey, A M Korsunsky, J S Wark and D A Reis for collaboration and fruitful discussions. We thank Nicolas Moisan (Universite de Paris Sud) for helpful discussion and pointing out the relevance of the ISRS theory in [24]. NR 35 TC 1 Z9 1 U1 10 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD MAY PY 2016 VL 18 IS 5 AR 054007 DI 10.1088/2040-8978/18/5/054007 PG 9 WC Optics SC Optics GA DL6MT UT WOS:000375754000011 ER PT J AU Xu, GQ McDowell, NG Li, Y AF Xu, Gui-Qing McDowell, Nate G. Li, Yan TI A possible link between life and death of a xeric tree in desert SO JOURNAL OF PLANT PHYSIOLOGY LA English DT Article DE Biomass allocation; Hydraulic conductance; Non-structural carbohydrates; Root distribution; Drought-resistance strategy; Tree mortality ID HYDRAULIC LIMITATION; VEGETATION MORTALITY; CLIMATE-CHANGE; UNITED-STATES; DIE-OFF; DROUGHT; FOREST; SIZE; GROWTH; LEAF AB Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (CA. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and nonstructural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7 MPa, beyond the P50(leaf) of -4.1 MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. (C) 2016 Elsevier GmbH. All rights reserved. C1 [Xu, Gui-Qing; Li, Yan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. [McDowell, Nate G.] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. RP Li, Y (reprint author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. EM liyan@ms.xjb.ac.cn FU Natural Science Foundation of China [40971042, 41371079]; EUFORINNO grant FX We thank the staff of the Fukang Station of Desert Ecology for their excellent field and laboratory assistance. This work was supported by the Natural Science Foundation of China (Grant No. 40971042 and 41371079) and by a EUFORINNO grant to McDowell. NR 60 TC 0 Z9 0 U1 6 U2 24 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0176-1617 EI 1618-1328 J9 J PLANT PHYSIOL JI J. Plant Physiol. PD MAY 1 PY 2016 VL 194 BP 35 EP 44 DI 10.1016/j.jplph.2016.02.014 PG 10 WC Plant Sciences SC Plant Sciences GA DL7XN UT WOS:000375853800005 PM 26968083 ER PT J AU Wilkey, J Kelly, K Jaramillo, IC Spinti, J Ring, T Hogue, M Pasqualini, D AF Wilkey, Jonathan Kelly, Kerry Jaramillo, Isabel Cristina Spinti, Jennifer Ring, Terry Hogue, Michael Pasqualini, Donatella TI Predicting emissions from oil and gas operations in the Uinta Basin, Utah SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID NATURAL-GAS; METHANE AB In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 +/- 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards.Implications: This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well. C1 [Wilkey, Jonathan; Kelly, Kerry; Jaramillo, Isabel Cristina; Spinti, Jennifer; Ring, Terry; Hogue, Michael] Univ Utah, Inst Clean & Secure Energy, Salt Lake City, UT USA. [Pasqualini, Donatella] Los Alamos Natl Lab, D Div, Los Alamos, NM USA. RP Wilkey, J (reprint author), 155 South 1452 East,Room 350, Salt Lake City, UT 84112 USA. EM jon.wilkey@gmail.com NR 39 TC 0 Z9 0 U1 2 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1096-2247 EI 2162-2906 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD MAY PY 2016 VL 66 IS 5 BP 528 EP 545 DI 10.1080/10962247.2016.1153529 PG 18 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DJ5EW UT WOS:000374230600010 PM 27064908 ER PT J AU Todd, BD Halstead, BJ Chiquoine, LP Peaden, JM Buhlmann, KA Tuberville, TD Nafus, MG AF Todd, Brian D. Halstead, Brian J. Chiquoine, Lindsay P. Peaden, J. Mark Buhlmann, Kurt A. Tuberville, Tracey D. Nafus, Melia G. TI Habitat selection by juvenile Mojave Desert tortoises SO JOURNAL OF WILDLIFE MANAGEMENT LA English DT Article DE California; development; Gopherus agassizii; habitat selection; Mojave Desert; renewable energy; restoration; solar energy ID SOLAR-ENERGY DEVELOPMENT; SOUTH-CENTRAL ARIZONA; GOPHERUS-AGASSIZII; SONORAN DESERT; CONSERVATION; REGRESSION; IMPACTS; ECOLOGY; NEONATE; WATER AB Growing pressure to develop public lands for renewable energy production places several protected species at increased risk of habitat loss. One example is the Mojave desert tortoise (Gopherus agassizii), a species often at the center of conflicts over public land development. For this species and others on public lands, a better understanding of their habitat needs can help minimize negative impacts and facilitate protection or restoration of habitat. We used radio-telemetry to track 46 neonate and juvenile tortoises in the Eastern Mojave Desert, California, USA, to quantify habitat at tortoise locations and paired random points to assess habitat selection. Tortoise locations near burrows were more likely to be under canopy cover and had greater coverage of perennial plants (especially creosote [Larrea tridentata]), more coverage by washes, a greater number of small-mammal burrows, and fewer white bursage (Ambrosia dumosa) than random points. Active tortoise locations away from burrows were closer to washes and perennial plants than were random points. Our results can help planners locate juvenile tortoises and avoid impacts to habitat critical for this life stage. Additionally, our results provide targets for habitat protection and restoration and suggest that diverse and abundant small-mammal populations and the availability of creosote bush are vital for juvenile desert tortoises in the Eastern Mojave Desert. (c) 2016 The Wildlife Society. C1 [Todd, Brian D.; Chiquoine, Lindsay P.; Peaden, J. Mark] Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, One Shields Ave, Davis, CA 95616 USA. [Halstead, Brian J.] US Geol Survey, Western Ecol Res Ctr, Dixon Field Stn, 800 Business Pk Dr,Suite D, Dixon, CA 95620 USA. [Buhlmann, Kurt A.; Tuberville, Tracey D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Nafus, Melia G.] San Diego Zoo Inst Conservat Res, 15600 San Pasqual Valley Rd, Escondido, CA 92027 USA. RP Todd, BD (reprint author), Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, One Shields Ave, Davis, CA 95616 USA. EM btodd@ucdavis.edu OI Nafus, Melia/0000-0002-7325-3055 FU California Energy Commission [500-10-020]; University of California, Davis; U.S. Department of the Interior-National Park Service [P08AC00193]; University of Georgia; U.S. Department of the Interior-Bureau of Land Management [L11AC20333]; U.S. Department of Agriculture National Institute of Food and Agriculture, Hatch project [CA-D-WFB-2097-H]; Department of Energy [DE-FC09-07SR22506]; National Science Foundation [DGE-1148897] FX T. C. Esque provided valuable comments on an earlier version of this manuscript. Funding for this work was provided by California Energy Commission agreement 500-10-020 with University of California, Davis. Additional support was provided by U.S. Department of the Interior-National Park Service agreement P08AC00193 with University of Georgia and U.S. Department of the Interior-Bureau of Land Management agreement L11AC20333 to University of California, Davis. This work was supported by the U.S. Department of Agriculture National Institute of Food and Agriculture, Hatch project CA-D-WFB-2097-H. Manuscript preparation by T. D. Tuberville and K. A. Buhlmann was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Additional funding was provided to M. G. Nafus from the National Science Foundation (no. DGE-1148897). Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 52 TC 0 Z9 0 U1 16 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-541X EI 1937-2817 J9 J WILDLIFE MANAGE JI J. Wildl. Manage. PD MAY PY 2016 VL 80 IS 4 BP 720 EP 728 DI 10.1002/jwmg.1054 PG 9 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA DJ8TT UT WOS:000374486800012 ER PT J AU Gade, D Hackebeil, G Ryan, SM Watson, JP Wets, RJB Woodruff, DL AF Gade, Dinakar Hackebeil, Gabriel Ryan, Sarah M. Watson, Jean-Paul Wets, Roger J. -B. Woodruff, David L. TI Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs SO MATHEMATICAL PROGRAMMING LA English DT Article DE Stochastic mixed-integer programming; Decomposition algorithms; Lower bounding ID UNIT COMMITMENT PROBLEM; DUAL DECOMPOSITION; NETWORK INTERDICTION; OPTIMIZATION; AGGREGATION; UNCERTAINTY; DESIGN; MODEL AB We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. We report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds. C1 [Gade, Dinakar] Sabre Holdings, Southlake, TX 76092 USA. [Watson, Jean-Paul] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Hackebeil, Gabriel] Texas A&M Univ, College Stn, TX 77843 USA. [Ryan, Sarah M.] Iowa State Univ, Ames, IA 50011 USA. [Wets, Roger J. -B.; Woodruff, David L.] Univ Calif Davis, Davis, CA 95616 USA. RP Woodruff, DL (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM dlwoodruff@ucdavis.edu FU US Department of Energy's ARPA-e Green Energy Network Integration (GENI) program; Department of Energy's Office of Science, Advanced Scientific Computing Research program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX This research was sponsored in part by the US Department of Energy's ARPA-e Green Energy Network Integration (GENI) program, and by the Department of Energy's Office of Science, Advanced Scientific Computing Research program. Thanks to Ge Guo for assistance with the numerical results. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 42 TC 1 Z9 1 U1 1 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0025-5610 EI 1436-4646 J9 MATH PROGRAM JI Math. Program. PD MAY PY 2016 VL 157 IS 1 SI SI BP 47 EP 67 DI 10.1007/s10107-016-1000-z PG 21 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA DL3YA UT WOS:000375568400003 ER PT J AU Jiang, RW Guan, YP Watson, JP AF Jiang, Ruiwei Guan, Yongpei Watson, Jean-Paul TI Cutting planes for the multistage stochastic unit commitment problem SO MATHEMATICAL PROGRAMMING LA English DT Article DE Security-constrained unit commitment; Stochastic programming; Cutting planes; Sequence independent lifting ID INTEGER PROGRAMS; POWER-GENERATION; ALGORITHM; DECOMPOSITION; TRANSMISSION; RECOURSE; CUTS AB As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program. Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Finally, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach. C1 [Jiang, Ruiwei] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA. [Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Watson, Jean-Paul] Sandia Natl Labs, Discrete Math & Complex Syst Dept, POB 5800, Albuquerque, NM 87185 USA. RP Guan, YP (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. EM guan@ise.ufl.edu FU U.S. National Science Foundation under CAREER Award [CMMI-0942156]; Office of Advanced Scientific Computing Research within the Department of Energy's Office of Science as part of the Complex Interconnected Distributed Systems program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Ming Zhao at SAS and Xing Wang at Alstom Grid for insightful discussions, and two anonymous referees for the nice suggestions (including simplifying the proof for Theorem 1) that help improve the quality of this paper. This research was supported in part by the U.S. National Science Foundation under CAREER Award CMMI-0942156 and in part from the Office of Advanced Scientific Computing Research within the Department of Energy's Office of Science as part of the Complex Interconnected Distributed Systems program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 2 Z9 2 U1 5 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0025-5610 EI 1436-4646 J9 MATH PROGRAM JI Math. Program. PD MAY PY 2016 VL 157 IS 1 SI SI BP 121 EP 151 DI 10.1007/s10107-015-0971-5 PG 31 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA DL3YA UT WOS:000375568400006 ER PT J AU Karaulanov, T Savukov, I Kim, YJ AF Karaulanov, Todor Savukov, Igor Kim, Young Jin TI Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE multi-channel operation; magnetoencephalography; sensitivity; spin-exchange relaxation-free magnetometer; small-angle beam configuration ID SCALE ATOMIC MAGNETOMETER AB We constructed a spin-exchange relaxation-free (SERF) magnetometer with a small angle between the pump and probe beams facilitating a multi-channel design with a flat pancake cell. This configuration provides almost complete overlap of the beams in the cell, and prevents the pump beam from entering the probe detection channel. By coupling the lasers in multi-mode fibers, without an optical isolator or field modulation, we demonstrate a sensitivity of 10 f T/root Hz for frequencies between 10 Hz and 100 Hz. In addition to the experimental study of sensitivity, we present a theoretical analysis of SERF magnetometer response to magnetic fields for small-angle and parallel-beam configurations, and show that at optimal DC offset fields the magnetometer response is comparable to that in the orthogonal-beam configuration. Based on the analysis, we also derive fundamental and probe-limited sensitivities for the arbitrary non-orthogonal geometry. The expected practical and fundamental sensitivities are of the same order as those in the orthogonal geometry. We anticipate that our design will be useful for magnetoencephalography (MEG) and magnetocardiography (MCG) applications. C1 [Karaulanov, Todor; Savukov, Igor; Kim, Young Jin] Los Alamos Natl Lab, P-21,POB 1663,MS D454, Los Alamos, NM 87545 USA. [Karaulanov, Todor] Senior Sci LLC, 800 Bradbury SE Suite 213, Albuquerque, NM 87106 USA. RP Kim, YJ (reprint author), Los Alamos Natl Lab, P-21,POB 1663,MS D454, Los Alamos, NM 87545 USA. EM youngjin@lanl.gov OI Savukov, Igor/0000-0003-4190-5335 FU U S DOE through the LANL/LDRD program; NIH [5 RO1 EB009355] FX This work was supported by the U S DOE through the LANL/LDRD program. The work of Todor Karaulanov (Igor Savukov) was (partially) supported by NIH 5 RO1 EB009355. NR 25 TC 3 Z9 3 U1 12 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD MAY PY 2016 VL 27 IS 5 AR 055002 DI 10.1088/0957-0233/27/5/055002 PG 8 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DJ9VP UT WOS:000374561500006 ER PT J AU Delph, TJ Zimmerman, JA AF Delph, T. J. Zimmerman, J. A. TI Transition saddle points and associated defects for a triaxially stretched FCC crystal SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE defect; saddle point; transition state theory ID LENNARD-JONES; RELAXATION; CLUSTERS; DYNAMICS; SURFACES AB We demonstrate the use of a single-ended method for locating saddle points on the potential energy surface for a triaxially stretched FCC crystal governed by a Lennard-Jones potential. Single-ended methods require no prior knowledge of the defected state and are shown to have powerful advantages in this application, principally because the nature of the associated defects can be quite complicated and hence extremely difficult to predict ab initio. We find that while classical spherical cavitation occurs for high stretch values, for lower values the defect mode transitions to a non-spherical pattern without any apparent symmetries. This non-spherical mode plays the primary role in harmonic transition state theory predictions that are used to examine how instabilities vary with applied loading rate. Such a defect mode would be difficult to determine using double-ended methods for finding saddle points. C1 [Delph, T. J.] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. [Zimmerman, J. A.] Sandia Natl Labs, Hydrogen & Mat Sci Dept, Livermore, CA 94550 USA. RP Delph, TJ (reprint author), Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. EM tjd1@lehigh.edu FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL850000] FX The authors are grateful to Profs D J Wales and J M Rickman for helpful discussions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850000. NR 27 TC 0 Z9 0 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAY PY 2016 VL 24 IS 4 AR 045010 DI 10.1088/0965-0393/24/4/045010 PG 11 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL4IA UT WOS:000375596400010 ER PT J AU Lim, H Abdeljawad, F Owen, SJ Hanks, BW Foulk, JW Battaile, CC AF Lim, Hojun Abdeljawad, Fadi Owen, Steven J. Hanks, Byron W. Foulk, James W. Battaile, Corbett C. TI Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE phase field; crystal plasticity; microstructure; finite element ID CENTERED-CUBIC METALS; GRAIN-GROWTH; COMPUTER-SIMULATION; CRYSTALLOGRAPHIC TEXTURE; STRAIN-RATE; NUMERICAL SIMULATIONS; CELLULAR-AUTOMATA; FLOW-STRESS; FCC METALS; DEFORMATION AB The mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FE meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline alpha-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties. C1 [Lim, Hojun; Abdeljawad, Fadi; Battaile, Corbett C.] Sandia Natl Labs, Computat Mat & Data Sci, POB 5800, Albuquerque, NM 87185 USA. [Owen, Steven J.; Hanks, Byron W.] Sandia Natl Labs, Simulat Modeling Sci, POB 5800, Albuquerque, NM 87185 USA. [Foulk, James W.] Sandia Natl Labs, Mech Mat, Livermore, CA 94551 USA. RP Lim, H (reprint author), Sandia Natl Labs, Computat Mat & Data Sci, POB 5800, Albuquerque, NM 87185 USA. EM hnlim@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 70 TC 0 Z9 0 U1 5 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAY PY 2016 VL 24 IS 4 AR 045016 DI 10.1088/0965-0393/24/4/045016 PG 19 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL4IA UT WOS:000375596400016 ER PT J AU Mayeur, JR Mourad, HM Luscher, DJ Hunter, A Kenamond, MA AF Mayeur, Jason R. Mourad, Hashem M. Luscher, Darby J. Hunter, Abigail Kenamond, Mark A. TI Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE crystal plasticity; shock loading; finite elements; finite volume methods; continuum dislocation transport ID GRADIENT PLASTICITY; CONSTITUTIVE MODEL; CONTINUUM THEORY; DEFORMATION; DYNAMICS; DENSITY; VISCOPLASTICITY; METALS; COPPER; SCALE AB This paper details a numerical implementation of a single crystal plasticity model with dislocation transport for high strain rate applications. Our primary motivation for developing the model is to study the influence of dislocation transport and conservation on the mesoscale response of metallic crystals under extreme thermo-mechanical loading conditions (e.g. shocks). To this end we have developed a single crystal plasticity theory (Luscher et al (2015)) that incorporates finite deformation kinematics, internal stress fields caused by the presence of geometrically necessary dislocation gradients, advection equations to model dislocation density transport and conservation, and constitutive equations appropriate for shock loading (equation of state, drag-limited dislocation velocity, etc). In the following, we outline a coupled finite element-finite volume framework for implementing the model physics, and demonstrate its capabilities in simulating the response of a [1 0 0] copper single crystal during a plate impact test. Additionally, we explore the effect of varying certain model parameters (e.g. mesh density, finite volume update scheme) on the simulation results. Our results demonstrate that the model performs as intended and establishes a baseline of understanding that can be leveraged as we extend the model to incorporate additional and/or refined physics and move toward a multi-dimensional implementation. C1 [Mayeur, Jason R.; Mourad, Hashem M.; Luscher, Darby J.] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hunter, Abigail; Kenamond, Mark A.] Univ Calif Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. RP Mayeur, JR (reprint author), Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jmayeur@lanl.gov OI Hunter, Abigail/0000-0002-0443-4020 FU US Department of Energy through the LANL Laboratory Directed Research Development Program (LDRD) [LDRD-ER-140645] FX The authors gratefully acknowledge the support of the US Department of Energy through the LANL Laboratory Directed Research Development Program (LDRD) and, in particular, funding for the exploratory research project (LDRD-ER-140645) on modeling Materials for the Future. NR 53 TC 2 Z9 2 U1 12 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAY PY 2016 VL 24 IS 4 AR 045013 DI 10.1088/0965-0393/24/4/045013 PG 24 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL4IA UT WOS:000375596400013 ER PT J AU Sills, RB Aghaei, A Cai, W AF Sills, Ryan B. Aghaei, Amin Cai, Wei TI Advanced time integration algorithms for dislocation dynamics simulations of work hardening SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE dislocation dynamics; time integration; subcycling AB Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank-Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. Subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions. C1 [Sills, Ryan B.; Aghaei, Amin; Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Sills, Ryan B.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Sills, RB (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.; Sills, RB (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM rbsills@stanford.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010412]; Sandia National Laboratories (RBS); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0010412 (AA and WC) and by Sandia National Laboratories (RBS). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAY PY 2016 VL 24 IS 4 AR 045019 DI 10.1088/0965-0393/24/4/045019 PG 17 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL4IA UT WOS:000375596400019 ER PT J AU Shatsky, M Allen, S Gold, BL Liu, NL Juba, TR Reveco, SA Elias, DA Prathapam, R He, J Yang, WH Szakal, ED Liu, HC Singer, ME Geller, JT Lam, BR Saini, A Trotter, VV Hall, SC Fisher, SJ Brenner, SE Chhabra, SR Hazen, TC Wall, JD Witkowska, HE Biggin, MD Chandonia, JM Butland, G AF Shatsky, Maxim Allen, Simon Gold, Barbara L. Liu, Nancy L. Juba, Thomas R. Reveco, Sonia A. Elias, Dwayne A. Prathapam, Ramadevi He, Jennifer Yang, Wenhong Szakal, Evelin D. Liu, Haichuan Singer, Mary E. Geller, Jil T. Lam, Bonita R. Saini, Avneesh Trotter, Valentine V. Hall, Steven C. Fisher, Susan J. Brenner, Steven E. Chhabra, Swapnil R. Hazen, Terry C. Wall, Judy D. Witkowska, H. Ewa Biggin, Mark D. Chandonia, John-Marc Butland, Gareth TI Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID DESULFOVIBRIO-VULGARIS; INTERACTION NETWORK; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; MASS-SPECTROMETRY; SYSTEMS BIOLOGY; INTERACTION MAP; COMPLEXES; PROTEOMICS; YEAST AB Numerous affinity purification-mass spectrometry (APMS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli. Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested. C1 [Shatsky, Maxim; Reveco, Sonia A.; Brenner, Steven E.; Chhabra, Swapnil R.; Chandonia, John-Marc; Butland, Gareth] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Allen, Simon; Szakal, Evelin D.; Liu, Haichuan; Hall, Steven C.; Fisher, Susan J.; Witkowska, H. Ewa] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA 94143 USA. [Allen, Simon; Szakal, Evelin D.; Liu, Haichuan; Hall, Steven C.; Fisher, Susan J.; Witkowska, H. Ewa] Univ Calif San Francisco, Sandler Moore Mass Spectrometry Core Facil, San Francisco, CA 94143 USA. [Gold, Barbara L.; Liu, Nancy L.; Prathapam, Ramadevi; He, Jennifer; Yang, Wenhong; Saini, Avneesh; Trotter, Valentine V.; Butland, Gareth] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Juba, Thomas R.; Wall, Judy D.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. [Juba, Thomas R.; Wall, Judy D.] Univ Missouri, Dept Mol Microbiol & Immunol, Columbia, MO 65211 USA. [Elias, Dwayne A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Singer, Mary E.; Geller, Jil T.; Lam, Bonita R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94704 USA. [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Chandonia, JM; Butland, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.; Butland, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. EM jmchandonia@lbl.gov; gpbutland@lbl.gov RI Hazen, Terry/C-1076-2012; OI Hazen, Terry/0000-0002-2536-9993; Trotter, Valentine/0000-0002-1784-9487 FU Office of Science, Office of Biological and Environmental Research, of the United States Department of Energy [DE-AC02-05CH11231]; Sandler Family Foundation; Gordon and Betty Moore Foundation; Canary Foundation; National Institutes of Health Cancer Center Support Grant from NCI [P30 CA08210] FX This work was initiated by the Protein Complex Analysis Project and later conducted as part of ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies (enigma.lbl.gov)), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, both supported by the Office of Science, Office of Biological and Environmental Research, of the United States Department of Energy under Contract DE-AC02-05CH11231, and mass spectrometry analyses were performed by the UCSF Sandler-Moore Mass spectrometry Core Facility, which acknowledges support from the Sandler Family Foundation, the Gordon and Betty Moore Foundation, the Canary Foundation and National Institutes of Health Cancer Center Support Grant P30 CA08210 from NCI. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. NR 58 TC 0 Z9 0 U1 2 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD MAY PY 2016 VL 15 IS 5 BP 1539 EP 1555 DI 10.1074/mcp.M115.054692 PG 17 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA DL5OI UT WOS:000375686100005 PM 26873250 ER PT J AU Luque, E Queiroz, A Santiago, B Pieres, A Balbinot, E Bechtol, K Drlica-Wagner, A Neto, AF da Costa, LN Maia, MAG Yanny, B Abbott, T Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Kind, MC Carretero, J Cunha, CE Desai, S Diehl, HT Dietrich, JP Eifler, TF Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruen, D Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS March, M Marshall, JL Martini, P Miquel, R Neilsen, E Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Tucker, D Walker, AR Zhang, Y AF Luque, E. Queiroz, A. Santiago, B. Pieres, A. Balbinot, E. Bechtol, K. Drlica-Wagner, A. Fausti Neto, A. da Costa, L. N. Maia, M. A. G. Yanny, B. Abbott, T. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Cunha, C. E. Desai, S. Diehl, H. T. Dietrich, J. P. Eifler, T. F. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruen, D. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. March, M. Marshall, J. L. Martini, P. Miquel, R. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Tucker, D. Walker, A. R. Zhang, Y. TI Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE globular clusters: general; globular clusters: individual (DES 1); galaxies: dwarf ID DIGITAL SKY SURVEY; PAN-STARRS1 3-PI SURVEY; ULTRA-FAINT SATELLITES; GLOBULAR-CLUSTERS; STAR CLUSTER; PROPER MOTIONS; DWARF GALAXIES; DATA RELEASE; HALO; CONSTELLATION AB We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6-87.1 kpc and -3.00 less than or similar to M-V less than or similar to -2.21, respectively. The half-light radius of this object, r(h) similar to 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape (epsilon similar to 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature. C1 [Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.; Balbinot, E.; Fausti Neto, A.; da Costa, L. N.; Maia, M. A. G.; Carnero Rosell, A.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Bechtol, K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Drlica-Wagner, A.; Yanny, B.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [da Costa, L. N.; Maia, M. A. G.; Carnero Rosell, A.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Bertin, E.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kind, M. Carrasco; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 W Clark St, Urbana, IL 61801 USA. [Carretero, J.; Fosalba, P.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gerdes, D. W.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Luque, E; Santiago, B (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil.; Luque, E; Santiago, B (reprint author), Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. EM elmer.luque@ufrgs.br; basilio.santiago@ufrgs.br RI Fosalba Vela, Pablo/I-5515-2016; Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Balbinot, Eduardo/E-8019-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Tucker, Douglas/0000-0001-7211-5729; Balbinot, Eduardo/0000-0002-1322-3153; Carrasco Kind, Matias/0000-0002-4802-3194 NR 48 TC 9 Z9 9 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2016 VL 458 IS 1 BP 603 EP 612 DI 10.1093/mnras/stw302 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YI UT WOS:000374568900039 ER PT J AU van Daalen, MP Henriques, BMB Angulo, RE White, SDM AF van Daalen, Marcel P. Henriques, Bruno M. B. Angulo, Raul E. White, Simon D. M. TI The galaxy correlation function as a constraint on galaxy formation physics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: formation; cosmology: theory; large-scale structure of Universe ID DARK-MATTER HALOES; UNIVERSAL DENSITY PROFILE; ACTIVE GALACTIC NUCLEI; LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; STAR-FORMATION; OCCUPATION DISTRIBUTION; SEMIANALYTIC MODELS; BLACK-HOLES; EVOLUTION AB We introduce methods which allow observed galaxy clustering to be used together with observed luminosity or stellar mass functions to constrain the physics of galaxy formation. We show how the projected two-point correlation function of galaxies in a large semi-analytic simulation can be estimated to better than similar to 10 per cent using only a very small subsample of the subhalomerger trees. This allows measured correlations to be used as constraints in a Monte Carlo Markov Chain exploration of the astrophysical and cosmological parameter space. An important part of our scheme is an analytic profile which captures the simulated satellite distribution extremely well out to several halo virial radii. This is essential to reproduce the correlation properties of the full simulation at intermediate separations. As a first application, we use low-redshift clustering and abundance measurements to constrain a recent version of the Munich semi-analytic model. The preferred values of most parameters are consistent with those found previously, with significantly improved constraints and somewhat shifted 'best' values for parameters that primarily affect spatial distributions. Our methods allowmulti-epoch data on galaxy clustering and abundance to be used as joint constraints on galaxy formation. This may lead to significant constraints on cosmological parameters even after marginalizing over galaxy formation physics. C1 [van Daalen, Marcel P.; Henriques, Bruno M. B.; White, Simon D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [van Daalen, Marcel P.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [van Daalen, Marcel P.] Univ Calif Berkeley, Theoret Astrophys Ctr, Dept Astron, Berkeley, CA 94720 USA. [van Daalen, Marcel P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Angulo, Raul E.] Ctr Estudios Fis Cosmos Aragon, Plaza San Juan 1,Planta 2, E-44001 Teruel, Spain. RP van Daalen, MP (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.; van Daalen, MP (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands.; van Daalen, MP (reprint author), Univ Calif Berkeley, Theoret Astrophys Ctr, Dept Astron, Berkeley, CA 94720 USA.; van Daalen, MP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM marcel@berkeley.edu OI Henriques, Bruno/0000-0002-1392-489X FU Marie Curie Initial Training Network CosmoComp [PITN-GA-2009-238356]; European Research Council [246797]; Theoretical Astrophysics Center at UCB; BIS National E-infrastructure capital grant [ST/K00042X/1]; STFC capital grants [ST/H008519/1, ST/K00087X/1]; STFC DiRAC Operations grant [ST/K003267/1]; Durham University FX The authors thank Joop Schaye for useful discussions and comments on an earlier version of the manuscript. MPvD also thanks Martin White for fruitful discussions on the Poisson distribution. The Millennium Simulation data bases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory. This work was supported in part by the Marie Curie Initial Training Network CosmoComp (PITN-GA-2009-238356), by Advanced Grant 246797 'GALFORMOD' from the European Research Council, and by the Theoretical Astrophysics Center at UCB. This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grants ST/H008519/1 and ST/K00087X/1, STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. NR 56 TC 1 Z9 1 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2016 VL 458 IS 1 BP 934 EP 949 DI 10.1093/mnras/stw405 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ9YI UT WOS:000374568900065 ER PT J AU Amos, CD Roldan, MA Varela, M Goodenough, JB Ferreira, PJ AF Amos, Charles D. Roldan, Manuel A. Varela, Maria Goodenough, John B. Ferreira, Paulo J. TI Revealing the Reconstructed Surface of Li[Mn-2]O-4 SO NANO LETTERS LA English DT Article DE HAADF STEM; EELS; LiMn2O4; Mn-disproportionation; surface reconstruction ID LITHIUM-ION BATTERIES; MANGANESE OXIDES; LIMN2O4; SIMULATION; FORM AB The spinel Li[Mn-2]O-4 is a candidate cathode for a Li-ion battery, but its capacity fades over a charge/discharge cycle of Li1-x[Mn-2]O-4 (0 < x < 1) that is associated with a loss of Mn to the organic-liquid electrolyte. It is known that the disproportionation reaction 2Mn(3+) = Mn2+ = Mn4+ occurs at the surface of a Mn spinel, and it is important to understand the atomic structure and composition of the surface of Li[Mn-2]O-4 in order to understand how Mn loss occurs. We report a study of the surface reconstruction of Li[Mn-2]O-4 by aberration-corrected scanning transmission electron microscopy. The atomic structure coupled with Mn-valence and the distribution of the atomic ratio of oxygen obtained by electron energy loss spectroscopy reveals a thin, stable surface layer of Mn3O4, a subsurface region of Li1+x[Mn-2]O-4 with retention of bulk Li[Mn-2]O-4. This observation is compatible with the disproportionation reaction coupled with oxygen deficiency and a displacement of surface Li+ from the Mn3O4 surface phase. These results provide a critical step toward understanding how Mn is lost from Li[Mn-2]O-4, once inside a battery. C1 [Amos, Charles D.; Goodenough, John B.; Ferreira, Paulo J.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Roldan, Manuel A.; Varela, Maria] Oak Ridge Natl Lab, Mat Sci & Technol Div, STEM Grp, Oak Ridge, TN 37831 USA. [Roldan, Manuel A.; Varela, Maria] Univ Complutense Madrid, E-28040 Madrid, Spain. RP Ferreira, PJ (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. EM ferreira@mail.utexas.edu RI Varela, Maria/E-2472-2014; OI Varela, Maria/0000-0002-6582-7004; Roldan, Manuel/0000-0001-6511-1017 FU NASA Office of the Chief Technologist's Space Technology Research Fellowship [NNX12AN25H]; National Institute on Minority Health and Health Disparities from the National Institutes of Health [G12MD007591]; Robert A. Welch Foundation Grant [F-1066]; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ERC [239739] FX The authors would like to thank Dr. Judith Jeevarajan from NASA's Johnson Space Center for her thoughtful discussions throughout this work. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (NNX12AN25H). We acknowledge the use of the aberration-corrected ARM 200F STEM at the University of Texas at San Antonio, a facility supported by a grant from the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health. J.B.G. thanks the Robert A. Welch Foundation Grant (F-1066) for financial support. Research at ORNL (M.V.) supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Research at UCM (MAR.) was supported by the ERC starting Investigator Award, grant no. 239739 STEMOX. NR 18 TC 7 Z9 7 U1 27 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 2899 EP + DI 10.1021/acs.nanolett.5b03926 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700001 PM 27022834 ER PT J AU Hofmann, MS Noe, J Kneer, A Crochet, JJ Hogele, A AF Hofmann, Matthias S. Noe, Jonathan Kneer, Alexander Crochet, Jared J. Hoegele, Alexander TI Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes SO NANO LETTERS LA English DT Article DE Carbon nanotube; photoluminescence spectroscopy; exciton localization ID OPTICAL-TRANSITION ENERGIES; SPECTRAL DIFFUSION; PHOTOLUMINESCENCE; DIMENSIONALITY; FLUORESCENCE; MICROSCOPY; DEPENDENCE; TRANSPORT; EMISSION AB We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. C1 [Hofmann, Matthias S.; Noe, Jonathan; Kneer, Alexander; Hoegele, Alexander] Univ Munich, Fak Phys, Munich Quantum Ctr, Geschwister Scholl Pl 1, D-80539 Munich, Germany. [Hofmann, Matthias S.; Noe, Jonathan; Kneer, Alexander; Hoegele, Alexander] Univ Munich, Ctr NanoSci CeNS, Geschwister Scholl Pl 1, D-80539 Munich, Germany. [Crochet, Jared J.] Los Alamos Natl Lab, Phys Chem & Appl Spect Div, POB 1663, Los Alamos, NM 87545 USA. RP Hogele, A (reprint author), Univ Munich, Fak Phys, Munich Quantum Ctr, Geschwister Scholl Pl 1, D-80539 Munich, Germany.; Hogele, A (reprint author), Univ Munich, Ctr NanoSci CeNS, Geschwister Scholl Pl 1, D-80539 Munich, Germany. EM alexander.hoegele@lmu.de RI Hogele, Alexander/C-1080-2016; OI Hogele, Alexander/0000-0002-0178-9117; Crochet, Jared/0000-0002-9570-2173 FU European Research Council under the ERC [336749]; German Excellence Initiative via the Nanosystems Initiative Munich (NIM); Center for NanoScience (CeNS); LMUinnovativ FX We thank P. Altpeter and R. Rath for assistance in the clean room. The preparation of HiPco nanotube samples was performed in part at the Center for Integrated Nano technologies, Los Alamos National Laboratory. This research was funded by the European Research Council under the ERC Grant Agreement no. 336749, and the German Excellence Initiative via the Nanosystems Initiative Munich (NIM). We also acknowledge financial support from the Center for NanoScience (CeNS) and LMUinnovativ. NR 48 TC 1 Z9 1 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 2958 EP 2962 DI 10.1021/acs.nanolett.5b04901 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700010 PM 27105355 ER PT J AU Yu, Y Cui, F Sun, JW Yang, PD AF Yu, Yi Cui, Fan Sun, Jianwei Yang, Peidong TI Atomic Structure of Ultrathin Gold Nanowires SO NANO LETTERS LA English DT Article DE Ultrathin Au nanowires; aberration-corrected high-resolution transmission electron microscopy; defect; strain; surface ligand; coalescence ID TRANSMISSION ELECTRON-MICROSCOPY; AU NANOWIRES; LATTICE STRAIN; NANOPARTICLES; CONDUCTANCE; PHASE; BEAM AB Understanding of the atomic structure and stability of nanowires (NWs) is critical for their applications in nanotechnology, especially when the diameter of NWs reduces to ultrathin scale (1-2 nm). Here, using aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM), we report a detailed atomic structure study of the ultrathin Au NWs, which are synthesized using a silane-mediated approach. The NWs contain large amounts of generalized stacking fault defects. These defects evolve upon sustained electron exposure, and simultaneously the NWs undergo necking and breaking. Quantitative strain analysis reveals the key role of strain in the breakdown process. Besides, ligand-like morphology is observed at the surface of the NWs, indicating the possibility of using AC-HRTEM for surface ligand imaging. Moreover, the coalescence dynamic of ultrathin Au NWs is demonstrated by in situ observations. This work provides a comprehensive understanding of the structure of ultrathin metal NWs at atomic-scale and could have important implications for their applications. C1 [Yu, Yi; Cui, Fan; Sun, Jianwei; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yu, Yi; Cui, Fan; Sun, Jianwei; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (PChem). We thank Dr. Linhan Lin and Dr. Jie Ma for discussion on DFT calculations. Work at the NCEM, Molecular Foundry was supported by the Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 7 Z9 7 U1 22 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3078 EP 3084 DI 10.1021/acs.nanolett.6b00233 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700028 PM 27071038 ER PT J AU Tang, JS Yu, GQ Wang, CY Chang, LT Jiang, WJ He, CL Wang, KL AF Tang, Jianshi Yu, Guoqiang Wang, Chiu-Yen Chang, Li-Te Jiang, Wanjun He, Congli Wang, Kang L. TI Versatile Fabrication of Self-Aligned Nanoscale Hall Devices Using Nanowire Masks SO NANO LETTERS LA English DT Article DE Nanowire; nanoribbon; self-aligned contacts; Hall effect; current-induced magnetization switching ID GRAPHENE-NANORIBBON TRANSISTORS; LITHOGRAPHY; INJECTION; GATE AB In this work, we present an ingenious method to fabricate self-aligned nanoscale Hall devices using chemically synthesized nanowires as both etching and deposition masks. This versatile method can be extensively used to make nanoribbons out of arbitrary thin films without the need for extremely high alignment accuracy to define the metal contacts. The fabricated nanoribbon width scales with the mask nanowire width (diameter), and it can be easily reduced down to tens of nanometers. The self-aligned metal contacts from the sidewall extend to the top surface of the nanoribbon, and the overlap can be controlled by tuning the deposition recipe. To demonstrate the feasibility, we have fabricated Ta/CoFeB/MgO nanoribbons sputtered on a SiO2/Si substrate with different metal contacts, using synthesized SnO2 nanowires as masks. Anomalous Hall effect measurements have been carried out on the fabricated nanoscale Hall device in order to study the current-induced magnetization switching in the nanoscale heavy metal/ferromagnet heterostructure, which has shown distinct switching behaviors from micron-scale devices. The developed method provides a useful fabrication platform to probe the charge and spin transport in the nanoscale regime. C1 [Tang, Jianshi; Yu, Guoqiang; Chang, Li-Te; Jiang, Wanjun; He, Congli; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA. [Wang, Chiu-Yen] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Taipei 10607, Taiwan. [Tang, Jianshi] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Jiang, Wanjun] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Tang, JS; Wang, KL (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA.; Tang, JS (reprint author), IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM tjianshi@ucla.edu; wang@seas.ucla.edu RI Jiang, Wanjun/E-6994-2011; Yu, Guoqiang/F-1871-2013; OI Jiang, Wanjun/0000-0003-0918-3862; Yu, Guoqiang/0000-0002-7439-6920; Tang, Jianshi/0000-0001-8369-0067 FU National Science Foundation [ECCS 1308358]; National Science Council [MOST 103-2218-E-011-007-MY3]; Defense Advanced Research Projects Agency (DARPA) programme on Nonvolatile Logic (NVL); National Science Foundation Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS); Function Accelerated nanoMaterial Engineering Center, one of six centres of Semiconductor Technology Advanced Research network, a Semiconductor Research Corporation - Microelectronics Advanced Research Corporation; DARPA; Raytheon endowed chair professorship FX The authors acknowledge the funding supports from National Science Foundation through grant ECCS 1308358 and from National Science Council through grant No. MOST 103-2218-E-011-007-MY3. This work was partially supported by the Defense Advanced Research Projects Agency (DARPA) programme on Nonvolatile Logic (NVL) and in part by the National Science Foundation Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS). This work was also supported in part by the Function Accelerated nanoMaterial Engineering Center, one of six centres of Semiconductor Technology Advanced Research network, a Semiconductor Research Corporation programme sponsored by Microelectronics Advanced Research Corporation and DARPA. K.W. acknowledges the support of the Raytheon endowed chair professorship. NR 47 TC 1 Z9 1 U1 12 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3109 EP 3115 DI 10.1021/acs.nanolett.6b00398 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700032 PM 27046777 ER PT J AU Das, SR Mohammed, AMS Maize, K Sadeque, S Shakouri, A Janes, DB Alam, MA AF Das, Suprem R. Mohammed, Amr M. S. Maize, Kerry Sadeque, Sajia Shakouri, Ali Janes, David B. Alam, Muhammad A. TI Evidence of Universal Temperature Scaling in Self-Heated Percolating Networks SO NANO LETTERS LA English DT Article DE Universality; scaling law; copercolation network; hybrid graphene; self-heating; thermoreflectance imaging; Weibull distribution; percolation theory ID CARBON NANOTUBE NETWORKS; ELECTRICAL-CONDUCTIVITY; HIGH-PERFORMANCE; GRAPHENE FILMS; TRANSPARENT; ELECTRODES AB During routine operation, electrically percolating nanocomposites are subjected to high voltages, leading to spatially heterogeneous current distribution. The heterogeneity implies localized self-heating that may (self-consistently) reroute the percolation pathways and even irreversibly damage the material. In the absence of experiments that can spatially resolve the current distribution and a nonlinear percolation model suitable to interpret them, one relies on empirical rules and safety factors to engineer these materials. In this paper, we use ultrahigh resolution thermo-reflectance imaging, coupled with a new imaging processing technique, to map the spatial distribution Delta T(x, y; I) and histogram f(Delta T) of temperature rise due to self-heating in two types of 2D networks (percolating and copercolating). Remarkably, we find that the self-heating can be described by a simple two-parameter Weibull distribution, even under voltages high enough to reconfigure the percolation pathways. Given the generality of the phenomenological argument supporting the distribution, other percolating networks are likely to show similar stress distribution in response to sufficiently large stimuli. Furthermore, the spatial evolution of the self heating of network was investigated by analyzing the spatial distribution and spatial correlation, respectively. An estimation of degree of hotspot clustering reveals a mechanism analogous to crystallization physics. The results should encourage nonlinear generalization of percolation models necessary for predictive engineering of nanocomposite materials. C1 [Alam, Muhammad A.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Das, Suprem R.] Iowa State Univ, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Alam, MA (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM alam@purdue.edu FU Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center (EFRC) - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; National Science Foundation [ECCS 1408346] FX This work is supported as part of the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001085, and by National Science Foundation under Grant ECCS 1408346. NR 36 TC 1 Z9 1 U1 7 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3130 EP 3136 DI 10.1021/acs.nanolett.6b00428 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700035 PM 27070737 ER PT J AU Dai, JY Wang, DX Zhang, M Niu, TC Li, A Ye, M Qiao, S Ding, GQ Xie, XM Wang, YQ Chu, PK Yuan, QH Di, ZF Wang, X Ding, F Yakobson, BI AF Dai, Jiayun Wang, Danxia Zhang, Miao Niu, Tianchao Li, Ang Ye, Mao Qiao, Shan Ding, Guqiao Xie, Xiaoming Wang, Yongqiang Chu, Paul K. Yuan, Qinghong Di, Zengfeng Wang, Xi Ding, Feng Yakobson, Boris I. TI How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface SO NANO LETTERS LA English DT Article DE Graphene; alignment; first-principles calculation; surface step; chemical bonding; lattice matching ID CHEMICAL-VAPOR-DEPOSITION; GRAIN-BOUNDARIES; POLYCRYSTALLINE GRAPHENE; MONOLAYER GRAPHENE; INTRINSIC STRENGTH; GROWTH; TRANSPORT; ORIENTATION; HYDROGEN; COPPER AB The unidirectional alignment of graphene islands is essential to the synthesis of wafer-scale single-crystal graphene on Ge(110) surface, but the underlying mechanism is not well-understood. Here we report that the necessary coalignment of the nucleating graphene islands on Ge(110) surface is caused by the presence of step pattern; we show that on the preannealed Ge(110) textureless surface the graphene islands appear nonpreferentially orientated, while on the Ge(110) surfaces with natural step pattern, all graphene islands emerge coaligned. First-principles calculations and theoretical analysis reveal this different alignment behaviors originate from the strong chemical binding formed between the graphene island edges and the atomic steps on the Ge(110) surface, and the lattice matching at edge-step interface dictates the alignment of graphene islands with the armchair direction of graphene along the [-110] direction of the Ge(110) substrate. C1 [Dai, Jiayun; Zhang, Miao; Niu, Tianchao; Li, Ang; Ye, Mao; Qiao, Shan; Ding, Guqiao; Xie, Xiaoming; Yuan, Qinghong; Di, Zengfeng; Wang, Xi] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Wang, Danxia; Yuan, Qinghong] E China Normal Univ, Dept Phys, Shanghai 200241, Peoples R China. [Wang, Yongqiang] Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. [Chu, Paul K.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon 999077, Hong Kong, Peoples R China. [Ding, Feng] Hong Kong Polytech Univ, Inst Text & Clothing, Kowloon 999077, Hong Kong, Peoples R China. [Yuan, Qinghong; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. RP Yuan, QH; Di, ZF (reprint author), Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China.; Yuan, QH (reprint author), E China Normal Univ, Dept Phys, Shanghai 200241, Peoples R China.; Yuan, QH (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. EM qhyuan@rice.edu; zfdi@mail.sim.ac.cn RI Ding, Feng/D-5938-2011; Chu, Paul/B-5923-2013; OI Ding, Feng/0000-0001-9153-9279; Chu, Paul/0000-0002-5581-4883; NIU, Tianchao/0000-0003-0502-4346 FU Creative Research Groups of National Natural Science Foundation of China [61321492]; National Science and Technology Major Project [2011ZX02707]; National Natural Science Foundation of China [21303056, 61274136]; Shanghai Pujiang Program [13PJ1402600]; Center for Integrated Nanotechnologies (CINT); US DOE nanoscience user facility [9667104, GHP/015/12SZ] FX This work was financially supported by Creative Research Groups of National Natural Science Foundation of China (No. 61321492), National Science and Technology Major Project (Grant No. 2011ZX02707), National Natural Science Foundation of China under Grant (Nos. 21303056 and 61274136) and Shanghai Pujiang Program (13PJ1402600). Partial support was also provided by the Center for Integrated Nanotechnologies (CINT) and US DOE nanoscience user facility jointly operated by Los Alamos and Sandia National Laboratories, City University of Hong Kong Applied Research Grant (ARG) No. 9667104, Guangdong - Hong Kong Technology Cooperation Funding Scheme (TCFS) GHP/015/12SZ. NR 24 TC 1 Z9 1 U1 37 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3160 EP 3165 DI 10.1021/acs.nanolett.6b00486 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700040 PM 27101021 ER PT J AU He, YM Yang, Y Zhang, ZH Gong, YJ Zhou, W Hu, ZL Ye, GL Zhaug, X Bianco, E Lei, SD Jin, ZH Zou, XL Yang, YC Zhang, Y Xie, EQ Lou, J Yakobson, B Vajtai, R Li, B Ajayan, P AF He, Yongmin Yang, Yang Zhang, Zhuhua Gong, Yongji Zhou, Wu Hu, Zhili Ye, Gonglan Zhaug, Xiang Bianco, Elisabeth Lei, Sidong Jin, Zehua Zou, Xiaolong Yang, Yingchao Zhang, Yuan Xie, Erqing Lou, Jun Yakobson, Boris Vajtai, Robert Li, Bo Ajayan, Pulickel TI Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures SO NANO LETTERS LA English DT Article DE Stacked van der Waals heterostructures; strain; electronic band structure interaction; photoluminescence; chemical vapor deposition; controlled orientation and stacking order ID TRANSITION-METAL DICHALCOGENIDES; DIRAC FERMIONS; MOS2; APPROXIMATION; MONOLAYER; GRAPHENE; ENERGY; GENERATION; EXCHANGE; FIELD AB Vertically stacked van der Waals heterostructures composed of compositionally different two-dimensional atomic layers give rise to interesting properties due to substantial interactions between the layers. However, these interactions can be easily obscured by the twisting of atomic layers or cross-contamination introduced by transfer processes, rendering their experimental demonstration challenging. Here, we explore the electronic structure and its strain dependence of stacked MoSe2/WSe2 heterostructures directly synthesized by chemical vapor deposition, which unambiguously reveal strong electronic coupling between the atomic layers. The direct and indirect band gaps (1.48 and 1.28 eV) of the heterostructures are measured to be lower than the band gaps of individual MoSe2 (1.50 eV) and WSe2 (1.60 eV) layers. Photoluminescence measurements further show that both the direct and indirect band gaps undergo redshifts with applied tensile strain to the heterostructures, with the change of the indirect gap being particularly more sensitive to strain. This demonstration of strain engineering in van der Waals heterostructures opens a new route toward fabricating flexible electronics. C1 [He, Yongmin; Yang, Yang; Zhang, Zhuhua; Gong, Yongji; Hu, Zhili; Ye, Gonglan; Zhaug, Xiang; Lei, Sidong; Jin, Zehua; Zou, Xiaolong; Yang, Yingchao; Zhang, Yuan; Lou, Jun; Yakobson, Boris; Vajtai, Robert; Li, Bo; Ajayan, Pulickel] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [He, Yongmin; Xie, Erqing] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. [Zhang, Zhuhua] Nanjing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Intelligent Nano Mat & Devices, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China. [Gong, Yongji; Bianco, Elisabeth] Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA. [Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [He, Yongmin] Nanyang Technol Univ, Ctr Programmable Mat, Sch Mat Sci & Engn, Singapore 639798, Singapore. RP Li, B; Ajayan, P (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. EM Bo.Li@rice.edu; ajayan@rice.edu RI Zhou, Wu/D-8526-2011; Gong, Yongji/L-7628-2016; Zhang, Zhuhua/E-8162-2012; Lei, Sidong/A-8600-2016; OI Zhou, Wu/0000-0002-6803-1095; Lei, Sidong/0000-0001-9129-2202; Xie, Erqing/0000-0001-5647-6938 FU FAME, one of six centers of STARnet, a Semiconductor Research Corporation program - MARCO; DARPA; US Army Research Office Electronics Division [67026-EL]; Research Funds for the Central Universities [NE2015104, NS2014006]; SKL-MCMS in NUAA [MCMS-0415K01]; China Scholarship Council; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division; ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility FX This work is supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. Electronic structure computation analysis was supported by the US Army Research Office Electronics Division (grant ref. No. 67026-EL). Z.Z. acknowledges the financial supports from Research Funds for the Central Universities (NE2015104, NS2014006) and the Research Fund of the SKL-MCMS in NUAA (MCMS-0415K01). Y.H. acknowledges the financial support from China Scholarship Council. Electron microscopy study was supported by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (W.Z.), and through a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. NR 42 TC 2 Z9 2 U1 31 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3314 EP 3320 DI 10.1021/acs.nanolett.6b00932 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700062 PM 27120401 ER PT J AU Zaia, EW Sahu, A Zhou, P Gordon, MP Forster, JD Aloni, S Liu, YS Guo, JH Urban, JJ AF Zaia, Edmond W. Sahu, Ayaskanta Zhou, Preston Gordon, Madeleine P. Forster, Jason D. Aloni, Shaul Liu, Yi-Sheng Guo, Jinghua Urban, Jeffrey J. TI Carrier Scattering at Alloy Nanointerfaces Enhances Power Factor in PEDOT:PSS Hybrid Thermoelectrics SO NANO LETTERS LA English DT Article DE Thermoelectric; nanocomposite; carrier scattering; heterostructure; conducting polymer ID DENSITY-OF-STATES; SEEBECK COEFFICIENT; COLLOIDAL NANOCRYSTALS; ENERGY; NANOSTRUCTURES; PROSPECTS; NANOWIRES; FILMS; CU; HETEROSTRUCTURE AB This work demonstrates the first method for controlled growth of heterostructures within hybrid organic/inorganic nanocomposite thermoelectrics. Using a facile, aqueous technique, semimetal-alloy nanointerfaces are patterned within a hybrid thermoelectric system consisting of tellurium (Te) nanowires and the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS). Specifically, this method is used to grow nanoscale islands of Cu1.75Te alloy subphases within hybrid PEDOT:PSS-Te nanowires. This technique is shown to provide tunability of thermoelectric and electronic properties, providing up to 22% enhancement of the system's power factor in the low doping regime, consistent with preferential scattering of low energy carriers. This work provides an exciting platform for rational design of multiphase nanocomposites and highlights the potential for engineering of carrier filtering within hybrid thermoelectrics via introduction of interfaces with controlled structural and energetic properties. C1 [Zaia, Edmond W.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Zaia, Edmond W.; Sahu, Ayaskanta; Zhou, Preston; Gordon, Madeleine P.; Forster, Jason D.; Aloni, Shaul; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Liu, Yi-Sheng; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. EM jjurban@lbl.gov FU Department of Energy BES-LBL Thermoelectrics Program; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge support through the Department of Energy BES-LBL Thermoelectrics Program. This work was performed at the Molecular Foundry and Advanced Light Source, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 2 Z9 2 U1 30 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2016 VL 16 IS 5 BP 3352 EP 3359 DI 10.1021/acs.nanolett.6b01009 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL8KA UT WOS:000375889700068 PM 27070850 ER PT J AU Liu, XJ Wang, CZ Hupalo, M Lin, HQ Ho, KM Thiel, PA Tringides, MC AF Liu, Xiaojie Wang, Cai-Zhuang Hupalo, Myron Lin, Hai-Qing Ho, Kai-Ming Thiel, Patricia A. Tringides, Michael C. TI Metal intercalation-induced selective adatom mass transport on graphene SO NANO RESEARCH LA English DT Article DE graphene; intercalation; electrostatic potential; selective adsorption; first-principle calculation ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GROWTH-MORPHOLOGY; BASIS-SET; INITIO; ADSORPTION AB Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. This alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms. C1 [Liu, Xiaojie] NE Normal Univ, Ctr Quantum Sci, Changchun 130117, Peoples R China. [Liu, Xiaojie] NE Normal Univ, Sch Phys, Changchun 130117, Peoples R China. [Wang, Cai-Zhuang; Hupalo, Myron; Ho, Kai-Ming; Tringides, Michael C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, Cai-Zhuang; Hupalo, Myron; Ho, Kai-Ming; Tringides, Michael C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lin, Hai-Qing] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China. [Thiel, Patricia A.] US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Wang, CZ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Wang, CZ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM wangcz@ameslab.gov FU U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358]; National Natural Science Foundation of China [11574044, U1530401]; Science and Technology Department of Jilin Province [20150520088JH] FX We thank Dr. Jim Evans for many useful discussions. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA under Contract No. DE-AC02-07CH11358. X. J. L. also acknowledges the support by the National Natural Science Foundation of China (No. 11574044) and Science and Technology Department of Jilin Province (No. 20150520088JH). H. Q. L. acknowledges support from National Natural Science Foundation of China (No. U1530401) and computational resource from the Beijing Computational Science Research Center. NR 31 TC 0 Z9 0 U1 11 U2 22 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD MAY PY 2016 VL 9 IS 5 BP 1434 EP 1441 DI 10.1007/s12274-016-1039-4 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DL4RH UT WOS:000375624400020 ER PT J AU Bredeson, JV Lyons, JB Prochnik, SE Wu, GA Ha, CM Edsinger-Gonzales, E Grimwood, J Schmutz, J Rabbi, IY Egesi, C Nauluvula, P Lebot, V Ndunguru, J Mkamilo, G Bart, RS Setter, TL Gleadow, RM Kulakow, P Ferguson, ME Rounsley, S Rokhsar, DS AF Bredeson, Jessen V. Lyons, Jessica B. Prochnik, Simon E. Wu, G. Albert Ha, Cindy M. Edsinger-Gonzales, Eric Grimwood, Jane Schmutz, Jeremy Rabbi, Ismail Y. Egesi, Chiedozie Nauluvula, Poasa Lebot, Vincent Ndunguru, Joseph Mkamilo, Geoffrey Bart, Rebecca S. Setter, Tim L. Gleadow, Roslyn M. Kulakow, Peter Ferguson, Morag E. Rounsley, Steve Rokhsar, Daniel S. TI Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity SO NATURE BIOTECHNOLOGY LA English DT Article ID MANIHOT-ESCULENTA CRANTZ; GENOMIC SELECTION; MANIOC MANIHOT; ORIGIN; DOMESTICATION; RESISTANCE; VARIETIES; EUPHORBIACEAE; ACCESSIONS; DISEASE AB Cassava (Manihot esculenta) provides calories and nutrition for more than half a billion people. It was domesticated by native Amazonian peoples through cultivation of the wild progenitor M. esculenta ssp. flabellifolia and is now grown in tropical regions worldwide. Here we provide a high-quality genome assembly for cassava with improved contiguity, linkage, and completeness; almost 97% of genes are anchored to chromosomes. We find that paleotetraploidy in cassava is shared with the related rubber tree Hevea, providing a resource for comparative studies. We also sequence a global collection of 58 Manihot accessions, including cultivated and wild cassava accessions and related species such as Ceara or India rubber (M. glaziovii), and genotype 268 African cassava varieties. We find widespread interspecific admixture, and detect the genetic signature of past cassava breeding programs. As a clonally propagated crop, cassava is especially vulnerable to pathogens and abiotic stresses. This genomic resource will inform future genome-enabled breeding efforts to improve this staple crop. C1 [Bredeson, Jessen V.; Lyons, Jessica B.; Ha, Cindy M.; Edsinger-Gonzales, Eric; Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Prochnik, Simon E.; Wu, G. Albert; Grimwood, Jane; Schmutz, Jeremy; Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Grimwood, Jane; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. [Rabbi, Ismail Y.; Kulakow, Peter] IITA, Ibadan, Nigeria. [Egesi, Chiedozie] NRCRI, Umudike, Nigeria. [Nauluvula, Poasa] Minist Primary Ind, Koronivia Res Stn, Dept Agr, Suva, Fiji. [Lebot, Vincent] Ctr Cooperat Int Rech Agron Dev CIRAD, Port Vila, Vanuatu. [Ndunguru, Joseph] MARI, Dar Es Salaam, Tanzania. [Mkamilo, Geoffrey] NARI, Mtwara, Tanzania. [Bart, Rebecca S.] Donald Danforth Plant Sci Ctr, St Louis, MO USA. [Setter, Tim L.] Cornell Univ, Sch Integrat Plant Sci, Sect Soil & Crop Sci, Ithaca, NY USA. [Gleadow, Roslyn M.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3004, Australia. [Ferguson, Morag E.] IITA, Nairobi, Kenya. [Rounsley, Steve] Dow AgroSci, Indianapolis, IN USA. [Rokhsar, Daniel S.] Okinawa Inst Sci & Technol Grad Univ, Mol Genet Unit, Onna, Japan. [Ha, Cindy M.] Univ Colorado, Anschutz Med Campus, Denver, CO 80202 USA. [Edsinger-Gonzales, Eric] Marine Biol Lab, Woods Hole, MA 02543 USA. [Nauluvula, Poasa] South Pacific Community, Kolonia, Micronesia. RP Bredeson, JV; Rokhsar, DS (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Rokhsar, DS (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA USA.; Rokhsar, DS (reprint author), Okinawa Inst Sci & Technol Grad Univ, Mol Genet Unit, Onna, Japan. EM jessenbredeson@berkeley.edu; dsrokhsar@gmail.com RI Bart, Rebecca/M-2838-2013; Schmutz, Jeremy/N-3173-2013; OI Schmutz, Jeremy/0000-0001-8062-9172; Lyons, Jessica/0000-0002-3886-2146; Gleadow, Roslyn/0000-0003-4756-0411; Bart, Rebecca/0000-0003-1378-3481 FU Bill and Melinda Gates Foundation (BMGF) [OPPGD1493]; University of Arizona; BMGF [OPP1048542, OPPGD1016]; United Kingdom Department for International Development; CGIAR Research Programme on Roots, Tubers, and Bananas (CRP-RTB); Office of Science of the US Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [S10RR029668, S10RR027303] FX We thank K. Swaminathan for advice on and protocols for DNA isolation; J. Burke for collecting the AM560-2 material, and J. Vrebaloy for preparing the DNA used for fosmid, mate pair, and Dovetail "Chicago" libraries; M. Hall for early project planning; M. Chung, J. Choi, K. Lundy, and other members of the VCGSL at UC Berkeley for advice and technical assistance with Illumine library preparation and sequencing; J. Galina-Mehlman and J. Still at the University of Arizona Genetics Core for library preparation and sequencing; R. McEwan and C. Evans for sequencing performed at Dow AgroSciences; L.B. Boston for mate pair library construction at HudsonAlpha; N. Putnam and J. Stites at Dovetail Genomics for performing HiRise assembly; B. Keough and Lucigen for fosmid library construction and sequencing; P. Hyde for providing cassava tissue from the Setter laboratory; M. Cohn and the Staskawicz laboratory for cassava tissue; C. Hershey and L.A.B. Lopez-Lavalle for permission to sequence CIAT accessions and background on CIAT nomenclature; E. Kanju for origin information on accession KBH 2006/18; and E. Amans and C. Exner for copyediting. J.B.L., J.V.B., C.M.H., and work at UC Berkeley were funded by Bill and Melinda Gates Foundation (BMGF) Grant OPPGD1493 to S.R., D.S.R., and the University of Arizona. NextGen Cassava Breeding grant OPP1048542 from BMGF and the United Kingdom Department for International Development supported S.E.P., J.V.B., and work at NRCRI. Work at IITA was supported by the CGIAR Research Programme on Roots, Tubers, and Bananas (CRP-RTB), and in East Africa, grant OPPGD1016 from BMGF. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work used the VCGSL at UC Berkeley, supported by the National Institutes of Health S10 Instrumentation Grants S10RR029668 and S10RR027303. NR 49 TC 7 Z9 8 U1 11 U2 28 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD MAY PY 2016 VL 34 IS 5 BP 562 EP 570 DI 10.1038/nbt.3535 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DL6FL UT WOS:000375735000038 PM 27088722 ER PT J AU Johns, RW Bechtel, HA Runnerstrom, EL Agrawal, A Lounis, SD Milliron, DJ AF Johns, Robert W. Bechtel, Hans A. Runnerstrom, Evan L. Agrawal, Ankit Lounis, Sebastien D. Milliron, Delia J. TI Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals SO NATURE COMMUNICATIONS LA English DT Article ID DOPED SEMICONDUCTOR NANOCRYSTALS; OPTICAL CHARACTERIZATION; ABSORPTION-SPECTROSCOPY; RESONANCE; CHEMISTRY; NANOSTRUCTURES; NANOPARTICLES; BAND AB Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sample heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm(-1) in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres. C1 [Johns, Robert W.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Johns, Robert W.; Runnerstrom, Evan L.; Agrawal, Ankit; Lounis, Sebastien D.; Milliron, Delia J.] Univ Texas Austin, McKetta Dept Chem Engn, 200 East Dean Keeton St, Austin, TX 78712 USA. [Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Runnerstrom, Evan L.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lounis, Sebastien D.] Univ Calif Berkeley, Grad Program Appl Sci & Technol, Berkeley, CA 94720 USA. RP Milliron, DJ (reprint author), Univ Texas Austin, McKetta Dept Chem Engn, 200 East Dean Keeton St, Austin, TX 78712 USA. EM milliron@che.utexas.edu RI Milliron, Delia/D-6002-2012; OI Agrawal, Ankit/0000-0001-7311-7873 FU ALS and Molecular Foundry at LBNL; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DOE) [DE-AC02-05CH11231]; ALS Doctoral Fellowship in Residence; DOE SBIR grant; DOE Early Career grant; Welch Foundation [F-1848] FX We gratefully acknowledge the efforts of M. Raschke in developing the SINS instrument and for critical review of the manuscript, and the support of the staff of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL). R. Buonsanti (LBNL) is thanked for synthesizing AZO nanocrystals, T. Kuykendall (LBNL) for performing gold deposition on substrates with fiducial markers and K. Bustillo for performing EDS measurements. The ALS and Molecular Foundry at LBNL supported this work as user facilities funded by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DOE) under contract DE-AC02-05CH11231. R.W.J. was supported in part by an ALS Doctoral Fellowship in Residence, A. A. by a DOE SBIR grant, and R.W.J., E.L.R. and S.D.L. by a DOE Early Career grant to D.J.M. Additional support was provided by the Welch Foundation (F-1848). NR 33 TC 3 Z9 3 U1 28 U2 54 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11583 DI 10.1038/ncomms11583 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL9DC UT WOS:000375940700001 PM 27174681 ER PT J AU Nie, W Blancon, JC Neukirch, AJ Appavoo, K Tsai, H Chhowalla, M Alam, MA Sfeir, MY Katan, C Even, J Tretiak, S Crochet, JJ Gupta, G Mohite, AD AF Nie, Wanyi Blancon, Jean-Christophe Neukirch, Amanda J. Appavoo, Kannatassen Tsai, Hsinhan Chhowalla, Manish Alam, Muhammad A. Sfeir, Matthew Y. Katan, Claudine Even, Jacky Tretiak, Sergei Crochet, Jared J. Gupta, Gautam Mohite, Aditya D. TI Light-activated photocurrent degradation and self-healing in perovskite solar cells SO NATURE COMMUNICATIONS LA English DT Article ID HALIDE PEROVSKITES; IMPROVED STABILITY; CH3NH3PBI3; EFFICIENCY; TRANSPORT; CONTACTS; LAYERS; PHOTOVOLTAICS; HYSTERESIS; POLARONS AB Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0 degrees C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies. C1 [Nie, Wanyi; Tsai, Hsinhan; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. [Blancon, Jean-Christophe; Crochet, Jared J.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Neukirch, Amanda J.; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Appavoo, Kannatassen; Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Chhowalla, Manish] Rutgers State Univ, Dept Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA. [Alam, Muhammad A.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Katan, Claudine] Univ Rennes 1, CNRS, ISCR UMR 6226, Inst Sci Chim Rennes, F-35042 Rennes, France. [Even, Jacky] INSA Rennes, CNRS, FOTON UMR 6082, Fonct Opt Technol Informat, F-35708 Rennes, France. RP Mohite, AD (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM amohite@lanl.gov RI Tretiak, Sergei/B-5556-2009; KATAN, Claudine/I-9446-2012; even, jacky/C-6212-2008; OI Tretiak, Sergei/0000-0001-5547-3647; KATAN, Claudine/0000-0002-2017-5823; even, jacky/0000-0002-4607-3390; Blancon, Jean-Christophe/0000-0002-3833-5792; Crochet, Jared/0000-0002-9570-2173 FU DoE Office of Basic Energy Sciences [08SPCE973]; LANL LDRD program; US Department of Energy National Nuclear Security Administration [DE-AC52-06NA25396]; Bay Area Photovoltaic Consortium (BAPVC); Cellule Energie du CNRS (SOLHYB-TRANS Project); University of Rennes 1 (Action Incitative, Defis Scientifique Emergents); Fondation d'entreprises banque Populaire de l'Ouest under Grant PEROPHOT; US DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX The work at Los Alamos National Laboratory (LANL) was supported by DoE Office of Basic Energy Sciences Work Proposal 08SPCE973 (W.N., G.G. and A.D.M.) and by the LANL LDRD program (A.D.M., G.G., A.J.N., and S.T.). This work was done in part at the Center for Integrated Nanotechnologies, an Office of Science User Facility. We also acknowledge that the LANL Institutional Computing (IC) Program provided computational resources. The DFT calculations performed used resources provided by the LANL Institutional Computing Program, which is supported by the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC52-06NA25396. The work at Purdue University was supported by a Bay Area Photovoltaic Consortium (BAPVC). The work in France was supported by Cellule Energie du CNRS (SOLHYB-TRANS Project) and the University of Rennes 1 (Action Incitative, Defis Scientifique Emergents 2015). J.E.'s work is also supported by the Fondation d'entreprises banque Populaire de l'Ouest under Grant PEROPHOT 2015. We acknowledge Kirk Rector (C-PCS, LANL) for his help with Raman measurements, and Laurent Cognet (LP2N, Institut d'Optique Graduate School, Bordeaux, France) for valuable discussions regarding photoluminescence data. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 48 TC 41 Z9 41 U1 76 U2 191 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11574 DI 10.1038/ncomms11574 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL9CU UT WOS:000375939800001 PM 27181192 ER PT J AU Zhernenkov, M Bolmatov, D Soloviov, D Zhernenkov, K Toperverg, BP Cunsolo, A Bosak, A Cai, YQ AF Zhernenkov, Mikhail Bolmatov, Dima Soloviov, Dmitry Zhernenkov, Kirill Toperverg, Boris P. Cunsolo, Alessandro Bosak, Alexey Cai, Yong Q. TI Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations SO NATURE COMMUNICATIONS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-SCATTERING; SHORT-RANGE ORDER; PHOSPHOLIPID-BILAYERS; COLLECTIVE DYNAMICS; NEUTRON-SCATTERING; MODEL PROTOCELL; LIQUID WATER; MEMBRANES; DIFFUSION AB The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. C1 [Zhernenkov, Mikhail; Bolmatov, Dima; Cunsolo, Alessandro; Cai, Yong Q.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Soloviov, Dmitry] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Russia. [Soloviov, Dmitry] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia. [Zhernenkov, Kirill] CEA Grenoble, Inst Nanosci & Cryogenie, F-38054 Grenoble, France. [Toperverg, Boris P.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Toperverg, Boris P.] Inst Laue Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble, France. [Bosak, Alexey] European Synchrotron Radiat Facil, F-38000 Grenoble, France. RP Zhernenkov, M (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM zherne@bnl.gov RI Soloviov, Dmytro/E-9485-2014; OI Soloviov, Dmytro/0000-0001-7945-2218; Zhernenkov, Mikhail/0000-0003-3604-0672; Toperverg, Boris/0000-0001-5166-7997 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704]; Russian Foundation for Basic Research [13-04-91320, 13-02-01460A]; MIPT 5Top100 program of the Ministry of Education and Science of the Russian Federation; French ANR-MAGFIN project FX The work at the National Synchrotron Light Source-II, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. These experiments were performed on the ID28 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to the supporting staff at ESRF for providing assistance in using beamline ID28. The part of the work was supported via French ANR-MAGFIN project. The work was partially supported by the Russian Foundation for Basic Research (Research projects 13-04-91320 and 13-02-01460A) and by the MIPT 5Top100 program of the Ministry of Education and Science of the Russian Federation. M.Z. thanks Elaine DiMasi for fruitful discussion. NR 59 TC 4 Z9 4 U1 8 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11575 DI 10.1038/ncomms11575 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL4LW UT WOS:000375609200001 PM 27175859 ER PT J AU Hao, YF Wang, L Liu, YY Chen, H Wang, XH Tan, C Nie, S Suk, JW Jiang, TF Liang, TF Xiao, JF Ye, WJ Dean, CR Yakobson, BI McCarty, KF Kim, P Hone, J Colombo, L Ruoff, RS AF Hao, Yufeng Wang, Lei Liu, Yuanyue Chen, Hua Wang, Xiaohan Tan, Cheng Nie, Shu Suk, Ji Won Jiang, Tengfei Liang, Tengfei Xiao, Junfeng Ye, Wenjing Dean, Cory R. Yakobson, Boris I. McCarty, Kevin F. Kim, Philip Hone, James Colombo, Luigi Ruoff, Rodney S. TI Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene SO NATURE NANOTECHNOLOGY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; HIGH-QUALITY; COPPER; CU AB Bernal (AB)-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices(1-3). A scalable approach to synthesize high-quality BLG is therefore critical, which requires minimal crystalline defects in both graphene layers(4,5) and maximal area of Bernal stacking, which is necessary for bandgap tunability(6). Here we demonstrate that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu. Besides the traditional 'surface-limited' growth mechanism for SLG (1st layer), we discovered new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer as the diffusion of carbon atoms through the Cu bulk after complete dehydrogenation of hydrocarbon molecules on the Cu surface, which does not occur in the absence of oxygen. Moreover, we found that the efficient diffusion of the carbon atoms present at the interface between Cu and the 1st graphene layer further facilitates growth of large domains of the 2nd layer. The CVD BLG has superior electrical quality, with a device on/off ratio greater than 10(4), and a tunable bandgap up to similar to 100 meV at a displacement field of 0.9 V nm(-1). C1 [Hao, Yufeng; Wang, Lei; Tan, Cheng; Xiao, Junfeng; Hone, James] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Liu, Yuanyue; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Liu, Yuanyue] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Chen, Hua] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Wang, Xiaohan; Ruoff, Rodney S.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Wang, Xiaohan; Ruoff, Rodney S.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Nie, Shu; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Suk, Ji Won] Sungkyunkwan Univ, Sch Mech Engn, Suwon 440746, South Korea. [Jiang, Tengfei] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA. [Liang, Tengfei; Ye, Wenjing] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon 999077, Hong Kong, Peoples R China. [Dean, Cory R.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Kim, Philip] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Colombo, Luigi] Texas Instruments Inc, Dallas, TX 75243 USA. [Ruoff, Rodney S.] Ulsan Natl Inst Sci & Technol, Inst Basic Sci, Ctr Multidimens Carbon Mat, Ulsan 689798, South Korea. RP Hone, J (reprint author), Columbia Univ, Dept Mech Engn, New York, NY 10027 USA.; Ruoff, RS (reprint author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA.; Ruoff, RS (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.; Colombo, L (reprint author), Texas Instruments Inc, Dallas, TX 75243 USA.; Ruoff, RS (reprint author), Ulsan Natl Inst Sci & Technol, Inst Basic Sci, Ctr Multidimens Carbon Mat, Ulsan 689798, South Korea. EM jh2228@columbia.edu; colombo@ti.com; ruofflab@gmail.com RI Xiao, Junfeng/B-5839-2008; OI Xiao, Junfeng/0000-0002-8057-7429; Wang, Lei/0000-0002-1919-9107; Liu, Yuanyue/0000-0002-5880-8649 FU Office of Naval Research (ONR) [N000141310662]; Nanoelectronics Research Initiative (NRI) through the Institute for Nanoelectronics Discovery and Exploration (INDEX); NRI through the South West Academy of Nanoelectronics (SWAN); Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, US Department of Energy (DOE) [DE-AC04-94AL85000]; ONR; NSF's Chemical, Bioengineering, Environmental, and Transport Systems Division; DOE [DE-AC36-08GO28308, DE-AC02-05CH11231]; Hong Kong University of Science and Technology [RPC11EG39]; Air Force Office of Scientific Research [FA9550-13-1-0211]; convergence technology development program for bionic arm [2014M3C1B2048175]; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2014R1A1A1004818]; NSF [DMR-1122603]; National Defense Science and Engineering Graduate (NDSEG) Fellowship [FA9550-11-C-0028]; [ONR-N00014-14-1-0330]; [IBS-R019-D1] FX We thank J. B. Goodenough, Z. Zhang, N. C. Bartelt, F. Wang, D. Su, E. Stach, G. A. Lopez, E. J. Mittemeijer, L. Ju, and J. Yin for valuable discussions and/or technical assistance. We thank K. Watanabe and T. Taniguchi for providing h-BN crystals. Work at Columbia University was supported by Office of Naval Research (ONR) -N000141310662 and the Nanoelectronics Research Initiative (NRI) through the Institute for Nanoelectronics Discovery and Exploration (INDEX). Work at Austin was supported by the NRI through the South West Academy of Nanoelectronics (SWAN). Work at Sandia was supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, US Department of Energy (DOE) under Contract No. DE-AC04-94AL85000. Work at Rice University was supported by the ONR and NSF's Chemical, Bioengineering, Environmental, and Transport Systems Division. Work at NREL was supported by DOE under Contract No. DE-AC36-08GO28308, and used the NREL Peregrine Supercomputer and NERSC clusters (supported by DOE DE-AC02-05CH11231). Work at Hong Kong was supported by Hong Kong University of Science and Technology under award RPC11EG39. Work at Harvard University was supported by the Air Force Office of Scientific Research under contract no. FA9550-13-1-0211. Work at Sungkyunkwan University was supported by the convergence technology development program for bionic arm (no. 2014M3C1B2048175) and the Basic Science Research Program (NRF-2014R1A1A1004818) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning. H. C. was supported by NSF DMR-1122603 and by ONR-N00014-14-1-0330. C. T. was supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship - FA9550-11-C-0028. R.S.R. was supported by IBS-R019-D1. NR 30 TC 26 Z9 26 U1 93 U2 182 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD MAY PY 2016 VL 11 IS 5 BP 426 EP 431 DI 10.1038/nnano.2015.322 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DM2FV UT WOS:000376163300009 PM 26828845 ER PT J AU Gekelman, W DeHaas, T Van Compernolle, B Daughton, W Pribyl, P Vincena, S Hong, D AF Gekelman, W. DeHaas, T. Van Compernolle, B. Daughton, W. Pribyl, P. Vincena, S. Hong, D. TI Experimental study of the dynamics of a thin current sheet SO PHYSICA SCRIPTA LA English DT Article DE flux ropes; 3D reconnection; 3D current systems; tearing mode; basic plasma experiment ID FIELD-LINE RECONNECTION; 3-DIMENSIONAL MAGNETIC RECONNECTION; COLLISIONLESS PLASMAS; INSTABILITIES; RESISTIVITY; CONFIGURATION; LAYERS AB Many plasmas in natural settings or in laboratory experiments carry currents. In magnetized plasmas the currents can be narrow field-aligned filaments as small as the electron inertial length (c/w(pe)) in the transverse dimension or fill the entire plasma column. Currents can take the form of sheets, again with the transverse dimension the narrow one. Are laminar sheets of electric current in a magnetized plasma stable? This became an important issue in the 1960s when current-carrying plasmas became key in the quest for thermonuclear fusion. The subject is still under study today. The conditions necessary for the onset for tearing are known, the key issue is that of the final state. Is there a final state? One possibility is a collection of stable tubes of current. On the other hand, is the interaction between the current filaments which are the byproduct endless, or does it go on to become chaotic? The subject of three-dimensional current systems is intriguing, rich in a variety of phenomena on multiple scale sizes and frequencies, and relevant to fusion studies, solar physics, space plasmas and astrophysical phenomena. In this study a long (delta z = 11m) and narrow (delta x = 1 cm, delta y = 20 cm) current sheet is generated in a background magnetoplasma capable of supporting Alfven waves. The current is observed to rapidly tear into a series of magnetic islands when viewed in a cross-sectional plane, but they are in essence three-dimensional flux ropes. At the onset of the current, magnetic field line reconnection is observed between the flux ropes. The sheet on the whole is kink-unstable, and after kinking exhibits large-scale, low-frequency (f << f(ci)) rotation about the background field with an amplitude that grows with distance from the source of the current. Three-dimensional data of the magnetic and electric fields is acquired throughout the duration of the experiment and the parallel resistivity is derived from it. The parallel resistivity, for the most part, is not largest in the reconnection regions, but peaks in the neighborhood of large current gradients. At early times a quasi-separatrix layer (QSL) is observed where the current sheet tears, but later on a QSL of larger value, not obviously associated with reconnection, is measured at the edge of the current sheet. This QSL enhancement is connected with the rapidly spatially diverging magnetic fields in the moving sheet (ropes). C1 [Gekelman, W.; DeHaas, T.; Van Compernolle, B.; Pribyl, P.; Vincena, S.; Hong, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Daughton, W.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM USA. RP Gekelman, W (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. EM gekelman@physics.ucla.edu RI Daughton, William/L-9661-2013; OI Van Compernolle, Bart/0000-0002-5853-6233 FU DOE [DOE-DE-FC02-07ER54918:011]; NSF [NSF-PHY-0531621]; University of California Office of the President from the UCOP program [12-LR-237124] FX This research was done at the Basic Plasma Science Facility, which is supported by DOE under grant no. DOE-DE-FC02-07ER54918:011 and by NSF under grant NSF-PHY-0531621. This research was sponsored by the University of California Office of the President under Grant no. 12-LR-237124 from the UCOP program. The authors would like to acknowledge the valuable technical assistance of Z Lucky and M Drandell, as well as the contributions of J Bonde and M Martin. NR 72 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2016 VL 91 IS 5 AR 054002 DI 10.1088/0031-8949/91/5/054002 PG 21 WC Physics, Multidisciplinary SC Physics GA DL4IV UT WOS:000375598700012 ER PT J AU Meng, J Zhao, PW AF Meng, Jie Zhao, Pengwei TI Nuclear chiral and magnetic rotation in covariant density functional theory SO PHYSICA SCRIPTA LA English DT Article DE novel rotation; tilted axis cranking; covariant density functional theory; chiral doublets ID TILTED-AXIS CRANKING; HARTREE-BOGOLIUBOV THEORY; SELF-CONSISTENT CALCULATION; GROUND-STATE PROPERTIES; POINT COUPLING MODEL; MEAN-FIELD THEORY; ANTIMAGNETIC ROTATION; SHEARS MECHANISM; FINITE NUCLEI; RELATIVISTIC DESCRIPTION AB Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in Ce-133 and Rh-103 are discussed. C1 [Meng, Jie] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Zhao, Pengwei] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Meng, J (reprint author), Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM mengj@pku.edu.cn; pwzhao@pku.edu.cn RI Zhao, Pengwei/F-9107-2010; Meng, Jie/B-8548-2009 OI Zhao, Pengwei/0000-0001-8243-2381; Meng, Jie/0000-0002-0977-5318 FU Major State 973 Program of China [2013CB834400]; National Natural Science Foundation of China [11175002, 11335002, 11461141002]; US Department of Energy (DOE), Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX We would like to express our gratitude to all the friends and collaborators, who contributed to the investigations presented here, in particular to Q B Chen, S Frauendorf, J Li, H Z Liang, H Madokoro, M Matsuzaki, J Peng, P Ring, S Yamaji, L F Yu, S Q Zhang, Z H Zhang, and S G Zhou. We thank R V F Janssens for the careful reading of the manuscript. This work is supported by the Major State 973 Program of China (Grant No. 2013CB834400), the National Natural Science Foundation of China (Grants No. 11175002, No. 11335002, No. 11461141002), and by US Department of Energy (DOE), Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357. NR 149 TC 3 Z9 3 U1 5 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2016 VL 91 IS 5 AR 053008 DI 10.1088/0031-8949/91/5/053008 PG 21 WC Physics, Multidisciplinary SC Physics GA DL4IV UT WOS:000375598700008 ER PT J AU Navratil, P Quaglioni, S Hupin, G Romero-Redondo, C Calci, A AF Navratil, Petr Quaglioni, Sofia Hupin, Guillaume Romero-Redondo, Carolina Calci, Angelo TI Unified ab initio approaches to nuclear structure and reactions SO PHYSICA SCRIPTA LA English DT Article DE ab initio methods; many-body nuclear reaction theory; nuclear reactions involving few-nucleon systems; three-nucleon forces; radiative capture ID MONTE-CARLO CALCULATIONS; PHASE-SHIFT ANALYSIS; CORE-SHELL-MODEL; SCATTERING CROSS-SECTIONS; RESONATING-GROUP EQUATION; ALPHA-ELASTIC-SCATTERING; EFFECTIVE-FIELD THEORY; COULOMB DISSOCIATION; CHIRAL LAGRANGIANS; OSCILLATOR BRACKETS AB The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three-and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches-built upon the no-core shell model-that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the He-6 halo nucleus, of five-and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of Be-9. Further, we discuss applications to the Be-7 (p, gamma)B-8 radiative capture. Finally, we highlight our efforts to describe transfer reactions including the H-3(d, n)He-4 fusion. C1 [Navratil, Petr; Calci, Angelo] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Quaglioni, Sofia; Romero-Redondo, Carolina] Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. [Hupin, Guillaume] Univ Paris 11, Inst Phys Nucl, IN2P3, CNRS, F-91406 Orsay, France. [Hupin, Guillaume] CEA, DAM, DIF, F-91297 Arpajon, France. RP Navratil, P (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. EM navratil@triumf.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC) [401945-2011]; National Research Council Canada; LLNL [DE-AC52-07NA27344]; INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; LOEWE-CSC Frankfurt; computing center of the TU Darmstadt (lichtenberg) FX This work was supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant No. 401945-2011. TRIUMF receives funding via a contribution through the National Research Council Canada. Prepared in part by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the US. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal Number SCW1158. Computing support for this work came from the LLNL institutional Computing Grand Challenge Program and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. Further, computing support for this work came in part from the National Energy Research Scientific Computing Center (edison) supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, from the LOEWE-CSC Frankfurt, and from the computing center of the TU Darmstadt (lichtenberg). NR 193 TC 15 Z9 15 U1 6 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2016 VL 91 IS 5 AR 053002 DI 10.1088/0031-8949/91/5/053002 PG 38 WC Physics, Multidisciplinary SC Physics GA DL4IV UT WOS:000375598700002 ER PT J AU Papenbrock, T Weidenmuller, HA AF Papenbrock, T. Weidenmueller, H. A. TI Effective field theory for deformed atomic nuclei SO PHYSICA SCRIPTA LA English DT Article DE effective field theory; deformed nuclei; collective excitations ID PHENOMENOLOGICAL LAGRANGIANS; SYMMETRY-BREAKING; LIGHT-NUCLEI; SYSTEMS; FORCES; MODEL; ANTIFERROMAGNETS; FERROMAGNETS; EXCITATIONS; SCATTERING AB We present an effective field theory EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field. C1 [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Weidenmueller, H. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. RP Papenbrock, T (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; Papenbrock, T (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM tpapenbr@utk.edu; haw@mpi-hd.mpg.de OI Papenbrock, Thomas/0000-0001-8733-2849 FU Simons Center for Geometry and Physics at Stony Brook University; US Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-96ER40963, DEAC05-00OR22725] FX One of the authors (HAW) acknowledges support by the Simons Center for Geometry and Physics at Stony Brook University where part of this paper was written. TP's work is supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, under award No. DE-FG02-96ER40963 (University of Tennessee), and under contract No. DEAC05-00OR22725 (Oak Ridge National Laboratory). NR 63 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2016 VL 91 IS 5 AR 053004 DI 10.1088/0031-8949/91/5/053004 PG 12 WC Physics, Multidisciplinary SC Physics GA DL4IV UT WOS:000375598700004 ER PT J AU Sears, DWG Sears, H Ostrowski, DR Bryson, KL Dotson, J Syal, MB Swift, DC AF Sears, Derek W. G. Sears, Hazel Ostrowski, Daniel R. Bryson, Kathryne L. Dotson, Jessie Syal, Megan Bruck Swift, Damian C. TI A meteorite perspective on asteroid hazard mitigation SO PLANETARY AND SPACE SCIENCE LA English DT Review DE Meteorites; Asteroid impact hazard; Fireball; Craters; Near earth asteroids; Impact ID NEAR-EARTH OBJECTS; PHOTOGRAPHIC OBSERVATIONS; INNISFREE METEORITE; ORDINARY CHONDRITES; INFRASOUND RECORDS; LARGE METEOROIDS; VIDEO RECORDS; SOLAR-SYSTEM; FALL; ORBIT AB Meteorites, and their fall to Earth, have the potential to inform studies of the asteroid impact hazard and of impact mitigation. We describe six ways in which they have relevance to understanding the behavior of meteoroids in the atmosphere and thus impact mitigation. (1) Hundreds of meteorite falls have been described in the literature. While eyewitness observations are subjective, at their core there is unique information on which to build and test numerical models of an asteroid's behavior as it passes through the atmosphere. (2) For 19 recovered meteorites, film or video recordings have been obtained and for most of these light curves have been derived which provide quantitative information on meteorite fall and fragmentation. (3) There are 188 known meteorite craters on Earth and in 10 cases fragments of the meteorite responsible have been recovered. In these cases numerical impact models can utilize the known properties of the projectile and the dimensions of the crater. (4) Studies of the meteorites provide information on their preatmospheric size, internal structure and physical properties (tensile strength, density, porosity, thermal conductivity etc.) which are essential for understanding the behavior of objects coming through the atmosphere. (5) The flow patterns on the fusion crust of the meteorite, and the shape of the recovered meteorite, provides information on orientation and physical behavior during flight. Petrographic changes under the fusion crust provide information on thermal history during the latter stages of flight. (6) The structure and composition of the so-called "gas-rich regolith breccias" provide information on the outermost layer of the parent asteroid from which the meteorites came. This information is critical to certain mitigation strategies. We conclude by describing initiatives for hazardous asteroid impact mitigation at Ames Research Center and Lawrence Livermore National Laboratory that will exploit and disseminate the information available from meteorites. This includes characterization of the meteorites likely to be analogous of incoming asteroids and the development of a website to advise the world-wide community of information available. Published by Elsevier Ltd. C1 [Sears, Derek W. G.; Sears, Hazel; Ostrowski, Daniel R.; Bryson, Kathryne L.; Dotson, Jessie] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Sears, Derek W. G.; Sears, Hazel; Ostrowski, Daniel R.; Bryson, Kathryne L.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Mountain View, CA 94035 USA. [Syal, Megan Bruck; Swift, Damian C.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Sears, DWG (reprint author), NASA, Ames Res Ctr, Mountain View, CA 94035 USA. EM Derek.Sears@nasa.gov FU NASAs NEO program FX We are grateful to Jim Arnold for leading the asteroid hazard assessment effort at Ames Research Center, his team for stimulating discussions, and NASAs NEO program (Lindley Johnson, program executive) for funding the effort. We are grateful to Guy Consolmagno and an anonymous reviewer for very thorough and constructive reviews. NR 121 TC 0 Z9 0 U1 7 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2016 VL 124 BP 105 EP 117 DI 10.1016/j.pss.2016.01.016 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DJ7CN UT WOS:000374369600009 ER PT J AU Livingston, GK Khvostunov, IK Gregoire, E Barquinero, JF Shi, L Tashiro, S AF Livingston, Gordon K. Khvostunov, Igor K. Gregoire, Eric Barquinero, Joan-Francesc Shi, Lin Tashiro, Satoshi TI Cytogenetic effects of radioiodine therapy: a 20-year follow-up study SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article DE Radioiodine therapy; Micronucleus assay; Cytogenetic damage in lymphocytes; Biological dosimetry ID PERIPHERAL-BLOOD LYMPHOCYTES; THYROID-CANCER PATIENTS; BIOLOGICAL DOSIMETRY; MICRONUCLEUS ASSAY; CHROMOSOME-ABERRATIONS; IONIZING-RADIATION; I-131 THERAPY; FREQUENCY; CARCINOMA; EXPOSURE AB The purpose of this study was to compare cytogenetic data in a patient before and after treatment with radioiodine to evaluate the assays in the context of biological dosimetry. We studied a 34-year-old male patient who underwent a total thyroidectomy followed by ablation therapy with I-131 (19.28 GBq) for a papillary thyroid carcinoma. The patient provided blood samples before treatment and then serial samples at monthly intervals during the first year period and quarterly intervals for 5 years and finally 20 years after treatment. A micronucleus assay, dicentric assay, FISH method and G-banding were used to detect and measure DNA damage in circulating peripheral blood lymphocytes of the patient. The results showed that radiation-induced cytogenetic effects persisted for many years after treatment as shown by elevated micronuclei and chromosome aberrations as a result of exposure to I-131. At 5 years after treatment, the micronucleus count was tenfold higher than the pre-exposure frequency. Shortly after the treatment, micronucleus counts produced a dose estimate of 0.47 +/- A 0.09 Gy. The dose to the patient evaluated retrospectively using FISH-measured translocations was 0.70 +/- A 0.16 Gy. Overall, our results show that the micronucleus assay is a retrospective biomarker of low-dose radiation exposure. However, this method is not able to determine local dose to the target tissue which in this case was any residual thyroid cells plus metastases of thyroidal origin. C1 [Livingston, Gordon K.] Oak Ridge Inst Sci & Educ, Radiat Emergency Assistance Ctr, Training Site, Oak Ridge, TN 37831 USA. [Khvostunov, Igor K.] Med Radiol Res Ctr, Koroliova Str 4, Obninsk 249036, Kaluga Region, Russia. [Gregoire, Eric] PRP HOM SRBE LDB, Inst Radioprotect & Surete Nucl, BP 17, F-92262 Fontenay Aux Roses, France. [Barquinero, Joan-Francesc] Univ Autonoma Barcelona, Fac Biociencies, Cerdanyola Del Valles 08193, Spain. [Shi, Lin; Tashiro, Satoshi] Hiroshima Univ, Res Inst Radiat Biol & Med, Dept Cellular Biol, Minami Ku, 1-2-3 Kasumi, Hiroshima 7348553, Japan. RP Khvostunov, IK (reprint author), Med Radiol Res Ctr, Koroliova Str 4, Obninsk 249036, Kaluga Region, Russia. EM igor.khvostunov@gmail.com OI Barquinero, Joan Francesc/0000-0003-0084-5268 FU International Atomic Energy Agency [IAEA CRP E3.50.08] FX The authors are indebted to Cecile Martin, Sarah Lecas and Kurumi Fujioka for their assistance with the FISH assay and to Alvis Foster and Howard Elson for the X-ray dosimetry. We would also like to thank Dr. Albert L. Wiley, Director of REAC/TS, for his review and comments on the manuscript and for his encouragement throughout the course of this study. This work was partially supported by the International Atomic Energy Agency (IAEA CRP E3.50.08). NR 48 TC 0 Z9 0 U1 2 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X EI 1432-2099 J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD MAY PY 2016 VL 55 IS 2 BP 203 EP 213 DI 10.1007/s00411-016-0647-4 PG 11 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA DK0CW UT WOS:000374581100007 PM 27015828 ER PT J AU Radchenko, V Engle, JW Wilson, JJ Maassen, JR Nortier, MF Birnbaum, ER John, KD Fassbender, ME AF Radchenko, Valery Engle, Jonathan W. Wilson, Justin J. Maassen, Joel R. Nortier, Meiring F. Birnbaum, Eva R. John, Kevin D. Fassbender, Michael E. TI Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal SO RADIOCHIMICA ACTA LA English DT Article DE Protactinium; uranium-230; thorium; targeted alpha therapy; ion exchange; extraction chromatography ID TARGETED ALPHA THERAPY; EXTRACTION CHROMATOGRAPHY; EXCITATION FUNCTIONS; MASS-SPECTROMETRY; ION-EXCHANGE; TH-232; PROTACTINIUM; ACTINIUM; FISSION; AC-225 AB Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes alpha-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of.. emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide 230 Pa is formed via the Th-232(p, 3n) nuclear reaction and partially decays to U-230, an alpha emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for Pa-230 and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination. C1 [Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Fassbender, ME (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mifa@lanl.gov OI John, Kevin/0000-0002-6181-9330; Wilson, Justin/0000-0002-4086-7982; Nortier, Francois/0000-0002-7549-8101 FU United States Department of Energy, Office of Science, Office of Nuclear Physics, via Isotope Development and Production for Research and Applications subprogram; LANL-LDRD program through a Seaborg Institute Post-doctoral Fellowship FX This work was supported by the United States Department of Energy, Office of Science, Office of Nuclear Physics, via funding from the Isotope Development and Production for Research and Applications subprogram. We also acknowledge funding support via the LANL-LDRD program through a Seaborg Institute Post-doctoral Fellowship. We are also very thankful for the technical assistance provided by Los Alamos National Laboratory's C-IIAC, MST-6, WNR and LANSCE-AOT groups. NR 42 TC 2 Z9 2 U1 4 U2 8 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD MAY PY 2016 VL 104 IS 5 BP 291 EP 304 DI 10.1515/ract-2015-2486 PG 14 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DL6CY UT WOS:000375727100001 ER PT J AU Averick, A Dolai, S Punia, A Punia, K Guariglia, SR L'Amoreaux, W Hong, KL Raja, K AF Averick, Amram Dolai, Sukanta Punia, Ashish Punia, Kamia Guariglia, Sara R. L'Amoreaux, William Hong, Kun-lun Raja, Krishnaswami TI Green anchors: Chelating properties of ATRP-click curcumin-polymer conjugates SO REACTIVE & FUNCTIONAL POLYMERS LA English DT Article DE Curcumin; Curcumin-polymer conjugates; Metal complexes; Polymer; ATRP; Metal poisoning ID DIETARY CURCUMIN; AMYLOID-BETA; RATS; DERIVATIVES; MERCURY; DAMAGE; AGENT; MODEL AB The development of environmentally friendly and biologically benign effective systems to chelate and remove toxic heavy metal ions is of utmost importance. Curcumin, the active ingredient in the spice Turmeric is a known chelator of transition metals. The metal chelation ability of curcumin is severely limited by its hydrophobicity. The efficient synthesis of water soluble curcumin and sugar brush polymer conjugate via atom-transfer radical polymerization (ATRP) and click chemistry is reported here. The polymer conjugate selectively binds and precipitates a range of highly toxic metals that include cadmium, lead, and copper, under physiologically relevant conditions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Averick, Amram; Dolai, Sukanta; Punia, Ashish; Punia, Kamia; Raja, Krishnaswami] CUNY Coll Staten Isl, Dept Chem, 2800 Victory Blvd, Staten Isl, NY 10314 USA. [Guariglia, Sara R.; L'Amoreaux, William] CUNY Coll Staten Isl, Dept Biol, 2800 Victory Blvd, Staten Isl, NY 10314 USA. [Hong, Kun-lun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. RP Raja, K (reprint author), CUNY Coll Staten Isl, Dept Chem, 2800 Victory Blvd, Staten Isl, NY 10314 USA. EM krishnaswami.raja@csi.cuny.edu RI Hong, Kunlun/E-9787-2015; OI Hong, Kunlun/0000-0002-2852-5111; L'Amoreaux, William/0000-0002-1254-9370 FU College of Staten Island at the City University of New York; Oakridge National Lab FX The authors would like to thank College of Staten Island at the City University of New York and the Oakridge National Lab for support. We would like to acknowledge Dr. Alan Lyons and Dr. Probal Banerjee for their advice. NR 20 TC 1 Z9 1 U1 8 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-5148 EI 1873-166X J9 REACT FUNCT POLYM JI React. Funct. Polym. PD MAY PY 2016 VL 102 BP 47 EP 52 DI 10.1016/j.reactfunctpolym.2016.03.009 PG 6 WC Chemistry, Applied; Engineering, Chemical; Polymer Science SC Chemistry; Engineering; Polymer Science GA DL6GI UT WOS:000375737300007 ER PT J AU Ozmen, O Nutaro, JJ Pullum, LL Ramanathan, A AF Ozmen, Ozgur Nutaro, James J. Pullum, Laura L. Ramanathan, Arvind TI Analyzing the impact of modeling choices and assumptions in compartmental epidemiological models SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE Susceptible-infected-recovered (SIR); epidemiology; agent-based; event-based; equation-based models ID UNITED-STATES; INFLUENZA; TRANSMISSION; DYNAMICS; HEALTH AB Computational disease spread models can be broadly classified into differential equation-based models (EBMs) and agent-based models (ABMs). We examine these models in the context of illuminating their hidden assumptions and the impact these may have on the model outcomes. Drawing relevant conclusions about the usability of a model requires reliable information regarding its modeling strategy and its associated assumptions. Hence, we aim to provide clear guidelines on the development of these models and delineate important modeling choices that cause the differences between the model outputs. In this study, we present a quantitative analysis of how the choice of model trajectories and temporal resolution (continuous versus discrete-event models), coupling between agents (instantaneous versus delayed interactions), and progress of patients from one stage of the disease to the next affect the overall outcomes of modeling disease spread. Our study reveals that the magnitude and velocity of the simulated epidemic depends critically on the selection of modeling principles, various assumptions of disease process, and the choice of time advance. In order to inform public health officials and improve reproducibility, these initial decisions of modelers should be carefully considered and recorded when building and documenting an ABM. C1 [Ozmen, Ozgur; Ramanathan, Arvind] Oak Ridge Natl Lab, Hlth Data Sci Inst, Oak Ridge, TN USA. [Nutaro, James J.; Pullum, Laura L.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Pullum, LL (reprint author), POB 2008, Oak Ridge, TN 37831 USA. EM pullumll@ornl.gov OI Nutaro, James/0000-0001-7360-2836 FU Defense Threat Reduction Agency (DTRA); U.S. Department of Energy (DOE) [2216-V387-11]; DOE [DE-AC05-00OR22725] FX The authors would like to thank the Defense Threat Reduction Agency (DTRA) for the support funded under the interagency agreement with the U.S. Department of Energy (DOE) (DOE proposal number 2216-V387-11) as authorized by DOE contract number DE-AC05-00OR22725. The contents of this publication are the responsibility of the authors and do not necessarily represent the official views of DTRA. NR 30 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD MAY PY 2016 VL 92 IS 5 SI SI BP 459 EP 471 DI 10.1177/0037549716640877 PG 13 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA DL5YJ UT WOS:000375712700007 ER PT J AU Hubbard, JA Zigmond, JA AF Hubbard, Joshua A. Zigmond, Joseph A. TI Aerosol detection efficiency in inductively coupled plasma mass spectrometry SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Aerosol; Inductively coupled plasma mass spectroscopy; Particle size classification; Refractory; Volatile; Heat transfer; Mass transfer; Evaporation; Boiling; Nanoparticles ID FEMTOSECOND LASER-ABLATION; DIFFERENTIAL MOBILITY ANALYSIS; SOLUTE-PARTICLE VAPORIZATION; ATOMIC EMISSION-SPECTROMETRY; ICP-MS MEASUREMENTS; DER-WAALS RADII; THERMAL PLASMAS; ELEMENTAL FRACTIONATION; COMPUTERIZED SIMULATION; GAS-FLOW AB An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10(-5) to 10(-11). Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter. (C)2016 Elsevier B.V. All rights reserved. C1 [Hubbard, Joshua A.; Zigmond, Joseph A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Hubbard, JA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jahubba@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 110 TC 1 Z9 1 U1 12 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD MAY 1 PY 2016 VL 119 BP 50 EP 64 DI 10.1016/j.sab.2016.02.015 PG 15 WC Spectroscopy SC Spectroscopy GA DL7GQ UT WOS:000375809400007 ER PT J AU Kesgin, I Kasa, M Doose, C Ivanyushenkov, Y Zhang, YF Knoll, A Brownsey, P Hazelton, D Welp, U AF Kesgin, Ibrahim Kasa, Matthew Doose, Charles Ivanyushenkov, Yury Zhang, Yifei Knoll, Alan Brownsey, Paul Hazelton, Drew Welp, Ulrich TI Feasibility and electromagnetic analysis of a REBCO superconducting undulator SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE undulator; REBCO; 2G-HTS; magnets; racetrack coil; thin film ID TAPE AB Recent advances in second-generation (2G) high temperature superconducting (HTS) coated conductors (CCs) have made them very attractive for new applications such as undulators. In this paper, we have, for the first time, experimentally evaluated a design to validate applicability of 2G-HTS tapes for next generation undulator magnetic structures. A two-period undulator magnetic core was fabricated and 2G-HTS CCs were successfully wound onto the undulator core. The performance of the undulator magnetic structure was investigated and the highest engineering current density, J(e), in such configuration reported yet was obtained. A new U-slit tape configuration was used to reduce the number of resistive joints and it was shown that with this new technique affordable levels of resistance values can be achieved for short length undulators. The ferromagnetic core was designed such as to accommodate winding the U-slit tapes. Test results indicated that the winding and the soldering procedures are successful and do not deteriorate the performance of the 2G-HTS tapes. C1 [Kesgin, Ibrahim; Welp, Ulrich] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Kasa, Matthew; Doose, Charles; Ivanyushenkov, Yury] Argonne Natl Lab, Accelerator Syst Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Zhang, Yifei; Knoll, Alan; Brownsey, Paul; Hazelton, Drew] SuperPower Inc, 450 Duane Ave, Schenectady, NY 12304 USA. RP Kesgin, I (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. EM ikesgin@anl.gov RI Kesgin, Ibrahim/A-4178-2012 FU US Department of Energy, Office of Science, Materials Sciences and Engineering Division FX This work was supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division. The authors would like to thank Kurt Boerste and Susan Bettenhausen from Accelerator Systems Division Magnetic Devices group at Advanced Photon Source for technical help. NR 29 TC 2 Z9 2 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2016 VL 29 IS 5 AR 055001 DI 10.1088/0953-2048/29/5/055001 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DL3ZL UT WOS:000375572100013 ER PT J AU Wang, Y Nakatsukasa, K Rademaker, L Berlijn, T Johnston, S AF Wang, Y. Nakatsukasa, K. Rademaker, L. Berlijn, T. Johnston, S. TI Aspects of electron-phonon interactions with strong forward scattering in FeSe Thin Films on SrTiO3 substrates SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE electron-phonon interactions; interface superconductivity; FeSe on SrTiO3; forward scattering; quasiparticle interference; angle-resolved photoemission spectroscopy; Eliashberg theory ID SINGLE-LAYER FESE; HIGH-TEMPERATURE SUPERCONDUCTIVITY; QUASI-PARTICLE INTERFERENCE; NONADIABATIC SUPERCONDUCTIVITY; ELIASHBERG EQUATIONS; IMPURITY SCATTERING; S-WAVE; T-C; ORIGIN; ENERGY AB Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small q) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system. C1 [Wang, Y.; Nakatsukasa, K.; Johnston, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Rademaker, L.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Berlijn, T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Berlijn, T.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Johnston, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM sjohn145@utk.edu FU US Department of Energy [DE-AC05-00OR22725] FX We thank M Berciu, P J Hirschfeld, A Linscheid, and D J Scalapino for useful conversations. L R acknowledges funding from Rubicon (Dutch Science Foundation). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/search/site/DOE%20public%20access%20plan). CPU time was provided in part by resources supported by the University of Tennessee and Oak Ridge National Laboratory Joint Institute for Computational Sciences (http://www.jics.utk.edu). NR 67 TC 7 Z9 7 U1 13 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2016 VL 29 IS 5 AR 054009 DI 10.1088/0953-2048/29/5/054009 PG 14 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DL3ZL UT WOS:000375572100012 ER PT J AU Ahmed, M Sultan, M Yan, E Wahr, J AF Ahmed, Mohamed Sultan, Mohamed Yan, Eugene Wahr, John TI Assessing and Improving Land Surface Model Outputs Over Africa Using GRACE, Field, and Remote Sensing Data SO SURVEYS IN GEOPHYSICS LA English DT Review DE GRACE; GLDAS-Noah; CLM4.5-SP; TWS; Evapotranspiration; Africa ID GLOBAL HYDROLOGICAL MODEL; WATER STORAGE VARIATIONS; ENSEMBLE KALMAN FILTER; SEA-LEVEL RISE; GROUNDWATER DEPLETION; DATA ASSIMILATION; EVAPOTRANSPIRATION ALGORITHM; WELL OBSERVATIONS; EARTH SYSTEM; MIDDLE-EAST AB The Gravity Recovery and Climate Experiment (GRACE), along with other relevant field and remote sensing datasets, was used to assess the performance of two land surface models (LSMs: CLM4.5-SP and GLDAS-Noah) over the African continent and improve the outputs of the CLM4.5-SP model. Spatial and temporal analysis of monthly (January 2003-December 2010) Terrestrial Water Storage (TWS) estimates extracted from GRACE (TWSGRACE), CLM4.5-SP (TWSCLM4.5), and GLDAS-Noah (TWSGLDAS) indicates the following: (1) compared to GRACE, LSMs overestimate TWS in winter months and underestimate them in summer months; (2) the amplitude of annual cycle (AAC) of TWSGRACE is higher than that of TWSLSM (AAC: TWSGRACE > TWSGLDAS > TWSCLM4.5); (3) higher, and statistically significant correlations were observed between TWSGRACE and TWSGLDAS compared to those between TWSGRACE and TWSCLM4.5; (4) differences in forcing precipitation and temperature datasets for GLDAS-Noah and CLM4.5-SP models are unlikely to be the main cause for the observed discrepancies between TWSGRACE and TWSLSM; and (5) the CLM4.5-SP model overestimates evapotranspiration (ET) values in summer months and underestimates them in winter months compared to ET estimates extracted from field-based (FLUXNET-MTE) and satellite-based (MOD16 and GLEAM) ET measurements. A first-order correction was developed and applied to correct the CLM4.5-derived ET, soil moisture, groundwater, and TWS. The corrections improved the correspondence (i.e., higher correlation and comparable AAC) between TWSCLM4.5 and TWSGRACE over various climatic settings. Our findings suggest that similar straightforward correction approaches could potentially be developed and used to assess and improve the performance of a wide range of LSMs. C1 [Ahmed, Mohamed; Sultan, Mohamed] Western Michigan Univ, Dept Geosci, 1903 West Michigan Ave, Kalamazoo, MI 49008 USA. [Ahmed, Mohamed] Suez Canal Univ, Fac Sci, Dept Geol, Ismailia 41522, Egypt. [Yan, Eugene] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wahr, John] Univ Colorado, Dept Phys, 2000 Colorado Ave, Boulder, CO 80309 USA. RP Ahmed, M (reprint author), Western Michigan Univ, Dept Geosci, 1903 West Michigan Ave, Kalamazoo, MI 49008 USA.; Ahmed, M (reprint author), Suez Canal Univ, Fac Sci, Dept Geol, Ismailia 41522, Egypt. EM mohamed.ahmed@wmich.edu; mohamed.sultan@wmich.edu; eyan@anl.gov; wahr@lemond.colorado.edu FU National Aeronautics and Space Administration (NASA) [NNX12AJ94G] FX Funding was provided by the National Aeronautics and Space Administration (NASA) Grant NNX12AJ94G to Western Michigan University. We thank the Editor and the anonymous Reviewers of the Surveys in Geophysics for their instructive comments and suggestions. NR 84 TC 0 Z9 0 U1 11 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD MAY PY 2016 VL 37 IS 3 BP 529 EP 556 DI 10.1007/s10712-016-9360-8 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DK0AB UT WOS:000374573600001 ER PT J AU Pratola, MT Higdon, DM AF Pratola, M. T. Higdon, D. M. TI Bayesian Additive Regression Tree Calibration of Complex High-Dimensional Computer Models SO TECHNOMETRICS LA English DT Article DE Catastrophe model; Climate change; Markov chain Monte Carlo; Nonparametric; Treaty verification; Uncertainty quantification ID PREDICTION AB Complex natural phenomena are increasingly investigated by the use of a complex computer simulator. To leverage the advantages of simulators, observational data need to be incorporated in a probabilistic framework so that uncertainties can be quantified. A popular framework for such experiments is the statistical computer model calibration experiment. A limitation often encountered in current statistical approaches for such experiments is the difficulty in modeling high-dimensional observational datasets and simulator outputs as well as high-dimensional inputs. As the complexity of simulators seems to only grow, this challenge will continue unabated. In this article, we develop a Bayesian statistical calibration approach that is ideally suited for such challenging calibration problems. Our approach leverages recent ideas from Bayesian additive regression Tree models to construct a random basis representation of the simulator outputs and observational data. The approach can flexibly handle high-dimensional datasets, high-dimensional simulator inputs, and calibration parameters while quantifying important sources of uncertainty in the resulting inference. We demonstrate our methodology on a CO2 emissions rate calibration problem, and on a complex simulator of subterranean radionuclide dispersion, which simulates the spatial-temporal diffusion of radionuclides released during nuclear bomb tests at the Nevada Test Site. Supplementary computer code and datasets are available online. C1 [Pratola, M. T.] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA. [Higdon, D. M.] Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. RP Pratola, MT (reprint author), Ohio State Univ, Dept Stat, Columbus, OH 43210 USA.; Higdon, DM (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM mpratola@gmail.com; dhigdon@lanl.gov NR 23 TC 1 Z9 1 U1 3 U2 5 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD MAY PY 2016 VL 58 IS 2 BP 166 EP 179 DI 10.1080/00401706.2015.1049749 PG 14 WC Statistics & Probability SC Mathematics GA DK0BQ UT WOS:000374577800002 ER PT J AU Wolfe, AK Campa, MF Bergmann, RA Stelling, SC Bjornstad, DJ Shumpert, BL AF Wolfe, Amy K. Campa, Maria Fernanda Bergmann, Rachael A. Stelling, Savannah C. Bjornstad, David J. Shumpert, Barry L. TI Synthetic Biology R&D Risks: Social-Institutional Contexts Matter! SO TRENDS IN BIOTECHNOLOGY LA English DT Editorial Material AB Factors that shape actual research practices - 'social and institutional context' - typically are missing from considerations of synthetic biology R&D-related risk and containment. We argue that analyzing context is essential in identifying circumstances that create, amplify, or diminish risk, and in revealing new opportunities for avoiding or managing those risks. C1 [Wolfe, Amy K.; Bergmann, Rachael A.; Bjornstad, David J.; Shumpert, Barry L.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Campa, Maria Fernanda] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Stelling, Savannah C.] Columbia Univ, Grad Sch Publ Hlth, New York, NY USA. [Bjornstad, David J.; Shumpert, Barry L.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Wolfe, AK (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM wolfeak@ornl.gov NR 14 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD MAY PY 2016 VL 34 IS 5 BP 353 EP 356 DI 10.1016/j.tibtech.2016.01.008 PG 4 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DL7HD UT WOS:000375810800003 PM 26900006 ER PT J AU Sterri, KB Deringer, VL Houben, A Jacobs, P Kumar, CMN Dronskowski, R AF Sterri, Kjersti B. Deringer, Volker L. Houben, Andreas Jacobs, Philipp Kumar, Chogondahalli M. N. Dronskowski, Richard TI Neutron powder diffraction and theory-aided structure refinement of rubidium and cesium ureate SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES LA English DT Article DE anisotropic displacement parameters (ADPs); density-functional theory (DFT); hydrogen bonding; neutron crystallography; urea ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MOLECULAR-CRYSTALS; HYDROGEN-BOND; SOLID-STATE; BASIS-SET; GUANIDINATE; STRENGTHS; LIGANDS; METALS AB Urea (CN2H4O) is a fundamental biomolecule whose derivatives are abundant throughout chemistry. Among the latter, rubidium ureate (RbCN2H3O) and its cesium analog (CsCN2H3O) have been described only very recently and form the first structurally characterized salts of deprotonated urea. Here, we report on a neutron diffraction study on the aforementioned alkaline-metal ureates, which affords the positions for all hydrogen atoms (including full anisotropic displacement tensors) and thus allows us to gain fundamental insights into the hydrogen-bonding networks in the title compounds. The structure refinements of the experimental neutron data proceeded successfully using starting parameters from ab initio simulations of atomic positions and anisotropic displacement parameters. Such joint experimental-theoretical refinement procedures promise significant practical potential in cases where complex solids (organic, organometallic, framework materials) are studied by powder diffraction. C1 [Sterri, Kjersti B.; Deringer, Volker L.; Houben, Andreas; Jacobs, Philipp; Dronskowski, Richard] Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52056 Aachen, Germany. [Dronskowski, Richard] Rhein Westfal TH Aachen, Julich Aachen Res Alliance JARA HPC, D-52056 Aachen, Germany. [Kumar, Chogondahalli M. N.] Oak Ridge Natl Lab, Outstn SNS, JCNS, Forschungszentrum Julich GmbH, Oak Ridge, TN 37831 USA. [Kumar, Chogondahalli M. N.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Dronskowski, R (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52056 Aachen, Germany.; Dronskowski, R (reprint author), Rhein Westfal TH Aachen, Julich Aachen Res Alliance JARA HPC, D-52056 Aachen, Germany. EM drons@HAL9000.ac.rwth-aachen.de RI Houben, Andreas/B-9610-2013; OI Houben, Andreas/0000-0002-4918-6251; Chogondahalli Muniraju, Naveen Kumar/0000-0002-8867-8291 FU JCNS; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE); BMBF [05K13PA1]; [jara0069] FX This work is based upon experiments performed at the POWGEN instrument operated by JCNS at the Spallation Neutron Source (SNS), Oak Ridge, USA. The authors gratefully acknowledge the financial support provided by JCNS to perform the neutron scattering measurements at the Spallation Neutron Source (SNS), Oak Ridge, USA. Part of the research conducted at SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE). VLD and RD are grateful to Professor Ulli Englert for ongoing useful discussions, as well as for the allocation of JARA-HPC computer time (project jara0069). The authors also gratefully acknowledge financial support provided by BMBF (05K13PA1). NR 42 TC 0 Z9 0 U1 1 U2 6 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0932-0776 EI 1865-7117 J9 Z NATURFORSCH B JI Z.Naturforsch.(B) PD MAY PY 2016 VL 71 IS 5 SI SI BP 431 EP 438 DI 10.1515/znb-2015-0228 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA DL6KN UT WOS:000375748200011 ER PT J AU Kim, S Evans, TJ Mukarakate, C Bu, LT Beckham, GT Nimlos, MR Paton, RS Robichaud, DJ AF Kim, Seonah Evans, Tabitha J. Mukarakate, Calvin Bu, Lintao Beckham, Gregg T. Nimlos, Mark R. Paton, Robert S. Robichaud, David J. TI Furan Production from Glycoaldehyde over HZSM-5 SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Zeolite; Biomass; Catalytic fast pyrolysis; Computational modeling; Pyrolysis ID CATALYTIC FAST PYROLYSIS; BIOMASS-DERIVED COMPOUNDS; H-ZSM-5; FRUCTOSE; MODEL; DEHYDRATION; OLEFINS; SYSTEMS; GLUCOSE; ZSM-5 AB Catalytic fast pyrolysis of biomass over zeolite catalysts results primarily in aromatic (e.g., benzene, toluene, xylene) and olefin products. However, furans are a higher value intermediate for their ability to be readily transformed into gasoline, diesel, and chemicals. Here we investigate possible mechanisms for the coupling of glycoaldehyde, a common product of cellulose pyrolysis, over HZSM-5 for the formation of furans. Experimental measurements of neat glycoaldehyde over a fixed bed of HZSM-5 confirm furans (e.g., furanone) are products of this reaction at temperatures below 300 degrees C with several aldol condensation products as coproducts (e.g., benzoquinone). However, under typical catalytic fast pyrolysis conditions (>400 degrees C), further reactions occur that lead to the usual aromatic product slate. ONIOM calculations were utilized to identify the pathway for glycoaldehyde coupling toward furanone and hydroxyfuranone products with dehydration reactions serving as the rate-determining steps with typical intrinsic reaction barriers of 40 kcal mol(-1). The reaction mechanisms for glycoaldehyde will likely be similar to that of other small oxygenates such as acetaldehyde, lactaldehyde, and hydroxyacetone. This study provides a generalizable mechanism of oxygenate coupling and furan formation over zeolite catalysts. C1 [Kim, Seonah; Evans, Tabitha J.; Mukarakate, Calvin; Bu, Lintao; Beckham, Gregg T.; Nimlos, Mark R.; Robichaud, David J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Paton, Robert S.] Univ Oxford, Chem Res Lab, S Parks Rd, Oxford OX1 3TA, England. RP Kim, S; Robichaud, DJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM seonah.kim@nrel.gov; david.robichaud@nrel.gov RI Paton, Robert/A-4564-2010 OI Paton, Robert/0000-0002-0104-4166 FU U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; National Science Foundation Extreme Science and Engineering Discovery Environment Grant [MCB-090159]; SCG Innovation Fund (Catalysis in Confined Spaces) FX This work was conducted as part of the Computational Pyrolysis Consortium supported by the U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Computer time was provided by the Texas Advanced Computing Center under the National Science Foundation Extreme Science and Engineering Discovery Environment Grant MCB-090159 and by the National Renewable Energy Laboratory Computational Sciences Center. RSP acknowledges support from the SCG Innovation Fund (Catalysis in Confined Spaces). We thank Ashley Berninghaus and Kristiina Lisa for some final experiments to address reviewer comments. NR 62 TC 0 Z9 0 U1 12 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD MAY PY 2016 VL 4 IS 5 BP 2615 EP 2623 DI 10.1021/acssuschemeng.6b00101 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA DL3FR UT WOS:000375520100020 ER PT J AU He, B Neo, WT Chen, TL Klivansky, LM Wang, HX Tan, TW Teat, SJ Xu, JW Liu, Y AF He, Bo Neo, Wei Teng Chen, Teresa L. Klivansky, Liana M. Wang, Hongxia Tan, Tianwei Teat, Simon J. Xu, Jianwei Liu, Yi TI Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Bay-annulated indigo; Conjugated polymer; Electrochromic; Electron acceptor; Low bandgap ID FIELD-EFFECT TRANSISTORS; SOLAR-CELL APPLICATIONS; THIN-FILM TRANSISTORS; ORGANIC SEMICONDUCTORS; ELECTRON-DEFICIENT; PERFORMANCE; COPOLYMERS; BENZOTRIAZOLE; MOBILITY; DEVICES AB The donor-acceptor (D-A) approach, which is to incorporate alternating electron-rich (donor) and electron deficient (acceptor) units along the conjugated polymer mainchain, has become an effective method to provide an informed search for high performance electrochromic low bandgap polymers. Herein a potent electron acceptor, namely, a much more soluble version of the nature-inspired bay annulated indigo (BAI), was employed in the synthesis of two solution-processable donor-acceptor polymers for efficient electrochromic devices (ECDs). The devices fabricated from spin-coated polymer thin films can switch reversibly between deep blue and transmissive light green hues, with high optical contrasts in the visible and near-infrared (NIR) regions, good coloration efficiency and promising ambient stability. In particular, electrochromic devices based on the copolymer containing a carbazole donor unit exhibit optical contrasts of 41% and 59% in the visible and NIR regions, respectively, and a long-term stability of more than 7500 cycles under ambient conditions with limited reduction in optical contrasts. Such longer term ambient stability underlines the great potential of BAI-derived electron acceptors for the development of practical EC materials. C1 [He, Bo; Chen, Teresa L.; Klivansky, Liana M.; Wang, Hongxia; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA. [Neo, Wei Teng; Xu, Jianwei] Inst Mat Res & Engn, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore. [Neo, Wei Teng] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, 28 Med Dr, Singapore 117456, Singapore. [Xu, Jianwei] Natl Univ Singapore, Dept Chem, 3 Sci Dr, Singapore 117543, Singapore. [Wang, Hongxia; Tan, Tianwei] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing Key Lab Bioproc, Beijing 100029, Peoples R China. RP Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA.; Xu, JW (reprint author), Inst Mat Res & Engn, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore.; Xu, JW (reprint author), Natl Univ Singapore, Dept Chem, 3 Sci Dr, Singapore 117543, Singapore. EM jw-xu@imre.a-star.edu.sg; yliu@lbl.gov RI Liu, yi/A-3384-2008 OI Liu, yi/0000-0002-3954-6102 FU Self-Assembly of Organic/Inorganic Nanocomposite Materials program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Agency for Science, Technology and Research (A*STAR); Ministry of National Development (MND) Green Building Joint Grant, Singapore [1321760011] FX The materials synthesis and characterization was performed at the Molecular Foundry and Advanced Light Source, and was partly supported by Self-Assembly of Organic/Inorganic Nanocomposite Materials program, all supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.X. and W.T.N. were supported by the Agency for Science, Technology and Research (A*STAR) and Ministry of National Development (MND) Green Building Joint Grant (No. 1321760011), Singapore. NR 47 TC 5 Z9 5 U1 11 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD MAY PY 2016 VL 4 IS 5 BP 2797 EP 2805 DI 10.1021/acssuschemeng.6b00303 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA DL3FR UT WOS:000375520100041 ER PT J AU Weaver, JL McCloy, JS Ryan, JV Kruger, AA AF Weaver, Jamie L. McCloy, John S. Ryan, Joseph V. Kruger, Albert A. TI Ensuring longevity: Ancient glasses help predict durability of vitrified nuclear waste SO AMERICAN CERAMIC SOCIETY BULLETIN LA English DT Article ID FRACTURED ROMAN GLASS; GEOLOGICAL REPOSITORY; BASALTIC GLASS; MECHANISMS; CORROSION; ANALOGY C1 [Weaver, Jamie L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Ryan, Joseph V.] Directorate Pacific Northwest Natl Lab, Energy & Environm, Richland, WA USA. [McCloy, John S.] Washington State Univ, Sch Mech & Mat Engn, Richland, WA USA. [McCloy, John S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kruger, Albert A.] Dept Energy, Off River Protect, Richland, WA USA. RP Weaver, JL (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. NR 28 TC 0 Z9 0 U1 2 U2 4 PU AMER CERAMIC SOC PI WESTERVILLE PA 600 N CLEVELAND AVE, WESTERVILLE, OH 43082 USA SN 0002-7812 EI 1945-2705 J9 AM CERAM SOC BULL JI Am. Ceram. Soc. Bull. PD MAY PY 2016 VL 95 IS 4 BP 18 EP 23 PG 6 WC Materials Science, Ceramics SC Materials Science GA DK9IK UT WOS:000375243900007 ER PT J AU Higgins, SA Welsh, A Orellana, LH Konstantinidis, KT Chee-Sanford, JC Sanford, RA Schadt, CW Loffler, FE AF Higgins, Steven A. Welsh, Allana Orellana, Luis H. Konstantinidis, Konstantinos T. Chee-Sanford, Joanne C. Sanford, Robert A. Schadt, Christopher W. Loffler, Frank E. TI Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; N2O PRODUCTION; FUSARIUM-OXYSPORUM; CYTOCHROME P450NOR; PROTEIN EVOLUTION; DENITRIFICATION; BACTERIAL; EMISSION; DATABASE; NITRATE AB Members of the Fungi convert nitrate (NO3-) and nitrite (NO2-) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3- or NO2- in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2-. Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2-, whereas nirK (encoding the NO-forming NO2- reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation. IMPORTANCE A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification potential in fungal isolates and agricultural soils. These new PCR primers may find application in a variety of biomes to assess the fungal contributions to N loss and N2O emissions. C1 [Higgins, Steven A.; Schadt, Christopher W.; Loffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Loffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. [Schadt, Christopher W.; Loffler, Frank E.] Univ Tennessee & Oak Ridge Natl Lab UT ORNL Joint, Oak Ridge, TN USA. [Schadt, Christopher W.; Loffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Welsh, Allana; Sanford, Robert A.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Chee-Sanford, Joanne C.] ARS, USDA, Urbana, IL USA. [Orellana, Luis H.; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.; Loffler, FE (reprint author), Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA.; Loffler, FE (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA.; Loffler, FE (reprint author), Univ Tennessee & Oak Ridge Natl Lab UT ORNL Joint, Oak Ridge, TN USA.; Loffler, FE (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. EM frank.loeffler@utk.edu RI Schadt, Christopher/B-7143-2008; OI Schadt, Christopher/0000-0001-8759-2448; Higgins, Steven/0000-0002-5209-5000 FU U.S. Department of Energy (DOE), Office of Biological and Environmental Research, Genomic Science Program [DE-SC0006662] FX This research was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research, Genomic Science Program (award DE-SC0006662). NR 70 TC 0 Z9 0 U1 9 U2 24 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2016 VL 82 IS 10 BP 2919 EP 2928 DI 10.1128/AEM.00243-16 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DK9EU UT WOS:000375234400005 PM 26969694 ER PT J AU Li, AG Burggraf, LW Xing, Y AF Li, Alex G. Burggraf, Larry W. Xing, Yun TI Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DIPICOLINIC ACID; BACTERIAL-SPORES; HEAT-RESISTANCE; CELL-WALL; ULTRASTRUCTURAL-LOCALIZATION; ELECTRON-MICROSCOPY; TERTIARY STRUCTURE; SUBTILIS SPORES; DORMANT SPORES; PEPTIDOGLYCAN AB The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nanosurgical sectioning method in which a stiff diamond AFM tip was used to cut an individual spore, exposing its internal structure, and a soft AFM tip was used to image and characterize the spore interior on the nanometer scale. We observed that the elastic modulus and adhesion force, including their thermal responses at elevated temperatures, varied significantly in different regions of the spore section. Our AFM images indicated that the peptidoglycan (PG) cortex of Bacillus anthracis spores consisted of rod-like nanometer-sized structures that are oriented in the direction perpendicular to the spore surface. Our findings may shed light on the spore architecture and properties. IMPORTANCE A nanosurgical AFM method was developed that can be used to probe the structure and properties of the spore interior. The previously unknown ultrastructure of the PG cortex of Bacillus anthracis spores was observed to consist of nanometer-sized rodlike structures that are oriented in the direction perpendicular to the spore surface. The variations in the nanomechanical properties of the spore section were largely correlated with its chemical composition. Different components of the spore materials showed different thermal responses at elevated temperatures. C1 [Li, Alex G.; Burggraf, Larry W.] Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH USA. [Xing, Yun] ORISE, Oak Ridge, TN USA. RP Li, AG (reprint author), Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH USA. EM Alex.Li@afit.edu FU DOD | Defense Threat Reduction Agency (DTRA) FX This work, including the efforts of Alex Li, was partially funded by DOD | Defense Threat Reduction Agency (DTRA). NR 62 TC 1 Z9 1 U1 5 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2016 VL 82 IS 10 BP 2988 EP 2999 DI 10.1128/AEM.00431-16 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DK9EU UT WOS:000375234400012 PM 26969703 ER PT J AU Lloret, E Pascual, JA Brodie, EL Bouskill, NJ Insam, H Juarez, MFD Goberna, M AF Lloret, Eva Pascual, Jose A. Brodie, Eoin L. Bouskill, Nicholas J. Insam, Heribert Juarez, Marina Fernandez-Delgado Goberna, Marta TI Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process SO APPLIED SOIL ECOLOGY LA English DT Article DE Organic amendment; Pyrosequencing; Bacterial community; Fungal community; Substrate utilization; Plant performance ID AEROBIC DIGESTION ATAD; CHLOROPHYLL FLUORESCENCE; DIVERSITY; BACTERIAL; NITROGEN; YIELD; AMENDMENTS; PHYSIOLOGY; ARCHAEA; REACTOR AB Despite the widespread use of sewage sludge as an organic amendment to improve soil stability and plant productivity, relatively little is known about how the different sludge stabilization processes affect the microbial composition and diversity of the sludge and the soil microbial populations as well as plant performance. In this study, the effects caused by addition of thermophilic aerobic (ATAD) and mesophilic anaerobic (MAD) sludge and inorganic fertilization on soil microbial community structure and diversity was assessed by pyrosequencing of 16S and 18S rRNA genes. Melon (Cucumis melo L., cv. Giotto) was used as model crop and its performance (growth and physiological state) was monitored together with changes in soil chemical parameters. Our results showed that the stabilization process of sewage sludge determined the feasibility of the final by-product as an organic amendment by altering in different manner the soil environment and modifying the soil microbial community structure and functioning. Changes in soil microbial community were related more to changes in the soil chemical environment rather than to the introduction of sludge-borne microorganisms. We also have shown that changes in a single physicochemical parameter (electrical conductivity) due to sludge application are associated with a pronounced shift in microbial community structure and activity as well as in plant performance. Along these lines, we showed that the application of ATAD sludge into soil resulted in less pronounced changes in its chemistry and microbial community structure, while enhancing soil microbial activity and plant performance. This study shows, therefore, that ATAD sludge could be applied as an excellent alternative to MAD sludge or inorganic fertilization. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lloret, Eva; Pascual, Jose A.; Goberna, Marta] CSIC, CEBAS, Campus Univ Espinardo,Aptdo Correos 164, Murcia 30100, Spain. [Lloret, Eva; Brodie, Eoin L.; Bouskill, Nicholas J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Insam, Heribert; Juarez, Marina Fernandez-Delgado] Univ Innsbruck, Inst Microbiol, Technikerstr 25d, A-6020 Innsbruck, Austria. [Goberna, Marta] GV, UVEG, CSIC, Ctr Invest Desertificac, Carretera Moncada Naquera,Km 4-5, Valencia 46113, Spain. RP Lloret, E (reprint author), CSIC, CEBAS, Campus Univ Espinardo,Aptdo Correos 164, Murcia 30100, Spain.; Lloret, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. EM e.lloret22@gmail.com RI Bouskill, Nick/G-2390-2015; Brodie, Eoin/A-7853-2008; Pascual, Jose /I-9021-2012; OI Brodie, Eoin/0000-0002-8453-8435; Pascual, Jose /0000-0001-7485-1092; Goberna, Marta/0000-0001-5303-3429 FU JAE Programme (Consejo Superior de Investigaciones Cientificas, Spain); JAE Programme (European Social Fund); Spanish National Plan I+D+i [324/pc08/2-04.3]; EU Marie Curie Program [FP7-PEOPLE-2009-RG-248155]; Department of Energy [De-AC02-05CH11231] FX This work was supported by the JAE Programme (co-funded by the Consejo Superior de Investigaciones Cientificas, Spain, and the European Social Fund) and the project 324/pc08/2-04.3 included in the Spanish National Plan I+D+i 2008-2011. M. Goberna acknowledges support by the EU Marie Curie Program (FP7-PEOPLE-2009-RG-248155). Part of this work was performed at Lawrence Berkeley National Laboratory under the Department of Energy Contract No. De-AC02-05CH11231 and at the Institute of Microbiology, University of Innsbruck, with BioTreat funds. We thank P. Fraiz for English language editing, U. Karaoz for assistance with sequence data analysis and D. Beltran for his support and encouragement on this work. NR 58 TC 0 Z9 0 U1 13 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0929-1393 EI 1873-0272 J9 APPL SOIL ECOL JI Appl. Soil Ecol. PD MAY PY 2016 VL 101 BP 37 EP 46 DI 10.1016/j.apsoil.2016.01.002 PG 10 WC Soil Science SC Agriculture GA DK7QR UT WOS:000375121300006 ER PT J AU Francisco, PW Sherman, MH AF Francisco, Paul W. Sherman, Max H. TI Addressing Residential SO ASHRAE JOURNAL LA English DT Article AB Did you know that in the United States residential buildings use more energy than commercial buildings? According to the U.S. Energy Information Administration,(1) 40% of all energy use in the U.S. is for buildings, with 22% for residential buildings and 18% for commercial buildings. (The rest is split about evenly between transportation and industry, Figure 1.) About half of residential energy use in the U.S. is for space conditioning (Figure 2). C1 [Francisco, Paul W.] Univ Illinois, Urbana, IL 61801 USA. [Sherman, Max H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Francisco, PW (reprint author), Univ Illinois, Urbana, IL 61801 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD MAY PY 2016 VL 58 IS 5 BP 84 EP 86 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA DL1CS UT WOS:000375370300010 ER PT J AU Moller, P Sierk, AJ Ichikawa, T Sagawa, H AF Moller, P. Sierk, A. J. Ichikawa, T. Sagawa, H. TI Nuclear ground-state masses and deformations: FRDM(2012) SO ATOMIC DATA AND NUCLEAR DATA TABLES LA English DT Article DE Nuclear masses; Fission-barrier heights; Ground-state deformations ID POTENTIAL-ENERGY SURFACES; HEAVY-ION REACTIONS; MACROSCOPIC-MICROSCOPIC MODEL; RANGE DROPLET MODEL; FISSION-BARRIERS; SUPERHEAVY ELEMENTS; EQUILIBRIUM DISTORTIONS; DEFORMED-NUCLEI; AXIAL ASYMMETRY; COLD-FUSION AB We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from O-16 to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Moller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are deterrnined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from O-16 to (265)(106)Sg and (264)(108)Hs. The error of the mass model is 0.5595 MeV for the entire region of nuclei included in the adjustment, but is only 0.3549 MeV for the region N >= 65. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV, with 0.5181 MeV for nuclei with N >= 65, both somewhat larger than in the FRDM. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission-barrier heights from Se-70 to Cf-252 with a root-mean-square deviation of 1.052 MeV. (C) 2016 Elsevier Inc. All rights reserved. C1 [Moller, P.; Sierk, A. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ichikawa, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Sagawa, H.] RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan. [Sagawa, H.] Univ Aizu, Ctr Math & Phys, Fukushima 9650001, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU NNSA of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; MEXT SPIRE; JICFuS [25287065]; [DE-FG02-06ER41407] FX This work profited from extensive comments by and collaborations with Japanese colleagues made possible by numerous and generous travel grants for P.M. to JUSTIPEN (Japan-U.S. Theory Institute for Physics with Exotic Nuclei) under grant number DE-FG02-06ER41407 (U. Tennessee). This work was carried out under the auspices of the NNSA of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. TI was supported in part by MEXT SPIRE and JICFuS and Grant No. 25287065. NR 137 TC 20 Z9 20 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0092-640X EI 1090-2090 J9 ATOM DATA NUCL DATA JI Atom. Data Nucl. Data Tables PD MAY-JUL PY 2016 VL 109 BP 1 EP 204 DI 10.1016/j.adt.2015.10.002 PG 204 WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA DK3GC UT WOS:000374804100001 ER PT J AU Lindell, AH Tuckfield, RC McArthur, JV AF Lindell, A. H. Tuckfield, R. C. McArthur, J. V. TI Differences in the Effect of Coal Pile Runoff (Low pH, High Metal Concentrations) Versus Natural Carolina Bay Water (Low pH, Low Metal Concentrations) on Plant Condition and Associated Bacterial Epiphytes of Salvinia minima SO BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article DE Salvinia minima; Heavy metals; Bacteria; Epiphyte; Carolina Bays; Coal pile run-off ID ACID-MINE DRAINAGE; MESOCOSM TREATMENT WETLANDS; AQUATIC PLANTS; REMEDIATION; COMMUNITIES; REMOVAL; IMPACT; ROLES; BASIN AB Numerous wetlands and streams have been impacted by acid mine drainage (AMD) resulting in lowered pH and increased levels of toxic heavy metals. Remediation of these contaminated sites requires knowledge on the response of microbial communities (especially epiphytic) and aquatic plants to these altered environmental conditions. We examined the effect of coal pile runoff waters as an example of AMD in contrast to natural water from Carolina Bays with low pH and levels of metals on Salvinia minima, a non-native, metal accumulating plant and associated epiphytic bacteria. Treatments included water from two Carolina Bays, one AMD basin and Hoagland's Solution at two pH levels (natural and adjusted to 5.0-5.5). Using controlled replicated microcosms (N = 64) we determined that the combination of low pH and high metal concentrations has a significant negative impact (p < 0.05) on plant condition and epiphytes. Solution metal concentrations dropped indicating removal from solution by S. minima in all microcosms. C1 [Lindell, A. H.; McArthur, J. V.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Tuckfield, R. C.] Ecostatys LLC, Aiken, SC 29803 USA. RP McArthur, JV (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM mcarthur@srel.uga.edu FU U.S. Department of Energy [DE-FC09-096SR18546] FX Financial support was provided from the U.S. Department of Energy Financial Assistance Award no. DE-FC09-096SR18546 to the University of Georgia Research Foundation. NR 25 TC 0 Z9 0 U1 4 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0007-4861 EI 1432-0800 J9 B ENVIRON CONTAM TOX JI Bull. Environ. Contam. Toxicol. PD MAY PY 2016 VL 96 IS 5 BP 602 EP 607 DI 10.1007/s00128-016-1756-0 PG 6 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA DJ7NE UT WOS:000374397300008 PM 26908369 ER PT J AU Jackson, S Lee, BJ Shepherd, JE AF Jackson, Scott Lee, Bok Jik Shepherd, Joseph E. TI Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen SO COMBUSTION AND FLAME LA English DT Article DE Detonation; DDT; Detonation failure; Galloping detonation; Near limit detonation ID DIMENSIONAL PULSATING DETONATIONS; CHAPMAN-JOUGUET DETONATIONS; CHAIN-BRANCHING KINETICS; UNSTABLE DETONATIONS; DYNAMICS; INSTABILITY; MIXTURES; LIMITS AB The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane-oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 mu. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half of the Chapman-Jouguet detonation velocity (D-CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 13-2.0 m or 317-488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D-CJ and 0.95 D-CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. The results indicate that galloping detonation is a persistent phenomenon at long tube lengths. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Jackson, Scott; Lee, Bok Jik; Shepherd, Joseph E.] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. [Jackson, Scott] Los Alamos Natl Lab, Shock & Detonat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. [Lee, Bok Jik] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia. RP Jackson, S (reprint author), CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA.; Jackson, S (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM sjackson@lanl.gov; BokJik.Lee@kaust.edu.sa; jeshep@caltech.edu OI Jackson, Scott/0000-0002-6814-3468 NR 33 TC 2 Z9 2 U1 3 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2016 VL 167 BP 24 EP 38 DI 10.1016/j.combustflame.2016.02.030 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DK3FQ UT WOS:000374802900003 ER PT J AU Singleton, D Carter, C Pendleton, SJ Brophy, C Sinibaldi, J Luginsland, JW Brown, M Stockman, E Gundersen, MA AF Singleton, Daniel Carter, Campbell Pendleton, Scott J. Brophy, Christopher Sinibaldi, Jose Luginsland, John W. Brown, Michael Stockman, Emanuel Gundersen, Martin A. TI The effect of humidity on hydroxyl and ozone production by nanosecond discharges SO COMBUSTION AND FLAME LA English DT Article DE Non-equilibrium plasma; Nanosecond pulsed power; Transient plasma ignition; Planar laser induced florescence; Hydroxyl; Ozone ID TRANSIENT PLASMA; IGNITION; COMBUSTION; OXYGEN; SPECTROSCOPY; MOLECULES; CHEMISTRY; QUIESCENT; MIXTURES AB The interplay of humidity and non-equilibrium, transient plasma was studied via ignition experiments in a C2H4-air mixture, concentration measurements in humid air, and detailed simulations. Hydroxyl (OH) and ozone (O-3) produced via non-equilibrium plasma were characterized in a flowing H2O-air mixture at atmospheric pressure with varying the levels of humidity using planar laser-induced fluorescence (PLIF) and UV absorption, respectively. The OH, which was created in the discharge streamers, peaked at a concentration of similar to 5x 10(14)/cm(3) and then decayed below 1 x 10(14)/cm(3) after similar to 100 mu s. O-3, which is long lived, peaked at a concentration of 1.4 x 10(15)/cm(3). An increase in humidity from X-H2O approximate to 0.2% to 1% resulted in a monotonic increase in the concentration of OH and a 67% decrease in that of O-3. Zero-dimensional Boltzmann modeling of non-equilibrium plasma discharges in humid air showed qualitative agreement with these results and points to the decrease in o concentration (with increasing humidity) as the reason for the decreased O-3 concentration. In spite the dramatic decline in X-O3 with increased humidity, there was no strong commensurate effect on ignition and flame propagation in C2H4-air mixtures: Peak pressure rise rate was at its maximum value at X-H2O = 1% but was only 25% less at X-H2O = 5%. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Singleton, Daniel; Pendleton, Scott J.; Gundersen, Martin A.] Univ So Calif, Los Angeles, CA 90089 USA. [Carter, Campbell; Brown, Michael] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Brophy, Christopher; Sinibaldi, Jose] Naval Postgrad Sch, Monterey, CA 93943 USA. [Luginsland, John W.] NumerEx, Ithaca, NY 14850 USA. [Stockman, Emanuel] Princeton Univ, Princeton, NJ 08544 USA. [Singleton, Daniel] Transient Plasma Syst, 1751 Torrance Blvd,Suite K, Torrance, CA 90501 USA. [Pendleton, Scott J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Sinibaldi, Jose] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Luginsland, John W.] Air Force Off Sci Res, Arlington, VA 22203 USA. RP Singleton, D (reprint author), Transient Plasma Syst, 1751 Torrance Blvd,Suite K, Torrance, CA 90501 USA. EM dsinglet@usc.edu OI Singleton, Daniel/0000-0001-5052-4409; Sinibaldi, Jose/0000-0002-9871-0590; Stockman, Emanuel/0000-0002-4891-5184 NR 29 TC 0 Z9 0 U1 8 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2016 VL 167 BP 164 EP 171 DI 10.1016/j.combustflame.2016.02.016 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DK3FQ UT WOS:000374802900013 ER PT J AU De, NN Cummock, NR Gunduz, IE Tappan, BC Son, SF AF De, Narendra N. Cummock, Nicholas R. Gunduz, Ibrahim E. Tappan, Bryce C. Son, Steven F. TI Photoflash and laser ignition of select high-nitrogen materials SO COMBUSTION AND FLAME LA English DT Article DE High-nitrogen energetic materials; Flash ignition; Laser ignition; Photochemical effects; Non-contact ignition; Gas generators ID CARBON NANOTUBES; ENERGETIC MATERIALS; HIGH EXPLOSIVES; FLASH; INITIATION; DAAF; DECOMPOSITION; NANOPARTICLES; LIGHT; DHT AB Gas-producing energetic materials that;can be readily ignited with a Photoflash are typically opaque sensitive primary explosives. In this study, we explore the photoactivity of select high-nitrogen (HiN) compounds that are much less sensitive than primary explosives. These HiN materials produce large amounts of gas upon decomposition and this makes them suitable for use in actuators, igniters, or micro thrusters. This paper presents ignition experimental results using similar shaped pulses at two different wavelengths, specifically using a xenon photoflash and a single wavelength CO2 laser. Several select HiN materials were tested for flash ignitability, and those that were found to be flash ignitable were further ignited with CO2 laser heating. By comparing ignition behavior at various laser and flash intensities, some ignition mechanisms are suggested. Thermal heating, regardless of source, appears to be the dominant mechanism responsible for ignition and photochemical effects appear to be negligible in the ignition of the materials considered in this study. Higher laser and photoflash irradiance is shown to require less energy, and is therefore more efficient. The opacity of the material is an important consideration in ignitability, but not a sufficient criterion. We find that opaque materials that successfully propagate well in small capillary tubes are also more likely to successfully flash ignite. We suggest this is due to the higher burning rate of these materials and also in part due to the exothermic reaction occurring at or near the burning surface, allowing the reactions to proceed without quenching. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [De, Narendra N.; Cummock, Nicholas R.; Gunduz, Ibrahim E.; Son, Steven F.] Purdue Univ, W Lafayette, IN 47907 USA. [Tappan, Bryce C.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP De, NN (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM nde@purdue.edu FU U.S. Department of Energy's National Nuclear Security Agency [DE-AC52-06NA25396] FX The authors will like to acknowledge the M-7 research group at Los Alamos for providing the laser and high speed imaging equipment for the capillary tube experiments. The Los Alamos National Laboratory is operated by Los Alamos National Security for the U.S. Department of Energy's National Nuclear Security Agency under contract DE-AC52-06NA25396. NR 41 TC 1 Z9 1 U1 7 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2016 VL 167 BP 207 EP 217 DI 10.1016/j.combustflame.2016.02.011 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DK3FQ UT WOS:000374802900017 ER PT J AU Zhou, CW Li, Y O'Connor, E Somers, KP Thion, S Keesee, C Mathieu, O Petersen, EL DeVerter, TA Oehlschlaeger, MA Kukkadapu, G Sung, CJ Alrefae, M Khaled, F Farooq, A Dirrenberger, P Glaude, PA Battin-Leclerc, F Santner, J Ju, YG Held, T Haas, FM Dryer, FL Curran, HJ AF Zhou, Chong-Wen Li, Yang O'Connor, Eoin Somers, Kieran P. Thion, Sebastien Keesee, Charles Mathieu, Olivier Petersen, Eric L. DeVerter, Trent A. Oehlschlaeger, Matthew A. Kukkadapu, Goutham Sung, Chih-Jen Alrefae, Majed Khaled, Fathi Farooq, Aamir Dirrenberger, Patricia Glaude, Pierre-Alexandre Battin-Leclerc, Frederique Santner, Jeffrey Ju, Yiguang Held, Timothy Haas, Francis M. Dryer, Frederick L. Curran, Henry J. TI A comprehensive experimental and modeling study of isobutene oxidation SO COMBUSTION AND FLAME LA English DT Article DE Isobutene oxidation; Shock tube; Rapid compression machine; Chemical kinetics; Flame speed; Ab initio ID PRESSURE RATE RULES; PULSE SHOCK-TUBE; ELEVATED PRESSURES; BUTENE ISOMERS; ABSTRACTION REACTIONS; BURNING VELOCITIES; RAPID COMPRESSION; KINETIC-ANALYSIS; DIMETHYL ETHER; FLOW REACTORS AB Isobutene is an important intermediate in the pyrolysis and oxidation of higher-order branched alkanes, and it is also a component of commercial gasolines. To better understand its combustion characteristics, a series of ignition delay time (IDT) and laminar flame speed (LFS) measurements have been performed. In addition, flow reactor speciation data recorded for the pyrolysis and oxidation of isobutene is also reported. Predictions of an updated kinetic model described herein are compared with each of these data sets, as well as with existing jet-stirred reactor (JSR) species measurements. IDTs of isobutene oxidation were measured in four different shock tubes and in two rapid compression machines (RCMs) under conditions of relevance to practical combustors. The combination of shock tube and RCM data greatly expands the range of available validation data for isobutene oxidation models to pressures of 50 atm and temperatures in the range 666-1715 K. Isobutene flame speeds were measured experimentally at 1 atm and at unburned gas temperatures of 298-398 K over a wide range of equivalence ratios. For the flame speed results, there was good agreement between different facilities and the current model in the fuel-rich region. Ab initio chemical kinetics calculations were carried out to calculate rate constants for important reactions such as H-atom abstraction by hydroxyl and hydroperoxyl radicals and the decomposition of 2-methylallyl radicals. A comprehensive chemical kinetic mechanism has been developed to describe the combustion of isobutene and is validated by comparison to the presently considered experimental measurements. Important reactions, highlighted via flux and sensitivity analyses, include: (a) hydrogen atom abstraction from isobutene by hydroxyl and hydroperoxyl radicals, and molecular oxygen; (b) radical-radical recombination reactions, including 2-methylallyl radical self-recombination, the recombination of 2-methylallyl radicals with hydroperoxyl radicals; and the recombination of 2-methylallyl radicals with methyl radicals; (c) addition reactions, including hydrogen atom and hydroxyl radical addition to isobutene; and (d) 2-methylallyl radical decomposition reactions. The current mechanism accurately predicts the IDT and LFS measurements presented in this study, as well as the JSR and flow reactor speciation data already available in the literature. The differences in low-temperature chemistry between alkanes and alkenes are also highlighted. in this work. In normal alkanes, the fuel radical (R) over dot adds to molecular oxygen forming alkylperoxyl (R(O) over dot(2)) radicals followed by isomerization and chain branching reactions which promote low-temperature fuel reactivity. However, in alkenes, because of the relatively shallow well (similar to 20 kcal mol(-1)) for R(O) over dot(2) formation compared to similar to 35 kcal mol(-1) in alkanes, the (R) over dot+O-2 (sic) R(O) over dot(2) equilibrium lies more to the left favoring (R) over dot+O-2 rather than R(O) over dot(2) radical stabilization. Based on this work, and related studies of allylic systems, it is apparent that reactivity for alkene components at very low temperatures (<800 K) emanates from hydroxyl radical addition followed by addition of molecular oxygen to radical. At intermediate temperatures (800-1300 K), alkene reactivity is controlled by hydrogen abstraction by molecular oxygen and the reactions between resonantly stabilized radicals and hydroperoxyl radicals which results in chain branching. At higher temperatures (>1300 K), the reactivity is mainly governed by the competition between hydrogen abstractions by molecular oxygen and OH radicals. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Zhou, Chong-Wen; Li, Yang; O'Connor, Eoin; Somers, Kieran P.; Curran, Henry J.] Natl Univ Ireland, Combust Chem Ctr, Galway, Ireland. [Thion, Sebastien; Keesee, Charles; Mathieu, Olivier; Petersen, Eric L.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [DeVerter, Trent A.; Oehlschlaeger, Matthew A.] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY USA. [Kukkadapu, Goutham; Sung, Chih-Jen] Univ Connecticut, Dept Mech Engn, Storrs, CT USA. [Alrefae, Majed; Khaled, Fathi; Farooq, Aamir] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia. [Dirrenberger, Patricia; Glaude, Pierre-Alexandre; Battin-Leclerc, Frederique] Univ Lorraine, CNRS, Lab React & Genie Proc, Nancy, France. [Santner, Jeffrey; Ju, Yiguang; Held, Timothy; Haas, Francis M.; Dryer, Frederick L.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Santner, Jeffrey] Argonne Natl Lab, Lemont, IL USA. [Held, Timothy] Echogen Power Syst, 405 South High St, Akron, OH USA. RP Curran, HJ (reprint author), Natl Univ Ireland, Combust Chem Ctr, Galway, Ireland. EM henry.curran@nuigalway.ie RI Farooq, Aamir/B-2550-2013; OI Farooq, Aamir/0000-0001-5296-2197; Haas, Francis/0000-0001-7511-0392; Glaude, Pierre-Alexandre/0000-0001-9166-8388; Curran, Henry/0000-0002-5124-8562; Thion, Sebastien/0000-0002-5647-9618 FU Saudi Aramco under the FUELCOM program; Texas A&M Engineering Experiment Station; TEES Turbomachinery Laboratory; U.S. Air Force Office of Scientific Research [FA9550-11-1-0261]; National Science Foundation [CBET-1402231]; King Abdullah University of Science and Technology (KAUST); European Commission through the "Clean ICE" Advanced Research Grant of the European Research Council [227669]; NETL [DE-FE0011822]; NSF [CBET-1507358]; University Turbine Systems Research (UTSR) program [DE-FE0012005] FX Chong-Wen Zhou thanks the entire group members at Combustion Chemistry Centre for helpful discussions. The work at NUI Galway was supported by Saudi Aramco under the FUELCOM program. The TAMU effort was supported by the Texas A&M Engineering Experiment Station and by the TEES Turbomachinery Laboratory. The Rensselaer group was supported by the U.S. Air Force Office of Scientific Research (Grant no. FA9550-11-1-0261). The work at UConn was supported by the National Science Foundation under Grant no. CBET-1402231. The work of KAUST authors was supported by Saudi Aramco under the FUELCOM program and by King Abdullah University of Science and Technology (KAUST). The work at LRGP was supported by the European Commission through the "Clean ICE" Advanced Research Grant of the European Research Council (Grant no. 227669). Collaboration between NUI Galway and LRGP enters in the frame the COST Action CM1404. Y.J. would like to thank the Grant support from NETL DE-FE0011822 and NSF CBET-1507358. F.L.D. acknowledges support of this at Princeton by the University Turbine Systems Research (UTSR) program, administered by the National Energy Technology Laboratory of the US Department of Energy (DOE), under award DE-FE0012005. NR 72 TC 14 Z9 14 U1 17 U2 32 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2016 VL 167 BP 353 EP 379 DI 10.1016/j.combustflame.2016.01.021 PG 27 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DK3FQ UT WOS:000374802900029 ER PT J AU Sinsabaugh, RL Turner, BL Talbot, JM Waring, BG Powers, JS Kuske, CR Moorhead, DL Shah, JJF AF Sinsabaugh, Robert L. Turner, Benjamin L. Talbot, Jennifer M. Waring, Bonnie G. Powers, Jennifer S. Kuske, Cheryl R. Moorhead, Daryl L. Shah, Jennifer J. Follstad TI Stoichiometry of microbial carbon use efficiency in soils SO ECOLOGICAL MONOGRAPHS LA English DT Article DE biomass turnover; carbon use efficiency; ecoenzymatic activity; ecological stoichiometry; microbial communities; soil ecology; nutrient use efficiency ID N-P STOICHIOMETRY; TERRESTRIAL ECOSYSTEMS; ORGANIC-MATTER; ECOENZYMATIC STOICHIOMETRY; GROWTH EFFICIENCY; ESCHERICHIA-COLI; BACTERIAL-GROWTH; PLANT INPUTS; COPY-NUMBER; PHOSPHORUS AB The carbon use efficiency (CUE) of microbial communities partitions the flow of C from primary producers to the atmosphere, decomposer food webs, and soil C stores. CUE, usually defined as the ratio of growth to assimilation, is a critical parameter in ecosystem models, but is seldom measured directly in soils because of the methodological difficulty of measuring in situ rates of microbial growth and respiration. Alternatively, CUE can be estimated indirectly from the elemental stoichiometry of organic matter and microbial biomass, and the ratios of C to nutrient-acquiring ecoenzymatic activities. We used this approach to estimate and compare microbial CUE in >2000 soils from a broad range of ecosystems. Mean CUE based on C:N stoichiometry was 0.269 +/- 0.110 (mean +/- SD). A parallel calculation based on C:P stoichiometry yielded a mean CUE estimate of 0.252 +/- 0.125. The mean values and frequency distributions were similar to those from aquatic ecosystems, also calculated from stoichiometric models, and to those calculated from direct measurements of bacterial and fungal growth and respiration. CUE was directly related to microbial biomass C with a scaling exponent of 0.304 (95% CI 0.237-0.371) and inversely related to microbial biomass P with a scaling exponent of -0.234 (95% CI -0.289 to -0.179). Relative to CUE, biomass specific turnover time increased with a scaling exponent of 0.509 (95% CI 0.467-0.551). CUE increased weakly with mean annual temperature. CUE declined with increasing soil pH reaching a minimum at pH 7.0, then increased again as soil pH approached 9.0, a pattern consistent with pH trends in the ratio of fungal : bacteria abundance and growth. Structural equation models that related geographic variables to CUE component variables showed the strongest connections for paths linking latitude and pH to beta-glucosidase activity and soil C:N:P ratios. The integration of stoichiometric and metabolic models provides a quantitative description of the functional organization of soil microbial communities that can improve the representation of CUE in microbial process and ecosystem simulation models. C1 [Sinsabaugh, Robert L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Turner, Benjamin L.] Smithsonian Trop Res Inst, Apartado 0843-03092, Balboa, Ancon, Panama. [Talbot, Jennifer M.] Boston Univ, Dept Biol, 5 Cummington Mall, Boston, MA 02215 USA. [Waring, Bonnie G.; Powers, Jennifer S.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. [Powers, Jennifer S.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. [Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. [Moorhead, Daryl L.] Univ Toledo, Dept Environm Sci, 2801 W Bancroft St, Toledo, OH 43606 USA. [Shah, Jennifer J. Follstad] Univ Utah, Environm & Sustainable Studies Program, 260 South Cent Campus Dr, Salt Lake City, UT 84112 USA. RP Sinsabaugh, RL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM rlsinsab@unm.edu RI Turner, Benjamin/E-5940-2011 OI Turner, Benjamin/0000-0002-6585-0722 FU NSF CAREER grant [DEB-1053237]; U.S. Department of Energy, Office of Science, Biological and Environmental Research Division FX B. G. Waring and J. S. Powers thank an NSF CAREER grant DEB-1053237 (to J. S. Powers). C. R. Kuske and R. L. Sinsabaugh were supported by a Science Focus Area grant to Los Alamos National Laboratory by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Division. NR 57 TC 0 Z9 0 U1 62 U2 110 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0012-9615 EI 1557-7015 J9 ECOL MONOGR JI Ecol. Monogr. PD MAY PY 2016 VL 86 IS 2 BP 172 EP 189 DI 10.1890/15-2110.1 PG 18 WC Ecology SC Environmental Sciences & Ecology GA DL1EZ UT WOS:000375376400002 ER PT J AU Huang, SB Wang, YX Ma, T Wang, YY Zhao, L AF Huang, Shuangbing Wang, Yanxin Ma, Teng Wang, Yanyan Zhao, Long TI Fluorescence spectroscopy reveals accompanying occurrence of ammonium with fulvic acid-like organic matter in a fluvio-lacustrine aquifer of Jianhan Plain SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article; Proceedings Paper CT 1st International Conference on Chemical Biological Radiological and Nuclear, Research and Innovation (CBRN-RI) CY MAR 16-18, 2015 CL Antibes Juan les Pins, FRANCE SP French Alternat Energies & Atom Energy Commiss, Arnament Procurement Agcy, Army Hlth Serv, Alpes Maritimes Fire & Rescue Serv, Nice Conf Assoc DE NH4+; Groundwater; DOM; 3D fluorescence spectroscopy; Hydrochemistry; Factor analysis ID HUMIC SUBSTANCES; JIANGHAN PLAIN; CENTRAL CHINA; EEM-PARAFAC; GROUNDWATER; WATER; CHEMISTRY; ESTUARY; NITRATE; DENITRIFICATION AB This study is the first to investigate the simultaneous presence of NH4 (+) and fluorescent organic matter components (FOCs) from a fluvio-lacustrine aquifer in Central Jianghan Plain. Sediment, groundwater, and surface water samples were collected for the sediment organic matter extraction, 3D fluorescence spectroscopy characterization, and/or hydrochemical analysis. NH4 (+) and dissolved organic carbon was ubiquitous in the groundwater. The fluorescence spectroscopy revealed good relationships between NH4 (+) and fulvic acid-like components (FALCs) in the groundwater and sediment-extracted organic matter (SEOM) solutions. NH4 (+) also exhibited significant positive correlation with protein-like component (PLC) (p < 0.001), with the stronger in the SEOM solutions than that in groundwater. Comparisons of spectroscopic indices [e.g., humification index (HIX), biological index (BIX), spectra slope (S275-295), and specific UV absorbance (SUVA(254))] between the groundwater and SEOM solutions revealed more labile properties of SEOM. This result indicates that the decreasing NH4 (+)-FOCs correlations of groundwater relative to sediments may be attributed to microbial degradation. Factor analysis identifies important factors that cause NH4 (+) occurrence in the groundwater. The accompanying increase of FALC (C1) and NH4-N with the mole concentration of the normalized HCO3 (-)/(Ca2++Mg2+) and [H+] suggests that couple effects of various biodegradations simultaneously occur in the aquifer, promoting the occurrence of NH4-DOMs. C1 [Huang, Shuangbing; Wang, Yanxin; Ma, Teng] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. [Huang, Shuangbing; Wang, Yanxin; Ma, Teng] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. [Huang, Shuangbing; Wang, Yanyan; Zhao, Long] Chinese Acad Geol Sci, Inst Hydrogeol & Environm Geol, Shijiazhuang 050061, Peoples R China. [Huang, Shuangbing; Wang, Yanyan; Zhao, Long] Hebei Key Lab Groundwater Remediat, Shijiazhuang 050061, Peoples R China. [Huang, Shuangbing] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RP Huang, SB; Wang, YX; Ma, T (reprint author), China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China.; Huang, SB; Wang, YX; Ma, T (reprint author), China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China.; Huang, SB (reprint author), Chinese Acad Geol Sci, Inst Hydrogeol & Environm Geol, Shijiazhuang 050061, Peoples R China.; Huang, SB (reprint author), Hebei Key Lab Groundwater Remediat, Shijiazhuang 050061, Peoples R China.; Huang, SB (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM shuangbinghuang@126.com; yx.wang@cug.edu.cn; mateng@cug.edu.cn OI huang, shuangbing/0000-0001-5386-0352 NR 52 TC 1 Z9 1 U1 4 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD MAY PY 2016 VL 23 IS 9 BP 8508 EP 8517 DI 10.1007/s11356-016-6092-8 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DL1SO UT WOS:000375412600034 PM 26791026 ER PT J AU Baxter, HL Alexander, LW Mazarei, M Haynes, E Turner, GB Sykes, RW Decker, SR Davis, MF Dixon, RA Wang, ZY Stewart, CN AF Baxter, Holly L. Alexander, Lisa W. Mazarei, Mitra Haynes, Ellen Turner, Geoffrey B. Sykes, Robert W. Decker, Stephen R. Davis, Mark F. Dixon, Richard A. Wang, Zeng-Yu Stewart, C. Neal, Jr. TI Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits SO EUPHYTICA LA English DT Article DE COMT; Switchgrass; Lignocellulosic biofuel; Transgenic; Hybridization ID PANICUM-VIRGATUM L.; LOWLAND SWITCHGRASS; LIGNIN BIOSYNTHESIS; CELL-WALL; OVEREXPRESSION; RECALCITRANCE; FEEDSTOCKS; ETHANOL; YIELD AB Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In the present study we sought to further improve biomass characteristics by crossing the downregulated COMT T-1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T-2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. T-2 hybrids produced with T-1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63 % more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T-2 transgenic hybrids were 7 % shorter 80 days after sowing and produced 43 % less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12 % increase in total sugar release in the T-2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding. C1 [Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; Haynes, Ellen; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Baxter, Holly L.; Mazarei, Mitra; Turner, Geoffrey B.; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.; Dixon, Richard A.; Wang, Zeng-Yu; Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. [Alexander, Lisa W.] USDA ARS, Otis L Floyd Nursery Res Ctr, US Natl Arboretum, McMinnville, TN 37110 USA. [Turner, Geoffrey B.; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dixon, Richard A.] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. [Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Ardmore, OK 73401 USA. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM nealstewart@utk.edu OI davis, mark/0000-0003-4541-9852 FU Agriculture and Food Research Initiative (United States Department of Agriculture); Southeastern Partnership for Integrated Biomass and Supply Systems (The IBSS Partnership); Office of Biological and Environmental Research in the DOE Office of Science FX We thank Fred Allen, Hem Bhandari, and Ken Goddard for providing the Tennessee field accessions of switchgrass field selections, and Justin Leduc and Erika Barton for their assistance with collecting and preparing samples for cell wall characterization analyses. This work was supported by the Agriculture and Food Research Initiative (United States Department of Agriculture) and Southeastern Partnership for Integrated Biomass and Supply Systems (The IBSS Partnership), and enabled by the Bioenergy Science Center. The Bioenergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 24 TC 0 Z9 0 U1 1 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0014-2336 EI 1573-5060 J9 EUPHYTICA JI Euphytica PD MAY PY 2016 VL 209 IS 2 BP 341 EP 355 DI 10.1007/s10681-016-1632-3 PG 15 WC Agronomy; Plant Sciences; Horticulture SC Agriculture; Plant Sciences GA DK6VU UT WOS:000375064500005 ER PT J AU Moran, JJ Whitmore, LM Isern, NG Romine, MF Riha, KM Inskeep, WP Kreuzer, HW AF Moran, James J. Whitmore, Laura M. Isern, Nancy G. Romine, Margaret F. Riha, Krystin M. Inskeep, William P. Kreuzer, Helen W. TI Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park SO EXTREMOPHILES LA English DT Article DE Acidophilic; Carbon transfer; Yellowstone National Park; Archaea; Carbon cycle ID COMPARATIVE-ANALYSIS SYSTEM; GEOTHERMAL SPRINGS; 4 VERSION; METABOLISM; PHOSPHATE; FIXATION; ARCHAEA; GROWTH; MATS; IMG AB The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with C-13-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community. C1 [Moran, James J.; Whitmore, Laura M.; Riha, Krystin M.; Kreuzer, Helen W.] Pacific NW Natl Lab, Chem & Biol Signature Sci Grp, Richland, WA 99352 USA. [Isern, Nancy G.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Romine, Margaret F.] Pacific NW Natl Lab, Dept Microbiol, Richland, WA 99352 USA. [Inskeep, William P.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Whitmore, Laura M.] Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. RP Moran, JJ (reprint author), Pacific NW Natl Lab, Chem & Biol Signature Sci Grp, Richland, WA 99352 USA. EM james.moran@pnnl.gov OI Moran, James/0000-0001-9081-9017; Romine, Margaret/0000-0002-0968-7641 FU Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE); Office of Biological and Environmental Research; Genome Science Program, Office of Biological and Environmental Research, US DOE through a Community Sequencing Project [DE-AC02-05CH11231, CSP 787081] FX This research was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), and is a contribution of the Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area. A portion of the research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A portion of the research was performed by the Joint Genome Institute (DE-AC02-05CH11231) supported by the Genome Science Program, Office of Biological and Environmental Research, US DOE through a Community Sequencing Project to WPI (CSP 787081). We appreciate research permit (permit no. YELL-2014-SCI-5068) and helpful discussions and assistance with sample collection from J. Beam, H. Bernstein, K. Dana, Z. Jay, R. Jennings, M. Kozubal, and Y. Maezato. NR 29 TC 0 Z9 0 U1 15 U2 21 PU SPRINGER JAPAN KK PI TOKYO PA CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN SN 1431-0651 EI 1433-4909 J9 EXTREMOPHILES JI Extremophiles PD MAY PY 2016 VL 20 IS 3 BP 291 EP 299 DI 10.1007/s00792-016-0821-2 PG 9 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA DK3QJ UT WOS:000374832100006 PM 26995682 ER PT J AU Galloway, DL Erkens, G Kuniansky, EL Rowland, JC AF Galloway, Devin L. Erkens, Gilles Kuniansky, Eve L. Rowland, Joel C. TI Preface: Land subsidence processes SO HYDROGEOLOGY JOURNAL LA English DT Editorial Material C1 [Galloway, Devin L.] US Geol Survey, 5957 Lakeside Blvd, Indianapolis, IN 46278 USA. [Erkens, Gilles] Deltares Res Inst, 8 POB 85467, NL-3508 AL Utrecht, Netherlands. [Erkens, Gilles] Univ Utrecht, Dept Phys Geog, POB 80115, NL-3508 TC Utrecht, Netherlands. [Kuniansky, Eve L.] US Geol Survey, 1770 Corp Dr,Ste 500, Norcross, GA 30093 USA. [Rowland, Joel C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Galloway, DL (reprint author), US Geol Survey, 5957 Lakeside Blvd, Indianapolis, IN 46278 USA. EM dlgallow@usgs.gov OI Kuniansky, Eve/0000-0002-5581-0225; Galloway, Devin/0000-0003-0904-5355 NR 0 TC 1 Z9 1 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD MAY PY 2016 VL 24 IS 3 BP 547 EP 550 DI 10.1007/s10040-016-1386-y PG 4 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA DK5QA UT WOS:000374973500001 ER PT J AU Rowland, JC Coon, ET AF Rowland, Joel C. Coon, Ethan T. TI From documentation to prediction: raising the bar for thermokarst research SO HYDROGEOLOGY JOURNAL LA English DT Article DE Subsidence; Thermokarst; Permafrost; Geohazards ID UNFROZEN WATER-CONTENT; ENERGY-TRANSPORT; CLIMATE-CHANGE; THAW LAKES; PERMAFROST; SOIL; MODEL; SIMULATIONS; INCREASE; REGIONS C1 [Rowland, Joel C.; Coon, Ethan T.] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. RP Rowland, JC (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM jrowland@lanl.gov; ecoon@lanl.gov FU Next-Generation Ecosystem Experiments Arctic (NGEE-Arctic) project - Office of Biological and Environmental Research in the US Department of Energy Office of Science [DOE ERKP757] FX Support for this article was provided by the Next-Generation Ecosystem Experiments Arctic (NGEE-Arctic) project (DOE ERKP757) funded by the Office of Biological and Environmental Research in the US Department of Energy Office of Science. LA-UR-15-25552. NR 40 TC 1 Z9 1 U1 5 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD MAY PY 2016 VL 24 IS 3 BP 645 EP 648 DI 10.1007/s10040-015-1331-5 PG 4 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA DK5QA UT WOS:000374973500008 ER PT J AU Forfia, D Knight, M Melton, R AF Forfia, David Knight, Mark Melton, Ron TI The View from the Top of the Mountain SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Forfia, David] Elect Reliabil Council Texas ERCOT, Taylor, TX USA. [Knight, Mark] CGI Util, Billerica, MA USA. [Melton, Ron] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Forfia, D (reprint author), Elect Reliabil Council Texas ERCOT, Taylor, TX USA. FU U.S. Department of Energy [DE-AC05-76RL01830] FX The work summarized in this article is the result of contributions by the members of the GWAC and those who participate in the workshops and activities of the Council. The work was supported, in part, by the U.S. Department of Energy under contract DE-AC05-76RL01830. NR 6 TC 1 Z9 1 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 EI 1558-4216 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2016 VL 14 IS 3 BP 25 EP 33 DI 10.1109/MPE.2016.2524961 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA DK5YT UT WOS:000374997900005 ER PT J AU Kok, K Widergren, S AF Kok, Koen Widergren, Steve TI A Society of Devices SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Kok, Koen] Netherlands Org Appl Sci Res, Roskilde, Denmark. [Kok, Koen] Tech Univ Denmark, Roskilde, Denmark. [Widergren, Steve] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kok, K (reprint author), Netherlands Org Appl Sci Res, Roskilde, Denmark.; Kok, K (reprint author), Tech Univ Denmark, Roskilde, Denmark. NR 5 TC 3 Z9 3 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 EI 1558-4216 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2016 VL 14 IS 3 BP 34 EP 45 DI 10.1109/MPE.2016.2524962 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA DK5YT UT WOS:000374997900006 ER PT J AU Kristov, L De Martini, P Taft, JD AF Kristov, Lorenzo De Martini, Paul Taft, Jeffrey D. TI A Tale of Two Visions SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Kristov, Lorenzo] Calif Independent Syst Operator, Folsom, CA USA. [De Martini, Paul] ICF Int, San Francisco, CA USA. [Taft, Jeffrey D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kristov, L (reprint author), Calif Independent Syst Operator, Folsom, CA USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 EI 1558-4216 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2016 VL 14 IS 3 BP 63 EP 69 DI 10.1109/MPE.2016.2524964 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA DK5YT UT WOS:000374997900009 ER PT J AU Akcakaya, M Sen, S Nehorai, A AF Akcakaya, Murat Sen, Satyabrata Nehorai, Arye TI A Novel Data-Driven Learning Method for Radar Target Detection in Nonstationary Environments SO IEEE SIGNAL PROCESSING LETTERS LA English DT Article DE Active drift learning; cognitive radar; data-driven adaptive radar; incremental learning; nonstationary environment ID CONCEPT DRIFT; CLASSIFIERS AB Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detect changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. We use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes. C1 [Akcakaya, Murat] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA. [Sen, Satyabrata] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Nehorai, Arye] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA. RP Akcakaya, M (reprint author), Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA.; Sen, S (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.; Nehorai, A (reprint author), Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA. EM Akcakaya@pitt.edu; sens@ornl.gov; nehorai@ese.wustl.edu OI Sen, Satyabrata/0000-0001-9918-4409 FU U.S. Missile Defense Agency (MDA) at the Oak Ridge National Laboratory [DE-AC05-00OR22725]; Department of Energy FX The work of Sen was supported by the U.S. Missile Defense Agency (MDA) at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy, under Contract DE-AC05-00OR22725. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The work of Nehorai was supported by AFOSR under Grant FA9550-11-1-0210. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Simin Maskell. NR 37 TC 1 Z9 1 U1 3 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1070-9908 EI 1558-2361 J9 IEEE SIGNAL PROC LET JI IEEE Signal Process. Lett. PD MAY PY 2016 VL 23 IS 5 DI 10.1109/LSP.2016.2553042 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA DK7PU UT WOS:000375119000004 ER PT J AU Lin, CI Khan, AI Salahuddin, S Hu, CM AF Lin, Cheng-I Khan, Asif Islam Salahuddin, Sayeef Hu, Chenming TI Effects of the Variation of Ferroelectric Properties on Negative Capacitance FET Characteristics SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Ferroelectric; negative capacitance FET (NCFET); sub-60 mV/decade ID ROOM-TEMPERATURE AB We study the effects of the variation of ferroelectric material properties (thickness, polarization, and coercivity) on the performance of negative capacitance FETs (NCFETs). Based on this, we propose the concept of conservative design of NCFETs, where any unintentional yet reasonable and simultaneous variation (similar to +/- 3%) in ferroelectric parameters does not result in the emergence of hysteresis and causes only a reasonable variation in the ON-current (<= 5%) and, within these constraints, the enhancement of ON-current due to the addition of the ferroelectric gate oxide, which is is maximized. C1 [Lin, Cheng-I] Natl Chiao Tung Univ, Inst Elect, Hsinchu 30010, Taiwan. [Khan, Asif Islam; Salahuddin, Sayeef; Hu, Chenming] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Salahuddin, Sayeef] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lin, CI (reprint author), Natl Chiao Tung Univ, Inst Elect, Hsinchu 30010, Taiwan.; Khan, AI (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM avalance215.ee96g@g2.nctu.edu.tw; asif@eecs.berkeley.edu; sayeef@berkeley.edu; hu@eecs.berkeley.edu FU NCTU-UCB I-RiCE Program; Office of Naval Research; Center for Low Energy Systems Technology, one of the six Semiconductor Research Corporation STARnet Centers through the Defense Advanced Research Projects Agency; Center for Low Energy Systems Technology, one of the six Semiconductor Research Corporation STARnet Centers through the Microelectronics Advanced Research Corporation; Applied Materials within the I-Rice Center, University of California, Berkeley, USA; Entegris FX This work was supported in part by the NCTU-UCB I-RiCE Program, in part by the Office of Naval Research, and in part by the Center for Low Energy Systems Technology, one of the six Semiconductor Research Corporation STARnet Centers through the Defense Advanced Research Projects Agency and Microelectronics Advanced Research Corporation and Entegris and Applied Materials within the I-Rice Center, University of California, Berkeley, USA. NR 16 TC 3 Z9 3 U1 14 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD MAY PY 2016 VL 63 IS 5 BP 2197 EP 2199 DI 10.1109/TED.2016.2514783 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DK6BA UT WOS:000375004500059 ER PT J AU Uysal, F Selesnick, I Isom, BM AF Uysal, Faruk Selesnick, Ivan Isom, Bradley M. TI Mitigation of Wind Turbine Clutter for Weather Radar by Signal Separation SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Dynamic clutter mitigation; signal separation; sparse optimization; weather radar; wind turbine clutter (WTC) ID MINIMIZATION; ALGORITHM; OPTIMIZATION; FILTER AB This paper addresses the mitigation of wind turbine clutter (WTC) in weather radar data in order to increase the performance of existing weather radar systems and to improve weather analyses and forecasts. We propose a novel approach for this problem based on signal separation algorithms. We model the weather signal as group sparse in the time-frequency domain; in parallel, we model the WTC signal as having a sparse time derivative. In order to separate WTC and the desired weather returns, we formulate the signal separation problem as an optimization problem. The objective function to be minimized combines total variation regularization and time-frequency group sparsity. We also propose a three-window short-time Fourier transform for the time-frequency representation of the weather signal. To show the effectiveness of the proposed algorithm on weather radar systems, the method is applied to simulated and real data from the next-generation weather radar network. Significant improvements are observed in reflectivity, spectral width, and angular velocity estimates. C1 [Uysal, Faruk] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA. [Uysal, Faruk; Selesnick, Ivan] NYU, Tandon Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA. [Isom, Bradley M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Uysal, F (reprint author), Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA. EM faruk.uysal@ou.edu OI Uysal, Faruk/0000-0002-4518-5649; Selesnick, Ivan/0000-0002-4939-3971 FU Office of Naval Research [N00014-15-1-2314] FX This work was supported in part by the Office of Naval Research under Grant N00014-15-1-2314. NR 43 TC 0 Z9 0 U1 4 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2016 VL 54 IS 5 BP 2925 EP 2934 DI 10.1109/TGRS.2015.2508380 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DK5OF UT WOS:000374968500035 ER PT J AU Gurrala, G Dimitrovski, A Pannala, S Simunovic, S Starke, M AF Gurrala, Gurunath Dimitrovski, Aleksandar Pannala, Sreekanth Simunovic, Srdjan Starke, Michael TI Parareal in Time for Fast Power System Dynamic Simulations SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE High-performance computing; parallel algorithms; Parareal in time; power system dynamics; transient stability ID TRANSIENT STABILITY ANALYSIS; IMPLEMENTATION; INTEGRATION; ALGORITHM; COMPUTER AB Recent advancements in high-performance parallel computing platforms and parallel algorithms have significantly enhanced the opportunities for real-time power system protection and control. This paper investigates application of Parareal in time algorithm for fast dynamic simulations. Parareal algorithm belongs to the class of temporal decomposition methods which divide the time interval into sub-intervals and solve them concurrently. Time-parallel algorithms face the difficulty of providing correct initial conditions for all the sub-intervals which impact the convergence rates. Parareal overcomes this difficulty by using an approximate trajectory. It has become popular in recent years for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). This paper presents an approach for reliable implementation of Parareal with detailed models of power systems including saturation. Windowing approach is proposed for improving the convergence. Parareal is compared with the Newton-based time-parallel method. Effectiveness of the algorithm is analyzed by parallel emulation using extensive case studies on 10-generator 39-bus system and 327-generator 2383-bus system for various disturbances. Parareal with simulation windows of 1 s have shown convergence in 1 to 3 iterations for majority of the simulated cases, irrespective of the size of the system and nature of the disturbance. All the cases tested have converged with the proposed implementation. C1 [Gurrala, Gurunath; Dimitrovski, Aleksandar; Starke, Michael] Oak Ridge Natl Lab, Elect & Elect Syst Res Div, Oak Ridge, TN 37849 USA. [Pannala, Sreekanth; Simunovic, Srdjan] Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37849 USA. RP Gurrala, G; Dimitrovski, A (reprint author), Oak Ridge Natl Lab, Elect & Elect Syst Res Div, Oak Ridge, TN 37849 USA. EM gurralag@ornl.gov; dimitrovskia@ornl.gov RI Dimitrovski, Aleksandar/G-5897-2016 OI Dimitrovski, Aleksandar/0000-0001-9109-621X FU U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government. Paper no. TPWRS-01213-2014. NR 46 TC 0 Z9 0 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2016 VL 31 IS 3 BP 1820 EP 1830 DI 10.1109/TPWRS.2015.2434833 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA DK7GC UT WOS:000375092200015 ER PT J AU Follum, J Pierre, JW AF Follum, Jim Pierre, John W. TI Detection of Periodic Forced Oscillations in Power Systems SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Detection; oscillations; periodogram; phasor measurement unit (PMU); power system dynamics AB An algorithm for the detection and frequency estimation of periodic forced oscillations in power systems is proposed. The method operates by comparing the periodogram of synchrophasor measurements to a detection threshold. This threshold is established by deriving a general expression for the distribution of the periodogram and is related to the algorithm's probabilities of false alarm and detection. Unlike classic detection algorithms designed for use with white Gaussian noise, the proposed algorithm uses a detection threshold that varies with frequency to account for the colored nature of synchrophasor measurements. Further, a detection method based on multiple segments of data is also proposed to improve the algorithm's performance as a monitoring tool in the online environment. A design approach that helps to ensure that the best available probability of detection from any one detection segment is constantly increasing with the duration of the forced oscillation is also developed. Results from application of the detection algorithm to simulated and measured power system data suggest that the algorithm provides the expected detection performance and can be used to detect forced oscillations in practical monitoring of power systems. C1 [Follum, Jim] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pierre, John W.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82070 USA. RP Follum, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.; Pierre, JW (reprint author), Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82070 USA. EM james.follum@pnnl.gov; pierre@uwyo.edu FU Department of Energy, Office of Electricity Delivery and Energy Reliability [DE-OE0000657, DE-FC26-06NT42750]; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Department of Energy, Office of Electricity Delivery and Energy Reliability under Grant DE-OE0000657 and Grant DE-FC26-06NT42750. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Paper no. TPWRS-00194-2015. NR 21 TC 4 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2016 VL 31 IS 3 BP 2423 EP 2433 DI 10.1109/TPWRS.2015.2456919 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA DK7GC UT WOS:000375092200074 ER PT J AU Qiu, F Wang, JH Chen, C Tong, JZ AF Qiu, Feng Wang, Jianhui Chen, Chen Tong, Jianzhong TI Optimal Black Start Resource Allocation SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Power system restoration; resource allocation AB The restoration of the bulk power system after a partial or complete blackout relies on black-start (BS) resources. To prepare for system restoration, it is important to procure the right amount of BS resources at the right locations in the grid so that the total restoration time can be minimized. Achieving this goal requires that resource procurement planning takes the restoration process into account. In this study, we integrate the BS resource procurement decision with a restoration planning model and develop an optimization model that produces a minimal cost procurement plan that satisfies the restoration time requirement. C1 [Qiu, Feng; Wang, Jianhui; Chen, Chen] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Tong, Jianzhong] PJM, Audubon, PA 19403 USA. RP Qiu, F; Wang, JH; Chen, C (reprint author), Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA.; Tong, JZ (reprint author), PJM, Audubon, PA 19403 USA. EM fqiu@anl.gov; jianhui.wang@anl.gov; morningchen@anl.gov; tongji@pjm.com NR 2 TC 2 Z9 2 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2016 VL 31 IS 3 BP 2493 EP 2494 DI 10.1109/TPWRS.2015.2442918 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA DK7GC UT WOS:000375092200082 ER PT J AU Kou, GF Markham, P Hadley, S King, T Liu, YL AF Kou, Gefei Markham, Penn Hadley, Stanton King, Tom Liu, Yilu TI Impact of Governor Deadband on Frequency Response of the US Eastern Interconnection SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Phasor measurement units; power system dynamics; power system modeling; power system simulation; wide-area measurements ID VALIDATION; WECC AB This paper documents the effort to perform dynamic model validation for the U.S. Eastern Interconnection (EI) by modeling the governor deadband. The Western Electricity Coordinating Council-modified 1981 IEEE type 1 turbine governor model (WSIEG1) was added to the EI model. A frequency response sensitivity study is conducted to look at the impacts of a few major factors. The significance of modeling governor dead band is evident. Simulated frequency responses are adjusted and validated against the measurements collected by the frequency monitoring network. Two actual events are replicated in a 16 000-bus EI dynamic model. This paper demonstrates the need for a comprehensive effort on governor dead band modeling by the industry. C1 [Kou, Gefei; King, Tom; Liu, Yilu] Univ Tennessee, Knoxville, TN 37996 USA. [Markham, Penn] Elect Power Res Inst, Knoxville, TN 37932 USA. [Hadley, Stanton; King, Tom; Liu, Yilu] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kou, GF; King, T; Liu, YL (reprint author), Univ Tennessee, Knoxville, TN 37996 USA.; Markham, P (reprint author), Elect Power Res Inst, Knoxville, TN 37932 USA.; Hadley, S; King, T; Liu, YL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM gkou@utk.edu; pmarkham@epri.com; hadleysw@ornl.gov; tking33@utk.edu; liu@utk.edu RI Hadley, Stanton/O-1465-2015 OI Hadley, Stanton/0000-0002-6514-8802 FU Engineering Research Center Program of the National Science Foundation (NSF); Department of Energy under NSF [EEC-1041877]; Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program; Oak Ridge National Laboratory; U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability through the Advanced Modeling Grid Research Program FX This work was supported in part by the Engineering Research Center Program of the National Science Foundation (NSF), in part by the Department of Energy under NSF Award EEC-1041877, in part by the Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program, in part by the Oak Ridge National Laboratory, and in part by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability through the Advanced Modeling Grid Research Program. Paper no. TSG-01032-2014. NR 29 TC 2 Z9 2 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAY PY 2016 VL 7 IS 3 BP 1368 EP 1377 DI 10.1109/TSG.2015.2435258 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DK5PB UT WOS:000374971000019 ER PT J AU Dhindwal, S Gomez-Gil, L Neau, DB Pham, TTM Sylvestre, M Eltis, LD Bolin, JT Kumar, P AF Dhindwal, Sonali Gomez-Gil, Leticia Neau, David B. Thi Thanh My Pham Sylvestre, Michel Eltis, Lindsay D. Bolin, Jeffrey T. Kumar, Pravindra TI Structural Basis of the Enhanced Pollutant-Degrading Capabilities of an Engineered Biphenyl Dioxygenase SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SP STRAIN LB400; POLYCHLORINATED-BIPHENYLS; DIRECTED EVOLUTION; CRYSTAL-STRUCTURE; NAPHTHALENE DIOXYGENASE; OXYGENASE COMPONENT; CATABOLIC PATHWAY; ACCURATE DOCKING; DEGRADATION; SPECIFICITY AB Biphenyl dioxygenase, the first enzyme of the biphenyl catabolic pathway, is a major determinant of which polychlorinated biphenyl (PCB) congeners are metabolized by a given bacterial strain. Ongoing efforts aim to engineer BphAE, the oxygenase component of the enzyme, to efficiently transform a wider range of congeners. BphAE(II9), a variant of BphAE(LB400) in which a seven-residue segment, (TFNNIRI341)-T-335, has been replaced by the corresponding segment of BphAE(B356), (333)GINTIRT(339), transforms a broader range of PCB congeners than does either BphAE(LB400) or BphAE(B356), including 2,6-dichlorobiphenyl, 3,3'-dichlorobiphenyl, 4,4'-dichlorobiphenyl, and 2,3,4'-trichlorobiphenyl. To understand the structural basis of the enhanced activity of BphAE(II9), we have determined the three-dimensional structure of this variant in substrate-free and biphenyl-bound forms. Structural comparison with BphAE(LB400) reveals a flexible active-site mouth and a relaxed substrate binding pocket in BphAE(II9) that allow it to bind different congeners and which could be responsible for the enzyme's altered specificity. Biochemical experiments revealed that BphAE(II9) transformed 2,3,4'-trichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl more efficiently than did BphAE(LB400) and BphAE(B356). BphAE(II9) also transformed the insecticide dichlorodiphenyltrichloroethane (DDT) more efficiently than did either parental enzyme (apparent k(cat)/K-m of 2.2 +/- 0.5 mM(-1) s(-1), versus 0.9 +/- 0.5 mM(-1) s(-1) for BphAE(B356)). Studies of docking of the enzymes with these three substrates provide insight into the structural basis of the different substrate selectivities and regiospecificities of the enzymes. IMPORTANCE Biphenyl dioxygenase is the first enzyme of the biphenyl degradation pathway that is involved in the degradation of polychlorinated biphenyls. Attempts have been made to identify the residues that influence the enzyme activity for the range of substrates among various species. In this study, we have done a structural study of one variant of this enzyme that was produced by family shuffling of genes from two different species. Comparison of the structure of this variant with those of the parent enzymes provided an important insight into the molecular basis for the broader substrate preference of this enzyme. The structural and functional details gained in this study can be utilized to further engineer desired enzymatic activity, producing more potent enzymes. C1 [Dhindwal, Sonali; Kumar, Pravindra] Indian Inst Technol Roorkee, Dept Biotechnol, Roorkee, Uttar Pradesh, India. [Gomez-Gil, Leticia; Eltis, Lindsay D.] Univ British Columbia, Inst Life Sci, Dept Microbiol & Biochem, Vancouver, BC V5Z 1M9, Canada. [Neau, David B.] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Northeastern Collaborat Access Team, Argonne, IL USA. [Thi Thanh My Pham; Sylvestre, Michel] Inst Armand Frappier, Inst Natl Rech Sci, Laval, PQ, Canada. [Bolin, Jeffrey T.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Bolin, Jeffrey T.] Purdue Univ, Ctr Canc Res, W Lafayette, IN 47907 USA. RP Kumar, P (reprint author), Indian Inst Technol Roorkee, Dept Biotechnol, Roorkee, Uttar Pradesh, India. EM pravshai@gmail.com FU Gouvernement du Canada \ Natural Sciences and Engineering Research Council of Canada (NSERC); Defence Research and Development Organisation (DRDO) [ERIP/ER/1000391/M/01/1390] FX This work, including the efforts of Lindsay D. Eltis, was funded by Gouvernement du Canada vertical bar Natural Sciences and Engineering Research Council of Canada (NSERC) (Discovery grant). This work, including the efforts of Pravindra Kumar, was funded by Defence Research and Development Organisation (DRDO) (ERIP/ER/1000391/M/01/1390). NR 45 TC 0 Z9 0 U1 7 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD MAY PY 2016 VL 198 IS 10 BP 1499 EP 1512 DI 10.1128/JB.00952-15 PG 14 WC Microbiology SC Microbiology GA DK6ZW UT WOS:000375075600005 PM 26953337 ER PT J AU Pasquier, R D'Angelo, L Goulet, JA Acevedo, C Nussbaumer, A Smith, IFC AF Pasquier, Romain D'Angelo, Luca Goulet, James-A. Acevedo, Claire Nussbaumer, Alain Smith, Ian F. C. TI Measurement, Data Interpretation, and Uncertainty Propagation for Fatigue Assessments of Structures SO JOURNAL OF BRIDGE ENGINEERING LA English DT Article DE Modeling uncertainty; Behavior measurement; Model-based data interpretation; Traffic-load model; Hot-spot stress ID SYSTEM-IDENTIFICATION; BRIDGE; MODEL; LIFE AB The real behavior of existing structures is usually associated with large uncertainty that is often covered by the use of conservative models and code practices for the evaluation of remaining fatigue lives. To make better decisions related to retrofit and replacement of existing bridges, new techniques that can quantify fatigue reserve capacity are required. This paper presents a population-based prognosis methodology that takes advantage of in-service behavior measurements using model-based data interpretation. This approach is combined with advanced traffic and fatigue models to refine remaining fatigue-life predictions. Study of a full-scale bridge revealed that this methodology provides less conservative estimations of remaining fatigue lives. In addition, this approach propagates uncertainties associated with finite-element, traffic, and fatigue-damage models to quantify their effects on fatigue-damage assessments and shows that traffic models and structural model parameters are the most influential sources of uncertainty. C1 [Pasquier, Romain; Smith, Ian F. C.] Swiss Fed Inst Technol, Sch Architecture Civil & Environm Engn, Appl Comp & Mech Lab, CH-1015 Lausanne, Switzerland. [D'Angelo, Luca; Nussbaumer, Alain] Swiss Fed Inst Technol, Sch Architecture Civil & Environm Engn, Steel Struct Lab, CH-1015 Lausanne, Switzerland. [Goulet, James-A.] Polytech Montreal, Dept Civil & Geol & Min Engn, Montreal, PQ H3T 1J4, Canada. [Acevedo, Claire] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Acevedo, Claire] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Pasquier, R (reprint author), Swiss Fed Inst Technol, Sch Architecture Civil & Environm Engn, Appl Comp & Mech Lab, CH-1015 Lausanne, Switzerland. EM rpasquie@gmail.com RI Acevedo, Claire/R-6711-2016 OI Acevedo, Claire/0000-0001-5425-3052 FU Swiss National Science Foundation [200020-155972] FX This work was funded by the Swiss National Science Foundation under Contract 200020-155972. NR 44 TC 0 Z9 0 U1 6 U2 9 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0702 EI 1943-5592 J9 J BRIDGE ENG JI J. Bridge Eng. PD MAY PY 2016 VL 21 IS 5 AR UNSP 04015087 DI 10.1061/(ASCE)BE.1943-5592.0000861 PG 13 WC Engineering, Civil SC Engineering GA DK4FS UT WOS:000374873200010 ER PT J AU Pendyala, VRR Jacobs, G Bertaux, C Khalid, S Davis, BH AF Pendyala, Venkat Ramana Rao Jacobs, Gary Bertaux, Clement Khalid, Syed Davis, Burtron H. TI Fischer-Tropsch synthesis: Effect of ammonia on supported cobalt catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE Fischer-Tropsch synthesis; Effect of ammonia; Supported cobalt catalysts; EXAFS/XANES; Deactivation; Product selectivity ID PROMOTED CO/AL2O3 CATALYSTS; SYNGAS; DEACTIVATION; HYDROCARBONS; SILICA; REDUCIBILITY; SELECTIVITY; IMPURITIES; REDUCTION; KINETICS AB The effect of ammonia in syngas on the performance of various supported cobalt catalysts (i.e., Al2O3, TiO2 and SiO2) was investigated during Fischer-Tropsch synthesis (FTS) using a continuously stirred tank reactor (CSTR). The addition of ammonia (10 ppmv NH3) caused a significant deactivation for all supported cobalt catalysts, but the rate of deactivation was higher for the silica-supported catalysts relative to the alumina and titania-supported catalysts used in this work. Ammonia addition had a positive effect on product selectivity (i.e., lower light gas products and higher C-5+) for alumina and titania-supported catalysts compared to ammonia free conditions, whereas, the addition of ammonia increased lighter hydrocarbon (C-1-C-4) products and decreased higher hydrocarbon (C-5+) selectivity compared to ammonia-free synthesis conditions for the silica-supported catalyst. For alumina and titania-supported catalysts, the activity almost recovered with mild in-situ hydrogen treatment of the ammonia exposed catalysts. For the silica-supported catalyst, the loss of activity is somewhat irreversible (i.e., cannot be regained after the mild hydrogen treatment). Addition of ammonia led to a significant loss in BET surface area and changes in pore diameter (consistent with pore collapse of a fraction of pores into the microporous range as described in the literature), as well as formation of catalytically inactive cobalt support compounds for the silica-supported catalyst. On the other hand, the pore characteristics of alumina and titania-supported catalysts were not significantly changed. XANES results of the ammonia exposed silica-supported catalysts further confirm the formation of cobalt-support compounds (cobalt silicates). (C) 2016 Elsevier Inc. All rights reserved. C1 [Pendyala, Venkat Ramana Rao; Jacobs, Gary; Bertaux, Clement; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. [Khalid, Syed] Brookhaven Natl Labs, NSLS, Brookhaven Ave, Upton, NY 11973 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu OI Bertaux, Clement/0000-0001-8665-8142 FU Commonwealth of Kentucky; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704, DE-AC02-76SF00515] FX The work carried out at the CAER was supported by the Commonwealth of Kentucky. Use of the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Use of the Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 37 TC 3 Z9 3 U1 13 U2 27 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD MAY PY 2016 VL 337 BP 80 EP 90 DI 10.1016/j.jcat.2016.01.026 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DK4WG UT WOS:000374920400010 ER PT J AU Brunke, MA Broxton, P Pelletier, J Gochis, D Hazenberg, P Lawrence, DM Leung, LR Niu, GY Troch, PA Zeng, XB AF Brunke, Michael A. Broxton, Patrick Pelletier, Jon Gochis, David Hazenberg, Pieter Lawrence, David M. Leung, L. Ruby Niu, Guo-Yue Troch, Peter A. Zeng, Xubin TI Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5) SO JOURNAL OF CLIMATE LA English DT Article ID WATER-TABLE DYNAMICS; RICHARDS EQUATION; ROOT DISTRIBUTION; CLIMATE MODEL; GLOBAL-SCALE; PART I; SIMULATION; SURFACE; DEPTH; MOISTURE AB One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9 degrees latitude x 1.25 degrees longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development. C1 [Brunke, Michael A.; Broxton, Patrick; Hazenberg, Pieter; Zeng, Xubin] Univ Arizona, Dept Atmospher Sci, POB 210081, Tucson, AZ 85721 USA. [Pelletier, Jon] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Gochis, David; Lawrence, David M.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Niu, Guo-Yue; Troch, Peter A.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Brunke, MA (reprint author), Univ Arizona, Dept Atmospher Sci, POB 210081, Tucson, AZ 85721 USA. EM brunke@atmo.arizona.edu OI Zeng, Xubin/0000-0001-7352-2764 FU DOE [DE-SC0006773]; NASA [NNX13AK82A]; NSF [AGS-0944101]; DOE Office of Science Biological and Environmental Research Earth System Modeling program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; National Science Foundation FX This work was supported by DOE (DE-SC0006773), NASA (NNX13AK82A), and NSF (AGS-0944101). L. R. Leung was supported by the DOE Office of Science Biological and Environmental Research Earth System Modeling program. Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. We thank the Jet Propulsion Laboratory for providing the GRACE data, which were processed by Sean Swenson under support from the NASA MEaSUREs Program. High-performance computing support was provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation, through computing time on Yellowstone (http://n2t.net/ark:/85065/d7wd3xhc) and on The University of Arizona Research Computing NR 47 TC 0 Z9 0 U1 5 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY PY 2016 VL 29 IS 9 BP 3441 EP 3461 DI 10.1175/JCLI-D-15-0307.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK8AD UT WOS:000375147800014 ER PT J AU Ristova, MM Radiceska, P Bozinov, I Barandovski, L AF Ristova, Mimoza M. Radiceska, Pavlina Bozinov, Igorco Barandovski, Lambe TI Refreshing the Aged Latent Fingerprints with Ionizing Radiation Prior to the Cyanoacrylate Fuming Procedure: A Preliminary Study SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; latent fingerprints; minutiae; cyanoacrylate fuming; UV; X-ray; thermal neutrons ID TIME AB One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. C1 [Ristova, Mimoza M.; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe] Univ Ss Cyril & Methodius, Fac Nat Sci & Math, Dept Phys, Arhimedova 3, Skopje, Macedonia. [Ristova, Mimoza M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd B2, Berkeley, CA 94720 USA. [Bozinov, Igorco] Minist Internal Affairs, Forens Dept, Dimce Mircev 9, Skopje 1000, Macedonia. RP Ristova, MM (reprint author), Univ Ss Cyril & Methodius, Fac Nat Sci & Math, Dept Phys, Arhimedova 3, Skopje, Macedonia. EM mima.ristova@gmail.com FU European Commission [JEP-41105-2006] FX Financial support provided by the European Commission in building the CA chamber for the Forensic Science Laboratory at the Physics Department, University of Skopje, Republic of Macedonia: Tempus Project No. JEP-41105-2006. NR 12 TC 0 Z9 0 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD MAY PY 2016 VL 61 IS 3 BP 787 EP 791 DI 10.1111/1556-4029.13020 PG 5 WC Medicine, Legal SC Legal Medicine GA DK7AA UT WOS:000375076000029 PM 27122421 ER PT J AU Ren, HY Hou, ZS Huang, MY Bao, J Sun, Y Tesfa, T Leung, LR AF Ren, Huiying Hou, Zhangshuan Huang, Maoyi Bao, Jie Sun, Yu Tesfa, Teklu Leung, L. Ruby TI Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins SO JOURNAL OF HYDROLOGY LA English DT Article DE Community land model; MOPEX; Parameter identifiability; Parameter transferability; Basin classification ID COMMUNITY LAND MODEL; CATCHMENT CLASSIFICATION; DIFFERENTIAL EVOLUTION; PHYSICAL CONTROLS; CLUSTER-ANALYSIS; SYSTEM MODEL; FRAMEWORK; CLIMATE; VARIABILITY; PREDICTIONS AB The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrological parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified according to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices attributes (external hydrologic factors) separately, using Principal component analysis (PCA) and expectation-maximization (EM) - based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each parameter sensitivity-based classification system (S-Class) with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. A set of experiments of model calibration were conducted to evaluate the transferability of model calibration strategies and parameter values within and between the classes. It was demonstrated that inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Tesfa, Teklu; Leung, L. Ruby] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Sun, Yu] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. RP Hou, ZS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM zhangshuan.hou@pnnl.gov RI Hou, Zhangshuan/B-1546-2014; Huang, Maoyi/I-8599-2012 OI Hou, Zhangshuan/0000-0002-9388-6060; Huang, Maoyi/0000-0001-9154-9485 FU U.S. Department of Energy Office of Science Biological and Environmental Research (BER) as part of the Earth System Modeling Program; Office of Science Advanced Scientific Computing Research (ASCR); US DOE by Battelle Memorial Institute [DE-AC05-76RLO1830] FX This work is funded by the U.S. Department of Energy Office of Science Biological and Environmental Research (BER) as part of the Earth System Modeling Program and also supported by the Office of Science Advanced Scientific Computing Research (ASCR). PNNL is operated for the US DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO1830. NR 61 TC 1 Z9 1 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD MAY PY 2016 VL 536 BP 92 EP 108 DI 10.1016/j.jhydrol.2016.02.042 PG 17 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DK3IV UT WOS:000374811200008 ER PT J AU Kampf, SK Faulconer, J Shaw, JR Sutfin, NA Cooper, DJ AF Kampf, Stephanie K. Faulconer, Joshua Shaw, Jeremy R. Sutfin, Nicholas A. Cooper, David J. TI Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels SO JOURNAL OF HYDROLOGY LA English DT Article DE Ephemeral stream; Infiltration Hyper-arid; Sonoran Desert; Water content; Alluvium ID WESTERN MOJAVE DESERT; TRANSMISSION LOSSES; SOUTHERN CALIFORNIA; ARIZONA; USA; MOVEMENT; RECHARGE; EVENTS; ISRAEL; NEGEV AB In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced,5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near surface layer of finer consolidated sediments that impeded deep percolation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kampf, Stephanie K.; Faulconer, Joshua] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, 1476 Campus Delivery, Ft Collins, CO 80523 USA. [Shaw, Jeremy R.; Cooper, David J.] Colorado State Univ, Dept Forest & Rangeland Stewardship, Grad Degree Program Ecol, Ft Collins, CO 80523 USA. [Sutfin, Nicholas A.] Colorado State Univ, Dept Geosci, Ft Collins, CO 80523 USA. [Faulconer, Joshua] TerranearPMC LLC, 4200 W Jemez Rd 502, Los Alamos, NM 87544 USA. [Sutfin, Nicholas A.] Los Alamos Natl Lab, Div Earth & Environm Sci, EES-14,MS J495, Los Alamos, NM 87545 USA. RP Kampf, SK (reprint author), Colorado State Univ, Dept Ecosyst Sci & Sustainabil, 1476 Campus Delivery, Ft Collins, CO 80523 USA. EM stephanie.kampf@colostate.edu; jdfaulcon@gmail.com; jeremy.shaw@colostate.edu; nsutfin@lanl.gov; David.Cooper@colostate.edu RI Sutfin, Nicholas A/Q-7824-2016; Kampf, Stephanie/F-4608-2011 OI Sutfin, Nicholas A/0000-0003-4429-7814; Kampf, Stephanie/0000-0001-8991-2679 FU Strategic Environmental Research and Development Program (SERDP) [RC-1725] FX This research was funded by The Strategic Environmental Research and Development Program (SERDP) through contract RC-1725. Thanks to SERDP program manager Dr. John Hall, staff at the Yuma Proving Ground, and to Andrew Carlson, Ben Conrad, Keith Faulconer, Andrew Genco, Dennis Harry, Susan Howe, Sean Jacobson, Julie Kray, Michael Lefsky, Jorge Ramirez, Reed Rider, and Ellen Wohl for contributions to field measurements. Thanks also to Tim McVicar, two anonymous reviewers, Ellen Wohl, Adam Johnson, John Hammond, and Freddy Saavedra for their helpful editorial suggestions. NR 41 TC 0 Z9 0 U1 4 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD MAY PY 2016 VL 536 BP 524 EP 533 DI 10.1016/j.jhydrol.2016.03.016 PG 10 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DK3IV UT WOS:000374811200042 ER PT J AU Pennington, MR AF Pennington, Michael R. TI Evolving images of the proton: hadron physics over the past 40 years SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE hadron physics; QCD; experiment and theory ID DEEP-INELASTIC-SCATTERING; VIRTUAL COMPTON-SCATTERING; CHIRAL PERTURBATION-THEORY; DYSON-SCHWINGER EQUATIONS; QUANTUM CHROMODYNAMICS; GLUON PROPAGATOR; QUARK-MODEL; HYPERFINE INTERACTIONS; INFRARED BEHAVIOR; BARYON RESONANCES AB Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However, the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. A very personal view of these fascinating developments in cold QCD is presented. C1 [Pennington, Michael R.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Pennington, MR (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM michaelp@jlab.org FU Jefferson Science Associates, LLC under US DOE [DE-AC05-06OR23177] FX I acknowledge all the many researchers, from those just starting on the path of exploration to those with greyer hair, who have taught me much and shaped my world view over the past four decades. I also wish to thank Nobuo Sato for his construction of figure 8, and Joanna Griffin, Pauline Russell and Shannon West for help with many of the other figures. Authored by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. NR 193 TC 2 Z9 2 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAY PY 2016 VL 43 IS 5 AR 054001 DI 10.1088/0954-3899/43/5/054001 PG 35 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DL0OW UT WOS:000375333300001 ER PT J AU Archibald, R Gelb, A Platte, RB AF Archibald, Rick Gelb, Anne Platte, Rodrigo B. TI Image Reconstruction from Undersampled Fourier Data Using the Polynomial Annihilation Transform SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Fourier Data; l(1) regularization; Split Bregman; Edge Detection; Polynomial Annihilation ID ALGORITHMS AB Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more regularization terms. The Split Bregman Algorithm provides a fast explicit solution for the case when TV is used for the regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the "polynomial annihilation (PA) transform." This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach. C1 [Archibald, Rick] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Gelb, Anne; Platte, Rodrigo B.] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA. RP Gelb, A (reprint author), Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA. EM archibaldrk@ornl.gov; annegelb@asu.edu; rbp@asu.edu RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program; [NSF-DMS 1216559]; [AFOSR FA9550-12-1-0393]; [AFOSR FA9550-15-1-0152] FX This work is supported in part by grants NSF-DMS 1216559, AFOSR FA9550-12-1-0393, and AFOSR FA9550-15-1-0152. The submitted manuscript is based upon work, authored in part by contractors [UT-Battelle LLC, manager of Oak Ridge National Laboratory (ORNL)], and supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 29 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD MAY PY 2016 VL 67 IS 2 BP 432 EP 452 DI 10.1007/s10915-015-0088-2 PG 21 WC Mathematics, Applied SC Mathematics GA DJ7TD UT WOS:000374414500002 ER PT J AU del Rio, MS Bianchi, D Cocco, D Glass, M Idir, M Metz, J Raimondi, L Rebuffi, L Reininger, R Shi, XB Siewert, F Spielmann-Jaeggi, S Takacs, P Tomasset, M Tonnessen, T Vivo, A Yashchuk, V AF del Rio, Manuel Sanchez Bianchi, Davide Cocco, Daniele Glass, Mark Idir, Mourad Metz, Jim Raimondi, Lorenzo Rebuffi, Luca Reininger, Ruben Shi, Xianbo Siewert, Frank Spielmann-Jaeggi, Sibylle Takacs, Peter Tomasset, Muriel Tonnessen, Tom Vivo, Amparo Yashchuk, Valeriy TI DABAM: an open-source database of X-ray mirrors metrology SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray mirror; metrology; database; Python; statistics ID MEASURING MACHINE; ELLIPTIC MIRRORS; SLOPE ERRORS; SURFACES; SIMULATION; SCATTERING; QUALITY; OPTICS; FINISH; POWER AB An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database. C1 [del Rio, Manuel Sanchez; Glass, Mark; Vivo, Amparo] ESRF European Synchrotron, 71 Ave Martyrs, F-38000 Grenoble, France. [Bianchi, Davide] AC2T Res GmbH, Viktro Kaplan Str 2-C, A-2700 Wiener Neustadt, Austria. [Cocco, Daniele] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Idir, Mourad] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Metz, Jim; Tonnessen, Tom] InSync Inc, 2511C Broadbent Pkwy, Albuquerque, NM 87107 USA. [Raimondi, Lorenzo; Rebuffi, Luca] Elettra Sincrotrone Trieste SCpA, Basovizza, TS, Italy. [Reininger, Ruben; Shi, Xianbo] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Siewert, Frank] Helmholtz Zentrum Berlin, Inst Nanometre Opt & Technol, BESSY 2, Albert Einstein Str 15, D-12489 Berlin, Germany. [Spielmann-Jaeggi, Sibylle] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Takacs, Peter] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Tomasset, Muriel] Synchrotron Soleil, St Aubin, France. [Yashchuk, Valeriy] Lawrence Berkeley Natl Lab, Adv Light Source, MS 15-R0317,1 Cyclotron Rd, Berkeley, CA 94720 USA. RP del Rio, MS (reprint author), ESRF European Synchrotron, 71 Ave Martyrs, F-38000 Grenoble, France. EM srio@esrf.eu RI Krailers, Niramai/K-8496-2016; OI Krailers, Niramai/0000-0002-7053-7087; Rebuffi, Luca/0000-0001-5779-1948 FU Austrian COMET-Program (Project K2 XTribology) [849109]; European Metrology Research Project EMRP-JRP Angles within the EURAMET program of the European Union [SIB58]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; US Department of Energy [DE-SC0012704]; Office of Science, Office of Basic Energy Sciences, Material Science Division, of the US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; NASA Small Business Innovation Research SBIR grant [15-1 S2.04-9193] FX The work of DB is partially funded by the Austrian COMET-Program (Project K2 XTribology, Grant No. 849109). That of FS is partially funded by the European Metrology Research Project EMRP-JRP SIB58 Angles within the EURAMET program of the European Union. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The work of PT was performed at Brookhaven National Laboratory with support from the US Department of Energy under Prime Contract No. DE-SC0012704. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The work of VVY was supported in part via NASA Small Business Innovation Research SBIR grant to Second Star Algonumerics, project No. 15-1 S2.04-9193. NR 48 TC 1 Z9 1 U1 0 U2 2 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2016 VL 23 BP 665 EP 678 DI 10.1107/S1600577516005014 PN 3 PG 14 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DK7ZO UT WOS:000375146200004 ER PT J AU Zhang, QT Dufresne, EM Grybos, P Kmon, P Maj, P Narayanan, S Deptuch, GW Szczygiel, R Sandy, A AF Zhang, Qingteng Dufresne, Eric M. Grybos, Pawel Kmon, Piotr Maj, Piotr Narayanan, Suresh Deptuch, Grzegorz W. Szczygiel, Robert Sandy, Alec TI Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE pixel array detector (PAD); high frame rate; photon counting; two counters; X-ray photon correlation spectroscopy (XPCS); small-angle X-ray scattering (SAXS) ID DIFFRACTION; SCATTERING; NANOSCALE; DYNAMICS; MOTION AB Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed. C1 [Zhang, Qingteng; Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Szczygiel, Robert] AGH Univ Sci & Technol, Ave Mickiewicza 30, PL-30059 Krakow, Poland. [Deptuch, Grzegorz W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Zhang, QT; Dufresne, EM (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. EM qzhang234@aps.anl.gov; dufresne@anl.gov RI Zhang, Qingteng/F-9340-2015; OI Zhang, Qingteng/0000-0002-1600-2161; Dufresne, Eric/0000-0002-2077-4754 FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; National Center for Research and Development, Poland [PBS1/A3/12/2012]; US Department of Energy [DE-AC02-07CH11359] FX This research was performed on beamline 8-ID-I of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract No. DE-AC02-06CH11357. AGH University of Science and Technology was supported by the National Center for Research and Development, Poland, PBS1/A3/12/2012, in the years 2012-2015. Fermilab is operated by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the US Department of Energy. We wish to thank the ASIC Development Group at Fermilab for technical support. QZ acknowledges help with the sample preparation from Professor Laurence Lurio of Northern Illinois University. NR 28 TC 1 Z9 1 U1 3 U2 8 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2016 VL 23 BP 679 EP 684 DI 10.1107/S1600577516005166 PN 3 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DK7ZO UT WOS:000375146200005 PM 27140146 ER PT J AU Huang, JW E, JC Huang, JY Sun, T Fezzaa, K Luo, SN AF Huang, J. W. E, J. C. Huang, J. Y. Sun, T. Fezzaa, K. Luo, S. N. TI Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE synchrotron X-ray Laue diffraction; crystal rotation ID GAS-FLUIDIZED BEDS; PARTICLE ROTATION; DEFORMATION AB Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250-350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction. C1 [Huang, J. W.; E, J. C.; Huang, J. Y.; Luo, S. N.] Peac Inst Multiscale Sci, Chengdu 610031, Sichuan, Peoples R China. [Huang, J. W.; E, J. C.; Huang, J. Y.; Luo, S. N.] Southwest Jiaotong Univ, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Sichuan, Peoples R China. [Sun, T.; Fezzaa, K.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Luo, SN (reprint author), Peac Inst Multiscale Sci, Chengdu 610031, Sichuan, Peoples R China.; Luo, SN (reprint author), Southwest Jiaotong Univ, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Sichuan, Peoples R China. EM sluo@pims.ac.cn RI Luo, Sheng-Nian /D-2257-2010; OI Luo, Sheng-Nian /0000-0002-7538-0541; E, Juncheng/0000-0001-6061-5734 FU 973 project [2014CB845904]; NSF of China [11472253]; US Department of Energy (DOE) Office of Science by Argonne National Laboratory, US DOE [DE-AC02-06CH11357] FX The MATLAB program developed in this work has benefited from the HisPoD diffraction simulation code. We are grateful to J. Wang at APS, B. X. Bie, D. Fan and L. Lu at PIMS for their help with the experiments. This work was partially supported by the 973 project (2014CB845904) and NSF (11472253) of China. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. NR 28 TC 2 Z9 2 U1 4 U2 11 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2016 VL 23 BP 712 EP 717 DI 10.1107/S160057751600223X PN 3 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DK7ZO UT WOS:000375146200009 PM 27140150 ER PT J AU Pelt, DM Gursoy, D Palenstijn, WJ Sijbers, J De Carlo, F Batenburg, KJ AF Pelt, Daniel M. Guersoy, Doga Palenstijn, Willem Jan Sijbers, Jan De Carlo, Francesco Batenburg, Kees Joost TI Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Software Review DE tomography; TomoPy; ASTRA toolbox ID IMAGE-RECONSTRUCTION; ELECTRON TOMOGRAPHY; ALGORITHM; MICROTOMOGRAPHY; PHASE AB The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy's standard reconstruction method. C1 [Pelt, Daniel M.; Palenstijn, Willem Jan; Batenburg, Kees Joost] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands. [Guersoy, Doga; De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Sijbers, Jan; Batenburg, Kees Joost] Univ Antwerp, iMinds Vis Lab, Univ Pl 1, B-2610 Antwerp, Belgium. [Batenburg, Kees Joost] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands. RP Pelt, DM (reprint author), Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands. EM d.m.pelt@cwi.nl RI Sijbers, Jan/H-4324-2015 OI Sijbers, Jan/0000-0003-4225-2487 FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Netherlands Organization for Scientific Research (NWO) [639.072.005]; COST Action [MP1207] FX We thank Luhong Wang and Haohe Liu, Harbin Institute of Technology, for sharing the data reported in Fig. 3. This research used resources of the US Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357, and was also funded by the Netherlands Organization for Scientific Research (NWO), project number 639.072.005. We acknowledge COST Action MP1207 for networking support. NR 37 TC 5 Z9 5 U1 2 U2 12 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2016 VL 23 BP 842 EP 849 DI 10.1107/S1600577516005658 PN 3 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DK7ZO UT WOS:000375146200026 PM 27140167 ER PT J AU Antipov, S Baryshev, SV Butler, JE Antipova, O Liu, Z Stoupin, S AF Antipov, S. Baryshev, S. V. Butler, J. E. Antipova, O. Liu, Z. Stoupin, S. TI Single-crystal diamond refractive lens for focusing X-rays in two dimensions (vol 23, pg 163, 2016) SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Correction DE diamond two-dimensional lens; X-ray optics; compound refractive lens; laser etching C1 [Antipov, S.; Baryshev, S. V.; Butler, J. E.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Butler, J. E.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603600, Russia. [Antipova, O.] IIT, Dept Biol & Chem Sci, Chicago, IL 60616 USA. [Liu, Z.; Stoupin, S.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Antipov, S (reprint author), Euclid Techlabs LLC, Solon, OH 44139 USA.; Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. EM s.antipov@euclidtechlabs.com; sstoupin@aps.anl.gov RI Butler, James/B-7965-2008 OI Butler, James/0000-0002-4794-7176 NR 2 TC 0 Z9 0 U1 5 U2 12 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2016 VL 23 BP 850 EP 850 DI 10.1107/S1600577516006159 PN 3 PG 1 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA DK7ZO UT WOS:000375146200027 ER PT J AU Shen, N Suratwala, T Steele, W Wong, L Feit, MD Miller, PE Dylla-Spears, R Desjardin, R AF Shen, Nan Suratwala, Tayyab Steele, William Wong, Lana Feit, Michael D. Miller, Philip E. Dylla-Spears, Rebecca Desjardin, Richard TI Nanoscratching of Optical Glass Surfaces Near the Elastic-Plastic Load Boundary to Mimic the Mechanics of Polishing Particles SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID FUSED-SILICA; DENSIFICATION; INDENTATION; DAMAGE; LAYER AB The nanomechanical deformations on glass surfaces near the elastic-plastic load boundary have been measured on various glasses by nanoscratching using an atomic force microscope (AFM) to mimic the mechanical interactions of polishing particles during optical polishing. Nanoscratches were created in air and aqueous environments using a 150-nm radius diamond-coated tip on polished fused silica, borosilicate, and phosphate glass surfaces; the topology of the nanoscratches were then characterized by AFM. Using load ranges expected on slurry particles during glass polishing (0.05-200 N), plastic-type scratches were observed with depths in the nm range. Nanoscratching in air generally showed deeper & narrower scratches with more pileup compared to nanoscratching in water, especially on fused silica glass. The critical load needed to observe plastic deformation was determined to range from 0.2-1.2 N for the three glasses. For phosphate glass, the load dependence of the removal depth was consistent with that expected from Hertzian mechanics. However, for fused silica and borosilicate glass in this load range, the deformation depth showed a weak dependence with load. Using a sub-T-g annealing technique, material relaxation was observed on the nanoscratches, suggesting that a significant fraction of the deformation was due to densification on fused silica and borosilicate glass. Repeated nanoscratching at the same location was utilized for determining the effective incremental plastic removal depth. The incremental removal depth decreased with increase in number of passes, stabilizing after similar to 10 passes. In water, the removal depths were determined as 0.3-0.55 nm/pass for fused silica, 0.85 nm/pass for borosilicate glass, and 2.4 nm/pass for phosphate glass. The combined nanoscratching results were utilized to define the composite removal function (i.e., removal depth) for a single polishing particle as a function of load, spanning the chemical to the plastic removal regimes. This removal function serves as an important set of parameters in understanding material removal during polishing and the resulting workpiece surface roughness. C1 [Shen, Nan; Suratwala, Tayyab; Steele, William; Wong, Lana; Feit, Michael D.; Miller, Philip E.; Dylla-Spears, Rebecca; Desjardin, Richard] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RP Shen, N; Suratwala, T (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM shen6@llnl.gov; suratwala1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory within the Laboratory Directed Research and Development Program (LDRD) at LLNL [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 within the Laboratory Directed Research and Development Program (LDRD) at LLNL. NR 28 TC 0 Z9 0 U1 17 U2 66 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAY PY 2016 VL 99 IS 5 BP 1477 EP 1484 DI 10.1111/jace.14083 PG 8 WC Materials Science, Ceramics SC Materials Science GA DK4AL UT WOS:000374858500001 ER PT J AU Parkison, AJ Nelson, AT AF Parkison, Adam J. Nelson, Andrew T. TI Deconvolution of Mass Gain and Mass Loss Mechanisms During Carbothermic Reduction to Nitridation of Zirconia SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID PHASES; ZRO2-ZR3N4; ZRCXNY; SYSTEM; ZRO2 AB A novel approach was used to understand the effects of processing conditions on the conversion of zirconium dioxide to zirconium carbonitride using a carbothermic reduction to nitridation process. The conversion process was studied through the use of thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy, resulting in an understanding of the nature and progression of conversion. The rate of mass change as measured through thermogravimetric analysis was plotted as a function of reaction progression, guiding the use of XRD in further understanding the conversion process. This approach was then used to characterize the important effect of initial compact morphology on conversion. Coupled analysis techniques allow for advancement of a number of hypotheses regarding the rate-limiting factors along the various steps in the carbothermic reduction to nitridation process. These results demonstrate the value of the proposed approach to aid in deconstruction of competing reaction mechanisms as necessary to understand the system studied here or other systems of scientific and industrial relevance. C1 [Parkison, Adam J.; Nelson, Andrew T.] Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. RP Parkison, AJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM ajparkison@lanl.gov OI Nelson, Andrew/0000-0002-4071-3502 NR 15 TC 1 Z9 1 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAY PY 2016 VL 99 IS 5 BP 1525 EP 1533 DI 10.1111/jace.14156 PG 9 WC Materials Science, Ceramics SC Materials Science GA DK4AL UT WOS:000374858500008 ER PT J AU Finnell, J AF Finnell, Joshua TI Zero K. Scribner SO LIBRARY JOURNAL LA English DT Book Review C1 [Finnell, Joshua] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Finnell, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD MAY 1 PY 2016 VL 141 IS 8 BP 61 EP 62 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA DK9IM UT WOS:000375244100068 ER PT J AU Uphoff, H AF Uphoff, Heidi TI The Mathews Men: Seven Brothers and the War Against Hitler's U-Boats SO LIBRARY JOURNAL LA English DT Book Review C1 [Uphoff, Heidi] Sandia Natl Labs, Livermore, CA 94550 USA. RP Uphoff, H (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD MAY 1 PY 2016 VL 141 IS 8 BP 84 EP 85 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA DK9IM UT WOS:000375244100157 ER PT J AU Liu, QD Wen, HM Zhang, H Gu, JF Li, CW Lavernia, EJ AF Liu, Qingdong Wen, Haiming Zhang, Han Gu, Jianfeng Li, Chuanwei Lavernia, Enrique J. TI Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID RETAINED AUSTENITE; CU PRECIPITATION; PIPELINE STEEL; FE-CU; TOUGHNESS; TRANSFORMATION; MARTENSITE; BEHAVIOR; ALPHA; IRON AB The influence of Cu-rich precipitates(CRPs) and reverted austenite (RA) on the strength and impact toughness of a Cu-containing 3.5 wt pct Ni high-strength low-alloy (HSLA) steel after various heat treatments involving quenching (Q), lamellarization (L), and tempering (T) is studied using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. The QT sample exhibits high strength but low impact toughness, whereas the QL samples mostly possess improved impact toughness but moderate strength, but the QLT samples again have degraded impact toughness due to additional tempering. The dispersion of nanoscale CRPs, which are formed during tempering, is responsible for the enhanced strength but simultaneously leads to the degraded impact toughness. The RA formed during lamellarization contributes to the improved impact toughness. Based on the present study, new heat treatment schedules are proposed to balance strength and impact toughness by optimizing the precipitation of CRPs and RA. (C) The Minerals, Metals & Materials Society and ASM International 2016 C1 [Liu, Qingdong; Gu, Jianfeng; Li, Chuanwei] Shanghai Jiao Tong Univ, Inst Mat Modificat & Modelling, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China. [Liu, Qingdong; Gu, Jianfeng; Li, Chuanwei] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai 200240, Peoples R China. [Wen, Haiming] Idaho State Univ, Dept Nucl Engn & Hlth Phys, Idaho Falls, ID 83402 USA. [Wen, Haiming] Idaho Natl Lab, Characterizat & Adv PIE Div, Idaho Falls, ID 83415 USA. [Zhang, Han] Max Planck Inst Eisenforsch GmbH, Dept Microstruct Phys & Alloy Design, Max Planck Str 1, D-40237 Dusseldorf, Germany. [Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Gu, JF (reprint author), Shanghai Jiao Tong Univ, Inst Mat Modificat & Modelling, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China.; Gu, JF (reprint author), Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai 200240, Peoples R China. EM gujf@sjtu.edu.cn RI Wen, Haiming/B-3250-2013 OI Wen, Haiming/0000-0003-2918-3966 FU National Basic Research Program of China [2011CB 012904]; 111 Project of China [B13035]; China Postdoctoral Science Foundation [2013M541517] FX This work was financially supported by the National Basic Research Program of China (No. 2011CB 012904), the 111 Project of China (No. B13035), and the China Postdoctoral Science Foundation (No. 2013M541517). We extend our gratitude to Professor Emeritus Shipu Chen at Shanghai Jiaotong University for kind discussions. NR 38 TC 0 Z9 0 U1 7 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2016 VL 47A IS 5 BP 1960 EP 1974 DI 10.1007/s11661-016-3389-7 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DL0OF UT WOS:000375331600008 ER PT J AU Kapoor, M O'Malley, R Thompson, GB AF Kapoor, Monica O'Malley, Ronald Thompson, Gregory B. TI Atom Probe Tomography Study of Multi-microalloyed Carbide and Carbo-Nitride Precipitates and the Precipitation Sequence in Nb-Ti HSLA Steels SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID COMPLEX HETEROGENEOUS PRECIPITATION; MECHANICAL-PROPERTIES; HIGH-STRENGTH; INTERPHASE PRECIPITATION; V-STEELS; NIOBIUM; MICROSTRUCTURE; TITANIUM; EVOLUTION; VANADIUM AB Composition analysis of carbide and carbo-nitride precipitates was performed for two Nb-Ti microalloyed steels with yield strengths of 750 and 580 MPa using an atom probe study. In the high-Ti 750 MPa steel, Ti-rich (Ti, Nb)(C, N) and Ti-rich (Ti, Nb)(C) precipitates were observed. In the high-Nb 580 MPa steel, a Ti-rich (Ti, Nb)(C, N) precipitate and (Ti, Nb)(C) clusters were noted. These (Ti, Nb)(C) clusters in the high-Nb 580 MPa steel were smaller than the (Ti, Nb)(C) precipitates in high-Ti 750 MPa steel. In general, a larger number of precipitates were found in the high-Ti 750 MPa steel. This difference in the number density of the precipitates between the two steels is attributed to the difference in Ti content. Combining the atom probe tomography results and thermodynamic calculations, the precipitation sequence in these alloys was inferred to be the following: as the temperature decreases, TiN precipitates out of the solution with successive (Ti, Nb)(C, N) layers of varying composition forming on these Ti-rich precipitates. Once N is depleted from the solution, a second set of (Ti, Nb)(C) precipitates in a similar manner in the matrix and also onto the carbo-nitride phase. This observation is consistent with previous observations in high-strength low-alloy steels containing comparable amounts of only Nb. It was noted that the amount of Nb, Nb/(Nb + Ti), in the precipitates decreased from 0.20 to 0.04 with the size of the precipitate. We believe that this is due to the Nb supersaturation in the matrix when these precipitates nucleate. (C) The Minerals, Metals & Materials Society and ASM International 2016 C1 [Kapoor, Monica] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. [Kapoor, Monica] Natl Energy Technol Lab, Albany, OR 97321 USA. [Thompson, Gregory B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. [O'Malley, Ronald] Nucor Steel Decatur LLC, Trinity, AL 35673 USA. [O'Malley, Ronald] Missouri S&T, PSMRC, Mat Sci & Engn, 284 McNutt Hall,1400 N Bishop Ave, Rolla, MO 65409 USA. RP Thompson, GB (reprint author), Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. EM gthompson@eng.ua.edu FU Alabama Innovation Grant FX The authors would like to acknowledge the Alabama Innovation Grant for their support. UA's Central Analytical Facility operated under the Office for Sponsored Research is also acknowledged. Ms. Suzanne Kornegay and Mr. Tyler Kaub are acknowledged for their assistance in obtaining STEM-HAADF images and XRD scans, respectively. NR 42 TC 2 Z9 2 U1 5 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2016 VL 47A IS 5 BP 1984 EP 1995 DI 10.1007/s11661-016-3398-6 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DL0OF UT WOS:000375331600010 ER PT J AU Shassere, BA Yamamoto, Y Babu, SS AF Shassere, Benjamin A. Yamamoto, Yukinori Babu, Sudarsanam Suresh TI Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HIGH-TEMPERATURE; PRECIPITATION BEHAVIOR; LATH MARTENSITE; 9CR STEEL; CREEP; STABILITY; CRYSTALLOGRAPHY; MICROSTRUCTURE; DEFORMATION; STRESS AB Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 K to 1173 K (700 degrees C to 900 degrees C), was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 degrees C). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 degrees C). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine-grained heat-affected zone region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard "normalization and tempering'' processes. The steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room temperature toughness. The above data are also analyzed based on existing theories of creep deformation based on dislocation climb mechanism. (C) The Minerals, Metals & Materials Society and ASM International (outside the USA) 2016 C1 [Shassere, Benjamin A.; Babu, Sudarsanam Suresh] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Adv Mfg, Knoxville, TN 37996 USA. [Yamamoto, Yukinori] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shassere, BA (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Adv Mfg, Knoxville, TN 37996 USA. EM bashassere21@gmail.com OI Shassere, Benjamin/0000-0001-9278-8963 FU Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy FX The authors thank Drs. Xinghua Yu and David T. Hoelzer at Oak Ridge National Laboratory for their comments on this manuscript. Research sponsored by the Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy. NR 38 TC 0 Z9 0 U1 4 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2016 VL 47A IS 5 BP 2188 EP 2200 DI 10.1007/s11661-016-3387-9 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DL0OF UT WOS:000375331600027 ER PT J AU Bahar, O Mordukhovich, G Luu, DD Schwessinger, B Daudi, A Jehle, AK Felix, G Ronald, PC AF Bahar, Ofir Mordukhovich, Gideon Luu, Dee Dee Schwessinger, Benjamin Daudi, Arsalan Jehle, Anna Kristina Felix, Georg Ronald, Pamela C. TI Bacterial Outer Membrane Vesicles Induce Plant Immune Responses SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article ID PSEUDOMONAS-AERUGINOSA; INNATE IMMUNITY; XANTHOMONAS-CAMPESTRIS; ESCHERICHIA-COLI; MAMMALIAN-CELLS; RECEPTOR KINASE; ARABIDOPSIS; PROTEIN; VIRULENCE; DEFENSE AB Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. C1 [Bahar, Ofir; Mordukhovich, Gideon] Agr Res Org, Volcani Ctr, Dept Plant Pathol & Weed Sci, POB 6, IL-502500 Bet Dagan, Israel. [Mordukhovich, Gideon] Hebrew Univ Jerusalem, Robert H Smith Fac Agr Food & Environm, IL-76100 Rehovot, Israel. [Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Schwessinger, Benjamin; Ronald, Pamela C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Schwessinger, Benjamin; Ronald, Pamela C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Jehle, Anna Kristina; Felix, Georg] Univ Tubingen, D-72076 Tubingen, Germany. [Schwessinger, Benjamin] Australian Natl Univ, Res Sch Biol, Acton, ACT 2601, Australia. [Daudi, Arsalan] Bioprotocol, POB 61231, Palo Alto, CA 94306 USA. [Jehle, Anna Kristina] Univ Vet Med, Inst Milk Hyg Milk Technol & Food Sci, Christian Doppler Lab Monitoring Microbial Contam, Vienna, Austria. RP Bahar, O (reprint author), Agr Res Org, Volcani Ctr, Dept Plant Pathol & Weed Sci, POB 6, IL-502500 Bet Dagan, Israel.; Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA.; Ronald, PC (reprint author), Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA.; Ronald, PC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA.; Ronald, PC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM ofirb@agri.gov.il; pcronald@ucdavis.edu FU BARD, the United States-Israel Binational Agricultural Research and Development Fund [FI-433-2010]; Australian Research Council [DE150101897, LT000674/2012]; National Institutes of Health [GM 59962]; German-Israeli Foundation for Scientific Research and Development (GIF) [I-2392-203.13/2015] FX The authors thank G. Conker for valuable comments during the preparation of this manuscript and for supplying mutant lines efr-1, fls2, and efr fls2, A. Gust for supplying mutant lines lym1-1 and lym3-1, C. Zipfel for supplying mutant line bak1-5, and Y. Zhang for supplying mutant line sobir1-12. We also thank Y, Nguyen for technical assistance and J. Heazlewood for critical review of the manuscript. The work of O. Bahar was supported by postdoctoral award number FI-433-2010 from BARD, the United States-Israel Binational Agricultural Research and Development Fund. The work of B. Schwessinger was supported by a Human Frontier Science Program long-term postdoctoral fellowship (LT000674/2012) and a Discovery Early Career Award (DE150101897) from the Australian Research Council. The work at PCR lab was supported by a National Institutes of Health grant GM 59962. Work at the O. Bahar lab was supported by the German-Israeli Foundation for Scientific Research and Development (GIF), grant number I-2392-203.13/2015. Contribution number 558/16 from the Agricultural Research Organization, Volcani Center, Bet Dagan, Israel. NR 61 TC 2 Z9 2 U1 9 U2 15 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 EI 1943-7706 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD MAY PY 2016 VL 29 IS 5 BP 374 EP 384 DI 10.1094/MPMI-12-15-0270-R PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA DK6GU UT WOS:000375021500005 PM 26926999 ER PT J AU Haddad, MR Ralle, M Vine, DJ Zerfas, PM Kaler, SG AF Haddad, Marie Reine Ralle, Martina Vine, David J. Zerfas, Patricia M. Kaler, Stephen G. TI High-Resolution X-Ray Fluorescence Microscopy (XFM) Indicates Enhanced Brain Copper Delivery in AAV9-Treated Menkes Disease Mice SO MOLECULAR THERAPY LA English DT Meeting Abstract CT 19th Annual Meeting of the American-Society-of-Gene-and-Cell-Therapy (ASGCT) CY MAY 04-07, 2016 CL Washington, DC SP Amer Soc Gene & Cell Therapy C1 [Haddad, Marie Reine; Kaler, Stephen G.] NICHD, Sect Translat Neurosci, NIH, Bethesda, MD USA. [Ralle, Martina] OHSU, Dept Mol & Med Genet, Portland, OR USA. [Vine, David J.] Argonne Natl Lab, X Ray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zerfas, Patricia M.] NIH, Div Vet Resources, Off Res Serv, Bldg 10, Bethesda, MD 20892 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1525-0016 EI 1525-0024 J9 MOL THER JI Mol. Ther. PD MAY PY 2016 VL 24 SU 1 MA 356 BP S142 EP S143 PG 2 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA DK9PT UT WOS:000375264200353 ER PT J AU Hansen, G Stone, D AF Hansen, Gerrit Stone, Daithi TI Assessing the observed impact of anthropogenic climate change SO NATURE CLIMATE CHANGE LA English DT Article ID SEA-SURFACE TEMPERATURE; NATURAL CAUSES; ATTRIBUTION; CMIP5; MODEL; ICE AB Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC's Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems. C1 [Hansen, Gerrit] Potsdam Inst Climate Impact Res, POB 60 12 03, D-14412 Potsdam, Germany. [Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mail Stop 50F-1650, Berkeley, CA 94720 USA. RP Hansen, G (reprint author), Potsdam Inst Climate Impact Res, POB 60 12 03, D-14412 Potsdam, Germany. EM hansen@pik-potsdam.de OI Stone, Daithi/0000-0002-2518-100X FU German Ministry for Education and Research; US Department of Energy Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The authors acknowledge the IPCC WGII AR5 working group on detection and attribution for their contribution to the impact attribution assessment and the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP. We thank the climate modelling groups for producing and making available their model output. We wish to thank M. Auffhammer, W. Cramer, C. Huggel, R. Leemans and U. Molau for useful comments, and Y. Estrada for outstanding support with graphics. G.H. was supported by a grant from the German Ministry for Education and Research. D.S. was supported by the US Department of Energy Office of Science, Office of Biological and Environmental Research, under contract number DE-AC02-05CH11231. NR 38 TC 1 Z9 1 U1 9 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD MAY PY 2016 VL 6 IS 5 BP 532 EP + DI 10.1038/NCLIMATE2896 PG 8 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DK7SE UT WOS:000375125200024 ER PT J AU Chang, J Blackburn, E Ivashko, O Holmes, AT Christensen, NB Hucker, M Liang, R Bonn, DA Hardy, WN Rutt, U Zimmermann, M Forgan, EM Hayden, SM AF Chang, J. Blackburn, E. Ivashko, O. Holmes, A. T. Christensen, N. B. Huecker, M. Liang, Ruixing Bonn, D. A. Hardy, W. N. Ruett, U. Zimmermann, M. v. Forgan, E. M. Hayden, S. M. TI Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; FERMI-SURFACE; CUPRATE SUPERCONDUCTORS; STRIPE ORDER; STATE; FLUCTUATIONS; PSEUDOGAP AB The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings similar to 0.123, we find that a field (B similar to 10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B similar to 15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested. C1 [Chang, J.; Ivashko, O.] Univ Zurich, Inst Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. [Blackburn, E.; Forgan, E. M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Holmes, A. T.] European Spallat Source ERIC, Box 176, SE-22100 Lund, Sweden. [Christensen, N. B.] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark. [Huecker, M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Ruett, U.; Zimmermann, M. v.] Deutsch Elektronen Synchrotron DESY, D-22603 Hamburg, Germany. [Hayden, S. M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. RP Chang, J (reprint author), Univ Zurich, Inst Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland.; Hayden, SM (reprint author), Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. EM johan.chang@physik.uzh.ch; s.hayden@bristol.ac.uk RI Christensen, Niels/A-3947-2012; Chang, Johan/F-1506-2014; Hayden, Stephen/F-4162-2011 OI Christensen, Niels/0000-0001-6443-2142; Chang, Johan/0000-0002-4655-1516; Hayden, Stephen/0000-0002-3209-027X FU Engineering and Physical Sciences Research Council (EPSRC) [EP/G027161/1, EP/K016709/1, EP/J015423/1]; Danish Agency for Science, Technology and Innovation through DANSCATT [0602-01982B]; Swiss National Science Foundation [BSSGI0-155873] FX We wish to thank M.H. Julien and L. Taillefer for helpful discussions. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) (grant numbers EP/G027161/1, EP/K016709/1 and EP/J015423/1), Danish Agency for Science, Technology and Innovation through DANSCATT and grant number 0602-01982B and the Swiss National Science Foundation grant number BSSGI0-155873. NR 35 TC 13 Z9 13 U1 9 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11494 DI 10.1038/ncomms11494 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL2WD UT WOS:000375495000001 PM 27146255 ER PT J AU He, K Zhang, S Li, J Yu, XQ Meng, QP Zhu, YZ Hu, EY Sun, K Yun, H Yang, XQ Zhu, YM Gan, H Mo, YF Stach, EA Murray, CB Su, D AF He, Kai Zhang, Sen Li, Jing Yu, Xiqian Meng, Qingping Zhu, Yizhou Hu, Enyuan Sun, Ke Yun, Hongseok Yang, Xiao-Qing Zhu, Yimei Gan, Hong Mo, Yifei Stach, Eric A. Murray, Christopher B. Su, Dong TI Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy SO NATURE COMMUNICATIONS LA English DT Article ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL LITHIATION; ANODE MATERIAL; CONVERSION REACTIONS; LI BATTERIES; FE3O4; KINETICS; STORAGE; CHALLENGES; CAPACITY AB Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance. C1 [He, Kai; Li, Jing; Yu, Xiqian; Meng, Qingping; Hu, Enyuan; Sun, Ke; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Stach, Eric A.; Su, Dong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhang, Sen; Yun, Hongseok; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Zhu, Yizhou; Mo, Yifei] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Su, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Murray, CB (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM cbmurray@sas.upenn.edu; dsu@bnl.gov RI Yu, Xiqian/B-5574-2014; Stach, Eric/D-8545-2011; He, Kai/B-9535-2011; Su, Dong/A-8233-2013; Hu, Enyuan/D-7492-2016; Mo, Yifei/F-5671-2011; OI Yu, Xiqian/0000-0001-8513-518X; Stach, Eric/0000-0002-3366-2153; He, Kai/0000-0003-4666-1800; Su, Dong/0000-0002-1921-6683; Hu, Enyuan/0000-0002-1881-4534; Mo, Yifei/0000-0002-8162-4629; Yun, Hongseok/0000-0003-0497-6185 FU Center for Functional Nanomaterials, US DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; US DOE [DE-SC00112704]; MRSEC [DMR-1120901]; NatureNet Science Fellowship; DOE/BES, Division of Materials Science and Engineering [DE-SC0012704]; Center for Mesoscale Transport Properties, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Minta Martin award at University of Maryland; National Science Foundation [TG-DMR130142] FX This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. X.Y., E.H., K.S., H.G. and X.-Q.Y. were supported by the US DOE, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract No. DE-SC00112704. We acknowledge the technical support by Dr Wenqian Xu from Beamline 17-BM-B of Advanced Photon Source at Argonne National Laboratory. S.Z., H.Y. and C.B.M. acknowledge the support of MRSEC award No. DMR-1120901. S.Z. also acknowledges the support of the NatureNet Science Fellowship. Q.M. and Yimei Z. are supported by DOE/BES, Division of Materials Science and Engineering, under Contract No. DE-SC0012704. Those in situ and analytical TEM experiments performed by J.L. and E.A.S. were supported as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Yizhou Z. and Y.M. acknowledge the support of the Minta Martin award at University of Maryland, and the computational resources from Extreme Science and Engineering Discovery Environment (XSEDE) supported by the National Science Foundation Grant No. TG-DMR130142 and from the University of Maryland supercomputing resources. We thank Dr Peng Bai for helpful discussions on phase-field simulaitons. NR 59 TC 8 Z9 8 U1 46 U2 102 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11441 DI 10.1038/ncomms11441 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL2VE UT WOS:000375492500001 PM 27157119 ER PT J AU Morganella, S Alexandrov, LB Glodzik, D Zou, XQ Davies, H Staaf, J Sieuwerts, AM Brinkman, AB Martin, S Ramakrishna, M Butler, A Kim, HY Borg, A Sotiriou, C Futreal, PA Campbell, PJ Span, PN Van Laere, S Lakhani, SR Eyfjord, JE Thompson, AM Stunnenberg, HG de Vijver, MJV Martens, JWM Borresen-Dale, AL Richardson, AL Kong, G Thomas, G Sale, J Rada, C Stratton, MR Birney, E Nik-Zainal, S AF Morganella, Sandro Alexandrov, Ludmil B. Glodzik, Dominik Zou, Xueqing Davies, Helen Staaf, Johan Sieuwerts, Anieta M. Brinkman, Arie B. Martin, Sancha Ramakrishna, Manasa Butler, Adam Kim, Hyung-Yong Borg, Ake Sotiriou, Christos Futreal, P. Andrew Campbell, Peter J. Span, Paul N. Van Laere, Steven Lakhani, Sunil R. Eyfjord, Jorunn E. Thompson, Alastair M. Stunnenberg, Hendrik G. de Vijver, Marc J. van Martens, John W. M. Borresen-Dale, Anne-Lise Richardson, Andrea L. Kong, Gu Thomas, Gilles Sale, Julian Rada, Cristina Stratton, Michael R. Birney, Ewan Nik-Zainal, Serena TI The topography of mutational processes in breast cancer genomes SO NATURE COMMUNICATIONS LA English DT Article ID MISMATCH REPAIR; HOMOLOGOUS-RECOMBINATION; CHROMATIN ORGANIZATION; FISSION YEAST; ABASIC SITE; MATING-TYPE; DNA-REPAIR; REPLICATION; SIGNATURES; SPECIFICITY AB Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis. C1 [Morganella, Sandro; Futreal, P. Andrew; Birney, Ewan] European Bioinformat Inst, European Mol Biol Lab, Wellcome Trust Genome Campus, Hinxton CB10 1SD, Cambs, England. [Alexandrov, Ludmil B.; Glodzik, Dominik; Zou, Xueqing; Davies, Helen; Martin, Sancha; Ramakrishna, Manasa; Butler, Adam; Campbell, Peter J.; Stratton, Michael R.; Nik-Zainal, Serena] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Theoret Biol & Biophys T 6, Los Alamos, NM 87545 USA. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Staaf, Johan; Borg, Ake] Lund Univ, Div Oncol & Pathol, Dept Clin Sci Lund, SE-22381 Lund, Sweden. [Sieuwerts, Anieta M.; Martens, John W. M.] Erasmus Univ, Dept Med Oncol, Erasmus MC Canc Inst, Med Ctr, NL-3015 CN Rotterdam, Netherlands. [Sieuwerts, Anieta M.; Martens, John W. M.] Erasmus Univ, Canc Genom Netherlands, NL-3015 CN Rotterdam, Netherlands. [Brinkman, Arie B.] Radboud Univ Nijmegen, Fac Sci, Dept Mol Biol, NL-6525 GA Nijmegen, Netherlands. [Kim, Hyung-Yong; Kong, Gu] Hanyang Univ, Dept Pathol, Coll Med, Seoul 133791, South Korea. [Sotiriou, Christos] Univ Libre Bruxelles, Breast Canc Translat Res Lab, Inst Jules Bordet, Bd Waterloo 121, B-1000 Brussels, Belgium. [Futreal, P. Andrew] Univ Texas MD Anderson Canc Ctr, Dept Genom Med, Houston, TX 77230 USA. [Span, Paul N.] Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, NL-6525 GA Nijmegen, Netherlands. [Span, Paul N.] Radboud Univ Nijmegen, Med Ctr, Dept Lab Med, NL-6525 GA Nijmegen, Netherlands. [Van Laere, Steven] GZA Hosp Sint Augustinus, Translat Canc Res Unit, Antwerp, Belgium. [Van Laere, Steven] Univ Antwerp, Oncol Res Ctr, B-2610 Antwerp, Belgium. [Lakhani, Sunil R.] Univ Queensland, Ctr Clin Res, Brisbane, Qld 4059, Australia. [Lakhani, Sunil R.] Univ Queensland, Sch Med, Brisbane, Qld 4059, Australia. [Lakhani, Sunil R.] Royal Brisbane & Womens Hosp, Pathol Queensland, Brisbane, Qld, Australia. [Eyfjord, Jorunn E.] Univ Iceland, Fac Med, Canc Res Lab, IS-101 Reykjavik, Iceland. [Thompson, Alastair M.] MD Anderson Canc Res Ctr, Dept Breast Surg Oncol, 1400 Pressler St, Houston, TX 77030 USA. [Thompson, Alastair M.] Univ Dundee, Dept Surg Oncol, Dundee DD1 9SY, Scotland. [de Vijver, Marc J. van] Univ Amsterdam, Acad Med Ctr, Dept Pathol, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands. [Borresen-Dale, Anne-Lise] Norwegian Radium Hosp, Oslo Univ Hosp, Dept Canc Genet, Inst Canc Res, N-0310 Oslo, Norway. [Borresen-Dale, Anne-Lise] Univ Oslo, KG Jebsen Ctr Breast Canc Res, Inst Clin Med, N-0310 Oslo, Norway. [Richardson, Andrea L.] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA. [Richardson, Andrea L.] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02215 USA. [Thomas, Gilles] Synergie Lyon Canc, Ctr Leon Berard, 28 Rue Laennec, Lyon 08, France. [Sale, Julian; Rada, Cristina] MRC Lab Mol Biol, Francis Crick Ave, Cambridge CB2 0QH, England. [Nik-Zainal, Serena] Cambridge Univ Hosp NHS Fdn Trust, East Anglian Med Genet Serv, Cambridge CB2 9NB, England. RP Nik-Zainal, S (reprint author), Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England.; Nik-Zainal, S (reprint author), Cambridge Univ Hosp NHS Fdn Trust, East Anglian Med Genet Serv, Cambridge CB2 9NB, England. EM snz@sanger.ac.uk RI Span, Paul/G-4710-2012; OI Span, Paul/0000-0002-1930-6638; Birney, Ewan/0000-0001-8314-8497; Alexandrov, Ludmil/0000-0003-3596-4515; Martin, Sancha/0000-0001-6213-5259 FU ICGC Breast Cancer Working group by the Breast Cancer Somatic Genetics Study (a European research project - European Community's Seventh Framework Programme (FP7)) [242006]; Triple Negative project - Wellcome Trust [077012/Z/05/Z]; HER2+ project - Institut National du Cancer (INCa) in France [226-2009, 02-2011, 41-2012, 144-2008, 06-2012]; Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea [A111218-SC01]; US Department of Energy National Nuclear Security Administration [DE-AC52-06NA25396]; National Nuclear Security Administration of the United States Department of Energy; Breast Cancer Somatic Genetic Study (BASIS); J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory; EU; Dana-Farber/Harvard Cancer Center SPORE in Breast Cancer [NIH/NCI 5 P50 CA168504-02]; EU-FP7-DDR response project; FNRS (Fonds National de la Recherche Scientifique); National Research Foundation of Korea (NRF) [NRF 2015R1A2A1A10052578]; EMBL; Wellcome Trust Intermediate Fellowship [WT100183MA]; COMSIG Consortium - Wellcome Trust Strategic Award [101126/B/13/Z] FX This analysis has been performed on data from a project funded through the ICGC Breast Cancer Working group by the Breast Cancer Somatic Genetics Study (a European research project funded by the European Community's Seventh Framework Programme (FP7/2010-2014) under the grant agreement number 242006); the Triple Negative project funded by the Wellcome Trust (grant reference 077012/Z/05/Z) and the HER2+ project funded by Institut National du Cancer (INCa) in France (Grants No. 226-2009, 02-2011, 41-2012, 144-2008, 06-2012). The ICGC Asian Breast Cancer Project was funded through a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A111218-SC01). We would like to acknowledge the Wellcome Trust Sanger Institute Sequencing Core Facility, Core IT Facility and Cancer Genome Project Core IT team and Cancer Genome Project Core Laboratory team for general support. This research also used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC52-06NA25396. Research performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the United States Department of Energy. S.M. is funded through the Breast Cancer Somatic Genetic Study (BASIS). L.B.A. is supported through a J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory. D.G. is supported by the EU-FP7-SUPPRESSTEM project. A.L.R. is partially supported by the Dana-Farber/Harvard Cancer Center SPORE in Breast Cancer (NIH/NCI 5 P50 CA168504-02). M.S. was supported by the EU-FP7-DDR response project. C.S. is funded by FNRS (Fonds National de la Recherche Scientifique). G.K. is supported by National Research Foundation of Korea (NRF) grants NRF 2015R1A2A1A10052578. E.B. is funded by EMBL. SN-Z is a Wellcome Beit Fellow and personally funded by a Wellcome Trust Intermediate Fellowship (WT100183MA). S.N.-Z. and X.Z. also work under the auspices of the COMSIG Consortium, supported by a Wellcome Trust Strategic Award (101126/B/13/Z). We would like to acknowledge all members of the ICGC Breast Cancer Working Group, ICGC Asian Breast Cancer Project, and Oslo Breast Cancer Consortium (OSBREAC). NR 53 TC 14 Z9 14 U1 7 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11383 DI 10.1038/ncomms11383 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DK9AX UT WOS:000375223100001 PM 27136393 ER PT J AU Tian, J Xu, ZY Zhang, DW Wang, H Xie, SH Xu, DW Ren, YH Wang, H Liu, Y Li, ZT AF Tian, Jia Xu, Zi-Yue Zhang, Dan-Wei Wang, Hui Xie, Song-Hai Xu, Da-Wen Ren, Yuan-Hang Wang, Hao Liu, Yi Li, Zhan-Ting TI Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H-2 production SO NATURE COMMUNICATIONS LA English DT Article ID VISIBLE-LIGHT; GAS-STORAGE; WATER; CHEMISTRY; POLYMERS; SEPARATION; SYSTEMS AB Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)(3)](2+)-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)(3)](2+) units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials. C1 [Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Li, Zhan-Ting] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Dept Chem, Shanghai 200433, Peoples R China. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Wang, H; Li, ZT (reprint author), Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Dept Chem, Shanghai 200433, Peoples R China.; Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM wanghui@fudan.edu.cn; yliu@lbl.gov; ztli@fudan.edu.cn RI Tian, Jia/O-2758-2014; Liu, yi/A-3384-2008 OI Tian, Jia/0000-0001-6793-2804; Liu, yi/0000-0002-3954-6102 FU Ministry of Science and Technology [2013CB834501]; Ministry of Education; National Natural Science Foundation of China [21,432,004, 21,529,201, 91,527,301]; Science and Technology Commission of Shanghai Municipality [13NM1400200]; Molecular Foundry, Lawrence Berkeley National Laboratory - Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge the Ministry of Science and Technology (2013CB834501), the Ministry of Education (Doctor Fellowship Grant), the National Natural Science Foundation (21,432,004, 21,529,201, 91,527,301) of China, the Science and Technology Commission of Shanghai Municipality (13NM1400200) for financial support and Shanghai Synchrotron Radiation Facility for providing BL16B beamline for collecting the synchrotron X-ray scattering and diffraction data. Y.L. thanks the support from the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under the Contract No. DE-AC02-05CH11231. NR 50 TC 4 Z9 7 U1 59 U2 144 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11580 DI 10.1038/ncomms11580 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL2XM UT WOS:000375498500001 PM 27161853 ER PT J AU Wang, H Bang, J Sun, YY Liang, LB West, D Meunier, V Zhang, SB AF Wang, Han Bang, Junhyeok Sun, Yiyang Liang, Liangbo West, Damien Meunier, Vincent Zhang, Shengbai TI The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRON-TRANSFER; MOS2/WS2 HETEROSTRUCTURES; MOLYBDENUM-DISULFIDE; RAMAN-SPECTROSCOPY; SOLAR-CELLS; WS2; GRAPHENE; PHOTOLUMINESCENCE; ABSORPTION; SIMULATION AB The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van derWaals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. C1 [Wang, Han; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Bang, Junhyeok] Korea Basic Sci Inst, Spin Engn Phys Team, Daejeon 305806, South Korea. [Liang, Liangbo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Liang, LB; West, D (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.; Bang, J (reprint author), Korea Basic Sci Inst, Spin Engn Phys Team, Daejeon 305806, South Korea. EM jbang0312@kbsi.re.kr; liangl1@ornl.gov; damienwest@gmail.com RI Liang, Liangbo/H-4486-2011; Sun, Yi-Yang/H-4029-2014 OI Liang, Liangbo/0000-0003-1199-0049; FU US Department of Energy (DOE) [DE-SC0002623]; Basic Science Research Program through the National Research Foundation of Korea [NRF-2015R1C1A1A02037024]; KBSI [C36117]; Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory; Center for Nanophase Materials Sciences (a DOE Office of Science User Facility); Office of Naval Research; New York State under NYSTAR program [C080117]; NERSC [DE-AC02-05CH11231] FX We thank D. Han, E. Cruz-Silva and M. Lucking for helps on TDDFT-MD and valuable suggestions. We also thank Ashok Kumar for sharing with us the pseudopotentials and Liang Chen for helping with understanding related experiments. H.W., D.W., Y.S. and S.Z. were supported by the US Department of Energy (DOE) under Grant No. DE-SC0002623, J.B. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2015R1C1A1A02037024) and KBSI grant C36117, L.L. was supported by Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory and the Center for Nanophase Materials Sciences (a DOE Office of Science User Facility), and V.M. acknowledges support from the Office of Naval Research and New York State under NYSTAR program C080117. We also acknowledge the supports by the supercomputer time provided by NERSC under the Grant No. DE-AC02-05CH11231 and the Center of Computational Innovations (CCI) at RPI. NR 46 TC 4 Z9 4 U1 46 U2 101 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAY PY 2016 VL 7 AR 11504 DI 10.1038/ncomms11504 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DL2WK UT WOS:000375495700001 PM 27160484 ER PT J AU Altenhoff, AM Boeckmann, B Capella-Gutierrez, S Dalquen, DA DeLuca, T Forslund, K Huerta-Cepas, J Linard, B Pereira, C Pryszcz, LP Schreiber, F da Silva, AS Szklarczyk, D Train, CM Bork, P Lecompte, O von Mering, C Xenarios, I Sjolander, K Jensen, LJ Martin, MJ Muffato, M Gabaldon, T Lewis, SE Thomas, PD Sonnhammer, E Dessimoz, C AF Altenhoff, Adrian M. Boeckmann, Brigitte Capella-Gutierrez, Salvador Dalquen, Daniel A. DeLuca, Todd Forslund, Kristoffer Huerta-Cepas, Jaime Linard, Benjamin Pereira, Cecile Pryszcz, Leszek P. Schreiber, Fabian da Silva, Alan Sousa Szklarczyk, Damian Train, Clement-Marie Bork, Peer Lecompte, Odile von Mering, Christian Xenarios, Ioannis Sjolander, Kimmen Jensen, Lars Juhl Martin, Maria J. Muffato, Matthieu Gabaldon, Toni Lewis, Suzanna E. Thomas, Paul D. Sonnhammer, Erik Dessimoz, Christophe CA Quest Orthologs Consortium TI Standardized benchmarking in the quest for orthologs SO NATURE METHODS LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; PHYLOGENETIC TREES; GENE ONTOLOGY; DATABASE; INFERENCE; GENOMICS; EXPLORATION; PERFORMANCE; ANNOTATION; PROGRAM AB Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods. C1 [Altenhoff, Adrian M.; Train, Clement-Marie] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland. [Altenhoff, Adrian M.] Swiss Inst Bioinformat, Computat Biochem Res Grp, Zurich, Switzerland. [Boeckmann, Brigitte; Xenarios, Ioannis] Swiss Inst Bioinformat, Swiss Prot Grp, Geneva, Switzerland. [Capella-Gutierrez, Salvador; Pryszcz, Leszek P.; Gabaldon, Toni] Barcelona Inst Sci & Technol, Ctr Genom Regulat, Bioinformat & Genom Programme, Barcelona, Spain. [Capella-Gutierrez, Salvador; Gabaldon, Toni] Univ Pompeu Fabra, Barcelona, Spain. [Capella-Gutierrez, Salvador] CBS Fungal Biodivers Ctr, Yeast & Basidiomycete Res Grp, Utrecht, Netherlands. [Dalquen, Daniel A.; Dessimoz, Christophe] UCL, Dept Genet Evolut & Environm, London, England. [DeLuca, Todd] Harvard Univ, Sch Med, Ctr Biomed Informat, Boston, MA USA. [Forslund, Kristoffer; Huerta-Cepas, Jaime; Bork, Peer] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany. [Linard, Benjamin] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England. [Pereira, Cecile] Univ Paris 11, Lab Rech Informat, Orsay, France. [Pereira, Cecile] Univ Paris 11, Inst Integrat Biol Cell, Orsay, France. [Schreiber, Fabian; da Silva, Alan Sousa; Martin, Maria J.; Muffato, Matthieu] European Bioinformat Inst, European Mol Biol Lab, Wellcome Trust Genome Campus, Hinxton, England. [Szklarczyk, Damian; von Mering, Christian] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland. [Szklarczyk, Damian; von Mering, Christian] Swiss Inst Bioinformat, Bioinformat Syst Biol Grp, Zurich, Switzerland. [Bork, Peer] Univ Heidelberg Hosp, Germany Mol Med Partnership Unit, Heidelberg, Germany. [Bork, Peer] European Mol Biol Lab, Heidelberg, Germany. [Bork, Peer] Max Delbruck Ctr Mol Med, Berlin, Germany. [Lecompte, Odile] Univ Strasbourg, ICube, Dept Comp Sci, LBGI, Strasbourg, France. [Xenarios, Ioannis] Swiss Inst Bioinformat, Vital IT, Lausanne, Switzerland. [Xenarios, Ioannis; Dessimoz, Christophe] Univ Lausanne, Ctr Integrat Genom, Lausanne, Switzerland. [Sjolander, Kimmen] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Jensen, Lars Juhl] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Prot Res, Copenhagen, Denmark. [Gabaldon, Toni] Inst Catalana Recerca Estudis Avancats, Barcelona, Spain. [Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Thomas, Paul D.] Univ So Calif, Dept Prevent Med, Div Bioinformat, Los Angeles, CA 90089 USA. [Sonnhammer, Erik] Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, Stockholm Bioinformat Ctr, Solna, Sweden. [Dessimoz, Christophe] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland. [Dessimoz, Christophe] UCL, Dept Comp Sci, London, England. [Dessimoz, Christophe] Swiss Inst Bioinformat, Biophore Bldg, Lausanne, Switzerland. RP Dessimoz, C (reprint author), UCL, Dept Genet Evolut & Environm, London, England.; Dessimoz, C (reprint author), Univ Lausanne, Ctr Integrat Genom, Lausanne, Switzerland.; Dessimoz, C (reprint author), Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland.; Dessimoz, C (reprint author), UCL, Dept Comp Sci, London, England.; Dessimoz, C (reprint author), Swiss Inst Bioinformat, Biophore Bldg, Lausanne, Switzerland. EM christophe.dessimoz@unil.ch RI von Mering, Christian/B-3300-2008; Bork, Peer/F-1813-2013; OI von Mering, Christian/0000-0001-7734-9102; Jensen, Lars Juhl/0000-0001-7885-715X; Bork, Peer/0000-0002-2627-833X; Capella-Gutierrez, Salvador/0000-0002-0309-604X; Sousa da Silva, Alan Wilter/0000-0003-1250-943X; Dessimoz, Christophe/0000-0002-2170-853X; Muffato, Matthieu/0000-0002-7860-3560 FU Swiss National Science Foundation [PP00P3_150654]; UK Biotechnology and Biological Sciences Research Council [BB/L018241/1]; Spanish Ministry of Economy and Competitiveness [BI02012-37161]; Qatar National Research Fund [NPRP 5-298-3-086]; European Research Council [ERC-2012-StG-310325]; National Institutes of Health (NIH) [R24 OD011883, U41 HG002273, U41 HG007822]; Swiss State Secretariat for Education, Research and Innovation (SERI) funding; US National Science Foundation EAGER Award [1355632]; ANR project [BIP-BIP ANR-10-BINF-03-02]; European Molecular Biology Laboratory; Wellcome Trust [WT095908]; Lawrence Berkeley National Laboratory core funds (Office of Basic Energy Sciences and US Department of Energy) [DE-AC02-05CH11231]; Novo Nordisk Foundation [NNF14CC0001]; La Caixa-CRG International Fellowship Program FX This work was supported by Swiss National Science Foundation grant PP00P3_150654 (to C.D.), UK Biotechnology and Biological Sciences Research Council grant BB/L018241/1 (to C.D.), Spanish Ministry of Economy and Competitiveness grant BI02012-37161 (to T.G.), Qatar National Research Fund NPRP 5-298-3-086 (to T.G.), European Research Council grant ERC-2012-StG-310325 (to T.G.), National Institutes of Health (NIH) grant R24 OD011883 (to S.E.L.), U41 HG002273 (to S.E.L. and P.D.T.), U41 HG007822 (to M.J.M. and I.X.), Swiss State Secretariat for Education, Research and Innovation (SERI) funding (to I.X. and C.D.), US National Science Foundation EAGER Award #1355632 (to K.S.) and ANR project BIP-BIP ANR-10-BINF-03-02 (to O.L.). Furthermore, A.S.d.S., J.H.-C., M.J.M., M.M. and P.B. acknowledge support from the European Molecular Biology Laboratory, M.M. acknowledges support from the Wellcome Trust (WT095908), S.E.L. acknowledges support from Lawrence Berkeley National Laboratory core funds (Office of Basic Energy Sciences and US Department of Energy Contract No. DE-AC02-05CH11231), L.J.J. acknowledges support from the Novo Nordisk Foundation (Grant No. NNF14CC0001) and L.P.P. acknowledges support from the La Caixa-CRG International Fellowship Program. NR 62 TC 5 Z9 5 U1 4 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD MAY PY 2016 VL 13 IS 5 BP 425 EP + DI 10.1038/NMETH.3830 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA DK5SY UT WOS:000374981900014 PM 27043882 ER PT J AU Borisy, G Heald, R Howard, J Janke, C Musacchio, A Nogales, E AF Borisy, Gary Heald, Rebecca Howard, Jonathon Janke, Carsten Musacchio, Andrea Nogales, Eva TI Microtubules: 50 years on from the discovery of tubulin SO NATURE REVIEWS MOLECULAR CELL BIOLOGY LA English DT Article ID COLCHICINE; MECHANISM; BINDING AB Next year will be the 50th anniversary of the discovery of tubulin. To celebrate this discovery, six leaders in the field of microtubule research reflect on key findings and technological breakthroughs over the past five decades, discuss implications for therapeutic applications and provide their thoughts on what questions need to be addressed in the near future. C1 [Borisy, Gary] Forsyth Inst, 245 First St, Cambridge, MA 02142 USA. [Heald, Rebecca] Univ Calif Berkeley, Div Cell & Dev Biol, Berkeley, CA 94720 USA. [Heald, Rebecca] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Howard, Jonathon] Yale Univ, Dept Mol Biophys & Biochem, POB 6666, New Haven, CT 06510 USA. [Janke, Carsten] PSL Res Univ, Inst Curie, Ctr Univ, CNRS,UMR3348, Batiment 110, F-91405 Orsay, France. [Musacchio, Andrea] Max Planck Inst Mol Physiol, Dept Mechanist Cell Biol, Otto Hahn Str 11, D-44227 Dortmund, Germany. [Musacchio, Andrea] Univ Duisburg Essen, Ctr Med Biotechnol, Fac Biol, Univ Str, D-45141 Essen, Germany. [Nogales, Eva] Univ Calif Berkeley, Biochem Biophys & Struct Biol Div, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Howard Hughes Med Inst, Chevy Chase, MD USA. [Nogales, Eva] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Borisy, G (reprint author), Forsyth Inst, 245 First St, Cambridge, MA 02142 USA.; Heald, R (reprint author), Univ Calif Berkeley, Div Cell & Dev Biol, Berkeley, CA 94720 USA.; Heald, R (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Howard, J (reprint author), Yale Univ, Dept Mol Biophys & Biochem, POB 6666, New Haven, CT 06510 USA.; Janke, C (reprint author), PSL Res Univ, Inst Curie, Ctr Univ, CNRS,UMR3348, Batiment 110, F-91405 Orsay, France.; Musacchio, A (reprint author), Max Planck Inst Mol Physiol, Dept Mechanist Cell Biol, Otto Hahn Str 11, D-44227 Dortmund, Germany.; Musacchio, A (reprint author), Univ Duisburg Essen, Ctr Med Biotechnol, Fac Biol, Univ Str, D-45141 Essen, Germany.; Nogales, E (reprint author), Univ Calif Berkeley, Biochem Biophys & Struct Biol Div, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Nogales, E (reprint author), Howard Hughes Med Inst, Chevy Chase, MD USA.; Nogales, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gborisy@forsyth.org; bheald@berkeley.edu; jonathon.howard@yale.edu; carsten.janke@curie.fr; andrea.musacchio@mpi-dortmund.mpg.de; enogales@lbl.gov RI Howard, Jonathon/J-7492-2016; Janke, Carsten/A-7279-2011; OI Howard, Jonathon/0000-0003-0086-1196; Janke, Carsten/0000-0001-7053-2000; Musacchio, Andrea/0000-0003-2362-8784 FU HHMI; NIGMS NIH HHS [P01 GM051487, R01 GM110386] NR 6 TC 3 Z9 3 U1 6 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-0072 EI 1471-0080 J9 NAT REV MOL CELL BIO JI Nat. Rev. Mol. Cell Biol. PD MAY PY 2016 VL 17 IS 5 BP 322 EP 328 DI 10.1038/nrm.2016.45 PG 7 WC Cell Biology SC Cell Biology GA DJ9MG UT WOS:000374537000011 PM 27103327 ER PT J AU Li, J Liu, YY AF Li, Jie Liu, Yung Y. TI Thermal modeling of a vertical dry storage cask for used nuclear fuel SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID CONVECTION HEAT-TRANSFER; NATURAL-CONVECTION; CANISTER AB Thermal modeling of temperature profiles of dry casks has been identified as a high-priority item in a U.S. Department of Energy gap analysis. In this work, a three-dimensional model of a vertical dry cask has been constructed for computer simulation by using the ANSYS/FLUENT code. The vertical storage cask contains a welded canister for 32 Pressurized Water Reactor (PWR) used-fuel assemblies with a total decay heat load of 34 kW. To simplify thermal calculations, an effective thermal conductivity model for a 17 x 17 PWR used (or spent)-fuel assembly was developed and used in the simulation of thermal performance. The effects of canister fill gas (helium or nitrogen), internal pressure (1-6 atm), and basket material (stainless steel or aluminum alloy) were studied to determine the peak cladding temperature (PCT) and the canister surface temperatures (CSTs). The results showed that high thermal conductivity of the basket material greatly enhances heat transfer and reduces the PCT. The results also showed that natural convection affects both PCT and the CST profile, while the latter depends strongly on the type of fill gas and canister internal pressure. Of particular interest to condition and performance monitoring is the identification of canister locations where significant temperature change occurs after a canister is breached and the fill gas changes from high-pressure helium to ambient air. This study provided insight on the thermal performance of a vertical storage cask containing high-burnup fuel, and helped advance the concept of monitoring CSTs as a means to detect helium leakage from a welded canister. The effects of blockage of air inlet vents on the cask's thermal performance were studied. The simulation were validated by comparing the results against data obtained from the temperature measurements of a commercial cask. Published by Elsevier B.V. C1 [Li, Jie; Liu, Yung Y.] Argonne Natl Lab, Nucl Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Li, J (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM jieli@anl.gov; yyliu@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [AC02-06CH11357] FX This work is supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357. The 3D simulations were conducted on supercomputers with core-hours allocated by the Argonne Leadership Computing Facility. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 35 TC 0 Z9 0 U1 5 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2016 VL 301 BP 74 EP 88 DI 10.1016/j.nucengdes.2016.01.008 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DL1PY UT WOS:000375405400008 ER PT J AU Tung, YH Ferng, YM Johnson, RW Chieng, CC AF Tung, Yu-Hsin Ferng, Yuh-Ming Johnson, Richard W. Chieng, Ching-Chang TI Transient LOFA computations for a VHTR using one-twelfth core flow models SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID HIGH-TEMPERATURE REACTOR; HEAT-TRANSFER; NATURAL CIRCULATION; TURBULENCE MODELS; PRISMATIC VHTR; CONVECTION AB A prismatic gas-cooled very high temperature reactor (VHTR) is being developed under the next generation nuclear program. One of the concerns for the reactor design is the effects of a loss of flow accident (LOFA) where the coolant circulators are lost for some reason, causing a loss of forced coolant flow through the core. In the previous studies, the natural circulation in the whole reactor vessel (RV) was obtained by segmentation strategies if the computational fluid dynamic (CFD) analysis with a sufficiently refined mesh was conducted, due to the limits of computer capability. The computational domains in the previous studies were segmented sections which were small flow region models, such as 1/12 sectors, or a combination of a few number of the 1/12 sector (ranging from 2 to 15) using geometric symmetry, for a full dome region. The present paper investigates the flow and heat transfer for a much larger flow region model, a 1/12 core model, using high performance computing. The computation meshes for 1/12 sector and 1/12 reactor core are of 7.8 M and similar to 531 M, respectively. Over 85,000 and 35,000 iterations for steady and transient (100 s) calculations are required to achieve convergence, respectively. similar to 0.1 min CPU time was required using 192 computer cores for the 1/12 sector model and similar to 1.3 min CPU time using 768 cores in parallel for the 1/12 core model, for every iteration, using ALPS, Advanced Large-scale Parallel Superclusters. For the LOFA transient condition, this study employs both laminar flow and different turbulence models to characterize the phenomenon of natural convection. The result of Realizable k-epsilon turbulence model (RKE) model is the most conservative one in the heated blocks (channels) regions, but the result of laminar flow is the most conservative one in the plenum regions. The comparisons of the results from large and small models suggest that large flow model is needed to obtain accurate prediction. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tung, Yu-Hsin; Ferng, Yuh-Ming] Natl Tsing Hua Univ, Inst Nucl Engn & Sci, Hsinchu, Taiwan. [Johnson, Richard W.] Idaho Natl Lab, Idaho Falls, ID USA. [Chieng, Ching-Chang] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China. RP Chieng, CC (reprint author), City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China. EM touushin@gmail.com; ymferng@ess.nthu.edu.tw; rwjohnson@cableone.net; ccchieng@cityu.edu.hk FU National Science Council, Taiwan [NSC 100-2623-E-007-003-NU] FX The authors thank the National Center for High-Performance Computing, Taiwan for computing resources and the National Science Council, Taiwan for financial support under Grant NSC 100-2623-E-007-003-NU. NR 23 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2016 VL 301 BP 89 EP 100 DI 10.1016/j.nucengdes.2016.03.002 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DL1PY UT WOS:000375405400009 ER PT J AU Williamson, RL Gamble, KA Perez, DM Novascone, SR Pastore, G Gardner, RJ Hales, JD Liu, W Mai, A AF Williamson, R. L. Gamble, K. A. Perez, D. M. Novascone, S. R. Pastore, G. Gardner, R. J. Hales, J. D. Liu, W. Mai, A. TI Validating the BISON fuel performance code to integral LWR experiments SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID MULTIDIMENSIONAL MULTIPHYSICS SIMULATION; SENSITIVITY-ANALYSIS; ROD-ANALYSIS; BEHAVIOR; VERIFICATION; UNCERTAINTY AB BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON's computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to date for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Results demonstrate that ( 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within +/- 10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, ( 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and ( 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons are not satisfactory and have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities. (C) 2016 Elsevier B.V. All rights reserved. C1 [Williamson, R. L.; Gamble, K. A.; Perez, D. M.; Novascone, S. R.; Pastore, G.; Gardner, R. J.; Hales, J. D.] Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. [Liu, W.; Mai, A.] ANATECH Corp, 5435 Oberlin Dr, San Diego, CA 92121 USA. RP Williamson, RL (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. EM Richard.Williamson@inl.gov; Kyle.Gamble@inl.gov; Danielle.Perez@inl.gov; Stephen.Novascone@inl.gov; Giovanni.Pastore@inl.gov; Russell.Gardner@inl.gov; Jason.Hales@inl.gov; Wenfeng.Liu@anatech.com; Anh.Mai@anatech.com OI Hales, Jason/0000-0003-0836-0476; Pastore, Giovanni/0000-0003-2812-506X FU Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; U.S. Government [DE-AC07-05ID14517] FX This work was funded by the Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The manuscript has been authored by a contractor of the U.S. Government under Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 51 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2016 VL 301 BP 232 EP 244 DI 10.1016/j.nucengdes.2016.02.020 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DL1PY UT WOS:000375405400020 ER PT J AU Collin, BP Petti, DA Demkowicz, PA Maki, JT AF Collin, Blaise P. Petti, David A. Demkowicz, Paul A. Maki, John T. TI Comparison of fission product release predictions using PARFUME with results from the AGR-1 safety tests SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SIMULATOR FACS FURNACE; IRRADIATION EXPERIMENT; FUEL AB Safety tests were conducted on fuel compacts from AGR-1, the first irradiation experiment of the Advanced Gas Reactor (AGR) Fuel Development and Qualification program, at temperatures ranging from 1600 to 1800 degrees C to determine fission product release at temperatures that bound reactor accident conditions. The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, strontium, and krypton from fuel compacts containing tristructural isotropic (TRISO) coated particles during 15 of these safety tests. Comparisons between PARFUME predictions and post-irradiation examination results of the safety tests were conducted on two types of AGR-1 compacts: compacts containing only intact particles and compacts containing one or more particles whose SiC layers failed during safety testing. In both cases, PARFUME globally over-predicted the experimental release fractions by several orders of magnitude: more than three (intact) and two (failed SiC) orders of magnitude for silver, more than three and up to two orders of magnitude for strontium, and up to two and more than one orders of magnitude for krypton. The release of cesium from intact particles was also largely over-predicted (by up to five orders of magnitude) but its release from particles with failed SiC was only over-predicted by a factor of about 3. These over-predictions can be largely attributed to an over-estimation of the diffusivities used in the modeling of fission product transport in TRISO-coated particles. The integral release nature of the data makes it difficult to estimate the individual over-estimations in the kernel or each coating layer. Nevertheless, a tentative assessment of correction factors to these diffusivities was performed to enable a better match between the modeling predictions and the safety testing results. The method could only be successfully applied to silver and cesium. In the case of strontium, correction factors could not be assessed because potential release during the safety tests could not be distinguished from matrix content released during irradiation. In the case of krypton, all the coating layers are partly retentive and the available data did not allow the level of retention in individual layers to be determined, hence preventing derivation of any correction factors. (C) 2016 Elsevier B.V. All rights reserved. C1 [Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Collin, BP (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM blaise.collin@inl.gov OI Collin, Blaise/0000-0002-1128-7399 FU U.S. Department of Energy, Office of Nuclear Energy, under Department of Energy Idaho Operations Office [DE-AC07-051D14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under Department of Energy Idaho Operations Office Contract DE-AC07-051D14517. NR 19 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2016 VL 301 BP 378 EP 390 DI 10.1016/j.nucengdes.2016.03.023 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DL1PY UT WOS:000375405400032 ER PT J AU Bortolon, A Maingi, R Mansfield, DK Nagy, A Roquemore, AL Baylor, LR Commaux, N Jackson, GL Gilson, EP Lunsford, R Parks, PB Chrystal, C Grierson, BA Groebner, R Haskey, SR Makowski, MJ Lasnier, CJ Nazikian, R Osborne, T Shiraki, D Van Zeeland, MA AF Bortolon, A. Maingi, R. Mansfield, D. K. Nagy, A. Roquemore, A. L. Baylor, L. R. Commaux, N. Jackson, G. L. Gilson, E. P. Lunsford, R. Parks, P. B. Chrystal, C. Grierson, B. A. Groebner, R. Haskey, S. R. Makowski, M. J. Lasnier, C. J. Nazikian, R. Osborne, T. Shiraki, D. Van Zeeland, M. A. TI High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges SO NUCLEAR FUSION LA English DT Article DE tokamak; ELM; pacing; pellet; mitigation; heat load; control ID ASDEX-UPGRADE; ABLATION; PLASMA; PELLET; THERMOGRAPHY; TRANSPORT; FLUX; FLOW AB A newly installed Lithium Granule Injector (LCil) was used to pace edge localized modes (ELM) in D111-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3-0.9mm, speed of 50-120 m s(-1) and average injection rates up to 100 Hz for 0.9 mm granules and up to 700 Hz for 0.3 mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0 9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-1. e plasmas for the entire shot length, at ELM frequencies 3-5 times larger than the 'natural' ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Overall, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H -mode energy confinement and attractive H -mode pedestal characteristics, hut further assessment is needed to determine whether the projected heat flux reduction required for LEER can be met. C1 [Bortolon, A.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Roquemore, A. L.; Gilson, E. P.; Lunsford, R.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Baylor, L. R.; Commaux, N.; Shiraki, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jackson, G. L.; Parks, P. B.; Groebner, R.; Osborne, T.; Van Zeeland, M. A.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Chrystal, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Makowski, M. J.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bortolon, A (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM abortolon@pppl.gov FU US Department of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725, DE-FC02-04ER54698, DE-AC52-07NA27344] FX This work was supported in part by US Department of Energy (contracts DE-AC02-09CH11466, DE-AC05-00OR22725, DE-FC02-04ER54698 and DE-AC52-07NA27344). NR 32 TC 0 Z9 0 U1 5 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2016 VL 56 IS 5 AR 056008 DI 10.1088/0029-5515/566/056008 PG 16 WC Physics, Fluids & Plasmas SC Physics GA DK9CZ UT WOS:000375229300011 ER PT J AU Guo, SC Xu, XY Liu, YQ Wang, ZR AF Guo, S. C. Xu, X. Y. Liu, Y. Q. Wang, Z. R. TI Excitation of external kink mode by trapped energetic particles SO NUCLEAR FUSION LA English DT Article DE 52.30.Cv magnetohydrodynamics; 52.35.Py macroinstabill7es; 52.55.Tn ideal and resistive MHD modes; kinetic modes; 52.65.Ww hybrid methods; 52.25.Dg plasma kinetic equations ID WALL MODES; PRINCIPLE; PLASMAS AB An unstable fishbone-like non -resonant external kink mode (FLEM) is numerically found to be driven by the precessional drift motion of trapped energetic particles (EPs) in both reversed-field pinch (REP) and tokamak plasmas, even under the ideal wall boundary condition. In the presence of a sufficiently large fraction of trapped energetic ions in high beta plasmas, the FLEM instability may occur, The excitation condition is discussed in detail. The frequency of the FLEM is linked to the precessional drift frequency of EPs, and varies with the plasma flow speed. Therefore, it is usually much higher than that of the typical resistive wall mode (RWM). In general, the growth rate of REM does not depend on the wall resistivity, However, the wall position can significantly affect the mode's property, The drift kinetic effects from thermal particles (mainly due to the transit resonance of passing particles) play a stabilizing role on FLEMs. In the presence of EPs, the FLEM and the RWM can co -exist. or even couple to each other, depending on the plasma parameters. The HEM instabilities in REP and tokamaks have rather similar physics nature, although certain sub-dominant characters appear differently in the two configurations. C1 [Guo, S. C.; Xu, X. Y.] Consorzio RFX, Corso Stati Unit 4, I-35127 Padua, Italy. [Liu, Y. Q.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. [Wang, Z. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Guo, SC (reprint author), Consorzio RFX, Corso Stati Unit 4, I-35127 Padua, Italy. EM shichong.guo@igi.cnr.it FU European Union [633053]; RCUK Energy Programme [EP/I501045] FX This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053; and from the RCUK Energy Programme (grant number EP/I501045). The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 29 TC 2 Z9 2 U1 4 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2016 VL 56 IS 5 AR 056006 DI 10.1088/0029-5515/56/5/056006 PG 15 WC Physics, Fluids & Plasmas SC Physics GA DK9CZ UT WOS:000375229300009 ER PT J AU Heidbrink, WW Ruskov, E Liu, D Stagner, L Fredrickson, ED Podesta, M Bortolon, A AF Heidbrink, W. W. Ruskov, E. Liu, D. Stagner, L. Fredrickson, E. D. Podesta, M. Bortolon, A. TI Analysis of fast-ion D alpha data from the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article DE Alfven eigenmodes; energetic particles; spherical tokamak ID TRANSPORT; TOKAMAK; CODE AB Measured fast-ion Dc, (FIDA) data from an extensive NSTX database are compared to 'classical' predictions that neglect transport by instabilities, Even in the absence of appreciable MHD, in many cases, the profile peaks at smaller major radius and the profile is broader than the predictions. Abrupt large -amplitude MHD events flatten the FIDA profile, as do most toroidal Alfven eigenmode (TAE) avalanche events. Generally, the onset of a long-lived mode also flattens the FIDA profile, C1 [Heidbrink, W. W.; Ruskov, E.; Liu, D.; Stagner, L.] Univ Calif Irvine, Irvine, CA 92697 USA. [Fredrickson, E. D.; Podesta, M.; Bortolon, A.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Heidbrink, WW (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM Bill.Heidbrink@uci.edu RI Liu, Deyong/Q-2797-2015 OI Liu, Deyong/0000-0001-9174-7078 FU U.S. Department of Energy [DE-FG02-02ER54681, DE-AC02-09CH11466] FX We thank the NSTX team for the experiments that provided the data for this study. D Kirkby made several helpful suggestions concerning the spectral analysis. This work was supported by the U.S. Department of Energy under DE-FG02-02ER54681 and DE-AC02-09CH11466. NR 29 TC 1 Z9 1 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2016 VL 56 IS 5 AR 056005 DI 10.1088/0029-5515/566/056005 PG 15 WC Physics, Fluids & Plasmas SC Physics GA DK9CZ UT WOS:000375229300008 ER PT J AU Paz-Soldan, C La Haye, RJ Shiraki, D Buttery, RJ Eidietis, NW Hohmann, EM Moyer, RA Boom, JE Chapman, IT AF Paz-Soldan, C. La Haye, R. J. Shiraki, D. Buttery, R. J. Eidietis, N. W. Hohmann, E. M. Moyer, R. A. Boom, J. E. Chapman, I. T. CA JET Contributors TI The non-thermal origin of the tokamak low-density stability limit SO NUCLEAR FUSION LA English DT Article DE runaway electron; error fields; error field penetration; density limit; tearing mode ID FULLY IONIZED GAS; ENERGY CONFINEMENT; ION RUNAWAY; DIII-D; FIELD; ELECTRON; PLASMAS; DISRUPTIONS; INSTABILITY; MODES AB DIII-D plasmas at very low sity exhibit the onset of n = 1 error field (EF) penetration (the 'low-density locked mode') not at a critical density or EF, but instead at a critical level of runaway electron (RE) intensity. Raising the density during a discharge does not avoid EF penetration, so long as RE growth proceeds to the critical level, Penetration is preceded by non-thermalization of the electron cyclotron emission, anisotropization of the total pressure, synchrotron emission shape changes, as well as decreases in the loop voltage and bulk thermal electron temperature. The same phenomena occur despite various types of optimal EF correction, and in some cases modes are born rotating, Similar phenomena are also found at the low -density limit in JET, These results stand in contrast to the conventional interpretation of the low -density stability limit as being due to residual EFs and demonstrate a new: pathway to EF penetration instability due to REs, Existing scaling laws for penetration project to increasing EF sensitivity as bulk temperatures decrease, though other possible mechanisms include classical tearing instability, thenno-resistive instability, and pressure -anisotropy driven instability, Regardless of the first-principles mechanism, known scaling laws for Ohmic energy confinement combined with theoretical RE production rates allow rough extrapolation of the RE criticality condition, and thus the low -density limit, to other tokamaks. The extrapolated low -density limit by this pathway decreases with increasing machine size and is considerably below expected operating conditions for I FER, While likely unimportant for ITER, this effect can explain the low -density limit of existing tokamaks operating with small residual EFs. C1 [Paz-Soldan, C.; La Haye, R. J.; Buttery, R. J.; Eidietis, N. W.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Shiraki, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hohmann, E. M.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boom, J. E.] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany. [Chapman, I. T.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. RP Paz-Soldan, C (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM paz-soldan@fusion.gat.com FU U.S. Department of Energy, Office of Science. Office of Fusion Energy Sciences; DOE Office of Science user facility [DE-FC02-04ER54698, DE-AC05-000R22725, DE-FG02-07ER54917]; Euratom research and training programme [633053]; RCUK Energy Programme [EP/I501045] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science. Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, DE-AC05-000R22725, and DE-FG02-07ER54917. This work has been earned out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045]. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors wish to thank C.M. Cooper, N. Ferraro, E.J. Strait, and S. Newton for their useful discussions; N, Conimaux for operational support; T. Luce for collaborative support; M, Austin and Y, Zhu for diagnostic support; and X. Lee for computation support. DIII-D data shown in this paper can be obtained in digital format by following the links at https:// fusion.gat.com/global/D3D_DMP. NR 49 TC 0 Z9 0 U1 13 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2016 VL 56 IS 5 AR 056010 DI 10.1088/0029-5515/56/5/056010 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DK9CZ UT WOS:000375229300013 ER PT J AU Paz-Soldan, C Logan, NC Haskey, SR Nazikian, R Strait, EJ Chen, X Ferraro, NM King, JD Lyons, BC Park, JK AF Paz-Soldan, C. Logan, N. C. Haskey, S. R. Nazikian, R. Strait, E. J. Chen, X. Ferraro, N. M. King, J. D. Lyons, B. C. Park, J-K. TI Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement SO NUCLEAR FUSION LA English DT Article DE plasma response; resonant magnetic perturbation; edge localized mode; density pumpout ID TOKAMAKS; MODES; CODE AB The nature of the multi-modal n = 2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase between upper and lower in-vessel coils demonstrates that different n = 2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same,,q5151_, dependence as the coupling to the resonant surfaces given by both ideal (1PEC) and resistive (MARS -F) MHD computation. Varying the edge safety factor shifts the equilibrium field -line pitch and thus the 045-uf_ dependence of both the global confinement and the n = 2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (hut not the LES response), the resonant surface coupling, and the edge displacements near the X-point all share the same 045-uf_ dependence. The LES response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure -driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, hut is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink -peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation. C1 [Paz-Soldan, C.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Logan, N. C.; Haskey, S. R.; Nazikian, R.; Ferraro, N. M.; Park, J-K.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Lyons, B. C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Paz-Soldan, C (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM paz-soldan@fusion.gat.com OI Ferraro, Nathaniel/0000-0002-6348-7827 FU Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC05-06OR23100] FX This work is supported by Department of Energy grants DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-AC05-06OR23100. The authors would like to thank A.D. Turnbull, M.J. Lanctot, D. Orlov, P.B. Snyder, and Y. In for useful discussions; J.M. Hanson, A, Hyatt, and F. Turco for operational support; M.W. Shafer, R.A. Moyer, and B.J. Tobias for diagnostic support. NR 50 TC 4 Z9 4 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2016 VL 56 IS 5 AR 056001 DI 10.1088/0029-5515/56/5/056001 PG 18 WC Physics, Fluids & Plasmas SC Physics GA DK9CZ UT WOS:000375229300004 ER PT J AU Loether, A Adams, BW DiCharia, A Gao, Y Henning, R Walko, DA DeCamp, MF AF Loether, A. Adams, B. W. DiCharia, A. Gao, Y. Henning, R. Walko, D. A. DeCamp, M. F. TI Pump-probe spectrometer for measuring x-ray induced strain SO OPTICS LETTERS LA English DT Article ID FREE-ELECTRON LASER; DELAY-LINE; SPECTROSCOPY AB A hard x-ray pump-probe spectrometer using a multi-crystal Bragg reflector is demonstrated at a third generation synchrotron source. This device derives both broadband pump and monochromatic probe pulses directly from a single intense, broadband x-ray pulse centered at 8.767 keV. We present a proof-of-concept experiment which directly measures x-ray induced crystalline lattice strain. (C) 2016 Optical Society of America C1 [Loether, A.; DeCamp, M. F.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Adams, B. W.; DiCharia, A.; Gao, Y.; Walko, D. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Henning, R.] Univ Chicago, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. RP DeCamp, MF (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM mdecamp@udel.edu FU U.S. Department of Energy (DOE) [DE-FG02-11ER46816, DE-AC02-06CH11357]; Basic Energy Sciences (BES); Office of Science (SC); National Institutes of Health (NIH); National Institute of General Medical Sciences [R24GM111072] FX U.S. Department of Energy (DOE) (DE-FG02-11ER46816, DE-AC02-06CH11357); Basic Energy Sciences (BES); Office of Science (SC); National Institutes of Health (NIH); National Institute of General Medical Sciences (R24GM111072). NR 13 TC 0 Z9 0 U1 2 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2016 VL 41 IS 9 BP 1977 EP 1980 DI 10.1364/OL.41.001977 PG 4 WC Optics SC Optics GA DK6ZH UT WOS:000375073900021 PM 27128053 ER PT J AU Cook, CR Hegna, CC Anderson, JK McCollam, KJ Boguski, J Feng, R Koliner, JJ Spong, DA Hirshman, SP AF Cook, C. R. Hegna, C. C. Anderson, J. K. McCollam, K. J. Boguski, J. Feng, R. Koliner, J. J. Spong, D. A. Hirshman, S. P. TI Identification of island-induced Alfven eigenmodes in a reversed field pinch SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE Alfven; MHD; magnetic island; MST AB The modification of the shear Alfven spectrum due to a core resonant magnetic island is used to explain the Alfvenic activity observed on the Madison symmetric torus (MST) reversed-field pinch during neutral beam injection. Theoretical studies show that the Alfven continua in the core of the island provide a gap in which the observed Alfvenic bursts reside. Numerical simulations using a new code called SIESTAlfven have identified the bursts as the first observation of an island-induced Alfven eigenmode (IAE) in an RFP. The IAE arises from a helical coupling of harmonics due to the magnetic island. C1 [Cook, C. R.; Hegna, C. C.; Anderson, J. K.; McCollam, K. J.; Boguski, J.; Feng, R.; Koliner, J. J.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Cook, C. R.; Hegna, C. C.; Anderson, J. K.; McCollam, K. J.; Boguski, J.; Feng, R.; Koliner, J. J.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Spong, D. A.; Hirshman, S. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cook, CR (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.; Cook, CR (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM cook@physics.wisc.edu FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences [DE-FG02-99ER54546, DE-SC0006103, DE-FC02-05ER54814] FX This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences program under Award Numbers DE-FG02-99ER54546, DE-SC0006103, and DE-FC02-05ER54814. NR 22 TC 1 Z9 1 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2016 VL 58 IS 5 SI SI AR 054004 DI 10.1088/0741-3335/58/5/054004 PG 5 WC Physics, Fluids & Plasmas SC Physics GA DK9EA UT WOS:000375232300004 ER PT J AU Tanaka, K Okamura, S Minami, T Ida, K Mikkelsen, DR Osakabe, M Yoshimura, Y Isobe, M Morita, S Matsuoka, K AF Tanaka, K. Okamura, S. Minami, T. Ida, K. Mikkelsen, D. R. Osakabe, M. Yoshimura, Y. Isobe, M. Morita, S. Matsuoka, K. TI Isotope effects on particle transport in the Compact Helical System SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE isotope effect; particle transport; density modulation; helical; linear gyrokinetic simulation ID STELLARATOR; CONFINEMENT; TOKAMAK; MODULATION; DATABASE; W7-AS; LHD AB The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8 x 10(19) m(-3) to 4 x 10(19) m(-3) under the same magnetic field and almost the same heating power. In the low density regime (line averaged density < 2.5 x 10(19) m(-3)), the lower particle diffusivity and the larger inwardly directed core convection velocity was observed in the deuterium dominant plasma, while in the high density regime (line averaged density >2.5 x 10(19) m(-3)) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime. C1 [Tanaka, K.; Okamura, S.; Ida, K.; Osakabe, M.; Yoshimura, Y.; Isobe, M.; Morita, S.; Matsuoka, K.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Tanaka, K.] Kyushu Univ, Dept Adv Energy Engn, Kasuga, Fukuoka 8168580, Japan. [Minami, T.] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. [Ida, K.; Osakabe, M.; Isobe, M.; Morita, S.] SOKENDAI Grad Univ Adv Studies, Toki, Gifu 5095292, Japan. [Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Tanaka, K (reprint author), Natl Inst Fus Sci, Toki, Gifu 5095292, Japan.; Tanaka, K (reprint author), Kyushu Univ, Dept Adv Energy Engn, Kasuga, Fukuoka 8168580, Japan. EM ktanaka@nifs.ac.jp RI Ida, Katsumi/E-4731-2016 OI Ida, Katsumi/0000-0002-0585-4561 NR 38 TC 1 Z9 1 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2016 VL 58 IS 5 SI SI AR 055011 DI 10.1088/0741-3335/58/5/055011 PG 13 WC Physics, Fluids & Plasmas SC Physics GA DK9EA UT WOS:000375232300019 ER PT J AU Ballard, S Hipp, J Kraus, B Encarnacao, A Young, C AF Ballard, Sanford Hipp, James Kraus, Brian Encarnacao, Andre Young, Christopher TI GeoTess: A Generalized Earth Model Software Utility SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID SPHERICAL-SPLINE PARAMETERIZATION; TRAVEL-TIME; CRUST AB GeoTess is a model parameterization and software support library that manages the construction, population, storage, and interrogation of data stored in 2D and 3D Earth models. The software is available in Java and C++, with a C interface to the C++ library. The software has been tested on Linux, Mac, Sun, and PC platforms. It is open source and is available online (see Data and Resources). C1 [Ballard, Sanford; Hipp, James; Kraus, Brian; Encarnacao, Andre; Young, Christopher] Sandia Natl Labs, Mail Stop 0404,POB 5800, Albuquerque, NM 87185 USA. RP Ballard, S (reprint author), Sandia Natl Labs, Mail Stop 0404,POB 5800, Albuquerque, NM 87185 USA. EM sballar@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Scott Phillips and David Yang for trying out GeoTess in their research. We are also grateful to David Yang, Megan Slinkard, Stephen Arrowsmith, and an anomymous reviewer for reviewing this article. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract Number DE-AC04-94AL85000. NR 9 TC 1 Z9 1 U1 1 U2 1 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 EI 1938-2057 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD MAY-JUN PY 2016 VL 87 IS 3 BP 719 EP 725 DI 10.1785/0220150222 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DK6PX UT WOS:000375047900020 ER PT J AU Zheng, Q Gumeniuk, R Schnelle, W Prots, Y Burkhardt, U Leithe-Jasper, A AF Zheng, Qiang Gumeniuk, Roman Schnelle, Walter Prots, Yurii Burkhardt, Ulrich Leithe-Jasper, Andreas TI Synthesis, crystal structure, and physical properties of a new boride Ga2Ni21B20 with a modified Zn2Ni21B20-type structure SO SOLID STATE SCIENCES LA English DT Article DE Borides; Crystal structure; X-ray diffraction; Boron cages; Electronic structure ID TAU-BORIDES; BORON; CHEMISTRY; FRAGMENTS; COMPOUND; RING; GA AB A ternary boride Ga2Ni21B20, with modified Zn2Ni21B20-type structure (space group I4/mmm, and lattice parameters a = 7.2164(1) angstrom, c = 14.2715(4) angstrom), was synthesized from the constituent elements. Single crystal diffraction data reveal Ni at 8f site splitting into 16m position with nearly half occupancy. In this structure, [Ni6B20] cages share ligand boron atoms with [Ga2B4Ni9] hexa-capped square prisms, forming two dimensional layers. Layers are interconnected via Ga-Ni interactions and build up a three-dimensional framework. Quasi-two-dimensional infinite planar nets formed by intercrossed Ni atoms are embedded. Ga2Ni21B20 is a metallic Pauli paramagnet, in agreement with electronic structure calculations, resulting in 8.2 states eV(-1) f.u(-1) at the Fermi level. (C) 2016 Elsevier Masson SAS. All rights reserved. C1 [Zheng, Qiang; Gumeniuk, Roman; Schnelle, Walter; Prots, Yurii; Burkhardt, Ulrich; Leithe-Jasper, Andreas] Max Planck Inst Chem Phys Fester Stoffe, Nothnitzer Str 40, D-01187 Dresden, Germany. [Gumeniuk, Roman] TU Bergakad Freiberg, Inst Expt Phys, Leipziger Str 23, D-09596 Freiberg, Germany. [Zheng, Qiang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zheng, Q (reprint author), Max Planck Inst Chem Phys Fester Stoffe, Nothnitzer Str 40, D-01187 Dresden, Germany.; Zheng, Q (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM zheng@cpfs.mpg.de RI Leithe-Jasper, Andreas/O-9303-2014 NR 33 TC 0 Z9 0 U1 4 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 EI 1873-3085 J9 SOLID STATE SCI JI Solid State Sci. PD MAY PY 2016 VL 55 BP 93 EP 97 DI 10.1016/j.solidstatesciences.2016.02.011 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DK8VM UT WOS:000375206400014 ER PT J AU Carpick, RW Jackson, A Sawyer, WG Argibay, N Lee, P Pachon, A Gresham, RM AF Carpick, Robert W. Jackson, Andrew Sawyer, W. Gregory Argibay, Nic Lee, Peter Pachon, Angela Gresham, Robert M. TI The Tribology Opportunities Study: Can tribology save a quad? SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Editorial Material C1 [Carpick, Robert W.] Univ Penn, Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. [Jackson, Andrew] Univ Penn, Practice Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. [Sawyer, W. Gregory] Univ Florida, Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Argibay, Nic] Sandia Natl Labs, Livermore, CA 94550 USA. [Lee, Peter] Southwest Res Inst, Fuels & Lubricants Res Div, Minneapolis, MN 55416 USA. [Pachon, Angela] Univ Penn, Kleinman Ctr Energy Policy, Philadelphia, PA 19104 USA. RP Carpick, RW (reprint author), Univ Penn, Mech Engn & Appl Mech, Philadelphia, PA 19104 USA.; Jackson, A (reprint author), Univ Penn, Practice Mech Engn & Appl Mech, Philadelphia, PA 19104 USA.; Sawyer, WG (reprint author), Univ Florida, Mech & Aerosp Engn, Gainesville, FL 32611 USA.; Argibay, N (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.; Lee, P (reprint author), Southwest Res Inst, Fuels & Lubricants Res Div, Minneapolis, MN 55416 USA.; Pachon, A (reprint author), Univ Penn, Kleinman Ctr Energy Policy, Philadelphia, PA 19104 USA. EM carpick@seas.upenn.edu; andjac@seas.upenn.edu; wgsawyer@ufl.edu; nargiba@sandia.gov; peter.lee@swri.org; apacho@upenn.edu; rgresham@stle.org NR 8 TC 1 Z9 1 U1 4 U2 9 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD MAY PY 2016 VL 72 IS 5 BP 44 EP 45 PG 2 WC Engineering, Mechanical SC Engineering GA DL1CX UT WOS:000375370900009 ER PT J AU Kiliccote, S Olsen, D Sohn, MD Piette, MA AF Kiliccote, Sila Olsen, Daniel Sohn, Michael D. Piette, Mary Ann TI Characterization of demand response in the commercial, industrial, and residential sectors in the United States SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Review ID RENEWABLE ENERGY AB The goal of this study is to provide an overview of demand response (DR) technologies, including standards and end uses, in the United States and describe resource characteristics and the attributes of 14 specific DR resources in the U.S. commercial, residential, and industrial sectors. The attributes reviewed for the end uses being considered are response frequency, response time, the need for and impacts of energy pre- or recharge, the cost of enabling a resource to respond to a load-curtailment signal, and the magnitude of load curtailment in a given resource. We also describe controls and communications technologies that can enable end uses to participate in DR programs. The characterization was initially developed as a foundational work to quantify hourly availability of DR resources from the selected end uses followed by a multi-laboratory effort that quantified DR's value within the Western Interconnection(a). Published 2015. C1 [Kiliccote, Sila; Olsen, Daniel; Sohn, Michael D.; Piette, Mary Ann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sohn, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mdsohn@lbl.gov FU Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy [DE-AC02-05CH11231]; Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [DE-AC02-05CH11231]; Public Interest Energy Research (PIER) Program [500-03-026]; California Energy Commission (CEC) FX The work described in this report was coordinated by the Demand Response Research Center and funded by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Office of Electricity Delivery and Energy Reliability, under Contract No. DE-AC02-05CH11231, and by the California Energy Commission (CEC) and Public Interest Energy Research (PIER) Program, under Work for Others Contract No. 500-03-026. NR 59 TC 0 Z9 0 U1 5 U2 5 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD MAY-JUN PY 2016 VL 5 IS 3 BP 288 EP 304 DI 10.1002/wene.176 PG 17 WC Energy & Fuels SC Energy & Fuels GA DK6PD UT WOS:000375045400003 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Brown, AM Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Clark, K Classen, L Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC Dumm, JP Dunkman, M Eagans, R Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fadiran, O Fahey, S Fazely, AR Fedynitch, A Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Fuchs, T Glagla, M Gaisser, TK Gaior, R Gallagher, J Gerhardth, L Ghorbani, K Gier, D Gladstone, L Gliisenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jero, K Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Koob, A Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lunemann, J Madsen, J Maggi, G Mahn, KBM Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Middlemas, E Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Saba, SM Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Scheriau, F Schimp, M Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Seckel, D Seunarine, S Shanidze, R Smith, MWE Soldin, D Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vanheule, S Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Wille, L Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xun, Y Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Archinger, M. Argueelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Brown, A. M. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. Dumm, J. P. Dunkman, M. Eagans, R. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fadiran, O. Fahey, S. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Fuchs, T. Glagla, M. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardth, L. Ghorbani, K. Gier, D. Gladstone, L. Gliisenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jero, K. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klas, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koob, A. Kopke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lunemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Paul, L. Pepper, J. A. Perez de los Heros, C. Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Putz, J. Quinnan, M. Radel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Saba, S. M. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Scheriau, F. Schimp, M. Schmidt, T. Schmitz, M. Schoenen, S. Schoneberg, S. Schonwald, A. Schukraft, A. Schulte, L. Seckel, D. Seunarine, S. Shanidze, R. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stossl, A. Strahler, E. A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vanheule, S. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Wandkowsky, N. Weaver, Ch Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xun, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. TI Characterization of the atmospheric muon flux in IceCube SO ASTROPARTICLE PHYSICS LA English DT Article DE Atmospheric muons; Cosmic rays; Prompt leptons ID COSMIC-RAY MUONS; ARRIVAL DIRECTIONS; NEUTRINO TELESCOPE; ENERGY-SPECTRUM; CHARM PRODUCTION; ELEMENTAL GROUPS; INTRINSIC CHARM; PROTON; ANISOTROPY; MODEL AB Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Putz, J.; Radel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Feintzeig, J.; Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardth, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Christov, A.; Gerhardth, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Aguilar, J. A.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Sarkar, S.] Univ Libre Bruxelles, Fac Sci, CP230, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Christov, A.; Christy, B.; Clark, K.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Arlen, T. C.; Dunkman, M.; Eagans, R.; Groh, J. C.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.; Tesic, G.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Boerner, M.; Christov, A.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Scheriau, F.; Schmitz, M.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Karg, T.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Argueelles, C.; Beiser, E.; BenZvi, S.; Bernhard, A.; Braun, J.; Chirkin, D.; Christov, A.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Wendt, C.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Argueelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Kopke, L.; Kroll, G.; Lunemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Heereman, D.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Kurahashi, N.; Richman, M.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xun, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Adams, J.; Brown, A. M.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Anderson, T.; Cowen, D. F.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bernhard, A.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klas, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gliisenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schonwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stossl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Berghaus, P (reprint author), DESY, D-15735 Zeuthen, Germany. EM berghaus@icecube.wisc.edu RI Tjus, Julia/G-8145-2012; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; OI Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; Perez de los Heros, Carlos/0000-0002-2084-5866; Arguelles Delgado, Carlos/0000-0003-4186-4182 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison; Open Science Grid (OSG); U.S. Department of Energy; National Energy Research Scientific Computing Center; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fonds De La Recherche Scientifique - FNRS; FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (BELSPO); University of Mord, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fonds De La Recherche Scientifique - FNRS, FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (BELSPO); University of Mord, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). NR 92 TC 2 Z9 2 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2016 VL 78 BP 1 EP 27 DI 10.1016/j.astropartphys.2016.01.006 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DK0OQ UT WOS:000374612500001 ER PT J AU Black, RR Aurell, J Holder, A George, IJ Gullett, BK Hays, MD Geron, CD Tabor, D AF Black, Robert R. Aurell, Johanna Holder, Amara George, Ingrid J. Gullett, Brian K. Hays, Michael D. Geron, Chris D. Tabor, Dennis TI Characterization of gas and particle emissions from laboratory burns of peat SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Peat fires; PCDD/PCDF; PAHs; PM2.5; CO; Carbon ID MASS LABELED PCDD/PCDF; ORGANIC-MATTER LOST; PARTICULATE MATTER; NORTH-CAROLINA; TRACE GAS; BIOMASS; CARBON; COMBUSTION; FOREST; FUELS AB Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organic carbon (OC), elemental carbon, light absorbing carbon, absorption Angstrom exponent, metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). CO from the smoldering burns, up to 7 h in duration, contributed approximately 16% of the total carbon emitted. Emission factors for black carbon (BC) and light absorbing carbon (UVPM) were considerably lower than those found for forest litter burns. Emission factors for PCDDs/PCDFs were near published values for forest fuels, at 1-4 ng toxic equivalents (TEQ)/kg carbon burned (Cb). Total PAH concentrations of >= 12 mg/kg were higher than published data from biomass burns, but roughly the same in terms of toxicity. Application of these emission factors to the noteworthy 2008 "Evans Road" fire in NC indicates that PM2.5 and PCDD/PCDF emissions from this fire may have been 4-6% of the annual US inventory and 5% of the annual OC amount. Published by Elsevier Ltd. C1 [Black, Robert R.; Holder, Amara; George, Ingrid J.; Gullett, Brian K.; Hays, Michael D.; Geron, Chris D.; Tabor, Dennis] US EPA, Off Res & Dev, Natl Risk Management Res Lab, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. [Black, Robert R.] US EPA, Oak Ridge Inst Sci Educ, Res Triangle Pk, NC 27711 USA. [Aurell, Johanna] Univ Dayton, Res Inst, 300 Coll Pk, Dayton, OH 45469 USA. RP Gullett, BK (reprint author), US EPA, Off Res & Dev, Natl Risk Management Res Lab, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM gullett.brian@epa.gov FU U.S. Department of Energy [DW89922983]; EPA [DW89922983]; U.S. EPA; Joint Fire Sciences Program [08-1-3-03] FX This research was supported in part by Robert Black's appointment to the Research Participation Program for the U.S. Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement (#DW89922983) between the U.S. Department of Energy and EPA. The research was supported primarily by the U.S. EPA; Chris Geron was supported in part by the Joint Fire Sciences Program, Project ID: 08-1-3-03. The authors appreciate the assistance of Vince Carter and Tom Crews (U.S. Fish and Wildlife Service) from the Pocosin Lakes and Alligator River National Wildlife Reserves. The authors gratefully acknowledge the assistance of Steve Tern, Mike Tufts, Dean Smith (ARCADIS U.S., Inc.), and Chris Pressley and Sue Kimbrough (U.S. EPA). The views expressed in this article are those of the author(s) and do not necessarily represent the views or policies of the U.S. EPA. NR 46 TC 2 Z9 2 U1 10 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2016 VL 132 BP 49 EP 57 DI 10.1016/j.atmosenv.2016.02.024 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DK0PK UT WOS:000374614500006 ER PT J AU George, IJ Black, RR Geron, CD Aurell, J Hays, MD Preston, WT Gullett, BK AF George, Ingrid J. Black, Robert R. Geron, Chris D. Aurell, Johanna Hays, Michael D. Preston, William T. Gullett, Brian K. TI Volatile and semivolatile organic compounds in laboratory peat fire emissions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Biomass burning; Peat; Organic soil; Volatile organic compounds; Emission factors ID FINE-PARTICLE EMISSIONS; WOOD COMBUSTION; SOURCE APPORTIONMENT; PARTICULATE MATTER; NORTH-CAROLINA; AIR-QUALITY; GAS-PHASE; BIOMASS; TRACERS; FUELS AB In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (similar to 60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. Published by Elsevier Ltd. C1 [George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Hays, Michael D.; Gullett, Brian K.] US EPA, Off Res & Dev, Natl Risk Management Res Lab, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. [Black, Robert R.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. [Aurell, Johanna] Univ Dayton, Res Inst, 300 Coll Pk, Dayton, OH 45469 USA. [Preston, William T.] ARCADIS US Inc, Res Triangle Pk, NC 27711 USA. RP Gullett, BK (reprint author), US EPA, Off Res & Dev, Natl Risk Management Res Lab, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM gullett.brian@epa.gov FU U.S. Department of Energy; EPA; Joint Fire Sciences Program FX This research was supported in part by Robert Black's appointment to the Research Participation Program for the U.S. Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. Chris Geron was supported in part by the Joint Fire Sciences Program. The authors appreciate the assistance of Vince Carter and Tom Crews (U.S. Fish and Wildlife Service) from the Pocosin Lakes and Alligator River National Wildlife Reserves. The authors gratefully acknowledge the assistance of Steve Terll, Mike Tufts, and Dean Smith (ARCADIS U.S., Inc.), and John Walker, Dennis Tabor, Chris Pressley and Sue Kimbrough (U.S. EPA). NR 43 TC 2 Z9 3 U1 18 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2016 VL 132 BP 163 EP 170 DI 10.1016/j.atmosenv.2016.02.025 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DK0PK UT WOS:000374614500018 ER PT J AU Goodfriend, E Chow, FK Vanella, M Balaras, E AF Goodfriend, Elijah Chow, Fotini Katopodes Vanella, Marcos Balaras, Elias TI Large-Eddy Simulation of Flow Through an Array of Cubes with Local Grid Refinement SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Grid refinement; Large-eddy simulation; Urban dispersion ID ADAPTIVE MESH REFINEMENT; BOUNDARY-LAYER-FLOW; SUBGRID-SCALE MODEL; TURBULENT-FLOW; HEAT-TRANSFER; WALL; RECONSTRUCTION; DISPERSION; PREDICTION; DIFFUSION AB High resolution simulations of the transport of urban contaminants are important for disaster response and city planning. Large-eddy simulation (LES) and mesh refinement can each be used to decrease the computational cost of modelling, but combining these techniques can result in additional errors at grid-refinement interfaces. Here, we study the effect of the turbulence closure on the accuracy of LES results, for grids with mesh refinement, in a test case of flow through a periodic array of cubes. It is found that a mixed-model turbulence closure, using both an eddy viscosity and a scale similarity component, reduces energy accumulation at grid-refinement interfaces when used with explicit filtering of the advection term. The mixed model must be used with explicit filtering to control high wavenumber errors generated by the non-linear scale-similarity model. The results demonstrate that the turbulence closure mitigates errors associated with using LES on block-structured grids for urban-flow simulations. C1 [Goodfriend, Elijah] Lawrence Berkeley Natl Lab, Mail Stop 50A-1148, Berkeley, CA 94720 USA. [Chow, Fotini Katopodes] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Vanella, Marcos] Natl Inst Stand & Technol, Washington, DC USA. [Balaras, Elias] George Washington Univ, Washington, DC USA. RP Goodfriend, E (reprint author), Lawrence Berkeley Natl Lab, Mail Stop 50A-1148, Berkeley, CA 94720 USA. EM egoodfriend@lbl.gov FU National Science Foundation (NSF) [CBET-933642]; Department of Defense National Defense Science and Engineering Graduate fellowship; NSF; NASA/AISR project [NNG04GP79G] FX We are grateful for support from the National Science Foundation (NSF) Grant CBET-933642 (Fluid Dynamics Program). Funding for the first author was also provided by a Department of Defense National Defense Science and Engineering Graduate fellowship. Acknowledgement is also made to the National Center for Atmospheric Research, which is sponsored by NSF, for computing time used in this research. Computing time was also provided by the University of California at Berkeley. The PARAMESH software used in this work was developed at the NASA Goddard Space Flight Center and Drexel University under NASA's HPCC and ESTO/CT projects and under grant NNG04GP79G from the NASA/AISR project. NR 44 TC 0 Z9 0 U1 5 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 EI 1573-1472 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD MAY PY 2016 VL 159 IS 2 BP 285 EP 303 DI 10.1007/s10546-016-0128-y PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK1IQ UT WOS:000374666100006 ER PT J AU Rinker, JM Gavin, HP Clifton, A Veers, PS Kilcher, LF AF Rinker, Jennifer M. Gavin, Henri P. Clifton, Andrew Veers, Paul S. Kilcher, Levi F. TI Temporal Coherence: A Model for Non-stationarity in Natural and Simulated Wind Records SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Non-stationarity; Phase difference distributions; Stochastic wind simulation; Temporal coherence; Turbulence ID PHASE SPECTRUM; GROUND MOTIONS; NONSTATIONARY; ACCELEROGRAMS; TURBULENCE; SPEED; LAYER AB We present a novel methodology for characterizing and simulating non-stationary stochastic wind records. In this new method, non-stationarity is characterized and modelled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components. Temporal coherence can also be used to quantify non-stationary characteristics in wind data. Three case studies are presented that analyze the non-stationarity of turbulent wind data obtained at the National Wind Technology Center near Boulder, Colorado, USA. The first study compares the temporal and spectral characteristics of a stationary wind record and a non-stationary wind record in order to highlight their differences in temporal coherence. The second study examines the distribution of one of the proposed temporal coherence parameters and uses it to quantify the prevalence of nonstationarity in the dataset. The third study examines how temporal coherence varies with a range of atmospheric parameters to determine what conditions produce more non-stationarity. C1 [Rinker, Jennifer M.] Duke Univ, Pratt Sch Engn, Mech Engn & Mat Sci, Box 90300,Hudson Hall, Durham, NC 27708 USA. [Rinker, Jennifer M.; Clifton, Andrew; Veers, Paul S.; Kilcher, Levi F.] Natl Wind Technol Ctr, Natl Renewable Energy Lab, MS 3811,15013 Denver West Pkwy, Golden, CO 80401 USA. [Gavin, Henri P.] Duke Univ, Pratt Sch Engn, Dept Civil & Environm Engn, Box 90287,Hudson Hall, Durham, NC 27708 USA. RP Rinker, JM (reprint author), Duke Univ, Pratt Sch Engn, Mech Engn & Mat Sci, Box 90300,Hudson Hall, Durham, NC 27708 USA.; Rinker, JM (reprint author), Natl Wind Technol Ctr, Natl Renewable Energy Lab, MS 3811,15013 Denver West Pkwy, Golden, CO 80401 USA. EM jennifer.rinker@duke.edu RI Clifton, Andrew/A-4045-2010; OI Clifton, Andrew/0000-0001-9698-5083; Rinker, Jennifer/0000-0002-1122-1891 FU National Science Foundation [1106401]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program; U.S. Department of Energy [DE-AC05-06OR23100, DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office FX The authors would like to gratefully acknowledge the multiple funding sources for this work. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1106401. The work was also supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the U.S. Department of Energy under contract number DE-AC05-06OR23100. This work was also supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for the work was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office. The authors thank the anonymous reviewers for their thoughtful and constructive comments. NR 40 TC 0 Z9 0 U1 4 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 EI 1573-1472 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD MAY PY 2016 VL 159 IS 2 BP 373 EP 389 DI 10.1007/s10546-015-0121-x PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DK1IQ UT WOS:000374666100010 ER PT J AU Guo, B Fu, PC Hao, Y Peters, CA Carrigan, CR AF Guo, Bin Fu, Pengcheng Hao, Yue Peters, Catherine A. Carrigan, Charles R. TI Thermal drawdown-induced flow channeling in a single fracture in EGS SO GEOTHERMICS LA English DT Article DE EGS; Thermal drawdown; Flow channeling; Aperture heterogeneity; THM coupling; GEOS ID GEOTHERMAL RESERVOIR; TRACER TRANSPORT; HEAT EXTRACTION; NUMERICAL-MODEL; PERMEABILITY ALTERATION; FIELD OBSERVATIONS; CRYSTALLINE ROCKS; COOPER BASIN; HDR PROJECT; STIMULATION AB The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution causes non-uniform temperature decrease in the rock body, which makes the flow increasingly concentrated into some preferential paths through the action of thermal stress. This mechanism may cause rapid heat production deterioration of EGS reservoirs. In this study, we investigated the effects of aperture heterogeneity on flow pattern evolution in a single fracture in a low-permeability crystalline formation. We developed a numerical model on the platform of GEOS to simulate the coupled thermo-hydro-mechanical processes in a penny-shaped fracture accessed via an injection well and a production well. We find that aperture heterogeneity generally exacerbates flow channeling and reservoir performance generally decreases with longer correlation length of aperture field. The expected production life is highly variable (5 years to beyond 30 years) when the aperture correlation length is longer than 1/5 of the well distance, whereas a heterogeneous fracture behaves similar to a homogeneous one when the correlation length is much shorter than the well distance. Besides, the mean production life decreases with greater aperture standard deviation only when the correlation length is relatively long. Although flow channeling is inevitable, initial aperture fields and well locations that enable tortuous preferential paths tend to deliver long heat production lives. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Guo, Bin; Fu, Pengcheng; Hao, Yue; Carrigan, Charles R.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. [Peters, Catherine A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. RP Fu, PC (reprint author), 7000 East Ave, Livermore, CA 94550 USA. EM fu4@llnl.gov FU Geothermal Technologies Office of the U.S. Department of Energy; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation through Princeton University [CBET-1133849] FX The authors gratefully acknowledge the Geothermal Technologies Office of the U.S. Department of Energy for support of this work under the Enhanced Geothermal Systems Program. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We also acknowledge support from the National Science Foundation grant CBET-1133849 for Bin Guo through Princeton University. We gratefully acknowledge the many suggestions from Dr. Mark McClure that have substantially improved the quality of this paper. Release number: LLNL-JRNL-670552. NR 58 TC 3 Z9 3 U1 7 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD MAY PY 2016 VL 61 BP 46 EP 62 DI 10.1016/j.geothermics.2016.01.004 PG 17 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DJ6YL UT WOS:000374359000005 ER PT J AU Hadgu, T Kalinina, E Lowry, TS AF Hadgu, Teklu Kalinina, Elena Lowry, Thomas S. TI Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems SO GEOTHERMICS LA English DT Article DE Reservoir modeling; Enhanced Geothermal Systems; Heat extraction; Fractured orientation; Well orientation; Stochastic methods ID INTEGRAL-EQUATION SOLUTION; HOT DRY ROCK AB Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. The vertical well doublet is impacted significantly more than the horizontal well doublet. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Hadgu, Teklu; Kalinina, Elena; Lowry, Thomas S.] Sandia Natl Labs, MS 0747,POB 5800, Albuquerque, NM 87185 USA. RP Hadgu, T (reprint author), Sandia Natl Labs, MS 0747,POB 5800, Albuquerque, NM 87185 USA. EM thadgu@sandia.gov; eakalin@sandia.gov; tslowry@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000. SAND2015-7093J] FX Sandia National Laboratories is a multi-program labbratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-7093J. NR 20 TC 2 Z9 2 U1 4 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD MAY PY 2016 VL 61 BP 75 EP 85 DI 10.1016/j.geothermics.2016.01.009 PG 11 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DJ6YL UT WOS:000374359000007 ER PT J AU Ali, ST Akerley, J Baluyut, EC Cardiff, M Davatzes, NC Feigl, KL Foxall, W Fratta, D Mellors, RJ Spielman, P Wang, HF Zemach, E AF Ali, S. T. Akerley, J. Baluyut, E. C. Cardiff, M. Davatzes, N. C. Feigl, K. L. Foxall, W. Fratta, D. Mellors, R. J. Spielman, P. Wang, H. F. Zemach, E. TI Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar SO GEOTHERMICS LA English DT Article DE InSAR deformation ID SAR INTERFEROMETRY; NEW-ZEALAND; VOLCANIC ZONE; SUBSIDENCE; SATELLITE; CALIFORNIA; INTERFEROGRAMS; MODELS; INSAR AB We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the similar to 4 km by similar to 1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of I km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Ali, S. T.; Baluyut, E. C.; Cardiff, M.; Feigl, K. L.; Fratta, D.; Wang, H. F.] Univ Wisconsin, Dept Geosci, Madison, WI USA. [Akerley, J.; Spielman, P.; Zemach, E.] Ormat Technol Inc, Reno, NV USA. [Davatzes, N. C.] Temple Univ, Dept Earth & Environm Sci, Philadelphia, PA 19122 USA. [Foxall, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mellors, R. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Ali, ST (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI USA. EM stali@geology.wisc.edu RI Mellors, Robert/K-7479-2014; Cardiff, Michael/B-1711-2013 OI Mellors, Robert/0000-0002-2723-5163; Cardiff, Michael/0000-0002-6720-6084 FU German Space Agency (DLR) [RES1236]; Geothermal Technologies Office of the U.S. Department of Energy [DE-EE0005510, DE-EE0006760]; National Science Foundation Graduate Research Fellowship [DGE-1256259] FX We thank Helene Le Mevel for helpful discussions. Several figures were created using the Generic Mapping Tools (Wessel and Smith, 1998). We gratefully acknowledge support from the Weeks family to the Department of Geoscience at the University of Wisconsin-Madison. Raw Synthetic Aperture Radar (SAR) data from the ERS, and Envisat satellite missions operated by the European Space Agency (ESA) are copyrighted by ESA and were provided through the WInSAR consortium at the UNAVCO facility. SAR data from the ALOS satellite mission operated by the Japanese Space Agency (JAXA) were acquired from NASA's Distributed Active Archive Center at the Alaska Satellite Facility (ASF). SAR data from the TerraSAR-X and TanDEM-X satellite missions operated by the German Space Agency (DLR) were acquired through Research Project RES1236. This research was supported by grants DE-EE0005510 and DE-EE0006760 from the Geothermal Technologies Office of the U.S. Department of Energy. Elena C. Baluyut was supported by the National Science Foundation Graduate Research Fellowship under grant DGE-1256259. NR 55 TC 2 Z9 2 U1 5 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD MAY PY 2016 VL 61 BP 114 EP 120 DI 10.1016/j.geothermics.2016.01.008 PG 7 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA DJ6YL UT WOS:000374359000010 ER PT J AU Cuadra, JA Baxevanakis, KP Mazzotti, M Bartoli, I Kontsos, A AF Cuadra, J. A. Baxevanakis, K. P. Mazzotti, M. Bartoli, I. Kontsos, A. TI Energy dissipation via acoustic emission in ductile crack initiation SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Acoustic emission energy; Cohesive zone modeling; Extended finite element method; Digital image correlation technique ID FRACTURE-TOUGHNESS; HARDENING MATERIAL; DEFORMATION; RELEASE; EXTENSION; CRYSTALS; KINETICS; BEHAVIOR; GROWTH; TIP AB This article presents a modeling approach to estimate the energy release due to ductile crack initiation in conjunction to the energy dissipation associated with the formation and propagation of transient stress waves typically referred to as acoustic emission. To achieve this goal, a ductile fracture problem is investigated computationally using the finite element method based on a compact tension geometry under Mode I loading conditions. To quantify the energy dissipation associated with acoustic emission, a crack increment is produced given a pre-determined notch size in a 3D cohesive-based extended finite element model. The computational modeling methodology consists of defining a damage initiation state from static simulations and linking such state to a dynamic formulation used to evaluate wave propagation and related energy redistribution effects. The model relies on a custom traction separation law constructed using full field deformation measurements obtained experimentally using the digital image correlation method. The amount of energy release due to the investigated first crack increment is evaluated through three different approaches both for verification purposes and to produce an estimate of the portion of the energy that radiates away from the crack source in the form of transient waves. The results presented herein propose an upper bound for the energy dissipation associated to acoustic emission, which could assist the interpretation and implementation of relevant nondestructive evaluation methods and the further enrichment of the understanding of effects associated with fracture. C1 [Cuadra, J. A.; Baxevanakis, K. P.; Kontsos, A.] Drexel Univ, Dept Mech Engn & Mech, Theoret & Appl Mech Grp, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Mazzotti, M.; Bartoli, I.] Drexel Univ, Civil Architectural & Environm Engn Dept, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Cuadra, J. A.] Lawrence Livermore Natl Lab, Nondestruct Characterizat Inst, POB 808 L-229, Livermore, CA 94551 USA. RP Kontsos, A (reprint author), Drexel Univ, Dept Mech Engn & Mech, Theoret & Appl Mech Grp, 3141 Chestnut St, Philadelphia, PA 19104 USA. EM akontsos@coe.drexel.edu RI Baxevanakis, Konstantinos/H-3628-2015 OI Baxevanakis, Konstantinos/0000-0002-4826-3454 FU National Science Foundation [1002809]; Office of Naval Research [N00014-13-1-0143] FX The results reported herewere obtained by using computational resources supported by Drexel's University Research Computing Facility. This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1002809. In addition, A. Kontsos and I. Bartoli acknowledge the financial support received by the Office of Naval Research, Award N00014-13-1-0143. NR 53 TC 1 Z9 1 U1 5 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD MAY PY 2016 VL 199 IS 1 BP 89 EP 104 DI 10.1007/s10704-016-0096-8 PG 16 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA DJ6RP UT WOS:000374340900006 ER PT J AU Yan, J Simsir, B Farmer, AT Bi, M Yang, Y Campagna, SR Loffler, FE AF Yan, Jun Simsir, Burcu Farmer, Abigail T. Bi, Meng Yang, Yi Campagna, Shawn R. Loffler, Frank E. TI The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi SO ISME JOURNAL LA English DT Article ID VINYL-CHLORIDE REDUCTASE; CARBON-TETRACHLORIDE; SP STRAIN; IDENTIFICATION; VITAMIN-B-12; ETHENE; GROWTH; BENZIMIDAZOLE; COENZYMES; BACTERIUM AB Corrinoid auxotrophic organohalide-respiring Dehalococcoides mccartyi (Dhc) strains are keystone bacteria for reductive dechlorination of toxic and carcinogenic chloroorganic contaminants. We demonstrate that the lower base attached to the essential corrinoid cofactor of reductive dehalogenase (RDase) enzyme systems modulates dechlorination activity and affects the vinyl chloride (VC) RDases BvcA and VcrA differently. Amendment of 5,6-dimethylbenzimidazolyl-cobamide (DMB-Cba) to Dhc strain BAV1 and strain GT cultures supported cis-1,2-dichloroethene-to-ethene reductive dechlorination at rates of 107.0 (+/- 12.0) mu M and 67.4 (+/- 1.4) mu M Cl-released per day, respectively. Strain BAV1, expressing the BvcA RDase, reductively dechlorinated VC to ethene, although at up to fivefold lower rates in cultures amended with cobamides carrying 5-methylbenzimidazole (5-MeBza), 5-methoxybenzimidazole (5-OMeBza) or benzimidazole (Bza) as the lower base. In contrast, strain GT harboring the VcrA RDase failed to grow and dechlorinate VC to ethene in medium amended with 5-OMeBza-Cba or Bza-Cba. The amendment with DMB to inactive strain GT cultures restored the VC-to-ethene-dechlorinating phenotype and intracellular DMB-Cba was produced, demonstrating cobamide uptake and remodeling. The distinct responses of Dhc strains with BvcA versus VcrA RDases to different cobamides implicate that the lower base exerts control over Dhc reductive dechlorination rates and extents (that is, detoxification), and therefore the dynamics of Dhc strains with discrete reductive dechlorination capabilities. These findings emphasize that the role of the corrinoid/lower base synthesizing community must be understood to predict strain-specific Dhc activity and achieve efficacious contaminated site cleanup. C1 [Yan, Jun; Simsir, Burcu; Bi, Meng; Yang, Yi; Loffler, Frank E.] Univ Tennessee, Dept Microbiol, M409 Walters Life Sci, Knoxville, TN 37996 USA. [Yan, Jun; Simsir, Burcu; Bi, Meng; Yang, Yi; Loffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Yan, Jun; Loffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Yan, Jun; Loffler, Frank E.] Oak Ridge Natl Lab, JIBS, Oak Ridge, TN USA. [Simsir, Burcu; Bi, Meng; Yang, Yi; Loffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Farmer, Abigail T.; Campagna, Shawn R.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, M409 Walters Life Sci, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI YI, Yang/C-8992-2009; Yang, Yi/M-5706-2014 OI YI, Yang/0000-0002-3519-5472; Yang, Yi/0000-0002-3519-5472 FU Department of Defense Strategic Environmental Research and Development Program (SERDP) [ER-2312]; National Institute of Environmental Health Sciences Superfund Research Program [R01ES24294] FX This research was supported by the Department of Defense Strategic Environmental Research and Development Program (SERDP project ER-2312) and by the National Institute of Environmental Health Sciences Superfund Research Program (R01ES24294). NR 51 TC 2 Z9 2 U1 8 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD MAY PY 2016 VL 10 IS 5 BP 1092 EP 1101 DI 10.1038/ismej.2015.197 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DJ7FL UT WOS:000374377200007 PM 26555247 ER PT J AU Howe, A Ringus, DL Williams, RJ Choo, ZN Greenwald, SM Owens, SM Coleman, ML Meyer, F Chang, EB AF Howe, Adina Ringus, Daina L. Williams, Ryan J. Choo, Zi-Ning Greenwald, Stephanie M. Owens, Sarah M. Coleman, Maureen L. Meyer, Folker Chang, Eugene B. TI Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice SO ISME JOURNAL LA English DT Article ID INTESTINAL MICROBIOTA; VIROME; VIRUSES; DISEASE; OBESITY; ALTERS; METAGENOMES; DIVERSITY; DYNAMICS; COLITIS AB To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high-and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health. C1 [Howe, Adina; Williams, Ryan J.] Iowa State Univ, Ames, IA USA. [Howe, Adina; Greenwald, Stephanie M.; Owens, Sarah M.; Meyer, Folker] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ringus, Daina L.; Choo, Zi-Ning; Owens, Sarah M.; Coleman, Maureen L.; Meyer, Folker; Chang, Eugene B.] Univ Chicago, Dept Med, Chicago, IL 60637 USA. RP Chang, EB (reprint author), Univ Chicago, Dept Med, Knapp Ctr Biomed Discovery, 900 E 57th St,Rm 9130, Chicago, IL 60637 USA. EM echang@medicine.bsd.uchicago.edu FU NIDDK [P30 DK42086, DK097268, DK07074]; Chicago Gastrointestinal Research Foundation FX We thank Kevin Keegan, Will Trimble and Andreas Wilke for their insightful discussions preparing this experiment. Funding was provided by NIDDK P30 DK42086 (Chang), DK097268 (Chang), and T32 Training Grant DK07074 (Ringus), and by the Chicago Gastrointestinal Research Foundation. NR 35 TC 3 Z9 3 U1 5 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD MAY PY 2016 VL 10 IS 5 BP 1217 EP 1227 DI 10.1038/ismej.2015.183 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DJ7FL UT WOS:000374377200018 PM 26473721 ER PT J AU Stuart, RK Mayali, X Lee, JZ Everroad, RC Hwang, M Bebout, BM Weber, PK Pett-Ridge, J Thelen, MP AF Stuart, Rhona K. Mayali, Xavier Lee, Jackson Z. Everroad, R. Craig Hwang, Mona Bebout, Brad M. Weber, Peter K. Pett-Ridge, Jennifer Thelen, Michael P. TI Cyanobacterial reuse of extracellular organic carbon in microbial mats SO ISME JOURNAL LA English DT Article ID NOSTOC-COMMUNE CYANOBACTERIA; POLYMERIC SUBSTANCES; POLYSACCHARIDES; PROCHLOROCOCCUS; PHOTOSYNTHESIS; DESICCATION; FIXATION; RELEASE; UV; SYNECHOCOCCUS AB Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either alpha or beta (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. C1 [Stuart, Rhona K.; Mayali, Xavier; Hwang, Mona; Weber, Peter K.; Pett-Ridge, Jennifer; Thelen, Michael P.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808,L-452, Livermore, CA 94550 USA. [Lee, Jackson Z.; Everroad, R. Craig; Bebout, Brad M.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. RP Thelen, MP (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808,L-452, Livermore, CA 94550 USA. EM mthelen@llnl.gov RI Thelen, Michael/G-2032-2014; OI Thelen, Michael/0000-0002-2479-5480; Stuart, Rhona/0000-0001-5916-9693 FU DOE [DE-FG02-93ER20097]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy, Office of Science by Genome Sciences Program of the Office of Biological and Environmental Research [SCW1039] FX We thank Leslie Prufert-Bebout (NASA) for isolating and providing ESFC-1 and for comments on the manuscript; Whitney Stannard (LLNL) for technical assistance with cultures; Mark Boggs (LLNL) for initial NMR analyses of EPS samples; Heather Dang (UC Berkeley) for isotope-ratio mass spectrometry analysis; Michelle Salemi and Brett Phinney for analysis at the UC Davis Proteomics Core Facility; and Parastoo Azadi and Christian Heiss for analyses carried out at the Complex Carbohydrate Research Center at the University of Georgia, Athens, supported in part by DOE grant DE-FG02-93ER20097, 'Center for Plant and Microbial Complex Carbohydrates'. We also thank Jeff Cann, Associate Wildlife Biologist, Central Region, California Department of Fish and Wildlife for coordinating access to the Moss Landing Wildlife Area; and Tijana Glavina del Rio and the DOE Joint Genome Institute (JGI) staff for sequencing and bioinformatics support (as part of JGI Community Sequencing Project # 701). This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was supported by the US Department of Energy, Office of Science, under contract number SCW1039 supported by the Genome Sciences Program of the Office of Biological and Environmental Research. Institution Paper Number LLNL-JRNL-667325. NR 59 TC 6 Z9 6 U1 10 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD MAY PY 2016 VL 10 IS 5 BP 1240 EP 1251 DI 10.1038/ismej.2015.180 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DJ7FL UT WOS:000374377200020 PM 26495994 ER PT J AU Madison, JD AF Madison, Jonathan D. TI Integrated Computational Materials Engineering: Tools, Simulations and New Applications SO JOM LA English DT Editorial Material C1 [Madison, Jonathan D.] Sandia Natl Labs, Mat Mech, POB 5800,MS-0889, Albuquerque, NM 87185 USA. RP Madison, JD (reprint author), Sandia Natl Labs, Mat Mech, POB 5800,MS-0889, Albuquerque, NM 87185 USA. EM jdmadis@sandia.gov NR 9 TC 0 Z9 0 U1 3 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD MAY PY 2016 VL 68 IS 5 BP 1376 EP 1377 DI 10.1007/s11837-016-1884-3 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DJ6VQ UT WOS:000374351700017 ER PT J AU Rodgers, TM Madison, JD Tikare, V Maguire, MC AF Rodgers, T. M. Madison, J. D. Tikare, V. Maguire, M. C. TI Predicting Mesoscale Microstructural Evolution in Electron Beam Welding SO JOM LA English DT Article ID MONTE-CARLO-SIMULATION; HEAT-AFFECTED ZONE; GRAIN-GROWTH; COMPUTER-SIMULATION; TI-6AL-4V WELDS; IMAGE-ANALYSIS; POTTS-MODEL; PLASTICITY; TOPOLOGY; KINETICS AB Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. The simulations provide an opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure. C1 [Rodgers, T. M.] Sandia Natl Labs, Computat Mat & Data Sci, POB 5800 MS 1411, Albuquerque, NM 87185 USA. [Madison, J. D.] Sandia Natl Labs, Mat Mech, POB 5800 MS 0889, Albuquerque, NM 87185 USA. [Tikare, V.] Sandia Natl Labs, Multiscale Mat Sci, POB 5800 MS 1321, Albuquerque, NM 87185 USA. [Maguire, M. C.] Sandia Natl Labs, Met & Mat Joining, POB 5800 MS 9035, Albuquerque, NM 94551 USA. RP Rodgers, TM (reprint author), Sandia Natl Labs, Computat Mat & Data Sci, POB 5800 MS 1411, Albuquerque, NM 87185 USA.; Madison, JD (reprint author), Sandia Natl Labs, Mat Mech, POB 5800 MS 0889, Albuquerque, NM 87185 USA.; Tikare, V (reprint author), Sandia Natl Labs, Multiscale Mat Sci, POB 5800 MS 1321, Albuquerque, NM 87185 USA.; Maguire, MC (reprint author), Sandia Natl Labs, Met & Mat Joining, POB 5800 MS 9035, Albuquerque, NM 94551 USA. EM trodger@sandia.gov; jdmadis@sandia.gov; vtikare@sandia.gov; mcmagui@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors would also like to thank A. Kilgo for metallographic preparation, M. Winters for e-beam welding assistance, and S. Williams for metallography. NR 38 TC 2 Z9 2 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD MAY PY 2016 VL 68 IS 5 BP 1419 EP 1426 DI 10.1007/s11837-016-1863-8 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DJ6VQ UT WOS:000374351700022 ER PT J AU Bishop, JE Emery, JM Battaile, CC Littlewood, DJ Baines, AJ AF Bishop, Joseph E. Emery, John M. Battaile, Corbett C. Littlewood, David J. Baines, Andrew J. TI Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error SO JOM LA English DT Article ID REPRESENTATIVE VOLUME ELEMENT; COMPLEX LOADING PATHS; HETEROGENEOUS MATERIALS; ELASTIC COMPOSITES; CUBIC POLYCRYSTALS; MINIMUM SIZES; ALGORITHM; DEFORMATION; VARIABILITY; PLASTICITY AB Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure. C1 [Bishop, Joseph E.; Emery, John M.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Battaile, Corbett C.] Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. [Littlewood, David J.] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. [Baines, Andrew J.] Gen Motors, Gen Motors Proving Ground, 3300 Gen Motors Rd, Milford, MI 48480 USA. RP Bishop, JE; Emery, JM (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.; Battaile, CC (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA.; Littlewood, DJ (reprint author), Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA.; Baines, AJ (reprint author), Gen Motors, Gen Motors Proving Ground, 3300 Gen Motors Rd, Milford, MI 48480 USA. EM jebisho@sandia.gov; jmemery@sandia.gov; ccbatta@sandia.gov; djlittl@sandia.gov; andrew.baines@gm.com OI Bishop, Joseph/0000-0002-6859-5253 FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank Ben Reedlunn for suggesting that we explore the use of the Hosford yield criteria. Also, we would like to thank Bill Scherzinger for the implementation of the Hosford plasticity algorithm within the Sierra finite-element software and discussions of its use. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 59 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD MAY PY 2016 VL 68 IS 5 BP 1427 EP 1445 DI 10.1007/s11837-016-1857-6 PG 19 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DJ6VQ UT WOS:000374351700023 ER PT J AU Guillon, S Sun, YW Purtschert, R Raghoo, L Pili, E Carrigan, CR AF Guillon, Sophie Sun, Yunwei Purtschert, Roland Raghoo, Lauren Pili, Eric Carrigan, Charles R. TI Alteration of natural Ar-37 activity concentration in the subsurface by gas transport and water infiltration SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Ar-37; CTBTO; Gas transport; Numerical model; Water saturation; Uncertainty ID GLOBAL SENSITIVITY; RADON EMANATION; NUCLEAR; GROUNDWATER; ATMOSPHERE; NUCLIDES; MODELS AB High Ar-37 activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of Ar-37 in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict Ar-37 activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating Ar-37 production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for Ar-37 production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural Ar-37 activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of Ar-37 activity concentrations. The influence of soil water content on Ar-37 production is shown to be negligible to first order, while Ar-37 activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Guillon, Sophie] Univ Quebec, Geotop, Dept Sci Terre & Atmosphere, CP8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. [Sun, Yunwei; Carrigan, Charles R.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Purtschert, Roland; Raghoo, Lauren] Univ Bern, Climate Environm Phys, Phys Inst, Sidlerstr 5, CH-3012 Bern, Switzerland. [Pili, Eric] CEA, DAM, DIF, F-91297 Arpajon, France. RP Guillon, S (reprint author), Univ Quebec, Geotop, Dept Sci Terre & Atmosphere, CP8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. EM guillon@sca.uqam.ca; sun4@llnl.gov; purtschert@climate.unibe.ch; raghoo@climate.unibe.ch; eric.pili@cea.fr; carrigan1@llnl.gov RI Purtschert, Roland/N-7108-2016 OI Purtschert, Roland/0000-0002-4734-7664 FU Comprehensive nuclear Test Ban Treaty Organization (CTBTO) [IDC/SA/502/14/070/MIC/jy]; University of Bern [2012-2061]; Office of Nuclear Verification [NA-243]; US Department of Energy and performed under US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the Comprehensive nuclear Test Ban Treaty Organization (CTBTO), by funding the first author through the Young Scientist Research Award (IDC/SA/502/14/070/MIC/jy) Grant and the University of Bern by contract No. 2012-2061. We thank the Editor S. C. Sheppard and an anonymous reviewer for their thoughtful comments that helped improving the manuscript. The LLNL contribution to this work was supported by the Office of Nuclear Verification (NA-243), US Department of Energy and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. NR 28 TC 0 Z9 0 U1 4 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD MAY PY 2016 VL 155 BP 89 EP 96 DI 10.1016/j.jenvrad.2016.02.021 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA DJ6YC UT WOS:000374358100012 PM 26939033 ER PT J AU Mace, EK Aalseth, CE Day, AR Hoppe, EW Keillor, ME Moran, JJ Panisko, ME Seifert, A Tatishvili, G Williams, RM AF Mace, E. K. Aalseth, C. E. Day, A. R. Hoppe, E. W. Keillor, M. E. Moran, J. J. Panisko, M. E. Seifert, A. Tatishvili, G. Williams, R. M. TI First results of a simultaneous measurement of tritium and C-14 in an ultra-low-background proportional counter for environmental sources of methane SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Tritium; Radiocarbon; Simultaneous measurement; Environmental sample; Ultra-low-background; Proportional counter ID ENERGY-LEVELS; LAKE LUGANO; H-3; DEEP AB Simultaneous measurement of tritium and C-14 would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960's atmospheric tritium and C-14 have fallen dramatically as the isotopic injections from aboveground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and C-14 measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for small samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and C-14 is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. These first results show that the dual isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). However, for samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Mace, E. K.; Aalseth, C. E.; Day, A. R.; Hoppe, E. W.; Keillor, M. E.; Moran, J. J.; Panisko, M. E.; Seifert, A.; Tatishvili, G.; Williams, R. M.] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-65, Richland, WA 99352 USA. RP Mace, EK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-65, Richland, WA 99352 USA. EM emily.mace@pnnl.gov OI Moran, James/0000-0001-9081-9017 NR 44 TC 0 Z9 0 U1 5 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD MAY PY 2016 VL 155 BP 122 EP 129 DI 10.1016/j.jenvrad.2016.02.001 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA DJ6YC UT WOS:000374358100016 PM 26990077 ER PT J AU Sloan, J Sun, YW Carrigan, C AF Sloan, Jamison Sun, Yunwei Carrigan, Charles TI Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE CTBT; Radioxenon; Nuclear explosion; Independent yield; Uncertainty quantification ID REACTIVE TRANSPORT; EQUATIONS AB Enforcement of the Comprehensive Nuclear Test Ban Treaty (CTBT) will involve monitoring for radiologic indicators of underground nuclear explosions (UNEs). A UNE produces a variety of radioisotopes which then decay through connected radionuclide chains. A particular species of interest is xenon, namely the four isotopes Xe-131m, Xe-133m, Xe-133, and Xe-135. Due to their half lives, some of these isotopes can exist in the subsurface for more than 100 days. This convenient timescale, combined with modern detection capabilities, makes the xenon family a desirable candidate for UNE detection. Ratios of these isotopes as a function of time have been studied in the past for distinguishing nuclear explosions from civilian nuclear applications. However, the initial yields from UNEs have been treated as fixed values. In reality, these independent yields are uncertain to a large degree. This study quantifies the uncertainty in xenon ratios as a result of these uncertain initial conditions to better bound the values that xenon ratios can assume. We have successfully used a combination of analytical and sampling based statistical methods to reliably bound xenon isotopic ratios. We have also conducted a sensitivity analysis and found that xenon isotopic ratios are primarily sensitive to only a few of many uncertain initial conditions. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Sloan, Jamison; Sun, Yunwei; Carrigan, Charles] Lawrence Livermore Natl Lab, Livermore, CA USA. [Sloan, Jamison] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Sun, YW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM sloan9@llnl.gov; sun4@llnl.gov; carrigan1@llnl.gov FU Office of Proliferation Detection [NA-221]; U.S. Department of Energy, Department of State Contributions-in-Kind (DTRA-administered); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344.LLNL-JRNL-680046-DRAFT] FX This research was funded by the Office of Proliferation Detection (NA-221), U.S. Department of Energy, Department of State Contributions-in-Kind (DTRA-administered), and conducted under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No.DE-AC52-07NA27344. LLNL-JRNL-680046-DRAFT. NR 20 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD MAY PY 2016 VL 155 BP 130 EP 139 DI 10.1016/j.jenvrad.2016.02.022 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DJ6YC UT WOS:000374358100017 PM 26994449 ER PT J AU Garcia, MO Smith, JE Luoma, DL Jones, MD AF Garcia, Maria O. Smith, Jane E. Luoma, Daniel L. Jones, Melanie D. TI Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone SO MYCORRHIZA LA English DT Article DE Climate change; Ectomycorrhizal communities; Pine species migration; Pinus contorta; Pinus ponderosa ID YELLOWSTONE-NATIONAL-PARK; FINE-ROOT BIOMASS; MYCORRHIZAL FUNGI; SPECIES RICHNESS; BRITISH-COLUMBIA; HOST-SPECIFICITY; CLIMATE-CHANGE; DOUGLAS-FIR; NITROGEN DEPOSITION; PACIFIC-NORTHWEST AB Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish within the historic P. contorta range and dominant EMF assemblages may be conserved. C1 [Garcia, Maria O.; Luoma, Daniel L.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Garcia, Maria O.] Boston Univ, Dept Biol, 5 Cummington Mall, Boston, MA 02215 USA. [Smith, Jane E.] US DOE, Forest Serv, Pacific NW Res Stn, Forestry Sci Lab, 3200 JeffersonWay, Corvallis, OR 97331 USA. [Jones, Melanie D.] Univ British Columbia, Inst Biodivers Resilience & Ecosyst Serv, Dept Biol, Okanagan Campus, Kelowna, BC V1V 1V7, Canada. RP Smith, JE (reprint author), US DOE, Forest Serv, Pacific NW Res Stn, Forestry Sci Lab, 3200 JeffersonWay, Corvallis, OR 97331 USA. EM jsmith01@fs.fed.us FU National Science Foundation Graduate Research Fellowship Program; USDA Forest Service Pacific Northwest Research Station FX This research was made possible with funding received from the National Science Foundation Graduate Research Fellowship Program and the USDA Forest Service Pacific Northwest Research Station. Mention of trade or firm names does not constitute an endorsement by the US Department of Agriculture. We thank Levi Davis, Tara Jennings, Doni McKay, and Joyce Eberhart for the lab assistance and Norman Forsberg for the field assistance. Thanks to Mary Berbee for the help with data analysis, Ed Mitchell and Bruce McCune for the help with the statistical analysis, and Kelly Christiansen for the GIS assistance. The comments of Greg Brenner, Paul Doescher, Marty Kranabetter, Pablo Martin-Pinto, and two anonymous reviewers greatly improved this manuscript. NR 82 TC 1 Z9 1 U1 6 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0940-6360 EI 1432-1890 J9 MYCORRHIZA JI Mycorrhiza PD MAY PY 2016 VL 26 IS 4 BP 275 EP 286 DI 10.1007/s00572-015-0668-x PG 12 WC Mycology SC Mycology GA DJ7PN UT WOS:000374403400002 PM 26547440 ER PT J AU Uberuaga, BP AF Uberuaga, Blas Pedro TI COMPLEX OXIDES Intricate disorder SO NATURE MATERIALS LA English DT News Item ID ORDER C1 [Uberuaga, Blas Pedro] Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM blas@lanl.gov NR 6 TC 4 Z9 4 U1 4 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD MAY PY 2016 VL 15 IS 5 BP 496 EP 497 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DK2SA UT WOS:000374763500005 PM 26928638 ER PT J AU Woo, S Litzius, K Kruger, B Im, MY Caretta, L Richter, K Mann, M Krone, A Reeve, RM Weigand, M Agrawal, P Lemesh, I Mawass, MA Fischer, P Klaui, M Beach, GRSD AF Woo, Seonghoon Litzius, Kai Krueger, Benjamin Im, Mi-Young Caretta, Lucas Richter, Kornel Mann, Maxwell Krone, Andrea Reeve, Robert M. Weigand, Markus Agrawal, Parnika Lemesh, Ivan Mawass, Mohamad-Assaad Fischer, Peter Klaeui, Mathias Beach, Geo Rey S. D. TI Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets SO NATURE MATERIALS LA English DT Article ID REAL-SPACE OBSERVATION; DOMAIN-WALLS; WEAK FERROMAGNETISM; CHIRAL MAGNET; LATTICE; MOTION; ORDER AB Magnetic skyrmions(1,2) are topologically protected spin textures that exhibit fascinating physical behaviours(1-6) and large potential in highly energy-efficient spintronic device applications(7-13). The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures(1-4,6-8), and fast current-driven motion of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft X-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack at speeds exceeding 100m s(-1) as required for applications. Our findings provide experimental evidence of recent predictions(10-13) and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures. C1 [Woo, Seonghoon; Caretta, Lucas; Mann, Maxwell; Agrawal, Parnika; Lemesh, Ivan; Beach, Geo Rey S. D.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Litzius, Kai; Krueger, Benjamin; Richter, Kornel; Krone, Andrea; Reeve, Robert M.; Mawass, Mohamad-Assaad; Klaeui, Mathias] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Litzius, Kai; Klaeui, Mathias] Grad Sch Excellence Mat Sci Mainz, Staudinger Weg 9, D-55128 Mainz, Germany. [Im, Mi-Young] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Im, Mi-Young] Daegu Gyeongbuk Inst Sci & Technol, Daegu 711873, South Korea. [Weigand, Markus; Mawass, Mohamad-Assaad] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 94056 USA. RP Beach, GRSD (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Klaui, M (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.; Klaui, M (reprint author), Grad Sch Excellence Mat Sci Mainz, Staudinger Weg 9, D-55128 Mainz, Germany. EM klaeui@uni-mainz.de; gbeach@mit.edu RI Krueger, Benjamin/B-7466-2009; Fischer, Peter/A-3020-2010; Klaui, Mathias/B-6972-2009; OI Krueger, Benjamin/0000-0001-8502-368X; Fischer, Peter/0000-0002-9824-9343; Klaui, Mathias/0000-0002-4848-2569; Woo, Seonghoon/0000-0001-8879-1203 FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0012371]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy [DE-AC02-05-CH11231]; Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2012K1A4A3053565]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05-CH11231]; C-SPIN, one of the six SRC STARnet Centers - MARCO; DARPA; DFG; Graduate School of Excellence Materials Science in Mainz (MAINZ) [GSC 266]; EU [ERC-2007-StG 208162, FP7-PEOPLE-2013-ITN 608031, FP7-ICT-2009-5]; MOGON (ZDV Mainz computing centre); Research Center of Innovative and Emerging Materials at Johannes Gutenberg University (CINEMA); Carl-Zeiss-Foundation; Graduate School of Excellence Materials Science in Mainz (MAINZ); Kwanjeong Foundation; NSF FX Work at MIT was primarily supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-SC0012371 (sample fabrication and MTXM and STXM experiments). The operation of the X-ray microscope at the Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy under Contract No. DE-AC02-05-CH11231. M.-Y.I. acknowledges support from the Leading Foreign Research Institute Recruitment Program (Grant No. 2012K1A4A3053565) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST). P.F. acknowledges support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05-CH11231 within the Non-Equilibrium Magnetic Materials programme. G.S.D.B. acknowledges support from C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. M.K. and the group at Mainz acknowledge support by the DFG, the Graduate School of Excellence Materials Science in Mainz (MAINZ, GSC 266), the EU (MASPIC, ERC-2007-StG 208162; WALL, FP7-PEOPLE-2013-ITN 608031; MAGWIRE, FP7-ICT-2009-5), the MOGON (ZDV Mainz computing centre) and the Research Center of Innovative and Emerging Materials at Johannes Gutenberg University (CINEMA). B.K. is grateful for financial support by the Carl-Zeiss-Foundation. K.L. gratefully acknowledges financial support by the Graduate School of Excellence Materials Science in Mainz (MAINZ). S.W. acknowledges support from the Kwanjeong Foundation. L.C. acknowledges support by the NSF Graduate Research Fellowship Program. Measurements were carried out at the MAXYMUS endstation at Helmholtz-Zentrum Berlin. We thank HZB for the allocation of beamtime. NR 30 TC 76 Z9 76 U1 52 U2 134 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD MAY PY 2016 VL 15 IS 5 BP 501 EP + DI 10.1038/NMAT4593 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DK2SA UT WOS:000374763500009 PM 26928640 ER PT J AU Shamblin, J Feygenson, M Neuefeind, J Tracy, CL Zhang, FX Finkeldei, S Bosbach, D Zhou, HD Ewing, RC Lang, M AF Shamblin, Jacob Feygenson, Mikhail Neuefeind, Joerg Tracy, Cameron L. Zhang, Fuxiang Finkeldei, Sarah Bosbach, Dirk Zhou, Haidong Ewing, Rodney C. Lang, Maik TI Probing disorder in isometric pyrochlore and related complex oxides SO NATURE MATERIALS LA English DT Article ID RADIATION TOLERANCE; SPINEL; CONDUCTIVITY AB There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales(1)). In particular, compounds with the isometric pyrochlore structure(2), A(2)B(2)O(7), can adopt a disordered, isometric fluorite-type structure, (A, B)(4)O-7, under extreme conditions(3-7). Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization(4), fast ion conduction(8), and thermal barrier coatings(9,10). C1 [Shamblin, Jacob; Lang, Maik] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Shamblin, Jacob; Zhou, Haidong] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Feygenson, Mikhail; Neuefeind, Joerg] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Tracy, Cameron L.; Ewing, Rodney C.] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA. [Zhang, Fuxiang] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Finkeldei, Sarah; Bosbach, Dirk] Forschungszentrum Julich, Inst Energy & Climate Res, IEK Nucl Waste Management & Reactor Safety 6, D-52425 Julich, Germany. RP Lang, M (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM mlang2@utk.edu RI Neuefeind, Joerg/D-9990-2015; Zhou, Haidong/O-4373-2016; Zhang, Fuxiang/P-7365-2015; OI Neuefeind, Joerg/0000-0002-0563-1544; Zhang, Fuxiang/0000-0003-1298-9795; Tracy, Cameron/0000-0002-0679-8522; Feygenson, Mikhail /0000-0002-0316-3265; Shamblin, Jacob/0000-0002-1799-5353 FU Materials Science of Actinides, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001089]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We thank T. Egami, A. Fuentes and B. Haberl for discussions. This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001089. This research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 33 TC 15 Z9 15 U1 14 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD MAY PY 2016 VL 15 IS 5 BP 507 EP + DI 10.1038/NMAT4581 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DK2SA UT WOS:000374763500010 PM 26928636 ER PT J AU Agar, JC Damodaran, AR Okatan, MB Kacher, J Gammer, C Vasudevan, RK Pandya, S Dedon, LR Mangalam, RVK Velarde, GA Jesse, S Balke, N Minor, AM Kalinin, SV Martin, LW AF Agar, J. C. Damodaran, A. R. Okatan, M. B. Kacher, J. Gammer, C. Vasudevan, R. K. Pandya, S. Dedon, L. R. Mangalam, R. V. K. Velarde, G. A. Jesse, S. Balke, N. Minor, A. M. Kalinin, S. V. Martin, L. W. TI Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films SO NATURE MATERIALS LA English DT Article ID 90-DEGREES DOMAINS; STRAIN; CONDUCTION; RELAXATION; MECHANISMS; BOUNDARY; DYNAMICS; SOLIDS; OXIDE AB Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180 degrees domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr1-xTixO3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the effcacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices. C1 [Agar, J. C.; Damodaran, A. R.; Kacher, J.; Gammer, C.; Pandya, S.; Dedon, L. R.; Mangalam, R. V. K.; Minor, A. M.; Martin, L. W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Agar, J. C.; Velarde, G. A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Okatan, M. B.; Vasudevan, R. K.; Jesse, S.; Balke, N.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kacher, J.; Gammer, C.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. [Martin, L. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Martin, LW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Martin, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM lwmartin@berkeley.edu RI Okatan, M. Baris/E-1913-2016; Balke, Nina/Q-2505-2015; Martin, Lane/H-2409-2011; OI Okatan, M. Baris/0000-0002-9421-7846; Balke, Nina/0000-0001-5865-5892; Martin, Lane/0000-0003-1889-2513; Gammer, Christoph/0000-0003-1917-4978 FU National Science Foundation [DMR-1451219, CMMI-1434147]; Army Research Office [W911NF-14-1-0104]; Department of Energy, Basic Energy Sciences [DE-SC0012375]; Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy; Scientific User Facilities Division, Basic Energy Sciences, Department of Energy; National Science Foundation CMMI/MoM Program under GOALI Grant [1235610]; Austrian Science Fund (FWF) [J3397]; US Dept. of Energy [DE-AC02-29705CH11231] FX J.C.A., G.A.V. and L.W.M. acknowledge support from the National Science Foundation under grant DMR-1451219. A.R.D. and S.P. acknowledge support from the Army Research Office under grant W911NF-14-1-0104. L.R.D. acknowledges support from the Department of Energy, Basic Energy Sciences under grant No. DE-SC0012375 for chemical studies of the materials. R.V.K.M. acknowledges support from the National Science Foundation under grant CMMI-1434147. R.K.V. and S.V.K. acknowledge support from the Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy. Portions of this research were conducted at the Center for Nanophase Materials Sciences, which is a Department of Energy, Office of Science User Facility sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Basic Energy Sciences, Department of Energy which also provided support for M.B.O., S.J. and N.B. J.K. and A.M.M. acknowledge support from the National Science Foundation CMMI/MoM Program under GOALI Grant 1235610. C.G. acknowledges support from the Austrian Science Fund (FWF):[J3397]. Portions of this work were carried out at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the US Dept. of Energy under Contract No. DE-AC02-29705CH11231. NR 48 TC 9 Z9 9 U1 29 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD MAY PY 2016 VL 15 IS 5 BP 549 EP + DI 10.1038/NMAT4567 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DK2SA UT WOS:000374763500018 PM 26878312 ER PT J AU Bousige, C Ghimbeu, CM Vix-Guterl, C Pomerantz, AE Suleimenova, A Vaughan, G Garbarino, G Feygenson, M Wildgruber, C Ulm, FJ Pellenq, RJM Coasne, B AF Bousige, Colin Ghimbeu, Camelia Matei Vix-Guterl, Cathie Pomerantz, Andrew E. Suleimenova, Assiya Vaughan, Gavin Garbarino, Gaston Feygenson, Mikhail Wildgruber, Christoph Ulm, Franz-Josef Pellenq, Roland J. -M. Coasne, Benoit TI Realistic molecular model of kerogen's nanostructure SO NATURE MATERIALS LA English DT Article ID REVERSE MONTE-CARLO; GAS-ADSORPTION; SHALE-GAS; METHANE ADSORPTION; MERCURY INTRUSION; NANOPOROUS MEDIA; PORE STRUCTURE; HEAT-CAPACITY; NATURAL-GAS; X-RAY AB Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms. C1 [Bousige, Colin; Ulm, Franz-Josef; Pellenq, Roland J. -M.; Coasne, Benoit] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bousige, Colin; Pellenq, Roland J. -M.; Coasne, Benoit] MIT, CNRS, UMI 3466, MSE2, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Ghimbeu, Camelia Matei; Vix-Guterl, Cathie] UHA, CNRS, UMR 7360, IS2M, 15 Rue Jean Starcky,BP 2488, F-68057 Mulhouse, France. [Pomerantz, Andrew E.; Suleimenova, Assiya] Schlumberger Doll Res Ctr, 1 Hampshire St, Cambridge, MA 02139 USA. [Vaughan, Gavin; Garbarino, Gaston] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble 9, France. [Feygenson, Mikhail] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Wildgruber, Christoph] Oak Ridge Natl Lab, Instrument & Source Div NScD, Oak Ridge, TN 37831 USA. [Pellenq, Roland J. -M.] Aix Marseille Univ, CNRS, CINaM, Campus Luminy, F-13288 Marseille 09, France. RP Coasne, B (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Coasne, B (reprint author), MIT, CNRS, UMI 3466, MSE2, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM coasne@mit.edu RI Matei Ghimbeu, Camelia/N-7855-2015; OI Matei Ghimbeu, Camelia/0000-0003-3600-5877; Bousige, Colin/0000-0002-0490-2277; Feygenson, Mikhail /0000-0002-0316-3265 FU X-Shale project; Shell; Schlumberger; ICoME2 Labex project - French programme 'Investissements d'Avenir' [ANR-11-LABX-0053]; A*MIDEX project - French programme 'Investissements d'Avenir' [ANR-11-IDEX-0001-02]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This work was supported by the X-Shale project enabled through MIT's Energy Initiative, with sponsorship provided by Shell and Schlumberger. Additional support was provided by the ICoME2 Labex (ANR-11-LABX-0053) and the A*MIDEX projects (ANR-11-IDEX-0001-02) co-funded by the French programme 'Investissements d'Avenir' managed by ANR, the French National Research Agency. The authors thank M. Hubler (MIT) and J. Gelb (Carl Zeiss X-ray Microscopy) for providing the X-Ray Microscopy image of raw shale, and A. Saul, J. M. Leyssale, H. Van Damme and A. Archereau for fruitful discussions. The neutron scattering experiments were carried out at the Spallation Neutron Source, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory. NR 59 TC 11 Z9 11 U1 24 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD MAY PY 2016 VL 15 IS 5 BP 576 EP + DI 10.1038/NMAT4541 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DK2SA UT WOS:000374763500022 PM 26828313 ER PT J AU Betti, R Hurricane, OA AF Betti, R. Hurricane, O. A. TI Inertial-confinement fusion with lasers SO NATURE PHYSICS LA English DT Review ID NATIONAL IGNITION FACILITY; TARGETS; PERFORMANCE; IMPLOSIONS; DENSITY; OMEGA; POWER; GAIN; FUEL; INSTABILITY AB The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles. C1 [Betti, R.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Hurricane, O. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Betti, R (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM betti@lle.rochester.edu FU US Department of Energy [DE-AC52-07NA27344, DE-NA0001944, DE-FC02-04ER54789]; New York State Energy Research Development Authority FX The authors would like to thank the US and the international ICF community for their continuing efforts to make inertial fusion in the laboratory a reality. Special thanks to J. R. Davies of LLE for his input on the Magneto-Inertial Fusion section of this manuscript. The authors are grateful to M. E. Campbell, S. P. Regan, T. C. Sangster and W. Theobald of LLE, F. Beg of UCSD, D. Sinar of SNL and to D. Clark, M. J. Edwards, L. F. Berzak-Hopkins, A. Kritcher and T. Ma of LLNL for reviewing this manuscript. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the University of Rochester Laboratory for Laser Energetics under Cooperative Agreements DE-NA0001944 (NNSA) and DE-FC02-04ER54789 (OFES), and with the support of the New York State Energy Research Development Authority. NR 170 TC 4 Z9 4 U1 28 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2016 VL 12 IS 5 BP 435 EP 448 DI 10.1038/NPHYS3736 PG 14 WC Physics, Multidisciplinary SC Physics GA DK9MR UT WOS:000375255000013 ER PT J AU Dzuba, VA Flambaum, VV Safronova, MS Porsev, SG Pruttivarasin, T Hohensee, MA Haffner, H AF Dzuba, V. A. Flambaum, V. V. Safronova, M. S. Porsev, S. G. Pruttivarasin, T. Hohensee, M. A. Haffner, H. TI Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions SO NATURE PHYSICS LA English DT Article ID CPT VIOLATION; INVARIANCE; MATTER AB A number of theories aiming at unifying gravity with other fundamental interactions, including field theory, suggest the violation of Lorentz symmetry(1-3). Whereas the energy scale of such strongly Lorentz-symmetry-violating physics is much higher than that attainable at present by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies(2). Here, we carry out a systematic theoretical investigation to identify which atom shows the greatest promise for detecting a Lorentz symmetry violation in the electron-photon sector. We found that the ytterbium ion (Yb+) is an ideal system with high sensitivity, as well as excellent experimental controllability. By applying quantum-information-inspired technology to Yb+, we expect tests of local Lorentz invariance (LLI) violating physics in the electron-photon sector to reach levels of 10(-23)-five orders of magnitude more sensitive than the current best bounds(4-6). C1 [Dzuba, V. A.; Flambaum, V. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Safronova, M. S.; Porsev, S. G.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Safronova, M. S.] NIST, Joint Quantum Inst, College Pk, MD 20742 USA. [Safronova, M. S.] Univ Maryland, College Pk, MD 20742 USA. [Porsev, S. G.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Distr, Russia. [Pruttivarasin, T.] RIKEN, Quantum Metrol Lab, Wako, Saitama 3510198, Japan. [Hohensee, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Haffner, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Safronova, MS (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.; Safronova, MS (reprint author), NIST, Joint Quantum Inst, College Pk, MD 20742 USA.; Safronova, MS (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM msafrono@udel.edu RI Haeffner, Hartmut/D-8046-2012 OI Haeffner, Hartmut/0000-0002-5113-9622 FU UNSW; NSF CAREER [PHY 0955650]; NSF [PHY 1212442, PHY 1404156, PHY 1507160, PHY 1520993]; Australian Research Council; US Department of Energy [DE-AC52-07NA27344]; RIKEN's Foreign Postdoc Researcher Program FX M.S.S. thanks the School of Physics at UNSW, Sydney, Australia for hospitality and acknowledges support from the Gordon Godfrey Fellowship programme, UNSW. This work was supported by the NSF CAREER Program grant # PHY 0955650, NSF grants # PHY 1212442, # PHY 1404156, # PHY 1507160 and # PHY 1520993, the Australian Research Council and was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. T.P. is supported by RIKEN's Foreign Postdoc Researcher Program. NR 36 TC 6 Z9 6 U1 8 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2016 VL 12 IS 5 BP 465 EP + DI 10.1038/NPHYS3610 PG 5 WC Physics, Multidisciplinary SC Physics GA DK9MR UT WOS:000375255000017 ER PT J AU Grisolia, MN Varignon, J Sanchez-Santolino, G Arora, A Valencia, S Varela, M Abrudan, R Weschke, E Schierle, E Rault, JE Rueff, JP Barthelemy, A Santamaria, J Bibes, M AF Grisolia, M. N. Varignon, J. Sanchez-Santolino, G. Arora, A. Valencia, S. Varela, M. Abrudan, R. Weschke, E. Schierle, E. Rault, J. E. Rueff, J. -P. Barthelemy, A. Santamaria, J. Bibes, M. TI Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces SO NATURE PHYSICS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ELECTRONIC-STRUCTURE; EXCHANGE BIAS; PHOTOELECTRON-SPECTROSCOPY; TRANSITION-METAL; THIN-FILMS; PEROVSKITES; SPIN; HETEROINTERFACE; SUPERLATTICES AB At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. C1 [Grisolia, M. N.; Varignon, J.; Barthelemy, A.; Bibes, M.] Univ Paris Saclay, Univ Paris Sud, Unite Mixte Phys CNRS, Thales, F-91767 Palaiseau, France. [Sanchez-Santolino, G.; Varela, M.] Univ Complutense Madrid, Inst Pluridisciplinar, GFMC, E-28040 Madrid, Spain. [Sanchez-Santolino, G.; Varela, M.; Santamaria, J.] Univ Complutense Madrid, Lab Heteroestruct Aplicac Spintron, Unidad Asociada CSIC, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain. [Arora, A.; Valencia, S.; Abrudan, R.; Weschke, E.; Schierle, E.] Helmholtz Zentrum Berlin Mat & Energie, Albert Einstein Str 15, D-12489 Berlin, Germany. [Varela, M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Abrudan, R.] Ruhr Univ Bochum, Inst Expt Phys Festkorperphys, D-44780 Bochum, Germany. [Rault, J. E.; Rueff, J. -P.] Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France. [Rueff, J. -P.] Univ Paris 06, Sorbonne Univ, CNRS, Lab Chim Phys Mat Rayonnement, 11 Rue Pierre & Marie Curie, F-75005 Paris, France. [Santamaria, J.] Univ Complutense Madrid, Inst Magnetismo Aplicado, E-28040 Madrid, Spain. RP Bibes, M (reprint author), Univ Paris Saclay, Univ Paris Sud, Unite Mixte Phys CNRS, Thales, F-91767 Palaiseau, France. EM manuel.bibes@thalesgroup.com RI Sanchez Santolino, Gabriel/I-5575-2012; Bibes, Manuel/C-5899-2013; Santamaria, Jacobo/N-8783-2016; Varela, Maria/E-2472-2014; OI Sanchez Santolino, Gabriel/0000-0001-8036-707X; Bibes, Manuel/0000-0002-6704-3422; Santamaria, Jacobo/0000-0003-4594-2686; Varela, Maria/0000-0002-6582-7004; Abrudan, Radu/0000-0002-9335-4929; Valencia, Sergio/0000-0002-3912-5797; Rueff, Jean-Pascal/0000-0003-3594-918X FU European Community [312284]; ERC [615759, 239739 STEMOX]; region Ile-de-France DIM 'Oxymore' (project NEIMO); US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; CAM [CAM S2013/MIT-2740]; [MAT2014-52405-C02-01]; [2010-CSD2009-00013] FX The authors thank M. Watanabe for the Digital Micrograph PCA plug-in, F. Y. Bruno for his assistance at an early stage of this project and V. Garcia and R. Mattana for useful comments. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement #312284. Research at CNRS/Thales was supported by the ERC Consolidator Grant #615759 'MINT' and the region Ile-de-France DIM 'Oxymore' (project NEIMO). Research at ORNL was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at UCM was supported by grants MAT2014-52405-C02-01 and Consolider Ingenio 2010-CSD2009-00013 (Imagine), by CAM through grant CAM S2013/MIT-2740 and by the ERC Starting Investigator Grant #239739 STEMOX. J.S. thanks the Institute of Physics of CNRS for supporting his stay at CNRS/Thales. We acknowledge synchrotron SOLEIL (proposal no. 20140194) and HZB for provision of synchrotron radiation facilities and the Labex PALM. NR 54 TC 10 Z9 10 U1 33 U2 93 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2016 VL 12 IS 5 BP 484 EP + DI 10.1038/NPHYS3627 PG 10 WC Physics, Multidisciplinary SC Physics GA DK9MR UT WOS:000375255000021 PM 27158255 ER PT J AU Allred, JM Taddei, KM Bugaris, DE Krogstad, MJ Lapidus, SH Chung, DY Claus, H Kanatzidis, MG Brown, DE Kang, J Fernandes, RM Eremin, I Rosenkranz, S Chmaissem, O Osborn, R AF Allred, J. M. Taddei, K. M. Bugaris, D. E. Krogstad, M. J. Lapidus, S. H. Chung, D. Y. Claus, H. Kanatzidis, M. G. Brown, D. E. Kang, J. Fernandes, R. M. Eremin, I. Rosenkranz, S. Chmaissem, O. Osborn, R. TI Double-Q spin-density wave in iron arsenide superconductors SO NATURE PHYSICS LA English DT Article ID NEMATIC ORDER; MAGNETISM AB Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high-temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of certain hole-doped compounds, revealing the existence of a new magnetic phase at compositions close to the onset of superconductivity. Here, we present Mossbauer data that show that half of the iron sites in this tetragonal phase are nonmagnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. Instead, this state is naturally explained as the interference between two commensurate spin-density waves, a rare example of collinear double-Q magnetic order. Our results demonstrate the itinerant character of the magnetism of the iron pnictides, and the primary role played by magnetic degrees of freedom in determining their phase diagram. C1 [Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; Krogstad, M. J.; Chung, D. Y.; Claus, H.; Kanatzidis, M. G.; Rosenkranz, S.; Chmaissem, O.; Osborn, R.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Taddei, K. M.; Krogstad, M. J.; Brown, D. E.; Chmaissem, O.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Lapidus, S. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kanatzidis, M. G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kang, J.; Fernandes, R. M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Eremin, I.] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44801 Bochum, Germany. [Eremin, I.] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia. RP Allred, JM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmallred@ua.edu RI Rosenkranz, Stephan/E-4672-2011; Fernandes, Rafael/E-9273-2010; Kang, Jian/C-8571-2016; Taddei, Keith/K-4641-2016; Eremin, Ilya /M-2079-2016; Allred, Jared/N-4719-2014 OI Rosenkranz, Stephan/0000-0002-5659-0383; Kang, Jian/0000-0002-8840-8881; Taddei, Keith/0000-0002-1468-0823; Eremin, Ilya /0000-0003-0557-8015; Allred, Jared/0000-0002-5953-300X FU US Department of Energy, Office of Science, Materials Science and Engineering Division; Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012336]; Focus Program 1458 Eisen-Pniktide of the DFG; German Academic Exchange Service (DAAD PPP USA) [57051534]; Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS [22014015] FX Work at Argonne (J.M.A., K.M.T., D.E. Bugaris, M.J.K., D.Y.C., H.C., M.G.K., S.R., O.C. and R.O.) was supported by the US Department of Energy, Office of Science, Materials Science and Engineering Division. X-ray experiments were performed at the Advanced Photon Source, which is supported by the Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Neutron experiments were performed at the High Flux Isotope Reactor and Spallation Neutron Source. R.M.F. and J.K. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0012336. The work of I.E. was supported by the Focus Program 1458 Eisen-Pniktide of the DFG, and by the German Academic Exchange Service (DAAD PPP USA no. 57051534). I.E. also acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS (N 22014015). The authors thank A. A. Aczel, A. Huq, M. J. Kirkham and P. S. Whitfield for experimental assistance, E. E. Alp for use of his Mossbauer spectrometer, and B. M. Andersen, A. V. Chubukov, M. N. Gastiasoro, A. Yaresko and Y. Zhao for fruitful discussions. NR 46 TC 14 Z9 14 U1 11 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2016 VL 12 IS 5 BP 493 EP + DI 10.1038/NPHYS3629 PG 7 WC Physics, Multidisciplinary SC Physics GA DK9MR UT WOS:000375255000022 ER PT J AU Jarrott, LC Wei, MS McGuffey, C Solodov, AA Theobald, W Qiao, B Stoeckl, C Betti, R Chen, H Delettrez, J Doppner, T Giraldez, EM Glebov, VY Habara, H Iwawaki, T Key, MH Luo, RW Marshall, FJ McLean, HS Mileham, C Patel, PK Santos, JJ Sawada, H Stephens, RB Yabuuchi, T Beg, FN AF Jarrott, L. C. Wei, M. S. McGuffey, C. Solodov, A. A. Theobald, W. Qiao, B. Stoeckl, C. Betti, R. Chen, H. Delettrez, J. Doppner, T. Giraldez, E. M. Glebov, V. Y. Habara, H. Iwawaki, T. Key, M. H. Luo, R. W. Marshall, F. J. McLean, H. S. Mileham, C. Patel, P. K. Santos, J. J. Sawada, H. Stephens, R. B. Yabuuchi, T. Beg, F. N. TI Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets SO NATURE PHYSICS LA English DT Article ID FUSION IGNITION; SIMULATION; CAPSULE; GAIN AB Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires efficient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser-matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters affecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving efficiency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver. C1 [Jarrott, L. C.; McGuffey, C.; Qiao, B.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, Ctr Energy Res, La Jolla, CA 92093 USA. [Wei, M. S.; Giraldez, E. M.; Luo, R. W.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA. [Solodov, A. A.; Theobald, W.; Stoeckl, C.; Betti, R.; Delettrez, J.; Glebov, V. Y.; Marshall, F. J.; Mileham, C.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Solodov, A. A.; Betti, R.] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA. [Jarrott, L. C.; Chen, H.; Doppner, T.; Key, M. H.; McLean, H. S.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Habara, H.; Iwawaki, T.; Yabuuchi, T.] Osaka Univ, Grad Sch Engn, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan. [Santos, J. J.] Univ Bordeaux, CELIA Ctr Lasers Intenses & Applicat, UMR 5107, F-33405 Talence, France. [Sawada, H.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Beg, FN (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, Ctr Energy Res, La Jolla, CA 92093 USA.; Wei, MS (reprint author), Gen Atom Co, San Diego, CA 92186 USA. EM weims@fusion.gat.com; fbeg@ucsd.edu RI Qiao, Bin/I-2471-2016; Patel, Pravesh/E-1400-2011; Sawada, Hiroshi/Q-8434-2016; OI Qiao, Bin/0000-0001-7174-5577; Sawada, Hiroshi/0000-0002-7972-9894; Stephens, Richard/0000-0002-7034-6141 FU US Department of Energy National Nuclear Security Administration [DE-NA0000854, DE-NA0002033]; OFES Fusion Science Center (FSC) [DE-FC02-04ER54789]; OFES ACE Fast Ignition grant [DE-FG02-95ER54839]; NNSA [DE-NA0001944]; French National Agency for Research (ANR); competitiveness cluster Alpha-Route des Lasers through project TERRE [ANR-2011-BS04-014] FX This material is based on work supported by the US Department of Energy National Nuclear Security Administration under the National Laser User Facility programme with Award Number DE-NA0000854, DE-NA0002033, the OFES Fusion Science Center (FSC) grant No DE-FC02-04ER54789, the OFES ACE Fast Ignition grant No. DE-FG02-95ER54839, and NNSA cooperative agreement DE-NA0001944. The support of the DOE does not constitute an endorsement by the DOE of the views expressed in this article. J.J.S. participated in this work thanks to funding from the French National Agency for Research (ANR) and the competitiveness cluster Alpha-Route des Lasers through project TERRE ANR-2011-BS04-014. The authors would like to acknowledge excellent support provided by the Omega Laser Facility staff and the GA target fabrication group. The authors are thankful to S. Chawla for HYDRA simulations and C. Dorrer for the measured OMEGA-EP pre-pulse information. NR 29 TC 3 Z9 3 U1 6 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2016 VL 12 IS 5 BP 499 EP + DI 10.1038/NPHYS3614 PG 7 WC Physics, Multidisciplinary SC Physics GA DK9MR UT WOS:000375255000023 ER PT J AU De Kauwe, MG Lin, YS Wright, IJ Medlyn, BE Crous, KY Ellsworth, DS Maire, V Prentice, IC Atkin, OK Rogers, A Niinemets, U Serbin, SP Meir, P Uddling, J Togashi, HF Tarvainen, L Weerasinghe, LK Evans, BJ Ishida, FY Domingues, TF AF De Kauwe, Martin G. Lin, Yan-Shih Wright, Ian J. Medlyn, Belinda E. Crous, Kristine Y. Ellsworth, David S. Maire, Vincent Prentice, I. Colin Atkin, Owen K. Rogers, Alistair Niinemets, Ulo Serbin, Shawn P. Meir, Patrick Uddling, Johan Togashi, Henrique F. Tarvainen, Lasse Weerasinghe, Lasantha K. Evans, Bradley J. Ishida, F. Yoko Domingues, Tomas F. TI A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis SO NEW PHYTOLOGIST LA English DT Article DE A-C-i curve; leaf respiration during the day (R-day); maximum carboxylation rate (V-cmax); net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (A(sat)) ID GAS-EXCHANGE MEASUREMENTS; TERRESTRIAL BIOSPHERE MODELS; BIOCHEMICALLY BASED MODEL; PLANT FUNCTIONAL TYPES; AIR CO2 ENRICHMENT; LEAF NITROGEN; TEMPERATURE RESPONSE; CARBON-DIOXIDE; ELEVATED CO2; MESOPHYLL CONDUCTANCE AB Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (V-cmax). Estimating this parameter using A-C-i curves (net photosynthesis, A, vs intercellular CO2 concentration, C-i) is laborious, which limits availability of V-cmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (A(sat)) measurements, from which V-cmax can be extracted using a one-point method'. We used a global dataset of A-C-i curves (564 species from 46 field sites, covering a range of plant functional types) to test the validity of an alternative approach to estimate V-cmax from A(sat) via this one-point method'. If leaf respiration during the day (R-day) is known exactly, V-cmax can be estimated with an r(2)value of0.98 and a root-mean-squared error (RMSE) of 8.19molm(-2)s(-1). However, R-day typically must be estimated. Estimating R-day as 1.5% of V-cmax,V- we found that V-cmax could be estimated with an r(2)of0.95 and an RMSE of 17.1molm(-2)s(-1). The one-point method provides a robust means to expand current databases of field-measured V-cmax, giving new potential to improve vegetation models and quantify the environmental drivers of V-cmax variation. C1 [De Kauwe, Martin G.; Lin, Yan-Shih; Wright, Ian J.; Prentice, I. Colin; Togashi, Henrique F.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. [Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.] Univ Western Sydney, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia. [Crous, Kristine Y.] Univ Birmingham, Birmingham Inst Forest Res, Birmingham B15 2TT, W Midlands, England. [Maire, Vincent] Univ Quebec Trois Rivieres, Trois Rivieres, PQ G9A 5H7, Canada. [Prentice, I. Colin] Univ London Imperial Coll Sci Technol & Med, Grand Challenges Ecosyst & Environm, AXA Chair Biosphere & Climate Impacts, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England. [Prentice, I. Colin] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Grantham Inst Climate Change & Environm, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England. [Atkin, Owen K.; Weerasinghe, Lasantha K.] Australian Natl Univ, Res Sch Biol, ARC Ctr Excellence Plant Energy Biol, Bldg 134, Canberra, ACT 2601, Australia. [Rogers, Alistair; Serbin, Shawn P.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Niinemets, Ulo] Estonian Univ Life Sci, Inst Agr & Environm Sci, Kreutzwaldi 1, EE-51014 Tartu, Estonia. [Niinemets, Ulo] Estonian Acad Sci, Kohtu 6, EE-10130 Tallinn, Estonia. [Meir, Patrick] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia. [Meir, Patrick] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Uddling, Johan] Univ Gothenburg, Dept Biol & Environm Sci, POB 461, SE-40530 Gothenburg, Sweden. [Togashi, Henrique F.; Evans, Bradley J.] Univ Sydney, Ecosyst Modelling & Scaling Infrastruct, Terr Ecosyst Res Network, Sydney, NSW 2006, Australia. [Tarvainen, Lasse] Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, SE-90183 Umea, Sweden. [Weerasinghe, Lasantha K.] Univ Peradeniya, Fac Agr, Peradeniya 20400, Sri Lanka. [Evans, Bradley J.] Univ Sydney, Dept Environm Sci, Sydney, NSW 2006, Australia. [Ishida, F. Yoko] James Cook Univ, Ctr Trop Environm & Sustainabil Sci, Coll Marine & Environm Sci, Cairns, Qld 4870, Australia. [Domingues, Tomas F.] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Av Bandeirantes 3900, BR-14040901 Sao Paulo, Brazil. RP De Kauwe, MG (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. EM mdekauwe@gmail.com RI Wright, Ian/G-4979-2012; Rogers, Alistair/E-1177-2011; Serbin, Shawn/B-6392-2009; Domingues, Tomas/G-9707-2011; Atkin, Owen/C-8415-2009; OI Wright, Ian/0000-0001-8338-9143; Rogers, Alistair/0000-0001-9262-7430; Serbin, Shawn/0000-0003-4136-8971; Domingues, Tomas/0000-0003-2857-9838; Atkin, Owen/0000-0003-1041-5202; Lin, Yan-Shih/0000-0003-3177-5186 FU Australian Research Council (ARC) [LP140100232]; ARC [DP120103600, DP0986823, DP110105102, DP130101252, CE140100008, FT0991448, FT110100457]; TERN eMAST (Ecosystem Modelling and Scaling Infrastructure); Birmingham Institute of Forest Research; Institute of Advanced Studies at the University of Birmingham; Western Sydney University; Next-Generation Ecosystem Experiments (NGEE Arctic) project - Office of Biological and Environmental Research in the Department of Energy, Office of Science; United States Department of Energy [DE-SC00112704]; international Macquarie University International Research Scholarship (iMQRES); TERN eMAST; Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS); NERC [NE/J011002/1]; NSF [1146206]; Moore Foundation [3001] FX M.G.D.K. was supported by the Australian Research Council (ARC) Linkage grant (LP140100232). Y-S.L. was jointly supported by ARC funding to I.C.P. and I.J.W. (DP120103600) and by TERN eMAST (Ecosystem Modelling and Scaling Infrastructure). We also acknowledge ARC support to D.S.E., B.E.M., I.J.W. and O.K.A. (DP0986823, DP110105102, DP130101252, CE140100008 and FT0991448). D.S.E. and K.Y.C. gratefully acknowledge the Birmingham Institute of Forest Research, the Institute of Advanced Studies at the University of Birmingham, and the Western Sydney University for support during manuscript preparation. I.C.P. is the AXA Research Fund Chair in Biosphere and Climate Impacts and his part in this research contributes to the Chair programme and to the Imperial College initiative 'Grand Challenges in Ecosystems and the Environment'. A.R. was supported by the Next-Generation Ecosystem Experiments (NGEE Arctic) project that is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science. A.R. and S.P.S. were also supported through the United States Department of Energy contract no. DE-SC00112704 to Brookhaven National Laboratory. H.F.T. is supported by an international Macquarie University International Research Scholarship (iMQRES) and H.F.T. and B.J.E. are supported by TERN eMAST. The Terrestrial Ecosystem Research Network (TERN) is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS). Support for P.M. is acknowledged from ARC FT110100457 and NERC NE/J011002/1. Finally we acknowledge support in part to the NSF grant 1146206 and the Moore Foundation grant 3001 to G.P. Asner and we are grateful for the use of data collected as part of RAINFOR by O. Philips. NR 102 TC 4 Z9 4 U1 22 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD MAY PY 2016 VL 210 IS 3 BP 1130 EP 1144 DI 10.1111/nph.13815 PG 15 WC Plant Sciences SC Plant Sciences GA DJ5YM UT WOS:000374286700034 PM 26719951 ER PT J AU Orsi, F Muratori, M Rocco, M Colombo, E Rizzoni, G AF Orsi, Francesco Muratori, Matteo Rocco, Matteo Colombo, Emanuela Rizzoni, Giorgio TI A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost SO APPLIED ENERGY LA English DT Article DE Well-to-wheels; Fuel cycle; Petroleum use; Sustainable mobility; Exergy analysis; Passenger vehicles CO2 emissions ID GREENHOUSE-GAS EMISSIONS; LIFE-CYCLE ANALYSIS; FUEL-CELL VEHICLES; TRANSPORTATION FUELS; GHG EMISSIONS; EXERGY COST; CHINA; ELECTRIFICATION; TECHNOLOGIES; EFFICIENCY AB This paper proposes an exergy-based well-to-wheels analysis to compare different passenger vehicles, based on three key indicators: petroleum energy use, CO2 emissions, and economic cost. A set of fuel pathways, including petroleum-based fuels, compressed natural gas, biofuels, and electricity are considered in five representative national energy mixes, namely Brazil, China, France, Italy, and the United States of America. Results show no fundamental difference in the fossil fuel pathways among the five scenarios considered. Compressed natural gas vehicles and electric vehicles can completely displace oil consumption in the personal transportation sector. Compressed natural gas vehicles also reduce CO2 emissions by over 20% compared to gasoline vehicles. Emissions from electric vehicles greatly vary depending on the electricity mix. In low-carbon electricity mixes electric vehicles reach almost-zero CO2 emissions, while the use of biofuels leads to the lowest CO2 emissions in carbon-intensive electricity generation mixes, where vehicles running on E85 could reduce CO2 emission by over 50% compared to gasoline vehicles. Hybrid electric vehicles show the lowest overall economic cost, due to improved efficiency and low cost of petroleum-based fuels. Vehicles running on electricity are characterized by significantly higher capital cost and lower operating costs. Thus, different electricity generation costs impact minimally the overall cost. These results can be used to inform decision-makers regarding the multidimensional impact of passenger vehicles, including environmental impact, economic cost, and depletion of primary energy resources, with particular focus on petroleum. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Orsi, Francesco; Muratori, Matteo; Rizzoni, Giorgio] Ohio State Univ, Ctr Automot Res, 930 Kinnear Rd, Columbus, OH 43212 USA. [Orsi, Francesco; Rocco, Matteo; Colombo, Emanuela] Politecn Milan, Dept Energy, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy. [Muratori, Matteo] Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. RP Muratori, M (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM matteo.muratori@pnnl.gov RI Rizzoni, Giorgio/D-2961-2016 OI Rizzoni, Giorgio/0000-0002-8397-7241 NR 52 TC 10 Z9 10 U1 15 U2 40 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD MAY 1 PY 2016 VL 169 BP 197 EP 209 DI 10.1016/j.apenergy.2016.02.039 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DJ4RU UT WOS:000374196200017 ER PT J AU Sreedharan, P Farbes, J Cutter, E Woo, CK Wang, J AF Sreedharan, P. Farbes, J. Cutter, E. Woo, C. K. Wang, J. TI Microgrid and renewable generation integration: University of California, San Diego SO APPLIED ENERGY LA English DT Article DE Microgrids; Renewables integration; Distributed energy resources; Optimal dispatch; Ancillary services; PV firming ID ENERGY MANAGEMENT; ELECTRICITY-MARKET; WIND POWER; DISTRIBUTION-SYSTEMS; CAPACITY MARKETS; STORAGE-SYSTEMS; IMPACT; PRICE; TEXAS; OPTIMIZATION AB This paper is a microgrid study of the University of California, San Diego (UCSD), a large campus with diverse distributed energy resources (DER). It highlights a microgrid's "missing money", which sharply differs from a natural-gas-fired generation plant's "missing money" due to large-scale wind generation development. In response to UCSD's expressed financial interest, we assess three strategies for integrating renewable generation: peak load shifting, onsite photovoltaic firming and grid support. While all three strategies are technically feasible and can be cost-effective under certain conditions, California's current tariff structures and market prices do not offer sufficient incentives to motivate UCSD to offer these services. Alternative incentive mechanisms, which may resemble to those used to encourage renewable generation development, are necessary to induce UCSD's DER offer for renewables integration. Such mechanisms are also relevant to commercial and industrial loads across California, including the vast combined heat and power resources. Published by Elsevier Ltd. C1 [Sreedharan, P.; Cutter, E.] Energy & Environm Econ Inc, 101 Montgomery St,Suite 1600, San Francisco, CA 94104 USA. [Sreedharan, P.] US Agcy Int Dev, Amer Embassy, New Delhi 110021, India. [Farbes, J.] Pacific Gas & Elect Co, 77 Beale St, San Francisco, CA 94104 USA. [Woo, C. K.] Educ Univ Hong Kong, Dept Asian & Policy Studies, Hong Kong, Hong Kong, Peoples R China. [Wang, J.] Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Sreedharan, P (reprint author), Energy & Environm Econ Inc, 101 Montgomery St,Suite 1600, San Francisco, CA 94104 USA. EM priya@ethree.com OI WOO, Chi Keung/0000-0001-8114-3350 FU California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment Program Grant; California Public Utilities Commission FX This research was funded through a California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment Program Grant, supported by the California Public Utilities Commission. We thank our collaborators at the University of California, San Diego, particularly Byron Washom, John Dilliott and Jan Kleissl. We thank our collaborators, formerly from Viridity: Laura Manz, Nancy Miller, and Charles Richter, who served as the prime contractor for the grant. NR 58 TC 5 Z9 5 U1 9 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD MAY 1 PY 2016 VL 169 BP 709 EP 720 DI 10.1016/j.apenergy.2016.02.053 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DJ4RU UT WOS:000374196200056 ER PT J AU Aji, AM Panwar, LS Ji, F Murthy, K Chabbi, M Balaji, P Bisset, KR Dinan, J Feng, WC Mellor-Crummey, J Ma, XS Thakur, R AF Aji, Ashwin M. Panwar, Lokendra S. Ji, Feng Murthy, Karthik Chabbi, Milind Balaji, Pavan Bisset, Keith R. Dinan, James Feng, Wu-chun Mellor-Crummey, John Ma, Xiaosong Thakur, Rajeev TI MPI-ACC: Accelerator-Aware MPI for Scientific Applications SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Heterogeneous (hybrid) systems; parallel systems; distributed architectures; concurrent programming ID PERFECTLY MATCHED LAYER AB Data movement in high-performance computing systems accelerated by graphics processing units (GPUs) remains a challenging problem. Data communication in popular parallel programming models, such as the Message Passing Interface (MPI), is currently limited to the data stored in the CPU memory space. Auxiliary memory systems, such as GPU memory, are not integrated into such data movement standards, thus providing applications with no direct mechanism to perform end-to-end data movement. We introduce MPI-ACC, an integrated and extensible framework that allows end-to-end data movement in accelerator-based systems. MPI-ACC provides productivity and performance benefits by integrating support for auxiliary memory spaces into MPI. MPI-ACC supports data transfer among CUDA, OpenCL and CPU memory spaces and is extensible to other offload models as well. MPI-ACC's runtime system enables several key optimizations, including pipelining of data transfers, scalable memory management techniques, and balancing of communication based on accelerator and node architecture. MPI-ACC is designed to work concurrently with other GPU workloads with minimum contention. We describe how MPI-ACC can be used to design new communication-computation patterns in scientific applications from domains such as epidemiology simulation and seismology modeling, and we discuss the lessons learned. We present experimental results on a state-of-the-art cluster with hundreds of GPUs; and we compare the performance and productivity of MPI-ACC with MVAPICH, a popular CUDA-aware MPI solution. MPI-ACC encourages programmers to explore novel application-specific optimizations for improved overall cluster utilization. C1 [Aji, Ashwin M.; Panwar, Lokendra S.; Feng, Wu-chun] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA. [Ji, Feng; Ma, Xiaosong] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. [Murthy, Karthik; Chabbi, Milind; Mellor-Crummey, John] Rice Univ, Dept Comp Sci, Houston, TX USA. [Balaji, Pavan; Dinan, James; Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci, Argonne, IL 60439 USA. [Bisset, Keith R.] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA USA. RP Aji, AM; Panwar, LS; Feng, WC (reprint author), Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA.; Ji, F; Ma, XS (reprint author), N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA.; Murthy, K; Chabbi, M; Mellor-Crummey, J (reprint author), Rice Univ, Dept Comp Sci, Houston, TX USA.; Balaji, P; Dinan, J; Thakur, R (reprint author), Argonne Natl Lab, Math & Comp Sci, Argonne, IL 60439 USA.; Bisset, KR (reprint author), Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA USA. EM aaji@cs.vt.edu; lokendra@cs.vt.edu; fji@ncsu.edu; ksm2@rice.edu; mc29@rice.edu; balaji@mcs.anl.gov; kbisset@vbi.vt.edu; dinan@mcs.anl.gov; feng@cs.vt.edu; johnmc@rice.edu; ma@csc.ncsu.edu; thakur@mcs.anl.gov FU US Department of Energy (DOE) [DE-SC0001770]; DOE Office of Science [DE-FC02-07ER25800]; DOE GTO [EE0002758]; DTRA CNIMS [HDTRA1-11-D-0016-0001]; NSF PetaApps grant [OCI-0904844]; NSF Blue Waters grant [OCI-0832603]; NSF [CNS-0960081, CNS-054630, CNS-0958311]; NVIDIA; CUDA Research Center at Virginia Tech; National Science Foundation [CNS-0960081]; [DE-AC02-06CH11357]; [DE-AC05-00OR22725]; [DE-ACO6-76RL01830] FX This work was supported in part by the US Department of Energy (DOE) grant DE-SC0001770; by contracts DE-AC02-06CH11357, DE-AC05-00OR22725, and DE-ACO6-76RL01830; by the DOE Office of Science under cooperative agreement number DE-FC02-07ER25800; by the DOE GTO via grant EE0002758 from Fugro Consultants; by the DTRA CNIMS contract HDTRA1-11-D-0016-0001; by the NSF PetaApps grant OCI-0904844; by the NSF Blue Waters grant OCI-0832603; by the NSF grants CNS-0960081, CNS-054630, and CNS-0958311; and by an NVIDIA Graduate Fellowship, NVIDIA Professor Partnership, and CUDA Research Center at Virginia Tech. This research used the HokieSpeed heterogeneous computing resource at Virginia Tech, which is supported by the National Science Foundation under contract CNS-0960081. The authors thank Darius Buntinas and Hao Wang for their valuable technical discussions and feedback. NR 24 TC 0 Z9 0 U1 4 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD MAY PY 2016 VL 27 IS 5 BP 1401 EP 1414 DI 10.1109/TPDS.2015.2446479 PG 14 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DJ5HS UT WOS:000374238100013 ER PT J AU Mittal, S Vetter, JS AF Mittal, Sparsh Vetter, Jeffrey S. TI A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Review; classification; cache; main memory; compaction; compression; data redundancy; non-volatile memory; 3D memory; extreme-scale computing systems ID EMBEDDED PROCESSORS; ENERGY MINIMIZATION; CODE COMPRESSION; PERFORMANCE; ALGORITHM; BANDWIDTH; CAPACITY; SUPPORT; POWER AB As the number of cores on a chip increases and key applications become even more data-intensive, memory systems in modern processors have to deal with increasingly large amount of data. In face of such challenges, data compression presents as a promising approach to increase effective memory system capacity and also provide performance and energy advantages. This paper presents a survey of techniques for using compression in cache and main memory systems. It also classifies the techniques based on key parameters to highlight their similarities and differences. It discusses compression in CPUs and GPUs, conventional and non-volatile memory (NVM) systems, and 2D and 3D memory systems. We hope that this survey will help the researchers in gaining insight into the potential role of compression approach in memory components of future extreme-scale systems. C1 [Mittal, Sparsh; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA. [Vetter, Jeffrey S.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Mittal, S; Vetter, JS (reprint author), Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA.; Vetter, JS (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM mittals@ornl.gov; vetter@ornl.gov OI Mittal, Sparsh/0000-0002-2908-993X FU U.S. Department of Energy [DE-AC05-00OR22725]; DOE FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan). NR 91 TC 2 Z9 4 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD MAY PY 2016 VL 27 IS 5 BP 1524 EP 1536 DI 10.1109/TPDS.2015.2435788 PG 13 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DJ5HS UT WOS:000374238100022 ER PT J AU Mittal, S Vetter, JS AF Mittal, Sparsh Vetter, Jeffrey S. TI A Survey of Software Techniques for Using Non-Volatile Memories for Storage and Main Memory Systems SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Review; classification; non-volatile memory (NVM) (NVRAM); flash memory; phase change RAM (PCM) (PCRAM); spin transfer torque RAM (STT-RAM) (STT-MRAM); resistive RAM (ReRAM) (RRAM); storage class memory (SCM); solid state drive (SSD) ID FLASH-MEMORY; PERFORMANCE; OPPORTUNITIES; HARD; ARCHITECTURE; MANAGEMENT; DRIVES; DEVICE AB Non-volatile memory (NVM) devices, such as Flash, phase change RAM, spin transfer torque RAM, and resistive RAM, offer several advantages and challenges when compared to conventional memory technologies, such as DRAM and magnetic hard disk drives (HDDs). In this paper, we present a survey of software techniques that have been proposed to exploit the advantages and mitigate the disadvantages of NVMs when used for designing memory systems, and, in particular, secondary storage (e.g., solid state drive) and main memory. We classify these software techniques along several dimensions to highlight their similarities and differences. Given that NVMs are growing in popularity, we believe that this survey will motivate further research in the field of software technology for NVMs. C1 [Mittal, Sparsh; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA. [Vetter, Jeffrey S.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Mittal, S; Vetter, JS (reprint author), Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA.; Vetter, JS (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM mittals@ornl.gov; vetter@ornl.gov OI Mittal, Sparsh/0000-0002-2908-993X FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research FX Support for this work was provided by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. NR 137 TC 2 Z9 2 U1 9 U2 23 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD MAY PY 2016 VL 27 IS 5 BP 1537 EP 1550 DI 10.1109/TPDS.2015.2442980 PG 14 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DJ5HS UT WOS:000374238100023 ER PT J AU Andersen, TB Hansen, NB Laursen, T Weitzel, C Simonsen, HT AF Andersen, Trine Bundgaard Hansen, Niels Bjorn Laursen, Tomas Weitzel, Corinna Simonsen, Henrik Toft TI Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing SO MOLECULAR PHYLOGENETICS AND EVOLUTION LA English DT Article DE NADPH-dependent cytochrome P450 oxidoreductase; POR; CPR; Apiaceae; Apioideae; Nanodiscs ID APIACEAE SUBFAMILY APIOIDEAE; FUNCTIONAL-CHARACTERIZATION; HETEROLOGOUS EXPRESSION; PHYLOGENETIC ANALYSIS; ARABIDOPSIS-THALIANA; ELECTRON-TRANSFER; YEAST EXPRESSION; MEMBRANE-PROTEIN; CDNA CLONING; REDUCTASE AB The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to a huge number of different cytochromes P450s (from 50 to several hundred within one plant). Within the eudicotyledons, PORs can be divided into two major clades, POR 1 and POR 2. Based on our own sequencing analysis and publicly available data, we have identified 45 PORs from the angiosperm order Apiales. These were subjected to a phylogenetic analysis along with 237 other publicly available (NCBI and oneKP) POR sequences found within the Glade Asterids. Here, we show that the order Apiales only harbor members of the POR 2 Glade, which are further divided into two distinct subclades. This is in contrast to most other eudicotyledon orders that have both POR 1 and POR 2. This suggests that through gene duplications and one gene deletion, Apiales only contain members of the POR 2 Glade. Three POR 2 isoforms from Thapsia garganica L., Apiaceae, were all full-length in an lllumina root transcriptome dataset (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes. (C) 2016 Elsevier Inc. All rights reserved. C1 [Andersen, Trine Bundgaard; Hansen, Niels Bjorn; Laursen, Tomas; Weitzel, Corinna; Simonsen, Henrik Toft] Univ Copenhagen, Dept Plant & Environm Sci, Sect Plant Biochem, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. [Laursen, Tomas] Joint BioEnergy Inst, Feedstocks Div, Oakland, CA 94608 USA. [Simonsen, Henrik Toft] Tech Univ Denmark, Dept Syst Biol, DK-2800 Lyngby, Denmark. RP Simonsen, HT (reprint author), Univ Copenhagen, Dept Plant & Environm Sci, Sect Plant Biochem, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. EM hest@dtu.dk RI Simonsen, Henrik /I-4263-2016; OI Simonsen, Henrik /0000-0003-3070-807X; Laursen, Tomas/0000-0002-6493-2259 NR 47 TC 1 Z9 1 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1055-7903 EI 1095-9513 J9 MOL PHYLOGENET EVOL JI Mol. Phylogenet. Evol. PD MAY PY 2016 VL 98 BP 21 EP 28 DI 10.1016/j.ympev.2016.01.013 PG 8 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA DJ4VT UT WOS:000374206900003 PM 26854662 ER PT J AU Abergel, RJ Ansoborlo, E AF Abergel, Rebecca J. Ansoborlo, Eric TI Curious curium SO NATURE CHEMISTRY LA English DT Editorial Material ID ACTINIDES C1 [Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, MS 70A-1150,One Cyclotron Rd, Berkeley, CA 94720 USA. [Ansoborlo, Eric] French Alternat Energies & Atom Energy Commiss, Marcoule Ctr, Dept Radiochem & Proc, F-30207 Bagnols Sur Ceze, France. RP Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, MS 70A-1150,One Cyclotron Rd, Berkeley, CA 94720 USA.; Ansoborlo, E (reprint author), French Alternat Energies & Atom Energy Commiss, Marcoule Ctr, Dept Radiochem & Proc, F-30207 Bagnols Sur Ceze, France. EM rjabergel@lbl.gov; eric.ansoborlo@cea.fr NR 4 TC 0 Z9 0 U1 9 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD MAY PY 2016 VL 8 IS 5 BP 516 EP 516 PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA DJ9LD UT WOS:000374534100021 PM 27102687 ER PT J AU Xie, J Zha, TS Zhou, CX Jia, X Yu, HQ Yang, B Chen, JQ Zhang, F Wang, B Bourqueg, CPA Sun, G Ma, H Liu, H Peltolad, H AF Xie, Jing Zha, Tianshan Zhou, Caixian Jia, Xin Yu, Haiqun Yang, Bai Chen, Jiquan Zhang, Feng Wang, Ben Bourqueg, Charles P. -A. Sun, Ge Ma, Hong Liu, He Peltolad, Heli TI Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Climate warming; Eddy covariance; Evapotranspiration; Extreme drought; Gross ecosystem production ID CARBON FLUXES; EDDY COVARIANCE; ENVIRONMENTAL CONTROLS; TEMPERATE FOREST; CLIMATE-CHANGE; SOIL-MOISTURE; ASPEN FOREST; LONG-TERM; VEGETATION; CHINA AB The impact of extreme weather events on water-carbon coupling and ecosystem water use efficiency (WUE) in arid to semi-arid conditions is poorly understood. Evapotranspiration (ET) and gross ecosystem production (GEP) were based on continuously eddy-covariance measurements taken over an urban forest reserve in Beijing, in a 3-year period (2012-2014) to calculate WUE (GEP:ET). Our objective was to investigate the seasonal response of WUE to changing environmental and drought conditions at different timescales. Annually, the forest produced new plant biomass at 2.6 +/- 0.2 g C per kg of water loss. Within each season, interactions of surface conductance (g(c)) and normalized difference vegetation index (NDVI; i.e., g(c) x NDVI) in spring, net radiation (R-n) and air temperature (T-a; i.e., R-n x T-a) in summer, and Rn and vapor pressure deficit (D; i.e., R-n, x D) in autumn were found as the significant variables explaining seasonal variation in WUE. Daily WUE correlated positively with T-a and NDVI during the growing season, but a negative relationship during excessively dry periods (i.e., 2014). Daily WUE decreased during warm and dry days or remained nearly constant at low levels due to proportional decreases in GEP and ET. An extreme drought during the leaf expansion led to a greater decline in GEP than in ET, causing WUE to be lower in 2012 and 2014 than that in 2013. In contrast, an extreme drought during the leaf coloration led to a greater decline in ET than in GEP, causing higher WUE in 2013 and 2014 than that in 2012. We concluded that: (i) high soil water content (SWC) during leaf expansion was more important than high SWC in mid-summer or autumn for maintaining a high seasonal WUE; and that (ii) seasonal water availability combined with variable drought severity and duration during periods of changing T-a, caused seasonal ET and GEP to respond differently, introducing significant variation in seasonal WUE. (C) 2016 Elsevier B.V. All rights reserved. C1 [Xie, Jing; Zha, Tianshan; Jia, Xin; Wang, Ben] Beijing Forestry Univ, Coll Soil & Water Conservat, Beijing 100083, Peoples R China. [Xie, Jing; Zha, Tianshan; Jia, Xin; Wang, Ben] Beijing Forestry Univ, Minist Educ, Key Lab Soil & Water Conservat & Desertificat Com, Beijing 100083, Peoples R China. [Xie, Jing; Zhou, Caixian; Yu, Haiqun; Zhang, Feng; Ma, Hong] Beijing Forestry Carbon Sequestrat Adm, Beijing 100013, Peoples R China. [Jia, Xin; Wang, Ben; Peltolad, Heli] Univ Eastern Finland, Sch Forest Sci, POB 111, FIN-80101 Joensuu, Finland. [Yang, Bai] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Chen, Jiquan] Michigan State Univ, CGCEO Geog, E Lansing, MI 48823 USA. [Bourqueg, Charles P. -A.] Univ New Brunswick, Fac Forestry & Environm Management, POB 4400, Fredericton, NB E3B 5A3, Canada. [Sun, Ge] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, Southern Res Stn, USDA, Raleigh, NC 27606 USA. [Liu, He] Beijing Forestry Univ, Beijing 100083, Peoples R China. RP Zha, TS (reprint author), Beijing Forestry Univ, Coll Soil & Water Conservat, Beijing 100083, Peoples R China. EM tianshanzha@bjfu.edu.cn RI Chen, Jiquan/D-1955-2009 FU National Natural Science Foundation of China (NSFC) [31361130340, 31270755]; Beijing Science and Technology Project China Postdoctoral Science Foundation [z141100006014031, 2013M540055]; Academy of Finland [14921] FX This research was supported by grants from National Natural Science Foundation of China (NSFC; 31361130340, 31270755), the Beijing Science and Technology Project (z141100006014031) China Postdoctoral Science Foundation funded project (2013M540055), and the Academy of Finland (Project No. 14921). This work is related to the ongoing Finnish Chinese research collaboration project EXTREME, between the Beijing Forestry University (BJFU) and the University of Eastern Finland (UEF). The U.S.-China Carbon Consortium (USCCC) promoted this work via helpful discussions and the exchange of ideas. We thank Peng Liu and Cai Ren for their assistances with field measurements and instrumentation maintenances and Gabriela Shirkey for editing the language of the manuscript. NR 35 TC 1 Z9 1 U1 10 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD MAY 1 PY 2016 VL 221 BP 142 EP 151 DI 10.1016/j.agrformet.2016.02.013 PG 10 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA DJ2ZM UT WOS:000374074200012 ER PT J AU Massoudi, M Tran, PX AF Massoudi, Mehrdad Tran, Phuoc X. TI The Couette-Poiseuille flow of a suspension modeled as a modified third-grade fluid SO ARCHIVE OF APPLIED MECHANICS LA English DT Article DE Third-grade fluids; Suspensions; Shear-rate- and volume-fraction-dependent viscosity; Continuum mechanics; Non-Newtonian fluids; Granular materials ID NON-NEWTONIAN FLUID; STRESS CALCULATIONS; VARIABLE VISCOSITY; 2ND-GRADE FLUID; SHEAR; THERMODYNAMICS; TEMPERATURE; ASSEMBLIES; MIXTURES; SLURRY AB In this paper, we modify the thermodynamically compatible third-grade fluid model by introducing a shear-rate- and volume-fraction-dependent viscosity into the equation. With this new model, it is possible to predict not only the normal stress differences, but also the variable viscosity observed in many suspensions. We study the Couette-Poiseuille flow of such a fluid between two horizontal flat plates. The steady fully developed flow equations are made dimensionless and are solved numerically; the effects of different dimensionless numbers are discussed. C1 [Massoudi, Mehrdad; Tran, Phuoc X.] US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM massoudi@netl.doe.gov NR 52 TC 1 Z9 1 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0939-1533 EI 1432-0681 J9 ARCH APPL MECH JI Arch. Appl. Mech. PD MAY PY 2016 VL 86 IS 5 BP 921 EP 932 DI 10.1007/s00419-015-1070-z PG 12 WC Mechanics SC Mechanics GA DJ3NA UT WOS:000374111000010 ER PT J AU Luo, HW AF Luo, Hong-Wei TI Effect of thiols enrichment on Cr(VI) photo-reduction by natural organic matter (NOM) (Retracted article. See vol. 161, pg. 564, 2016) SO CHEMOSPHERE LA English DT Article; Retracted Publication DE Thiols enrichment; Photo-reduction; Chromium; Natural organic matter ID HUMIC SUBSTANCES; HEXAVALENT CHROMIUM; ORGANOSULFUR COMPOUNDS; FUNCTIONAL-GROUPS; HYDROGEN-SULFIDE; SOIL; ACIDS; ELECTROLYTES; COMPLEXATION; SPECTROSCOPY AB Photochemical redox transformation of Cr(VI)-NOM complexes substantially affects transport and speciation of less toxic Cr(III) in natural waters. However, the underlying mechanisms remain unclear. This study reported photochemical reactions of Cr(VI) with thiol-enriched NOM under acidic condition. More effective thiols enrichment in humic acid (HA) was observed than that in fulvic acid (FA), thereby resulting in a higher reduction capacity and faster rate of Cr(VI) photo-reduction. Chemical addition of sulfide to HA formed a large number of S-containing molecular formulae, which subsequently disappeared following reactions with Cr(VI) under solar irradiation. Cr(VI) photo-reduction in thiol-enriched HA consumed more S-containing formulae. Solar irradiation caused a rapid loss of the reduction capacities and thiol contents in HA and FA. All these findings can provide useful information for understanding the biogeochemical cycles of chromium and sulfur, and are also of environmental significance because they may partially account for photo-transformation of Cr(VI) when chromium enters into the aquatic environment as acidic industrial effluents. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Luo, Hong-Wei] Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China. [Luo, Hong-Wei] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Luo, Hong-Wei] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore. RP Luo, HW (reprint author), Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore. EM hwluo@ntu.edu.sg FU China Scholarship Council (CSC); [201306340082] FX We gratefully acknowledge financial support provided by China Scholarship Council (CSC) and State-Sponsored Scholarship Program for Graduate Students (No. 201306340082). We wish to thank Dr. Balaji Rao and Dr. Baohua Gu at Oak Ridge National Laboratory for technical assistance in analysis of thiol functional groups. Dr. Basanta Kumar Biswal and Dr. En-Hua Yang for proofreading and their assistance with the FTICR-MS analyses are greatly appreciated. NR 38 TC 1 Z9 1 U1 12 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD MAY PY 2016 VL 151 BP 234 EP 240 DI 10.1016/j.chemosphere.2016.02.103 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA DJ2YK UT WOS:000374071000029 PM 26946114 ER PT J AU Huck, P Gunter, D Cholia, S Winston, D N'Diaye, AT Persson, K AF Huck, P. Gunter, D. Cholia, S. Winston, D. N'Diaye, A. T. Persson, K. TI User applications driven by the community contribution framework MPContribs in the Materials Project SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 10th International Workshop on Science Gateways Computing Environments (GCE) held in conjunction with the 3rd Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE) CY SEP 30-OCT 01, 2015 CL Boulder, CO DE Science Gateways; databases; user-contributed data; materials science AB This work discusses how the MPContribs framework in the Materials Project (MP) allows user-contributed data to be shown and analyzed alongside the core MP database. The MP is a searchable database of electronic structure properties of over 65,000 bulk solid materials, which is accessible through a web-based science-gateway. We describe the motivation for enabling user contributions to the materials data and present the framework's features and challenges in the context of two real applications. These use cases illustrate how scientific collaborations can build applications with their own user-contributed' data using MPContribs. The Nanoporous Materials Explorer application provides a unique search interface to a novel dataset of hundreds of thousands of materials, each with tables of user-contributed values related to material adsorption and density at varying temperature and pressure. The Unified Theoretical and Experimental X-ray Spectroscopy application discusses a full workflow for the association, dissemination, and combined analyses of experimental data from the Advanced Light Source with MP's theoretical core data, using MPContribs tools for data formatting, management, and exploration. The capabilities being developed for these collaborations are serving as the model for how new materials data can be incorporated into the MP website with minimal staff overhead while giving powerful tools for data search and display to the user community. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Huck, P.; Gunter, D.; Cholia, S.; Winston, D.; N'Diaye, A. T.; Persson, K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,M-S 33R0146, Berkeley, CA 94720 USA. RP Huck, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,M-S 33R0146, Berkeley, CA 94720 USA. EM phuck@lbl.gov NR 18 TC 3 Z9 3 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD MAY PY 2016 VL 28 IS 7 BP 1982 EP 1993 DI 10.1002/cpe.3698 PG 12 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DJ2CB UT WOS:000374010200005 ER PT J AU Agarwal, DA Faybishenko, B Freedman, VL Krishnan, H Kushner, G Lansing, C Porter, E Romosan, A Shoshani, A Wainwright, H Weidmer, A Wu, KS AF Agarwal, Deborah A. Faybishenko, Boris Freedman, Vicky L. Krishnan, Harinarayan Kushner, Gary Lansing, Carina Porter, Ellen Romosan, Alexandru Shoshani, Arie Wainwright, Haruko Weidmer, Arthur Wu, Kesheng TI A science data gateway for environmental management SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 10th International Workshop on Science Gateways Computing Environments (GCE) held in conjunction with the 3rd Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE) CY SEP 30-OCT 01, 2015 CL Boulder, CO DE data gateway; environmental management; web service ID WORKFLOW; SYSTEM AB Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state-of-the-art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM project scientists have been using this data gateway since 2011. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Agarwal, Deborah A.; Faybishenko, Boris; Krishnan, Harinarayan; Kushner, Gary; Romosan, Alexandru; Shoshani, Arie; Wainwright, Haruko; Weidmer, Arthur; Wu, Kesheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freedman, Vicky L.; Lansing, Carina; Porter, Ellen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wu, KS (reprint author), LBNL, Berkeley, CA 94720 USA. EM KWu@lbl.gov RI Wainwright, Haruko/A-5670-2015; Faybishenko, Boris/G-3363-2015 OI Wainwright, Haruko/0000-0002-2140-6072; Faybishenko, Boris/0000-0003-0085-8499 NR 30 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD MAY PY 2016 VL 28 IS 7 BP 1994 EP 2004 DI 10.1002/cpe.3697 PG 11 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DJ2CB UT WOS:000374010200006 ER PT J AU Chen, YC Meier, A AF Chen, Yuche Meier, Alan TI Fuel consumption impacts of auto roof racks SO ENERGY POLICY LA English DT Article DE Roof racks; Fuel consumption impacts; Energy modeling ID GREENHOUSE-GAS EMISSIONS; PARAMETRIC ANALYSIS; PORTFOLIO DESIGN; VEHICLES; TECHNOLOGY; ENERGY; STANDARD; FUTURE; PLUG; CARS AB The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8 parts per thousand of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks if successful could save more fuel nationally. Published by Elsevier Ltd. C1 [Chen, Yuche] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Meier, Alan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90R2000, Berkeley, CA 94720 USA. RP Chen, YC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Yuche.Chen@nrel.gov RI Chen, Yuche/S-6381-2016 OI Chen, Yuche/0000-0003-2577-2448 FU U.S. Department of Energy [DE-AC36-08GO28308, DE-AC02-05CH11231]; National Renewable Energy Laboratory FX YC was supported by the U.S. Department of Energy under Contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. AM was supported by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. The authors would like to thank the three anonymous reviewers' comments and suggestions. NR 45 TC 2 Z9 2 U1 7 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAY PY 2016 VL 92 BP 325 EP 333 DI 10.1016/j.enpol.2016.02.031 PG 9 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DJ0AK UT WOS:000373863600030 ER PT J AU Montero, JT Chesney, TA Bauer, JR Froeschke, JT Graham, J AF Montero, Jose T. Chesney, Tanya A. Bauer, Jennifer R. Froeschke, John T. Graham, Jim TI Brown shrimp (Farfantepenaeus aztecus) density distribution in the Northern Gulf of Mexico: an approach using boosted regression trees SO FISHERIES OCEANOGRAPHY LA English DT Article DE boosted regression trees; brown shrimp; Gulf of Mexico; spatial prediction ID PURSE-SEINE FISHERY; PENAEUS-AZTECUS; WHITE SHRIMP; SPATIAL-DISTRIBUTION; INCIDENTAL CATCH; TEXAS; ABUNDANCE; LOUISIANA; SETIFERUS; POSTLARVAL AB The estuarine-dependent brown shrimp, Farfantepenaeus aztecus, is a significant commercial fishery and important species in the Gulf of Mexico (GOM) ecosystem as well as being a key component in energy transfer between benthic and pelagic food web systems. Because of the economical and ecological importance of brown shrimp, we developed a spatial population model to identify places of high shrimp density under a set of spatial, environmental and temporal variables in the Northern Gulf of Mexico (NGOM). We used fisheries-independent data collected by the Southeast Area Monitoring and Assessment Program (SEAMAP) from 1992 to 2007 (summer and fall seasons). The relationship between the predictor variables and shrimp density was modeled using Boosted Regression Trees (BRT). Within the environmental variables included in the model, bottom type and depth of the water column were the most important predictors of shrimp density in theNGOM. Spatial predictions performed using the trained BRT model for summer and fall seasons showed a spatial segregation of shrimp density. During the summer, higher densities were predicted near the Texas and Louisiana coast and during the fall, higher densities were predicted further offshore. The model performed well and allowed successful prediction of brown shrimp hot spots in the NGOM. Model results allow fisheries managers to evaluate the potential impact from fisheries on the resource and to develop future fisheries management strategies, understand the biology of brown shrimp as well as assess the potential impacts of oil spills or climate change. C1 [Montero, Jose T.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Ctr Appl Ecol & Sustainabil, Avda Libertador Bernardo OHiggins 340, Santiago, Chile. [Chesney, Tanya A.; Bauer, Jennifer R.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Adm Bldg, Corvallis, OR 97331 USA. [Bauer, Jennifer R.] Natl Energy Technol Lab, US Dept Energy, 1450 Queen Ave SW, Albany, OR 97321 USA. [Bauer, Jennifer R.] AECOM, 1450 Queen Ave SW, Albany, OR 97321 USA. [Froeschke, John T.] Gulf Mexico Fishery Management Council, 2203 North Lois Ave,Suite 1100, Tampa, FL 33607 USA. [Graham, Jim] Humboldt State Univ, Environm Sci & Management, Arcata, CA 95521 USA. RP Montero, JT (reprint author), Pontificia Univ Catolica Chile, Fac Ciencias Biol, Ctr Appl Ecol & Sustainabil, Avda Libertador Bernardo OHiggins 340, Santiago, Chile. EM josetomontero@gmail.com FU RES [DE-FE0004000] FX The trawl data utilized for calculating brown shrimp densities and the majority of the environmental parameters utilized for our model from the Southeast Area Monitoring and Assessment Program (SEAMAP) Gulf of Mexico were provided by the Gulf States Marine Fishery Commission. The Institute of Arctic and Alpine Research (INSTAAR) by Chris Jenkins provided bottom type composition data. Therefore, we would like to thank the GSMFC and Chis Jenkins for the data they provided, without which our analyses would not have been possible. Datasets utilized for our analyses were collected in part of a collaborative effort between Oregon State University and the National Energy Technology Laboratory in support of the RES contract DE-FE0004000. Finally, we want to acknowledge to the Center of Applied Ecology and Sustainability (CAPES), CONICYT-PIA FB 0002 (2014) for allowing this research to be completed in its research center at the Pontificia Universidad Catolica de Chile. NR 55 TC 0 Z9 0 U1 7 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1054-6006 EI 1365-2419 J9 FISH OCEANOGR JI Fish Oceanogr. PD MAY PY 2016 VL 25 IS 3 BP 337 EP 348 DI 10.1111/fog.12156 PG 12 WC Fisheries; Oceanography SC Fisheries; Oceanography GA DJ0WE UT WOS:000373924300010 ER PT J AU Sivaram, V Norris, T AF Sivaram, Varun Norris, Teryn TI The Clean Energy Revolution Fighting Climate Change With Innovation SO FOREIGN AFFAIRS LA English DT Article C1 [Sivaram, Varun] Council Foreign Relat, New York, NY 10065 USA. [Norris, Teryn] US DOE, Washington, DC 20585 USA. RP Sivaram, V (reprint author), Council Foreign Relat, New York, NY 10065 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU COUNCIL FOREIGN RELAT IONS INC PI NEW YORK PA HAROLD PRATT HOUSE, 58 E 68TH ST, NEW YORK, NY 10065 USA SN 0015-7120 J9 FOREIGN AFF JI Foreign Aff. PD MAY-JUN PY 2016 VL 95 IS 3 BP 147 EP 156 PG 10 WC International Relations SC International Relations GA DJ4TT UT WOS:000374201600016 ER PT J AU Oates, LG Duncan, DS Gelfand, I Millar, N Robertson, GP Jackson, RD AF Oates, Lawrence G. Duncan, David S. Gelfand, Ilya Millar, Neville Robertson, G. Philip Jackson, Randall D. TI Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE Bayesian model averaging; cellulosic biofuels; corn; greenhouse gas; miscanthus; poplar; restored prairie; switchgrass ID AGRICULTURAL SOILS; CARBON-DIOXIDE; N2O EMISSIONS; ENERGY CROPS; CORN-BELT; FLUXES; SWITCHGRASS; USA; BIOFUELS; ROTATION AB Greenhouse gas (GHG) emissions from soils are a key sustainability metric of cropping systems. During crop establishment, disruptive land-use change is known to be a critical, but under reported period, for determining GHG emissions. We measured soil N2O emissions and potential environmental drivers of these fluxes from a three-year establishment-phase bioenergy cropping systems experiment replicated in southcentral Wisconsin (ARL) and southwestern Michigan (KBS). Cropping systems treatments were annual monocultures (continuous corn, corn-soybean-canola rotation), perennial monocultures (switchgrass, miscanthus, and poplar), and perennial polycultures (native grass mixture, early successional community, and restored prairie) all grown using best management practices specific to the system. Cumulative three-year N2O emissions from annuals were 142% higher than from perennials, with fertilized perennials 190% higher than unfertilized perennials. Emissions ranged from 3.1 to 19.1kg N2O-N ha(-1) yr(-1) for the annuals with continuous corn > corn-soybean-canola rotation and 1.1 to 6.3kg N2O-N ha(-1) yr(-1) for perennials. Nitrous oxide peak fluxes typically were associated with precipitation events that closely followed fertilization. Bayesian modeling of N2O fluxes based on measured environmental factors explained 33% of variability across all systems. Models trained on single systems performed well in most monocultures (e.g., R-2=0.52 for poplar) but notably worse in polycultures (e.g., R-2=0.17 for early successional, R-2=0.06 for restored prairie), indicating that simulation models that include N2O emissions should be parameterized specific to particular plant communities. Our results indicate that perennial bioenergy crops in their establishment phase emit less N2O than annual crops, especially when not fertilized. These findings should be considered further alongside yield and other metrics contributing to important ecosystem services. C1 [Oates, Lawrence G.; Duncan, David S.; Jackson, Randall D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Oates, Lawrence G.; Duncan, David S.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. [Gelfand, Ilya; Millar, Neville; Robertson, G. Philip] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, Hickory Corners, MI 49060 USA. [Gelfand, Ilya; Millar, Neville; Robertson, G. Philip] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Gelfand, Ilya; Millar, Neville; Robertson, G. Philip] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. RP Oates, LG (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.; Oates, LG (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. EM goates@glbrc.wisc.edu OI Gelfand, Ilya/0000-0002-8576-0978; Duncan, David/0000-0002-2867-0378; Oates, Lawrence/0000-0003-4829-7600; Robertson, G/0000-0001-9771-9895 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830]; NSF Long-term Ecological Research Program; Michigan State University AgBioResearch FX We thank S. Hamilton, A. Dean, J. Tesmer, J. Sustachek, N. Tautges, A. Miller, Z. Andersen, B. Faust, K. Kahmark, S. VanderWulp, and many others for assistance in the field and laboratory. We also thank S. Bohm for providing the FluxQC framework, S. Sippel for database management, and anonymous reviewers for comments that improved the manuscript. Funding was provided by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830), and at KBS the NSF Long-term Ecological Research Program and Michigan State University AgBioResearch. NR 61 TC 8 Z9 8 U1 19 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD MAY PY 2016 VL 8 IS 3 BP 539 EP 549 DI 10.1111/gcbb.12268 PG 11 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DJ2UL UT WOS:000374060500003 ER PT J AU Blumenthal, DJ Musolino, SV AF Blumenthal, Daniel J. Musolino, Stephen V. TI INTERNATIONAL OUTDOOR EXPERIMENTS AND MODELS FOR OUTDOOR RADIOLOGICAL DISPERSAL DEVICES SO HEALTH PHYSICS LA English DT Editorial Material ID EMERGENCY RESPONSE GUIDANCE; DETONATION C1 [Blumenthal, Daniel J.] Natl Nucl Secur Agcy, Washington, DC USA. [Musolino, Stephen V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Blumenthal, DJ (reprint author), Natl Nucl Secur Agcy, Washington, DC USA. NR 6 TC 2 Z9 2 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 BP 401 EP 402 DI 10.1097/HP.0000000000000507 PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UW UT WOS:000373920900002 PM 27023027 ER PT J AU Okada, CE Kernan, W Keillor, M Kirkham, R Sorom, RD Van Etten, DM AF Okada, Colin E. Kernan, Warnick Keillor, Martin Kirkham, Randy Sorom, Rich D. Van Etten, Don M. TI MEASURING CONCENTRATIONS OF PARTICULATE (140)LA IN THE AIR SO HEALTH PHYSICS LA English DT Article DE accidents; nuclear; air sampling; atmospheric testing; emergencies; radiological AB Air sampling systems were deployed to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device Field Trials. The air samplers were positioned 100-600 m downwind of the release point. The filters were collected immediately and analyzed in a field laboratory. Quantities for total activity collected on the air filters are reported along with additional information to compute the average or integrated air concentrations. C1 [Okada, Colin E.; Sorom, Rich D.; Van Etten, Don M.] US DOE, Remote Sensing Lab, Las Vegas, NV 89193 USA. [Kernan, Warnick; Keillor, Martin; Kirkham, Randy] US DOE, Pacific NW Natl Lab, Richland, WA USA. RP Okada, CE (reprint author), POB 98521,Mail Stop RSL-47, Las Vegas, NV 89193 USA. EM okadace@us.doe.gov FU U.S. Department of Energy [DE-AC52-06NA25946] FX This work was prepared by National Security Technologies, LLC, and by Pacific Northwest National Laboratory, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the Unites States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The U.S. Department of Energy will provide public access to these results of federally sponsored research in accordance with the U.S. DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 9 TC 6 Z9 6 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 BP 418 EP 426 DI 10.1097/HP.0000000000000478 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UW UT WOS:000373920900004 PM 27023029 ER PT J AU Neuscamman, S Yu, K AF Neuscamman, Stephanie Yu, Kristen TI NATIONAL ATMOSPHERIC RELEASE ADVISORY CENTER DISPERSION MODELING OF THE FULL-SCALE RADIOLOGICAL DISPERSAL DEVICE (FSRDD) FIELD TRIALS SO HEALTH PHYSICS LA English DT Article DE activity-weighted size distributions; aerosols; radioactivity; airborne; surface contamination ID RISE AB The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement. C1 [Neuscamman, Stephanie; Yu, Kristen] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Neuscamman, S (reprint author), POB 808,L-154, Livermore, CA 94550 USA. EM neuscamman1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Security, LLC [LLNL-JRNL-668319] FX This effort is the result of extensive collaboration with experimentalists and other experts. The authors wish to thank the following individuals for their contributions to this effort. John Nasstrom at LLNL provided project guidance. Fred Harper at SNL provided invaluable assistance with the parameterization of the activity size distributions tested. Kristin Lennox in the Applied Statistics group at LLNL provided expertise and support in understanding model comparison metrics. Lorne Erhardt of DRDC provided the experiment details and data for the Canadian Field Trials test series. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-JRNL-668319. NR 12 TC 5 Z9 5 U1 1 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 BP 491 EP 498 DI 10.1097/HP.0000000000000401 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UW UT WOS:000373920900011 PM 27023036 ER PT J AU Rishel, JP Keillor, ME Arrigo, LM Baciak, JE Detwiler, RS Kernan, WJ Kirkham, RR Milbrath, BD Seifert, A Seifert, CE Smart, JE AF Rishel, Jeremy P. Keillor, Martin E. Arrigo, Leah M. Baciak, James E. Detwiler, Rebecca S. Kernan, Warnick J. Kirkham, Randy R. Milbrath, Brian D. Seifert, Allen Seifert, Carolyn E. Smart, John E. TI USING ATMOSPHERIC DISPERSION THEORY TO INFORM THE DESIGN OF A SHORT-LIVED RADIOACTIVE PARTICLE RELEASE EXPERIMENT SO HEALTH PHYSICS LA English DT Article DE accidents; transport; atmospheric testing; fallout; modeling; meteorological AB Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper uses standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scale vent from an underground nuclear explosion. The deposition field will be used, in part, to study several techniques of gamma radiation survey and spectrometry that could be used by an On-Site Inspection team investigating such an event. C1 [Rishel, Jeremy P.; Keillor, Martin E.; Arrigo, Leah M.; Detwiler, Rebecca S.; Kernan, Warnick J.; Kirkham, Randy R.; Milbrath, Brian D.; Seifert, Allen; Seifert, Carolyn E.; Smart, John E.] Pacific NW Natl Lab, POB 999,MSIN J4-65, Richland, WA 99352 USA. [Baciak, James E.] Univ Florida, Mat Sci & Engn, POB 116400, Gainesville, FL 32611 USA. RP Keillor, ME (reprint author), Pacific NW Natl Lab, POB 999,MSIN J4-65, Richland, WA 99352 USA. EM martin.keillor@pnnl.gov FU Pacific Northwest National Laboratory [DE-AC52-06NA25946] FX This work would not have been possible without the support of many people from several organizations. The authors express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Pacific Northwest National Laboratory under award number DE-AC52-06NA25946. NR 14 TC 3 Z9 3 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 BP 526 EP 532 DI 10.1097/HP.0000000000000475 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UW UT WOS:000373920900014 PM 27023039 ER PT J AU Keillor, ME Arrigo, LM Baciak, JE Chipman, V Detwiler, RS Emer, DF Kernan, WJ Kirkham, RR MacDougall, MR Milbrath, BD Rishel, JP Seifert, A Seifert, CE Smart, JE AF Keillor, Martin E. Arrigo, Leah M. Baciak, James E. Chipman, Veraun Detwiler, Rebecca S. Emer, Dudley F. Kernan, Warnick J. Kirkham, Randy R. MacDougall, Matthew R. Milbrath, Brian D. Rishel, Jeremy P. Seifert, Allen Seifert, Carolyn E. Smart, John E. TI PREX: AN EXPERIMENT TO INVESTIGATE DETECTION OF NEAR-FIELD PARTICULATE DEPOSITION FROM A SIMULATED UNDERGROUND NUCLEAR WEAPONS TEST VENT SO HEALTH PHYSICS LA English DT Article DE accidents; transport; atomic bomb; environmental transport; radioactivity; airborne AB A radioactive particulate release experiment to produce a near-field ground deposition representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven air cannon was used to inject La-140, a radioisotope of lanthanum with 1.7-d half-life and strong gamma-ray emissions, into the lowest levels of the atmosphere at ambient temperatures. Witness plates and air samplers were laid out in an irregular grid covering the area where the plume was anticipated to deposit based on climatological wind records. This experiment was performed at the Nevada National Security Site, where existing infrastructure, radiological procedures, and support personnel facilitated planning and execution of the work. A vehicle-mounted NaI(Tl) spectrometer and a polyvinyl toluene-based backpack instrument were used to survey the deposited plume. Hand-held instruments, including NaI(Tl) and lanthanum bromide scintillators and high purity germanium spectrometers, were used to take in situ measurements. Additionally, three soil sampling techniques were investigated and compared. The relative sensitivity and utility of sampling and survey methods are discussed in the context of on-site inspection. C1 [Keillor, Martin E.; Arrigo, Leah M.; Detwiler, Rebecca S.; Kernan, Warnick J.; Kirkham, Randy R.; MacDougall, Matthew R.; Milbrath, Brian D.; Rishel, Jeremy P.; Seifert, Allen; Seifert, Carolyn E.; Smart, John E.] Pacific NW Natl Lab, POB 999,MSIN J4-65, Richland, WA 99352 USA. [Baciak, James E.] Univ Florida, Mat Sci & Engn, POB 116400, Gainesville, FL USA. [Chipman, Veraun; Emer, Dudley F.] Natl Secur Technol LLC, Las Vegas, NV 89193 USA. [MacDougall, Matthew R.] Oregon State Univ, Nucl Sci & Engn, 3451 SW Jefferson Way, Corvallis, OR 97331 USA. RP Keillor, ME (reprint author), Pacific NW Natl Lab, POB 999,MSIN J4-65, Richland, WA 99352 USA. EM martin.keillor@pnnl.gov FU Pacific Northwest National Laboratory [DE-AC52-06NA25946] FX This work would not have been possible without the support of many people from several organizations. The Remote Sensing Laboratory (RSL) provided aerial survey support for the experiment. A significant number of National Security Technologies, LLC (NSTec) scientists and technicians, aside from those in the author list, provided support. The authors also express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Pacific Northwest National Laboratory under award number DE-AC52-06NA25946. NR 11 TC 2 Z9 2 U1 4 U2 11 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 BP 533 EP 547 DI 10.1097/HP.0000000000000506 PG 15 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UW UT WOS:000373920900015 PM 27023040 ER PT J AU Brown, AD Moore, ME Runnels, JT Reeves, K AF Brown, Austin D. Moore, Murray E. Runnels, Joel T. Reeves, Kirk TI In-Place Filter Tester Instrument for Nuclear Material Containers SO HEALTH PHYSICS LA English DT Article DE operational topics; aerosols; radioactive materials; waste storage AB A portable instrument was developed to determine filter clogging and container leakage of in-place nuclear material storage canisters. This paper describes the development of an in-place filter tester for determining the as found condition of unopened canisters. The U.S. Department of Energy uses several thousand canisters for nuclear material storage, and air filters in the canister lids allow gases to escape while maintaining an equilibrated pressure without release of radioactive contamination. Diagnosing the filter condition and canister integrity is important for ensuring worker and public safety. Customized canister interfaces were developed for suction clamping (during tests) to two of the canister types in use at Los Alamos National Laboratory. Experimental leakage scenarios included: O-rings fouled with dust, cracked O-rings, and loose canister lids. The prototype tester has a measurement range for air leakage rates from 8.2 x 10(-4) mL s(-1) up to 3.0 x 10(0) mL s(-1). This is sufficient to measure a leak rate of 3.4 x 10(-2) mL s(-1), which is the Los Alamos helium leak criterion for post-drop tested canisters. The In-Place-Filter-Tester cannot measure to the lower value of the helium leak criterion for pre-drop tested canisters (1.0 x 10(-5) mL s(-1)). However, helium leak testing requires canister disassembly, while the new in-place filter tester is able to assess the assembled condition of as-found and in-situ canisters. C1 [Brown, Austin D.; Moore, Murray E.; Runnels, Joel T.; Reeves, Kirk] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RP Brown, AD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM adbrown@lanl.gov FU U.S. Department of Energy Health, Safety and Security Program, WAS Project [2013-HS-2013008, HU1004500] FX This project was funded by the U.S. Department of Energy Health, Safety and Security Program, WAS Project No. 2013-HS-2013008, B&R No. HU1004500. Los Alamos National Laboratory does not endorse individual vendors, products, or services. NR 14 TC 0 Z9 0 U1 2 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 SU 2 BP S59 EP S66 DI 10.1097/HP.0000000000000493 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UP UT WOS:000373920200003 PM 27023152 ER PT J AU Vickers, L AF Vickers, Linda TI Using a Spreadsheet to Compute the Maximum Wind Sector 99.5th Percentile X/Q Value in Accordance with DOE-STD-3009-2014 SO HEALTH PHYSICS LA English DT Article DE operational topics; Pu-239; dose assessment; exposure population; safety standards AB The U.S. Department of Energy Standard 3009-2014 requires one of two methods to determine the simple Gaussian relative concentration (X/Q) of pollutant at plume centerline downwind to a receptor for a 2-h exposure duration from a ground-level release (i.e., less than 10 m height) which are (1) the 99.5th percentile X/Q for the directionally-dependent method and (2) the 95th percentile X/Q for the directionally-independent method. This paper describes how to determine the simple Gaussian 99.5th percentile X/Q for the directionally-dependent method using an electronic spreadsheet. Refer to a previous paper to determine the simple Gaussian 95th percentile X/Q for the directionally-independent method using an electronic spreadsheet (Vickers 2015). The method described herein is simple, quick, accurate, and transparent because all of the data, calculations, and results are visible for validation and verification. C1 [Vickers, Linda] US DOE, NNSA Prod Off, NPO 10 Jack Case Ctr,MS 8009,POB 2050, Oak Ridge, TN 37831 USA. RP Vickers, L (reprint author), US DOE, NNSA Prod Off, NPO 10 Jack Case Ctr,MS 8009,POB 2050, Oak Ridge, TN 37831 USA. EM Linda.Vickers@npo.doe.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2016 VL 110 IS 5 SU 2 BP S67 EP S72 DI 10.1097/HP.0000000000000495 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DJ0UP UT WOS:000373920200004 PM 27023153 ER PT J AU Despotopulos, JD Kmak, KN Gharibyan, N Brown, TA Grant, PM Henderson, RA Moody, KJ Tumey, SJ Shaughnessy, DA Sudowe, R AF Despotopulos, John D. Kmak, Kelly N. Gharibyan, Narek Brown, Thomas A. Grant, Patrick M. Henderson, Roger A. Moody, Kenton J. Tumey, Scott J. Shaughnessy, Dawn A. Sudowe, Ralf TI Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE No-carrier-added; Homologs; Transactinide; Mercury; Tin; Antimony ID CROSS-SECTIONS; EXCHANGE; ACID; P,N AB New procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12-15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of Sn-113 from In-nat foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate Sb-124 from Sn-nat foil. A procedure using Eichrom TEVA resin was developed to separate Hg-197 from Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs. C1 [Despotopulos, John D.; Gharibyan, Narek; Grant, Patrick M.; Henderson, Roger A.; Moody, Kenton J.; Shaughnessy, Dawn A.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, 7000 East Ave, Livermore, CA 94550 USA. [Despotopulos, John D.; Sudowe, Ralf] Univ Nevada Las Vegas, 4505 South Maryland Pkwy, Las Vegas, NV 89154 USA. [Kmak, Kelly N.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brown, Thomas A.; Tumey, Scott J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, 7000 East Ave, Livermore, CA 94550 USA. RP Despotopulos, JD (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, 7000 East Ave, Livermore, CA 94550 USA.; Despotopulos, JD (reprint author), Univ Nevada Las Vegas, 4505 South Maryland Pkwy, Las Vegas, NV 89154 USA. EM despotopulos1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [11-ERD-011]; LLNL Livermore Graduate Scholar Program FX This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 11-ERD-011, as well as by the LLNL Livermore Graduate Scholar Program. NR 21 TC 2 Z9 2 U1 5 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2016 VL 308 IS 2 BP 567 EP 572 DI 10.1007/s10967-015-4500-z PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DJ2WX UT WOS:000374066900020 ER PT J AU Langan, RT Archibald, RK Lamberti, VE AF Langan, Roisin T. Archibald, Richard K. Lamberti, Vincent E. TI Nuclear forensics analysis with missing data SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Nuclear forensics; Missing data; Machine learning; Bayesian methods; Monte Carlo methods; Spent fuel isotopic composition (SFCOMPO) database ID INCOMPLETE DATA; CLASSIFICATION; FUEL AB We have applied a new imputation-based method for analyzing incomplete data, called Monte Carlo Bayesian Database Generation (MCBDG), to the spent fuel isotopic composition (SFCOMPO) database. About 60 % of the entries in SFCOMPO are absent. The method estimates missing values of a property from a probability distribution created from the existing data for the property, and then generates multiple instances of the completed database for training a machine learning algorithm. Uncertainty in the data is represented by an empirical or an assumed error distribution. The method makes few assumptions about the underlying data, and it compares favorably against results obtained by replacing missing information with constant values. C1 [Langan, Roisin T.; Archibald, Richard K.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Lamberti, Vincent E.] Y 12 Natl Secur Complex, POB 2009, Oak Ridge, TN 37831 USA. RP Archibald, RK (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM archibaldrk@ornl.gov RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 FU U.S. Department of Energy [DE-NA0001942, DE-AC05-00OR22725] FX This manuscript has been authored by Consolidated Nuclear Security, LLC, (CNS) and Oak Ridge National Laboratory (ORNL) under Contract Nos. DE-NA0001942 and DE-AC05-00OR22725, respectively, with the U.S. Department of Energy. The work was performed under an Interagency Agreement with the Department of Homeland Security. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Energy, CNS, or ORNL. The authors are grateful to Dr. Michael Sharp, of the University of Tennessee at Knoxville, for a critical review of the manuscript. NR 18 TC 0 Z9 0 U1 3 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2016 VL 308 IS 2 BP 687 EP 692 DI 10.1007/s10967-015-4458-x PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DJ2WX UT WOS:000374066900034 ER PT J AU Blaizot, JP Liao, JF AF Blaizot, Jean-Paul Liao, Jinfeng TI Gluon transport equations with condensate in the small angle approximation SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma; Heavy ion collisions; Thermalization; Glasma; Bose-Einstein condensation ID BOSE-EINSTEIN CONDENSATION; THERMALIZATION AB We derive the set of kinetic equations that control the evolution of gluons in the presence of a condensate. We show that the dominant singularities remain logarithmic when the scattering involves particles in the condensate. This allows us to define a consistent small angle approximation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Blaizot, Jean-Paul] CEA Saclay, Inst Phys Theor IPhT, CNRS URA2306, F-91191 Gif Sur Yvette, France. [Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Liao, JF (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Liao, JF (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Liao, JF (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. FU European Research Council [ERC-AD-267258]; National Science Foundation [PHY-1352368]; RIKEN BNL Research Center FX We would like to express our warmest thanks to Larry McLerran for numerous discussions and insightful remarks. The research of J.P.B. is supported by the European Research Council under the Advanced Investigator Grant ERC-AD-267258. The research of J.L. is supported by the National Science Foundation under Grant No. PHY-1352368. J.L. is also grateful to the RIKEN BNL Research Center for partial support. NR 9 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY PY 2016 VL 949 BP 35 EP 47 DI 10.1016/j.nuclphysa.2015.08.004 PG 13 WC Physics, Nuclear SC Physics GA DJ2ZZ UT WOS:000374075500004 ER PT J AU Blaizot, JP Jiang, Y Liao, JF AF Blaizot, Jean-Paul Jiang, Yin Liao, Jinfeng TI Gluon transport equation with effective mass and dynamical onset of Bose-Einstein condensation SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma; Heavy ion collision; Thermalization; Glasma; Bose-Einstein condensation ID BOTTOM-UP THERMALIZATION; HEAVY-ION COLLISIONS; KINETICS; PLASMA AB We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset. (C) 2015 Elsevier B.V. All rights reserved. C1 [Blaizot, Jean-Paul] CEA Saclay, Inst Phys Theor IPhT, CNRS URA2306, F-91191 Gif Sur Yvette, France. [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Liao, JF (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Liao, JF (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Liao, JF (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. EM liaoji@indiana.edu FU European Research Council [ERC-AD-267258]; National Science Foundation [PHY-1352368]; RIKEN BNL Research Center FX The research of J.P.B. is supported by the European Research Council under the Advanced Investigator Grant ERC-AD-267258. The research of Y.J. and J.L. is supported by the National Science Foundation under Grant No. PHY-1352368. J.L. is also grateful to the RIKEN BNL Research Center for partial support. NR 24 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY PY 2016 VL 949 BP 48 EP 70 DI 10.1016/j.nuclphysa.2015.07.021 PG 23 WC Physics, Nuclear SC Physics GA DJ2ZZ UT WOS:000374075500005 ER PT J AU Mason-Smith, N Duke, DJ Kastengren, AL Stewart, PJ Traini, D Young, PM Chen, Y Lewis, DA Soria, J Edgington-Mitchell, D Honnery, D AF Mason-Smith, Nicholas Duke, Daniel J. Kastengren, Alan L. Stewart, Peter J. Traini, Daniela Young, Paul M. Chen, Yang Lewis, David A. Soria, Julio Edgington-Mitchell, Daniel Honnery, Damon TI Insights into Spray Development from Metered-Dose Inhalers Through Quantitative X-ray Radiography SO PHARMACEUTICAL RESEARCH LA English DT Article DE pressurised metered dose inhaler; radiography; synchrotron radiation; X-ray ID EQUATION-OF-STATE; THERMODYNAMIC PROPERTIES; TEMPERATURES; PRESSURES; FLUORESCENCE; FORMULATION; MODEL; MPA AB Typical methods to study pMDI sprays employ particle sizing or visible light diagnostics, which suffer in regions of high spray density. X-ray techniques can be applied to pharmaceutical sprays to obtain information unattainable by conventional particle sizing and light-based techniques. We present a technique for obtaining quantitative measurements of spray density in pMDI sprays. A monochromatic focused X-ray beam was used to perform quantitative radiography measurements in the near-nozzle region and plume of HFA-propelled sprays. Measurements were obtained with a temporal resolution of 0.184 ms and spatial resolution of 5 mu m. Steady flow conditions were reached after around 30 ms for the formulations examined with the spray device used. Spray evolution was affected by the inclusion of ethanol in the formulation and unaffected by the inclusion of 0.1% drug by weight. Estimation of the nozzle exit density showed that vapour is likely to dominate the flow leaving the inhaler nozzle during steady flow. Quantitative measurements in pMDI sprays allow the determination of nozzle exit conditions that are difficult to obtain experimentally by other means. Measurements of these nozzle exit conditions can improve understanding of the atomization mechanisms responsible for pMDI spray droplet and particle formation. C1 [Mason-Smith, Nicholas; Soria, Julio; Edgington-Mitchell, Daniel; Honnery, Damon] Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Melbourne, Vic 3004, Australia. [Duke, Daniel J.] Argonne Natl Lab, Div Energy Syst, Lemont, IL USA. [Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Lemont, IL USA. [Stewart, Peter J.] Monash Univ, Fac Pharm & Pharmaceut Sci, Melbourne, Vic 3004, Australia. [Traini, Daniela; Young, Paul M.; Chen, Yang] Sydney Med Sch, Woolcock Inst Med Res, Resp Technol, Sydney, NSW, Australia. [Traini, Daniela; Young, Paul M.; Chen, Yang] Sydney Med Sch, Discipline Pharmacol, Sydney, NSW, Australia. [Lewis, David A.] Chiesi Ltd, Chippenham, England. [Soria, Julio] King Abdulaziz Univ, Dept Aeronaut Engn, Jeddah 21413, Saudi Arabia. RP Mason-Smith, N (reprint author), Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Melbourne, Vic 3004, Australia. EM nick.masonsmith@gmail.com OI Honnery, Damon/0000-0003-2925-3602 FU Australian Research Council; U.S. Department of Energy (DOE) [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DEAC02-06CH11357] FX The authors gratefully acknowledge the support given to the project by the Australian Research Council, The authors wish to thank Dr. Chris Powell and Dr. Andrew Swantek, Energy Systems Division, Argonne National Laboratory. This research was performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. Use of the APS is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. The submitted manuscript has been created by UChicago :Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DEAC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 33 TC 0 Z9 0 U1 3 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0724-8741 EI 1573-904X J9 PHARM RES-DORDR JI Pharm. Res. PD MAY PY 2016 VL 33 IS 5 BP 1249 EP 1258 DI 10.1007/s11095-016-1869-5 PG 10 WC Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Chemistry; Pharmacology & Pharmacy GA DI6RY UT WOS:000373629000017 PM 26887680 ER PT J AU Martinez-Anido, CB Botor, B Florita, AR Draxl, C Lu, SY Hamann, HF Hodge, BM AF Martinez-Anido, Carlo Brancucci Botor, Benjamin Florita, Anthony R. Draxl, Caroline Lu, Siyuan Hamann, Hendrik F. Hodge, Bri-Mathias TI The value of day-ahead solar power forecasting improvement SO SOLAR ENERGY LA English DT Article DE Solar power forecasting; Solar grid integration; Bulk power system operations ID WIND ENERGY; ELECTRICITY MARKET; IMPACT; COSTS; INTEGRATION; BENEFITS; PRICES AB The value of day-ahead solar power forecasting improvements was analyzed by simulating the operation of the Independent System Operator - New England (ISO-NE) power system under a range of scenarios with varying solar power penetrations and solar power forecasting improvements. The results showed how the integration of solar power decreased operational electricity generation costs, by decreasing fuel and variable operation and maintenance costs, while decreasing start and shutdown costs of fossil fueled conventional generators. Solar power forecasting improvements changed the impacts that the uncertainty of solar power has on bulk power system operations; electricity generation from the fast start and lower efficiency power plants, ramping of all generators, start and shutdown costs, and solar power curtailment were all reduced. These impacts led to a reduction in overall operational electricity generation costs in the system that translates into an annual economic value for improving solar power forecasting. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Martinez-Anido, Carlo Brancucci; Botor, Benjamin; Florita, Anthony R.; Draxl, Caroline; Hodge, Bri-Mathias] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lu, Siyuan; Hamann, Hendrik F.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Hodge, BM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM bri.mathias.hodge@nrel.gov RI Draxl, Caroline/O-6206-2016; OI Draxl, Caroline/0000-0001-5532-6268; Brancucci Martinez-Anido, Carlo/0000-0002-3605-6730 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory under the SunShot Initiative's Improving the Accuracy of Solar Forecasting program FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory as part of the project work performed under the SunShot Initiative's Improving the Accuracy of Solar Forecasting program. The authors would like to thank the entire Watt-Sun Project Team, in particular Jon Black of ISO-NE. NR 28 TC 7 Z9 7 U1 5 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD MAY PY 2016 VL 129 BP 192 EP 203 DI 10.1016/j.solener.2016.01.049 PG 12 WC Energy & Fuels SC Energy & Fuels GA DJ0BQ UT WOS:000373866800017 ER PT J AU Hanrieder, N Sengupta, M Xie, Y Wilbert, S Pitz-Paal, R AF Hanrieder, N. Sengupta, M. Xie, Y. Wilbert, S. Pitz-Paal, R. TI Modeling beam attenuation in solar tower plants using common DNI measurements SO SOLAR ENERGY LA English DT Article DE Attenuation loss; Central Receiver; Solar resource assessment; CSP ID RADIATION ATTENUATION; SCATTERING; TURBIDITY; NETWORK AB Solar radiation reflected by concentrating mirrors is attenuated due to atmospheric extinction as it travels to the receiver of a solar tower plant. The lack of information on the magnitude of extinction increases the uncertainties in yield analysis and tower plant design. In-situ measurements of atmospheric extinction as well as measurement correction methods have been recently performed and developed (Hanrieder et al., 2012, 2015), but specific information is unavailable for individual plant projects. It is well known though that the extinction varies significantly with site and time. To overcome this absence of information a model to derive the attenuation loss between heliostat and receiver from common direct normal irradiance (DNI) measurements was developed by Sengupta and Wagner (2011) (SW2011 model). We present an updated version of that model and a comparison between the performance of the models using extinction measurements. In the new approach presented here, different precipitable water vapor (PWV) amounts are considered and the model is adjusted to the elevation of the investigated site. The strongest assumption in this approach is the assumption about the aerosol extinction height profile. Three different height profiles are tested for the Plataforma Solar de Almeria (PSA) resulting in three different new transmittance models. The SW2011 as well as the three new models are evaluated with one year of corrected extinction data derived with the ABC (absorption and broadband correction) method of Hanrieder et al. (2015) and a Vaisala FS11 scatterometer at PSA. The new models show a mean difference to the reference data set of 0.01, 0.05 and 0.03 and a root mean square error (RMSE) of 0.052, 0.056 and 0.049 (compared to a mean bias of -0.08 and RMSE of 0.095 for the SW2011 model for transmittances through a 1 km slant range). These results indicate the importance of adequate assumptions for the aerosol height profile. Testing the developed TM with the LIVAS height profile (Amiridis et al., 2015) for PSA shows satisfying results and this motivates testing the approach for other sites. By applying an additional correction for the Linke turbidity (TL) derived as in Ineichen and Perez (2002) the mean bias can be further lowered. An uncertainty analysis shows that the absolute uncertainty coincide with the RMSE levels of the evaluation. Performing the additional TL correction promises an improvement of the overall performance of the model. The new models outperform the SW2011 model due to the PWV and elevation adjustments. The approach can be applied for different sites and incorporated in already existing ray-tracing or plant optimization tools. It is expected to be valuable for reducing uncertainty in power tower design and operations. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Hanrieder, N.; Wilbert, S.] German Aerosp Ctr DLR, Inst Solar Res, PSA, Ctra Senes S-N Km 4,Apartado 39, Tabernas 04200, Spain. [Sengupta, M.; Xie, Y.] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. [Pitz-Paal, R.] German Aerosp Ctr DLR, Inst Solar Res, D-51147 Cologne, Germany. RP Hanrieder, N (reprint author), German Aerosp Ctr DLR, Inst Solar Res, PSA, Ctra Senes S-N Km 4,Apartado 39, Tabernas 04200, Spain. EM Natalie.Hanrieder@dlr.de OI Wilbert, Stefan/0000-0003-3573-3004; Pitz-Paal, Robert/0000-0002-3542-3391 NR 34 TC 1 Z9 1 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD MAY PY 2016 VL 129 BP 244 EP 255 DI 10.1016/j.solener.2016.01.051 PG 12 WC Energy & Fuels SC Energy & Fuels GA DJ0BQ UT WOS:000373866800023 ER PT J AU Borisuit, A Kampf, J Munch, M Thanachareonkit, A Scartezzini, JL AF Borisuit, A. Kaempf, J. Muench, M. Thanachareonkit, A. Scartezzini, J. -L. TI Monitoring and rendering of visual and photo-biological properties of daylight-redirecting systems SO SOLAR ENERGY LA English DT Article DE Non-visual effects; Camera-Like Light Sensor (CLLS); Monitoring; Simulation; Daylighting systems ID COMPLEX FENESTRATION SYSTEMS; MELATONIN SUPPRESSION; ACTION SPECTRUM; LIGHT; PERFORMANCE; RADIANCE; HUMANS; PHOTORECEPTOR; SIMULATION; SECRETION AB We previously developed a Camera-Like Light Sensor (CLLS) to record images using a novel High Dynamic Range (HDR) imaging vision sensor. The device was equipped with customized filters for adapting the camera's spectral sensitivity to both photopic and circadian sensitivities. Here, we aim at investigating photometric and circadian metrics to assess and simulate the potential of light on non-visual functions. The CLLS was used to monitor luminance and circadian weighted radiance (L-ec) over time in two test rooms, equipped with different daylight re-directing devices: venetian blinds (VB) and optical louver systems (OLS). Additionally, a computer simulation was performed for the two test rooms using the software RADIANCE: false colour images were used to demonstrate distribution of luminance and absolute values of L-ec. Circadian weighted irradiance (E-ec) was also computed at different positions corresponding to the gaze directions of a seated office worker. From our results, the VB provided overall higher illuminance compared to the OLS, but when a virtually seated observer was facing desk, the OLS provided larger circadian weighted irradiance in the afternoon. Our results illustrate the use of simulations for circadian metrics, which will be applicable in the future to predict the potential impact of light on non-visual functions for daylighting optimization in buildings. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Borisuit, A.; Kaempf, J.; Muench, M.; Scartezzini, J. -L.] Ecole Polytech Fed Lausanne, Solar Energy & Bldg Phys Lab LESO PB, CH-1015 Lausanne, Switzerland. [Muench, M.] Charite Univ Med Berlin, Inst Physiol, Grp Sleep Res & Clin Chronobiol, Berlin, Germany. [Thanachareonkit, A.] Lawrence Berkeley Natl Lab, Energy Technol Area, Windows & Envelope Mat, Berkeley, CA USA. RP Borisuit, A (reprint author), Ecole Polytech Fed Lausanne, Solar Energy & Bldg Phys Lab LESO PB, CH-1015 Lausanne, Switzerland. FU Velux Foundation (Switzerland); EDCE doctoral school (EPFL, Switzerland) FX The authors thank the Lawrence Berkeley National Laboratory (USA), especially Eleanor Lee for inviting and hosting the first author and Dr Andrew McNeil for the virtual models of the testrooms. The authors are grateful to the Centre Suisse d'Electronique et de Microtechnique (CSEM, Switzerland) for their collaboration (especially Dr. Segolene Pangaud and Dr. Edo Franzi). We would like also to thank Pierre Loesch (LESO-PB EPFL) for technical support. The work was financially supported by the Velux Foundation (Switzerland) as well as a PhD mobility award from the EDCE doctoral school (EPFL, Switzerland). NR 53 TC 0 Z9 0 U1 3 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD MAY PY 2016 VL 129 BP 297 EP 309 DI 10.1016/j.solener.2015.12.052 PG 13 WC Energy & Fuels SC Energy & Fuels GA DJ0BQ UT WOS:000373866800026 ER PT J AU Baer, DR Artyushkova, K Fulghum, JE Powell, CJ Sherwood, PMA Surman, DJ Watts, J AF Baer, Donald R. Artyushkova, Kateryna Fulghum, Julia E. Powell, Cedric J. Sherwood, Peter M. A. Surman, David J. Watts, John TI John Grant and the multifaceted nature of true professionalism SO SURFACE AND INTERFACE ANALYSIS LA English DT Biographical-Item DE Cryogenic XPS; Solid-aqueous solution interface; Electrical Double Layer; Cell wall composition C1 [Baer, Donald R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Artyushkova, Kateryna; Fulghum, Julia E.] Univ New Mexico, Albuquerque, NM USA. [Powell, Cedric J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Sherwood, Peter M. A.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Sherwood, Peter M. A.] Kansas State Univ, Manhattan, KS 66506 USA. [Surman, David J.] Kratos Analyt Inc, Chestnut Ridge, NY USA. [Watts, John] Univ Surrey, Guildford GU2 5XH, Surrey, England. RP Baer, DR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAY PY 2016 VL 48 IS 5 BP 249 EP 251 DI 10.1002/sia.6026 PG 3 WC Chemistry, Physical SC Chemistry GA DJ1AQ UT WOS:000373935900003 ER PT J AU Wood, KN Christensen, ST Nordlund, D Dameron, AA Ngo, C Dinh, H Gennett, T O'Hayre, R Pylypenko, S AF Wood, Kevin N. Christensen, Steven T. Nordlund, Dennis Dameron, Arrelaine A. Ngo, Chilan Dinh, Huyen Gennett, Thomas O'Hayre, Ryan Pylypenko, Svitlana TI Spectroscopic investigation of nitrogen-functionalized carbon materials SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE Nitrogen; Carbon Support; Spectroscopy; catalysis; XPS; NEXAFS ID OXYGEN REDUCTION REACTION; RAY PHOTOELECTRON-SPECTROSCOPY; CATALYST SUPPORT STRUCTURES; ELECTROLYTE FUEL-CELLS; DOPED CARBON; CATHODE CATALYSTS; NANOTUBES; NITRIDE; DURABILITY; GRAPHENE AB Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan through the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Ngo, Chilan; Pylypenko, Svitlana] Colorado Sch Mines, Dept Chem & Geochem, 1012 14th St, Golden, CO 80401 USA. [Wood, Kevin N.; O'Hayre, Ryan] Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. [Christensen, Steven T.; Dameron, Arrelaine A.; Dinh, Huyen; Gennett, Thomas] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94023 USA. [Wood, Kevin N.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Pylypenko, S (reprint author), Colorado Sch Mines, Dept Chem & Geochem, 1012 14th St, Golden, CO 80401 USA. EM spylypen@mines.edu RI Nordlund, Dennis/A-8902-2008; Ngo, Chilan/C-7271-2016 OI Nordlund, Dennis/0000-0001-9524-6908; Ngo, Chilan/0000-0003-4084-098X FU Army Research Office [W911NF-09-1-0528]; CSM; U.S. Department of Energy EERE; FCT Program [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The work at CSM is supported by the Army Research Office under grant #W911NF-09-1-0528 and start-up funds from CSM. The work at NREL is supported by the U.S. Department of Energy EERE, FCT Program, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors also acknowledge Electron Microscopy Laboratory at CSM and surface analysis facilities at NREL. NEXAFS analysis was carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility. NR 56 TC 1 Z9 1 U1 8 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAY PY 2016 VL 48 IS 5 BP 283 EP 292 DI 10.1002/sia.6017 PG 10 WC Chemistry, Physical SC Chemistry GA DJ1AQ UT WOS:000373935900008 ER PT J AU Graf, PA Stewart, G Lackner, M Dykes, K Veers, P AF Graf, Peter A. Stewart, Gordon Lackner, Matthew Dykes, Katherine Veers, Paul TI High-throughput computation and the applicability of Monte Carlo integration in fatigue load estimation of floating offshore wind turbines SO WIND ENERGY LA English DT Article DE FAST; high throughput; openMDAO; turbine fatigue; Monte Carlo integration AB Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, which is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Graf, Peter A.; Dykes, Katherine; Veers, Paul] Natl Renewable Energy Lab, Golden, CO USA. [Stewart, Gordon; Lackner, Matthew] Univ Massachusetts, Amherst, MA 01003 USA. RP Graf, PA (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO USA. EM peter.graf@nrel.gov FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors would like to thank Jason Jonkman and Rick Damiani for their helpful comments on the manuscript. NR 20 TC 1 Z9 1 U1 4 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD MAY PY 2016 VL 19 IS 5 BP 861 EP 872 DI 10.1002/we.1870 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA DJ0XQ UT WOS:000373928100005 ER PT J AU Colpan, M Tolkatchev, D Grover, S Helms, GL Cort, JR Moroz, N Kostyukova, AS AF Colpan, Mert Tolkatchev, Dmitri Grover, Samantha Helms, Gregory L. Cort, John R. Moroz, Natalia Kostyukova, Alla S. TI Localization of the binding interface between leiomodin-2 and alpha-tropomyosin SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Article DE Leiomodin; Nuclear magnetic resonance; Circular dichroism; Tropomodulin; Dilated cardiomyopathy; Intrinsically disordered regions ID DILATED CARDIOMYOPATHY; ACTIN-FILAMENT; CIRCULAR-DICHROISM; N-TERMINUS; SECONDARY STRUCTURE; TROPOMODULIN BINDS; NEMALINE MYOPATHY; AMINO-TERMINUS; THIN-FILAMENTS; MUSCLE-CELLS AB The development of some familial dilated cardiomyopathies (DCM) correlates with the presence of mutations in proteins that regulate the organization and function of thin filaments in cardiac muscle cells. Harmful effects of some mutations might be caused by disruption of yet uncharacterized protein-protein interactions. We used nuclear magnetic resonance spectroscopy to localize the region of striated muscle alpha-tropomyosin (Tpm1.1) that interacts with leiomodin-2 (Lmod2), a member of tropomodulin (Tmod) family of actin-binding proteins. We found that 21 N-terminal residues of Tpm1.1 are involved in interactions with residues 7-41 of Lmod2. The K15N mutation in Tpm1.1, known to be associated with familial DCM, is located within the newly identified Lmod2 binding site of Tpm1.1. We studied the effect of this mutation on binding Lmod2 and Tmod1. The mutation reduced binding affinity for both Lmod2 and Tmod1, which are responsible for correct lengths of thin filaments. The effect of the K15N mutation on Tpm1.1 binding to Lmod2 and Tmod1 provides a molecular rationale for the development of familial DCM. (c) 2016 Elsevier B.V. All rights reserved. C1 [Colpan, Mert; Tolkatchev, Dmitri; Grover, Samantha; Moroz, Natalia; Kostyukova, Alla S.] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Wegner Hall 340D, Pullman, WA 99164 USA. [Helms, Gregory L.] Washington State Univ, Ctr NMR Spect, Pullman, WA 99164 USA. [Cort, John R.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Tolkatchev, D; Kostyukova, AS (reprint author), Washington State Univ, Voiland Sch Chem Engn & Bioengn, Wegner Hall 340D, Pullman, WA 99164 USA. EM alla.kostyukova@wsu.edu FU National Institutes of Health [GM081688] FX We would like to express our gratitude to Drs. Hans Brandstetter, Wolfgang Skala and Peter Goettig, who created and deposited at Addgene a plasmid for high-yield recombinant enterokinase production. We thank Drs. Norma Greenfield and Sarah Hitchcock-DeGregori for helpful comments and careful reading of the manuscript. We appreciate Dr. Gerhard Munske's help with mass spectrometry analysis. This study was supported in part by the National Institutes of Health Grant GM081688 and startup funds to ASK. NR 59 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 EI 0006-3002 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD MAY PY 2016 VL 1864 IS 5 BP 523 EP 530 DI 10.1016/j.bbapap.2016.02.009 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DI5KR UT WOS:000373538300010 PM 26873245 ER PT J AU Zhang, SY Skerker, JM Rutter, CD Maurer, MJ Arkin, AP Rao, CV AF Zhang, Shuyan Skerker, Jeffrey M. Rutter, Charles D. Maurer, Matthew J. Arkin, Adam P. Rao, Christopher V. TI Engineering Rhodosporidium toruloides for increased lipid production SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE Rhodosporidium toruloides; lipid production; biodiesel; genome sequencing; Agrobacterium tumefaciens mediated transformation ID YEAST YARROWIA-LIPOLYTICA; FATTY-ACID BIOSYNTHESIS; CELL OIL PRODUCTION; AGROBACTERIUM-TUMEFACIENS; SACCHAROMYCES-CEREVISIAE; GENE; DNA; ACCUMULATION; TRANSFORMATION; SINGLE AB Oleaginous yeast are promising organisms for the production of lipid-based chemicals and fuels from simple sugars. In this work, we explored Rhodosporidium toruloides for the production of lipid-based products. This oleaginous yeast natively produces lipids at high titers and can grow on glucose and xylose. As a first step, we sequenced the genomes of two strains, IFO0880, and IFO0559, and generated draft assemblies and annotations. We then used this information to engineer two R. toruloides strains for increased lipid production by over-expressing the native acetyl-CoA carboxylase and diacylglycerol acyltransferase genes using Agrobacterium tumefaciens mediated transformation. Our best strain, derived from IFO0880, was able to produce 16.4 +/- 1.1g/L lipid from 70g/L glucose and 9.5 +/- 1.3g/L lipid from 70g/L xylose in shake-flask experiments. This work represents one of the first examples of metabolic engineering in R. toruloides and establishes this yeast as a new platform for production of fatty-acid derived products. Biotechnol. Bioeng. 2016;113: 1056-1066. (c) 2015 Wiley Periodicals, Inc. C1 [Zhang, Shuyan; Rutter, Charles D.; Rao, Christopher V.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL USA. [Skerker, Jeffrey M.; Maurer, Matthew J.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Skerker, Jeffrey M.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Arkin, AP (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.; Arkin, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM chris@scs.uiuc.edu RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Maurer, Matthew/0000-0002-9150-0240 FU Energy Biosciences Institute [OO7G02, OO3G18] FX Contract grant sponsor: Energy Biosciences Institute; Contract grant numbers: OO7G02; OO3G18 NR 57 TC 10 Z9 10 U1 11 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAY PY 2016 VL 113 IS 5 BP 1056 EP 1066 DI 10.1002/bit.25864 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DI4NN UT WOS:000373476700014 PM 26479039 ER PT J AU Tramm, JR Gunow, G He, T Smith, KS Forget, B Siegel, AR AF Tramm, John R. Gunow, Geoffrey He, Tim Smith, Kord S. Forget, Benoit Siegel, Andrew R. TI A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Method of Characteristics; Neutron transport; Reactor simulation; High performance computing AB In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tramm, John R.; He, Tim; Siegel, Andrew R.] Argonne Natl Lab, Ctr Exascale Simulat Adv Reactors, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tramm, John R.; Gunow, Geoffrey; Smith, Kord S.; Forget, Benoit] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA. RP Tramm, JR (reprint author), Argonne Natl Lab, Ctr Exascale Simulat Adv Reactors, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jtramm@mcs.anl.gov; geogunow@mit.edu; shuohe@mcs.anl.gov; kord@mit.edu; bforget@mit.edu; siegela@mcs.anl.gov OI Tramm, John/0000-0002-5397-4402 FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy University Programs Fellowship; Center for Exascale Simulation of Advanced Reactors (CESAR), a co-design center under the U.S. Department of Energy FX This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf,. a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; The second author is a recipient of the U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy University Programs Fellowship. Additional support was provided by the Center for Exascale Simulation of Advanced Reactors (CESAR), a co-design center under the U.S. Department of Energy. The authors would also like to thank Michael Smith from Argonne National Laboratory for providing guidance from his experience with 3D MOC solvers. NR 14 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY PY 2016 VL 202 BP 141 EP 150 DI 10.1016/j.cpc.2016.01.007 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DI5MA UT WOS:000373542000007 ER PT J AU Payne, MA Miller, JB Gellman, AJ AF Payne, Matthew A. Miller, James B. Gellman, Andrew J. TI High-throughput characterization of the effects of H2O vapour on early oxidation across AlxFeyNi1-x-y composition space SO CORROSION SCIENCE LA English DT Article DE aluminium; iron; nickel; Raman spectroscopy; XPS; oxidation ID INTERNAL OXIDATION; HIGH-TEMPERATURE; EXTERNAL OXIDATION; AL2O3 SCALES; AL ALLOYS; NI-AL; FE-AL; ALUMINUM; BEHAVIOR; NICKEL AB The presence of H2O vapour in an oxidizing environment can increase the critical aluminium concentration, N*(Al), required to establish a passivating Al2O3 scale in multicomponent alumina-forming alloys. This work used AlxFeyNi1-x-y composition spread alloy film combinatorial libraries to determine N*(Al)(x, y) continuously across AlxFeyNi1-x-y composition space (x = 0 -> 1, y = 0 -> [1-x]) in a 10% H2O/air mixture at 427 degrees C. The N*(Al)(x, y) in this environment was significantly higher across much of composition space than that previously measured in dry air. Physical insights from the observed differences are considered using a modified Wagner-Maak model. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Payne, Matthew A.; Miller, James B.; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Payne, Matthew A.; Miller, James B.; Gellman, Andrew J.] DOE Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU Cross-Cutting Technologies Program at the National Energy Technology Laboratory; Carnegie Mellon University by NETL through the RES Contract [DE-FE000400]; Carnegie Institute of Technology FX This work was funded by the Cross-Cutting Technologies Program at the National Energy Technology Laboratory, managed by Susan Maley (Technology Manager) and Charles Miller (Technical Monitor). The Research was executed through NETL Office of Research and Development's Innovative Process Technologies (IPT) Field Work Proposal. This work was financially supported at the Carnegie Mellon University by NETL through the RES Contract No. DE-FE000400.; Author Matthew A. Payne receives tuition support from the Bertucci Fellowship awarded through the Carnegie Institute of Technology, and thanks John and Claire Bertucci for their generosity in establishing this award. NR 39 TC 3 Z9 3 U1 5 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD MAY PY 2016 VL 106 BP 61 EP 81 DI 10.1016/j.corsci.2016.01.026 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DI8JZ UT WOS:000373748600007 ER PT J AU Syal, MB Owen, JM Miller, PL AF Syal, Megan Bruck Owen, J. Michael Miller, Paul L. TI Deflection by kinetic impact: Sensitivity to asteroid properties SO ICARUS LA English DT Article DE Impact processes; Asteroids; Cratering; Asteroids; Dynamics; Asteroids; Rotation ID SMOOTHED PARTICLE HYDRODYNAMICS; NEAR-EARTH ASTEROIDS; NUMERICAL SIMULATIONS; MOMENTUM-TRANSFER; OBLIQUE IMPACTS; METEORITES; COLLISIONS; STRENGTH; ROTATION; EQUATION AB Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. Here we numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1-30 km/s were investigated, yielding, for a particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of mu = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. The kinetic-impact momentum-multiplication factor, beta, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers beta, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter beta but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. These results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection strategy. (C) 2016 Elsevier Inc. All rights reserved. C1 [Syal, Megan Bruck; Owen, J. Michael; Miller, Paul L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Syal, MB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM syall@llnl.gov FU Laboratory Directed Research and Development Program at LLNL under the U.S. Department of Energy by Lawrence Livermore National Laboratory [12-ERD-005, DE-AC52-07NA27344, LLNL-JRNL-677415] FX The authors thank Erik Asphaug and an anonymous reviewer for their comments, which strengthened this paper. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-677415. NR 62 TC 0 Z9 0 U1 3 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2016 VL 269 BP 50 EP 61 DI 10.1016/j.icarus.2016.01.010 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI3QY UT WOS:000373414800005 ER PT J AU Pei, YJ Hu, B Som, S AF Pei, Yuanjiang Hu, Bing Som, Sibendu TI Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID DIESEL-ENGINE CONDITIONS; TURBULENCE-CHEMISTRY INTERACTION; COMPRESSION-IGNITION ENGINES; COMBUSTION CHARACTERISTICS; SOOT FORMATION; MODEL AB An n-dodecane spray flame was simulated using a dynamic structure large-eddy simulation (LES) model coupled with a detailed chemistry combustion model to understand the ignition processes and the quasi-steady state flame structures. This study focuses on the effect of different ambient oxygen concentrations, 13%, 15%, and 21%, at an ambient temperature of 900K and an ambient density of 22.8 kg/m 3, which are typical diesel-engine relevant conditions with different levels of exhaust gas recirculation (EGR). The liquid spray was treated with a traditional Lagrangian method. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. It is observed that the main ignitions occur in rich mixture, and the flames are thickened around 35-40mm off the spray axis due to the enhanced turbulence induced by the strong recirculation upstream, just behind the head of the flames at different oxygen concentrations. At 1 ms after the start of injection (SOI), the soot production is dominated by the broader region of high temperature in rich mixture instead of the stronger oxidation of the high peak temperature. Multiple realizations were performed for the 15% O-2 condition to understand the realization-to-realization variation and to establish best practices for ensemble-averaging diesel spray flames. Two indexes are defined. The structure-similarity index (SSI) analysis suggests that at least 5 realizations are needed to obtain 99% similarity for mixture fraction if the average of 16 realizations is used as the target at 0.8 ms. However, this scenario may be different for different scalars of interest. It is found that 6 realizations would be enough to reach 99% of similarity for temperature, while 8 and 14 realizations are required to achieve 99% similarity for soot and OH mass fraction, respectively. Similar findings are noticed at 1 ms. More realizations are needed for the magnitude-similarity index (MSI) for the similar level of similarity as the SSI. C1 [Pei, Yuanjiang; Som, Sibendu] Argonne Natl Lab, Transportat Technol R&D Ctr, Lemont, IL 60439 USA. [Hu, Bing] Cummins Inc, Columbus, IN 47202 USA. [Pei, Yuanjiang] Aramco Res Ctr, 46535 Peary Court, Novi, MI 48377 USA. RP Pei, YJ (reprint author), Argonne Natl Lab, Transportat Technol R&D Ctr, Lemont, IL 60439 USA.; Pei, YJ (reprint author), Aramco Res Ctr, 46535 Peary Court, Novi, MI 48377 USA. EM yuanjiang.pei@aramcoservices.com FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government.; This research was funded by the U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program managers at DOE, for their support. NR 45 TC 0 Z9 0 U1 4 U2 11 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD MAY PY 2016 VL 138 IS 3 AR 032205 DI 10.1115/1.4032771 PG 10 WC Energy & Fuels SC Energy & Fuels GA DI7UO UT WOS:000373707700011 ER PT J AU Bridges, RA AF Bridges, Robert A. TI A solution to Schroder's equation in several variables SO JOURNAL OF FUNCTIONAL ANALYSIS LA English DT Article DE Schroder; Functional equation; Composition operator; Iteration; Analytic functions; Bergman space; Compact operator ID MAPS AB Let phi be an analytic self-map of the n-ball, having 0 as the attracting fixed point and having full-rank near 0. We consider the generalized Schroder's equation, F circle phi = phi'(0)(k) F with k a positive integer and prove there is always a solution F with linearly independent component functions, but that such an F cannot have full rank except possibly when k = 1. Furthermore, when k = 1 (Schroder's equation), necessary and sufficient conditions on are given to ensure F has full rank near 0 without the added assumption of diagonalizability as needed in the 2003 Cowen/MacCluer paper. In response to Enoch's 2007 paper, it is proven that any formal power series solution indeed represents an analytic function on the whole unit ball. How exactly resonance can lead to an obstruction of a full rank solution is discussed as well as some consequences of having solutions to Schroder's equation. (C) 2016 Elsevier Inc. All rights reserved. C1 [Bridges, Robert A.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Bridges, RA (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. EM bridgesra@ornl.gov FU NSF [DMS-1001701]; U.S. Department of Energy [DE-AC05-00OR22725]; United States Government FX This research was conducted at Purdue University, West Lafayette, IN, with authorship completed at Oak Ridge National Laboratory. This research was partially supported by NSF Analysis and Cyber-Enabled Discovery Initiative Programs, grant number DMS-1001701. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 10 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-1236 EI 1096-0783 J9 J FUNCT ANAL JI J. Funct. Anal. PD MAY 1 PY 2016 VL 270 IS 9 BP 3137 EP 3172 DI 10.1016/j.jfa.2016.02.024 PG 36 WC Mathematics SC Mathematics GA DI3SZ UT WOS:000373420100001 ER PT J AU Yang, Y Field, KG Allen, TR Busby, JT AF Yang, Ying Field, Kevin G. Allen, Todd R. Busby, Jeremy T. TI Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe-Cr-Ni alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RADIATION-INDUCED SEGREGATION; 316 STAINLESS-STEELS; WT PCT NI; CONCENTRATED ALLOYS; MICROSTRUCTURAL EVOLUTION; THERMODYNAMIC FACTOR; STRUCTURAL-MATERIALS; INDUCED DEGRADATION; TRACER DIFFUSION; TERNARY ALLOYS AB This work presents a detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe-Cr-Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yang, Ying; Field, Kevin G.; Busby, Jeremy T.] Oak Ridge Natl Lab, Oak Ridge, TN 37832 USA. [Allen, Todd R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Yang, Y (reprint author), Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM yangying@ornl.gov; fieldkg@ornl.gov; todd.allen@inl.gov; busbyjt@ornl.gov RI Yang, Ying/E-5542-2017 OI Yang, Ying/0000-0001-6480-2254 FU US Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program [DE-AC05-00OR22725]; University of Tennessee-Battelle, LLC FX This research was sponsored by the US Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, under Contract DE-AC05-00OR22725 with University of Tennessee-Battelle, LLC. Discussions with Prof. Murch on the applicability of Manning's relationship in this study are also appreciated. NR 70 TC 1 Z9 1 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 35 EP 53 DI 10.1016/j.jnucmat.2016.02.007 PG 19 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700006 ER PT J AU Oh, JY Kim, YS Tahk, YW Kim, HJ Kong, EH Yim, JS AF Oh, Jae-Yong Kim, Yeon Soo Tahk, Young-Wook Kim, Hyun-Jung Kong, Eui-Hyun Yim, Jeong-Sik TI Modeling a failure criterion for U-Mo/Al dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE U-Mo/Al dispersion fuel; Interaction layer; Breakaway swelling; Pore; Fuel failure criterion ID AL; IRRADIATION; MATRIX AB The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance. (C) 2016 Elsevier B.V. All rights reserved. C1 [Oh, Jae-Yong; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik] Korea Atom Energy Res Inst, 111,Daedeok Daero 989 Beon Gil, Taejon 305353, South Korea. [Kim, Yeon Soo] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Oh, JY (reprint author), Korea Atom Energy Res Inst, 111,Daedeok Daero 989 Beon Gil, Taejon 305353, South Korea. EM tylor@kaeri.re.kr OI Oh, Jae-Yong/0000-0003-4905-9719 FU National Nuclear R&D Program through the National Research Foundation of Korea - MSIP; Ministry of Science ICT & Future Planning [NRF-2012M2C1A1026911] FX This research was supported by the National Nuclear R&D Program through the National Research Foundation of Korea funded by MSIP; Ministry of Science ICT & Future Planning (NRF-2012M2C1A1026911). The authors also wish to acknowledge the authors of the test data used in this study although they were available in the literature. NR 25 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 68 EP 74 DI 10.1016/j.jnucmat.2016.02.015 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700009 ER PT J AU Aitkaliyeva, A Madden, JW Papesch, CA Cole, JI AF Aitkaliyeva, Assel Madden, James W. Papesch, Cynthia A. Cole, James I. TI TEM identification of subsurface phases in ternary U-Pu-Zr fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Metallic fuel; Transmission electron microscopy (TEM); Electron diffraction ID RARE-EARTH-ELEMENTS; CONSTITUENT REDISTRIBUTION; METALLIC FUEL; FAST-REACTOR; SYSTEM; TEMPERATURE; IRRADIATION; URANIUM; ALLOY; AM AB Phases and microstructure in as-cast, annealed at 850 degrees C, and subsequently cooled U-23Pu-9Zr fuel were characterized using scanning and transmission electron microscopy techniques. SEM examination shows formation of three phases in the alloy that were identified in TEM using selective area diffraction pattern analysis: alpha-Zr globular and elongated delta-UZr2 inclusions and a thick oxide layer formed on top of beta-Pu phase, which has been initially assumed to be zeta-(U, Pu). However, further examination of the cross-sectional TEM specimens identified the matrix phases as delta-UZr2, beta-Pu, and (U, Zr)ht. Two types of inclusions were observed in the immediate vicinity of the specimen surface and they were consistent with alpha-Zr and zeta-(U, Pu). Published by Elsevier B.V. C1 [Aitkaliyeva, Assel; Madden, James W.; Papesch, Cynthia A.; Cole, James I.] Idaho Natl Lab, POB 1625,MS 6188, Idaho Falls, ID 83415 USA. RP Aitkaliyeva, A (reprint author), Idaho Natl Lab, POB 1625,MS 6188, Idaho Falls, ID 83415 USA. EM assel.aitkaliyeva@inl.gov OI Aitkaliyeva, Assel/0000-0003-1481-6804 FU U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-05ID14517]; Fuel Cycle Research and Development (FCRD) program of US Department of Energy and Nuclear Science User Facilities FX This work is supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517, as part of Fuel Cycle Research and Development (FCRD) program of US Department of Energy and Nuclear Science User Facilities. NR 19 TC 0 Z9 0 U1 7 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 75 EP 82 DI 10.1016/j.jnucmat.2016.02.022 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700010 ER PT J AU Lillo, TM van Rooyen, IJ AF Lillo, T. M. van Rooyen, I. J. TI Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE TRISO; SiC; Grain boundary character; Fission product transport ID STRUCTURE-ENERGY CORRELATION; COATED PARTICLES; AGR-1 EXPERIMENT; FCC METALS; SILICON-CARBIDE; AG TRANSPORT; SILVER; DIFFUSION; MICROSTRUCTURE; IDENTIFICATION AB In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lillo, T. M.] Idaho Natl Lab, Mat Sci & Engn Dept, Idaho Falls, ID 83415 USA. [van Rooyen, I. J.] Idaho Natl Lab, Fuel Performance & Design Dept, Idaho Falls, ID 83415 USA. RP Lillo, TM (reprint author), Idaho Natl Lab, Mat Sci & Engn Dept, Idaho Falls, ID 83415 USA. EM thomas.lillo@inl.gov RI Lilllo, Thomas/S-5031-2016 OI Lilllo, Thomas/0000-0002-7572-7883 FU U.S. Department of Energy, Office of Nuclear Energy, under U.S. Department of Energy Idaho Operations Office [DE-AC07-05ID14517]; Very High-Temperature Reactor Development Program; Advanced Test Reactor Nuclear Science User Facilities Experiment FX This work was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, under U.S. Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517, as part of the Very High-Temperature Reactor Development Program and as part of an Advanced Test Reactor Nuclear Science User Facilities Experiment. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Mary Lou Dunzik-Gougar is thanked for her review of this paper. NR 43 TC 0 Z9 0 U1 7 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 83 EP 92 DI 10.1016/j.jnucmat.2016.01.040 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700011 ER PT J AU Wylie, EM Peruski, KM Prizio, SE Bridges, ANA Rudisill, TS Hobbs, DT Phillip, WA Burns, PC AF Wylie, Ernest M. Peruski, Kathryn M. Prizio, Sarah E. Bridges, Andrea N. A. Rudisill, Tracy S. Hobbs, David T. Phillip, William A. Burns, Peter C. TI Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CAGE CLUSTERS; PUREX PROCESS; PEROXIDE; CHEMISTRY; SEPARATIONS; EXTRACTANT; POLYHEDRA; PHOSPHATE; ACTINIDES; WATER AB Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid-liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E.; Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Phillip, William A.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Bridges, Andrea N. A.; Rudisill, Tracy S.; Hobbs, David T.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Wylie, Ernest M.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. RP Burns, PC (reprint author), Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA.; Burns, PC (reprint author), Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. EM pburns@nd.edu OI Burns, Peter/0000-0002-2319-9628 FU Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontiers Research Center [DE-SC0001089] FX This research is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontiers Research Center (DE-SC0001089). Chemical analyses were conducted at the Center for Environmental Science and Technology and the Midwest Isotope and Trace Element Research Analytical Center at the University of Notre Dame. Raman spectra were collected at the Materials Characterization Facility of the Center for Sustainable Energy at the University of Notre Dame. NR 27 TC 4 Z9 4 U1 15 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 125 EP 130 DI 10.1016/j.jnucmat.2016.02.013 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700016 ER PT J AU Zecevic, M Knezevic, M Beyerlein, IJ McCabe, RJ AF Zecevic, Miroslav Knezevic, Marko Beyerlein, Irene J. McCabe, Rodney J. TI Texture formation in orthorhombic alpha-uranium under simple compression and rolling to high strains SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Uranium; Texture; Rolling; Dislocations; Twinning ID IMPLICIT FINITE-ELEMENTS; POLYCRYSTALLINE HCP/BCC COMPOSITES; SPECTRAL CRYSTAL PLASTICITY; X-RAY-DIFFRACTION; DEFORMATION-BEHAVIOR; DISLOCATION DENSITY; MECHANICAL RESPONSE; FAST COMPUTATION; ELASTIC MODULI; PATH CHANGES AB We study the mechanical response and texture evolution of alpha-uranium during simple compression and rolling at 573 K. In order to determine the underlying mechanisms governing plasticity and texture formation, we perform detailed characterizations using electron backscattered diffraction and constitutive modeling using a dislocation-density based hardening law within a visco-plastic self-consistent homogenization. We show that the model achieves good agreement with experimental measurements in terms of texture and stressestrain response. From detailed comparison of experimental and modeling results, we infer that in both through-thickness compression (TTC) and rolling at 573K, the active slip modes are floor slip (001)[100] and chimney slip 1/2{110}<1<(1)over bar>0> with slightly different ratios. However, {130}<3<(1)over bar>0> twinning is not active in TTC compression but profuse during rolling. Further analysis indicates that during rolling, floor slip (001)[100] results in the formation of two pronounced (001) texture peaks tilted 10-15 degrees away from the normal toward the rolling direction. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zecevic, Miroslav; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, 33 Acad,Kingsbury Hall,W119, Durham, NH 03824 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McCabe, Rodney J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Knezevic, M (reprint author), Univ New Hampshire, Dept Mech Engn, 33 Acad,Kingsbury Hall,W119, Durham, NH 03824 USA. EM marko.knezevic@unh.edu OI McCabe, Rodney /0000-0002-6684-7410 FU CEPS Graduate Fellowships program at the University of New Hampshire (UNH); Los Alamos National Laboratory [277871]; Laboratory Directed Research and Development grant [20140630ER] FX M. Z. acknowledges support from the CEPS Graduate Fellowships program at the University of New Hampshire (UNH). M. K. acknowledges subcontract, NO. 277871, granted by Los Alamos National Laboratory to UNH. I. J. B. and R. J. M. acknowledge support by a Laboratory Directed Research and Development grant 20140630ER. NR 75 TC 8 Z9 9 U1 4 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 143 EP 156 DI 10.1016/j.jnucmat.2016.02.021 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700019 ER PT J AU Carmack, WJ Chichester, HM Porter, DL Wootan, DW AF Carmack, W. J. Chichester, H. M. Porter, D. L. Wootan, D. W. TI Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Metallography; Fuel cladding chemical interaction; Irradiated fuel pins; MFF; FFTF ID PERFORMANCE; FFTF AB The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data. (C) 2016 Elsevier B.V. All rights reserved. C1 [Carmack, W. J.; Chichester, H. M.; Porter, D. L.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Wootan, D. W.] Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. RP Carmack, WJ (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM jon.carmack@inl.gov; heather.chichester@inl.gov; douglas.porter@inl.gov; david.wootan@pnnl.gov NR 15 TC 1 Z9 1 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 167 EP 177 DI 10.1016/j.jnucmat.2016.02.019 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700021 ER PT J AU Tumurugoti, P Sundaram, SK Misture, ST Marra, JC Amoroso, J AF Tumurugoti, Priyatham Sundaram, S. K. Misture, Scott T. Marra, James C. Amoroso, Jake TI Crystallization behavior during melt-processing of ceramic waste forms SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Waste form; Crystallization; DSC; XRD; Melt processing ID SYNROC-TYPE HOLLANDITES; IMMOBILIZATION; PHASE; ZIRCONIA; ACTINIDES; CHEMISTRY AB Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 degrees C and heat-treated at crystallization temperatures of 1285 degrees C and 1325 degrees C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 degrees C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 degrees C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2. Published by Elsevier B.V. C1 [Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.] Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Marra, James C.; Amoroso, Jake] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Amoroso, J (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM jake.amoroso@srs.gov FU U.S. Department of Energy [DE-AC09-08SR22470]; DOE-NE Materials Recovery and Waste Form Development program; Department of Energy (DOE), Nuclear Energy University Program (NEUP) [DE-AC07-05ID14517]; Kyocera Corporation in the form of Inamori Professorship FX This document was prepared in conjunction with work accomplished under Contract# DE-AC09-08SR22470 with the U.S. Department of Energy. The authors acknowledge gratefully the financial support of the DOE-NE Materials Recovery and Waste Form Development program including program support from James Bresee, Kimberly Gray, Terry Todd and John Vienna.; The authors acknowledge the financial support from the Department of Energy (DOE), Nuclear Energy University Program (NEUP) under Contract# DE-AC07-05ID14517. Acknowledgements are also due to Dr. Mirela Dragan for help in DSC, Gerry Wynick for WDS, and Swavek Zdzieszynski for HTXRD work. SKS acknowledges support from the Kyocera Corporation in the form of Inamori Professorship. NR 29 TC 1 Z9 1 U1 7 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 178 EP 188 DI 10.1016/j.jnucmat.2016.02.023 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700022 ER PT J AU Sarkar, A Eapen, J Raj, A Murty, KL Burchell, TD AF Sarkar, Apu Eapen, Jacob Raj, Anant Murty, K. L. Burchell, T. D. TI Modeling irradiation creep of graphite using rate theory SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Graphite; Creep; Irradiation; Activation energy ID POLYCRYSTALLINE GRAPHITE; TEMPERATURE-DEPENDENCE; NEUTRON-IRRADIATION; DEFECTS; BEHAVIOR; STRESS; MECHANISMS AB We have examined irradiation induced creep of graphite in the framework of transition state rate theory. Experimental data for two grades of nuclear graphite (H-337 and AGOT) have been analyzed to determine the stress exponent (n) and activation energy (Q) for plastic flow under irradiation. We show that the mean activation energy lies between 0.14 and 0.32 eV with a mean stress-exponent of 1.0 +/- 0.2. A stress exponent of unity and the unusually low activation energies strongly indicate a diffusive defect transport mechanism for neutron doses in the range of 3-4 x 10(22) n/cm(2). (C) 2016 Elsevier B.V. All rights reserved. C1 [Sarkar, Apu; Eapen, Jacob; Raj, Anant; Murty, K. L.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Burchell, T. D.] Oak Ridge Natl Lab, Fus Mat & Nucl Struct, Oak Ridge, TN 37831 USA. RP Eapen, J (reprint author), N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. EM jacob.eapen@ncsu.edu RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 FU Nuclear Energy University Program (NEUP) of Department of Energy (DoE) FX The authors gratefully acknowledge the financial support from the Nuclear Energy University Program (NEUP) of Department of Energy (DoE) for performing this research. NR 48 TC 0 Z9 0 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 197 EP 205 DI 10.1016/j.jnucmat.2016.01.036 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700024 ER PT J AU Chung, BW Erler, RG Teslich, NE AF Chung, Brandon W. Erler, Robert G. Teslich, Nick E. TI Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NUCLEAR FORENSIC INVESTIGATIONS; SCANNING-ELECTRON-MICROSCOPY; PLASMA-MASS SPECTROMETRY; HIGHLY ENRICHED URANIUM; AGE-DETERMINATION; ISOTOPIC COMPOSITION; FIB-SEM; PARTICLES; SCIENCE; PURIFICATION AB Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics. (C) 2016 Elsevier B.V. All rights reserved. C1 [Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RP Chung, BW (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM chung7@llnl.gov RI Chung, Brandon/G-2929-2012 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Homeland Security, Domestic Nuclear Detection Office FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work received partial support from the U.S. Department of Homeland Security, Domestic Nuclear Detection Office. This support does not constitute an expressed or implied endorsement on the part of the Government. NR 47 TC 1 Z9 1 U1 9 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 264 EP 271 DI 10.1016/j.jnucmat.2016.01.041 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700032 ER PT J AU Lee, SM Knight, TW McMurray, JW Besmann, TM AF Lee, Seung Min Knight, Travis W. McMurray, Jacob W. Besmann, Theodore M. TI Measurement of the oxygen partial pressure and thermodynamic modeling of the U-Nd-O system SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Solid solution; U-Nd-O; CALPHAD method; CEF model; Oxygen partial pressure (pO(2)); O/M ratio ID SOLID-SOLUTIONS; NUCLEAR-FUELS; OXIDE AB Fission products greatly impact the properties of fuel necessitating a thorough understanding of the thermochemical properties of oxide fuels with fission products. However, thermochemical data for the U-Nd-O system is insufficient even though neodymium is a major fission product. As neodymium will likely be present as a solute in UO2, this research focuses on the study of (U1-yNdy)O2-x. Experimental measurements and analyses of the oxygen partial pressure (pO(2))-temperature-oxygen to metal ratio (O/M ratio) relationships were performed using a thermogravimetric analyzer (TGA) and an oxygen analyzer. Thermodynamic computational modeling was performed using the CALPHAD (CALculation of PHAse Diagrams) method with the FactSage software. The Gibbs energy of the (U1-yNdy)O2-x solid solution was described by the compound energy formalism (CEF), which is based on earlier thermodynamic modeling data of the binary U-O system from Gueneau et al.. The thermodynamic and phase diagram data of the U-Nd-O system produced in this work show good agreement with the experimental data. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lee, Seung Min; Knight, Travis W.; Besmann, Theodore M.] Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. [McMurray, Jacob W.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Knight, TW (reprint author), Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. EM knighttw@cec.sc.edu OI McMurray, Jacob/0000-0001-5111-3054; Lee, Seung Min/0000-0002-4055-4708 FU Oak Ridge National Laboratory under the DOE Fuel Cycle R&D Program, Advanced Fuels Campaign [4000106191] FX The authors gratefully acknowledge support through a subcontract from the Oak Ridge National Laboratory (Subcontract 4000106191) under the DOE Fuel Cycle R&D Program, Advanced Fuels Campaign. NR 22 TC 0 Z9 0 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 272 EP 282 DI 10.1016/j.jnucmat.2016.02.024 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700033 ER PT J AU Mohanty, S Soppet, WK Majumdar, S Natesan, K AF Mohanty, Subhasish Soppet, William K. Majumdar, Saurindranath Natesan, Krishnamurti TI In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LIFE PREDICTION AB Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S similar to N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/ cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti] Argonne Natl Lab, Lemont, IL USA. RP Mohanty, S (reprint author), Argonne Natl Lab, Lemont, IL USA. EM smohanty@anl.gov; soppet@anl.gov; majumdar@anl.gov; natesan@anl.gov FU U.S. Department of Energy's Light Water Reactor Sustainability program FX This research was sponsored by the U.S. Department of Energy's Light Water Reactor Sustainability program under the work package of environmental fatigue study, program manager Dr Jeremy Busby. NR 14 TC 0 Z9 0 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 290 EP 299 DI 10.1016/j.jnucmat.2016.01.034 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700035 ER PT J AU Mei, ZG Liang, LY Kim, YS Wiencek, T O'Hare, E Yacout, AM Hofman, G Anitescu, M AF Mei, Zhi-Gang Liang, Linyun Kim, Yeon Soo Wiencek, Tom O'Hare, Edward Yacout, Abdellatif M. Hofman, Gerard Anitescu, Mihai TI Grain growth in U-7Mo alloy: A combined first-principles and phase field study SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; QUASI-RANDOM STRUCTURES; AUGMENTED-WAVE METHOD; COMPUTER-SIMULATION; MICROSTRUCTURE EVOLUTION; MODEL; RECRYSTALLIZATION; APPROXIMATION; URANIUM; FUEL AB Grain size is an important factor in controlling the swelling behavior in irradiated U-Mo dispersion fuels. Increasing the grain size in UeMo fuel particles by heat treatment is believed to delay the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase field modeling is used to investigate the grain growth behavior in U-7Mo alloy. The density functional theory based first-principles calculations were used to predict the material properties of U-7Mo alloy. The obtained grain boundary energies were then adopted as an input parameter for mesoscale phase field simulations. The effects of annealing temperature, annealing time and initial grain structures of fuel particles on the grain growth in U-7Mo alloy were examined. The predicted grain growth rate compares well with the empirical correlation derived from experiments. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo; Wiencek, Tom; O'Hare, Edward; Yacout, Abdellatif M.; Hofman, Gerard; Anitescu, Mihai] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Mei, ZG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zmei@anl.gov FU U.S. Department of Energy, National Nuclear Security Administration (NNSA), Office of Material Management and Minimization Reactor Conversion Program [NA-23]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA), Office of Material Management and Minimization (NA-23) Reactor Conversion Program. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 41 TC 1 Z9 1 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 300 EP 308 DI 10.1016/j.jnucmat.2016.01.027 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700036 ER PT J AU Burkes, DE Huber, TK Casella, AM AF Burkes, Douglas E. Huber, Tanja K. Casella, Andrew M. TI A model to predict thermal conductivity of irradiated U-Mo dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INTERACTION LAYER; MATRIX INTERACTION; PLATES AB Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uraniumemolybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/ Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Burkes, Douglas E.; Casella, Andrew M.] Pacific NW Natl Lab, Nucl Engn & Anal Grp, POB 999 MSIN K8-34, Richland, WA 99352 USA. [Huber, Tanja K.] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz, Lichtenbergstr 1, D-85748 Garching, Germany. RP Burkes, DE (reprint author), Pacific NW Natl Lab, Nucl Engn & Anal Grp, POB 999 MSIN K8-34, Richland, WA 99352 USA. EM Douglas.Burkes@pnnl.gov FU United States Department of Energy [DE-AC05-76RL01830]; National Nuclear Security Administration Office of Material Management and Minimization Reactor Conversion Program; agency of the United States Government FX The authors would like to acknowledge Dr. Walter Luscher for his review of the manuscript and helpful discussion. The authors would also like to acknowledge staff at Idaho National Laboratory, Technische Universitat Munchen, and Pacific Northwest National Laboratory involved in the experimental measurements used for comparison in the current work. This work was conducted at Pacific Northwest National Laboratory operated by Battelle for the United States Department of Energy under Contract DE-AC05-76RL01830. The work is in support of the National Nuclear Security Administration Office of Material Management and Minimization Reactor Conversion Program.; This paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 30 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 309 EP 319 DI 10.1016/j.jnucmat.2016.01.012 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700037 ER PT J AU Williams, BD Neeway, JJ Snyder, MMV Bowden, ME Amonette, JE Arey, BW Pierce, EM Brown, CF Qafoku, NP AF Williams, Benjamin D. Neeway, James J. Snyder, Michelle M. V. Bowden, Mark E. Amonette, James E. Arey, Bruce W. Pierce, Eric M. Brown, Christopher F. Qafoku, Nikolla P. TI Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Low-activity waste; Fluidized bed steam reformer; Feldspathoid minerals; Waste form leach test ID DISSOLUTION KINETICS; IMMOBILIZATION; PERRHENATE; SODALITE; GLASS; CERAMICS; DAMAGE; CONTAMINANTS; ZIRCONOLITE; BEHAVIOR AB Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created fromwaste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product. (C) 2016 Elsevier B.V. All rights reserved. C1 [Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Brown, Christopher F.; Qafoku, Nikolla P.] Pacific NW Natl Lab, POB 999,MSIN P7-54, Richland, WA 99352 USA. [Pierce, Eric M.] Oak Ridge Natl Lab, POB 2008,MS-6035,Room 372, Oak Ridge, TN 37831 USA. RP Williams, BD (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-54, Richland, WA 99352 USA. EM Benjamin.Williams@pnnl.gov; James.Neeway@pnnl.gov; Michelle.ValentaSnyder@pnnl.gov; Mark.Bowden@pnnl.gov; Jim.Amonette@pnnl.gov; Bruce.Arey@pnnl.gov; pierceem@ornl.gov; Christopher.Brown@pnnl.gov; Nik.Qafoku@pnnl.gov RI Pierce, Eric/G-1615-2011; OI Pierce, Eric/0000-0002-4951-1931; Neeway, Jim/0000-0001-7046-8408; Qafoku, Nikolla P./0000-0002-3258-5379 FU U.S. Department of Energy's Office of Biological and Environmental Research FX The authors would like to thank the management and the entire research team whose hard work and diligence contributed to the production of the data on which this article is based, including: Elsa Cordova, John Stephenson, Sara Strandquist, Denomy Dage, Cristian Iovin, Mike Lindberg, Dennese Smith, Mike Schweiger, Jesse Lang, Charlie Bonham, Mark Sweeney, and Isaac Carroll. The authors would also like to express their appreciation for the efforts of Carol Jansen and her colleagues at Savannah River National Laboratory. The research described in this paper was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA. NR 64 TC 0 Z9 0 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2016 VL 473 BP 320 EP 332 DI 10.1016/j.jnucmat.2015.12.023 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DI4SX UT WOS:000373490700038 ER PT J AU Tietz, F Raj, IA Ma, Q Baumann, S Mahmoud, A Hermann, RP AF Tietz, F. Raj, I. Arul Ma, Q. Baumann, S. Mahmoud, A. Hermann, R. P. TI Material properties of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Perovskites; Electrical conductivity; Thermal expansion; Oxygen permeation; Mossbauer spectroscopy ID OXIDE FUEL-CELLS; ANODE-SUPPORTED SOFCS; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; OXYGEN PERMEATION; CATHODES; MEMBRANES; LANI(FE)O-3; ELECTRODES; MICROSTRUCTURE AB An overview is presented on the variation of electrical conductivity, oxygen permeation, and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)(1-x)CoxO3 and LaNi0.5-xFexCo0.5O3, are presented after the powders had been sintered at 1100 degrees C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. The maximum DC electrical conductivity value of the perovskites at 800 degrees C was 1229 S cm(-1) for the composition LaCoO3 and the minimum was 91 S cm(-1) for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 degrees C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm(-2) min(-1) at 950 degrees C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2 x 10(-6) K-1 and 21.9 x 10(-6) K-1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. Fe-57 Mossbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials. (C) 2016 Elsevier Inc. All rights reserved. C1 [Tietz, F.; Ma, Q.; Baumann, S.] Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany. [Raj, I. Arul] Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India. [Mahmoud, A.; Hermann, R. P.] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. [Mahmoud, A.; Hermann, R. P.] JARA FIT, PGI, D-52425 Julich, Germany. [Hermann, R. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Mahmoud, A.] Univ Liege, Inst Chem B6, LCIS GreenMAT, Allee Chim 3, B-4000 Liege, Belgium. RP Tietz, F (reprint author), Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany. EM f.tietz@fz-juelich.de RI Hermann, Raphael/F-6257-2013; Baumann, Stefan/A-8791-2017; OI Hermann, Raphael/0000-0002-6138-5624; Baumann, Stefan/0000-0002-7302-7103; Tietz, Frank/0000-0002-3724-7627 FU European Union's Seventh Framework Program (FP7) [256730]; Forschungszentrum Julich; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX The research leading to these results received funding from the European Union's Seventh Framework Program (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement no. 256730. The authors thank colleagues at ZEA-3, Forschungszentrum Julich, for ICP-OES measurements, M. Ziegner (IEK-2, Forschungszentrum Julich) for XRD measurements, and Prof. F. Grandjean for helpful discussions. A. Mahmoud acknowledges Forschungszentrum Julich for an international postdoctoral grant. Work at Oak Ridge National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 42 TC 1 Z9 1 U1 15 U2 51 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD MAY PY 2016 VL 237 BP 183 EP 191 DI 10.1016/j.jssc.2016.01.024 PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DI7EE UT WOS:000373661100026 ER PT J AU Johnson, GE Gunaratne, D Laskin, J AF Johnson, Grant E. Gunaratne, Don Laskin, Julia TI Soft- and reactive landing of ions onto surfaces: Concepts and applications SO MASS SPECTROMETRY REVIEWS LA English DT Review DE soft landing; ion deposition; biomolecules; organics; organometallics; clusters; nanoparticles; mass selection; surface modification ID ASSEMBLED MONOLAYER SURFACES; MASS-SELECTED IONS; SIZE-SELECTED CLUSTERS; ENHANCED RAMAN-SPECTROSCOPY; MOLECULAR-DYNAMICS SIMULATIONS; SCANNING-TUNNELING-MICROSCOPY; IN-SITU GISAXS; LANDED PROTEIN VOLTAMMETRY; OPTICAL-ABSORPTION SPECTRA; FILTERED COBALT CLUSTERS AB Soft-and reactive landing of mass-selected ions is gaining attention as a promisng approach for the precisely-controlled preparation of materials on surfaces that are not amenable to deposition using conventional methods. A broad range of ionization sources and mass filters are available that make ion soft-landing a versatile tool for surface modification using beams of hyperthermal (<100eV) ions. The ability to select the mass-to-charge ratio of the ion, its kinetic energy and charge state, along with precise control of the size, shape, and position of the ion beam on the deposition target distinguishes ion soft landing from other surface modification techniques. Soft- and reactive landing have been used to prepare interfaces for practical applications as well as precisely-defined model surfaces for fundamental investigations in chemistry, physics, and materials science. For instance, soft- and reactive landing have been applied to study the surface chemistry of ions isolated in the gas-phase, prepare arrays of proteins for high-throughput biological screening, produce novel carbon-based and polymer materials, enrich the secondary structure of peptides and the chirality of organic molecules, immobilize electrochemically-active proteins and organometallics on electrodes, create thin films of complex molecules, and immobilize catalytically active organometallics as well as ligated metal clusters. In addition, soft landing has enabled investigation of the size-dependent behavior of bare metal clusters in the critical subnanometer size regime where chemical and physical properties do not scale predictably with size. The morphology, aggregation, and immobilization of larger bare metal nanoparticles, which are directly relevant to the design of catalysts as well as improved memory and electronic devices, have also been studied using ion soft landing. This review article begins in section 1 with a brief introduction to the existing applications of ion soft- and reactive landing. Section 2 provides an overview of the ionization sources and mass filters that have been used to date for soft landing of mass-selected ions. A discussion of the competing processes that occur during ion deposition as well as the types of ions and surfaces that have been investigated follows in section 3. Section 4 discusses the physical phenomena that occur during and after ion soft landing, including retention and reduction of ionic charge along with factors that impact the efficiency of ion deposition. The influence of soft landing on the secondary structure and biological activity of complex ions is addressed in section 5. Lastly, an overview of the structure and mobility as well as the catalytic, optical, magnetic, and redox properties of bare ionic clusters and nanoparticles deposited onto surfaces is presented in section 6. (c) 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:439-479, 2016. C1 [Johnson, Grant E.; Gunaratne, Don; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. RP Johnson, GE; Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Grant.Johnson@pnnl.gov; Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 NR 347 TC 9 Z9 9 U1 29 U2 92 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0277-7037 EI 1098-2787 J9 MASS SPECTROM REV JI Mass Spectrom. Rev. PD MAY-JUN PY 2016 VL 35 IS 3 BP 439 EP 479 DI 10.1002/mas.21451 PG 41 WC Spectroscopy SC Spectroscopy GA DI8EJ UT WOS:000373733800004 PM 25880894 ER PT J AU Schwartz, C Nordlund, D Weng, TC Sokaras, D Mansfield, L Krishnapriyan, AS Ramanathan, K Hurst, KE Prendergast, D Christensen, ST AF Schwartz, Craig Nordlund, Dennis Weng, Tsu-Chien Sokaras, Dimosthenis Mansfield, Lorelle Krishnapriyan, Aditi S. Ramanathan, Kannan Hurst, Katherine E. Prendergast, David Christensen, Steven T. TI Electronic structure study of the CdS buffer layer in CIGS solar cells by X-ray absorption spectroscopy: Experiment and theory SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE CIGS; CdS; NEXAFS; XANES; XAS; Sulfur K edge ID FILM; DEPOSITION; STABILITY; CHEMISTRY; PRECURSOR; CRYSTAL; SPECTRA; SULFUR AB A systematic investigation of the electronic structure of the CdS buffer layer of CIGS solar cells has been undertaken using S K-edge X-ray absorption spectroscopy (XAS), both experimentally and theoretically. We found from XAS that growing CdS films by chemical bath deposition (CBD) exhibits more long-range disorder when compared to single crystal CdS, CdS grown by atomic layer deposition (ALD) and theory. We investigated the significance of a variety of point defects and potential atomic substitutions in first principles estimates of the differential S K-edge XAS sensitivity. We find that substituting some sulfur atoms with e.g. oxygen or selenium does not introduce significant changes to the partial S(3p) density of states of the conduction band in CdS and we infer that the electronic structure modifications of these defects are spatially localized and do not hybridize strongly with bands with significant sulfur p character. Moreover, by comparison with experimental XAS should be sensitive to CdSO4; however this is not in the CdS layers of CIGS devices studied here. We also find that the CBD of CdS on FTO-glass and separately on CIGS does not produce any significant changes in the local atomic structure of CdS indicating no CIGS-influenced growth. (C) 2016 Elsevier B.V. All rights reserved. C1 [Schwartz, Craig; Nordlund, Dennis; Weng, Tsu-Chien; Sokaras, Dimosthenis; Krishnapriyan, Aditi S.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Schwartz, Craig; Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Weng, Tsu-Chien] Ctr High Pressure Sci & Technol Adv Res, 6-408,1690 Cailun Rd, Shanghai 201203, Peoples R China. [Mansfield, Lorelle; Ramanathan, Kannan; Hurst, Katherine E.; Christensen, Steven T.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Christensen, ST (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-05CH11231, DE-AC36-08-GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Solar Energy Technology Office BRIDGE program FX The Stanford Synchrotron Radiation Lightsource and Molecular Foundry are National User Facilities operated by Stanford University and the University of California Berkeley for the U.S. Department of Energy, grants DE-AC02-76SF00515 and DE-AC02-05CH11231 respectively. The Molecular Foundry portion of this work was performed under a user proposal. The work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The project was supported by U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Solar Energy Technology Office BRIDGE program. We would like to thank Erik Nelson and Matthew Lattimer for their excellent beamline support. NR 48 TC 2 Z9 2 U1 15 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2016 VL 149 BP 275 EP 283 DI 10.1016/j.solmat.2016.01.043 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DI5LG UT WOS:000373539900036 ER PT J AU Phatak, C de Knoop, L Houdellier, F Gatel, C Hytch, MJ Masseboeuf, A AF Phatak, C. de Knoop, L. Houdellier, F. Gatel, C. Hytch, M. J. Masseboeuf, A. TI Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection SO ULTRAMICROSCOPY LA English DT Article DE 3D electromagnetic fields; 1D nanostructures; Phase reconstruction; Transmission electron microscopy ID ONE-DIMENSIONAL NANOSTRUCTURES; MAGNETIC DOMAIN-WALL; ELECTRON HOLOGRAPHY; CARBON NANOTUBE; NANOWIRES; EMITTERS; ARRAYS AB One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. (C) 2016 Elsevier B.V. All rights reserved. C1 [Phatak, C.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [de Knoop, L.; Houdellier, F.; Gatel, C.; Hytch, M. J.; Masseboeuf, A.] CNRS, CEMES, 29 Rue Jeanne Marvig, F-31055 Toulouse, France. [de Knoop, L.; Houdellier, F.; Gatel, C.] Univ Toulouse 3, F-31000 Toulouse, France. RP Phatak, C (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cd@anl.gov RI Gatel, Christophe/F-6046-2014; OI Gatel, Christophe/0000-0001-5549-7008; Masseboeuf, Aurelien/0000-0003-4239-1313 FU U.S. Department of Energy (DOE), Office of Science, Materials Sciences and Engineering Division; French national project EMMA [ANR12 BS10 013 01]; European Union [312483-ESTEEM2]; French National Research Agency [ANR-10-EQPX-38-01]; Conseil Regional Midi-Pyrenees; European FEDER; Universite Paul Sabatier FX Work by C.P. was supported by the U.S. Department of Energy (DOE), Office of Science, Materials Sciences and Engineering Division. A.M. and C.G are supported by the French national project EMMA (ANR12 BS10 013 01). A.M., C.G., L.K. and M.H. acknowledge the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2 as well as the French National Research Agency under the "Investissement d'Avenir" Program reference no. ANR-10-EQPX-38-01 and the "Conseil Regional Midi-Pyrenees" and the European FEDER for financial support within the CPER program. A.M. and C.P. acknowledge support by Universite Paul Sabatier (APC programme) for funding the venue of C.P. at CEMES laboratory. NR 42 TC 0 Z9 0 U1 6 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAY PY 2016 VL 164 BP 24 EP 30 DI 10.1016/j.ultramic.2016.03.005 PG 7 WC Microscopy SC Microscopy GA DI5GF UT WOS:000373526200004 PM 26998702 ER PT J AU Bersani, M Paduano, A Favaro, M Koshy, P Sorrell, CC Martucci, A Granozzi, G AF Bersani, Marco Paduano, Andrea Favaro, Marco Koshy, Pramod Sorrell, Charles C. Martucci, Alessandro Granozzi, Gaetano TI Preparation of high-porosity TiOxCy powders from a single templating carbon source SO CERAMICS INTERNATIONAL LA English DT Article DE Powders; Surfaces; Carbides ID TITANIUM CARBIDE CERAMICS; CARBOTHERMAL REDUCTION; PHASE EVOLUTION; THIN-FILMS; SOL-GEL; TIO2; TEMPERATURE; DIFFUSION; KINETICS; SUPPORTS AB TiOxCy powders with tunable composition and high specific surface areas have been synthesized by impregnation of porous carbon black with titanium isopropoxide and firing in argon at 1400 degrees C. The compositional ratio of the individual ions can be controlled over a broad compositional range by tuning the stoichiometric ratio of the initial reactants. The resultant powders show no detectable oxide or carbonaceous impurity phases. The powders retain artefacts of the porosity of the templating carbon and yield specific surface areas as high as 108 m(2) g(-1), which makes them useful in catalytic/electrocatalytic applications. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Bersani, Marco; Paduano, Andrea; Martucci, Alessandro] Univ Padua, Dipartimento Ingn Ind, Via Marzolo 9, I-35131 Padua, Italy. [Favaro, Marco; Granozzi, Gaetano] Univ Padua, Dipartimento Sci Chim, Via Marzolo 1, I-35131 Padua, Italy. [Koshy, Pramod; Sorrell, Charles C.] UNSW Australia, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Bersani, Marco] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. [Favaro, Marco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, JCAP, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Martucci, A (reprint author), Univ Padua, Dipartimento Ingn Ind, Via Marzolo 9, I-35131 Padua, Italy. EM alex.martucci@unipd.it OI gaetano, granozzi/0000-0002-9509-6142; Martucci, Alessandro/0000-0001-9601-8640 FU European Union Seventh Framework Program support via the EU project DECORE [309741, FP7-NMP-2012-SMALL-6]; UNSW Australia FX The authors acknowledge the European Union Seventh Framework Program support via the EU project DECORE (Project 309741) under Contract no. FP7-NMP-2012-SMALL-6 for Research and Technological Development. A. Martucci wishes to thanks UNSW Australia for supporting him through a Faculty of Science Visiting Research Fellowship. The authors also would like to acknowledge access to the UNSW node of the Australian Microscopy & Microanalysis Research Facility (AMMRF). NR 36 TC 0 Z9 0 U1 1 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD MAY 1 PY 2016 VL 42 IS 6 BP 7690 EP 7696 DI 10.1016/j.ceramint.2016.01.183 PG 7 WC Materials Science, Ceramics SC Materials Science GA DH3GR UT WOS:000372676000139 ER PT J AU Lim, H Dingreville, R Deibler, LA Buchheit, TE Battaile, CC AF Lim, Hojun Dingreville, Remi Deibler, Lisa A. Buchheit, Thomas E. Battaile, Corbett C. TI Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Crystal plasticity; Microstructure; Finite elements; Variability; Tantalum ID STRAIN-RATE DEPENDENCE; CENTERED-CUBIC METALS; FLOW-STRESS; SINGLE-CRYSTALS; ELASTIC PROPERTIES; DEFORMATION; POLYCRYSTALS; TEMPERATURE; MODELS; CLOSURES AB In this work, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions. Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2-7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress-strain response of polycrystals that can be attributed to the grain-scale microstructural variability. This work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations. Published by Elsevier B.V. C1 [Lim, Hojun; Battaile, Corbett C.] Sandia Natl Labs, Computat Mat & Data Sci, POB 5800, Albuquerque, NM 87185 USA. [Dingreville, Remi; Buchheit, Thomas E.] Sandia Natl Labs, Struct & Thermal Anal, Albuquerque, NM 87185 USA. [Deibler, Lisa A.] Sandia Natl Labs, Mat Characterizat & Performance, Albuquerque, NM 87185 USA. RP Lim, H (reprint author), Sandia Natl Labs, Computat Mat & Data Sci, POB 5800, Albuquerque, NM 87185 USA. EM hnlim@sandia.gov OI Dingreville, Remi/0000-0003-1613-695X FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Tyler Payton and Torn Crenshaw for mechanical testing support and Joe Bishop for the helpful discussions. Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 55 TC 4 Z9 4 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAY PY 2016 VL 117 BP 437 EP 444 DI 10.1016/j.commatsci.2016.02.022 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA DI0OY UT WOS:000373197900053 ER PT J AU Obert, J Pivkina, I Huang, H Cao, HP AF Obert, James Pivkina, Inna Huang, Hong Cao, Huiping TI Proactively applied encryption in multipath networks SO COMPUTERS & SECURITY LA English DT Article DE Multipath security; Information assurance; Anomaly detection; Intrusion detection; Data encryption AB In providing data privacy on multipath networks, it is important to conserve bandwidth by ensuring that only the necessary level of encryption is applied to each path. This is achieved by dispersing data along multiple secure paths in such a way that the highest encryption level is applied to those paths where threats are most likely to be present. Conversely, for those paths where the likelihood of attack is least, the encryption levels should be commensurately lower. In order to maintain data privacy, path encryption level adjustments should be proactive. In so doing, the multipath network should have the ability to calculate the probability of an attack and proactively adjust the encryption strength long before the final steps of an attack sequence occur. The unique methods described in this research, are able to sense when an attack sequence is initiated on a path. This is achieved by calculating the probability of the presence of specific attack sequence signatures along each network path using statistical learning techniques, and by deriving path information assurance levels using these probabilities. As an attack sequence progresses, the likelihood of the presence of specific attacks grows until a threshold level is met and an encryption adjustment for a path is warranted. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Obert, James] Sandia Natl Labs, Cyber R&D Solut, POB 5800, Albuquerque, NM 87185 USA. [Pivkina, Inna; Huang, Hong; Cao, Huiping] New Mexico State Univ, Dept Comp Sci, Las Cruces, NM 88003 USA. [Pivkina, Inna; Huang, Hong; Cao, Huiping] New Mexico State Univ, Dept Elect Engn, Las Cruces, NM 88003 USA. RP Obert, J (reprint author), Sandia Natl Labs, Cyber R&D Solut, POB 5800, Albuquerque, NM 87185 USA. EM jobert@sandia.gov OI Obert, James/0000-0001-5066-1745 NR 20 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0167-4048 EI 1872-6208 J9 COMPUT SECUR JI Comput. Secur. PD MAY PY 2016 VL 58 BP 106 EP 124 DI 10.1016/j.cose.2015.12.003 PG 19 WC Computer Science, Information Systems SC Computer Science GA DH4OF UT WOS:000372764600007 ER PT J AU Levine, J Kwon, E Paez, P Yan, WH Czerwieniec, G Loo, JA Sofroniew, MV Wanner, IB AF Levine, Jaclynn Kwon, Eunice Paez, Pablo Yan, Weihong Czerwieniec, Gregg Loo, Joseph A. Sofroniew, Michael V. Wanner, Ina-Beate TI Traumatically injured astrocytes release a proteomic signature modulated by STAT3-dependent cell survival SO GLIA LA English DT Article DE trauma; proteome; astrocyte; mechanoporation; biomarker ID FIBRILLARY ACIDIC PROTEIN; SPINAL-CORD-INJURY; ALPHA-B-CRYSTALLIN; STRETCH-INDUCED INJURY; IN-VITRO TRAUMA; BRAIN-INJURY; WHITE-MATTER; CULTURED ASTROCYTES; CEREBROSPINAL-FLUID; CEREBRAL CONTUSION AB Molecular markers associated with CNS injury are of diagnostic interest. Mechanical trauma generates cellular deformation associated with membrane permeability with unknown molecular consequences. We used an in vitro model of stretch-injury and proteomic analyses to determine protein changes in murine astrocytes and their surrounding fluids. Abrupt pressure-pulse stretching resulted in the rapid release of 59 astrocytic proteins with profiles reflecting cell injury and cell death, i.e., mechanoporation and cell lysis. This acute trauma-release proteome was overrepresented with metabolic proteins compared with the uninjured cellular proteome, bearing relevance for post-traumatic metabolic depression. Astrocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3-CKO) resulted in reduced stretch-injury tolerance, elevated necrosis and increased protein release. Consistent with more lysed cells, more protein complexes, nuclear and transport proteins were released from STAT3-CKO versus nontransgenic astrocytes. STAT3-CKO astrocytes had reduced basal expression of GFAP, lactate dehydrogenase B (LDHB), aldolase C (ALDOC), and astrocytic phosphoprotein 15 (PEA15), and elevated levels of tropomyosin (TPM4) and actinin 4 (ACTN4). Stretching caused STAT3-dependent cellular depletion of PEA15 and GFAP, and its filament disassembly in subpopulations of injured astrocytes. PEA15 and ALDOC signals were low in injured astrocytes acutely after mouse spinal cord crush injury and were robustly expressed in reactive astrocytes 1 day postinjury. In contrast, crystallin (CRYAB) was present in acutely injured astrocytes, and absent from uninjured and reactive astrocytes, demonstrating novel marker differences among postinjury astrocytes. These findings reveal a proteomic signature of traumatically-injured astrocytes reflecting STAT3-dependent cellular survival with potential diagnostic value. GLIA 2016;64:668-694 C1 [Levine, Jaclynn; Kwon, Eunice; Wanner, Ina-Beate] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Paez, Pablo] SUNY Buffalo, Dept Pharmacol & Toxicol, Hunter James Kelly Res Inst, Sch Med & Biomed Sci,NYS Ctr Excellence, Buffalo, NY 14260 USA. [Yan, Weihong; Czerwieniec, Gregg; Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA. [Loo, Joseph A.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA. [Loo, Joseph A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Proteom, Los Angeles, CA USA. [Sofroniew, Michael V.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurobiol, Los Angeles, CA 90095 USA. RP Wanner, IB (reprint author), Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, 635 Charles E Young Dr South,NRB 260, Los Angeles, CA 90095 USA. EM iwanner@mednet.ucla.edu FU NIH [1R21NS072606, R01NS057624, R01GM104610]; Craig H. Neilsen Foundation [82776]; Dr. Miriam and Sheldon Adelson Medical Research Foundation FX Grant sponsor: NIH; Grant number: 1R21NS072606 to IBW; R01NS057624 to MVS; and R01GM104610 to JAL; Grant sponsor: Craig H. Neilsen Foundation (82776 to IBW).; Grant sponsor: Dr. Miriam and Sheldon Adelson Medical Research Foundation (to MVS). NR 91 TC 1 Z9 1 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0894-1491 EI 1098-1136 J9 GLIA JI Glia PD MAY PY 2016 VL 64 IS 5 BP 668 EP 694 DI 10.1002/glia.22953 PG 27 WC Neurosciences SC Neurosciences & Neurology GA DI0OR UT WOS:000373197000002 PM 26683444 ER PT J AU McManamay, RA Jett, RT Ryon, MG Gregory, SM Stratton, SH Peterson, MJ AF McManamay, Ryan A. Jett, Robert T. Ryon, Michael G. Gregory, Scott M. Stratton, Sally H. Peterson, Mark J. TI Dispersal limitations on fish community recovery following long-term water quality remediation SO HYDROBIOLOGIA LA English DT Article DE Stream fragmentation; Restoration ecology; Culvert; Fish passage; Habitat patches; Connectivity ID LIFE-HISTORY STRATEGIES; LONGITUDINAL CONNECTIVITY; FRAGMENTED LANDSCAPES; POPULATION REGULATION; HABITAT RESTORATION; UNITED-STATES; RIVER-BASIN; DAM REMOVAL; STREAMS; FRAMEWORK AB In-stream barriers may impose constraints on the ecological effectiveness of restoration strategies by limiting colonization. We assessed the importance of dispersal limitations to fish community recovery following long-term pollution abatement, water quality remediation, and species introductions within the White Oak Creek watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness, biomass, and community composition to water quality remediation were evaluated in light of physical barriers (culverts and weirs). We found that barriers to dispersal were potentially limiting fish community recovery by preventing colonization by introduced species and seasonal migrants. Changes in richness were negatively related to barrier index, a measure of the degree of isolation by barriers. Following introductions, upstream passage for six fish species above non-passable barriers was not observed. Highly isolated sites were dominated by a few equilibrium species, whereas less isolated sites showed more variation in life history strategies with increasing periodic and opportunistic strategists. The importance of barriers on community dynamics decreased over time-an indication of increasing community stability, homogenization of fauna, and improved water quality. However, isolating the role of dispersal limitation was complicated by multiple interacting stressors, such as the compounding effects of barriers and pervasive water quality conditions. C1 [McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; Gregory, Scott M.; Stratton, Sally H.; Peterson, Mark J.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008 MS6351, Oak Ridge, TN 37831 USA. RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008 MS6351, Oak Ridge, TN 37831 USA. EM mcmanamayra@ornl.gov FU ORNL Environmental Protection Services Division's Water Quality Programs; Oak Ridge National Laboratory, UT-Battelle, LLC [DE-AC05-00OR22725]; Department of Energy; DOE Public Access Plan FX This research was sponsored by the ORNL Environmental Protection Services Division's Water Quality Programs. This paper has been authored by employees of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government's purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). Special thanks to John Smith and two anonymous reviewers for providing comments and editorial suggestions that improved this manuscript. We are also grateful to Diedre Tharpe for providing access to surface water monitoring data. NR 58 TC 0 Z9 0 U1 17 U2 47 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0018-8158 EI 1573-5117 J9 HYDROBIOLOGIA JI Hydrobiologia PD MAY PY 2016 VL 771 IS 1 BP 45 EP 65 DI 10.1007/s10750-015-2612-7 PG 21 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA DH5AY UT WOS:000372798500005 ER PT J AU Hasanbeigi, A Harrell, G Schreck, B Monga, P AF Hasanbeigi, Ali Harrell, Greg Schreck, Bettina Monga, Pradeep TI Moving beyond equipment and to systems optimization: techno-economic analysis of energy efficiency potentials in industrial steam systems in China SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Industrial steam system; Energy efficiency; Energy efficiency cost curve; Emissions reduction AB The industrial sector dominates China's total energy consumption, accounting for about 70% of primary energy use and 72% of country's CO2 emissions in 2012. On average, industrial steam systems account for around 30% of manufacturing industry energy use worldwide. The goal of this study is to develop and apply a steam system energy efficiency cost curve modeling framework to quantify the energy saving potential and associated costs of implementation of an array of steam system optimization measures on coal-fired boilers and steam systems in China's industrial sector. This study found that total cost-effective (i.e. the cost of saving a unit of energy is lower than purchasing a unit of energy) and technically feasible fuel savings potential in industrial coal-fired steam systems in China in 2012 was 1687 PJ and 2047 PJ, respectively. These account for 23% and 28% of the total fuel used in industrial coal-fired steam systems in China in that year, respectively. The CO2 emission reduction potential associated with the cost-effective and total technical potential is equal to 165.82 MtCO(2) and 201.23 MtCO(2), respectively. By comparison, the calculated technical fuel saving potential for industrial coal-fired steam systems in China is approximately 9% of the total coal plus coke used in Chinese manufacturing in 2012. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, China Energy Grp, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Harrell, Greg] Energy Management Serv, Jefferson City, TN USA. [Schreck, Bettina; Monga, Pradeep] United Nations Ind Dev Org, Vienna, Austria. RP Hasanbeigi, A (reprint author), 1 Cyclotron Rd,MS 90R2121, Berkeley, CA 94720 USA. EM AHasanbeigi@lbl.gov NR 14 TC 3 Z9 3 U1 3 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD MAY 1 PY 2016 VL 120 BP 53 EP 63 DI 10.1016/j.jclepro.2016.02.023 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DH3MK UT WOS:000372690900006 ER PT J AU Le, PS Fratini, E Ito, K Wang, Z Mamontov, E Baglioni, P Chen, SH AF Le, Peisi Fratini, Emiliano Ito, Kanae Wang, Zhe Mamontov, Eugene Baglioni, Piero Chen, Sow-Hsin TI Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Water dynamics; Porous material; Quasi-elastic neutron scattering; Calcium-silicate-hydrate; Magnesium-silicate-hydrate ID ELASTIC NEUTRON-SCATTERING; SMALL-ANGLE NEUTRON; C-S-H; PORTLAND-CEMENT PASTES; TRICALCIUM SILICATE; SUPERCOOLED WATER; SURFACE-AREA; MICROSTRUCTURE; MODEL; TRANSITION AB Hypothesis: The mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. Experiments: We investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. We measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. Findings: Structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes. (C) 2016 Elsevier Inc. All rights reserved. C1 [Le, Peisi; Ito, Kanae; Wang, Zhe; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Fratini, Emiliano; Baglioni, Piero] Univ Florence, Dept Chem Ugo Schiff, I-50019 Florence, Italy. [Fratini, Emiliano; Baglioni, Piero] Univ Florence, CSGI, I-50019 Florence, Italy. [Mamontov, Eugene] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM lepeisi@mit.edu; fratini@csgi.unifi.it; kanae@mit.edu; zwang10@mit.edu; mamontove@ornl.gov; baglioni@csgi.unifi.it; sowhsin@mit.edu RI Mamontov, Eugene/Q-1003-2015; Baglioni, Piero/B-1208-2011; OI Mamontov, Eugene/0000-0002-5684-2675; Baglioni, Piero/0000-0003-1312-8700; Wang, Zhe/0000-0003-4103-0751 FU U.S. DOE grant [DE-FG02-90ER45429]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI); MIUR FX The research at MIT was supported by U.S. DOE grant DE-FG02-90ER45429. The neutron scattering experiments at SNS, ORNL were supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. E.F. and P.B. acknowledge financial support from Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) and MIUR. P. L. thanks Prof. H. Li for providing the C-S-H QENS data and Dr. W.-S. Chiang for her insight on cement structures. NR 46 TC 1 Z9 1 U1 9 U2 31 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 EI 1095-7103 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 1 PY 2016 VL 469 BP 157 EP 163 DI 10.1016/j.jcis.2016.01.071 PG 7 WC Chemistry, Physical SC Chemistry GA DH4OX UT WOS:000372766400020 PM 26874981 ER PT J AU Qin, J Li, JY Lee, V Jaeger, H de Pablo, JJ Freed, KF AF Qin, Jian Li, Jiyuan Lee, Victor Jaeger, Heinrich de Pablo, Juan J. Freed, Karl F. TI A theory of interactions between polarizable dielectric spheres SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Polarization; Dielectrics; Image method; Particulate aggregate ID CHARGES; PLANETESIMALS; CONTINUUM AB Surface charging or polarization can strongly affect the nature of interactions between charged dielectric objects, particularly when sharp dielectric discontinuities are involved. By relying on a generalized image method, we derive an analytical, perturbative theory of the polarization and the interactions between charged particles in many-body systems. The validity and accuracy of the theory are established by comparing its predictions to full-blown numerical solutions. The importance of polarizability is then demonstrated for clusters of dielectric spheres, as well as a periodic crystal of charged dielectric spheres arranged into a NaCl-type lattice. The analytical framework for understanding the consequences of polarization will enable molecular simulations of large systems of polarizable particles. (C) 2016 Elsevier Inc. All rights reserved. C1 [Qin, Jian; Li, Jiyuan; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Qin, Jian; de Pablo, Juan J.] Argonne Natl Lab, Lemont, IL 60439 USA. [Qin, Jian] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Lee, Victor; Jaeger, Heinrich] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lee, Victor; Jaeger, Heinrich; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Freed, Karl F.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. RP Qin, J; de Pablo, JJ (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM jianq@stanford.edu; depablo@uchicago.edu; freed@uchicago.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering at Argonne National Laboratory [DE-AC02-06CH11357, DOE-SC0008631]; NSF [DMR-1309611] FX We acknowledge the support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering at Argonne National Laboratory under Contract No. DE-AC02-06CH11357 (JQ and JJdP), and under Award DOE-SC0008631 (KFF), and acknowledge the support by NSF DMR-1309611 (VL and HJ). The research project was formulated by KFF, JdP and HJ, the theory was formulated by JQ and KFF, the calculations were performed by JQ JL, VL and KFF, and the manuscript was prepared by JQ KFF and JdP. We are grateful to Erik Luijten for helpful discussions. NR 24 TC 5 Z9 5 U1 9 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 EI 1095-7103 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 1 PY 2016 VL 469 BP 237 EP 241 DI 10.1016/j.jcis.2016.02.033 PG 5 WC Chemistry, Physical SC Chemistry GA DH4OX UT WOS:000372766400030 PM 26896771 ER PT J AU Almeida, S Chavez, JJ Zhou, XW Zubia, D AF Almeida, S. Chavez, J. J. Zhou, X. W. Zubia, D. TI Effect of substrate orientation on CdS homoepitaxy by molecular dynamics SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Molecular dynamics; Defects; Single crystal growth; Homoepitaxy growth; Cadmium sulfide ID SOLAR-CELLS; NANOWIRE ARRAYS; THIN-FILMS; FABRICATION; HETEROSTRUCTURES; DEPOSITION; EFFICIENCY; TEMPLATES; GROWTH AB CdS homoepitaxy growth was performed by molecular dynamics using different substrate orientations and structures in order to analyze the CdS crystallinity. As anticipated from thermodynamics of homoepitaxy, highly crystalline films with only point defects were obtained on substrates with rectangular surface geometries, including [11 (2) over bar] zinc blende (ZB), [10 (1) over bar0] wurtzite (WZ), [11 (2) over bar0] WZ, [110] ZB, [010] ZB, and [1/10 1 1/10] ZB. In contrast, films grown on substrates with hexagonal surface geometries, corresponding to the [0001] WZ and [111] ZB growth directions, showed structures with a large number of defects including; anti-sites, vacancies, stacking faults, twinning, and polytypism. WZ and ZB transitions and grain boundaries are identified using a lattice identification algorithm and represented graphically in a structural map. A dislocation analysis was performed to detect, identify, and quantify linear defects within the atomistic data. Systematic simulations using different temperatures, deposition rates, and substrate polarities were perform to analyze the trends of dislocation densities on [0001] WZ direction and showed persistent polytypism. The polytypism observed in the films grown on the substrates with hexagonal surface geometry is attributed to the similar formation energies of the WZ and ZB phases. (C) 2016 Elsevier B.V. All rights reserved. C1 [Almeida, S.; Chavez, J. J.; Zubia, D.] Univ Texas El Paso, Dept Elect & Comp Engn, El Paso, TX 79968 USA. [Zhou, X. W.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Almeida, S (reprint author), Univ Texas El Paso, Dept Elect & Comp Engn, El Paso, TX 79968 USA. EM sfalmeida@utep.edu FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Energy through the BRIDGE program [DE-EE0005958]; Extreme Science and Engineering Discovery Environment (XSEDE) - National Science Foundation [ACI-1053575] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by the Department of Energy through the BRIDGE program (DE-EE0005958) and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant number ACI-1053575. NR 35 TC 2 Z9 2 U1 5 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 1 PY 2016 VL 441 BP 89 EP 94 DI 10.1016/j.jcrysgro.2016.02.006 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA DH4FT UT WOS:000372741600014 ER PT J AU Hanai, R Littlewood, PB Ohashi, Y AF Hanai, R. Littlewood, P. B. Ohashi, Y. TI Non-equilibrium Properties of a Pumped-Decaying Bose-Condensed Electron-Hole Gas in the BCS-BEC Crossover Region SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT International Symposium on Quantum Fluids and Solids (QFS) CY AUG 09-15, 2015 CL Niagara Falls Convention Ctr, Niagara Falls, NY SP Int Union Pure & Appl Phys, US Natl Sci Fdn HO Niagara Falls Convention Ctr DE Electron-hole mixture; Exciton condensate; Non-equilibrium; BCS-BEC crossover ID EINSTEIN CONDENSATION; EXCITONS; SEMICONDUCTORS AB We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state. C1 [Hanai, R.; Ohashi, Y.] Keio Univ, Dept Phys, Kohoku Ku, 3-4-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. [Littlewood, P. B.] Argonne Natl Lab, Phys Sci & Engn, Argonne, IL 60439 USA. [Littlewood, P. B.] Univ Chicago, James Frank Inst, Chicago, IL 60637 USA. RP Hanai, R (reprint author), Keio Univ, Dept Phys, Kohoku Ku, 3-4-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. EM rhanai@rk.phys.keio.ac.jp RI Littlewood, Peter/B-7746-2008 FU KiPAS project in Keio University; MEXT; JSPS in Japan [25400418, 15H00840]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank M. Yamaguchi, R. Okuyama, D. Inotani, H. Tajima, and A. Edelman for useful discussions. RH was supported by a Grand-in-Aid for JSPS fellows. This work was supported by KiPAS project in Keio University. YO was also supported by Grant-in-Aid for Scientific research from MEXT and JSPS in Japan (25400418, 15H00840). Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 25 TC 1 Z9 1 U1 3 U2 15 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2016 VL 183 IS 3-4 BP 127 EP 135 DI 10.1007/s10909-016-1552-6 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DH9ZR UT WOS:000373155000010 ER PT J AU Barquist, CS Zheng, P Jiang, WG Lee, Y Yoon, YK Schumann, T Nogan, J Lilly, M AF Barquist, C. S. Zheng, P. Jiang, W. G. Lee, Y. Yoon, Y. K. Schumann, T. Nogan, J. Lilly, M. TI Development of a Spatially Resolved He Quasi-Particle Detector SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT International Symposium on Quantum Fluids and Solids (QFS) CY AUG 09-15, 2015 CL Niagara Falls Convention Ctr, Niagara Falls, NY SP Int Union Pure & Appl Phys, US Natl Sci Fdn HO Niagara Falls Convention Ctr DE Helium; He-3-B; Quasi-particle; Detector ID QUANTUM TURBULENCE; HE-3-B AB Andreev surface bound sates are known to exist on the boundaries of superfluid He-B. However, the detailed nature of their interaction with bulk quasi-particles is not well known. In a manner similar to angle-resolved photo-emission spectroscopy, surface states can be probed by measuring the change in momentum of bulk quasi-particles scattered from the surface. In order to make such a measurement, we have designed a spatially resolved quasi-particle detector. The detector consists of an array of micro-machined resonators, which are sensitive to quasi-particle flux. The detector is based on previously developed micro-machined resonators, which have been successfully used to study superfluid He-B and He. Presented here is the design of the detector and the fabrication procedure. C1 [Barquist, C. S.; Zheng, P.; Jiang, W. G.; Lee, Y.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Yoon, Y. K.; Schumann, T.] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. [Nogan, J.; Lilly, M.] Sandia Natl Labs, Ctr Integrated Nano Technol, POB 5800, Albuquerque, NM 87185 USA. RP Barquist, CS (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM cbarquist@ufl.edu RI Zheng, Pan/J-2447-2016 OI Zheng, Pan/0000-0003-4553-6872 FU NSF [DMR-1205891] FX This work was supported by NSF DMR-1205891 (YL). e acknowledge our collaboration with the Lancaster low temperature group in 3He vortex imaging. NR 17 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2016 VL 183 IS 3-4 BP 307 EP 312 DI 10.1007/s10909-015-1371-1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DH9ZR UT WOS:000373155000033 ER PT J AU Zhang, LM Zhuang, QL Li, XD Zhao, QY Yu, DS Liu, YL Shi, XZ Xing, SH Wang, GX AF Zhang, Liming Zhuang, Qianlai Li, Xiaodi Zhao, Quanying Yu, Dongsheng Liu, Yaling Shi, Xuezheng Xing, Shihe Wang, Guangxiang TI Carbon sequestration in the uplands of Eastern China: An analysis with high-resolution model simulations SO SOIL & TILLAGE RESEARCH LA English DT Article DE Soil organic carbon; DeNitrification-DeComposition (DNDC); 1:50,000 soil database ID SOIL ORGANIC-CARBON; GREENHOUSE-GAS EMISSIONS; DNDC MODEL; AGRICULTURAL SOILS; CLIMATE-CHANGE; MATTER DYNAMICS; RICE FIELDS; PADDY SOILS; RESPIRATION; INCREASE AB Using the DeNitrification-DeComposition (DNDC, version 9.5) model, we investigated the soil organic carbon (SOC) changes from 1980 to 2009 in Eastern China's upland-crop fields in northern Jiangsu Province. A currently most detailed high-resolution soil database, containing 17,024 polygons at a scale of 1:50,000, derived from 983 unique upland soil profiles, was used. A coarser county-level soil database was also used for a pair-wise simulation for comparison. We found that SOC changes modeled with the county-level soil database differ significantly from those with high-resolution soil data, with the deviation ranging from -64% to 8.0% in different counties. This implies that coarse soil data may lead to large biases in SOC simulation. With the high-resolution database, the model estimates a SOC increase of 37.89 TgC in the top soils (0-50 cm) over the study area of 3.93 Mha for the past three decades, with an average rate of 322 kg C ha(-1) year(-1). The SOC accumulation in the study region accounts for 10.2% of annual national carbon sequestration of upland soils, compared with the fraction of 3.7% in the total upland area of China. This underscores its significance to national climate mitigation. The annual SOC change varied between 61 to 519 kg C ha(-1) year mainly driven by the variations in N-fertilizer and manure applications. This study highlights the significance of high-resolution soil databases in quantifying SOC changes. Our high-resolution estimates of SOC will support farming and carbon management in this region. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhang, Liming; Li, Xiaodi; Xing, Shihe; Wang, Guangxiang] Fujian Agr & Forestry Univ, Coll Resource & Environm, Fuzhou, Peoples R China. [Zhang, Liming; Zhuang, Qianlai] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng] Chinese Acad Sci, State Key Lab Soil & Sustainable Agr, Inst Soil Sci, Nanjing, Jiangsu, Peoples R China. [Zhao, Quanying] Univ Cologne, Inst Geog, D-50931 Cologne, Germany. [Liu, Yaling] Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court, College Pk, MD USA. RP Yu, DS (reprint author), Chinese Acad Sci, State Key Lab Soil & Sustainable Agr, Inst Soil Sci, Nanjing, Jiangsu, Peoples R China.; Liu, YL (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court, College Pk, MD USA. EM dshyu@issas.ac.cn; yaling.liu@pnnl.gov FU Foundation of National Natural Science Foundation of China [41001126]; Natural Science Foundation of Fujian province in China [2015J01154]; Program for New Century Excellent Talents in University of Fujian Province of China [JA14097]; NSF Division of Information and Intelligent Systems [NSF-1028291] FX We gratefully acknowledge supports for this research from the Foundation of National Natural Science Foundation of China (No. 41001126), the Natural Science Foundation of Fujian province in China (No. 2015J01154), and the Program for New Century Excellent Talents in University of Fujian Province of China (No. JA14097). This study is also partially supported through a project funded to Q. Z. by the NSF Division of Information and Intelligent Systems (NSF-1028291). Sincere thanks are also given to Professor Changsheng Li (University of New Hampshire, USA) for his valuable advice on the use of DNDC model, and this work is to honor his dedication to the science community during his fruitful lifetime. NR 57 TC 0 Z9 1 U1 17 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-1987 EI 1879-3444 J9 SOIL TILL RES JI Soil Tillage Res. PD MAY PY 2016 VL 158 BP 165 EP 176 DI 10.1016/j.still.2016.01.001 PG 12 WC Soil Science SC Agriculture GA DI1GN UT WOS:000373244700017 ER PT J AU Williams, TL Sun, YN Schneider, K AF Williams, Tess L. Sun, Yannan Schneider, Kevin TI Off-line tracking of series parameters in distribution systems using AMI data SO ELECTRIC POWER SYSTEMS RESEARCH LA English DT Article DE Distribution system analysis; Parameter estimation; State estimation; Change detection ID STATE ESTIMATION; IDENTIFICATION; ERRORS; GRIDS; MODEL AB In the past, electric distribution systems have lacked measurement points, and equipment is often operated to its failure point, resulting in customer outages. The widespread deployment of sensors improves distribution level observability. This paper presents an off-line parameter tracking procedure that leverages the increased deployment of distribution level measurement devices to estimate changes in impedance parameters over time. Parameter tracking enables the discovery of non-diurnal and non-seasonal changes, which can be flagged for investigation. The presented method uses an unbalanced distribution-system state-estimator and a measurement-residual based parameter-estimation procedure. Measurement residuals from multiple measurement snapshots are combined to increase effective local redundancy and improve robustness to measurement noise. The input data used in the experiments Consists of data from devices on the primary distribution system and from customer meters, via an AMI system. Results of simulations on the IEEE 13-Node Test Feeder with 307 measurements and 246 parameters are presented to illustrate the proposed approach applied to changes in series impedance parameters. The proposed approach can detect a 5% change in series resistance elements with 2% measurement error using less than 1 day of measurement snapshots for a single estimate. (C) 2016 Elsevier B.V. All rights reserved. C1 [Williams, Tess L.; Sun, Yannan; Schneider, Kevin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, YN (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM tess.williams@pnnl.gov; yannan.sun@pnnl.gov; kevin.schneider@pnnl.gov FU U.S. Department of Energy [DE-AC06-76RL01830] FX Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830. NR 36 TC 0 Z9 0 U1 3 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7796 EI 1873-2046 J9 ELECTR POW SYST RES JI Electr. Power Syst. Res. PD MAY PY 2016 VL 134 BP 205 EP 212 DI 10.1016/j.epsr.2015.12.036 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA DH4MN UT WOS:000372760200023 ER PT J AU Xu, J Murayama, M Roco, CM Veeramani, H Michel, FM Rimstidt, JD Winkler, C Hochella, MF AF Xu, Jie Murayama, Mitsuhiro Roco, Charles M. Veeramani, Harish Michel, F. Marc Rimstidt, J. Donald Winkler, Christopher Hochella, Michael F., Jr. TI Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ZINC-SULFIDE NANOPARTICLES; CDSE NANOCRYSTALS; METAL-SULFIDE; REDUCING BACTERIA; SPHALERITE ZNS; CRYSTAL-GROWTH; HYDROTHERMAL VENTS; AGGREGATION-STATE; ACETATE COMPLEXES; QUANTUM DOTS AB The physicochemical properties of a (nano) mineral are strongly affected by its formation processes, and thus, may indicate the (nano) mineral's formation environment and mechanism. This correlation, although relevant to a myriad of geological, environmental, and material-science processes, has not yet been fully appreciated and systematically explored. Here, using the Zn-S system, we demonstrate that biological and abiotic processes at similar experimental conditions can produce distinctive particle size, morphology, and crystal structure in the formed ZnS. Specifically, bacterial sulfate reduction led to the formation of highly-defective nanocrystals of mixed sphalerite and wurtzite in a range of similar to 4-12 nm. By comparison, the abiotic procedures of titration-or diffusion-controlled precipitation resulted in the formation of polycrystalline aggregates that contained randomly-oriented, ultrafine crystals below similar to 2-3 nm. The poor crystallinity in the abiogenic samples, regardless of the sulfide addition rates, reveals an overall nucleation-dominated, crystal growth-restricted pathway for the formation of ZnS from low-temperature aqueous solutions. The difficulty in the ZnS crystallization likely stems from the intrinsic surface instability of the ZnS growth units (i.e., in the form of nanoclusters) resulting from the dipole-dipole interactions of the unit with surrounding water molecules. In the biogenic samples, the ZnS crystallinity was significantly improved, indicating that the presence of bacterial metabolites somehow promoted the crystallization process. With evidence for the enlarged {111} planes in the biogenic nanocrystals, we attribute this enhancement mainly to the selective interaction of the bacterial metabolites with polar faces of the ZnS growth units, which might have effectively screened the dipole moments in the growth units and enabled their crystallographic assembly. By revealing the intrinsic difficulty and specific pathways for the ZnS crystallization, we also present viable explanations for the exclusive occurrence of structural defects in {111} planes of the biogenic nanocrystals. The findings of our study provide insight into the origin and fate of metal sulfide nanoparticles in the environment, and have implications for biomineralization, bioremediation of metal-contaminated sites, and bacterial production of functional nanomaterials. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xu, Jie; Michel, F. Marc; Rimstidt, J. Donald; Hochella, Michael F., Jr.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Xu, Jie; Michel, F. Marc; Hochella, Michael F., Jr.] Virginia Tech, Virginia Tech Ctr Sustainable Nanotechnol, Blacksburg, VA 24061 USA. [Roco, Charles M.] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Murayama, Mitsuhiro; Winkler, Christopher] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Murayama, Mitsuhiro] Virginia Tech, Nanoscale Characterizat & Fabricat Lab, Blacksburg, VA 24061 USA. [Veeramani, Harish] Univ Glasgow, Sch Engn, Infrastruct & Environm, Glasgow G12 8QQ, Lanark, Scotland. [Hochella, Michael F., Jr.] Pacific NW Natl Lab, Geosci Grp, Richland, WA 99352 USA. RP Xu, J; Hochella, MF (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. EM jie7@vt.edu; hochella@vt.edu FU DOE-BES [SC-FOA-0000768] FX This project was financially supported by the DOE-BES Grant SC-FOA-0000768 (to M.F.H.). Experimental facilities were made available through Virginia Tech's Institute for Critical Technology and Applied Sciences (ICTAS). NR 82 TC 2 Z9 2 U1 17 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2016 VL 180 BP 1 EP 14 DI 10.1016/j.gca.2016.02.007 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH1TA UT WOS:000372566600001 ER PT J AU Longo, WM Theroux, S Giblin, AE Zheng, YS Dillon, JT Huang, YS AF Longo, William M. Theroux, Susanna Giblin, Anne E. Zheng, Yinsui Dillon, James T. Huang, Yongsong TI Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: Evidence from northern Alaskan lakes SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID LONG-CHAIN-ALKENONES; LACUSTRINE HAPTOPHYTE; GROWTH TEMPERATURE; EMILIANIA-HUXLEYI; CLIMATE-CHANGE; SEQUENCE DATA; SEDIMENTS; PALEOTHERMOMETRY; DEGRADATION; INDICATORS AB Alkenones are a class of unsaturated long-chain ketone biomarkers that have been used to reconstruct sea surface temperature and, more recently, continental temperature, by way of alkenone unsaturation indices (e.g. U-37(K) and U-37(K')). Alkenones are frequently found in brackish and saline lakes, however species effects confound temperature reconstructions when multiple alkenone-producing species with different temperature responses are present. Interestingly, available genetic data indicate that numerous freshwater lakes host a distinct phylotype of alkenone-producing haptophyte algae (the Group I or Greenland phylotype), providing evidence that species effects may be diminished in freshwater lakes. These findings encourage further investigation of alkenone paleotemperature proxies in freshwater systems. Here, we investigated lakes from northern Alaska (n = 35) and show that alkenones commonly occurred in freshwater lakes, where they featured distinct distributions, characterized by dominant C-37:4 alkenones and a series of tri-unsaturated alkenone isomers. The distributions were characteristic of Group I-type alkenone distributions previously identified in Greenland and North America. Our analysis of suspended particulate matter from Toolik Lake (68 degrees 38'N, 14 degrees 36'W) yielded the first in situ freshwater U-37(K) calibration (U-37(K)= 0.021 * T -0.68; r(2) = 0.85; n = 52; RMSE = +/- 1.37 degrees C). We explored the environmental significance of the tri-unsaturated isomers using our northern Alaskan lakes dataset in conjunction with new data from haptophyte cultures and Canadian surface sediments. Our results show that these temperature-sensitive isomers are biomarkers for the Group I phylotype and indicators of multiple-species effects. Together, these findings highlight freshwater lakes as valuable targets for continental alkenone-based paleotemperature reconstructions and demonstrate the significance of the recently discovered tri-unsaturated isomers. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Longo, William M.; Zheng, Yinsui; Dillon, James T.; Huang, Yongsong] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Theroux, Susanna] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94595 USA. [Giblin, Anne E.] Marine Biol Lab, Ecosyst Ctr, Woods Hole, MA 02543 USA. [Zheng, Yinsui] Marine Biol Lab, Josephine Bay Paul Ctr, Woods Hole, MA 02543 USA. RP Longo, WM; Huang, YS (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. EM william_longo@brown.edu; yongsong_huang@brown.edu OI Giblin, Anne/0000-0003-3851-2178 FU NSF [PLR-1503846, DEB-1026843]; GSA Graduate Student Research Grant; Arctic Long Term Ecological Research program FX This work was funded by NSF grants PLR-1503846 to Y. Huang and DEB-1026843, and a GSA Graduate Student Research Grant to W. Longo. The project would not have been possible without the support and limnological monitoring of the Arctic Long Term Ecological Research program. We thank J. Stuckey and the Toolik Field Station GIS office for providing morphometric data on the Arctic LTER lakes. We Thank B. Gaglioti and the Circum-Arctic Lakes Observation Network (CALON) for providing sediments and environmental data and F.S. Hu for providing surface sediment from Perch Lake. We also thank J. Toney for previous work on the interior Canada Lake sediments and for providing samples for new analyses. A. Carter, D. White and W. Daniels provided field assistance and J. Crowther and R. Tarozo provided laboratory assistance. B. Fox-Kemper provided advice on statistical methods and L. Amaral provided advice on haptophyte phylogenetics. NR 74 TC 2 Z9 3 U1 10 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2016 VL 180 BP 177 EP 196 DI 10.1016/j.gca.2016.02.019 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH1TA UT WOS:000372566600011 ER PT J AU Lu, GP DePaolo, DJ AF Lu, Guoping DePaolo, Donald J. TI Lattice Boltzmann simulation of water isotope fractionation during ice crystal growth in clouds SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID PRECIPITATION; MODEL; PARTICLES; EQUATIONS; DEUTERIUM; CALCITE; CORES; O-18; SNOW AB We describe a lattice Boltzmann (LB) method for simulating water isotope fractionation during diffusion-limited ice crystal growth by vapor deposition from water-oversaturated air. These conditions apply to the growth of snow crystals in clouds where the vapor composition is controlled by the presence of both ice crystals and water droplets. Modeling of water condensation with the LB method has the advantage of allowing concentration fields to evolve based on local conditions so that the controls on grain shapes of the condensed phase can be studied simultaneously with the controls on isotopic composition and growth rate. Water isotope fractionation during snow crystal growth involves kinetic effects due to diffusion of water vapor in air, which requires careful consideration of the boundary conditions at the ice-vapor interface. The boundary condition is relatively simple for water isotopes because the molecular exchange rate for water at the interface is large compared to the crystal growth rate. Our results for the bulk crystal isotopic composition are consistent with simpler models using analytical solutions for radial geometry. However, the model results are sufficiently different for oxygen isotopes that they could affect the interpretation of D-excess values of snow and ice. The extent of vapor oversaturation plays a major role in determining the water isotope fractionation as well as the degree of dendritic growth. Departures from isotopic equilibrium increase at colder temperatures as diffusivity decreases. Dendritic crystals are isotopically heterogeneous. Isotopic variations within individual snow crystals could yield information on the microphysics of ice condensation as well as on the accommodation or sticking coefficient of water associated with vapor deposition. Our results are ultimately a first step in implementing LB models for kinetically controlled condensation or precipitation reactions, but needs to be extended also to cases where the molecular exchange rate is comparable to the crystal growth rate. This approach could also be applicable to aerosol chemical evolution. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lu, Guoping] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Hubei, Peoples R China. [DePaolo, Donald J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [DePaolo, Donald J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Lu, GP (reprint author), China Univ Geosci, Dept Environm Sci & Engn, Sch Environm Studies, Wuhan 430074, Hubei, Peoples R China. EM guopinglu@yahoo.com FU LDRD fund from Lawrence Berkeley National Laboratory; Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; China University of Geosciences (Wuhan); Natural Science Foundation of China NSFC [41572241] FX This work was initiated with support from the LDRD fund from Lawrence Berkeley National Laboratory and continued with support from the Director, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy under contract DE-AC02-05CH11231; and with partial support to G. Lu from 211 Higher Education's Special Research Fund from China University of Geosciences (Wuhan) and from the Natural Science Foundation of China NSFC Grant (No. 41572241). The authors are grateful for Dr. Marc Norman for diligently handling the reviewing process for an inter-science paper of this kind and the two reviewers for constructive and stimulating comments in improving the article. NR 47 TC 0 Z9 0 U1 9 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2016 VL 180 BP 271 EP 283 DI 10.1016/j.gca.2015.11.048 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DH1TA UT WOS:000372566600016 ER PT J AU Koohbor, B Kidane, A Lu, WY Sutton, MA AF Koohbor, Behrad Kidane, Addis Lu, Wei-Yang Sutton, Michael A. TI Investigation of the dynamic stress-strain response of compressible polymeric foam using a non-parametric analysis SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Polymeric foam; Direct impact; Digital image correlation; Non-parametric analysis; Parameter identification ID VIRTUAL FIELDS METHOD; IMPACT; DEFORMATION; IDENTIFICATION; BAR; BEHAVIOR; FRACTURE; SHOCK AB Dynamic stress-strain response of rigid closed-cell polymeric foams is investigated in this work by subjecting high toughness polyurethane foam specimens to direct impact with different projectile velocities and quantifying their deformation response with high speed stereo-photography together with 3D digital image correlation. The measured transient displacement field developed in the specimens during high stain rate loading is used to calculate the transient axial acceleration field throughout the specimen. A simple mathematical formulation based on conservation of mass is also proposed to determine the local change of density in the specimen during deformation. By obtaining the full-field acceleration and density distributions, the inertia stresses at each point in the specimen are determined through a non parametric analysis and superimposed on the stress magnitudes measured at specimen ends to obtain the full-field stress distribution. The process outlined above overcomes a major challenge in high strain rate experiments with low impedance polymeric foam specimens, i.e. the delayed equilibrium conditions can be quantified. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.] Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. [Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. RP Kidane, A (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM kidanea@cec.sc.edu RI Koohbor, Behrad/F-9771-2015; OI Koohbor, Behrad/0000-0002-5787-4644; , Addis/0000-0003-0830-0158 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martini Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 33 TC 6 Z9 6 U1 9 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X EI 1879-3509 J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD MAY PY 2016 VL 91 BP 170 EP 182 DI 10.1016/j.ijimpeng.2016.01.007 PG 13 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA DH3LY UT WOS:000372689700016 ER PT J AU Ferreira, FAS Amaral, T Ysnaga, OAE Pereira-da-Silva, MA Lopes, JH Lewicki, JP Worsley, MA Schneider, JF Tremiliosi, G Rodrigues, UP AF Ferreira, Fabio A. S. Amaral, Thiago Elguera Ysnaga, Orlando Armando Pereira-da-Silva, Marcelo A. Lopes, Jose H. Lewicki, James P. Worsley, Marcus A. Schneider, Jose F. Tremiliosi-Filho, Germano Rodrigues-Filho, Ubirajara P. TI Structure-property relationship of new polyimide-organically modified silicate-phosphotungstic acid hybrid material system SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SOL-GEL PROCESS; P-31 MAS-NMR; THIN-FILMS; THERMAL IMIDIZATION; MOLECULAR MATERIALS; ORMOSIL; H-1; COMPOSITES; H3PW12O40; SITES AB A new hybrid material system was successfully developed from the combination of polyimide (PI), organically modified silicate (ORMOSIL), and phosphotungstic acid (HPW) from polycondensation reactions and sol-gel process. The materials were obtained in the form of flexible and free-standing films, with the formation of PI and ORMOSIL network confirmed by Fourier transform infrared. Solid-state phosphorus-31 nuclear magnetic resonance evaluated the HPW structure and confirmed its presence and also structural integrity in the materials after synthesis procedure. Thermogravimetric analysis revealed that the materials were thermally stable up to 773 K, and scanning electron microscopy images and X-ray microfluorescence mapping showed very good compatibility between the organic and inorganic phases with ORMOSIL improving the HPW dispersion. Furthermore, both ORMOSIL and HPW enhanced the permittivity of the materials from 2.5 to 4.3, compared to the neat PI, appointing them as potential candidates for electric and electronic applications. C1 [Ferreira, Fabio A. S.; Elguera Ysnaga, Orlando Armando; Rodrigues-Filho, Ubirajara P.] Univ Sao Paulo, Inst Quim Sao Carlos, Grp Quim Mat Hibridos & Inorgan, BR-13563120 Sao Carlos, SP, Brazil. [Amaral, Thiago] Univ Sao Paulo, Inst Fis Sao Carlos, Grp Crescimento Cristais & Mat Ceram, BR-13560970 Sao Carlos, SP, Brazil. [Pereira-da-Silva, Marcelo A.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13566590 Sao Carlos, SP, Brazil. [Pereira-da-Silva, Marcelo A.] UNICEP, Ctr Univ Cent Paulista, BR-13563470 Sao Carlos, SP, Brazil. [Lopes, Jose H.] 3M Brasil Ltda, Lab Pesquisa Corp, BR-14001970 Ribeirao Preto, SP, Brazil. [Lewicki, James P.; Worsley, Marcus A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Schneider, Jose F.] Univ Sao Paulo, Inst Fis Sao Carlos, Grp Ressonancia Magnet Nucl, BR-13560970 Sao Carlos, SP, Brazil. [Tremiliosi-Filho, Germano] Univ Sao Paulo, Inst Quim Sao Carlos, Grp Eletroquim, Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil. RP Ferreira, FAS (reprint author), Univ Sao Paulo, Inst Quim Sao Carlos, Grp Quim Mat Hibridos & Inorgan, BR-13563120 Sao Carlos, SP, Brazil. EM ferreira.fabio.a.s@gmail.com RI Pereira-da-Silva, Marcelo/J-6733-2012; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; OI Worsley, Marcus/0000-0002-8012-7727 FU CNPq [142910/2010-4]; FAPESP [CEPID 2013/07793-6]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors acknowledge the financial support from CNPq (Grant. 142910/2010-4) and FAPESP (CEPID 2013/07793-6). This work was also performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. WAXS (proposal: GAR-14024), and mu-XRF (proposal: XAFS1-14257) data were collected in the Brazilian Synchrotron Light Source (LNLS) facilities, and we especially thank Dr. Matheus Cardoso and Dr. Carlos Alberto Perez for their careful assistance on training on the beamlines and data manipulation. We also thank Prof. Dr. Antonio Carlos Hernandes and Technician Geraldo Frigo from Grupo de Crescimento de Cristais e Materiais Ceramicos of the IFSC for the collaboration in the TGA analysis. NR 43 TC 1 Z9 1 U1 9 U2 36 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAY PY 2016 VL 51 IS 10 BP 4815 EP 4824 DI 10.1007/s10853-016-9773-2 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA DH1VM UT WOS:000372573000009 ER PT J AU Samanta, A AF Samanta, Amit TI A theoretical study of the stability of anionic defects in cubic ZrO2 at extreme conditions SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; ZIRCONIA; OXIDATION; TEMPERATURE; OXYGEN; STABILIZATION AB Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600-2980 K. The formation free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. The relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated. C1 [Samanta, Amit] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Samanta, A (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. EM samanta1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The author wishes to thank Dr. Eric Schwegler, Dr. Vincenzo Lordi, and Prof. Shengbai Zhang for their comments in improving the paper. This work was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 1 Z9 1 U1 5 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAY PY 2016 VL 51 IS 10 BP 4845 EP 4855 DI 10.1007/s10853-016-9788-8 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA DH1VM UT WOS:000372573000012 ER PT J AU Pavlou, AT Ji, W Brown, FB AF Pavlou, Andrew T. Ji, Wei Brown, Forrest B. TI Implementation and testing of the on-the-fly thermal scattering Monte Carlo sampling method for graphite and light water in MCNP6 SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Thermal scattering; Simulations; Chemical binding; Adaptive-in-temperature AB A proper treatment of thermal neutron scattering requires accounting for chemical binding through a scattering law S(alpha, beta, T). Monte Carlo codes sample the secondary neutron energy and angle after a thermal scattering event from probability tables generated from S(alpha, beta,T) tables at discrete temperatures, requiring a large amount of data for multiscale and multiphysics problems with detailed temperature gradients. We have previously developed a method to handle this temperature dependence on-the-fly during the Monte Carlo random walk using polynomial expansions in 1/T to directly sample the secondary energy and angle. In this paper, the on-the-fly method is implemented into MCNP6 and tested in both graphite-moderated and light water-moderated systems. The on-the-fly method is compared with the thermal ACE libraries that come standard with MCNP6, yielding good agreement with integral reactor quantities like k-eigenvalue and differential quantities like single-scatter secondary energy and angle distributions. The simulation runtimes are comparable between the two methods (on the order of 5-15% difference for the problems tested) and the on-the-fly fit coefficients only require 5-15 MB of total data storage. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Pavlou, Andrew T.; Ji, Wei] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St,JEC 5040, Troy, NY 12180 USA. [Brown, Forrest B.] Los Alamos Natl Lab, Monte Carlo Codes Grp, Computat Phys Div 10, XCP-3,POB 1663,MS A143, Los Alamos, NM 87545 USA. RP Ji, W (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St,JEC 5040, Troy, NY 12180 USA. EM pavloa2@rpi.edu; jiw2@rpi.edu; fbrown@lanl.gov FU RPI-NRC Nuclear Fellowship Program [NRC-HQ-13-G-38-0035] FX This material is based upon work supported by the RPI-NRC Nuclear Fellowship Program under the Grant NRC-HQ-13-G-38-0035. NR 21 TC 2 Z9 2 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAY PY 2016 VL 91 BP 111 EP 126 DI 10.1016/j.anucene.2016.01.006 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG3AE UT WOS:000371941100012 ER PT J AU White, JA Castelletto, N Tchelepi, HA AF White, Joshua A. Castelletto, Nicola Tchelepi, Hamdi A. TI Block-partitioned solvers for coupled poromechanics: A unified framework SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Poromechanics; Iterative methods; Preconditioning; Algebraic multigrid; Fixed-stress split ID FINITE-ELEMENT METHODS; ITERATIVE SOLUTION; CONSTRAINT PRECONDITIONERS; CONSOLIDATION EQUATIONS; SEQUENTIAL-METHODS; LINEAR ELASTICITY; FIXED-STRESS; FLOW; GEOMECHANICS; RESERVOIR AB Coupled poromechanical problems appear in a variety of disciplines, from reservoir engineering to biomedical applications. This work focuses on efficient strategies for solving the matrix systems that result from discretization and linearization of the governing equations. These systems have an inherent block structure due to the coupled nature of the mass and momentum balance equations. Recently, several iterative solution schemes have been proposed that exhibit stable and rapid convergence to the coupled solution. These schemes appear distinct, but a unifying feature is that they exploit the block-partitioned nature of the problem to accelerate convergence. This paper analyzes several of these schemes and highlights the fundamental connections that underlie their effectiveness. We begin by focusing on two specific methods: a fully-implicit and a sequential-implicit scheme. In the first approach, the system matrix is treated monolithically, and a Krylov iteration is used to update pressure and displacement unknowns simultaneously. To accelerate convergence, a preconditioning operator is introduced based on an approximate block-factorization of the linear system. Next, we analyze a sequential-implicit scheme based on the fixed-stress split. In this method, one iterates back and forth between updating displacement and pressure unknowns separately until convergence to the coupled solution is reached. We re-interpret this scheme as a block-preconditioned Richardson iteration, and we show that the preconditioning operator is identical to that used within the fully-implicit approach. Rapid convergence in both the Richardson-and Krylov-based methods results from a particular choice for a sparse Schur complement approximation. This analysis leads to a unified framework for developing solution schemes based on approximate block factorizations. Many classic fully-implicit and sequential-implicit schemes are simple sub-cases. The analysis also highlights several new approaches that have not been previously explored. For illustration, we directly compare the performance and robustness of several variants on a benchmark problem. (C) 2016 The Authors. Published by Elsevier B.V. C1 [White, Joshua A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Castelletto, Nicola; Tchelepi, Hamdi A.] Stanford Univ, Energy Resources Engn, Stanford, CA 94305 USA. RP White, JA (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. EM jawhite@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Petroleum Institute (PI) of Abu Dhabi; Reservoir Simulation Industrial Affiliates Consortium at Stanford University (SUPRI-B) FX Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was partially supported by the Petroleum Institute (PI) of Abu Dhabi and by the Reservoir Simulation Industrial Affiliates Consortium at Stanford University (SUPRI-B). NR 57 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD MAY 1 PY 2016 VL 303 BP 55 EP 74 DI 10.1016/j.cma.2016.01.008 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA DG3MN UT WOS:000371973800003 ER PT J AU Rodriguez, P Wohlberg, B AF Rodriguez, Paul Wohlberg, Brendt TI Incremental Principal Component Pursuit for Video Background Modeling SO JOURNAL OF MATHEMATICAL IMAGING AND VISION LA English DT Article DE Principal component pursuit; Video background modeling; Incremental singular value decomposition AB Video background modeling is an important preprocessing step in many video analysis systems. Principal component pursuit (PCP), which is currently considered to be the state-of-the-art method for this problem, has a high computational cost, and processes a large number of video frames at a time, resulting in high memory usage and constraining the applicability of this method to streaming video. In this paper, we propose a novel fully incremental PCP algorithm for video background modeling. It processes one frame at a time, obtaining similar results to standard batch PCP algorithms, while being able to adapt to changes in the background. It has an extremely low memory footprint, and a computational complexity that allows real-time processing. C1 [Rodriguez, Paul] Pontificia Univ Catolica Peru, Dept Elect Engn, Lima, Peru. [Wohlberg, Brendt] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Rodriguez, P (reprint author), Pontificia Univ Catolica Peru, Dept Elect Engn, Lima, Peru. EM prodrig@pucp.edu.pe; brendt@lanl.gov FU "Fondo para la Innovacion, la Ciencia y la Tecnologia" (Fincyt) Program; U.S. Department of Energy through the LANL/LDRD Program; UC Lab Fees Research grant [12-LR-236660] FX This research was supported by the "Fondo para la Innovacion, la Ciencia y la Tecnologia" (Fincyt) Program for author Paul Rodriguez. This research was supported by the U.S. Department of Energy through the LANL/LDRD Program and by UC Lab Fees Research grant 12-LR-236660 for author Brendt Wohlberg. NR 46 TC 2 Z9 2 U1 2 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-9907 EI 1573-7683 J9 J MATH IMAGING VIS JI J. Math. Imaging Vis. PD MAY PY 2016 VL 55 IS 1 BP 1 EP 18 DI 10.1007/s10851-015-0610-z PG 18 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA DG7SA UT WOS:000372282800001 ER PT J AU Rusev, G Baramsai, B Bond, EM Jandel, M AF Rusev, G. Baramsai, B. Bond, E. M. Jandel, M. TI Fission-neutrons source with fast neutron-emission timing SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron source; Spontaneous fission of Cf-252; Silicon photomultipliers AB A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of Cf-252. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RP Rusev, G (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM rusev@lanl.gov OI Rusev, Gencho/0000-0001-7563-1518 FU U.S. Department of Energy through the LANL/LDRD Program; U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award [LANL20135009] FX This work has been supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009. NR 4 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2016 VL 817 BP 26 EP 29 DI 10.1016/j.nima.2016.01.095 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DG0PQ UT WOS:000371768100005 ER PT J AU Zhang, HD Fiorito, RB Corbett, J Shkvarunets, AG Tian, K Fisher, A AF Zhang, H. D. Fiorito, R. B. Corbett, J. Shkvarunets, A. G. Tian, K. Fisher, A. TI Beam studies at the SPEAR3 synchrotron using a digital optical mask SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Synchrotron diagnostics; Injection; Digital micro-mirror-array device; Optical mask; Optical synchrotron radiation beam line; Stanford positron electron asymmetric ring ID RADIATION AB The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhang, H. D.; Fiorito, R. B.; Shkvarunets, A. G.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Zhang, H. D.; Fiorito, R. B.] Daresbury Sci Tech, Cockcroft Inst, Warrington WA4 4AD, Cheshire, England. [Zhang, H. D.; Fiorito, R. B.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Corbett, J.; Tian, K.; Fisher, A.] SLAC, Menlo Pk, CA 94650 USA. RP Zhang, HD (reprint author), Daresbury Sci Tech, Cockcroft Inst, Warrington WA4 4AD, Cheshire, England. EM hao.zhang@cockcroft.ac.uk NR 20 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2016 VL 817 BP 46 EP 56 DI 10.1016/j.nima.2016.01.071 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DG0PQ UT WOS:000371768100009 ER PT J AU Kharzeev, DE Liao, J Voloshin, SA Wang, G AF Kharzeev, D. E. Liao, J. Voloshin, S. A. Wang, G. TI Chiral magnetic and vortical effects in high-energy nuclear collisions-A status report SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE Chiral magnetic effect; Chiral vortical effect; Chiral anomaly; Quark-gluon plasma; Heavy ion collisions ID HEAVY-ION COLLISIONS; DEPENDENT ANISOTROPIC FLOW; AZIMUTHAL CORRELATIONS; CHARGE ASYMMETRY; PARITY VIOLATION; ELECTRIC-FIELDS; ODD BUBBLES; PLUS AU; EVENT; SEARCH AB The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME)-the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kharzeev, D. E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, D. E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, D. E.; Liao, J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. [Liao, J.] Indiana Univ, Dept Phys, 727 E Third St, Bloomington, IN 47405 USA. [Liao, J.] Indiana Univ, Ctr Explorat Energy & Matter, 727 E Third St, Bloomington, IN 47405 USA. [Voloshin, S. A.] Wayne State Univ, Dept Phys & Astron, 666 W Hancock, Detroit, MI 48201 USA. [Wang, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Liao, J (reprint author), Indiana Univ, Dept Phys, 727 E Third St, Bloomington, IN 47405 USA.; Liao, J (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 727 E Third St, Bloomington, IN 47405 USA. EM liaoji@indiana.edu FU U.S. Department of Energy [DE-FG-88ER40388, DE-SC0012704, DE-FG02-92ER-40713, DE-FG02-88ER40424]; U.S. National Science Foundation [PHY-1352368]; RIKEN BNL Research Center FX The research of DX was supported in part by the U.S. Department of Energy under Contracts DE-FG-88ER40388 and DE-SC0012704. JL was partly supported by the U.S. National Science Foundation (Grant No. PHY-1352368) and by the RIKEN BNL Research Center. The research of SV was supported by the U.S. Department of Energy under Award Number DE-FG02-92ER-40713. The research of GW was supported by the U.S. Department of Energy under Award Number DE-FG02-88ER40424. NR 162 TC 37 Z9 38 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD MAY PY 2016 VL 88 BP 1 EP 28 DI 10.1016/j.ppnp.2016.01.001 PG 28 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DG2ZI UT WOS:000371938900001 ER PT J AU Wang, CC Zhang, YQ Yang, YS Yang, QC Kush, J Xu, YC Xu, LL AF Wang, Chengchao Zhang, Yaoqi Yang, Yusheng Yang, Qichun Kush, John Xu, Yecheng Xu, Linglin TI Assessment of sustainable livelihoods of different farmers in hilly red soil erosion areas of southern China SO ECOLOGICAL INDICATORS LA English DT Article DE Sustainable livelihoods; Livelihood asset; Intergenerational sustainability; Household heterogeneity; Livelihood Sustainability Index ID RESTORATION EVIDENCE; EMPIRICAL-ANALYSIS; RURAL LIVELIHOODS; DEVELOPING-WORLD; EDUCATION; PRODUCTIVITY; DETERMINANTS; BANGLADESH; SECURITY; POVERTY AB Livelihood vulnerability in environmentally fragile areas is emerging as a key issue due to its positive feedback to environmental degradation. Assessment of sustainable livelihoods is a crucial prerequisite for targeting interventions. However, aggregated analysis usually obtained ambiguous conclusions because they ignored the heterogeneity of rural households. Here, we evaluated the livelihood sustainability of different rural households by constructing an improved Livelihood Sustainability Index (LSI) in hilly red soil erosion areas of southern China. Changting County was selected as the study case by virtue of its unique representativeness in soil erosion and poverty. The results showed that livelihood sustainability among rural households was far from equivalent. Different from previous studies, higher nonfarm income share was not always consistent with higher extent of livelihood sustainability. Besides nonfarm employment, agricultural specialization could be another viable pathway to attain sustainable livelihoods. We also found that intergenerational sustainability was one primary cause for long-term livelihood differentiation of rural households. The poor education in rural areas would aggravate livelihood vulnerability of the poor and threaten the sustainable livelihoods of specialized agricultural households. Policy implications include further investment in rural infrastructure, irrigation and drainage, and stimulus for land transfer and concentration to facilitate agrarian specialization; enhancing investment in rural education to improve intergenerational sustainability; as well as targeting of the most vulnerable households, for example, promoting development of social insurance, social relief, and medical services for orphans and widows. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wang, Chengchao; Yang, Yusheng] Fujian Normal Univ, Minist Educ, Key Lab Humid Subtrop Ecogeog Proc, Fuzhou 350007, Peoples R China. [Wang, Chengchao; Yang, Yusheng] Fujian Normal Univ, Coll Geog Sci, Fuzhou 350007, Peoples R China. [Zhang, Yaoqi; Kush, John; Xu, Yecheng] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. [Yang, Qichun] Pacific NW Natl Lab, 5825 Univ Res Court,Suite 1200, College Pk, MD 20740 USA. [Xu, Linglin] Univ Lethbridge, Dept Geog, Lethbridge, AB T1K 6T5, Canada. RP Wang, CC; Yang, YS (reprint author), Fujian Normal Univ, Minist Educ, Key Lab Humid Subtrop Ecogeog Proc, Fuzhou 350007, Peoples R China. EM wchc79@163.com; geoyys@163.com FU National Natural Science Foundation of China [41371527]; Fujian Provincial Social Science Planning Foundation [2012C015] FX The study was jointly funded by the National Natural Science Foundation of China (Grant no. 41371527) and Fujian Provincial Social Science Planning Foundation (Grant no. 2012C015). We thank local governments of Changting County for providing valuable data and help in our field work. We also gratefully acknowledge the help from two anonymous reviewers for their valuable comments on a previous version of the manuscript. NR 38 TC 2 Z9 2 U1 18 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1470-160X EI 1872-7034 J9 ECOL INDIC JI Ecol. Indic. PD MAY PY 2016 VL 64 BP 123 EP 131 DI 10.1016/j.ecolind.2015.12.036 PG 9 WC Biodiversity Conservation; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DF1KN UT WOS:000371098700012 ER PT J AU Li, XF Chi, MF Mahurin, SM Liu, R Chuang, YJ Dai, S Pan, ZW AF Li, Xufan Chi, Miaofang Mahurin, Shannon M. Liu, Rui Chuang, Yen-Jun Dai, Sheng Pan, Zhengwei TI Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition SO CARBON LA English DT Article ID RESORCINOL-FORMALDEHYDE RESIN; LITHIUM-SULFUR BATTERIES; CORE-SHELL; NANOSPHERES; GRAPHENE; SUPERCAPACITOR; NANOSTRUCTURES; POLYMER AB Hard-sphere-templating method has been widely used to synthesize hollow carbon spheres (HCSs), in which the spheres were firstly coated with a carbon precursor, followed by carbonization and core removal. The obtained HCSs are generally amorphous or weakly graphitized (with the help of graphitization catalysts). In this work, we report on the fabrication of graphitized HCSs and yolk-shell Au@HCS nanostructures using a modified templating method, in which smooth, uniform graphene layers were grown on SiO2 spheres or Au@SiO2 nanoparticles via metal-catalyst-free chemical vapor deposition (CVD) of methane. Our work not only provides a new method to fabricate high-quality, graphitized HCSs but also demonstrates a reliable approach to grow quality graphene on oxide surfaces using CVD without the presence of metal catalysts. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Xufan; Chuang, Yen-Jun; Pan, Zhengwei] Univ Georgia, Coll Engn, Athens, GA 30602 USA. [Pan, Zhengwei] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mahurin, Shannon M.; Liu, Rui; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Pan, ZW (reprint author), Univ Georgia, Coll Engn, Athens, GA 30602 USA. EM panz@uga.edu RI Chi, Miaofang/Q-2489-2015; Dai, Sheng/K-8411-2015; Li, Xufan/A-8292-2013; OI Chi, Miaofang/0000-0003-0764-1567; Dai, Sheng/0000-0002-8046-3931; Li, Xufan/0000-0001-9814-0383; Pan, Zhengwei/0000-0002-3854-958X FU NSF CAREER grant [DMR-0955908]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences and Biosciences Division; Oak Ridge National Laboratory's Center for Nanophase Materials Science FX Z.W.P. thanks the support of a NSF CAREER grant (DMR-0955908). Work by S.D. and S.M.M. was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division. The TEM work was performed through a user project supported by the Oak Ridge National Laboratory's Center for Nanophase Materials Science, which is a DOE Office of Science user facility. NR 27 TC 3 Z9 3 U1 44 U2 296 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAY PY 2016 VL 101 BP 57 EP 61 DI 10.1016/j.carbon.2016.01.043 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DE7KT UT WOS:000370816000008 ER PT J AU Wang, ZY Dong, F Shen, B Zhang, RJ Zheng, YX Chen, LY Wang, SY Wang, CZ Ho, KM Fan, YJ Jin, BY Su, WS AF Wang, Zhanyu Dong, F. Shen, B. Zhang, R. J. Zheng, Y. X. Chen, L. Y. Wang, S. Y. Wang, C. Z. Ho, K. M. Fan, Yuan-Jia Jin, Bih-Yaw Su, Wan-Sheng TI Electronic and optical properties of novel carbon allotropes SO CARBON LA English DT Article ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; WAVE BASIS-SET; SADDLE-POINTS; GRAPHENE; 2D; NANOSHEETS; TRANSISTORS; PATHS AB The vibrational properties, electronic structures and optical properties of novel carbon allotropes, such as monolayer penta-graphene (PG), double-layer PG and T12-carbon, were studied by first-principles calculations. Results of phonon calculations demonstrate that these exotic carbon allotropes are dynamically stable. The bulk T12 phase is an indirect-gap semiconductor having a quasiparticle (QP) bandgap of similar to 5.19 eV. When the bulk material transforms to a two-dimensional (2D) phase, the monolayer and double-layer PG become quasi-direct gap semiconductors with smaller QP bandgaps of similar to 4.48 eV and similar to 3.67 eV, respectively. Furthermore, the partial charge density analysis indicates that the 2D phases retain part of the electronic characteristics of the T12 phase. The linear photon energy-dependent dielectric functions and related optical properties including refractive index, extinction coefficient, absorption spectrum, reflectivity, and energy-loss spectrum were also computed and discussed. Additionally, the chemical stability of monolayer PG and the electronic and optical properties of double-side hydrogenated monolayer PG were also investigated. The results obtained from our calculations are beneficial to practical applications of these exotic carbon allotropes in optoelectronics and electronics. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wang, Zhanyu; Dong, F.; Shen, B.; Zhang, R. J.; Zheng, Y. X.; Chen, L. Y.; Wang, S. Y.] Fudan Univ, Dept Opt Sci & Engn, Shanghai Ultraprecis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China. [Wang, S. Y.] Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China. [Wang, S. Y.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wang, S. Y.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fan, Yuan-Jia; Jin, Bih-Yaw] Natl Taiwan Univ, Dept Chem, Taipei 10617, Taiwan. [Su, Wan-Sheng] Natl Ctr High Performance Comp, Hsinchu 30076, Taiwan. [Su, Wan-Sheng] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan. RP Su, WS (reprint author), Natl Ctr High Performance Comp, Hsinchu 30076, Taiwan.; Wang, SY (reprint author), Fudan Univ, Shanghai Ultraprecis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China.; Wang, SY (reprint author), Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China. EM songyouwang@fudan.edu.cn; wssu@nchc.narl.org.tw RI Zhang, Rong-jun/B-1436-2012; OI Wang, Songyou/0000-0002-4249-3427; JIN, BIH-YAW/0000-0003-1479-3542 FU Ministry of Science and Technology [MOST-104-2112-M-492-001]; NSF of China [11374055, 61427815]; National Basic Research Program of China [2012CB934303, 2010CB933703]; Fudan High-end computing center; US Department of Energy, Basic Energy Sciences and Division of Materials Science and Engineering; National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA [DE-AC02-07CH11358] FX W. -S. Su would like to thank the Ministry of Science and Technology for financially supporting this research under Contract No. MOST-104-2112-M-492-001. Support from the National Centers for Theoretical Sciences and High-performance Computing of Taiwan in providing significant computing resources to facilitate this research are also gratefully acknowledged. Work at Fudan University was supported by the NSF of China (Grant No. 11374055 and 61427815), and National Basic Research Program of China (No. 2012CB934303 and 2010CB933703), and the Fudan High-end computing center. Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, and Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA under Contract No. DE-AC02-07CH11358. NR 40 TC 7 Z9 7 U1 16 U2 100 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAY PY 2016 VL 101 BP 77 EP 85 DI 10.1016/j.carbon.2016.01.078 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DE7KT UT WOS:000370816000011 ER PT J AU Li, Y Hodak, M Lu, WC Bernholc, J AF Li, Yan Hodak, Miroslav Lu, Wenchang Bernholc, J. TI Mechanisms of NH3 and NO2 detection in carbon-nanotube-based sensors: An ab initio investigation SO CARBON LA English DT Article ID CHEMICAL SENSORS; GAS SENSORS; SENSITIVITY; ADSORPTION; WIRES AB The mechanisms of NH3 and NO2 detection by single-walled carbon nanotube-based devices are investigated by ab initio calculations and the non-equilibrium Greens function (NEGF) methodology. While both NH3 and NO2 can physisorb to a pristine carbon nanotube, we show that their adsorption only results in small current changes through the device. For a carbon nanotube (CNT) attached to gold nanowire leads, the most sensitive detection site is at the CNT near the CNT-Au contact, where chemisorption occurs. The resulting change in electron transmission and low-bias current can lead to over 30% sensitivity. While both NH3 and NO2 can also chemisorb at the Au electrodes, their adsorption results in only a small change in the plurality of the conducting levels of the gold layers, and thus a small effect on current. In order to enhance the detection sensitivity, it is thus beneficial to mask the electrodes to prevent chemisorption. Furthermore, the length of the pure CNT segment does not strongly affect the relative sensitivity. Our results suggest that a short-CNT device with exposed contact regions and masked electrodes would have the greatest sensitivity. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Yan; Hodak, Miroslav; Lu, Wenchang; Bernholc, J.] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Li, Yan; Hodak, Miroslav; Lu, Wenchang; Bernholc, J.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Lu, Wenchang; Bernholc, J.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Li, Y; Bernholc, J (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA.; Li, Y; Bernholc, J (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.; Bernholc, J (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM yli26@ncsu.edu; bernholc@ncsu.edu FU DOE [DE-FG02-98ER45685]; NSF [ACI-1339844]; NSF at the National Center for Supercomputing Applications [OCI-1036215, NSF OCI-0725070, ACI-1238993]; DOE at the National Center for Computational Sciences at ORNL FX This work was supported by DOE DE-FG02-98ER45685. Petascale code development was funded by NSF ACI-1339844. The supercomputer time was provided by NSF grant OCI-1036215 at the National Center for Supercomputing Applications (NSF OCI-0725070 and ACI-1238993) and by DOE at the National Center for Computational Sciences at ORNL. NR 40 TC 5 Z9 5 U1 11 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAY PY 2016 VL 101 BP 177 EP 183 DI 10.1016/j.carbon.2016.01.092 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DE7KT UT WOS:000370816000023 ER PT J AU Morris, EA Weisenberger, MC Abdallah, MG Vautard, F Grappe, H Ozcan, S Paulauskas, FL Eberle, C Jackson, D Mecham, SJ Naskar, AK AF Morris, E. Ashley Weisenberger, Matthew C. Abdallah, Mohamed G. Vautard, Frederic Grappe, Hippolyte Ozcan, Soydan Paulauskas, Felix L. Eberle, Cliff Jackson, Dave Mecham, Sue J. Naskar, Amit K. TI High performance carbon fibers from very high molecular weight polyacrylonitrile precursors SO CARBON LA English DT Article ID PARTICLE-SIZE DISTRIBUTIONS; MECHANICAL-PROPERTIES; ELASTIC-MODULI; SCATTERING; POROSITY AB Carbon fibers are unique reinforcing agents for lightweight composite materials due to their outstanding mechanical properties and low density. Current technologies are capable of producing carbon fibers with 90-95% of the modulus of perfect graphite (similar to 1025 GPa). However, these same carbon fibers possess less than 10% of the theoretical carbon fiber strength, estimated to be about 100 GPa. Traditionally, attempts to increase carbon fiber rigidity above a certain level results in lower breaking strength. Therefore, to develop advanced carbon fibers with both very high strength and modulus demands a new manufacturing methodology. Here, we report a method of manufacturing moderate strength, very high modulus carbon fibers from a very high molecular weight (VHMW) polyacrylonitrile (PAN) precursor without the use of nanomaterial additives such as nucleating or structure-templating agents, as have been used by others. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Morris, E. Ashley; Weisenberger, Matthew C.] Univ Kentucky, Ctr Appl Energy Res, 3572 Iron Works Pike, Lexington, KY 40511 USA. [Abdallah, Mohamed G.; Vautard, Frederic; Grappe, Hippolyte; Ozcan, Soydan; Paulauskas, Felix L.; Eberle, Cliff; Jackson, Dave; Naskar, Amit K.] Oak Ridge Natl Lab, Carbon & Composites Grp, Oak Ridge, TN 37831 USA. [Mecham, Sue J.] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Mecham, Sue J.] Virginia Tech, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. RP Morris, EA (reprint author), Univ Kentucky, Ctr Appl Energy Res, 3572 Iron Works Pike, Lexington, KY 40511 USA.; Naskar, AK (reprint author), Oak Ridge Natl Lab, Carbon & Composites Grp, Oak Ridge, TN 37831 USA. EM ashley.morris@uky.edu; naskarak@ornl.gov OI Morris, Elizabeth/0000-0002-9711-9512; Ozcan, Soydan/0000-0002-3825-4589 FU DARPA; Oak Ridge National Laboratory U.S. Department of Energy [400095449, 4000100727]; ORNL's Shared Research Equipment (SHaRE) User Facility; Office of Basic Energy Sciences, US Department of Energy; NSF-MRI [1126534]; NSF-DMR at Virginia Tech [1006630] FX The authors would like to acknowledge financial support from DARPA. UKY authors (EAM and MCW) acknowledge financial support by Oak Ridge National Laboratory U.S. Department of Energy under award number 400095449 and 4000100727. Electron microscopy work was supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. Authors sincerely acknowledge help from Dr. Karren More (ORNL) with TEM characterization. SJM acknowledges additional support for equipment by NSF-MRI grant award number 1126534 and NSF-DMR grant award number 1006630 at Virginia Tech for molecular weight analysis and synthesis, respectively. The views, opinions, and/or findings contained in this paper are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. This document is approved for Public Release, Distribution Unlimited. NR 35 TC 5 Z9 5 U1 16 U2 81 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAY PY 2016 VL 101 BP 245 EP 252 DI 10.1016/j.carbon.2016.01.104 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DE7KT UT WOS:000370816000032 ER PT J AU Na, K Yoon, J Somorjai, GA AF Na, Kyungsu Yoon, Junwoong Somorjai, Gabor A. TI Control of model catalytic conversion reaction over Pt nanoparticle supported mesoporous BEA zeolite catalysts SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 15th Korea-Japan Symposium on Catalysis CY MAY 26-28, 2015 CL Busan, SOUTH KOREA SP Korean Inst Chem Engineers, Div Catalysis & React Engn DE Pt nanoparticle; Mesoporous zeolite; Met hylcyclopentane; Activity; Selectivity ID PLATINUM NANOPARTICLES; N-HEXANE; SILICA; SHAPE; SIZE; MFI; METHYLCYCLOPENTANE; SELECTIVITY; NANOSHEETS; ACIDITY AB Nanocrystalline mesoporous BEA zeolites supporting Pt metal nanoparticles have been investigated for the control of model catalytic reaction using methylcyclopentane as the reactant, while controlling the aluminum content in zeolite, Pt loading, Pt size and reaction temperature. Four different mesoporous BEA zeolites with different aluminum content were prepared via post-synthetic dealumination process with aqueous HCl solution. Pure mesoporous BEA zeolites without Pt metal nanoparticles converted methylcyclopentane to acyclic isomers via ring-opening and dehydrogenated version of methylcyclopentane as the major products, whereas Pt metal nanoparticle supported counterparts produced C-6-cyclic products (cyclohexane, benzene) most dominantly. In the case of Pt loading, the cyclohexane/benzene formation ratio decreased as the loading of Pt metal nanoparticle increased. As the Pt size increased from 2.5 to 5, 7 nm, cyclohexane selectivity decreased whereas benzene selectivity increased. However, their tendencies were not significant, which means that the size of Pt nanoparticle is not crucial for control of product selectivity. As the reaction temperature increased from 150 to 200, 250 degrees C, cracking reaction pathway became much significant at the expense of that other reaction pathways were alleviated. This was due to the strong acidity of the mesoporous BEA zeolite support, which could be resolved by supporting Pt metal nanoparticles on weakly acidic mesoporous support such as aluminum-incorporated mesoporous silica. (C) 2015 Elsevier B.V. All rights reserved. C1 [Na, Kyungsu; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Na, Kyungsu; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. [Na, Kyungsu] Chonnam Natl Univ, Dept Chem, 77 Yongbong Ro, Kwangju 500757, South Korea. [Yoon, Junwoong] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu NR 22 TC 0 Z9 0 U1 11 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD MAY 1 PY 2016 VL 265 BP 225 EP 230 DI 10.1016/j.cattod.2015.08.058 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DE6SD UT WOS:000370763000032 ER PT J AU Kwak, JH Lee, J Szanyi, J Peden, CHF AF Kwak, Ja Hun Lee, Jaekyoung Szanyi, Janos Peden, Charles H. F. TI Modification of the acid/base properties of gamma-Al2O3 by oxide additives: An ethanol TPD investigation SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 15th Korea-Japan Symposium on Catalysis CY MAY 26-28, 2015 CL Busan, SOUTH KOREA SP Korean Inst Chem Engineers, Div Catalysis & React Engn DE gamma-Al2O3; Ethanol-TPD; Metal oxide modification; Acid/base property ID PENTACOORDINATED AL3+ IONS; GAMMA-ALUMINA; TRANSITIONAL ALUMINAS; PHASE-TRANSFORMATION; SURFACE SITES; HYDROXYL-GROUPS; CATALYSTS; NMR; TEMPERATURE; MORPHOLOGY AB The electronic properties of oxide-modified gamma-Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 degrees C on non-modified gamma-Al2O3. Desorption temperature of ethanol over a gamma-Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified gamma-Al2O3 after calcined at 500 degrees C linearly decreased with increasing Pt loading. These results clearly suggested that the acid/base properties of the gamma-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified gamma-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kwak, Ja Hun; Lee, Jaekyoung] UNIST, Dept Chem Engn, Ulsan, South Korea. [Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Kwak, JH (reprint author), UNIST, Dept Chem Engn, Ulsan, South Korea. EM jhkwak@unist.ac.kr NR 51 TC 1 Z9 1 U1 15 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD MAY 1 PY 2016 VL 265 BP 240 EP 244 DI 10.1016/j.cattod.2015.07.042 PG 5 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DE6SD UT WOS:000370763000034 ER PT J AU Etschmann, BE Liu, WH Pring, A Grundler, PV Tooth, B Borg, S Testemale, D Brewe, D Brugger, J AF Etschmann, Barbara E. Liu, Weihua Pring, Allan Grundler, Pascal V. Tooth, Blake Borg, Stacey Testemale, Denis Brewe, Dale Brugger, Joel TI The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study SO CHEMICAL GEOLOGY LA English DT Article DE Bismuth; Tellurium; Chloride complexing; Hydrothermal geochemistry; X-ray absorption spectroscopy; Gold deposits ID INITIO MOLECULAR-DYNAMICS; AQUEOUS METAL-COMPLEXES; IN-SITU XAS; DEGREES-C; THERMODYNAMIC PROPERTIES; VIBRATIONAL SPECTRA; HYDROCHLORIC-ACID; CRYSTAL-STRUCTURE; FLUIDS; GOLD AB Tellurium (Te) and bismuth (Bi) are two metal(loid)s often enriched together with gold (Au) in hydrothermal deposits; however the speciation and transport properties for these two metals in hydrothermal systems are poorly understood. We investigated the effect of chloride on the speciation of Te(IV) and Bi(III) in hydrothermal solutions using in-situ XAS spectroscopy. At ambient temperature, oxy-hydroxide complexes containing the [TeO3] moiety (e.g., H3TeO3+ under highly acidic conditions) predominate in salty solutions over a wide range in pH and salt concentrations. Te(IV)-Cl complexes only appear at pH(25 degrees C) <= 2 and high Cl- activity (>= 10). The highest order Te(IV) chloride complex detected is TeCl4(aq), and contains the [TeCl4] moiety. Upon heating to 199 degrees C, the Te(IV)-Cl complexes become more stable; however they still required highly acidic conditions which are likely to exist only in very limited environments in nature. At ambient temperature, Bi(III) is coordinated to 5.5(5) Cl atoms in high salinity, acidic (HCl >= 0.5 m) chloride solutions. This, combined with large EXAFS-derived structural disorder parameters, suggests that the Bi(III) complex is most likely present as both BiCl52- and BiCl63-. The number of Cl atoms coordinated to Bi(III) decreases with increasing temperature; at around 200 degrees C and above, Bi(III) is coordinated to three Cl atoms. Overall the data show that Te(IV) chloride complexes can be ignored in predicting Te mobility under oxidizing conditions in most geological environments, but that Bi(III) chloride complexes are expected to account for Bi mobility in acidic brines. New thermodynamic properties for Bi(III) chloride complexes are provided to improve reactive transport modeling of Bi up to 500 degrees C. Although higher order complexes such as BiCl52- and BiCl63- exist at ambient temperature, the BiCl3(aq) complex becomes the predominant chloride complex in saline solutions at T >= 200 degrees C. (C) 2016 Elsevier B.V. All rights reserved. C1 [Etschmann, Barbara E.; Brugger, Joel] Monash Univ, Sch Earth Atmosphere & Environm, Clayton, Vic 3800, Australia. [Etschmann, Barbara E.; Tooth, Blake] Univ Adelaide, Sch Chem Engn, N Terrace, Adelaide, SA 5005, Australia. [Liu, Weihua; Borg, Stacey] CSIRO Mineral Resources Flagship, Clayton, Vic 3168, Australia. [Pring, Allan] Flinders Univ S Australia, Sch Chem & Phys Sci, GPO Box 2100, Adelaide, SA 5001, Australia. [Grundler, Pascal V.] Paul Scherrer Inst, Lab Nucl Mat, CH-5232 Villigen, Switzerland. [Testemale, Denis] Univ Grenoble Alpes, CNRS, Inst NEEL, F-38000 Grenoble, France. [Brewe, Dale] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Brugger, J (reprint author), Monash Univ, Sch Earth Atmosphere & Environm, Clayton, Vic 3800, Australia. EM Joel.brugger@monash.edu RI Grundler, Pascal/A-4687-2009; Brugger, Joel/C-7113-2008; Liu, Weihua/D-3684-2009; Beamline, FAME/G-9313-2012 OI Brugger, Joel/0000-0003-1510-5764; FU Australian Research Council (ARC) [DP 0880884]; ARC Future Fellowship [FT130100510]; Australian International Synchrotron Access Program (ISAP) FX Research funding was provided by the Australian Research Council (ARC) to A.P. and P.V.G. DP 0880884. W.L. is a recipient of an ARC Future Fellowship (FT130100510). Additional travel support was provided by the Australian International Synchrotron Access Program (ISAP). We would like to thank the reviewers for their insightful and helpful comments. NR 73 TC 2 Z9 2 U1 9 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD MAY 1 PY 2016 VL 425 BP 37 EP 51 DI 10.1016/j.chemgeo.2016.01.015 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DF1WS UT WOS:000371130700003 ER PT J AU Sajgalik, P Sedlacek, J Lences, Z Dusza, J Lin, HT AF Sajgalik, P. Sedlacek, J. Lences, Z. Dusza, J. Lin, H. -T. TI Additive-free hot-pressed silicon carbide ceramics-A material with exceptional mechanical properties SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Silicon carbide; Hot pressing; Microstructure; Mechanical properties; Creep resistance ID HIGH-TEMPERATURE CREEP; FRACTURE-TOUGHNESS; SIC CERAMICS; INDENTATION FRACTURE; MICROSTRUCTURE; STRENGTH; KINETICS; BEHAVIOR; NITRIDE; POWDERS AB Densification of silicon carbide without any sintering aids by hot-pressing and rapid hot pressing was investigated. Full density (>99% t.d.) has been reached at 1850 degrees C, a temperature of at least 150-200 degrees C lower compared to the up to now known solid state sintered silicon carbide powders. Silicon carbide was freeze granulated and heat treated prior the densification. Evolution of microstructure, mechanical properties and creep behavior were evaluated and compared to reference ceramics from as received silicon carbide powder as well as those of commercial one. Novel method results in dense ceramics with Vickers hardness and indentation fracture toughness of 29.0 GPa and 5.25 MPam(1/2), respectively. Moreover, the creep rate of 3.8 x 10(-9) s(-1) at 1450 degrees C and the load of 100 MPa is comparable to the commercial alpha-SiC solid state sintered at 2150 degrees C. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sajgalik, P.; Sedlacek, J.; Lences, Z.] Slovak Acad Sci, Inst Inorgan Chem, Dubravska Cesta 9, SK-84536 Bratislava, Slovakia. [Dusza, J.] Slovak Acad Sci, Inst Mat Res, Watsonova 45, SK-04353 Kosice, Slovakia. [Lin, H. -T.] Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, H. -T.] Guangdong Univ Technol, Guangzhou, Guangdong, Peoples R China. RP Sedlacek, J (reprint author), Slovak Acad Sci, Inst Inorgan Chem, Dubravska Cesta 9, SK-84536 Bratislava, Slovakia. EM jaroslay.sedlacek@savba.sk; huataylin@comcast.net FU Slovak Grant Agency VEGA Project [2/0065/14, APVV-0108-12]; Research and Development Operational Program - European Regional Development Fund [ITMS: 26240120021] FX This work was financially supported by the Slovak Grant Agency VEGA Project No. 2/0065/14, APVV-0108-12, and this work is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions-Stage II (ITMS: 26240120021) supported by the Research and Development Operational Program funded by the European Regional Development Fund. The authors would like to thank Dr. Janos Szepvolgyi, Dr. Maria Omastova and Dr. Matej Micusik for their assistance in XPS analysis. NR 38 TC 1 Z9 1 U1 12 U2 42 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAY PY 2016 VL 36 IS 6 BP 1333 EP 1341 DI 10.1016/j.jeurceramsoc.2015.12.013 PG 9 WC Materials Science, Ceramics SC Materials Science GA DE8UN UT WOS:000370912300002 ER PT J AU Carson, CG Goueguel, CL Sanghapi, H Jain, J McIntyre, D AF Carson, Cantwell G. Goueguel, Christian L. Sanghapi, Herve Jain, Jinesh McIntyre, Dustin TI Evaluation of a commercially available passively Q-switched Nd:YAG laser with LiF:F-2(-) saturable absorber for laser-induced breakdown spectroscopy SO OPTICS AND LASER TECHNOLOGY LA English DT Article ID QUANTITATIVE-ANALYSIS; MICROCHIP LASER; PLASMA; LIBS AB Interest in passively Q-switched microchip lasers as a means for miniaturization of laser-induced breakdown spectroscopy (LIBS) apparatus has rapidly grown in the last years. To explore the possibility of using a comparatively UV-vis transparent absorber, we herein present the first report on the evaluation of a commercially available flash lamp-pumped passively Q-switched Nd:YAG laser with LiF:F-2(-) saturable absorber as an excitation source in LIBS. Quantitative measurements of barium, strontium, rubidium and lithium in granite, rhyolite, basalt and syenite whole-rock glass samples were performed. Using a gated intensified benchtop spectrometer, limits of detection of 0.97, 23, 37, and 144 ppm were obtained for Li, Sr, Rb, and Ba, respectively. Finally, we discuss the advantages of using such a laser unit for LIBS applications in terms of ablation efficiency, analytical performances, output energy, and standoff capabilities. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Carson, Cantwell G.; Goueguel, Christian L.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sanghapi, Herve] Mississippi State Univ, Inst Clean Energy Technol, Starkville, MS 39759 USA. [Jain, Jinesh] AECOM Technol Corp, Pittsburgh, PA 15236 USA. [McIntyre, Dustin] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Carson, CG (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM cantwell.carson@netl.doe.gov FU National Energy Technology Laboratory Research Participation Program; U.S. Department of Energy FX The authors thank John Tudek for the X-ray CT image reconstruction. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 18 TC 0 Z9 0 U1 7 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0030-3992 EI 1879-2545 J9 OPT LASER TECHNOL JI Opt. Laser Technol. PD MAY PY 2016 VL 79 BP 146 EP 152 DI 10.1016/j.optlastec.2015.12.004 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA DE2KW UT WOS:000370457200023 ER PT J AU Kuo, WY Ilavsky, J Lee, Y AF Kuo, Wan-Yuan Ilavsky, Jan Lee, Youngsoo TI Structural characterization of solid lipoproteic colloid gels by ultra-small-angle X-ray scattering and the relation with sodium release SO FOOD HYDROCOLLOIDS LA English DT Article DE Ultra-small-angle X-ray scattering (USAXS); Solid lipoproteic colloid gel; Sodium release; Sodium reduction; Whey protein isolate; Structure ID DENATURED WHEY-PROTEIN; ADVANCED PHOTON SOURCE; BETA-LACTOGLOBULIN; SALTINESS PERCEPTION; ALPHA-LACTALBUMIN; MODEL CHEESES; FOOD MATRIX; SALT; REDUCTION; FAT AB Sodium reduction in protein/lipid-based products such as cheese is becoming increasingly important to the food industry. Understanding the structure critical to sodium release is one of the keys to effectively controlling the sensory quality of the product while lowering the sodium content. In this study, ultra-small-angle X-ray scattering (USAXS), novel to food research, was used to characterize the structure of solid lipoproteic colloid (SLC) gels as a model food. The SLC gels were made via heat-induced gelation of emulsions of whey protein isolate and anhydrous milk fat. The gels varied in the contents of protein, fat, and NaCl and homogenization pressures. The gyration radii of the protein aggregates (r(g,p)) and the fat globules (r(g,f)) of the samples before and after the gelation were obtained via fitting the USAXS profiles to inspect the structure formation of the SLC gels. The effects of formulation and processing on the gel r(g,p) and the gel r(g,f) were analyzed. In addition, the gel r(g,f) and the hydrodynamic radius of the droplets (r(h,e)) in the emulsions were correlated with sodium release. The correlation suggested that gel r(g,f) is a better indicator of sodium release than the emulsion r(h,e). The findings from this study indicated that USAXS is feasible for the structural investigation of protein/lipid-based foods. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kuo, Wan-Yuan; Lee, Youngsoo] Univ Illinois, Dept Food Sci & Human Nutr, 382K,Agr Engn & Sci Bldg,1304 W Penn Ave, Urbana, IL 61801 USA. [Ilavsky, Jan] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave,Bldg 401 MS-16, Argonne, IL 60439 USA. RP Lee, Y (reprint author), Univ Illinois, Dept Food Sci & Human Nutr, 382K,Agr Engn & Sci Bldg,1304 W Penn Ave, Urbana, IL 61801 USA. EM wkuo7@illinois.edu; ilavsky@aps.anl.gov; leeys@illinois.edu RI Ilavsky, Jan/D-4521-2013; OI Ilavsky, Jan/0000-0003-1982-8900; Kuo, Wan-Yuan/0000-0003-0057-1009 FU U.S. Department of Agriculture via the National Institute of Food and Agriculture Grant [2015-67017-23089]; Argonne National Laboratory [DE-AC02-06CH11357] FX This research was funded by the U.S. Department of Agriculture via the National Institute of Food and Agriculture Grant (2015-67017-23089). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 66 TC 0 Z9 0 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0268-005X EI 1873-7137 J9 FOOD HYDROCOLLOID JI Food Hydrocolloids PD MAY PY 2016 VL 56 BP 325 EP 333 DI 10.1016/j.foodhyd.2015.12.032 PG 9 WC Chemistry, Applied; Food Science & Technology SC Chemistry; Food Science & Technology GA DD5TM UT WOS:000369987300036 ER PT J AU Reno, MJ Hansen, CW AF Reno, Matthew J. Hansen, Clifford W. TI Identification of periods of clear sky irradiance in time series of GHI measurements SO RENEWABLE ENERGY LA English DT Article DE Solar resource; Global horizontal irradiance; Clear sky ID SOLAR-RADIATION MEASUREMENTS; BROAD-BAND MODELS; CONDITION CLASSIFICATION; CLOUD; METHODOLOGY; VALIDATION; PARAMETERS; COMPONENTS; RESOURCE; DAYLIGHT AB We present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from a clear sky detection algorithm, and with satellite and ground-based sky imagery. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Reno, Matthew J.; Hansen, Clifford W.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Reno, MJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mjreno@sandia.gov FU Lockheed Martin Corporation, for U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD MAY PY 2016 VL 90 BP 520 EP 531 DI 10.1016/j.renene.2015.12.031 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DD7KE UT WOS:000370102400048 ER PT J AU Wang, CL Liu, J Mudryk, Y Gschneidner, KA Long, Y Pecharsky, VK AF Wang, C. L. Liu, J. Mudryk, Y. Gschneidner, K. A., Jr. Long, Y. Pecharsky, V. K. TI The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetic entropy changes; Magnetocaloric effect; Magnetic properties; Magnetic viscosity; Magnetic transition nature ID ITINERANT-ELECTRON METAMAGNETISM; ENTROPY CHANGE; COMPOUND; SUBSTITUTION; TRANSITION; ALLOYS AB The magnetic properties and magnetic entropy changes of DyCo2B, (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (T-C) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo2Bx changes from the first -order to the second -order with increasing x, which leads to the decrease of the maximum magnetic entropy change. However, the relative cooling power (RCP) of DyCo2 and the B doped alloys remains nearly constant. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wang, C. L.; Liu, J.; Mudryk, Y.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wang, C. L.; Long, Y.] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Liu, J.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Wang, CL (reprint author), 30 Xueyuan Rd, Beijing, Peoples R China. EM wangchaolun2004@163.com FU Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division [DE-AC02-07CH11358]; China Scholarship Council FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University of Science and Technology. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division under Contract no. DE-AC02-07CH11358. C.L.W. and Y.L. acknowledge the National Natural Science Foundation of China, the National High Technology Research and Development Program of China, the National Basic Research Program of China, and the funding from China Scholarship Council for support of C. L. W. stay at the Ames Laboratory. NR 34 TC 0 Z9 0 U1 8 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY 1 PY 2016 VL 405 BP 122 EP 128 DI 10.1016/j.jmmm.2015.12.062 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA DB6XX UT WOS:000368660100018 ER PT J AU Alaan, US Sreenivasulu, G Yu, KM Jenkins, C Shafer, P Arenholz, E Srinivasan, G Suzuki, Y AF Alaan, U. S. Sreenivasulu, G. Yu, K. M. Jenkins, C. Shafer, P. Arenholz, E. Srinivasan, G. Suzuki, Y. TI Controlling disorder-mediated exchange bias in (Mn,Zn,Fe)(3)O-4 thin films SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Spinel ferrite; Magnetization; Exchange bias; Nanocrystalline; Coercivity; Complex oxide ID NEUTRON-DIFFRACTION; ZINC FERRITE; ANISOTROPY; HYSTERESIS; BILAYERS AB We report exchange bias in (Mn,Zn,Fe)(3)O-4 thin films that are compositionally homogeneous. We show that exchange bias in these Mn-Zn ferrite (MZFO) films can be tuned quite easily through annealing of the as -deposited films. The annealing process increases the crystallinity, as measured by X-ray diffraction (XRD). This improvement in crystallinity is accompanied by lower coercive fields, lower exchange bias fields, and higher saturation magnetizations. Exchange bias in these nominally homogeneous ferrite films is correlated with the degree of both structural and magnetic disorder. Based on the annealing experiments, we believe that these MZFO films may consist of crystalline regions that are separated from one another by disordered regions of the same nominal composition. The disordered regions serve to exchange bias the more structurally and magnetically ordered crystalline MZFO grains, leading to a shift of the magnetic hysteresis loop. Together these results indicate that the magnitude of the exchange bias can be controlled by tuning the degree of crystallinity in the system. (C) 2015 Elsevier B.V. All rights reserved. C1 [Alaan, U. S.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Alaan, U. S.; Suzuki, Y.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Sreenivasulu, G.; Srinivasan, G.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jenkins, C.; Shafer, P.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Suzuki, Y.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Alaan, US (reprint author), Geballe Lab Adv Mat, McCullough Bldg,476 Lomita Mall, Stanford, CA 94305 USA. EM usalaan@gmail.com RI Gollapudi, Sreenivasulu/G-9832-2012; OI Gollapudi, Sreenivasulu/0000-0002-6136-7119; Alaan, Urusa/0000-0003-1109-3399 FU National Science Foundation [1104401, 1402685]; NSF; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was sponsored by the National Science Foundation through grants #1104401 and 1402685 and the NSF Graduate Research Fellowship Program for U.S.A. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We thank Franklin Wong, Jodi Iwata, Rajesh Chopdekar, Charles Flint, Matt Gray, and Ted Sanders for useful discussions. The x-ray diffraction measurements were performed at the Stanford Nano Shared Facilities (SNSF), and we thank Arturas Vailionis for his help. NR 38 TC 0 Z9 0 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY 1 PY 2016 VL 405 BP 129 EP 136 DI 10.1016/j.jmmm.2015.12.055 PG 8 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA DB6XX UT WOS:000368660100019 ER PT J AU Dragicevic, T Lu, XN Vasquez, JC Guerrero, JM AF Dragicevic, Tomislav Lu, Xiaonan Vasquez, Juan C. Guerrero, Josep M. TI DC Microgrids-Part II: A Review of Power Architectures, Applications, and Standardization Issues SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE DC microgrid (MG); power architectures; protection and grounding; standardization ID ENERGY-STORAGE SYSTEMS; INTERFACE BIDIRECTIONAL CONVERTER; DISTRIBUTED CONTROL STRATEGY; SOLID-STATE TRANSFORMER; FAULT CURRENT LIMITER; DROOP CONTROL METHOD; OFFSHORE WIND FARMS; BUS VOLTAGE CONTROL; CHARGING STATION; HIERARCHICAL CONTROL AB DC microgrids (MGs) have been gaining a continually increasing interest over the past couple of years both in academia and industry. The advantages of dc distribution when compared to its ac counterpart are well known. The most important ones include higher reliability and efficiency, simpler control and natural interface with renewable energy sources, and electronic loads and energy storage systems. With rapid emergence of these components in modern power systems, the importance of dc in today's society is gradually being brought to a whole new level. A broad class of traditional dc distribution applications, such as traction, telecom, vehicular, and distributed power systems can be classified under dcMG framework and ongoing development, and expansion of the field is largely influenced by concepts used over there. This paper aims first to shed light on the practical design aspects of dc MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in dc MG protection and grounding is provided. Owing to the fact that there is no zero-current crossing, an arc that appears upon breaking dc current cannot be extinguished naturally, making the protection of dc MGs a challenging problem. In relation with this, a comprehensive overview of protection schemes, which discusses both design of practical protective devices and their integration into overall protection systems, is provided. Closely coupled with protection, conflicting grounding objectives, e.g., minimization of stray current and common - mode voltage, are explained and several practical solutions are presented. Also, standardization efforts for dc systems are addressed. Finally, concluding remarks and important future research directions are pointed out. C1 [Dragicevic, Tomislav; Vasquez, Juan C.; Guerrero, Josep M.] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark. [Lu, Xiaonan] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. RP Dragicevic, T (reprint author), Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark. EM tdr@et.aau.dk; xlu@anl.gov; juq@et.aau.dk; joz@et.aau.dk RI Vasquez, Juan/J-2247-2014; Guerrero, Josep/D-5519-2014 OI Vasquez, Juan/0000-0001-6332-385X; Guerrero, Josep/0000-0001-5236-4592 FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability FX The work of X. Lu was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability. Recommended for publication by Associate Editor T.-F. Wu. NR 195 TC 14 Z9 15 U1 13 U2 111 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 EI 1941-0107 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD MAY PY 2016 VL 31 IS 5 BP 3528 EP 3549 DI 10.1109/TPEL.2015.2464277 PG 22 WC Engineering, Electrical & Electronic SC Engineering GA CZ5IO UT WOS:000367136300013 ER PT J AU Kim, J Seok, JK Muljadi, E Kang, YC AF Kim, Jinho Seok, Jul-Ki Muljadi, Eduard Kang, Yong Cheol TI Adaptive Q-V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE Adaptive Q-V characteristic; doubly fed induction generator (DFIG); reactive power capability; voltage control of a WPP; wake effect ID FED INDUCTION GENERATOR; GRID FAULTS; TURBINE; SYSTEMS; ELECTRONICS; FARMS AB Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a larger reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery. C1 [Kim, Jinho] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea. [Seok, Jul-Ki] Yeungnam Univ, Sch Elect Engn, Kyongsan 712749, South Korea. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kang, Yong Cheol] Chonbuk Natl Univ, WeGAT Res Ctr, Dept Elect Engn, Jeonju 561756, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea. RP Kim, J (reprint author), Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea. EM jkim@jbnu.ac.kr; doljk@ynu.ac.kr; eduard.muljadi@nrel.gov; yckang@jbnu.ac.kr FU National Research Foundation of Korea - Korea Government (MSIP) [2010-0028509]; U.S. Department of Energy [DE-AC36-08-GO28308]; NREL FX This work was supported by the National Research Foundation of Korea Grant supported by the Korea Government (MSIP) (2010-0028509). NREL's contribution to this work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the NREL. Recommended for publication by Associate Editor H. Li. NR 35 TC 2 Z9 2 U1 2 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 EI 1941-0107 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD MAY PY 2016 VL 31 IS 5 BP 3586 EP 3599 DI 10.1109/TPEL.2015.2464715 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA CZ5IO UT WOS:000367136300017 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahmad, S Ahn, SU Aiola, S Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Almaraz, JRM Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Arnaldi, R Arnold, OW Arsene, IC Arslandok, M Audurier, B Augustinus, A Averbeck, R Azmi, MD Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Balasubramanian, S Baldisseri, A Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Benacek, P Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biro, G Biswas, R Biswas, S Bjelogrlic, S Blair, JT Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botta, E Bourjau, C Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Butt, JB Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Carnesecchi, F Castellanos, JC Castro, AJ Casula, EAR Sanchez, CC Cerello, P Cerkala, J Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chauvin, A Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Cho, S Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danisch, MC Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S Caro, A Cataldo, G Conti, C Cuveland, J Falco, A De Gruttola, D Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E Deplano, C Dhankher, P Bari, D Mauro, A Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Gimenez, DD Donigus, B Dordic, O Drozhzhova, T Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Endress, E Engel, H Epple, E Erazmus, B Erdemir, I Erhardt, F Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Feuillard, VJG Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fronze, GG Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Gauger, EF Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glaessel, P Coral, DMG Ramirez, AG Gonzalez, V Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Grachov, OA Graczykowski, LK Graham, KL Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gronefeld, JM Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamon, JC Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Hellbaer, E Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hillemanns, H Hippolyte, B Horak, D Hosokawa, R Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Inaba, M Incani, E Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacazio, N Jacobs, PM Jadhav, MB Jadlovska, S Jadlovsky, J Jahnke, C Jakubowska, MJ Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karayan, L Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, DW Kim, DJ Kim, D Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Boesing, C Klewin, S Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kopcik, M Kostarakis, P Kour, M Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Meethaleveedu, GK Kralik, I Kravcakova, A Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kuhn, C Kuijer, PG Kumar, A Kumar, J Kumar, L Kumar, S Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kweon, MJ Kwon, Y Pointe, SL La Rocca, P de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Lehas, F Lemmon, RC Lenti, V Leogrande, E Monzon, IL Vargas, HL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Lutz, TH Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Melikyan, Y Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Godoy, DAM Moreno, LAP Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muehlheim, D Muhuri, S Mukherjee, M Mulligan, JD Munhoz, MG Munzer, RH Murakami, H Murray, S Musa, L Musinsky, J Naik, B Nair, R Nandi, BK Nania, R Nappi, E Naru, MU Luz, HN Nattrass, C Navarro, SR Nayak, K Nayak, R Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Noris, JCC Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Orava, R Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pal, K Pan, J Pandey, AK Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Pei, H Peitzmann, T Costa, HP Peresunko, D Lara, CEP Lezama, EP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pimentel, LODL Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, G Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Rami, F Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salzwedel, J Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sarkar, D Sarma, P Scapparone, E Scarlassara, F Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Sefcik, M Seger, JE Sekiguchi, Y Sekihata, D Selyuzhenkov, I Senosi, K Senyukov, S Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, M Sharma, M Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Sogaard, C Song, J Song, M Song, Z Soramel, F Sorensen, S Souza, RD Sozzi, F Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Stachel, J Stan, I Stankus, P Stefanek, G Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Suljic, M Sultanov, R Sumbera, M Szabo, A Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Tabassam, U Takahashi, J Tambave, GJ Tanaka, N Tangaro, MA Tarhini, M Tariq, M Tarzila, MG Tauro, A Munoz, G Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thaeder, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trombetta, G Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Vala, M Palomo, LV Vallero, S Maarel, JD Hoorne, JW Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, S Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Tello, A Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Voelkl, MA Voloshin, K Voloshin, SA Volpe, G Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, J Wang, H Wang, M Watanabe, D Watanabe, Y Weber, M Weber, SG Weiser, DF Wessels, JP Westerhoff, U Whitehead, AM Wiechula, J Wikne, J Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yang, H Yang, P Yano, S Yasar, C Yin, Z Yokoyama, H Yoo, IK Yoon, JH Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zardoshti, N Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhang, C Zhang, Z Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahmad, S. Ahn, S. U. Aiola, S. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Molina, R. Alfaro Alici, A. Alkin, A. Almaraz, J. R. M. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Prado, C. Alves Garcia Andrei, C. Andronic, A. Anguelov, V. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arnaldi, R. Arnold, O. W. Arsene, I. C. Arslandok, M. Audurier, B. Augustinus, A. Averbeck, R. Azmi, M. D. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Balasubramanian, S. Baldisseri, A. Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Martinez, H. Bello Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Benacek, P. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biro, G. Biswas, R. Biswas, S. Bjelogrlic, S. Blair, J. T. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botta, E. Bourjau, C. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Butt, J. B. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Carnesecchi, F. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Sanchez, C. Ceballos Cerello, P. Cerkala, J. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chauvin, A. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Cho, S. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Maldonado, I. Cortes Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danisch, M. C. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Conti, C. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. Deplano, C. Dhankher, P. Di Bari, D. Di Mauro, A. Di Nezza, P. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Gimenez, D. Domenicis Doenigus, B. Dordic, O. Drozhzhova, T. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Endress, E. Engel, H. Epple, E. Erazmus, B. Erdemir, I. Erhardt, F. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Feliciello, A. Feofilov, G. Ferencei, J. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Festanti, A. Feuillard, V. J. G. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fronze, G. G. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Gauger, E. F. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Coral, D. M. Gomez Ramirez, A. Gomez Gonzalez, V. Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Grachov, O. A. Graczykowski, L. K. Graham, K. L. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gronefeld, J. M. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamon, J. C. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Hellbaer, E. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hillemanns, H. Hippolyte, B. Horak, D. Hosokawa, R. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Inaba, M. Incani, E. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacazio, N. Jacobs, P. M. Jadhav, M. B. Jadlovska, S. Jadlovsky, J. Jahnke, C. Jakubowska, M. J. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karayan, L. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, M. Mohisin Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. W. Kim, D. J. Kim, D. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Klewin, S. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kopcik, M. Kostarakis, P. Kour, M. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Meethaleveedu, G. Koyithatta Kralik, I. Kravcakova, A. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kuhn, C. Kuijer, P. G. Kumar, A. Kumar, J. Kumar, L. Kumar, S. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. de Guevara, P. Ladron Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Lehas, F. Lemmon, R. C. Lenti, V. Leogrande, E. Monzon, I. Leon Vargas, H. Leon Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loginov, V. Loizides, C. Lopez, X. Torres, E. Lopez Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Lutz, T. H. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Melikyan, Y. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Zetina, L. Montano Montes, E. De Godoy, D. A. Moreira Moreno, L. A. P. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mulligan, J. D. Munhoz, M. G. Munzer, R. H. Murakami, H. Murray, S. Musa, L. Musinsky, J. Naik, B. Nair, R. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. da Luz, H. Natal Nattrass, C. Navarro, S. R. Nayak, K. Nayak, R. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Noris, J. C. C. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Oliver, M. H. Onderwaater, J. Oppedisano, C. Orava, R. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pal, K. Pan, J. Pandey, A. K. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Pei, H. Peitzmann, T. Da Costa, H. Pereira Peresunko, D. Lara, C. E. Perez Lezama, E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pimentel, L. O. D. L. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Rami, F. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rocco, E. Cahuantzi, M. Rodriguez Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sarkar, D. Sarma, P. Scapparone, E. Scarlassara, F. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Sefcik, M. Seger, J. E. Sekiguchi, Y. Sekihata, D. Selyuzhenkov, I. Senosi, K. Senyukov, S. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, M. Sharma, M. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Sogaard, C. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. de Souza, R. D. Sozzi, F. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Stachel, J. Stan, I. Stankus, P. Stefanek, G. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Suljic, M. Sultanov, R. Sumbera, M. Szabo, A. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Tabassam, U. Takahashi, J. Tambave, G. J. Tanaka, N. Tangaro, M. A. Tarhini, M. Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trombetta, G. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Van Der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Villatoro Tello, A. Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, J. Wang, H. Wang, M. Watanabe, D. Watanabe, Y. Weber, M. Weber, S. G. Weiser, D. F. Wessels, J. P. Westerhoff, U. Whitehead, A. M. Wiechula, J. Wikne, J. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yang, H. Yang, P. Yano, S. Yasar, C. Yin, Z. Yokoyama, H. Yoo, I. -K. Yoon, J. H. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zardoshti, N. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhang, C. Zhang, Z. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Production of K*(892)(0) and phi(1020) in p-Pb collisions at root s(NN)=5.02 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID RANGE ANGULAR-CORRELATIONS; QUARK-GLUON PLASMA; ROOT-S=7 TEV; LONG-RANGE; MULTIPLICITY DEPENDENCE; TRANSVERSE-MOMENTUM; J/PSI SUPPRESSION; PPB COLLISIONS; CROSS-SECTION; CERN-SPS AB The production of K(892)(0) and phi(1020) mesons has been measured in p-Pb collisions at root s(NN) = 5.02 TeV. K*0 and phi are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range -0.5 < y < 0. The transverse momentum spectra, measured as a function of the multiplicity, have a p(T) range from 0 to 15 GeV/c for K*(0) and from 0.3 to 21 GeV/c for phi. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at root s = 7 TeV and Pb-Pb collisions at root s(NN) = 2.76 TeV. In Pb-Pb and p-Pb collisions, K*(0) and phi probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-phi ratio are discussed as a function of the multiplicity of the event. The short-lived K*(0) is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase. C1 [ALICE Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Grigoryan, A.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Martinez, H. Bello; Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Moreno, L. A. P.; Navarro, S. R.; Cahuantzi, M. Rodriguez; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.; Villatoro Tello, A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Senyukov, S.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Das, S.; Ghosh, S. K.] Bose Inst, CAPSS, Dept Phys, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, Y.; Zhang, Z.; Zhou, D.; Zhu, J.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] Ctr Calcul IN2P3, Villeurbanne, France. Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Albino, R. Cruz; Corral, G. Herrera; de Guevara, P. Ladron; Zetina, L. Montano; Cahuantzi, M. Rodriguez] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Fermi Museo Storico Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Feuillard, V. J. G.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Butt, J. B.; Naru, M. U.; Suleymanov, M.; Tabassam, U.; Zaman, A.] COMSATS Inst Informat Technol CIIT, Islamabad, Pakistan. [Ferreiro, E. G.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Ferreiro, E. G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Tambave, G. J.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Mons, Norway. [Ahmad, S.; Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. Mohisin; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Minervini, L. M.] Dipartimento Elettrotecn & Elettron Politecn, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Fionda, F. M.; Incani, E.; Puddu, G.; Usai, G. L.] Univ & Sez INFN, Dipartimento Fis, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Univ & Sez INFN, Dipartimento Fis, Trieste, Italy. [Barbano, A. M.; Beole, S.; Botta, E.; Bufalino, S.; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Puccio, M.; Russo, R.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Univ & Sez INFN, Dipartimento Fis, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Jacazio, N.; Scioli, G.; Zichichi, A.] Univ & Sez INFN, Dipartimento Fis & Astron, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Univ & Sez INFN, Dipartimento Fis & Astron, Catania, Italy. [Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Univ & Sez INFN, Dipartimento Fis & Astron, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ & Grp Coll INFN, Dipartimento Fis ER Caianiello, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale & Grp Collegato INFN, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.; Trombetta, G.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.; Trombetta, G.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Sogaard, C.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Eberhard Karls Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Barth, K.; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hillemanns, H.; Hristov, P.; Kalweit, A.; Keil, M.; Klein, J.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Lakomov, I.; Laudi, E.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Mayer, C.; Milano, L.; Morsch, A.; Musa, L.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Ronchetti, F.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Senyukov, S.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; von Haller, B.; Vranic, D.; Weber, M.; Zampolli, C.; Zimmermann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Excellence Cluster Universe, Munich, Germany. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Mons, Belgium. [Colella, D.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Contreras, J. G.; Eyyubova, G.; Horak, D.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Sefcik, M.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kirsch, S.; Kisel, I.; Kretz, M.; Krzewicki, M.; Lindenstruth, V.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.; Sarma, P.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Mieskolainen, M. M.; Orava, R.; Rasanen, S. S.] HIP, Helsinki, Finland. [Okubo, T.; Sekihata, D.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Dash, S.; Dhankher, P.; Jadhav, M. B.; Meethaleveedu, G. Koyithatta; Kumar, J.; Kumar, S.; Naik, B.; Nandi, B. K.; Pandey, A. K.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India. [Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] Indian Inst Technol Indore IITI, Indore, Madhya Pradesh, India. [Behera, N. K.; Cho, S.; Kweon, M. J.; Yoon, J. H.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Suire, C.; Tarhini, M.] Univ Paris 11, CNRS IN2P3, Inst Phys Nucl Orsay IPNO, Orsay, France. [Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Drozhzhova, T.; Erdemir, I.; Heckel, S. T.; Hellbaer, E.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Ozdemir, M.; Lezama, E. Perez; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Bathen, B.; Cunqueiro, L.; Feldkamp, L.; Haake, R.; Klein-Boesing, C.; De Godoy, D. A. Moreira; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Zimmermann, M. B.] Westfal Wilhelms Univ Munster, Inst Kernphys, Munster, Germany. [Belikov, I.; Hamon, J. C.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Rami, F.; Roy, C.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien IPHC, CNRS IN2P3, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van Der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.; Zhang, C.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow, Russia. [Colella, D.; Jadlovsky, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.] Inst Phys, Bhubaneswar, Orissa, India. [Danu, A.; Dobrin, A.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci ISS, Bucharest, Romania. [Cuautle, E.; Cervantes, I. Maldonado; Nellen, L.; Velasquez, A. Ortiz; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City, DF, Mexico. [Molina, R. Alfaro; Belmont-Moreno, E.; Coral, D. M. Gomez; Grabski, V.; Vargas, H. Leon; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Marchisone, M.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res JINR, Dubna, Russia. [Baek, Y. W.; Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.; Yasar, C.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Feuillard, V. J. G.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Blaise Pascal, Clermont Univ, Lab Phys Corpusculaire LPC, CNRS IN2P3, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Legnaro, Italy. [Bock, F.; Collu, A.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Milano, L.; Ploskon, M.; Porter, J.; Sakai, S.; Thaeder, J.; Zhang, X.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Melikyan, Y.; Peresunko, D.] Moscow Engn Phys Inst, Moscow, Russia. [Oyama, K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Deloff, A.; Kovalenko, O.; Kurashvili, P.; Nair, R.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, R.; Biswas, S.; Dash, A.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yushmanov, I.] Kurchatov Inst, Natl Res Ctr, Moscow, Russia. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Bourjau, C.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Pimentel, L. O. D. L.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Christakoglou, P.; Deplano, C.; Dobrin, A.; Kuijer, P. G.; Lehas, F.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subatomaire Fys, Nikhef, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Benacek, P.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Nayak, R.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Rez, Czech Republic. [Adamova, D.; Benacek, P.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Nayak, R.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Cormier, T. M.; Poghosyan, G.; Read, K. F.; Stankus, P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh, India. [Ganoti, P.; Kostarakis, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.; Whitehead, A. M.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Kour, M.; Kumar, A.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.; Sharma, M.] Univ Jammu, Dept Phys, Jammu, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur, Rajasthan, India. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Dept Phys, Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Danisch, M. C.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Karayan, L.; Klewin, S.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Weiser, D. F.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Browning, T. A.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Tumkin, A.; Vinogradov, Y.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Graham, K. L.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos; Zardoshti, N.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Endress, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [de Cataldo, G.; Elia, D.; Lenti, V.; Manzari, V.; Minervini, L. M.; Nappi, E.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Alici, A.; Antonioli, P.; Cindolo, F.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Badala, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Fragiacomo, E.; Grion, N.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Agnello, M.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bedda, C.; Bruna, E.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Giubellino, P.; La Pointe, S. L.; Oppedisano, C.; Prino, F.; Scomparin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] SSC IHEP NRC Kurchatov Inst, Protvino, Russia. [Weber, M.] Stefan Meyer Inst Subatomare Phys SMI, Vienna, Austria. [Aphecetche, L.; Audurier, B.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Massacrier, L.; Molnar, L.; De Godoy, D. A. Moreira; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS IN2P3, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Cerkala, J.; Jadlovska, S.; Jadlovsky, J.; Kopcik, M.] Tech Univ Kosice, Kosice, Slovakia. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Blair, J. T.; Gauger, E. F.; Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Almaraz, J. R. M.; Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Prado, C. Alves Garcia; Bregant, M.; Cosentino, M. R.; De, S.; de Conti, C.; Gimenez, D. Domenicis; Figueredo, M. A. S.; Jahnke, C.; Fernandes, C. Lagana; Mas, A.; Munhoz, M. G.; da Luz, H. Natal; Da Silva, A. C. Oliveira; Suaide, A. A. P.; de Toledo, A. Szanto; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; de Souza, R. D.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Knospe, A. G.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Borri, M.; Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Marchisone, M.; Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Murakami, H.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Watanabe, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Hosokawa, R.; Inaba, M.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, K.; Patra, R. N.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Graczykowski, L. K.; Jakubowska, M. J.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI USA. [Barnafoldi, G. G.; Bencedi, G.; Berenyi, D.; Biro, G.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Balasubramanian, S.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Epple, E.; Grachov, O. A.; Harris, J. W.; Lutz, T. H.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, D.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul, South Korea. [Keidel, R.] Fachhsch Worms, Zentrum Technol Transfer & Telekommunikat ZTT, Worms, Germany. [Khan, M. Mohisin] Georgia State Univ, Atlanta, GA 30303 USA. [Malinina, L.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. RI Ferreiro, Elena/C-3797-2017; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Natal da Luz, Hugo/F-6460-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Vechernin, Vladimir/J-5832-2013; Takahashi, Jun/B-2946-2012; Ferretti, Alessandro/F-4856-2013; Derradi de Souza, Rafael/M-4791-2013; Kovalenko, Vladimir/C-5709-2013 OI Ferreiro, Elena/0000-0002-4449-2356; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Natal da Luz, Hugo/0000-0003-1177-870X; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Vechernin, Vladimir/0000-0003-1458-8055; Takahashi, Jun/0000-0002-4091-1779; Ferretti, Alessandro/0000-0001-9084-5784; Derradi de Souza, Rafael/0000-0002-2084-7001; Kovalenko, Vladimir/0000-0001-6012-6615 FU Worldwide LHC Computing Grid (WLCG) Collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico(DGAPA), Mexico; Amerique Latine Formation academique-European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN); Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia; Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) Collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico(DGAPA), Mexico, Amerique Latine Formation academique-European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru. NR 70 TC 0 Z9 0 U1 15 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD APR 30 PY 2016 VL 76 IS 5 AR 245 DI 10.1140/epjc/s10052-016-4088-7 PG 21 WC Physics, Particles & Fields SC Physics GA EG9IV UT WOS:000391373200001 PM 27217821 ER PT J AU Chu, JP Endo, T Ellmer, K Gessert, T Ginley, D AF Chu, Jinn P. Endo, Tamio Ellmer, Klaus Gessert, Tim Ginley, David TI Thin Solid Films Topical Special Issue on ZnO related transparent conductive oxides Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Chu, Jinn P.] Natl Taiwan Univ Sci & Technol, Mat Sci & Engn, Taipei, Taiwan. [Endo, Tamio] Gifu Univ, Fac Engn, Gifu, Japan. [Ellmer, Klaus] Helmholtz Zentrum Berlin, Inst Solare Brennstoffe, Berlin, Germany. [Gessert, Tim; Ginley, David] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chu, JP (reprint author), Natl Taiwan Univ Sci & Technol, Mat Sci & Engn, Taipei, Taiwan. NR 0 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2016 VL 605 BP 1 EP 1 DI 10.1016/j.tsf.2016.04.002 PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DJ9NE UT WOS:000374539400001 ER PT J AU Tyagi, PV Doleans, M Hannah, B Afanador, R McMahan, C Stewart, S Mammosser, J Howell, M Saunders, J Degraff, B Kim, SH AF Tyagi, P. V. Doleans, M. Hannah, B. Afanador, R. McMahan, C. Stewart, S. Mammosser, J. Howell, M. Saunders, J. Degraff, B. Kim, S. -H. TI Improving the work function of the niobium surface of SRF cavities by plasma processing SO APPLIED SURFACE SCIENCE LA English DT Article DE SRF cavity; Plasma processing; Surface science; Hydrocarbons removal; Niobium surface; Secondary Ion Mass Spectroscopy; Scanning kelvin probe; Work function AB An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance. Published by Elsevier B.V. C1 [Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S. -H.] ORNL, SNS, Oak Ridge, TN USA. RP Tyagi, PV (reprint author), ORNL, SNS, Oak Ridge, TN USA. EM pvtyagi@gmail.com OI KIM, SANG-HO/0000-0001-5190-9909; doleans, marc/0000-0003-4542-8724 FU Department of Energy (DOE), USA [DE-AC05-00OR22725] FX The authors express their gratitude toward Department of Energy (DOE), USA for funding support of the work presented here under the contract DE-AC05-00OR22725. NR 26 TC 4 Z9 4 U1 6 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 30 PY 2016 VL 369 BP 29 EP 35 DI 10.1016/j.apsusc.2016.02.030 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DJ4UG UT WOS:000374203000004 ER PT J AU Yang, J Peng, J Nyberg, EA Pan, FS AF Yang, Jiang Peng, Jian Nyberg, Eric A. Pan, Fu-sheng TI Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy SO APPLIED SURFACE SCIENCE LA English DT Article DE Mg-Al-Mn alloy; Ca addition; Microstructure; Corrosion resistance ID AM50 MAGNESIUM ALLOY; RARE-EARTH-ELEMENTS; MECHANICAL-PROPERTIES; ELECTROCHEMICAL-BEHAVIOR; OXIDATION BEHAVIOR; NACL SOLUTION; MICROSTRUCTURE; RESISTANCE; REFINEMENT; STRENGTH AB The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)(2)Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the alpha-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the alpha-Mg matrix. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yang, Jiang; Peng, Jian; Pan, Fu-sheng] Chongqing Univ, Coll Mat Sci & Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China. [Peng, Jian; Pan, Fu-sheng] Chongqing Acad Sci & Technol, Chongqing 401123, Peoples R China. [Nyberg, Eric A.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Peng, J (reprint author), Chongqing Univ, Coll Mat Sci & Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China.; Peng, J (reprint author), Chongqing Acad Sci & Technol, Chongqing 401123, Peoples R China. EM sallyyangj@163.com; jpeng@cqu.edu.cn; eric.nyberg@pnnl.gov; fspan@cqu.edu.cn FU National Natural Science Foundation of China [51474043]; Ministry of Education of China [SRFDR 20130191110018]; Education Commission of Chongqing Municipality [KJZH14101] FX The present work was supported by the National Natural Science Foundation of China (Project 51474043), the Ministry of Education of China (SRFDR 20130191110018) and the Education Commission of Chongqing Municipality (KJZH14101). NR 44 TC 0 Z9 0 U1 10 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 30 PY 2016 VL 369 BP 92 EP 100 DI 10.1016/j.apsusc.2016.01.283 PG 9 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DJ4UG UT WOS:000374203000012 ER PT J AU Fu, RR Zeng, XQ Ma, L Gao, SM Wang, QY Wang, ZY Huang, BB Dai, Y Lu, J AF Fu, Rongrong Zeng, Xiaoqiao Ma, Lu Gao, Shanmin Wang, Qingyao Wang, Zeyan Huang, Baibiao Dai, Ying Lu, Jun TI Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2-x/BiOCl heterojunctions SO JOURNAL OF POWER SOURCES LA English DT Article DE Reduced TiO2-x; BiOCl; Heterojunctions; Hydrothermal treatment; Photoelectrochemical water-splitting; Visible-light photocatalyst ID VISIBLE-LIGHT IRRADIATION; TIO2 NANOTUBE ARRAYS; SELF-DOPED TIO2; BIOCL NANOSHEETS; TITANIUM MONOXIDE; ENVIRONMENTAL REMEDIATION; HYDROGEN-PRODUCTION; OXYGEN VACANCIES; NANOPARTICLES; SURFACE AB A key issue to design highly efficient photoelectrodes for hydrogen production is how to prohibit the rapid carrier recombination. In order to use the visible light and reduce the recombination of electrons and holes, reduced TiO2-x/BiOCl heterojunctions are successfully synthesized and the photoelectrodes are assembled in this work. The effects of various Bi/Ti molar ratios on the structural, morphological, optical, photoelectrochemical and photocatalytic activities of the resultant samples are investigated systematically. The TiO2-x nanoparticles contain Ti3+, Ti2+, and oxygen vacancies (Ov), while the BiOCl nanosheets exposed {001} facet. Ultraviolet visible diffuse reflectance spectroscopy (UV vis DRS) results indicate that the existence of Ti3+, Ti2+ and Ov expand the light-response range. Linear scan voltammetry and electrochemical impedance spectroscopy results indicate that more efficient electron transportation is presented in the heterojunctions with the appropriate Bi/Ti molar ratio. Consequently, the reduced TiO2-x/BiOCl heterojunction with the most appropriate Bi/Ti molar ratio exhibits a high photocurrent density of 0.755 mA cm(-2) with photoconversion efficiency up to 0.634%, 10.5 and 22.6 times larger than that of pure TiO2 and BiOCl. Furthermore, this heterojunction exhibit 48.38 and 12.54 times enhancement for the visible-light decomposition of rhodamine B compared with pure TiO2 and BiOCl. (C) 2016 Published by Elsevier B.V. C1 [Fu, Rongrong; Gao, Shanmin; Wang, Qingyao] Ludong Univ, Coll Chem & Mat Sci, Yantai 264025, Peoples R China. [Zeng, Xiaoqiao; Ma, Lu; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. RP Gao, SM (reprint author), Ludong Univ, Coll Chem & Mat Sci, Yantai 264025, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Gao, SM (reprint author), Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. EM gaosm@ustc.edu; junlu@anl.gov OI Zeng, Xiaoqiao/0000-0001-6913-9965 FU Key Project of Natural Science Foundation of Shandong Province [ZR2013EMZ001]; Science and Technology Development Plan Project of Shandong Province [2014GSF117015]; National Basic Research Program of China [2013CB632401]; National Nature Science Foundation of China [51402145]; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was supported by the Key Project of Natural Science Foundation of Shandong Province (ZR2013EMZ001), the Science and Technology Development Plan Project of Shandong Province (2014GSF117015), the National Basic Research Program of China (Grant No. 2013CB632401) and the National Nature Science Foundation of China (51402145). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 60 TC 2 Z9 2 U1 48 U2 129 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD APR 30 PY 2016 VL 312 BP 12 EP 22 DI 10.1016/j.jpowsour.2016.02.038 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DI5LX UT WOS:000373541700002 ER PT J AU Shi, W Wang, JL Zheng, JM Jiang, JC Viswanathan, V Zhang, JG AF Shi, Wei Wang, Jiulin Zheng, Jianming Jiang, Jiuchun Viswanathan, Vilayanur Zhang, Ji-Guang TI Influence of memory effect on the state-of-charge estimation of large format Li-ion batteries based on LiFePO4 cathode SO JOURNAL OF POWER SOURCES LA English DT Article DE LiFePO4 battery; Memory effect; Partial charge; SOC; DOD ID RECHARGEABLE LITHIUM BATTERIES; MANAGEMENT-SYSTEMS; SECONDARY BATTERIES; IDENTIFICATION; CELLS; PACKS; OBSERVER; DESIGN; MODEL AB In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Shi, Wei; Jiang, Jiuchun] Beijing Jiaotong Univ, Sch Elect Engn, Natl Act Distribut Network Technol Res Ctr, 3 Shangyuancun St, Beijing 100044, Peoples R China. [Shi, Wei; Wang, Jiulin; Zheng, Jianming; Viswanathan, Vilayanur; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99352 USA. [Wang, Jiulin] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. RP Zhang, JG (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99352 USA. EM jiguang.zhang@pnnl.gov RI Zheng, Jianming/F-2517-2014; Wang, Jiulin/G-2694-2010 OI Zheng, Jianming/0000-0002-4928-8194; FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Materials Research Program [DE-AC02-05CH11231, 18769]; Fundamental Research Funds for the Central Universities of China [E15JB00050]; Power Electronics Science and Education Development Program of Delta Environmental & Educational Foundation FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Materials Research Program (Contract No. DE-AC02-05CH11231, Subcontract No.18769) and by the Fundamental Research Funds for the Central Universities of China (Grant Number E15JB00050), and the Power Electronics Science and Education Development Program of Delta Environmental & Educational Foundation. NR 26 TC 1 Z9 1 U1 18 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD APR 30 PY 2016 VL 312 BP 55 EP 59 DI 10.1016/j.jpowsour.2016.02.041 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DI5LX UT WOS:000373541700006 ER PT J AU Mohanty, D Hockaday, E Li, J Hensley, DK Daniel, C Wood, DL AF Mohanty, D. Hockaday, E. Li, J. Hensley, D. K. Daniel, C. Wood, D. L., III TI Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Electrode defect; Quality control; Manufacturing; Capacity fade AB During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electro-chemical performance. In addition, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMC 532electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. This study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mohanty, D.; Li, J.; Daniel, C.; Wood, D. L., III] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN USA. [Hockaday, E.] Univ Tennessee, Dept Elect Engn, Knoxville, TN USA. [Hensley, D. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Daniel, C.; Wood, D. L., III] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. RP Mohanty, D; Wood, DL (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN USA. EM mohantyd@ornl.gov; wooddl@ornl.gov OI Wood, David/0000-0002-2471-4214; Li, Jianlin/0000-0002-8710-9847 FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office's Applied Battery Research Program FX This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, was sponsored by the Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office's Applied Battery Research Program (Program Managers: Peter Faguy and David Howell). Scanning Electron Microscopy experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Debasish thanks Shawn Reeves for her help in collecting backscattered SEM images. NR 10 TC 3 Z9 3 U1 16 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD APR 30 PY 2016 VL 312 BP 70 EP 79 DI 10.1016/j.jpowsour.2016.02.007 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DI5LX UT WOS:000373541700008 ER PT J AU West, WC Hood, ZD Adhikari, SP Liang, CD Lachgar, A Motoyama, M Iriyama, Y AF West, William C. Hood, Zachary D. Adhikari, Shiba P. Liang, Chengdu Lachgar, Abdou Motoyama, Munekazu Iriyama, Yasutoshi TI Reduction of charge-transfer resistance at the solid electrolyte - electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source SO JOURNAL OF POWER SOURCES LA English DT Article DE Thin film batteries; Charge transfer resistance; Pulsed laser deposition; Li2PO2N ID LITHIUM PHOSPHORUS OXYNITRIDE; LI-ION BATTERIES; THIN-FILM; CATHODE MATERIALS; CONDUCTIVITY; BEHAVIOR; LIPON; MN; CO AB Amorphous films deposited by pulsed laser deposition from a crystalline Li2PO2N target in a N-2 ambient atmosphere (LiPON-PLD) have been examined as an approach to reduce the charge-transfer resistance at the electrode-solid electrolyte interface. Despite the relatively low ionic conductivity of ca. 1.5 x 10(-8) S cm(-1) at 25 degrees C, the amorphous LiPON-PLD films deposited between a LiMn1.485Ni0.45Cr0.05O4 (LNM) cathode and LiPON electrolyte resulted in sharply improved electrochemical performance in terms of charge-transfer resistance and CV profiles. Cells without a LiPON-PLD film had a charge-transfer resistance of 4470 Omega-cm(2) compared to 760 and 960 Omega-cm(2) for the sample with 17 nm and 31 nm thick LiPON-PLD films, respectively. The LiPON-PLD amorphous films show no evidence of the continuous planar -P-N-P-N- backbone characteristic of the crystalline target material, but compared with LiPON prepared from radio frequency magnetron sputtering with Li3PO4 in a N-2 atmosphere, the LiPON-PLD films were composed of a higher amount of triply coordinated P - N<(P)(P) with relatively lower contributions of P-N=P. (C) 2016 Elsevier B.V. All rights reserved. C1 [West, William C.] Nagoya Univ, Green Mobil Collaborat Res Ctr, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan. [Hood, Zachary D.; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Adhikari, Shiba P.; Lachgar, Abdou] Wake Forest Univ, Dept Chem, Winston Salem, NC 27109 USA. [Motoyama, Munekazu; Iriyama, Yasutoshi] Nagoya Univ, Dept Mat Phys & Energy Engn, Grad Sch Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan. [Adhikari, Shiba P.; Lachgar, Abdou] Wake Forest Univ, CEES, Winston Salem, NC 27109 USA. RP West, WC (reprint author), Nagoya Univ, Green Mobil Collaborat Res Ctr, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan. EM intercalating@gmail.com FU Toyota Motor Company; Higher Education Research Experiences (HERE) at Oak Ridge National Laboratory; National Science Foundation Graduate Research Fellowship [DGE-1148903]; Wake Forest University Center for Energy, Environment, and Sustainability FX WCW gratefully acknowledges the financial support from Toyota Motor Company. A portion of this research was completed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. ZDH gratefully acknowledges support from Higher Education Research Experiences (HERE) at Oak Ridge National Laboratory and from the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903. Financial support from the Wake Forest University Center for Energy, Environment, and Sustainability is also acknowledged. The authors thank Dr. Takuya Masuda at National Institute for Materials Science (Japan) for assistance with the XPS measurements, Dr. Hisashi Sakai at Aichi Synchrotron Radiation Center for assistance with the S-XRD measurements, and Dr. Keerthi Senevirathne at Florida A&M University and Dr. Natalie Holzwarth at Wake Forest University for helpful discussions. NR 29 TC 0 Z9 0 U1 23 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD APR 30 PY 2016 VL 312 BP 116 EP 122 DI 10.1016/j.jpowsour.2016.02.034 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DI5LX UT WOS:000373541700014 ER PT J AU Zhou, ZF Wu, WT Massoudi, M AF Zhou, Zhifu Wu, Wei-Tao Massoudi, Mehrdad TI Fully developed flow of a drilling fluid between two rotating cylinders SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Drilling mud; Drilling fluid; Non-Newtonian fluids; Suspension; Rheology; Variable viscosity ID CONCENTRATED SUSPENSIONS; CONSTITUTIVE EQUATION; BEHAVIOR; MODEL AB In this paper, we study the fully developed Couette flow of a drilling fluid, and explore the effects of concentration and shear-rate-dependent viscosity. The one-dimensional form of the governing equations, as well as the boundary conditions are made dimensionless and a parametric study is performed by varying the dimensionless numbers. Published by Elsevier Inc. C1 [Zhou, Zhifu] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China. [Wu, Wei-Tao] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. [Massoudi, Mehrdad] US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM mehrdad.massoudi@netl.doe.gov NR 24 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 EI 1873-5649 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD APR 30 PY 2016 VL 281 BP 266 EP 277 DI 10.1016/j.amc.2016.01.059 PG 12 WC Mathematics, Applied SC Mathematics GA DF4RT UT WOS:000371338700021 ER PT J AU Strickland, JD LeFew, WR Crooks, J Hall, D Ortenzio, JNR Dreher, K Shafer, TJ AF Strickland, Jenna D. LeFew, William R. Crooks, James Hall, Diana Ortenzio, Jayna N. R. Dreher, Kevin Shafer, Timothy J. TI In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses SO TOXICOLOGY LA English DT Article DE Nanoparticles; Screening; Neurophysiology; Silver; Function; Microelectrode arrays ID SPRAGUE-DAWLEY RATS; MICROELECTRODE ARRAYS; ENGINEERED NANOMATERIALS; PRIMARY CULTURES; ORAL-EXPOSURE; NANO-AG; NEURONS; NEUROTOXICITY; NANOSILVER; DOSIMETRY AB Silver nanoparticles (AgNPs) are used in a wide range of consumer and medical products because of their antimicrobial and antifungal properties, and can translocate to the brain following exposure. Therefore, to screen AgNPs for potential impacts on human health, it is essential to examine neural function. The present study examined AgNPs (3 citrate coated, 3 PVP coated; 10-75 nm) and AgNO3 effects on spontaneous and pharmacologically-induced neural network function in rat primary cortical cells on multi-well microelectrode array (mwMEA) plates. Baseline activity (1 h) was recorded prior to exposure to non-cytotoxic concentrations of AgNPs and AgNO3 (0.08-0.63 and 0.08-1.7 mu g/ml, respectively). Changes in number of total extracellularly-recorded action potential spikes (total spikes; TS) and active electrodes (AE), relative to controls, were assessed 1, 24, and 48 h after exposure to AgNP suspensions or AgNO3. After the 48 h recording, the response to a pharmacological challenge with the GABA(A) antagonist, bicuculline (BIC), was assessed. Only two particles altered neural network function. Citrate coated 10 nm AgNP caused concentration-related increases in AEs at 24 h. After BIC treatment, PVP coated 75 nm AgNP caused concentration-dependent increases in AE. AgNO3 effects differed from AgNPs, causing a concentration-related decrease in AEs at 24 and 48 h, and a concentration-related decrease in TS following BIC challenge. Importantly, the direction of AgNO3 effects on neural activity was opposite those of 10 nm Ag citrate at concentrations up to 0.63 mu g/ml, and different from 75 nm Ag PVP, indicating ionic silver does not mediate these effects. These results demonstrate that non-cytotoxic concentrations of 10 nm citrate- and 75 nm PVP-coated Ag NPs alter neural network function in vitro, and should be considered for additional neurotoxicity hazard characterization. Published by Elsevier Ireland Ltd. C1 [Strickland, Jenna D.; LeFew, William R.; Crooks, James; Hall, Diana; Ortenzio, Jayna N. R.; Dreher, Kevin; Shafer, Timothy J.] US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. [Ortenzio, Jayna N. R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Shafer, TJ (reprint author), US EPA, Integrated Syst Toxicol Div, Off Res & Dev, MD B105-03, Res Triangle Pk, NC 27711 USA. EM Shafer.tim@epa.gov OI Shafer, Timothy/0000-0002-8069-9987 FU U.S. Environmental Protection Agency; [EP-11D-000392]; [EP-13-D-000108] FX Preparation of this document has been funded by the U.S. Environmental Protection Agency. This document has been reviewed by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.; These authors were supported by student services contracts #EP-11D-000392 and #EP-13-D-000108, respectively. NR 45 TC 1 Z9 1 U1 8 U2 17 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD APR 29 PY 2016 VL 355 BP 1 EP 8 DI 10.1016/j.tox.2016.05.009 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA DP4EA UT WOS:000378447800001 PM 27179409 ER EF